]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io-wq: kill now unused io_wq_cancel_all()
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265
266 /*
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
269 *
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
273 *
274 * The kernel modifies neither the indices array nor the entries
275 * array.
276 */
277 u32 *sq_array;
278 unsigned cached_sq_head;
279 unsigned sq_entries;
280 unsigned sq_mask;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
285
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
289
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
292
293 struct io_rings *rings;
294
295 /* IO offload */
296 struct io_wq *io_wq;
297
298 /*
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
301 */
302 struct task_struct *sqo_task;
303
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
306
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
309 #endif
310
311 struct io_sq_data *sq_data; /* if using sq thread polling */
312
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
315
316 /*
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
320 */
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
323
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
327
328 struct user_struct *user;
329
330 const struct cred *creds;
331
332 #ifdef CONFIG_AUDIT
333 kuid_t loginuid;
334 unsigned int sessionid;
335 #endif
336
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
339
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
342
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
345 #endif
346
347 struct idr io_buffer_idr;
348
349 struct idr personality_idr;
350
351 struct {
352 unsigned cached_cq_tail;
353 unsigned cq_entries;
354 unsigned cq_mask;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
361
362 struct {
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
366
367 struct {
368 spinlock_t completion_lock;
369
370 /*
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
375 */
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
380
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
384
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
387
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
390 };
391
392 /*
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
395 */
396 struct io_poll_iocb {
397 struct file *file;
398 struct wait_queue_head *head;
399 __poll_t events;
400 bool done;
401 bool canceled;
402 struct wait_queue_entry wait;
403 };
404
405 struct io_poll_remove {
406 struct file *file;
407 u64 addr;
408 };
409
410 struct io_close {
411 struct file *file;
412 struct file *put_file;
413 int fd;
414 };
415
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
421 };
422
423 struct io_accept {
424 struct file *file;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
427 int flags;
428 unsigned long nofile;
429 };
430
431 struct io_sync {
432 struct file *file;
433 loff_t len;
434 loff_t off;
435 int flags;
436 int mode;
437 };
438
439 struct io_cancel {
440 struct file *file;
441 u64 addr;
442 };
443
444 struct io_timeout {
445 struct file *file;
446 u32 off;
447 u32 target_seq;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
451 };
452
453 struct io_timeout_rem {
454 struct file *file;
455 u64 addr;
456
457 /* timeout update */
458 struct timespec64 ts;
459 u32 flags;
460 };
461
462 struct io_rw {
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
464 struct kiocb kiocb;
465 u64 addr;
466 u64 len;
467 };
468
469 struct io_connect {
470 struct file *file;
471 struct sockaddr __user *addr;
472 int addr_len;
473 };
474
475 struct io_sr_msg {
476 struct file *file;
477 union {
478 struct user_msghdr __user *umsg;
479 void __user *buf;
480 };
481 int msg_flags;
482 int bgid;
483 size_t len;
484 struct io_buffer *kbuf;
485 };
486
487 struct io_open {
488 struct file *file;
489 int dfd;
490 bool ignore_nonblock;
491 struct filename *filename;
492 struct open_how how;
493 unsigned long nofile;
494 };
495
496 struct io_files_update {
497 struct file *file;
498 u64 arg;
499 u32 nr_args;
500 u32 offset;
501 };
502
503 struct io_fadvise {
504 struct file *file;
505 u64 offset;
506 u32 len;
507 u32 advice;
508 };
509
510 struct io_madvise {
511 struct file *file;
512 u64 addr;
513 u32 len;
514 u32 advice;
515 };
516
517 struct io_epoll {
518 struct file *file;
519 int epfd;
520 int op;
521 int fd;
522 struct epoll_event event;
523 };
524
525 struct io_splice {
526 struct file *file_out;
527 struct file *file_in;
528 loff_t off_out;
529 loff_t off_in;
530 u64 len;
531 unsigned int flags;
532 };
533
534 struct io_provide_buf {
535 struct file *file;
536 __u64 addr;
537 __s32 len;
538 __u32 bgid;
539 __u16 nbufs;
540 __u16 bid;
541 };
542
543 struct io_statx {
544 struct file *file;
545 int dfd;
546 unsigned int mask;
547 unsigned int flags;
548 const char __user *filename;
549 struct statx __user *buffer;
550 };
551
552 struct io_shutdown {
553 struct file *file;
554 int how;
555 };
556
557 struct io_rename {
558 struct file *file;
559 int old_dfd;
560 int new_dfd;
561 struct filename *oldpath;
562 struct filename *newpath;
563 int flags;
564 };
565
566 struct io_unlink {
567 struct file *file;
568 int dfd;
569 int flags;
570 struct filename *filename;
571 };
572
573 struct io_completion {
574 struct file *file;
575 struct list_head list;
576 int cflags;
577 };
578
579 struct io_async_connect {
580 struct sockaddr_storage address;
581 };
582
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
585 struct iovec *iov;
586 struct sockaddr __user *uaddr;
587 struct msghdr msg;
588 struct sockaddr_storage addr;
589 };
590
591 struct io_async_rw {
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
595 size_t bytes_done;
596 struct wait_page_queue wpq;
597 };
598
599 enum {
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
606
607 REQ_F_FAIL_LINK_BIT,
608 REQ_F_INFLIGHT_BIT,
609 REQ_F_CUR_POS_BIT,
610 REQ_F_NOWAIT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
612 REQ_F_ISREG_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
614 REQ_F_POLLED_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
619
620 /* not a real bit, just to check we're not overflowing the space */
621 __REQ_F_LAST_BIT,
622 };
623
624 enum {
625 /* ctx owns file */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
629 /* linked sqes */
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
633 /* IOSQE_ASYNC */
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
637
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
648 /* regular file */
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
650 /* needs cleanup */
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
662 };
663
664 struct async_poll {
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
667 };
668
669 /*
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
674 */
675 struct io_kiocb {
676 union {
677 struct file *file;
678 struct io_rw rw;
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
682 struct io_sync sync;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
688 struct io_open open;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
702 };
703
704 /* opcode allocated if it needs to store data for async defer */
705 void *async_data;
706 u8 opcode;
707 /* polled IO has completed */
708 u8 iopoll_completed;
709
710 u16 buf_index;
711 u32 result;
712
713 struct io_ring_ctx *ctx;
714 unsigned int flags;
715 refcount_t refs;
716 struct task_struct *task;
717 u64 user_data;
718
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
721
722 /*
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
725 */
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
732 };
733
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
737 u32 seq;
738 };
739
740 #define IO_IOPOLL_BATCH 8
741
742 struct io_comp_state {
743 unsigned int nr;
744 struct list_head list;
745 struct io_ring_ctx *ctx;
746 };
747
748 struct io_submit_state {
749 struct blk_plug plug;
750
751 /*
752 * io_kiocb alloc cache
753 */
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
756
757 bool plug_started;
758
759 /*
760 * Batch completion logic
761 */
762 struct io_comp_state comp;
763
764 /*
765 * File reference cache
766 */
767 struct file *file;
768 unsigned int fd;
769 unsigned int file_refs;
770 unsigned int ios_left;
771 };
772
773 struct io_op_def {
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
785 unsigned pollin : 1;
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
792 unsigned plug : 1;
793 /* size of async data needed, if any */
794 unsigned short async_size;
795 unsigned work_flags;
796 };
797
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
801 .needs_file = 1,
802 .unbound_nonreg_file = 1,
803 .pollin = 1,
804 .buffer_select = 1,
805 .needs_async_data = 1,
806 .plug = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
809 },
810 [IORING_OP_WRITEV] = {
811 .needs_file = 1,
812 .hash_reg_file = 1,
813 .unbound_nonreg_file = 1,
814 .pollout = 1,
815 .needs_async_data = 1,
816 .plug = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
819 IO_WQ_WORK_FSIZE,
820 },
821 [IORING_OP_FSYNC] = {
822 .needs_file = 1,
823 .work_flags = IO_WQ_WORK_BLKCG,
824 },
825 [IORING_OP_READ_FIXED] = {
826 .needs_file = 1,
827 .unbound_nonreg_file = 1,
828 .pollin = 1,
829 .plug = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
832 },
833 [IORING_OP_WRITE_FIXED] = {
834 .needs_file = 1,
835 .hash_reg_file = 1,
836 .unbound_nonreg_file = 1,
837 .pollout = 1,
838 .plug = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
841 IO_WQ_WORK_MM,
842 },
843 [IORING_OP_POLL_ADD] = {
844 .needs_file = 1,
845 .unbound_nonreg_file = 1,
846 },
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
849 .needs_file = 1,
850 .work_flags = IO_WQ_WORK_BLKCG,
851 },
852 [IORING_OP_SENDMSG] = {
853 .needs_file = 1,
854 .unbound_nonreg_file = 1,
855 .pollout = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
859 },
860 [IORING_OP_RECVMSG] = {
861 .needs_file = 1,
862 .unbound_nonreg_file = 1,
863 .pollin = 1,
864 .buffer_select = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
868 },
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
873 },
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
877 },
878 [IORING_OP_ACCEPT] = {
879 .needs_file = 1,
880 .unbound_nonreg_file = 1,
881 .pollin = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
883 },
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
889 },
890 [IORING_OP_CONNECT] = {
891 .needs_file = 1,
892 .unbound_nonreg_file = 1,
893 .pollout = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
897 },
898 [IORING_OP_FALLOCATE] = {
899 .needs_file = 1,
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
901 },
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
905 },
906 [IORING_OP_CLOSE] = {
907 .needs_file = 1,
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
910 },
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
913 },
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
917 },
918 [IORING_OP_READ] = {
919 .needs_file = 1,
920 .unbound_nonreg_file = 1,
921 .pollin = 1,
922 .buffer_select = 1,
923 .plug = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
926 },
927 [IORING_OP_WRITE] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollout = 1,
931 .plug = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
934 IO_WQ_WORK_FSIZE,
935 },
936 [IORING_OP_FADVISE] = {
937 .needs_file = 1,
938 .work_flags = IO_WQ_WORK_BLKCG,
939 },
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
942 },
943 [IORING_OP_SEND] = {
944 .needs_file = 1,
945 .unbound_nonreg_file = 1,
946 .pollout = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
948 },
949 [IORING_OP_RECV] = {
950 .needs_file = 1,
951 .unbound_nonreg_file = 1,
952 .pollin = 1,
953 .buffer_select = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
955 },
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
959 },
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
963 },
964 [IORING_OP_SPLICE] = {
965 .needs_file = 1,
966 .hash_reg_file = 1,
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
969 },
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
972 [IORING_OP_TEE] = {
973 .needs_file = 1,
974 .hash_reg_file = 1,
975 .unbound_nonreg_file = 1,
976 },
977 [IORING_OP_SHUTDOWN] = {
978 .needs_file = 1,
979 },
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
983 },
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
987 },
988 };
989
990 enum io_mem_account {
991 ACCT_LOCKED,
992 ACCT_PINNED,
993 };
994
995 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
996 struct io_comp_state *cs);
997 static void io_cqring_fill_event(struct io_kiocb *req, long res);
998 static void io_put_req(struct io_kiocb *req);
999 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1000 static void io_double_put_req(struct io_kiocb *req);
1001 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1002 static void __io_queue_linked_timeout(struct io_kiocb *req);
1003 static void io_queue_linked_timeout(struct io_kiocb *req);
1004 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1005 struct io_uring_files_update *ip,
1006 unsigned nr_args);
1007 static void __io_clean_op(struct io_kiocb *req);
1008 static struct file *io_file_get(struct io_submit_state *state,
1009 struct io_kiocb *req, int fd, bool fixed);
1010 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1011 static void io_file_put_work(struct work_struct *work);
1012
1013 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1014 struct iovec **iovec, struct iov_iter *iter,
1015 bool needs_lock);
1016 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1017 const struct iovec *fast_iov,
1018 struct iov_iter *iter, bool force);
1019
1020 static struct kmem_cache *req_cachep;
1021
1022 static const struct file_operations io_uring_fops;
1023
1024 struct sock *io_uring_get_socket(struct file *file)
1025 {
1026 #if defined(CONFIG_UNIX)
1027 if (file->f_op == &io_uring_fops) {
1028 struct io_ring_ctx *ctx = file->private_data;
1029
1030 return ctx->ring_sock->sk;
1031 }
1032 #endif
1033 return NULL;
1034 }
1035 EXPORT_SYMBOL(io_uring_get_socket);
1036
1037 #define io_for_each_link(pos, head) \
1038 for (pos = (head); pos; pos = pos->link)
1039
1040 static inline void io_clean_op(struct io_kiocb *req)
1041 {
1042 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1043 REQ_F_INFLIGHT))
1044 __io_clean_op(req);
1045 }
1046
1047 static inline void io_set_resource_node(struct io_kiocb *req)
1048 {
1049 struct io_ring_ctx *ctx = req->ctx;
1050
1051 if (!req->fixed_file_refs) {
1052 req->fixed_file_refs = &ctx->file_data->node->refs;
1053 percpu_ref_get(req->fixed_file_refs);
1054 }
1055 }
1056
1057 static bool io_match_task(struct io_kiocb *head,
1058 struct task_struct *task,
1059 struct files_struct *files)
1060 {
1061 struct io_kiocb *req;
1062
1063 if (task && head->task != task)
1064 return false;
1065 if (!files)
1066 return true;
1067
1068 io_for_each_link(req, head) {
1069 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1070 (req->work.flags & IO_WQ_WORK_FILES) &&
1071 req->work.identity->files == files)
1072 return true;
1073 }
1074 return false;
1075 }
1076
1077 static void io_sq_thread_drop_mm_files(void)
1078 {
1079 struct files_struct *files = current->files;
1080 struct mm_struct *mm = current->mm;
1081
1082 if (mm) {
1083 kthread_unuse_mm(mm);
1084 mmput(mm);
1085 current->mm = NULL;
1086 }
1087 if (files) {
1088 struct nsproxy *nsproxy = current->nsproxy;
1089
1090 task_lock(current);
1091 current->files = NULL;
1092 current->nsproxy = NULL;
1093 task_unlock(current);
1094 put_files_struct(files);
1095 put_nsproxy(nsproxy);
1096 }
1097 }
1098
1099 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1100 {
1101 if (!current->files) {
1102 struct files_struct *files;
1103 struct nsproxy *nsproxy;
1104
1105 task_lock(ctx->sqo_task);
1106 files = ctx->sqo_task->files;
1107 if (!files) {
1108 task_unlock(ctx->sqo_task);
1109 return -EOWNERDEAD;
1110 }
1111 atomic_inc(&files->count);
1112 get_nsproxy(ctx->sqo_task->nsproxy);
1113 nsproxy = ctx->sqo_task->nsproxy;
1114 task_unlock(ctx->sqo_task);
1115
1116 task_lock(current);
1117 current->files = files;
1118 current->nsproxy = nsproxy;
1119 task_unlock(current);
1120 }
1121 return 0;
1122 }
1123
1124 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1125 {
1126 struct mm_struct *mm;
1127
1128 if (current->mm)
1129 return 0;
1130
1131 /* Should never happen */
1132 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1133 return -EFAULT;
1134
1135 task_lock(ctx->sqo_task);
1136 mm = ctx->sqo_task->mm;
1137 if (unlikely(!mm || !mmget_not_zero(mm)))
1138 mm = NULL;
1139 task_unlock(ctx->sqo_task);
1140
1141 if (mm) {
1142 kthread_use_mm(mm);
1143 return 0;
1144 }
1145
1146 return -EFAULT;
1147 }
1148
1149 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1150 struct io_kiocb *req)
1151 {
1152 const struct io_op_def *def = &io_op_defs[req->opcode];
1153 int ret;
1154
1155 if (def->work_flags & IO_WQ_WORK_MM) {
1156 ret = __io_sq_thread_acquire_mm(ctx);
1157 if (unlikely(ret))
1158 return ret;
1159 }
1160
1161 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1162 ret = __io_sq_thread_acquire_files(ctx);
1163 if (unlikely(ret))
1164 return ret;
1165 }
1166
1167 return 0;
1168 }
1169
1170 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1171 struct cgroup_subsys_state **cur_css)
1172
1173 {
1174 #ifdef CONFIG_BLK_CGROUP
1175 /* puts the old one when swapping */
1176 if (*cur_css != ctx->sqo_blkcg_css) {
1177 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1178 *cur_css = ctx->sqo_blkcg_css;
1179 }
1180 #endif
1181 }
1182
1183 static void io_sq_thread_unassociate_blkcg(void)
1184 {
1185 #ifdef CONFIG_BLK_CGROUP
1186 kthread_associate_blkcg(NULL);
1187 #endif
1188 }
1189
1190 static inline void req_set_fail_links(struct io_kiocb *req)
1191 {
1192 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1193 req->flags |= REQ_F_FAIL_LINK;
1194 }
1195
1196 /*
1197 * None of these are dereferenced, they are simply used to check if any of
1198 * them have changed. If we're under current and check they are still the
1199 * same, we're fine to grab references to them for actual out-of-line use.
1200 */
1201 static void io_init_identity(struct io_identity *id)
1202 {
1203 id->files = current->files;
1204 id->mm = current->mm;
1205 #ifdef CONFIG_BLK_CGROUP
1206 rcu_read_lock();
1207 id->blkcg_css = blkcg_css();
1208 rcu_read_unlock();
1209 #endif
1210 id->creds = current_cred();
1211 id->nsproxy = current->nsproxy;
1212 id->fs = current->fs;
1213 id->fsize = rlimit(RLIMIT_FSIZE);
1214 #ifdef CONFIG_AUDIT
1215 id->loginuid = current->loginuid;
1216 id->sessionid = current->sessionid;
1217 #endif
1218 refcount_set(&id->count, 1);
1219 }
1220
1221 static inline void __io_req_init_async(struct io_kiocb *req)
1222 {
1223 memset(&req->work, 0, sizeof(req->work));
1224 req->flags |= REQ_F_WORK_INITIALIZED;
1225 }
1226
1227 /*
1228 * Note: must call io_req_init_async() for the first time you
1229 * touch any members of io_wq_work.
1230 */
1231 static inline void io_req_init_async(struct io_kiocb *req)
1232 {
1233 struct io_uring_task *tctx = current->io_uring;
1234
1235 if (req->flags & REQ_F_WORK_INITIALIZED)
1236 return;
1237
1238 __io_req_init_async(req);
1239
1240 /* Grab a ref if this isn't our static identity */
1241 req->work.identity = tctx->identity;
1242 if (tctx->identity != &tctx->__identity)
1243 refcount_inc(&req->work.identity->count);
1244 }
1245
1246 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1247 {
1248 return ctx->flags & IORING_SETUP_SQPOLL;
1249 }
1250
1251 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1252 {
1253 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1254
1255 complete(&ctx->ref_comp);
1256 }
1257
1258 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1259 {
1260 return !req->timeout.off;
1261 }
1262
1263 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1264 {
1265 struct io_ring_ctx *ctx;
1266 int hash_bits;
1267
1268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1269 if (!ctx)
1270 return NULL;
1271
1272 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1273 if (!ctx->fallback_req)
1274 goto err;
1275
1276 /*
1277 * Use 5 bits less than the max cq entries, that should give us around
1278 * 32 entries per hash list if totally full and uniformly spread.
1279 */
1280 hash_bits = ilog2(p->cq_entries);
1281 hash_bits -= 5;
1282 if (hash_bits <= 0)
1283 hash_bits = 1;
1284 ctx->cancel_hash_bits = hash_bits;
1285 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1286 GFP_KERNEL);
1287 if (!ctx->cancel_hash)
1288 goto err;
1289 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1290
1291 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1292 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1293 goto err;
1294
1295 ctx->flags = p->flags;
1296 init_waitqueue_head(&ctx->sqo_sq_wait);
1297 INIT_LIST_HEAD(&ctx->sqd_list);
1298 init_waitqueue_head(&ctx->cq_wait);
1299 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1300 init_completion(&ctx->ref_comp);
1301 init_completion(&ctx->sq_thread_comp);
1302 idr_init(&ctx->io_buffer_idr);
1303 idr_init(&ctx->personality_idr);
1304 mutex_init(&ctx->uring_lock);
1305 init_waitqueue_head(&ctx->wait);
1306 spin_lock_init(&ctx->completion_lock);
1307 INIT_LIST_HEAD(&ctx->iopoll_list);
1308 INIT_LIST_HEAD(&ctx->defer_list);
1309 INIT_LIST_HEAD(&ctx->timeout_list);
1310 spin_lock_init(&ctx->inflight_lock);
1311 INIT_LIST_HEAD(&ctx->inflight_list);
1312 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1313 init_llist_head(&ctx->file_put_llist);
1314 return ctx;
1315 err:
1316 if (ctx->fallback_req)
1317 kmem_cache_free(req_cachep, ctx->fallback_req);
1318 kfree(ctx->cancel_hash);
1319 kfree(ctx);
1320 return NULL;
1321 }
1322
1323 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1324 {
1325 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1326 struct io_ring_ctx *ctx = req->ctx;
1327
1328 return seq != ctx->cached_cq_tail
1329 + READ_ONCE(ctx->cached_cq_overflow);
1330 }
1331
1332 return false;
1333 }
1334
1335 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1336 {
1337 struct io_rings *rings = ctx->rings;
1338
1339 /* order cqe stores with ring update */
1340 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1341
1342 if (wq_has_sleeper(&ctx->cq_wait)) {
1343 wake_up_interruptible(&ctx->cq_wait);
1344 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1345 }
1346 }
1347
1348 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1349 {
1350 if (req->work.identity == &tctx->__identity)
1351 return;
1352 if (refcount_dec_and_test(&req->work.identity->count))
1353 kfree(req->work.identity);
1354 }
1355
1356 static void io_req_clean_work(struct io_kiocb *req)
1357 {
1358 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1359 return;
1360
1361 req->flags &= ~REQ_F_WORK_INITIALIZED;
1362
1363 if (req->work.flags & IO_WQ_WORK_MM) {
1364 mmdrop(req->work.identity->mm);
1365 req->work.flags &= ~IO_WQ_WORK_MM;
1366 }
1367 #ifdef CONFIG_BLK_CGROUP
1368 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1369 css_put(req->work.identity->blkcg_css);
1370 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1371 }
1372 #endif
1373 if (req->work.flags & IO_WQ_WORK_CREDS) {
1374 put_cred(req->work.identity->creds);
1375 req->work.flags &= ~IO_WQ_WORK_CREDS;
1376 }
1377 if (req->work.flags & IO_WQ_WORK_FS) {
1378 struct fs_struct *fs = req->work.identity->fs;
1379
1380 spin_lock(&req->work.identity->fs->lock);
1381 if (--fs->users)
1382 fs = NULL;
1383 spin_unlock(&req->work.identity->fs->lock);
1384 if (fs)
1385 free_fs_struct(fs);
1386 req->work.flags &= ~IO_WQ_WORK_FS;
1387 }
1388
1389 io_put_identity(req->task->io_uring, req);
1390 }
1391
1392 /*
1393 * Create a private copy of io_identity, since some fields don't match
1394 * the current context.
1395 */
1396 static bool io_identity_cow(struct io_kiocb *req)
1397 {
1398 struct io_uring_task *tctx = current->io_uring;
1399 const struct cred *creds = NULL;
1400 struct io_identity *id;
1401
1402 if (req->work.flags & IO_WQ_WORK_CREDS)
1403 creds = req->work.identity->creds;
1404
1405 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1406 if (unlikely(!id)) {
1407 req->work.flags |= IO_WQ_WORK_CANCEL;
1408 return false;
1409 }
1410
1411 /*
1412 * We can safely just re-init the creds we copied Either the field
1413 * matches the current one, or we haven't grabbed it yet. The only
1414 * exception is ->creds, through registered personalities, so handle
1415 * that one separately.
1416 */
1417 io_init_identity(id);
1418 if (creds)
1419 id->creds = creds;
1420
1421 /* add one for this request */
1422 refcount_inc(&id->count);
1423
1424 /* drop tctx and req identity references, if needed */
1425 if (tctx->identity != &tctx->__identity &&
1426 refcount_dec_and_test(&tctx->identity->count))
1427 kfree(tctx->identity);
1428 if (req->work.identity != &tctx->__identity &&
1429 refcount_dec_and_test(&req->work.identity->count))
1430 kfree(req->work.identity);
1431
1432 req->work.identity = id;
1433 tctx->identity = id;
1434 return true;
1435 }
1436
1437 static bool io_grab_identity(struct io_kiocb *req)
1438 {
1439 const struct io_op_def *def = &io_op_defs[req->opcode];
1440 struct io_identity *id = req->work.identity;
1441 struct io_ring_ctx *ctx = req->ctx;
1442
1443 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1444 if (id->fsize != rlimit(RLIMIT_FSIZE))
1445 return false;
1446 req->work.flags |= IO_WQ_WORK_FSIZE;
1447 }
1448 #ifdef CONFIG_BLK_CGROUP
1449 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1450 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1451 rcu_read_lock();
1452 if (id->blkcg_css != blkcg_css()) {
1453 rcu_read_unlock();
1454 return false;
1455 }
1456 /*
1457 * This should be rare, either the cgroup is dying or the task
1458 * is moving cgroups. Just punt to root for the handful of ios.
1459 */
1460 if (css_tryget_online(id->blkcg_css))
1461 req->work.flags |= IO_WQ_WORK_BLKCG;
1462 rcu_read_unlock();
1463 }
1464 #endif
1465 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1466 if (id->creds != current_cred())
1467 return false;
1468 get_cred(id->creds);
1469 req->work.flags |= IO_WQ_WORK_CREDS;
1470 }
1471 #ifdef CONFIG_AUDIT
1472 if (!uid_eq(current->loginuid, id->loginuid) ||
1473 current->sessionid != id->sessionid)
1474 return false;
1475 #endif
1476 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1477 (def->work_flags & IO_WQ_WORK_FS)) {
1478 if (current->fs != id->fs)
1479 return false;
1480 spin_lock(&id->fs->lock);
1481 if (!id->fs->in_exec) {
1482 id->fs->users++;
1483 req->work.flags |= IO_WQ_WORK_FS;
1484 } else {
1485 req->work.flags |= IO_WQ_WORK_CANCEL;
1486 }
1487 spin_unlock(&current->fs->lock);
1488 }
1489 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1490 (def->work_flags & IO_WQ_WORK_FILES) &&
1491 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1492 if (id->files != current->files ||
1493 id->nsproxy != current->nsproxy)
1494 return false;
1495 atomic_inc(&id->files->count);
1496 get_nsproxy(id->nsproxy);
1497 req->flags |= REQ_F_INFLIGHT;
1498
1499 spin_lock_irq(&ctx->inflight_lock);
1500 list_add(&req->inflight_entry, &ctx->inflight_list);
1501 spin_unlock_irq(&ctx->inflight_lock);
1502 req->work.flags |= IO_WQ_WORK_FILES;
1503 }
1504
1505 return true;
1506 }
1507
1508 static void io_prep_async_work(struct io_kiocb *req)
1509 {
1510 const struct io_op_def *def = &io_op_defs[req->opcode];
1511 struct io_ring_ctx *ctx = req->ctx;
1512 struct io_identity *id;
1513
1514 io_req_init_async(req);
1515 id = req->work.identity;
1516
1517 if (req->flags & REQ_F_FORCE_ASYNC)
1518 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1519
1520 if (req->flags & REQ_F_ISREG) {
1521 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1522 io_wq_hash_work(&req->work, file_inode(req->file));
1523 } else {
1524 if (def->unbound_nonreg_file)
1525 req->work.flags |= IO_WQ_WORK_UNBOUND;
1526 }
1527
1528 /* ->mm can never change on us */
1529 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1530 (def->work_flags & IO_WQ_WORK_MM)) {
1531 mmgrab(id->mm);
1532 req->work.flags |= IO_WQ_WORK_MM;
1533 }
1534
1535 /* if we fail grabbing identity, we must COW, regrab, and retry */
1536 if (io_grab_identity(req))
1537 return;
1538
1539 if (!io_identity_cow(req))
1540 return;
1541
1542 /* can't fail at this point */
1543 if (!io_grab_identity(req))
1544 WARN_ON(1);
1545 }
1546
1547 static void io_prep_async_link(struct io_kiocb *req)
1548 {
1549 struct io_kiocb *cur;
1550
1551 io_for_each_link(cur, req)
1552 io_prep_async_work(cur);
1553 }
1554
1555 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1556 {
1557 struct io_ring_ctx *ctx = req->ctx;
1558 struct io_kiocb *link = io_prep_linked_timeout(req);
1559
1560 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1561 &req->work, req->flags);
1562 io_wq_enqueue(ctx->io_wq, &req->work);
1563 return link;
1564 }
1565
1566 static void io_queue_async_work(struct io_kiocb *req)
1567 {
1568 struct io_kiocb *link;
1569
1570 /* init ->work of the whole link before punting */
1571 io_prep_async_link(req);
1572 link = __io_queue_async_work(req);
1573
1574 if (link)
1575 io_queue_linked_timeout(link);
1576 }
1577
1578 static void io_kill_timeout(struct io_kiocb *req)
1579 {
1580 struct io_timeout_data *io = req->async_data;
1581 int ret;
1582
1583 ret = hrtimer_try_to_cancel(&io->timer);
1584 if (ret != -1) {
1585 atomic_set(&req->ctx->cq_timeouts,
1586 atomic_read(&req->ctx->cq_timeouts) + 1);
1587 list_del_init(&req->timeout.list);
1588 io_cqring_fill_event(req, 0);
1589 io_put_req_deferred(req, 1);
1590 }
1591 }
1592
1593 /*
1594 * Returns true if we found and killed one or more timeouts
1595 */
1596 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1597 struct files_struct *files)
1598 {
1599 struct io_kiocb *req, *tmp;
1600 int canceled = 0;
1601
1602 spin_lock_irq(&ctx->completion_lock);
1603 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1604 if (io_match_task(req, tsk, files)) {
1605 io_kill_timeout(req);
1606 canceled++;
1607 }
1608 }
1609 spin_unlock_irq(&ctx->completion_lock);
1610 return canceled != 0;
1611 }
1612
1613 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1614 {
1615 do {
1616 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1617 struct io_defer_entry, list);
1618 struct io_kiocb *link;
1619
1620 if (req_need_defer(de->req, de->seq))
1621 break;
1622 list_del_init(&de->list);
1623 /* punt-init is done before queueing for defer */
1624 link = __io_queue_async_work(de->req);
1625 if (link) {
1626 __io_queue_linked_timeout(link);
1627 /* drop submission reference */
1628 io_put_req_deferred(link, 1);
1629 }
1630 kfree(de);
1631 } while (!list_empty(&ctx->defer_list));
1632 }
1633
1634 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1635 {
1636 while (!list_empty(&ctx->timeout_list)) {
1637 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1638 struct io_kiocb, timeout.list);
1639
1640 if (io_is_timeout_noseq(req))
1641 break;
1642 if (req->timeout.target_seq != ctx->cached_cq_tail
1643 - atomic_read(&ctx->cq_timeouts))
1644 break;
1645
1646 list_del_init(&req->timeout.list);
1647 io_kill_timeout(req);
1648 }
1649 }
1650
1651 static void io_commit_cqring(struct io_ring_ctx *ctx)
1652 {
1653 io_flush_timeouts(ctx);
1654 __io_commit_cqring(ctx);
1655
1656 if (unlikely(!list_empty(&ctx->defer_list)))
1657 __io_queue_deferred(ctx);
1658 }
1659
1660 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1661 {
1662 struct io_rings *r = ctx->rings;
1663
1664 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1665 }
1666
1667 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1668 {
1669 struct io_rings *rings = ctx->rings;
1670 unsigned tail;
1671
1672 tail = ctx->cached_cq_tail;
1673 /*
1674 * writes to the cq entry need to come after reading head; the
1675 * control dependency is enough as we're using WRITE_ONCE to
1676 * fill the cq entry
1677 */
1678 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1679 return NULL;
1680
1681 ctx->cached_cq_tail++;
1682 return &rings->cqes[tail & ctx->cq_mask];
1683 }
1684
1685 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1686 {
1687 if (!ctx->cq_ev_fd)
1688 return false;
1689 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1690 return false;
1691 if (!ctx->eventfd_async)
1692 return true;
1693 return io_wq_current_is_worker();
1694 }
1695
1696 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1697 {
1698 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1699 }
1700
1701 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1702 {
1703 if (waitqueue_active(&ctx->wait))
1704 wake_up(&ctx->wait);
1705 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1706 wake_up(&ctx->sq_data->wait);
1707 if (io_should_trigger_evfd(ctx))
1708 eventfd_signal(ctx->cq_ev_fd, 1);
1709 }
1710
1711 /* Returns true if there are no backlogged entries after the flush */
1712 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1713 struct task_struct *tsk,
1714 struct files_struct *files)
1715 {
1716 struct io_rings *rings = ctx->rings;
1717 struct io_kiocb *req, *tmp;
1718 struct io_uring_cqe *cqe;
1719 unsigned long flags;
1720 bool all_flushed;
1721 LIST_HEAD(list);
1722
1723 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1724 return false;
1725
1726 spin_lock_irqsave(&ctx->completion_lock, flags);
1727 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1728 if (!io_match_task(req, tsk, files))
1729 continue;
1730
1731 cqe = io_get_cqring(ctx);
1732 if (!cqe && !force)
1733 break;
1734
1735 list_move(&req->compl.list, &list);
1736 if (cqe) {
1737 WRITE_ONCE(cqe->user_data, req->user_data);
1738 WRITE_ONCE(cqe->res, req->result);
1739 WRITE_ONCE(cqe->flags, req->compl.cflags);
1740 } else {
1741 ctx->cached_cq_overflow++;
1742 WRITE_ONCE(ctx->rings->cq_overflow,
1743 ctx->cached_cq_overflow);
1744 }
1745 }
1746
1747 all_flushed = list_empty(&ctx->cq_overflow_list);
1748 if (all_flushed) {
1749 clear_bit(0, &ctx->sq_check_overflow);
1750 clear_bit(0, &ctx->cq_check_overflow);
1751 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1752 }
1753
1754 io_commit_cqring(ctx);
1755 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1756 io_cqring_ev_posted(ctx);
1757
1758 while (!list_empty(&list)) {
1759 req = list_first_entry(&list, struct io_kiocb, compl.list);
1760 list_del(&req->compl.list);
1761 io_put_req(req);
1762 }
1763
1764 return all_flushed;
1765 }
1766
1767 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1768 {
1769 struct io_ring_ctx *ctx = req->ctx;
1770 struct io_uring_cqe *cqe;
1771
1772 trace_io_uring_complete(ctx, req->user_data, res);
1773
1774 /*
1775 * If we can't get a cq entry, userspace overflowed the
1776 * submission (by quite a lot). Increment the overflow count in
1777 * the ring.
1778 */
1779 cqe = io_get_cqring(ctx);
1780 if (likely(cqe)) {
1781 WRITE_ONCE(cqe->user_data, req->user_data);
1782 WRITE_ONCE(cqe->res, res);
1783 WRITE_ONCE(cqe->flags, cflags);
1784 } else if (ctx->cq_overflow_flushed ||
1785 atomic_read(&req->task->io_uring->in_idle)) {
1786 /*
1787 * If we're in ring overflow flush mode, or in task cancel mode,
1788 * then we cannot store the request for later flushing, we need
1789 * to drop it on the floor.
1790 */
1791 ctx->cached_cq_overflow++;
1792 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1793 } else {
1794 if (list_empty(&ctx->cq_overflow_list)) {
1795 set_bit(0, &ctx->sq_check_overflow);
1796 set_bit(0, &ctx->cq_check_overflow);
1797 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1798 }
1799 io_clean_op(req);
1800 req->result = res;
1801 req->compl.cflags = cflags;
1802 refcount_inc(&req->refs);
1803 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1804 }
1805 }
1806
1807 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1808 {
1809 __io_cqring_fill_event(req, res, 0);
1810 }
1811
1812 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1813 {
1814 struct io_ring_ctx *ctx = req->ctx;
1815 unsigned long flags;
1816
1817 spin_lock_irqsave(&ctx->completion_lock, flags);
1818 __io_cqring_fill_event(req, res, cflags);
1819 io_commit_cqring(ctx);
1820 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1821
1822 io_cqring_ev_posted(ctx);
1823 }
1824
1825 static void io_submit_flush_completions(struct io_comp_state *cs)
1826 {
1827 struct io_ring_ctx *ctx = cs->ctx;
1828
1829 spin_lock_irq(&ctx->completion_lock);
1830 while (!list_empty(&cs->list)) {
1831 struct io_kiocb *req;
1832
1833 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1834 list_del(&req->compl.list);
1835 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1836
1837 /*
1838 * io_free_req() doesn't care about completion_lock unless one
1839 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1840 * because of a potential deadlock with req->work.fs->lock
1841 */
1842 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1843 |REQ_F_WORK_INITIALIZED)) {
1844 spin_unlock_irq(&ctx->completion_lock);
1845 io_put_req(req);
1846 spin_lock_irq(&ctx->completion_lock);
1847 } else {
1848 io_put_req(req);
1849 }
1850 }
1851 io_commit_cqring(ctx);
1852 spin_unlock_irq(&ctx->completion_lock);
1853
1854 io_cqring_ev_posted(ctx);
1855 cs->nr = 0;
1856 }
1857
1858 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1859 struct io_comp_state *cs)
1860 {
1861 if (!cs) {
1862 io_cqring_add_event(req, res, cflags);
1863 io_put_req(req);
1864 } else {
1865 io_clean_op(req);
1866 req->result = res;
1867 req->compl.cflags = cflags;
1868 list_add_tail(&req->compl.list, &cs->list);
1869 if (++cs->nr >= 32)
1870 io_submit_flush_completions(cs);
1871 }
1872 }
1873
1874 static void io_req_complete(struct io_kiocb *req, long res)
1875 {
1876 __io_req_complete(req, res, 0, NULL);
1877 }
1878
1879 static inline bool io_is_fallback_req(struct io_kiocb *req)
1880 {
1881 return req == (struct io_kiocb *)
1882 ((unsigned long) req->ctx->fallback_req & ~1UL);
1883 }
1884
1885 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1886 {
1887 struct io_kiocb *req;
1888
1889 req = ctx->fallback_req;
1890 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1891 return req;
1892
1893 return NULL;
1894 }
1895
1896 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1897 struct io_submit_state *state)
1898 {
1899 if (!state->free_reqs) {
1900 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1901 size_t sz;
1902 int ret;
1903
1904 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1905 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1906
1907 /*
1908 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1909 * retry single alloc to be on the safe side.
1910 */
1911 if (unlikely(ret <= 0)) {
1912 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1913 if (!state->reqs[0])
1914 goto fallback;
1915 ret = 1;
1916 }
1917 state->free_reqs = ret;
1918 }
1919
1920 state->free_reqs--;
1921 return state->reqs[state->free_reqs];
1922 fallback:
1923 return io_get_fallback_req(ctx);
1924 }
1925
1926 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1927 bool fixed)
1928 {
1929 if (!fixed)
1930 fput(file);
1931 }
1932
1933 static void io_dismantle_req(struct io_kiocb *req)
1934 {
1935 io_clean_op(req);
1936
1937 if (req->async_data)
1938 kfree(req->async_data);
1939 if (req->file)
1940 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1941 if (req->fixed_file_refs)
1942 percpu_ref_put(req->fixed_file_refs);
1943 io_req_clean_work(req);
1944 }
1945
1946 static void __io_free_req(struct io_kiocb *req)
1947 {
1948 struct io_uring_task *tctx = req->task->io_uring;
1949 struct io_ring_ctx *ctx = req->ctx;
1950
1951 io_dismantle_req(req);
1952
1953 percpu_counter_dec(&tctx->inflight);
1954 if (atomic_read(&tctx->in_idle))
1955 wake_up(&tctx->wait);
1956 put_task_struct(req->task);
1957
1958 if (likely(!io_is_fallback_req(req)))
1959 kmem_cache_free(req_cachep, req);
1960 else
1961 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1962 percpu_ref_put(&ctx->refs);
1963 }
1964
1965 static inline void io_remove_next_linked(struct io_kiocb *req)
1966 {
1967 struct io_kiocb *nxt = req->link;
1968
1969 req->link = nxt->link;
1970 nxt->link = NULL;
1971 }
1972
1973 static void io_kill_linked_timeout(struct io_kiocb *req)
1974 {
1975 struct io_ring_ctx *ctx = req->ctx;
1976 struct io_kiocb *link;
1977 bool cancelled = false;
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(&ctx->completion_lock, flags);
1981 link = req->link;
1982
1983 /*
1984 * Can happen if a linked timeout fired and link had been like
1985 * req -> link t-out -> link t-out [-> ...]
1986 */
1987 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1988 struct io_timeout_data *io = link->async_data;
1989 int ret;
1990
1991 io_remove_next_linked(req);
1992 link->timeout.head = NULL;
1993 ret = hrtimer_try_to_cancel(&io->timer);
1994 if (ret != -1) {
1995 io_cqring_fill_event(link, -ECANCELED);
1996 io_commit_cqring(ctx);
1997 cancelled = true;
1998 }
1999 }
2000 req->flags &= ~REQ_F_LINK_TIMEOUT;
2001 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2002
2003 if (cancelled) {
2004 io_cqring_ev_posted(ctx);
2005 io_put_req(link);
2006 }
2007 }
2008
2009
2010 static void io_fail_links(struct io_kiocb *req)
2011 {
2012 struct io_kiocb *link, *nxt;
2013 struct io_ring_ctx *ctx = req->ctx;
2014 unsigned long flags;
2015
2016 spin_lock_irqsave(&ctx->completion_lock, flags);
2017 link = req->link;
2018 req->link = NULL;
2019
2020 while (link) {
2021 nxt = link->link;
2022 link->link = NULL;
2023
2024 trace_io_uring_fail_link(req, link);
2025 io_cqring_fill_event(link, -ECANCELED);
2026
2027 /*
2028 * It's ok to free under spinlock as they're not linked anymore,
2029 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2030 * work.fs->lock.
2031 */
2032 if (link->flags & REQ_F_WORK_INITIALIZED)
2033 io_put_req_deferred(link, 2);
2034 else
2035 io_double_put_req(link);
2036 link = nxt;
2037 }
2038 io_commit_cqring(ctx);
2039 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2040
2041 io_cqring_ev_posted(ctx);
2042 }
2043
2044 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2045 {
2046 if (req->flags & REQ_F_LINK_TIMEOUT)
2047 io_kill_linked_timeout(req);
2048
2049 /*
2050 * If LINK is set, we have dependent requests in this chain. If we
2051 * didn't fail this request, queue the first one up, moving any other
2052 * dependencies to the next request. In case of failure, fail the rest
2053 * of the chain.
2054 */
2055 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2056 struct io_kiocb *nxt = req->link;
2057
2058 req->link = NULL;
2059 return nxt;
2060 }
2061 io_fail_links(req);
2062 return NULL;
2063 }
2064
2065 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2066 {
2067 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2068 return NULL;
2069 return __io_req_find_next(req);
2070 }
2071
2072 static int io_req_task_work_add(struct io_kiocb *req)
2073 {
2074 struct task_struct *tsk = req->task;
2075 struct io_ring_ctx *ctx = req->ctx;
2076 enum task_work_notify_mode notify;
2077 int ret;
2078
2079 if (tsk->flags & PF_EXITING)
2080 return -ESRCH;
2081
2082 /*
2083 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2084 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2085 * processing task_work. There's no reliable way to tell if TWA_RESUME
2086 * will do the job.
2087 */
2088 notify = TWA_NONE;
2089 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2090 notify = TWA_SIGNAL;
2091
2092 ret = task_work_add(tsk, &req->task_work, notify);
2093 if (!ret)
2094 wake_up_process(tsk);
2095
2096 return ret;
2097 }
2098
2099 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2100 {
2101 struct io_ring_ctx *ctx = req->ctx;
2102
2103 spin_lock_irq(&ctx->completion_lock);
2104 io_cqring_fill_event(req, error);
2105 io_commit_cqring(ctx);
2106 spin_unlock_irq(&ctx->completion_lock);
2107
2108 io_cqring_ev_posted(ctx);
2109 req_set_fail_links(req);
2110 io_double_put_req(req);
2111 }
2112
2113 static void io_req_task_cancel(struct callback_head *cb)
2114 {
2115 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2116 struct io_ring_ctx *ctx = req->ctx;
2117
2118 __io_req_task_cancel(req, -ECANCELED);
2119 percpu_ref_put(&ctx->refs);
2120 }
2121
2122 static void __io_req_task_submit(struct io_kiocb *req)
2123 {
2124 struct io_ring_ctx *ctx = req->ctx;
2125
2126 if (!__io_sq_thread_acquire_mm(ctx) &&
2127 !__io_sq_thread_acquire_files(ctx)) {
2128 mutex_lock(&ctx->uring_lock);
2129 __io_queue_sqe(req, NULL);
2130 mutex_unlock(&ctx->uring_lock);
2131 } else {
2132 __io_req_task_cancel(req, -EFAULT);
2133 }
2134 }
2135
2136 static void io_req_task_submit(struct callback_head *cb)
2137 {
2138 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2139 struct io_ring_ctx *ctx = req->ctx;
2140
2141 __io_req_task_submit(req);
2142 percpu_ref_put(&ctx->refs);
2143 }
2144
2145 static void io_req_task_queue(struct io_kiocb *req)
2146 {
2147 int ret;
2148
2149 init_task_work(&req->task_work, io_req_task_submit);
2150 percpu_ref_get(&req->ctx->refs);
2151
2152 ret = io_req_task_work_add(req);
2153 if (unlikely(ret)) {
2154 struct task_struct *tsk;
2155
2156 init_task_work(&req->task_work, io_req_task_cancel);
2157 tsk = io_wq_get_task(req->ctx->io_wq);
2158 task_work_add(tsk, &req->task_work, TWA_NONE);
2159 wake_up_process(tsk);
2160 }
2161 }
2162
2163 static inline void io_queue_next(struct io_kiocb *req)
2164 {
2165 struct io_kiocb *nxt = io_req_find_next(req);
2166
2167 if (nxt)
2168 io_req_task_queue(nxt);
2169 }
2170
2171 static void io_free_req(struct io_kiocb *req)
2172 {
2173 io_queue_next(req);
2174 __io_free_req(req);
2175 }
2176
2177 struct req_batch {
2178 void *reqs[IO_IOPOLL_BATCH];
2179 int to_free;
2180
2181 struct task_struct *task;
2182 int task_refs;
2183 };
2184
2185 static inline void io_init_req_batch(struct req_batch *rb)
2186 {
2187 rb->to_free = 0;
2188 rb->task_refs = 0;
2189 rb->task = NULL;
2190 }
2191
2192 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2193 struct req_batch *rb)
2194 {
2195 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2196 percpu_ref_put_many(&ctx->refs, rb->to_free);
2197 rb->to_free = 0;
2198 }
2199
2200 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2201 struct req_batch *rb)
2202 {
2203 if (rb->to_free)
2204 __io_req_free_batch_flush(ctx, rb);
2205 if (rb->task) {
2206 struct io_uring_task *tctx = rb->task->io_uring;
2207
2208 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2209 put_task_struct_many(rb->task, rb->task_refs);
2210 rb->task = NULL;
2211 }
2212 }
2213
2214 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2215 {
2216 if (unlikely(io_is_fallback_req(req))) {
2217 io_free_req(req);
2218 return;
2219 }
2220 io_queue_next(req);
2221
2222 if (req->task != rb->task) {
2223 if (rb->task) {
2224 struct io_uring_task *tctx = rb->task->io_uring;
2225
2226 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2227 put_task_struct_many(rb->task, rb->task_refs);
2228 }
2229 rb->task = req->task;
2230 rb->task_refs = 0;
2231 }
2232 rb->task_refs++;
2233
2234 io_dismantle_req(req);
2235 rb->reqs[rb->to_free++] = req;
2236 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2237 __io_req_free_batch_flush(req->ctx, rb);
2238 }
2239
2240 /*
2241 * Drop reference to request, return next in chain (if there is one) if this
2242 * was the last reference to this request.
2243 */
2244 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2245 {
2246 struct io_kiocb *nxt = NULL;
2247
2248 if (refcount_dec_and_test(&req->refs)) {
2249 nxt = io_req_find_next(req);
2250 __io_free_req(req);
2251 }
2252 return nxt;
2253 }
2254
2255 static void io_put_req(struct io_kiocb *req)
2256 {
2257 if (refcount_dec_and_test(&req->refs))
2258 io_free_req(req);
2259 }
2260
2261 static void io_put_req_deferred_cb(struct callback_head *cb)
2262 {
2263 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2264
2265 io_free_req(req);
2266 }
2267
2268 static void io_free_req_deferred(struct io_kiocb *req)
2269 {
2270 int ret;
2271
2272 init_task_work(&req->task_work, io_put_req_deferred_cb);
2273 ret = io_req_task_work_add(req);
2274 if (unlikely(ret)) {
2275 struct task_struct *tsk;
2276
2277 tsk = io_wq_get_task(req->ctx->io_wq);
2278 task_work_add(tsk, &req->task_work, TWA_NONE);
2279 wake_up_process(tsk);
2280 }
2281 }
2282
2283 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2284 {
2285 if (refcount_sub_and_test(refs, &req->refs))
2286 io_free_req_deferred(req);
2287 }
2288
2289 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2290 {
2291 struct io_kiocb *nxt;
2292
2293 /*
2294 * A ref is owned by io-wq in which context we're. So, if that's the
2295 * last one, it's safe to steal next work. False negatives are Ok,
2296 * it just will be re-punted async in io_put_work()
2297 */
2298 if (refcount_read(&req->refs) != 1)
2299 return NULL;
2300
2301 nxt = io_req_find_next(req);
2302 return nxt ? &nxt->work : NULL;
2303 }
2304
2305 static void io_double_put_req(struct io_kiocb *req)
2306 {
2307 /* drop both submit and complete references */
2308 if (refcount_sub_and_test(2, &req->refs))
2309 io_free_req(req);
2310 }
2311
2312 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2313 {
2314 if (test_bit(0, &ctx->cq_check_overflow)) {
2315 /*
2316 * noflush == true is from the waitqueue handler, just ensure
2317 * we wake up the task, and the next invocation will flush the
2318 * entries. We cannot safely to it from here.
2319 */
2320 if (noflush)
2321 return -1U;
2322
2323 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2324 }
2325
2326 /* See comment at the top of this file */
2327 smp_rmb();
2328 return __io_cqring_events(ctx);
2329 }
2330
2331 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2332 {
2333 struct io_rings *rings = ctx->rings;
2334
2335 /* make sure SQ entry isn't read before tail */
2336 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2337 }
2338
2339 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2340 {
2341 unsigned int cflags;
2342
2343 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2344 cflags |= IORING_CQE_F_BUFFER;
2345 req->flags &= ~REQ_F_BUFFER_SELECTED;
2346 kfree(kbuf);
2347 return cflags;
2348 }
2349
2350 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2351 {
2352 struct io_buffer *kbuf;
2353
2354 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2355 return io_put_kbuf(req, kbuf);
2356 }
2357
2358 static inline bool io_run_task_work(void)
2359 {
2360 /*
2361 * Not safe to run on exiting task, and the task_work handling will
2362 * not add work to such a task.
2363 */
2364 if (unlikely(current->flags & PF_EXITING))
2365 return false;
2366 if (current->task_works) {
2367 __set_current_state(TASK_RUNNING);
2368 task_work_run();
2369 return true;
2370 }
2371
2372 return false;
2373 }
2374
2375 static void io_iopoll_queue(struct list_head *again)
2376 {
2377 struct io_kiocb *req;
2378
2379 do {
2380 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2381 list_del(&req->inflight_entry);
2382 __io_complete_rw(req, -EAGAIN, 0, NULL);
2383 } while (!list_empty(again));
2384 }
2385
2386 /*
2387 * Find and free completed poll iocbs
2388 */
2389 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2390 struct list_head *done)
2391 {
2392 struct req_batch rb;
2393 struct io_kiocb *req;
2394 LIST_HEAD(again);
2395
2396 /* order with ->result store in io_complete_rw_iopoll() */
2397 smp_rmb();
2398
2399 io_init_req_batch(&rb);
2400 while (!list_empty(done)) {
2401 int cflags = 0;
2402
2403 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2404 if (READ_ONCE(req->result) == -EAGAIN) {
2405 req->result = 0;
2406 req->iopoll_completed = 0;
2407 list_move_tail(&req->inflight_entry, &again);
2408 continue;
2409 }
2410 list_del(&req->inflight_entry);
2411
2412 if (req->flags & REQ_F_BUFFER_SELECTED)
2413 cflags = io_put_rw_kbuf(req);
2414
2415 __io_cqring_fill_event(req, req->result, cflags);
2416 (*nr_events)++;
2417
2418 if (refcount_dec_and_test(&req->refs))
2419 io_req_free_batch(&rb, req);
2420 }
2421
2422 io_commit_cqring(ctx);
2423 if (ctx->flags & IORING_SETUP_SQPOLL)
2424 io_cqring_ev_posted(ctx);
2425 io_req_free_batch_finish(ctx, &rb);
2426
2427 if (!list_empty(&again))
2428 io_iopoll_queue(&again);
2429 }
2430
2431 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2432 long min)
2433 {
2434 struct io_kiocb *req, *tmp;
2435 LIST_HEAD(done);
2436 bool spin;
2437 int ret;
2438
2439 /*
2440 * Only spin for completions if we don't have multiple devices hanging
2441 * off our complete list, and we're under the requested amount.
2442 */
2443 spin = !ctx->poll_multi_file && *nr_events < min;
2444
2445 ret = 0;
2446 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2447 struct kiocb *kiocb = &req->rw.kiocb;
2448
2449 /*
2450 * Move completed and retryable entries to our local lists.
2451 * If we find a request that requires polling, break out
2452 * and complete those lists first, if we have entries there.
2453 */
2454 if (READ_ONCE(req->iopoll_completed)) {
2455 list_move_tail(&req->inflight_entry, &done);
2456 continue;
2457 }
2458 if (!list_empty(&done))
2459 break;
2460
2461 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2462 if (ret < 0)
2463 break;
2464
2465 /* iopoll may have completed current req */
2466 if (READ_ONCE(req->iopoll_completed))
2467 list_move_tail(&req->inflight_entry, &done);
2468
2469 if (ret && spin)
2470 spin = false;
2471 ret = 0;
2472 }
2473
2474 if (!list_empty(&done))
2475 io_iopoll_complete(ctx, nr_events, &done);
2476
2477 return ret;
2478 }
2479
2480 /*
2481 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2482 * non-spinning poll check - we'll still enter the driver poll loop, but only
2483 * as a non-spinning completion check.
2484 */
2485 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2486 long min)
2487 {
2488 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2489 int ret;
2490
2491 ret = io_do_iopoll(ctx, nr_events, min);
2492 if (ret < 0)
2493 return ret;
2494 if (*nr_events >= min)
2495 return 0;
2496 }
2497
2498 return 1;
2499 }
2500
2501 /*
2502 * We can't just wait for polled events to come to us, we have to actively
2503 * find and complete them.
2504 */
2505 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2506 {
2507 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2508 return;
2509
2510 mutex_lock(&ctx->uring_lock);
2511 while (!list_empty(&ctx->iopoll_list)) {
2512 unsigned int nr_events = 0;
2513
2514 io_do_iopoll(ctx, &nr_events, 0);
2515
2516 /* let it sleep and repeat later if can't complete a request */
2517 if (nr_events == 0)
2518 break;
2519 /*
2520 * Ensure we allow local-to-the-cpu processing to take place,
2521 * in this case we need to ensure that we reap all events.
2522 * Also let task_work, etc. to progress by releasing the mutex
2523 */
2524 if (need_resched()) {
2525 mutex_unlock(&ctx->uring_lock);
2526 cond_resched();
2527 mutex_lock(&ctx->uring_lock);
2528 }
2529 }
2530 mutex_unlock(&ctx->uring_lock);
2531 }
2532
2533 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2534 {
2535 unsigned int nr_events = 0;
2536 int iters = 0, ret = 0;
2537
2538 /*
2539 * We disallow the app entering submit/complete with polling, but we
2540 * still need to lock the ring to prevent racing with polled issue
2541 * that got punted to a workqueue.
2542 */
2543 mutex_lock(&ctx->uring_lock);
2544 do {
2545 /*
2546 * Don't enter poll loop if we already have events pending.
2547 * If we do, we can potentially be spinning for commands that
2548 * already triggered a CQE (eg in error).
2549 */
2550 if (io_cqring_events(ctx, false))
2551 break;
2552
2553 /*
2554 * If a submit got punted to a workqueue, we can have the
2555 * application entering polling for a command before it gets
2556 * issued. That app will hold the uring_lock for the duration
2557 * of the poll right here, so we need to take a breather every
2558 * now and then to ensure that the issue has a chance to add
2559 * the poll to the issued list. Otherwise we can spin here
2560 * forever, while the workqueue is stuck trying to acquire the
2561 * very same mutex.
2562 */
2563 if (!(++iters & 7)) {
2564 mutex_unlock(&ctx->uring_lock);
2565 io_run_task_work();
2566 mutex_lock(&ctx->uring_lock);
2567 }
2568
2569 ret = io_iopoll_getevents(ctx, &nr_events, min);
2570 if (ret <= 0)
2571 break;
2572 ret = 0;
2573 } while (min && !nr_events && !need_resched());
2574
2575 mutex_unlock(&ctx->uring_lock);
2576 return ret;
2577 }
2578
2579 static void kiocb_end_write(struct io_kiocb *req)
2580 {
2581 /*
2582 * Tell lockdep we inherited freeze protection from submission
2583 * thread.
2584 */
2585 if (req->flags & REQ_F_ISREG) {
2586 struct inode *inode = file_inode(req->file);
2587
2588 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2589 }
2590 file_end_write(req->file);
2591 }
2592
2593 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2594 struct io_comp_state *cs)
2595 {
2596 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2597 int cflags = 0;
2598
2599 if (kiocb->ki_flags & IOCB_WRITE)
2600 kiocb_end_write(req);
2601
2602 if (res != req->result)
2603 req_set_fail_links(req);
2604 if (req->flags & REQ_F_BUFFER_SELECTED)
2605 cflags = io_put_rw_kbuf(req);
2606 __io_req_complete(req, res, cflags, cs);
2607 }
2608
2609 #ifdef CONFIG_BLOCK
2610 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2611 {
2612 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2613 ssize_t ret = -ECANCELED;
2614 struct iov_iter iter;
2615 int rw;
2616
2617 if (error) {
2618 ret = error;
2619 goto end_req;
2620 }
2621
2622 switch (req->opcode) {
2623 case IORING_OP_READV:
2624 case IORING_OP_READ_FIXED:
2625 case IORING_OP_READ:
2626 rw = READ;
2627 break;
2628 case IORING_OP_WRITEV:
2629 case IORING_OP_WRITE_FIXED:
2630 case IORING_OP_WRITE:
2631 rw = WRITE;
2632 break;
2633 default:
2634 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2635 req->opcode);
2636 goto end_req;
2637 }
2638
2639 if (!req->async_data) {
2640 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2641 if (ret < 0)
2642 goto end_req;
2643 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2644 if (!ret)
2645 return true;
2646 kfree(iovec);
2647 } else {
2648 return true;
2649 }
2650 end_req:
2651 req_set_fail_links(req);
2652 return false;
2653 }
2654 #endif
2655
2656 static bool io_rw_reissue(struct io_kiocb *req, long res)
2657 {
2658 #ifdef CONFIG_BLOCK
2659 umode_t mode = file_inode(req->file)->i_mode;
2660 int ret;
2661
2662 if (!S_ISBLK(mode) && !S_ISREG(mode))
2663 return false;
2664 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2665 return false;
2666
2667 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2668
2669 if (io_resubmit_prep(req, ret)) {
2670 refcount_inc(&req->refs);
2671 io_queue_async_work(req);
2672 return true;
2673 }
2674
2675 #endif
2676 return false;
2677 }
2678
2679 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2680 struct io_comp_state *cs)
2681 {
2682 if (!io_rw_reissue(req, res))
2683 io_complete_rw_common(&req->rw.kiocb, res, cs);
2684 }
2685
2686 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2687 {
2688 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2689
2690 __io_complete_rw(req, res, res2, NULL);
2691 }
2692
2693 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2694 {
2695 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2696
2697 if (kiocb->ki_flags & IOCB_WRITE)
2698 kiocb_end_write(req);
2699
2700 if (res != -EAGAIN && res != req->result)
2701 req_set_fail_links(req);
2702
2703 WRITE_ONCE(req->result, res);
2704 /* order with io_poll_complete() checking ->result */
2705 smp_wmb();
2706 WRITE_ONCE(req->iopoll_completed, 1);
2707 }
2708
2709 /*
2710 * After the iocb has been issued, it's safe to be found on the poll list.
2711 * Adding the kiocb to the list AFTER submission ensures that we don't
2712 * find it from a io_iopoll_getevents() thread before the issuer is done
2713 * accessing the kiocb cookie.
2714 */
2715 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2716 {
2717 struct io_ring_ctx *ctx = req->ctx;
2718
2719 /*
2720 * Track whether we have multiple files in our lists. This will impact
2721 * how we do polling eventually, not spinning if we're on potentially
2722 * different devices.
2723 */
2724 if (list_empty(&ctx->iopoll_list)) {
2725 ctx->poll_multi_file = false;
2726 } else if (!ctx->poll_multi_file) {
2727 struct io_kiocb *list_req;
2728
2729 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2730 inflight_entry);
2731 if (list_req->file != req->file)
2732 ctx->poll_multi_file = true;
2733 }
2734
2735 /*
2736 * For fast devices, IO may have already completed. If it has, add
2737 * it to the front so we find it first.
2738 */
2739 if (READ_ONCE(req->iopoll_completed))
2740 list_add(&req->inflight_entry, &ctx->iopoll_list);
2741 else
2742 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2743
2744 /*
2745 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2746 * task context or in io worker task context. If current task context is
2747 * sq thread, we don't need to check whether should wake up sq thread.
2748 */
2749 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2750 wq_has_sleeper(&ctx->sq_data->wait))
2751 wake_up(&ctx->sq_data->wait);
2752 }
2753
2754 static inline void __io_state_file_put(struct io_submit_state *state)
2755 {
2756 fput_many(state->file, state->file_refs);
2757 state->file_refs = 0;
2758 }
2759
2760 static inline void io_state_file_put(struct io_submit_state *state)
2761 {
2762 if (state->file_refs)
2763 __io_state_file_put(state);
2764 }
2765
2766 /*
2767 * Get as many references to a file as we have IOs left in this submission,
2768 * assuming most submissions are for one file, or at least that each file
2769 * has more than one submission.
2770 */
2771 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2772 {
2773 if (!state)
2774 return fget(fd);
2775
2776 if (state->file_refs) {
2777 if (state->fd == fd) {
2778 state->file_refs--;
2779 return state->file;
2780 }
2781 __io_state_file_put(state);
2782 }
2783 state->file = fget_many(fd, state->ios_left);
2784 if (unlikely(!state->file))
2785 return NULL;
2786
2787 state->fd = fd;
2788 state->file_refs = state->ios_left - 1;
2789 return state->file;
2790 }
2791
2792 static bool io_bdev_nowait(struct block_device *bdev)
2793 {
2794 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2795 }
2796
2797 /*
2798 * If we tracked the file through the SCM inflight mechanism, we could support
2799 * any file. For now, just ensure that anything potentially problematic is done
2800 * inline.
2801 */
2802 static bool io_file_supports_async(struct file *file, int rw)
2803 {
2804 umode_t mode = file_inode(file)->i_mode;
2805
2806 if (S_ISBLK(mode)) {
2807 if (IS_ENABLED(CONFIG_BLOCK) &&
2808 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2809 return true;
2810 return false;
2811 }
2812 if (S_ISCHR(mode) || S_ISSOCK(mode))
2813 return true;
2814 if (S_ISREG(mode)) {
2815 if (IS_ENABLED(CONFIG_BLOCK) &&
2816 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2817 file->f_op != &io_uring_fops)
2818 return true;
2819 return false;
2820 }
2821
2822 /* any ->read/write should understand O_NONBLOCK */
2823 if (file->f_flags & O_NONBLOCK)
2824 return true;
2825
2826 if (!(file->f_mode & FMODE_NOWAIT))
2827 return false;
2828
2829 if (rw == READ)
2830 return file->f_op->read_iter != NULL;
2831
2832 return file->f_op->write_iter != NULL;
2833 }
2834
2835 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2836 {
2837 struct io_ring_ctx *ctx = req->ctx;
2838 struct kiocb *kiocb = &req->rw.kiocb;
2839 unsigned ioprio;
2840 int ret;
2841
2842 if (S_ISREG(file_inode(req->file)->i_mode))
2843 req->flags |= REQ_F_ISREG;
2844
2845 kiocb->ki_pos = READ_ONCE(sqe->off);
2846 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2847 req->flags |= REQ_F_CUR_POS;
2848 kiocb->ki_pos = req->file->f_pos;
2849 }
2850 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2851 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2852 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2853 if (unlikely(ret))
2854 return ret;
2855
2856 ioprio = READ_ONCE(sqe->ioprio);
2857 if (ioprio) {
2858 ret = ioprio_check_cap(ioprio);
2859 if (ret)
2860 return ret;
2861
2862 kiocb->ki_ioprio = ioprio;
2863 } else
2864 kiocb->ki_ioprio = get_current_ioprio();
2865
2866 /* don't allow async punt if RWF_NOWAIT was requested */
2867 if (kiocb->ki_flags & IOCB_NOWAIT)
2868 req->flags |= REQ_F_NOWAIT;
2869
2870 if (ctx->flags & IORING_SETUP_IOPOLL) {
2871 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2872 !kiocb->ki_filp->f_op->iopoll)
2873 return -EOPNOTSUPP;
2874
2875 kiocb->ki_flags |= IOCB_HIPRI;
2876 kiocb->ki_complete = io_complete_rw_iopoll;
2877 req->iopoll_completed = 0;
2878 } else {
2879 if (kiocb->ki_flags & IOCB_HIPRI)
2880 return -EINVAL;
2881 kiocb->ki_complete = io_complete_rw;
2882 }
2883
2884 req->rw.addr = READ_ONCE(sqe->addr);
2885 req->rw.len = READ_ONCE(sqe->len);
2886 req->buf_index = READ_ONCE(sqe->buf_index);
2887 return 0;
2888 }
2889
2890 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2891 {
2892 switch (ret) {
2893 case -EIOCBQUEUED:
2894 break;
2895 case -ERESTARTSYS:
2896 case -ERESTARTNOINTR:
2897 case -ERESTARTNOHAND:
2898 case -ERESTART_RESTARTBLOCK:
2899 /*
2900 * We can't just restart the syscall, since previously
2901 * submitted sqes may already be in progress. Just fail this
2902 * IO with EINTR.
2903 */
2904 ret = -EINTR;
2905 fallthrough;
2906 default:
2907 kiocb->ki_complete(kiocb, ret, 0);
2908 }
2909 }
2910
2911 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2912 struct io_comp_state *cs)
2913 {
2914 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2915 struct io_async_rw *io = req->async_data;
2916
2917 /* add previously done IO, if any */
2918 if (io && io->bytes_done > 0) {
2919 if (ret < 0)
2920 ret = io->bytes_done;
2921 else
2922 ret += io->bytes_done;
2923 }
2924
2925 if (req->flags & REQ_F_CUR_POS)
2926 req->file->f_pos = kiocb->ki_pos;
2927 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2928 __io_complete_rw(req, ret, 0, cs);
2929 else
2930 io_rw_done(kiocb, ret);
2931 }
2932
2933 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2934 struct iov_iter *iter)
2935 {
2936 struct io_ring_ctx *ctx = req->ctx;
2937 size_t len = req->rw.len;
2938 struct io_mapped_ubuf *imu;
2939 u16 index, buf_index = req->buf_index;
2940 size_t offset;
2941 u64 buf_addr;
2942
2943 if (unlikely(buf_index >= ctx->nr_user_bufs))
2944 return -EFAULT;
2945 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2946 imu = &ctx->user_bufs[index];
2947 buf_addr = req->rw.addr;
2948
2949 /* overflow */
2950 if (buf_addr + len < buf_addr)
2951 return -EFAULT;
2952 /* not inside the mapped region */
2953 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2954 return -EFAULT;
2955
2956 /*
2957 * May not be a start of buffer, set size appropriately
2958 * and advance us to the beginning.
2959 */
2960 offset = buf_addr - imu->ubuf;
2961 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2962
2963 if (offset) {
2964 /*
2965 * Don't use iov_iter_advance() here, as it's really slow for
2966 * using the latter parts of a big fixed buffer - it iterates
2967 * over each segment manually. We can cheat a bit here, because
2968 * we know that:
2969 *
2970 * 1) it's a BVEC iter, we set it up
2971 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2972 * first and last bvec
2973 *
2974 * So just find our index, and adjust the iterator afterwards.
2975 * If the offset is within the first bvec (or the whole first
2976 * bvec, just use iov_iter_advance(). This makes it easier
2977 * since we can just skip the first segment, which may not
2978 * be PAGE_SIZE aligned.
2979 */
2980 const struct bio_vec *bvec = imu->bvec;
2981
2982 if (offset <= bvec->bv_len) {
2983 iov_iter_advance(iter, offset);
2984 } else {
2985 unsigned long seg_skip;
2986
2987 /* skip first vec */
2988 offset -= bvec->bv_len;
2989 seg_skip = 1 + (offset >> PAGE_SHIFT);
2990
2991 iter->bvec = bvec + seg_skip;
2992 iter->nr_segs -= seg_skip;
2993 iter->count -= bvec->bv_len + offset;
2994 iter->iov_offset = offset & ~PAGE_MASK;
2995 }
2996 }
2997
2998 return len;
2999 }
3000
3001 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3002 {
3003 if (needs_lock)
3004 mutex_unlock(&ctx->uring_lock);
3005 }
3006
3007 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3008 {
3009 /*
3010 * "Normal" inline submissions always hold the uring_lock, since we
3011 * grab it from the system call. Same is true for the SQPOLL offload.
3012 * The only exception is when we've detached the request and issue it
3013 * from an async worker thread, grab the lock for that case.
3014 */
3015 if (needs_lock)
3016 mutex_lock(&ctx->uring_lock);
3017 }
3018
3019 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3020 int bgid, struct io_buffer *kbuf,
3021 bool needs_lock)
3022 {
3023 struct io_buffer *head;
3024
3025 if (req->flags & REQ_F_BUFFER_SELECTED)
3026 return kbuf;
3027
3028 io_ring_submit_lock(req->ctx, needs_lock);
3029
3030 lockdep_assert_held(&req->ctx->uring_lock);
3031
3032 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3033 if (head) {
3034 if (!list_empty(&head->list)) {
3035 kbuf = list_last_entry(&head->list, struct io_buffer,
3036 list);
3037 list_del(&kbuf->list);
3038 } else {
3039 kbuf = head;
3040 idr_remove(&req->ctx->io_buffer_idr, bgid);
3041 }
3042 if (*len > kbuf->len)
3043 *len = kbuf->len;
3044 } else {
3045 kbuf = ERR_PTR(-ENOBUFS);
3046 }
3047
3048 io_ring_submit_unlock(req->ctx, needs_lock);
3049
3050 return kbuf;
3051 }
3052
3053 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3054 bool needs_lock)
3055 {
3056 struct io_buffer *kbuf;
3057 u16 bgid;
3058
3059 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3060 bgid = req->buf_index;
3061 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3062 if (IS_ERR(kbuf))
3063 return kbuf;
3064 req->rw.addr = (u64) (unsigned long) kbuf;
3065 req->flags |= REQ_F_BUFFER_SELECTED;
3066 return u64_to_user_ptr(kbuf->addr);
3067 }
3068
3069 #ifdef CONFIG_COMPAT
3070 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3071 bool needs_lock)
3072 {
3073 struct compat_iovec __user *uiov;
3074 compat_ssize_t clen;
3075 void __user *buf;
3076 ssize_t len;
3077
3078 uiov = u64_to_user_ptr(req->rw.addr);
3079 if (!access_ok(uiov, sizeof(*uiov)))
3080 return -EFAULT;
3081 if (__get_user(clen, &uiov->iov_len))
3082 return -EFAULT;
3083 if (clen < 0)
3084 return -EINVAL;
3085
3086 len = clen;
3087 buf = io_rw_buffer_select(req, &len, needs_lock);
3088 if (IS_ERR(buf))
3089 return PTR_ERR(buf);
3090 iov[0].iov_base = buf;
3091 iov[0].iov_len = (compat_size_t) len;
3092 return 0;
3093 }
3094 #endif
3095
3096 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3097 bool needs_lock)
3098 {
3099 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3100 void __user *buf;
3101 ssize_t len;
3102
3103 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3104 return -EFAULT;
3105
3106 len = iov[0].iov_len;
3107 if (len < 0)
3108 return -EINVAL;
3109 buf = io_rw_buffer_select(req, &len, needs_lock);
3110 if (IS_ERR(buf))
3111 return PTR_ERR(buf);
3112 iov[0].iov_base = buf;
3113 iov[0].iov_len = len;
3114 return 0;
3115 }
3116
3117 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3118 bool needs_lock)
3119 {
3120 if (req->flags & REQ_F_BUFFER_SELECTED) {
3121 struct io_buffer *kbuf;
3122
3123 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3124 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3125 iov[0].iov_len = kbuf->len;
3126 return 0;
3127 }
3128 if (req->rw.len != 1)
3129 return -EINVAL;
3130
3131 #ifdef CONFIG_COMPAT
3132 if (req->ctx->compat)
3133 return io_compat_import(req, iov, needs_lock);
3134 #endif
3135
3136 return __io_iov_buffer_select(req, iov, needs_lock);
3137 }
3138
3139 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3140 struct iovec **iovec, struct iov_iter *iter,
3141 bool needs_lock)
3142 {
3143 void __user *buf = u64_to_user_ptr(req->rw.addr);
3144 size_t sqe_len = req->rw.len;
3145 ssize_t ret;
3146 u8 opcode;
3147
3148 opcode = req->opcode;
3149 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3150 *iovec = NULL;
3151 return io_import_fixed(req, rw, iter);
3152 }
3153
3154 /* buffer index only valid with fixed read/write, or buffer select */
3155 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3156 return -EINVAL;
3157
3158 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3159 if (req->flags & REQ_F_BUFFER_SELECT) {
3160 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3161 if (IS_ERR(buf))
3162 return PTR_ERR(buf);
3163 req->rw.len = sqe_len;
3164 }
3165
3166 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3167 *iovec = NULL;
3168 return ret;
3169 }
3170
3171 if (req->flags & REQ_F_BUFFER_SELECT) {
3172 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3173 if (!ret) {
3174 ret = (*iovec)->iov_len;
3175 iov_iter_init(iter, rw, *iovec, 1, ret);
3176 }
3177 *iovec = NULL;
3178 return ret;
3179 }
3180
3181 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3182 req->ctx->compat);
3183 }
3184
3185 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3186 {
3187 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3188 }
3189
3190 /*
3191 * For files that don't have ->read_iter() and ->write_iter(), handle them
3192 * by looping over ->read() or ->write() manually.
3193 */
3194 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3195 {
3196 struct kiocb *kiocb = &req->rw.kiocb;
3197 struct file *file = req->file;
3198 ssize_t ret = 0;
3199
3200 /*
3201 * Don't support polled IO through this interface, and we can't
3202 * support non-blocking either. For the latter, this just causes
3203 * the kiocb to be handled from an async context.
3204 */
3205 if (kiocb->ki_flags & IOCB_HIPRI)
3206 return -EOPNOTSUPP;
3207 if (kiocb->ki_flags & IOCB_NOWAIT)
3208 return -EAGAIN;
3209
3210 while (iov_iter_count(iter)) {
3211 struct iovec iovec;
3212 ssize_t nr;
3213
3214 if (!iov_iter_is_bvec(iter)) {
3215 iovec = iov_iter_iovec(iter);
3216 } else {
3217 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3218 iovec.iov_len = req->rw.len;
3219 }
3220
3221 if (rw == READ) {
3222 nr = file->f_op->read(file, iovec.iov_base,
3223 iovec.iov_len, io_kiocb_ppos(kiocb));
3224 } else {
3225 nr = file->f_op->write(file, iovec.iov_base,
3226 iovec.iov_len, io_kiocb_ppos(kiocb));
3227 }
3228
3229 if (nr < 0) {
3230 if (!ret)
3231 ret = nr;
3232 break;
3233 }
3234 ret += nr;
3235 if (nr != iovec.iov_len)
3236 break;
3237 req->rw.len -= nr;
3238 req->rw.addr += nr;
3239 iov_iter_advance(iter, nr);
3240 }
3241
3242 return ret;
3243 }
3244
3245 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3246 const struct iovec *fast_iov, struct iov_iter *iter)
3247 {
3248 struct io_async_rw *rw = req->async_data;
3249
3250 memcpy(&rw->iter, iter, sizeof(*iter));
3251 rw->free_iovec = iovec;
3252 rw->bytes_done = 0;
3253 /* can only be fixed buffers, no need to do anything */
3254 if (iov_iter_is_bvec(iter))
3255 return;
3256 if (!iovec) {
3257 unsigned iov_off = 0;
3258
3259 rw->iter.iov = rw->fast_iov;
3260 if (iter->iov != fast_iov) {
3261 iov_off = iter->iov - fast_iov;
3262 rw->iter.iov += iov_off;
3263 }
3264 if (rw->fast_iov != fast_iov)
3265 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3266 sizeof(struct iovec) * iter->nr_segs);
3267 } else {
3268 req->flags |= REQ_F_NEED_CLEANUP;
3269 }
3270 }
3271
3272 static inline int __io_alloc_async_data(struct io_kiocb *req)
3273 {
3274 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3275 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3276 return req->async_data == NULL;
3277 }
3278
3279 static int io_alloc_async_data(struct io_kiocb *req)
3280 {
3281 if (!io_op_defs[req->opcode].needs_async_data)
3282 return 0;
3283
3284 return __io_alloc_async_data(req);
3285 }
3286
3287 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3288 const struct iovec *fast_iov,
3289 struct iov_iter *iter, bool force)
3290 {
3291 if (!force && !io_op_defs[req->opcode].needs_async_data)
3292 return 0;
3293 if (!req->async_data) {
3294 if (__io_alloc_async_data(req))
3295 return -ENOMEM;
3296
3297 io_req_map_rw(req, iovec, fast_iov, iter);
3298 }
3299 return 0;
3300 }
3301
3302 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3303 {
3304 struct io_async_rw *iorw = req->async_data;
3305 struct iovec *iov = iorw->fast_iov;
3306 ssize_t ret;
3307
3308 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3309 if (unlikely(ret < 0))
3310 return ret;
3311
3312 iorw->bytes_done = 0;
3313 iorw->free_iovec = iov;
3314 if (iov)
3315 req->flags |= REQ_F_NEED_CLEANUP;
3316 return 0;
3317 }
3318
3319 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3320 {
3321 ssize_t ret;
3322
3323 ret = io_prep_rw(req, sqe);
3324 if (ret)
3325 return ret;
3326
3327 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3328 return -EBADF;
3329
3330 /* either don't need iovec imported or already have it */
3331 if (!req->async_data)
3332 return 0;
3333 return io_rw_prep_async(req, READ);
3334 }
3335
3336 /*
3337 * This is our waitqueue callback handler, registered through lock_page_async()
3338 * when we initially tried to do the IO with the iocb armed our waitqueue.
3339 * This gets called when the page is unlocked, and we generally expect that to
3340 * happen when the page IO is completed and the page is now uptodate. This will
3341 * queue a task_work based retry of the operation, attempting to copy the data
3342 * again. If the latter fails because the page was NOT uptodate, then we will
3343 * do a thread based blocking retry of the operation. That's the unexpected
3344 * slow path.
3345 */
3346 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3347 int sync, void *arg)
3348 {
3349 struct wait_page_queue *wpq;
3350 struct io_kiocb *req = wait->private;
3351 struct wait_page_key *key = arg;
3352 int ret;
3353
3354 wpq = container_of(wait, struct wait_page_queue, wait);
3355
3356 if (!wake_page_match(wpq, key))
3357 return 0;
3358
3359 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3360 list_del_init(&wait->entry);
3361
3362 init_task_work(&req->task_work, io_req_task_submit);
3363 percpu_ref_get(&req->ctx->refs);
3364
3365 /* submit ref gets dropped, acquire a new one */
3366 refcount_inc(&req->refs);
3367 ret = io_req_task_work_add(req);
3368 if (unlikely(ret)) {
3369 struct task_struct *tsk;
3370
3371 /* queue just for cancelation */
3372 init_task_work(&req->task_work, io_req_task_cancel);
3373 tsk = io_wq_get_task(req->ctx->io_wq);
3374 task_work_add(tsk, &req->task_work, TWA_NONE);
3375 wake_up_process(tsk);
3376 }
3377 return 1;
3378 }
3379
3380 /*
3381 * This controls whether a given IO request should be armed for async page
3382 * based retry. If we return false here, the request is handed to the async
3383 * worker threads for retry. If we're doing buffered reads on a regular file,
3384 * we prepare a private wait_page_queue entry and retry the operation. This
3385 * will either succeed because the page is now uptodate and unlocked, or it
3386 * will register a callback when the page is unlocked at IO completion. Through
3387 * that callback, io_uring uses task_work to setup a retry of the operation.
3388 * That retry will attempt the buffered read again. The retry will generally
3389 * succeed, or in rare cases where it fails, we then fall back to using the
3390 * async worker threads for a blocking retry.
3391 */
3392 static bool io_rw_should_retry(struct io_kiocb *req)
3393 {
3394 struct io_async_rw *rw = req->async_data;
3395 struct wait_page_queue *wait = &rw->wpq;
3396 struct kiocb *kiocb = &req->rw.kiocb;
3397
3398 /* never retry for NOWAIT, we just complete with -EAGAIN */
3399 if (req->flags & REQ_F_NOWAIT)
3400 return false;
3401
3402 /* Only for buffered IO */
3403 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3404 return false;
3405
3406 /*
3407 * just use poll if we can, and don't attempt if the fs doesn't
3408 * support callback based unlocks
3409 */
3410 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3411 return false;
3412
3413 wait->wait.func = io_async_buf_func;
3414 wait->wait.private = req;
3415 wait->wait.flags = 0;
3416 INIT_LIST_HEAD(&wait->wait.entry);
3417 kiocb->ki_flags |= IOCB_WAITQ;
3418 kiocb->ki_flags &= ~IOCB_NOWAIT;
3419 kiocb->ki_waitq = wait;
3420 return true;
3421 }
3422
3423 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3424 {
3425 if (req->file->f_op->read_iter)
3426 return call_read_iter(req->file, &req->rw.kiocb, iter);
3427 else if (req->file->f_op->read)
3428 return loop_rw_iter(READ, req, iter);
3429 else
3430 return -EINVAL;
3431 }
3432
3433 static int io_read(struct io_kiocb *req, bool force_nonblock,
3434 struct io_comp_state *cs)
3435 {
3436 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3437 struct kiocb *kiocb = &req->rw.kiocb;
3438 struct iov_iter __iter, *iter = &__iter;
3439 struct io_async_rw *rw = req->async_data;
3440 ssize_t io_size, ret, ret2;
3441 bool no_async;
3442
3443 if (rw) {
3444 iter = &rw->iter;
3445 iovec = NULL;
3446 } else {
3447 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3448 if (ret < 0)
3449 return ret;
3450 }
3451 io_size = iov_iter_count(iter);
3452 req->result = io_size;
3453 ret = 0;
3454
3455 /* Ensure we clear previously set non-block flag */
3456 if (!force_nonblock)
3457 kiocb->ki_flags &= ~IOCB_NOWAIT;
3458 else
3459 kiocb->ki_flags |= IOCB_NOWAIT;
3460
3461
3462 /* If the file doesn't support async, just async punt */
3463 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3464 if (no_async)
3465 goto copy_iov;
3466
3467 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3468 if (unlikely(ret))
3469 goto out_free;
3470
3471 ret = io_iter_do_read(req, iter);
3472
3473 if (!ret) {
3474 goto done;
3475 } else if (ret == -EIOCBQUEUED) {
3476 ret = 0;
3477 goto out_free;
3478 } else if (ret == -EAGAIN) {
3479 /* IOPOLL retry should happen for io-wq threads */
3480 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3481 goto done;
3482 /* no retry on NONBLOCK marked file */
3483 if (req->file->f_flags & O_NONBLOCK)
3484 goto done;
3485 /* some cases will consume bytes even on error returns */
3486 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3487 ret = 0;
3488 goto copy_iov;
3489 } else if (ret < 0) {
3490 /* make sure -ERESTARTSYS -> -EINTR is done */
3491 goto done;
3492 }
3493
3494 /* read it all, or we did blocking attempt. no retry. */
3495 if (!iov_iter_count(iter) || !force_nonblock ||
3496 (req->file->f_flags & O_NONBLOCK))
3497 goto done;
3498
3499 io_size -= ret;
3500 copy_iov:
3501 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3502 if (ret2) {
3503 ret = ret2;
3504 goto out_free;
3505 }
3506 if (no_async)
3507 return -EAGAIN;
3508 rw = req->async_data;
3509 /* it's copied and will be cleaned with ->io */
3510 iovec = NULL;
3511 /* now use our persistent iterator, if we aren't already */
3512 iter = &rw->iter;
3513 retry:
3514 rw->bytes_done += ret;
3515 /* if we can retry, do so with the callbacks armed */
3516 if (!io_rw_should_retry(req)) {
3517 kiocb->ki_flags &= ~IOCB_WAITQ;
3518 return -EAGAIN;
3519 }
3520
3521 /*
3522 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3523 * get -EIOCBQUEUED, then we'll get a notification when the desired
3524 * page gets unlocked. We can also get a partial read here, and if we
3525 * do, then just retry at the new offset.
3526 */
3527 ret = io_iter_do_read(req, iter);
3528 if (ret == -EIOCBQUEUED) {
3529 ret = 0;
3530 goto out_free;
3531 } else if (ret > 0 && ret < io_size) {
3532 /* we got some bytes, but not all. retry. */
3533 goto retry;
3534 }
3535 done:
3536 kiocb_done(kiocb, ret, cs);
3537 ret = 0;
3538 out_free:
3539 /* it's reportedly faster than delegating the null check to kfree() */
3540 if (iovec)
3541 kfree(iovec);
3542 return ret;
3543 }
3544
3545 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3546 {
3547 ssize_t ret;
3548
3549 ret = io_prep_rw(req, sqe);
3550 if (ret)
3551 return ret;
3552
3553 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3554 return -EBADF;
3555
3556 /* either don't need iovec imported or already have it */
3557 if (!req->async_data)
3558 return 0;
3559 return io_rw_prep_async(req, WRITE);
3560 }
3561
3562 static int io_write(struct io_kiocb *req, bool force_nonblock,
3563 struct io_comp_state *cs)
3564 {
3565 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3566 struct kiocb *kiocb = &req->rw.kiocb;
3567 struct iov_iter __iter, *iter = &__iter;
3568 struct io_async_rw *rw = req->async_data;
3569 ssize_t ret, ret2, io_size;
3570
3571 if (rw) {
3572 iter = &rw->iter;
3573 iovec = NULL;
3574 } else {
3575 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3576 if (ret < 0)
3577 return ret;
3578 }
3579 io_size = iov_iter_count(iter);
3580 req->result = io_size;
3581
3582 /* Ensure we clear previously set non-block flag */
3583 if (!force_nonblock)
3584 kiocb->ki_flags &= ~IOCB_NOWAIT;
3585 else
3586 kiocb->ki_flags |= IOCB_NOWAIT;
3587
3588 /* If the file doesn't support async, just async punt */
3589 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3590 goto copy_iov;
3591
3592 /* file path doesn't support NOWAIT for non-direct_IO */
3593 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3594 (req->flags & REQ_F_ISREG))
3595 goto copy_iov;
3596
3597 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3598 if (unlikely(ret))
3599 goto out_free;
3600
3601 /*
3602 * Open-code file_start_write here to grab freeze protection,
3603 * which will be released by another thread in
3604 * io_complete_rw(). Fool lockdep by telling it the lock got
3605 * released so that it doesn't complain about the held lock when
3606 * we return to userspace.
3607 */
3608 if (req->flags & REQ_F_ISREG) {
3609 sb_start_write(file_inode(req->file)->i_sb);
3610 __sb_writers_release(file_inode(req->file)->i_sb,
3611 SB_FREEZE_WRITE);
3612 }
3613 kiocb->ki_flags |= IOCB_WRITE;
3614
3615 if (req->file->f_op->write_iter)
3616 ret2 = call_write_iter(req->file, kiocb, iter);
3617 else if (req->file->f_op->write)
3618 ret2 = loop_rw_iter(WRITE, req, iter);
3619 else
3620 ret2 = -EINVAL;
3621
3622 /*
3623 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3624 * retry them without IOCB_NOWAIT.
3625 */
3626 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3627 ret2 = -EAGAIN;
3628 /* no retry on NONBLOCK marked file */
3629 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3630 goto done;
3631 if (!force_nonblock || ret2 != -EAGAIN) {
3632 /* IOPOLL retry should happen for io-wq threads */
3633 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3634 goto copy_iov;
3635 done:
3636 kiocb_done(kiocb, ret2, cs);
3637 } else {
3638 copy_iov:
3639 /* some cases will consume bytes even on error returns */
3640 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3641 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3642 if (!ret)
3643 return -EAGAIN;
3644 }
3645 out_free:
3646 /* it's reportedly faster than delegating the null check to kfree() */
3647 if (iovec)
3648 kfree(iovec);
3649 return ret;
3650 }
3651
3652 static int io_renameat_prep(struct io_kiocb *req,
3653 const struct io_uring_sqe *sqe)
3654 {
3655 struct io_rename *ren = &req->rename;
3656 const char __user *oldf, *newf;
3657
3658 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3659 return -EBADF;
3660
3661 ren->old_dfd = READ_ONCE(sqe->fd);
3662 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3663 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3664 ren->new_dfd = READ_ONCE(sqe->len);
3665 ren->flags = READ_ONCE(sqe->rename_flags);
3666
3667 ren->oldpath = getname(oldf);
3668 if (IS_ERR(ren->oldpath))
3669 return PTR_ERR(ren->oldpath);
3670
3671 ren->newpath = getname(newf);
3672 if (IS_ERR(ren->newpath)) {
3673 putname(ren->oldpath);
3674 return PTR_ERR(ren->newpath);
3675 }
3676
3677 req->flags |= REQ_F_NEED_CLEANUP;
3678 return 0;
3679 }
3680
3681 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3682 {
3683 struct io_rename *ren = &req->rename;
3684 int ret;
3685
3686 if (force_nonblock)
3687 return -EAGAIN;
3688
3689 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3690 ren->newpath, ren->flags);
3691
3692 req->flags &= ~REQ_F_NEED_CLEANUP;
3693 if (ret < 0)
3694 req_set_fail_links(req);
3695 io_req_complete(req, ret);
3696 return 0;
3697 }
3698
3699 static int io_unlinkat_prep(struct io_kiocb *req,
3700 const struct io_uring_sqe *sqe)
3701 {
3702 struct io_unlink *un = &req->unlink;
3703 const char __user *fname;
3704
3705 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3706 return -EBADF;
3707
3708 un->dfd = READ_ONCE(sqe->fd);
3709
3710 un->flags = READ_ONCE(sqe->unlink_flags);
3711 if (un->flags & ~AT_REMOVEDIR)
3712 return -EINVAL;
3713
3714 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3715 un->filename = getname(fname);
3716 if (IS_ERR(un->filename))
3717 return PTR_ERR(un->filename);
3718
3719 req->flags |= REQ_F_NEED_CLEANUP;
3720 return 0;
3721 }
3722
3723 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3724 {
3725 struct io_unlink *un = &req->unlink;
3726 int ret;
3727
3728 if (force_nonblock)
3729 return -EAGAIN;
3730
3731 if (un->flags & AT_REMOVEDIR)
3732 ret = do_rmdir(un->dfd, un->filename);
3733 else
3734 ret = do_unlinkat(un->dfd, un->filename);
3735
3736 req->flags &= ~REQ_F_NEED_CLEANUP;
3737 if (ret < 0)
3738 req_set_fail_links(req);
3739 io_req_complete(req, ret);
3740 return 0;
3741 }
3742
3743 static int io_shutdown_prep(struct io_kiocb *req,
3744 const struct io_uring_sqe *sqe)
3745 {
3746 #if defined(CONFIG_NET)
3747 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3748 return -EINVAL;
3749 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3750 sqe->buf_index)
3751 return -EINVAL;
3752
3753 req->shutdown.how = READ_ONCE(sqe->len);
3754 return 0;
3755 #else
3756 return -EOPNOTSUPP;
3757 #endif
3758 }
3759
3760 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3761 {
3762 #if defined(CONFIG_NET)
3763 struct socket *sock;
3764 int ret;
3765
3766 if (force_nonblock)
3767 return -EAGAIN;
3768
3769 sock = sock_from_file(req->file);
3770 if (unlikely(!sock))
3771 return -ENOTSOCK;
3772
3773 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3774 if (ret < 0)
3775 req_set_fail_links(req);
3776 io_req_complete(req, ret);
3777 return 0;
3778 #else
3779 return -EOPNOTSUPP;
3780 #endif
3781 }
3782
3783 static int __io_splice_prep(struct io_kiocb *req,
3784 const struct io_uring_sqe *sqe)
3785 {
3786 struct io_splice* sp = &req->splice;
3787 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3788
3789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3790 return -EINVAL;
3791
3792 sp->file_in = NULL;
3793 sp->len = READ_ONCE(sqe->len);
3794 sp->flags = READ_ONCE(sqe->splice_flags);
3795
3796 if (unlikely(sp->flags & ~valid_flags))
3797 return -EINVAL;
3798
3799 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3800 (sp->flags & SPLICE_F_FD_IN_FIXED));
3801 if (!sp->file_in)
3802 return -EBADF;
3803 req->flags |= REQ_F_NEED_CLEANUP;
3804
3805 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3806 /*
3807 * Splice operation will be punted aync, and here need to
3808 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3809 */
3810 io_req_init_async(req);
3811 req->work.flags |= IO_WQ_WORK_UNBOUND;
3812 }
3813
3814 return 0;
3815 }
3816
3817 static int io_tee_prep(struct io_kiocb *req,
3818 const struct io_uring_sqe *sqe)
3819 {
3820 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3821 return -EINVAL;
3822 return __io_splice_prep(req, sqe);
3823 }
3824
3825 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3826 {
3827 struct io_splice *sp = &req->splice;
3828 struct file *in = sp->file_in;
3829 struct file *out = sp->file_out;
3830 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3831 long ret = 0;
3832
3833 if (force_nonblock)
3834 return -EAGAIN;
3835 if (sp->len)
3836 ret = do_tee(in, out, sp->len, flags);
3837
3838 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3839 req->flags &= ~REQ_F_NEED_CLEANUP;
3840
3841 if (ret != sp->len)
3842 req_set_fail_links(req);
3843 io_req_complete(req, ret);
3844 return 0;
3845 }
3846
3847 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3848 {
3849 struct io_splice* sp = &req->splice;
3850
3851 sp->off_in = READ_ONCE(sqe->splice_off_in);
3852 sp->off_out = READ_ONCE(sqe->off);
3853 return __io_splice_prep(req, sqe);
3854 }
3855
3856 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3857 {
3858 struct io_splice *sp = &req->splice;
3859 struct file *in = sp->file_in;
3860 struct file *out = sp->file_out;
3861 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3862 loff_t *poff_in, *poff_out;
3863 long ret = 0;
3864
3865 if (force_nonblock)
3866 return -EAGAIN;
3867
3868 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3869 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3870
3871 if (sp->len)
3872 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3873
3874 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3875 req->flags &= ~REQ_F_NEED_CLEANUP;
3876
3877 if (ret != sp->len)
3878 req_set_fail_links(req);
3879 io_req_complete(req, ret);
3880 return 0;
3881 }
3882
3883 /*
3884 * IORING_OP_NOP just posts a completion event, nothing else.
3885 */
3886 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3887 {
3888 struct io_ring_ctx *ctx = req->ctx;
3889
3890 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3891 return -EINVAL;
3892
3893 __io_req_complete(req, 0, 0, cs);
3894 return 0;
3895 }
3896
3897 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3898 {
3899 struct io_ring_ctx *ctx = req->ctx;
3900
3901 if (!req->file)
3902 return -EBADF;
3903
3904 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3905 return -EINVAL;
3906 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3907 return -EINVAL;
3908
3909 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3910 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3911 return -EINVAL;
3912
3913 req->sync.off = READ_ONCE(sqe->off);
3914 req->sync.len = READ_ONCE(sqe->len);
3915 return 0;
3916 }
3917
3918 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3919 {
3920 loff_t end = req->sync.off + req->sync.len;
3921 int ret;
3922
3923 /* fsync always requires a blocking context */
3924 if (force_nonblock)
3925 return -EAGAIN;
3926
3927 ret = vfs_fsync_range(req->file, req->sync.off,
3928 end > 0 ? end : LLONG_MAX,
3929 req->sync.flags & IORING_FSYNC_DATASYNC);
3930 if (ret < 0)
3931 req_set_fail_links(req);
3932 io_req_complete(req, ret);
3933 return 0;
3934 }
3935
3936 static int io_fallocate_prep(struct io_kiocb *req,
3937 const struct io_uring_sqe *sqe)
3938 {
3939 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3940 return -EINVAL;
3941 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3942 return -EINVAL;
3943
3944 req->sync.off = READ_ONCE(sqe->off);
3945 req->sync.len = READ_ONCE(sqe->addr);
3946 req->sync.mode = READ_ONCE(sqe->len);
3947 return 0;
3948 }
3949
3950 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3951 {
3952 int ret;
3953
3954 /* fallocate always requiring blocking context */
3955 if (force_nonblock)
3956 return -EAGAIN;
3957 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3958 req->sync.len);
3959 if (ret < 0)
3960 req_set_fail_links(req);
3961 io_req_complete(req, ret);
3962 return 0;
3963 }
3964
3965 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3966 {
3967 const char __user *fname;
3968 int ret;
3969
3970 if (unlikely(sqe->ioprio || sqe->buf_index))
3971 return -EINVAL;
3972 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3973 return -EBADF;
3974
3975 /* open.how should be already initialised */
3976 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3977 req->open.how.flags |= O_LARGEFILE;
3978
3979 req->open.dfd = READ_ONCE(sqe->fd);
3980 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3981 req->open.filename = getname(fname);
3982 if (IS_ERR(req->open.filename)) {
3983 ret = PTR_ERR(req->open.filename);
3984 req->open.filename = NULL;
3985 return ret;
3986 }
3987 req->open.nofile = rlimit(RLIMIT_NOFILE);
3988 req->open.ignore_nonblock = false;
3989 req->flags |= REQ_F_NEED_CLEANUP;
3990 return 0;
3991 }
3992
3993 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3994 {
3995 u64 flags, mode;
3996
3997 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3998 return -EINVAL;
3999 mode = READ_ONCE(sqe->len);
4000 flags = READ_ONCE(sqe->open_flags);
4001 req->open.how = build_open_how(flags, mode);
4002 return __io_openat_prep(req, sqe);
4003 }
4004
4005 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4006 {
4007 struct open_how __user *how;
4008 size_t len;
4009 int ret;
4010
4011 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4012 return -EINVAL;
4013 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4014 len = READ_ONCE(sqe->len);
4015 if (len < OPEN_HOW_SIZE_VER0)
4016 return -EINVAL;
4017
4018 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4019 len);
4020 if (ret)
4021 return ret;
4022
4023 return __io_openat_prep(req, sqe);
4024 }
4025
4026 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4027 {
4028 struct open_flags op;
4029 struct file *file;
4030 int ret;
4031
4032 if (force_nonblock && !req->open.ignore_nonblock)
4033 return -EAGAIN;
4034
4035 ret = build_open_flags(&req->open.how, &op);
4036 if (ret)
4037 goto err;
4038
4039 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4040 if (ret < 0)
4041 goto err;
4042
4043 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4044 if (IS_ERR(file)) {
4045 put_unused_fd(ret);
4046 ret = PTR_ERR(file);
4047 /*
4048 * A work-around to ensure that /proc/self works that way
4049 * that it should - if we get -EOPNOTSUPP back, then assume
4050 * that proc_self_get_link() failed us because we're in async
4051 * context. We should be safe to retry this from the task
4052 * itself with force_nonblock == false set, as it should not
4053 * block on lookup. Would be nice to know this upfront and
4054 * avoid the async dance, but doesn't seem feasible.
4055 */
4056 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4057 req->open.ignore_nonblock = true;
4058 refcount_inc(&req->refs);
4059 io_req_task_queue(req);
4060 return 0;
4061 }
4062 } else {
4063 fsnotify_open(file);
4064 fd_install(ret, file);
4065 }
4066 err:
4067 putname(req->open.filename);
4068 req->flags &= ~REQ_F_NEED_CLEANUP;
4069 if (ret < 0)
4070 req_set_fail_links(req);
4071 io_req_complete(req, ret);
4072 return 0;
4073 }
4074
4075 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4076 {
4077 return io_openat2(req, force_nonblock);
4078 }
4079
4080 static int io_remove_buffers_prep(struct io_kiocb *req,
4081 const struct io_uring_sqe *sqe)
4082 {
4083 struct io_provide_buf *p = &req->pbuf;
4084 u64 tmp;
4085
4086 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4087 return -EINVAL;
4088
4089 tmp = READ_ONCE(sqe->fd);
4090 if (!tmp || tmp > USHRT_MAX)
4091 return -EINVAL;
4092
4093 memset(p, 0, sizeof(*p));
4094 p->nbufs = tmp;
4095 p->bgid = READ_ONCE(sqe->buf_group);
4096 return 0;
4097 }
4098
4099 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4100 int bgid, unsigned nbufs)
4101 {
4102 unsigned i = 0;
4103
4104 /* shouldn't happen */
4105 if (!nbufs)
4106 return 0;
4107
4108 /* the head kbuf is the list itself */
4109 while (!list_empty(&buf->list)) {
4110 struct io_buffer *nxt;
4111
4112 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4113 list_del(&nxt->list);
4114 kfree(nxt);
4115 if (++i == nbufs)
4116 return i;
4117 }
4118 i++;
4119 kfree(buf);
4120 idr_remove(&ctx->io_buffer_idr, bgid);
4121
4122 return i;
4123 }
4124
4125 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4126 struct io_comp_state *cs)
4127 {
4128 struct io_provide_buf *p = &req->pbuf;
4129 struct io_ring_ctx *ctx = req->ctx;
4130 struct io_buffer *head;
4131 int ret = 0;
4132
4133 io_ring_submit_lock(ctx, !force_nonblock);
4134
4135 lockdep_assert_held(&ctx->uring_lock);
4136
4137 ret = -ENOENT;
4138 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4139 if (head)
4140 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4141 if (ret < 0)
4142 req_set_fail_links(req);
4143
4144 /* need to hold the lock to complete IOPOLL requests */
4145 if (ctx->flags & IORING_SETUP_IOPOLL) {
4146 __io_req_complete(req, ret, 0, cs);
4147 io_ring_submit_unlock(ctx, !force_nonblock);
4148 } else {
4149 io_ring_submit_unlock(ctx, !force_nonblock);
4150 __io_req_complete(req, ret, 0, cs);
4151 }
4152 return 0;
4153 }
4154
4155 static int io_provide_buffers_prep(struct io_kiocb *req,
4156 const struct io_uring_sqe *sqe)
4157 {
4158 struct io_provide_buf *p = &req->pbuf;
4159 u64 tmp;
4160
4161 if (sqe->ioprio || sqe->rw_flags)
4162 return -EINVAL;
4163
4164 tmp = READ_ONCE(sqe->fd);
4165 if (!tmp || tmp > USHRT_MAX)
4166 return -E2BIG;
4167 p->nbufs = tmp;
4168 p->addr = READ_ONCE(sqe->addr);
4169 p->len = READ_ONCE(sqe->len);
4170
4171 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4172 return -EFAULT;
4173
4174 p->bgid = READ_ONCE(sqe->buf_group);
4175 tmp = READ_ONCE(sqe->off);
4176 if (tmp > USHRT_MAX)
4177 return -E2BIG;
4178 p->bid = tmp;
4179 return 0;
4180 }
4181
4182 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4183 {
4184 struct io_buffer *buf;
4185 u64 addr = pbuf->addr;
4186 int i, bid = pbuf->bid;
4187
4188 for (i = 0; i < pbuf->nbufs; i++) {
4189 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4190 if (!buf)
4191 break;
4192
4193 buf->addr = addr;
4194 buf->len = pbuf->len;
4195 buf->bid = bid;
4196 addr += pbuf->len;
4197 bid++;
4198 if (!*head) {
4199 INIT_LIST_HEAD(&buf->list);
4200 *head = buf;
4201 } else {
4202 list_add_tail(&buf->list, &(*head)->list);
4203 }
4204 }
4205
4206 return i ? i : -ENOMEM;
4207 }
4208
4209 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4210 struct io_comp_state *cs)
4211 {
4212 struct io_provide_buf *p = &req->pbuf;
4213 struct io_ring_ctx *ctx = req->ctx;
4214 struct io_buffer *head, *list;
4215 int ret = 0;
4216
4217 io_ring_submit_lock(ctx, !force_nonblock);
4218
4219 lockdep_assert_held(&ctx->uring_lock);
4220
4221 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4222
4223 ret = io_add_buffers(p, &head);
4224 if (ret < 0)
4225 goto out;
4226
4227 if (!list) {
4228 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4229 GFP_KERNEL);
4230 if (ret < 0) {
4231 __io_remove_buffers(ctx, head, p->bgid, -1U);
4232 goto out;
4233 }
4234 }
4235 out:
4236 if (ret < 0)
4237 req_set_fail_links(req);
4238
4239 /* need to hold the lock to complete IOPOLL requests */
4240 if (ctx->flags & IORING_SETUP_IOPOLL) {
4241 __io_req_complete(req, ret, 0, cs);
4242 io_ring_submit_unlock(ctx, !force_nonblock);
4243 } else {
4244 io_ring_submit_unlock(ctx, !force_nonblock);
4245 __io_req_complete(req, ret, 0, cs);
4246 }
4247 return 0;
4248 }
4249
4250 static int io_epoll_ctl_prep(struct io_kiocb *req,
4251 const struct io_uring_sqe *sqe)
4252 {
4253 #if defined(CONFIG_EPOLL)
4254 if (sqe->ioprio || sqe->buf_index)
4255 return -EINVAL;
4256 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4257 return -EINVAL;
4258
4259 req->epoll.epfd = READ_ONCE(sqe->fd);
4260 req->epoll.op = READ_ONCE(sqe->len);
4261 req->epoll.fd = READ_ONCE(sqe->off);
4262
4263 if (ep_op_has_event(req->epoll.op)) {
4264 struct epoll_event __user *ev;
4265
4266 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4267 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4268 return -EFAULT;
4269 }
4270
4271 return 0;
4272 #else
4273 return -EOPNOTSUPP;
4274 #endif
4275 }
4276
4277 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4278 struct io_comp_state *cs)
4279 {
4280 #if defined(CONFIG_EPOLL)
4281 struct io_epoll *ie = &req->epoll;
4282 int ret;
4283
4284 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4285 if (force_nonblock && ret == -EAGAIN)
4286 return -EAGAIN;
4287
4288 if (ret < 0)
4289 req_set_fail_links(req);
4290 __io_req_complete(req, ret, 0, cs);
4291 return 0;
4292 #else
4293 return -EOPNOTSUPP;
4294 #endif
4295 }
4296
4297 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4298 {
4299 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4300 if (sqe->ioprio || sqe->buf_index || sqe->off)
4301 return -EINVAL;
4302 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4303 return -EINVAL;
4304
4305 req->madvise.addr = READ_ONCE(sqe->addr);
4306 req->madvise.len = READ_ONCE(sqe->len);
4307 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4308 return 0;
4309 #else
4310 return -EOPNOTSUPP;
4311 #endif
4312 }
4313
4314 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4315 {
4316 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4317 struct io_madvise *ma = &req->madvise;
4318 int ret;
4319
4320 if (force_nonblock)
4321 return -EAGAIN;
4322
4323 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4324 if (ret < 0)
4325 req_set_fail_links(req);
4326 io_req_complete(req, ret);
4327 return 0;
4328 #else
4329 return -EOPNOTSUPP;
4330 #endif
4331 }
4332
4333 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4334 {
4335 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4336 return -EINVAL;
4337 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4338 return -EINVAL;
4339
4340 req->fadvise.offset = READ_ONCE(sqe->off);
4341 req->fadvise.len = READ_ONCE(sqe->len);
4342 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4343 return 0;
4344 }
4345
4346 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4347 {
4348 struct io_fadvise *fa = &req->fadvise;
4349 int ret;
4350
4351 if (force_nonblock) {
4352 switch (fa->advice) {
4353 case POSIX_FADV_NORMAL:
4354 case POSIX_FADV_RANDOM:
4355 case POSIX_FADV_SEQUENTIAL:
4356 break;
4357 default:
4358 return -EAGAIN;
4359 }
4360 }
4361
4362 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4363 if (ret < 0)
4364 req_set_fail_links(req);
4365 io_req_complete(req, ret);
4366 return 0;
4367 }
4368
4369 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4370 {
4371 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4372 return -EINVAL;
4373 if (sqe->ioprio || sqe->buf_index)
4374 return -EINVAL;
4375 if (req->flags & REQ_F_FIXED_FILE)
4376 return -EBADF;
4377
4378 req->statx.dfd = READ_ONCE(sqe->fd);
4379 req->statx.mask = READ_ONCE(sqe->len);
4380 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4381 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4382 req->statx.flags = READ_ONCE(sqe->statx_flags);
4383
4384 return 0;
4385 }
4386
4387 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4388 {
4389 struct io_statx *ctx = &req->statx;
4390 int ret;
4391
4392 if (force_nonblock) {
4393 /* only need file table for an actual valid fd */
4394 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4395 req->flags |= REQ_F_NO_FILE_TABLE;
4396 return -EAGAIN;
4397 }
4398
4399 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4400 ctx->buffer);
4401
4402 if (ret < 0)
4403 req_set_fail_links(req);
4404 io_req_complete(req, ret);
4405 return 0;
4406 }
4407
4408 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4409 {
4410 /*
4411 * If we queue this for async, it must not be cancellable. That would
4412 * leave the 'file' in an undeterminate state, and here need to modify
4413 * io_wq_work.flags, so initialize io_wq_work firstly.
4414 */
4415 io_req_init_async(req);
4416 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4417
4418 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4419 return -EINVAL;
4420 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4421 sqe->rw_flags || sqe->buf_index)
4422 return -EINVAL;
4423 if (req->flags & REQ_F_FIXED_FILE)
4424 return -EBADF;
4425
4426 req->close.fd = READ_ONCE(sqe->fd);
4427 if ((req->file && req->file->f_op == &io_uring_fops))
4428 return -EBADF;
4429
4430 req->close.put_file = NULL;
4431 return 0;
4432 }
4433
4434 static int io_close(struct io_kiocb *req, bool force_nonblock,
4435 struct io_comp_state *cs)
4436 {
4437 struct io_close *close = &req->close;
4438 int ret;
4439
4440 /* might be already done during nonblock submission */
4441 if (!close->put_file) {
4442 ret = close_fd_get_file(close->fd, &close->put_file);
4443 if (ret < 0)
4444 return (ret == -ENOENT) ? -EBADF : ret;
4445 }
4446
4447 /* if the file has a flush method, be safe and punt to async */
4448 if (close->put_file->f_op->flush && force_nonblock) {
4449 /* was never set, but play safe */
4450 req->flags &= ~REQ_F_NOWAIT;
4451 /* avoid grabbing files - we don't need the files */
4452 req->flags |= REQ_F_NO_FILE_TABLE;
4453 return -EAGAIN;
4454 }
4455
4456 /* No ->flush() or already async, safely close from here */
4457 ret = filp_close(close->put_file, req->work.identity->files);
4458 if (ret < 0)
4459 req_set_fail_links(req);
4460 fput(close->put_file);
4461 close->put_file = NULL;
4462 __io_req_complete(req, ret, 0, cs);
4463 return 0;
4464 }
4465
4466 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4467 {
4468 struct io_ring_ctx *ctx = req->ctx;
4469
4470 if (!req->file)
4471 return -EBADF;
4472
4473 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4474 return -EINVAL;
4475 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4476 return -EINVAL;
4477
4478 req->sync.off = READ_ONCE(sqe->off);
4479 req->sync.len = READ_ONCE(sqe->len);
4480 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4481 return 0;
4482 }
4483
4484 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4485 {
4486 int ret;
4487
4488 /* sync_file_range always requires a blocking context */
4489 if (force_nonblock)
4490 return -EAGAIN;
4491
4492 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4493 req->sync.flags);
4494 if (ret < 0)
4495 req_set_fail_links(req);
4496 io_req_complete(req, ret);
4497 return 0;
4498 }
4499
4500 #if defined(CONFIG_NET)
4501 static int io_setup_async_msg(struct io_kiocb *req,
4502 struct io_async_msghdr *kmsg)
4503 {
4504 struct io_async_msghdr *async_msg = req->async_data;
4505
4506 if (async_msg)
4507 return -EAGAIN;
4508 if (io_alloc_async_data(req)) {
4509 if (kmsg->iov != kmsg->fast_iov)
4510 kfree(kmsg->iov);
4511 return -ENOMEM;
4512 }
4513 async_msg = req->async_data;
4514 req->flags |= REQ_F_NEED_CLEANUP;
4515 memcpy(async_msg, kmsg, sizeof(*kmsg));
4516 return -EAGAIN;
4517 }
4518
4519 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4520 struct io_async_msghdr *iomsg)
4521 {
4522 iomsg->iov = iomsg->fast_iov;
4523 iomsg->msg.msg_name = &iomsg->addr;
4524 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4525 req->sr_msg.msg_flags, &iomsg->iov);
4526 }
4527
4528 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4529 {
4530 struct io_async_msghdr *async_msg = req->async_data;
4531 struct io_sr_msg *sr = &req->sr_msg;
4532 int ret;
4533
4534 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4535 return -EINVAL;
4536
4537 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4538 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4539 sr->len = READ_ONCE(sqe->len);
4540
4541 #ifdef CONFIG_COMPAT
4542 if (req->ctx->compat)
4543 sr->msg_flags |= MSG_CMSG_COMPAT;
4544 #endif
4545
4546 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4547 return 0;
4548 ret = io_sendmsg_copy_hdr(req, async_msg);
4549 if (!ret)
4550 req->flags |= REQ_F_NEED_CLEANUP;
4551 return ret;
4552 }
4553
4554 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4555 struct io_comp_state *cs)
4556 {
4557 struct io_async_msghdr iomsg, *kmsg;
4558 struct socket *sock;
4559 unsigned flags;
4560 int ret;
4561
4562 sock = sock_from_file(req->file);
4563 if (unlikely(!sock))
4564 return -ENOTSOCK;
4565
4566 if (req->async_data) {
4567 kmsg = req->async_data;
4568 kmsg->msg.msg_name = &kmsg->addr;
4569 /* if iov is set, it's allocated already */
4570 if (!kmsg->iov)
4571 kmsg->iov = kmsg->fast_iov;
4572 kmsg->msg.msg_iter.iov = kmsg->iov;
4573 } else {
4574 ret = io_sendmsg_copy_hdr(req, &iomsg);
4575 if (ret)
4576 return ret;
4577 kmsg = &iomsg;
4578 }
4579
4580 flags = req->sr_msg.msg_flags;
4581 if (flags & MSG_DONTWAIT)
4582 req->flags |= REQ_F_NOWAIT;
4583 else if (force_nonblock)
4584 flags |= MSG_DONTWAIT;
4585
4586 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4587 if (force_nonblock && ret == -EAGAIN)
4588 return io_setup_async_msg(req, kmsg);
4589 if (ret == -ERESTARTSYS)
4590 ret = -EINTR;
4591
4592 if (kmsg->iov != kmsg->fast_iov)
4593 kfree(kmsg->iov);
4594 req->flags &= ~REQ_F_NEED_CLEANUP;
4595 if (ret < 0)
4596 req_set_fail_links(req);
4597 __io_req_complete(req, ret, 0, cs);
4598 return 0;
4599 }
4600
4601 static int io_send(struct io_kiocb *req, bool force_nonblock,
4602 struct io_comp_state *cs)
4603 {
4604 struct io_sr_msg *sr = &req->sr_msg;
4605 struct msghdr msg;
4606 struct iovec iov;
4607 struct socket *sock;
4608 unsigned flags;
4609 int ret;
4610
4611 sock = sock_from_file(req->file);
4612 if (unlikely(!sock))
4613 return -ENOTSOCK;
4614
4615 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4616 if (unlikely(ret))
4617 return ret;
4618
4619 msg.msg_name = NULL;
4620 msg.msg_control = NULL;
4621 msg.msg_controllen = 0;
4622 msg.msg_namelen = 0;
4623
4624 flags = req->sr_msg.msg_flags;
4625 if (flags & MSG_DONTWAIT)
4626 req->flags |= REQ_F_NOWAIT;
4627 else if (force_nonblock)
4628 flags |= MSG_DONTWAIT;
4629
4630 msg.msg_flags = flags;
4631 ret = sock_sendmsg(sock, &msg);
4632 if (force_nonblock && ret == -EAGAIN)
4633 return -EAGAIN;
4634 if (ret == -ERESTARTSYS)
4635 ret = -EINTR;
4636
4637 if (ret < 0)
4638 req_set_fail_links(req);
4639 __io_req_complete(req, ret, 0, cs);
4640 return 0;
4641 }
4642
4643 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4644 struct io_async_msghdr *iomsg)
4645 {
4646 struct io_sr_msg *sr = &req->sr_msg;
4647 struct iovec __user *uiov;
4648 size_t iov_len;
4649 int ret;
4650
4651 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4652 &iomsg->uaddr, &uiov, &iov_len);
4653 if (ret)
4654 return ret;
4655
4656 if (req->flags & REQ_F_BUFFER_SELECT) {
4657 if (iov_len > 1)
4658 return -EINVAL;
4659 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4660 return -EFAULT;
4661 sr->len = iomsg->iov[0].iov_len;
4662 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4663 sr->len);
4664 iomsg->iov = NULL;
4665 } else {
4666 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4667 &iomsg->iov, &iomsg->msg.msg_iter,
4668 false);
4669 if (ret > 0)
4670 ret = 0;
4671 }
4672
4673 return ret;
4674 }
4675
4676 #ifdef CONFIG_COMPAT
4677 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4678 struct io_async_msghdr *iomsg)
4679 {
4680 struct compat_msghdr __user *msg_compat;
4681 struct io_sr_msg *sr = &req->sr_msg;
4682 struct compat_iovec __user *uiov;
4683 compat_uptr_t ptr;
4684 compat_size_t len;
4685 int ret;
4686
4687 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4688 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4689 &ptr, &len);
4690 if (ret)
4691 return ret;
4692
4693 uiov = compat_ptr(ptr);
4694 if (req->flags & REQ_F_BUFFER_SELECT) {
4695 compat_ssize_t clen;
4696
4697 if (len > 1)
4698 return -EINVAL;
4699 if (!access_ok(uiov, sizeof(*uiov)))
4700 return -EFAULT;
4701 if (__get_user(clen, &uiov->iov_len))
4702 return -EFAULT;
4703 if (clen < 0)
4704 return -EINVAL;
4705 sr->len = clen;
4706 iomsg->iov[0].iov_len = clen;
4707 iomsg->iov = NULL;
4708 } else {
4709 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4710 UIO_FASTIOV, &iomsg->iov,
4711 &iomsg->msg.msg_iter, true);
4712 if (ret < 0)
4713 return ret;
4714 }
4715
4716 return 0;
4717 }
4718 #endif
4719
4720 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4721 struct io_async_msghdr *iomsg)
4722 {
4723 iomsg->msg.msg_name = &iomsg->addr;
4724 iomsg->iov = iomsg->fast_iov;
4725
4726 #ifdef CONFIG_COMPAT
4727 if (req->ctx->compat)
4728 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4729 #endif
4730
4731 return __io_recvmsg_copy_hdr(req, iomsg);
4732 }
4733
4734 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4735 bool needs_lock)
4736 {
4737 struct io_sr_msg *sr = &req->sr_msg;
4738 struct io_buffer *kbuf;
4739
4740 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4741 if (IS_ERR(kbuf))
4742 return kbuf;
4743
4744 sr->kbuf = kbuf;
4745 req->flags |= REQ_F_BUFFER_SELECTED;
4746 return kbuf;
4747 }
4748
4749 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4750 {
4751 return io_put_kbuf(req, req->sr_msg.kbuf);
4752 }
4753
4754 static int io_recvmsg_prep(struct io_kiocb *req,
4755 const struct io_uring_sqe *sqe)
4756 {
4757 struct io_async_msghdr *async_msg = req->async_data;
4758 struct io_sr_msg *sr = &req->sr_msg;
4759 int ret;
4760
4761 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4762 return -EINVAL;
4763
4764 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4765 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4766 sr->len = READ_ONCE(sqe->len);
4767 sr->bgid = READ_ONCE(sqe->buf_group);
4768
4769 #ifdef CONFIG_COMPAT
4770 if (req->ctx->compat)
4771 sr->msg_flags |= MSG_CMSG_COMPAT;
4772 #endif
4773
4774 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4775 return 0;
4776 ret = io_recvmsg_copy_hdr(req, async_msg);
4777 if (!ret)
4778 req->flags |= REQ_F_NEED_CLEANUP;
4779 return ret;
4780 }
4781
4782 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4783 struct io_comp_state *cs)
4784 {
4785 struct io_async_msghdr iomsg, *kmsg;
4786 struct socket *sock;
4787 struct io_buffer *kbuf;
4788 unsigned flags;
4789 int ret, cflags = 0;
4790
4791 sock = sock_from_file(req->file);
4792 if (unlikely(!sock))
4793 return -ENOTSOCK;
4794
4795 if (req->async_data) {
4796 kmsg = req->async_data;
4797 kmsg->msg.msg_name = &kmsg->addr;
4798 /* if iov is set, it's allocated already */
4799 if (!kmsg->iov)
4800 kmsg->iov = kmsg->fast_iov;
4801 kmsg->msg.msg_iter.iov = kmsg->iov;
4802 } else {
4803 ret = io_recvmsg_copy_hdr(req, &iomsg);
4804 if (ret)
4805 return ret;
4806 kmsg = &iomsg;
4807 }
4808
4809 if (req->flags & REQ_F_BUFFER_SELECT) {
4810 kbuf = io_recv_buffer_select(req, !force_nonblock);
4811 if (IS_ERR(kbuf))
4812 return PTR_ERR(kbuf);
4813 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4814 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4815 1, req->sr_msg.len);
4816 }
4817
4818 flags = req->sr_msg.msg_flags;
4819 if (flags & MSG_DONTWAIT)
4820 req->flags |= REQ_F_NOWAIT;
4821 else if (force_nonblock)
4822 flags |= MSG_DONTWAIT;
4823
4824 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4825 kmsg->uaddr, flags);
4826 if (force_nonblock && ret == -EAGAIN)
4827 return io_setup_async_msg(req, kmsg);
4828 if (ret == -ERESTARTSYS)
4829 ret = -EINTR;
4830
4831 if (req->flags & REQ_F_BUFFER_SELECTED)
4832 cflags = io_put_recv_kbuf(req);
4833 if (kmsg->iov != kmsg->fast_iov)
4834 kfree(kmsg->iov);
4835 req->flags &= ~REQ_F_NEED_CLEANUP;
4836 if (ret < 0)
4837 req_set_fail_links(req);
4838 __io_req_complete(req, ret, cflags, cs);
4839 return 0;
4840 }
4841
4842 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4843 struct io_comp_state *cs)
4844 {
4845 struct io_buffer *kbuf;
4846 struct io_sr_msg *sr = &req->sr_msg;
4847 struct msghdr msg;
4848 void __user *buf = sr->buf;
4849 struct socket *sock;
4850 struct iovec iov;
4851 unsigned flags;
4852 int ret, cflags = 0;
4853
4854 sock = sock_from_file(req->file);
4855 if (unlikely(!sock))
4856 return -ENOTSOCK;
4857
4858 if (req->flags & REQ_F_BUFFER_SELECT) {
4859 kbuf = io_recv_buffer_select(req, !force_nonblock);
4860 if (IS_ERR(kbuf))
4861 return PTR_ERR(kbuf);
4862 buf = u64_to_user_ptr(kbuf->addr);
4863 }
4864
4865 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4866 if (unlikely(ret))
4867 goto out_free;
4868
4869 msg.msg_name = NULL;
4870 msg.msg_control = NULL;
4871 msg.msg_controllen = 0;
4872 msg.msg_namelen = 0;
4873 msg.msg_iocb = NULL;
4874 msg.msg_flags = 0;
4875
4876 flags = req->sr_msg.msg_flags;
4877 if (flags & MSG_DONTWAIT)
4878 req->flags |= REQ_F_NOWAIT;
4879 else if (force_nonblock)
4880 flags |= MSG_DONTWAIT;
4881
4882 ret = sock_recvmsg(sock, &msg, flags);
4883 if (force_nonblock && ret == -EAGAIN)
4884 return -EAGAIN;
4885 if (ret == -ERESTARTSYS)
4886 ret = -EINTR;
4887 out_free:
4888 if (req->flags & REQ_F_BUFFER_SELECTED)
4889 cflags = io_put_recv_kbuf(req);
4890 if (ret < 0)
4891 req_set_fail_links(req);
4892 __io_req_complete(req, ret, cflags, cs);
4893 return 0;
4894 }
4895
4896 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4897 {
4898 struct io_accept *accept = &req->accept;
4899
4900 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4901 return -EINVAL;
4902 if (sqe->ioprio || sqe->len || sqe->buf_index)
4903 return -EINVAL;
4904
4905 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4906 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4907 accept->flags = READ_ONCE(sqe->accept_flags);
4908 accept->nofile = rlimit(RLIMIT_NOFILE);
4909 return 0;
4910 }
4911
4912 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4913 struct io_comp_state *cs)
4914 {
4915 struct io_accept *accept = &req->accept;
4916 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4917 int ret;
4918
4919 if (req->file->f_flags & O_NONBLOCK)
4920 req->flags |= REQ_F_NOWAIT;
4921
4922 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4923 accept->addr_len, accept->flags,
4924 accept->nofile);
4925 if (ret == -EAGAIN && force_nonblock)
4926 return -EAGAIN;
4927 if (ret < 0) {
4928 if (ret == -ERESTARTSYS)
4929 ret = -EINTR;
4930 req_set_fail_links(req);
4931 }
4932 __io_req_complete(req, ret, 0, cs);
4933 return 0;
4934 }
4935
4936 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4937 {
4938 struct io_connect *conn = &req->connect;
4939 struct io_async_connect *io = req->async_data;
4940
4941 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4942 return -EINVAL;
4943 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4944 return -EINVAL;
4945
4946 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4947 conn->addr_len = READ_ONCE(sqe->addr2);
4948
4949 if (!io)
4950 return 0;
4951
4952 return move_addr_to_kernel(conn->addr, conn->addr_len,
4953 &io->address);
4954 }
4955
4956 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4957 struct io_comp_state *cs)
4958 {
4959 struct io_async_connect __io, *io;
4960 unsigned file_flags;
4961 int ret;
4962
4963 if (req->async_data) {
4964 io = req->async_data;
4965 } else {
4966 ret = move_addr_to_kernel(req->connect.addr,
4967 req->connect.addr_len,
4968 &__io.address);
4969 if (ret)
4970 goto out;
4971 io = &__io;
4972 }
4973
4974 file_flags = force_nonblock ? O_NONBLOCK : 0;
4975
4976 ret = __sys_connect_file(req->file, &io->address,
4977 req->connect.addr_len, file_flags);
4978 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4979 if (req->async_data)
4980 return -EAGAIN;
4981 if (io_alloc_async_data(req)) {
4982 ret = -ENOMEM;
4983 goto out;
4984 }
4985 io = req->async_data;
4986 memcpy(req->async_data, &__io, sizeof(__io));
4987 return -EAGAIN;
4988 }
4989 if (ret == -ERESTARTSYS)
4990 ret = -EINTR;
4991 out:
4992 if (ret < 0)
4993 req_set_fail_links(req);
4994 __io_req_complete(req, ret, 0, cs);
4995 return 0;
4996 }
4997 #else /* !CONFIG_NET */
4998 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4999 {
5000 return -EOPNOTSUPP;
5001 }
5002
5003 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5004 struct io_comp_state *cs)
5005 {
5006 return -EOPNOTSUPP;
5007 }
5008
5009 static int io_send(struct io_kiocb *req, bool force_nonblock,
5010 struct io_comp_state *cs)
5011 {
5012 return -EOPNOTSUPP;
5013 }
5014
5015 static int io_recvmsg_prep(struct io_kiocb *req,
5016 const struct io_uring_sqe *sqe)
5017 {
5018 return -EOPNOTSUPP;
5019 }
5020
5021 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5022 struct io_comp_state *cs)
5023 {
5024 return -EOPNOTSUPP;
5025 }
5026
5027 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5028 struct io_comp_state *cs)
5029 {
5030 return -EOPNOTSUPP;
5031 }
5032
5033 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5034 {
5035 return -EOPNOTSUPP;
5036 }
5037
5038 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5039 struct io_comp_state *cs)
5040 {
5041 return -EOPNOTSUPP;
5042 }
5043
5044 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5045 {
5046 return -EOPNOTSUPP;
5047 }
5048
5049 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5050 struct io_comp_state *cs)
5051 {
5052 return -EOPNOTSUPP;
5053 }
5054 #endif /* CONFIG_NET */
5055
5056 struct io_poll_table {
5057 struct poll_table_struct pt;
5058 struct io_kiocb *req;
5059 int error;
5060 };
5061
5062 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5063 __poll_t mask, task_work_func_t func)
5064 {
5065 int ret;
5066
5067 /* for instances that support it check for an event match first: */
5068 if (mask && !(mask & poll->events))
5069 return 0;
5070
5071 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5072
5073 list_del_init(&poll->wait.entry);
5074
5075 req->result = mask;
5076 init_task_work(&req->task_work, func);
5077 percpu_ref_get(&req->ctx->refs);
5078
5079 /*
5080 * If this fails, then the task is exiting. When a task exits, the
5081 * work gets canceled, so just cancel this request as well instead
5082 * of executing it. We can't safely execute it anyway, as we may not
5083 * have the needed state needed for it anyway.
5084 */
5085 ret = io_req_task_work_add(req);
5086 if (unlikely(ret)) {
5087 struct task_struct *tsk;
5088
5089 WRITE_ONCE(poll->canceled, true);
5090 tsk = io_wq_get_task(req->ctx->io_wq);
5091 task_work_add(tsk, &req->task_work, TWA_NONE);
5092 wake_up_process(tsk);
5093 }
5094 return 1;
5095 }
5096
5097 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5098 __acquires(&req->ctx->completion_lock)
5099 {
5100 struct io_ring_ctx *ctx = req->ctx;
5101
5102 if (!req->result && !READ_ONCE(poll->canceled)) {
5103 struct poll_table_struct pt = { ._key = poll->events };
5104
5105 req->result = vfs_poll(req->file, &pt) & poll->events;
5106 }
5107
5108 spin_lock_irq(&ctx->completion_lock);
5109 if (!req->result && !READ_ONCE(poll->canceled)) {
5110 add_wait_queue(poll->head, &poll->wait);
5111 return true;
5112 }
5113
5114 return false;
5115 }
5116
5117 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5118 {
5119 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5120 if (req->opcode == IORING_OP_POLL_ADD)
5121 return req->async_data;
5122 return req->apoll->double_poll;
5123 }
5124
5125 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5126 {
5127 if (req->opcode == IORING_OP_POLL_ADD)
5128 return &req->poll;
5129 return &req->apoll->poll;
5130 }
5131
5132 static void io_poll_remove_double(struct io_kiocb *req)
5133 {
5134 struct io_poll_iocb *poll = io_poll_get_double(req);
5135
5136 lockdep_assert_held(&req->ctx->completion_lock);
5137
5138 if (poll && poll->head) {
5139 struct wait_queue_head *head = poll->head;
5140
5141 spin_lock(&head->lock);
5142 list_del_init(&poll->wait.entry);
5143 if (poll->wait.private)
5144 refcount_dec(&req->refs);
5145 poll->head = NULL;
5146 spin_unlock(&head->lock);
5147 }
5148 }
5149
5150 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5151 {
5152 struct io_ring_ctx *ctx = req->ctx;
5153
5154 io_poll_remove_double(req);
5155 req->poll.done = true;
5156 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5157 io_commit_cqring(ctx);
5158 }
5159
5160 static void io_poll_task_func(struct callback_head *cb)
5161 {
5162 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5163 struct io_ring_ctx *ctx = req->ctx;
5164 struct io_kiocb *nxt;
5165
5166 if (io_poll_rewait(req, &req->poll)) {
5167 spin_unlock_irq(&ctx->completion_lock);
5168 } else {
5169 hash_del(&req->hash_node);
5170 io_poll_complete(req, req->result, 0);
5171 spin_unlock_irq(&ctx->completion_lock);
5172
5173 nxt = io_put_req_find_next(req);
5174 io_cqring_ev_posted(ctx);
5175 if (nxt)
5176 __io_req_task_submit(nxt);
5177 }
5178
5179 percpu_ref_put(&ctx->refs);
5180 }
5181
5182 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5183 int sync, void *key)
5184 {
5185 struct io_kiocb *req = wait->private;
5186 struct io_poll_iocb *poll = io_poll_get_single(req);
5187 __poll_t mask = key_to_poll(key);
5188
5189 /* for instances that support it check for an event match first: */
5190 if (mask && !(mask & poll->events))
5191 return 0;
5192
5193 list_del_init(&wait->entry);
5194
5195 if (poll && poll->head) {
5196 bool done;
5197
5198 spin_lock(&poll->head->lock);
5199 done = list_empty(&poll->wait.entry);
5200 if (!done)
5201 list_del_init(&poll->wait.entry);
5202 /* make sure double remove sees this as being gone */
5203 wait->private = NULL;
5204 spin_unlock(&poll->head->lock);
5205 if (!done) {
5206 /* use wait func handler, so it matches the rq type */
5207 poll->wait.func(&poll->wait, mode, sync, key);
5208 }
5209 }
5210 refcount_dec(&req->refs);
5211 return 1;
5212 }
5213
5214 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5215 wait_queue_func_t wake_func)
5216 {
5217 poll->head = NULL;
5218 poll->done = false;
5219 poll->canceled = false;
5220 poll->events = events;
5221 INIT_LIST_HEAD(&poll->wait.entry);
5222 init_waitqueue_func_entry(&poll->wait, wake_func);
5223 }
5224
5225 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5226 struct wait_queue_head *head,
5227 struct io_poll_iocb **poll_ptr)
5228 {
5229 struct io_kiocb *req = pt->req;
5230
5231 /*
5232 * If poll->head is already set, it's because the file being polled
5233 * uses multiple waitqueues for poll handling (eg one for read, one
5234 * for write). Setup a separate io_poll_iocb if this happens.
5235 */
5236 if (unlikely(poll->head)) {
5237 struct io_poll_iocb *poll_one = poll;
5238
5239 /* already have a 2nd entry, fail a third attempt */
5240 if (*poll_ptr) {
5241 pt->error = -EINVAL;
5242 return;
5243 }
5244 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5245 if (!poll) {
5246 pt->error = -ENOMEM;
5247 return;
5248 }
5249 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5250 refcount_inc(&req->refs);
5251 poll->wait.private = req;
5252 *poll_ptr = poll;
5253 }
5254
5255 pt->error = 0;
5256 poll->head = head;
5257
5258 if (poll->events & EPOLLEXCLUSIVE)
5259 add_wait_queue_exclusive(head, &poll->wait);
5260 else
5261 add_wait_queue(head, &poll->wait);
5262 }
5263
5264 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5265 struct poll_table_struct *p)
5266 {
5267 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5268 struct async_poll *apoll = pt->req->apoll;
5269
5270 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5271 }
5272
5273 static void io_async_task_func(struct callback_head *cb)
5274 {
5275 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5276 struct async_poll *apoll = req->apoll;
5277 struct io_ring_ctx *ctx = req->ctx;
5278
5279 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5280
5281 if (io_poll_rewait(req, &apoll->poll)) {
5282 spin_unlock_irq(&ctx->completion_lock);
5283 percpu_ref_put(&ctx->refs);
5284 return;
5285 }
5286
5287 /* If req is still hashed, it cannot have been canceled. Don't check. */
5288 if (hash_hashed(&req->hash_node))
5289 hash_del(&req->hash_node);
5290
5291 io_poll_remove_double(req);
5292 spin_unlock_irq(&ctx->completion_lock);
5293
5294 if (!READ_ONCE(apoll->poll.canceled))
5295 __io_req_task_submit(req);
5296 else
5297 __io_req_task_cancel(req, -ECANCELED);
5298
5299 percpu_ref_put(&ctx->refs);
5300 kfree(apoll->double_poll);
5301 kfree(apoll);
5302 }
5303
5304 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5305 void *key)
5306 {
5307 struct io_kiocb *req = wait->private;
5308 struct io_poll_iocb *poll = &req->apoll->poll;
5309
5310 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5311 key_to_poll(key));
5312
5313 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5314 }
5315
5316 static void io_poll_req_insert(struct io_kiocb *req)
5317 {
5318 struct io_ring_ctx *ctx = req->ctx;
5319 struct hlist_head *list;
5320
5321 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5322 hlist_add_head(&req->hash_node, list);
5323 }
5324
5325 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5326 struct io_poll_iocb *poll,
5327 struct io_poll_table *ipt, __poll_t mask,
5328 wait_queue_func_t wake_func)
5329 __acquires(&ctx->completion_lock)
5330 {
5331 struct io_ring_ctx *ctx = req->ctx;
5332 bool cancel = false;
5333
5334 INIT_HLIST_NODE(&req->hash_node);
5335 io_init_poll_iocb(poll, mask, wake_func);
5336 poll->file = req->file;
5337 poll->wait.private = req;
5338
5339 ipt->pt._key = mask;
5340 ipt->req = req;
5341 ipt->error = -EINVAL;
5342
5343 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5344
5345 spin_lock_irq(&ctx->completion_lock);
5346 if (likely(poll->head)) {
5347 spin_lock(&poll->head->lock);
5348 if (unlikely(list_empty(&poll->wait.entry))) {
5349 if (ipt->error)
5350 cancel = true;
5351 ipt->error = 0;
5352 mask = 0;
5353 }
5354 if (mask || ipt->error)
5355 list_del_init(&poll->wait.entry);
5356 else if (cancel)
5357 WRITE_ONCE(poll->canceled, true);
5358 else if (!poll->done) /* actually waiting for an event */
5359 io_poll_req_insert(req);
5360 spin_unlock(&poll->head->lock);
5361 }
5362
5363 return mask;
5364 }
5365
5366 static bool io_arm_poll_handler(struct io_kiocb *req)
5367 {
5368 const struct io_op_def *def = &io_op_defs[req->opcode];
5369 struct io_ring_ctx *ctx = req->ctx;
5370 struct async_poll *apoll;
5371 struct io_poll_table ipt;
5372 __poll_t mask, ret;
5373 int rw;
5374
5375 if (!req->file || !file_can_poll(req->file))
5376 return false;
5377 if (req->flags & REQ_F_POLLED)
5378 return false;
5379 if (def->pollin)
5380 rw = READ;
5381 else if (def->pollout)
5382 rw = WRITE;
5383 else
5384 return false;
5385 /* if we can't nonblock try, then no point in arming a poll handler */
5386 if (!io_file_supports_async(req->file, rw))
5387 return false;
5388
5389 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5390 if (unlikely(!apoll))
5391 return false;
5392 apoll->double_poll = NULL;
5393
5394 req->flags |= REQ_F_POLLED;
5395 req->apoll = apoll;
5396
5397 mask = 0;
5398 if (def->pollin)
5399 mask |= POLLIN | POLLRDNORM;
5400 if (def->pollout)
5401 mask |= POLLOUT | POLLWRNORM;
5402
5403 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5404 if ((req->opcode == IORING_OP_RECVMSG) &&
5405 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5406 mask &= ~POLLIN;
5407
5408 mask |= POLLERR | POLLPRI;
5409
5410 ipt.pt._qproc = io_async_queue_proc;
5411
5412 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5413 io_async_wake);
5414 if (ret || ipt.error) {
5415 io_poll_remove_double(req);
5416 spin_unlock_irq(&ctx->completion_lock);
5417 kfree(apoll->double_poll);
5418 kfree(apoll);
5419 return false;
5420 }
5421 spin_unlock_irq(&ctx->completion_lock);
5422 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5423 apoll->poll.events);
5424 return true;
5425 }
5426
5427 static bool __io_poll_remove_one(struct io_kiocb *req,
5428 struct io_poll_iocb *poll)
5429 {
5430 bool do_complete = false;
5431
5432 spin_lock(&poll->head->lock);
5433 WRITE_ONCE(poll->canceled, true);
5434 if (!list_empty(&poll->wait.entry)) {
5435 list_del_init(&poll->wait.entry);
5436 do_complete = true;
5437 }
5438 spin_unlock(&poll->head->lock);
5439 hash_del(&req->hash_node);
5440 return do_complete;
5441 }
5442
5443 static bool io_poll_remove_one(struct io_kiocb *req)
5444 {
5445 bool do_complete;
5446
5447 io_poll_remove_double(req);
5448
5449 if (req->opcode == IORING_OP_POLL_ADD) {
5450 do_complete = __io_poll_remove_one(req, &req->poll);
5451 } else {
5452 struct async_poll *apoll = req->apoll;
5453
5454 /* non-poll requests have submit ref still */
5455 do_complete = __io_poll_remove_one(req, &apoll->poll);
5456 if (do_complete) {
5457 io_put_req(req);
5458 kfree(apoll->double_poll);
5459 kfree(apoll);
5460 }
5461 }
5462
5463 if (do_complete) {
5464 io_cqring_fill_event(req, -ECANCELED);
5465 io_commit_cqring(req->ctx);
5466 req_set_fail_links(req);
5467 io_put_req_deferred(req, 1);
5468 }
5469
5470 return do_complete;
5471 }
5472
5473 /*
5474 * Returns true if we found and killed one or more poll requests
5475 */
5476 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5477 struct files_struct *files)
5478 {
5479 struct hlist_node *tmp;
5480 struct io_kiocb *req;
5481 int posted = 0, i;
5482
5483 spin_lock_irq(&ctx->completion_lock);
5484 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5485 struct hlist_head *list;
5486
5487 list = &ctx->cancel_hash[i];
5488 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5489 if (io_match_task(req, tsk, files))
5490 posted += io_poll_remove_one(req);
5491 }
5492 }
5493 spin_unlock_irq(&ctx->completion_lock);
5494
5495 if (posted)
5496 io_cqring_ev_posted(ctx);
5497
5498 return posted != 0;
5499 }
5500
5501 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5502 {
5503 struct hlist_head *list;
5504 struct io_kiocb *req;
5505
5506 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5507 hlist_for_each_entry(req, list, hash_node) {
5508 if (sqe_addr != req->user_data)
5509 continue;
5510 if (io_poll_remove_one(req))
5511 return 0;
5512 return -EALREADY;
5513 }
5514
5515 return -ENOENT;
5516 }
5517
5518 static int io_poll_remove_prep(struct io_kiocb *req,
5519 const struct io_uring_sqe *sqe)
5520 {
5521 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5522 return -EINVAL;
5523 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5524 sqe->poll_events)
5525 return -EINVAL;
5526
5527 req->poll_remove.addr = READ_ONCE(sqe->addr);
5528 return 0;
5529 }
5530
5531 /*
5532 * Find a running poll command that matches one specified in sqe->addr,
5533 * and remove it if found.
5534 */
5535 static int io_poll_remove(struct io_kiocb *req)
5536 {
5537 struct io_ring_ctx *ctx = req->ctx;
5538 int ret;
5539
5540 spin_lock_irq(&ctx->completion_lock);
5541 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5542 spin_unlock_irq(&ctx->completion_lock);
5543
5544 if (ret < 0)
5545 req_set_fail_links(req);
5546 io_req_complete(req, ret);
5547 return 0;
5548 }
5549
5550 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5551 void *key)
5552 {
5553 struct io_kiocb *req = wait->private;
5554 struct io_poll_iocb *poll = &req->poll;
5555
5556 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5557 }
5558
5559 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5560 struct poll_table_struct *p)
5561 {
5562 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5563
5564 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5565 }
5566
5567 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5568 {
5569 struct io_poll_iocb *poll = &req->poll;
5570 u32 events;
5571
5572 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5573 return -EINVAL;
5574 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5575 return -EINVAL;
5576
5577 events = READ_ONCE(sqe->poll32_events);
5578 #ifdef __BIG_ENDIAN
5579 events = swahw32(events);
5580 #endif
5581 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5582 (events & EPOLLEXCLUSIVE);
5583 return 0;
5584 }
5585
5586 static int io_poll_add(struct io_kiocb *req)
5587 {
5588 struct io_poll_iocb *poll = &req->poll;
5589 struct io_ring_ctx *ctx = req->ctx;
5590 struct io_poll_table ipt;
5591 __poll_t mask;
5592
5593 ipt.pt._qproc = io_poll_queue_proc;
5594
5595 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5596 io_poll_wake);
5597
5598 if (mask) { /* no async, we'd stolen it */
5599 ipt.error = 0;
5600 io_poll_complete(req, mask, 0);
5601 }
5602 spin_unlock_irq(&ctx->completion_lock);
5603
5604 if (mask) {
5605 io_cqring_ev_posted(ctx);
5606 io_put_req(req);
5607 }
5608 return ipt.error;
5609 }
5610
5611 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5612 {
5613 struct io_timeout_data *data = container_of(timer,
5614 struct io_timeout_data, timer);
5615 struct io_kiocb *req = data->req;
5616 struct io_ring_ctx *ctx = req->ctx;
5617 unsigned long flags;
5618
5619 spin_lock_irqsave(&ctx->completion_lock, flags);
5620 list_del_init(&req->timeout.list);
5621 atomic_set(&req->ctx->cq_timeouts,
5622 atomic_read(&req->ctx->cq_timeouts) + 1);
5623
5624 io_cqring_fill_event(req, -ETIME);
5625 io_commit_cqring(ctx);
5626 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5627
5628 io_cqring_ev_posted(ctx);
5629 req_set_fail_links(req);
5630 io_put_req(req);
5631 return HRTIMER_NORESTART;
5632 }
5633
5634 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5635 __u64 user_data)
5636 {
5637 struct io_timeout_data *io;
5638 struct io_kiocb *req;
5639 int ret = -ENOENT;
5640
5641 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5642 if (user_data == req->user_data) {
5643 ret = 0;
5644 break;
5645 }
5646 }
5647
5648 if (ret == -ENOENT)
5649 return ERR_PTR(ret);
5650
5651 io = req->async_data;
5652 ret = hrtimer_try_to_cancel(&io->timer);
5653 if (ret == -1)
5654 return ERR_PTR(-EALREADY);
5655 list_del_init(&req->timeout.list);
5656 return req;
5657 }
5658
5659 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5660 {
5661 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5662
5663 if (IS_ERR(req))
5664 return PTR_ERR(req);
5665
5666 req_set_fail_links(req);
5667 io_cqring_fill_event(req, -ECANCELED);
5668 io_put_req_deferred(req, 1);
5669 return 0;
5670 }
5671
5672 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5673 struct timespec64 *ts, enum hrtimer_mode mode)
5674 {
5675 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5676 struct io_timeout_data *data;
5677
5678 if (IS_ERR(req))
5679 return PTR_ERR(req);
5680
5681 req->timeout.off = 0; /* noseq */
5682 data = req->async_data;
5683 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5684 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5685 data->timer.function = io_timeout_fn;
5686 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5687 return 0;
5688 }
5689
5690 static int io_timeout_remove_prep(struct io_kiocb *req,
5691 const struct io_uring_sqe *sqe)
5692 {
5693 struct io_timeout_rem *tr = &req->timeout_rem;
5694
5695 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5696 return -EINVAL;
5697 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5698 return -EINVAL;
5699 if (sqe->ioprio || sqe->buf_index || sqe->len)
5700 return -EINVAL;
5701
5702 tr->addr = READ_ONCE(sqe->addr);
5703 tr->flags = READ_ONCE(sqe->timeout_flags);
5704 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5705 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5706 return -EINVAL;
5707 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5708 return -EFAULT;
5709 } else if (tr->flags) {
5710 /* timeout removal doesn't support flags */
5711 return -EINVAL;
5712 }
5713
5714 return 0;
5715 }
5716
5717 /*
5718 * Remove or update an existing timeout command
5719 */
5720 static int io_timeout_remove(struct io_kiocb *req)
5721 {
5722 struct io_timeout_rem *tr = &req->timeout_rem;
5723 struct io_ring_ctx *ctx = req->ctx;
5724 int ret;
5725
5726 spin_lock_irq(&ctx->completion_lock);
5727 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5728 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5729 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5730
5731 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5732 } else {
5733 ret = io_timeout_cancel(ctx, tr->addr);
5734 }
5735
5736 io_cqring_fill_event(req, ret);
5737 io_commit_cqring(ctx);
5738 spin_unlock_irq(&ctx->completion_lock);
5739 io_cqring_ev_posted(ctx);
5740 if (ret < 0)
5741 req_set_fail_links(req);
5742 io_put_req(req);
5743 return 0;
5744 }
5745
5746 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5747 bool is_timeout_link)
5748 {
5749 struct io_timeout_data *data;
5750 unsigned flags;
5751 u32 off = READ_ONCE(sqe->off);
5752
5753 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5754 return -EINVAL;
5755 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5756 return -EINVAL;
5757 if (off && is_timeout_link)
5758 return -EINVAL;
5759 flags = READ_ONCE(sqe->timeout_flags);
5760 if (flags & ~IORING_TIMEOUT_ABS)
5761 return -EINVAL;
5762
5763 req->timeout.off = off;
5764
5765 if (!req->async_data && io_alloc_async_data(req))
5766 return -ENOMEM;
5767
5768 data = req->async_data;
5769 data->req = req;
5770
5771 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5772 return -EFAULT;
5773
5774 if (flags & IORING_TIMEOUT_ABS)
5775 data->mode = HRTIMER_MODE_ABS;
5776 else
5777 data->mode = HRTIMER_MODE_REL;
5778
5779 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5780 return 0;
5781 }
5782
5783 static int io_timeout(struct io_kiocb *req)
5784 {
5785 struct io_ring_ctx *ctx = req->ctx;
5786 struct io_timeout_data *data = req->async_data;
5787 struct list_head *entry;
5788 u32 tail, off = req->timeout.off;
5789
5790 spin_lock_irq(&ctx->completion_lock);
5791
5792 /*
5793 * sqe->off holds how many events that need to occur for this
5794 * timeout event to be satisfied. If it isn't set, then this is
5795 * a pure timeout request, sequence isn't used.
5796 */
5797 if (io_is_timeout_noseq(req)) {
5798 entry = ctx->timeout_list.prev;
5799 goto add;
5800 }
5801
5802 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5803 req->timeout.target_seq = tail + off;
5804
5805 /*
5806 * Insertion sort, ensuring the first entry in the list is always
5807 * the one we need first.
5808 */
5809 list_for_each_prev(entry, &ctx->timeout_list) {
5810 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5811 timeout.list);
5812
5813 if (io_is_timeout_noseq(nxt))
5814 continue;
5815 /* nxt.seq is behind @tail, otherwise would've been completed */
5816 if (off >= nxt->timeout.target_seq - tail)
5817 break;
5818 }
5819 add:
5820 list_add(&req->timeout.list, entry);
5821 data->timer.function = io_timeout_fn;
5822 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5823 spin_unlock_irq(&ctx->completion_lock);
5824 return 0;
5825 }
5826
5827 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5828 {
5829 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5830
5831 return req->user_data == (unsigned long) data;
5832 }
5833
5834 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5835 {
5836 enum io_wq_cancel cancel_ret;
5837 int ret = 0;
5838
5839 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5840 switch (cancel_ret) {
5841 case IO_WQ_CANCEL_OK:
5842 ret = 0;
5843 break;
5844 case IO_WQ_CANCEL_RUNNING:
5845 ret = -EALREADY;
5846 break;
5847 case IO_WQ_CANCEL_NOTFOUND:
5848 ret = -ENOENT;
5849 break;
5850 }
5851
5852 return ret;
5853 }
5854
5855 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5856 struct io_kiocb *req, __u64 sqe_addr,
5857 int success_ret)
5858 {
5859 unsigned long flags;
5860 int ret;
5861
5862 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5863 if (ret != -ENOENT) {
5864 spin_lock_irqsave(&ctx->completion_lock, flags);
5865 goto done;
5866 }
5867
5868 spin_lock_irqsave(&ctx->completion_lock, flags);
5869 ret = io_timeout_cancel(ctx, sqe_addr);
5870 if (ret != -ENOENT)
5871 goto done;
5872 ret = io_poll_cancel(ctx, sqe_addr);
5873 done:
5874 if (!ret)
5875 ret = success_ret;
5876 io_cqring_fill_event(req, ret);
5877 io_commit_cqring(ctx);
5878 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5879 io_cqring_ev_posted(ctx);
5880
5881 if (ret < 0)
5882 req_set_fail_links(req);
5883 io_put_req(req);
5884 }
5885
5886 static int io_async_cancel_prep(struct io_kiocb *req,
5887 const struct io_uring_sqe *sqe)
5888 {
5889 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5890 return -EINVAL;
5891 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5892 return -EINVAL;
5893 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5894 return -EINVAL;
5895
5896 req->cancel.addr = READ_ONCE(sqe->addr);
5897 return 0;
5898 }
5899
5900 static int io_async_cancel(struct io_kiocb *req)
5901 {
5902 struct io_ring_ctx *ctx = req->ctx;
5903
5904 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5905 return 0;
5906 }
5907
5908 static int io_files_update_prep(struct io_kiocb *req,
5909 const struct io_uring_sqe *sqe)
5910 {
5911 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5912 return -EINVAL;
5913 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5914 return -EINVAL;
5915 if (sqe->ioprio || sqe->rw_flags)
5916 return -EINVAL;
5917
5918 req->files_update.offset = READ_ONCE(sqe->off);
5919 req->files_update.nr_args = READ_ONCE(sqe->len);
5920 if (!req->files_update.nr_args)
5921 return -EINVAL;
5922 req->files_update.arg = READ_ONCE(sqe->addr);
5923 return 0;
5924 }
5925
5926 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5927 struct io_comp_state *cs)
5928 {
5929 struct io_ring_ctx *ctx = req->ctx;
5930 struct io_uring_files_update up;
5931 int ret;
5932
5933 if (force_nonblock)
5934 return -EAGAIN;
5935
5936 up.offset = req->files_update.offset;
5937 up.fds = req->files_update.arg;
5938
5939 mutex_lock(&ctx->uring_lock);
5940 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5941 mutex_unlock(&ctx->uring_lock);
5942
5943 if (ret < 0)
5944 req_set_fail_links(req);
5945 __io_req_complete(req, ret, 0, cs);
5946 return 0;
5947 }
5948
5949 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5950 {
5951 switch (req->opcode) {
5952 case IORING_OP_NOP:
5953 return 0;
5954 case IORING_OP_READV:
5955 case IORING_OP_READ_FIXED:
5956 case IORING_OP_READ:
5957 return io_read_prep(req, sqe);
5958 case IORING_OP_WRITEV:
5959 case IORING_OP_WRITE_FIXED:
5960 case IORING_OP_WRITE:
5961 return io_write_prep(req, sqe);
5962 case IORING_OP_POLL_ADD:
5963 return io_poll_add_prep(req, sqe);
5964 case IORING_OP_POLL_REMOVE:
5965 return io_poll_remove_prep(req, sqe);
5966 case IORING_OP_FSYNC:
5967 return io_prep_fsync(req, sqe);
5968 case IORING_OP_SYNC_FILE_RANGE:
5969 return io_prep_sfr(req, sqe);
5970 case IORING_OP_SENDMSG:
5971 case IORING_OP_SEND:
5972 return io_sendmsg_prep(req, sqe);
5973 case IORING_OP_RECVMSG:
5974 case IORING_OP_RECV:
5975 return io_recvmsg_prep(req, sqe);
5976 case IORING_OP_CONNECT:
5977 return io_connect_prep(req, sqe);
5978 case IORING_OP_TIMEOUT:
5979 return io_timeout_prep(req, sqe, false);
5980 case IORING_OP_TIMEOUT_REMOVE:
5981 return io_timeout_remove_prep(req, sqe);
5982 case IORING_OP_ASYNC_CANCEL:
5983 return io_async_cancel_prep(req, sqe);
5984 case IORING_OP_LINK_TIMEOUT:
5985 return io_timeout_prep(req, sqe, true);
5986 case IORING_OP_ACCEPT:
5987 return io_accept_prep(req, sqe);
5988 case IORING_OP_FALLOCATE:
5989 return io_fallocate_prep(req, sqe);
5990 case IORING_OP_OPENAT:
5991 return io_openat_prep(req, sqe);
5992 case IORING_OP_CLOSE:
5993 return io_close_prep(req, sqe);
5994 case IORING_OP_FILES_UPDATE:
5995 return io_files_update_prep(req, sqe);
5996 case IORING_OP_STATX:
5997 return io_statx_prep(req, sqe);
5998 case IORING_OP_FADVISE:
5999 return io_fadvise_prep(req, sqe);
6000 case IORING_OP_MADVISE:
6001 return io_madvise_prep(req, sqe);
6002 case IORING_OP_OPENAT2:
6003 return io_openat2_prep(req, sqe);
6004 case IORING_OP_EPOLL_CTL:
6005 return io_epoll_ctl_prep(req, sqe);
6006 case IORING_OP_SPLICE:
6007 return io_splice_prep(req, sqe);
6008 case IORING_OP_PROVIDE_BUFFERS:
6009 return io_provide_buffers_prep(req, sqe);
6010 case IORING_OP_REMOVE_BUFFERS:
6011 return io_remove_buffers_prep(req, sqe);
6012 case IORING_OP_TEE:
6013 return io_tee_prep(req, sqe);
6014 case IORING_OP_SHUTDOWN:
6015 return io_shutdown_prep(req, sqe);
6016 case IORING_OP_RENAMEAT:
6017 return io_renameat_prep(req, sqe);
6018 case IORING_OP_UNLINKAT:
6019 return io_unlinkat_prep(req, sqe);
6020 }
6021
6022 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6023 req->opcode);
6024 return-EINVAL;
6025 }
6026
6027 static int io_req_defer_prep(struct io_kiocb *req,
6028 const struct io_uring_sqe *sqe)
6029 {
6030 if (!sqe)
6031 return 0;
6032 if (io_alloc_async_data(req))
6033 return -EAGAIN;
6034 return io_req_prep(req, sqe);
6035 }
6036
6037 static u32 io_get_sequence(struct io_kiocb *req)
6038 {
6039 struct io_kiocb *pos;
6040 struct io_ring_ctx *ctx = req->ctx;
6041 u32 total_submitted, nr_reqs = 0;
6042
6043 io_for_each_link(pos, req)
6044 nr_reqs++;
6045
6046 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6047 return total_submitted - nr_reqs;
6048 }
6049
6050 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6051 {
6052 struct io_ring_ctx *ctx = req->ctx;
6053 struct io_defer_entry *de;
6054 int ret;
6055 u32 seq;
6056
6057 /* Still need defer if there is pending req in defer list. */
6058 if (likely(list_empty_careful(&ctx->defer_list) &&
6059 !(req->flags & REQ_F_IO_DRAIN)))
6060 return 0;
6061
6062 seq = io_get_sequence(req);
6063 /* Still a chance to pass the sequence check */
6064 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6065 return 0;
6066
6067 if (!req->async_data) {
6068 ret = io_req_defer_prep(req, sqe);
6069 if (ret)
6070 return ret;
6071 }
6072 io_prep_async_link(req);
6073 de = kmalloc(sizeof(*de), GFP_KERNEL);
6074 if (!de)
6075 return -ENOMEM;
6076
6077 spin_lock_irq(&ctx->completion_lock);
6078 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6079 spin_unlock_irq(&ctx->completion_lock);
6080 kfree(de);
6081 io_queue_async_work(req);
6082 return -EIOCBQUEUED;
6083 }
6084
6085 trace_io_uring_defer(ctx, req, req->user_data);
6086 de->req = req;
6087 de->seq = seq;
6088 list_add_tail(&de->list, &ctx->defer_list);
6089 spin_unlock_irq(&ctx->completion_lock);
6090 return -EIOCBQUEUED;
6091 }
6092
6093 static void io_req_drop_files(struct io_kiocb *req)
6094 {
6095 struct io_ring_ctx *ctx = req->ctx;
6096 struct io_uring_task *tctx = req->task->io_uring;
6097 unsigned long flags;
6098
6099 put_files_struct(req->work.identity->files);
6100 put_nsproxy(req->work.identity->nsproxy);
6101 spin_lock_irqsave(&ctx->inflight_lock, flags);
6102 list_del(&req->inflight_entry);
6103 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6104 req->flags &= ~REQ_F_INFLIGHT;
6105 req->work.flags &= ~IO_WQ_WORK_FILES;
6106 if (atomic_read(&tctx->in_idle))
6107 wake_up(&tctx->wait);
6108 }
6109
6110 static void __io_clean_op(struct io_kiocb *req)
6111 {
6112 if (req->flags & REQ_F_BUFFER_SELECTED) {
6113 switch (req->opcode) {
6114 case IORING_OP_READV:
6115 case IORING_OP_READ_FIXED:
6116 case IORING_OP_READ:
6117 kfree((void *)(unsigned long)req->rw.addr);
6118 break;
6119 case IORING_OP_RECVMSG:
6120 case IORING_OP_RECV:
6121 kfree(req->sr_msg.kbuf);
6122 break;
6123 }
6124 req->flags &= ~REQ_F_BUFFER_SELECTED;
6125 }
6126
6127 if (req->flags & REQ_F_NEED_CLEANUP) {
6128 switch (req->opcode) {
6129 case IORING_OP_READV:
6130 case IORING_OP_READ_FIXED:
6131 case IORING_OP_READ:
6132 case IORING_OP_WRITEV:
6133 case IORING_OP_WRITE_FIXED:
6134 case IORING_OP_WRITE: {
6135 struct io_async_rw *io = req->async_data;
6136 if (io->free_iovec)
6137 kfree(io->free_iovec);
6138 break;
6139 }
6140 case IORING_OP_RECVMSG:
6141 case IORING_OP_SENDMSG: {
6142 struct io_async_msghdr *io = req->async_data;
6143 if (io->iov != io->fast_iov)
6144 kfree(io->iov);
6145 break;
6146 }
6147 case IORING_OP_SPLICE:
6148 case IORING_OP_TEE:
6149 io_put_file(req, req->splice.file_in,
6150 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6151 break;
6152 case IORING_OP_OPENAT:
6153 case IORING_OP_OPENAT2:
6154 if (req->open.filename)
6155 putname(req->open.filename);
6156 break;
6157 case IORING_OP_RENAMEAT:
6158 putname(req->rename.oldpath);
6159 putname(req->rename.newpath);
6160 break;
6161 case IORING_OP_UNLINKAT:
6162 putname(req->unlink.filename);
6163 break;
6164 }
6165 req->flags &= ~REQ_F_NEED_CLEANUP;
6166 }
6167
6168 if (req->flags & REQ_F_INFLIGHT)
6169 io_req_drop_files(req);
6170 }
6171
6172 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6173 struct io_comp_state *cs)
6174 {
6175 struct io_ring_ctx *ctx = req->ctx;
6176 int ret;
6177
6178 switch (req->opcode) {
6179 case IORING_OP_NOP:
6180 ret = io_nop(req, cs);
6181 break;
6182 case IORING_OP_READV:
6183 case IORING_OP_READ_FIXED:
6184 case IORING_OP_READ:
6185 ret = io_read(req, force_nonblock, cs);
6186 break;
6187 case IORING_OP_WRITEV:
6188 case IORING_OP_WRITE_FIXED:
6189 case IORING_OP_WRITE:
6190 ret = io_write(req, force_nonblock, cs);
6191 break;
6192 case IORING_OP_FSYNC:
6193 ret = io_fsync(req, force_nonblock);
6194 break;
6195 case IORING_OP_POLL_ADD:
6196 ret = io_poll_add(req);
6197 break;
6198 case IORING_OP_POLL_REMOVE:
6199 ret = io_poll_remove(req);
6200 break;
6201 case IORING_OP_SYNC_FILE_RANGE:
6202 ret = io_sync_file_range(req, force_nonblock);
6203 break;
6204 case IORING_OP_SENDMSG:
6205 ret = io_sendmsg(req, force_nonblock, cs);
6206 break;
6207 case IORING_OP_SEND:
6208 ret = io_send(req, force_nonblock, cs);
6209 break;
6210 case IORING_OP_RECVMSG:
6211 ret = io_recvmsg(req, force_nonblock, cs);
6212 break;
6213 case IORING_OP_RECV:
6214 ret = io_recv(req, force_nonblock, cs);
6215 break;
6216 case IORING_OP_TIMEOUT:
6217 ret = io_timeout(req);
6218 break;
6219 case IORING_OP_TIMEOUT_REMOVE:
6220 ret = io_timeout_remove(req);
6221 break;
6222 case IORING_OP_ACCEPT:
6223 ret = io_accept(req, force_nonblock, cs);
6224 break;
6225 case IORING_OP_CONNECT:
6226 ret = io_connect(req, force_nonblock, cs);
6227 break;
6228 case IORING_OP_ASYNC_CANCEL:
6229 ret = io_async_cancel(req);
6230 break;
6231 case IORING_OP_FALLOCATE:
6232 ret = io_fallocate(req, force_nonblock);
6233 break;
6234 case IORING_OP_OPENAT:
6235 ret = io_openat(req, force_nonblock);
6236 break;
6237 case IORING_OP_CLOSE:
6238 ret = io_close(req, force_nonblock, cs);
6239 break;
6240 case IORING_OP_FILES_UPDATE:
6241 ret = io_files_update(req, force_nonblock, cs);
6242 break;
6243 case IORING_OP_STATX:
6244 ret = io_statx(req, force_nonblock);
6245 break;
6246 case IORING_OP_FADVISE:
6247 ret = io_fadvise(req, force_nonblock);
6248 break;
6249 case IORING_OP_MADVISE:
6250 ret = io_madvise(req, force_nonblock);
6251 break;
6252 case IORING_OP_OPENAT2:
6253 ret = io_openat2(req, force_nonblock);
6254 break;
6255 case IORING_OP_EPOLL_CTL:
6256 ret = io_epoll_ctl(req, force_nonblock, cs);
6257 break;
6258 case IORING_OP_SPLICE:
6259 ret = io_splice(req, force_nonblock);
6260 break;
6261 case IORING_OP_PROVIDE_BUFFERS:
6262 ret = io_provide_buffers(req, force_nonblock, cs);
6263 break;
6264 case IORING_OP_REMOVE_BUFFERS:
6265 ret = io_remove_buffers(req, force_nonblock, cs);
6266 break;
6267 case IORING_OP_TEE:
6268 ret = io_tee(req, force_nonblock);
6269 break;
6270 case IORING_OP_SHUTDOWN:
6271 ret = io_shutdown(req, force_nonblock);
6272 break;
6273 case IORING_OP_RENAMEAT:
6274 ret = io_renameat(req, force_nonblock);
6275 break;
6276 case IORING_OP_UNLINKAT:
6277 ret = io_unlinkat(req, force_nonblock);
6278 break;
6279 default:
6280 ret = -EINVAL;
6281 break;
6282 }
6283
6284 if (ret)
6285 return ret;
6286
6287 /* If the op doesn't have a file, we're not polling for it */
6288 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6289 const bool in_async = io_wq_current_is_worker();
6290
6291 /* workqueue context doesn't hold uring_lock, grab it now */
6292 if (in_async)
6293 mutex_lock(&ctx->uring_lock);
6294
6295 io_iopoll_req_issued(req, in_async);
6296
6297 if (in_async)
6298 mutex_unlock(&ctx->uring_lock);
6299 }
6300
6301 return 0;
6302 }
6303
6304 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6305 {
6306 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6307 struct io_kiocb *timeout;
6308 int ret = 0;
6309
6310 timeout = io_prep_linked_timeout(req);
6311 if (timeout)
6312 io_queue_linked_timeout(timeout);
6313
6314 /* if NO_CANCEL is set, we must still run the work */
6315 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6316 IO_WQ_WORK_CANCEL) {
6317 ret = -ECANCELED;
6318 }
6319
6320 if (!ret) {
6321 do {
6322 ret = io_issue_sqe(req, false, NULL);
6323 /*
6324 * We can get EAGAIN for polled IO even though we're
6325 * forcing a sync submission from here, since we can't
6326 * wait for request slots on the block side.
6327 */
6328 if (ret != -EAGAIN)
6329 break;
6330 cond_resched();
6331 } while (1);
6332 }
6333
6334 if (ret) {
6335 /*
6336 * io_iopoll_complete() does not hold completion_lock to complete
6337 * polled io, so here for polled io, just mark it done and still let
6338 * io_iopoll_complete() complete it.
6339 */
6340 if (req->ctx->flags & IORING_SETUP_IOPOLL) {
6341 struct kiocb *kiocb = &req->rw.kiocb;
6342
6343 kiocb_done(kiocb, ret, NULL);
6344 } else {
6345 req_set_fail_links(req);
6346 io_req_complete(req, ret);
6347 }
6348 }
6349
6350 return io_steal_work(req);
6351 }
6352
6353 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6354 int index)
6355 {
6356 struct fixed_file_table *table;
6357
6358 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6359 return table->files[index & IORING_FILE_TABLE_MASK];
6360 }
6361
6362 static struct file *io_file_get(struct io_submit_state *state,
6363 struct io_kiocb *req, int fd, bool fixed)
6364 {
6365 struct io_ring_ctx *ctx = req->ctx;
6366 struct file *file;
6367
6368 if (fixed) {
6369 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6370 return NULL;
6371 fd = array_index_nospec(fd, ctx->nr_user_files);
6372 file = io_file_from_index(ctx, fd);
6373 io_set_resource_node(req);
6374 } else {
6375 trace_io_uring_file_get(ctx, fd);
6376 file = __io_file_get(state, fd);
6377 }
6378
6379 return file;
6380 }
6381
6382 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6383 {
6384 struct io_timeout_data *data = container_of(timer,
6385 struct io_timeout_data, timer);
6386 struct io_kiocb *prev, *req = data->req;
6387 struct io_ring_ctx *ctx = req->ctx;
6388 unsigned long flags;
6389
6390 spin_lock_irqsave(&ctx->completion_lock, flags);
6391 prev = req->timeout.head;
6392 req->timeout.head = NULL;
6393
6394 /*
6395 * We don't expect the list to be empty, that will only happen if we
6396 * race with the completion of the linked work.
6397 */
6398 if (prev && refcount_inc_not_zero(&prev->refs))
6399 io_remove_next_linked(prev);
6400 else
6401 prev = NULL;
6402 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6403
6404 if (prev) {
6405 req_set_fail_links(prev);
6406 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6407 io_put_req(prev);
6408 } else {
6409 io_req_complete(req, -ETIME);
6410 }
6411 return HRTIMER_NORESTART;
6412 }
6413
6414 static void __io_queue_linked_timeout(struct io_kiocb *req)
6415 {
6416 /*
6417 * If the back reference is NULL, then our linked request finished
6418 * before we got a chance to setup the timer
6419 */
6420 if (req->timeout.head) {
6421 struct io_timeout_data *data = req->async_data;
6422
6423 data->timer.function = io_link_timeout_fn;
6424 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6425 data->mode);
6426 }
6427 }
6428
6429 static void io_queue_linked_timeout(struct io_kiocb *req)
6430 {
6431 struct io_ring_ctx *ctx = req->ctx;
6432
6433 spin_lock_irq(&ctx->completion_lock);
6434 __io_queue_linked_timeout(req);
6435 spin_unlock_irq(&ctx->completion_lock);
6436
6437 /* drop submission reference */
6438 io_put_req(req);
6439 }
6440
6441 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6442 {
6443 struct io_kiocb *nxt = req->link;
6444
6445 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6446 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6447 return NULL;
6448
6449 nxt->timeout.head = req;
6450 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6451 req->flags |= REQ_F_LINK_TIMEOUT;
6452 return nxt;
6453 }
6454
6455 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6456 {
6457 struct io_kiocb *linked_timeout;
6458 const struct cred *old_creds = NULL;
6459 int ret;
6460
6461 again:
6462 linked_timeout = io_prep_linked_timeout(req);
6463
6464 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6465 (req->work.flags & IO_WQ_WORK_CREDS) &&
6466 req->work.identity->creds != current_cred()) {
6467 if (old_creds)
6468 revert_creds(old_creds);
6469 if (old_creds == req->work.identity->creds)
6470 old_creds = NULL; /* restored original creds */
6471 else
6472 old_creds = override_creds(req->work.identity->creds);
6473 }
6474
6475 ret = io_issue_sqe(req, true, cs);
6476
6477 /*
6478 * We async punt it if the file wasn't marked NOWAIT, or if the file
6479 * doesn't support non-blocking read/write attempts
6480 */
6481 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6482 if (!io_arm_poll_handler(req)) {
6483 /*
6484 * Queued up for async execution, worker will release
6485 * submit reference when the iocb is actually submitted.
6486 */
6487 io_queue_async_work(req);
6488 }
6489
6490 if (linked_timeout)
6491 io_queue_linked_timeout(linked_timeout);
6492 } else if (likely(!ret)) {
6493 /* drop submission reference */
6494 req = io_put_req_find_next(req);
6495 if (linked_timeout)
6496 io_queue_linked_timeout(linked_timeout);
6497
6498 if (req) {
6499 if (!(req->flags & REQ_F_FORCE_ASYNC))
6500 goto again;
6501 io_queue_async_work(req);
6502 }
6503 } else {
6504 /* un-prep timeout, so it'll be killed as any other linked */
6505 req->flags &= ~REQ_F_LINK_TIMEOUT;
6506 req_set_fail_links(req);
6507 io_put_req(req);
6508 io_req_complete(req, ret);
6509 }
6510
6511 if (old_creds)
6512 revert_creds(old_creds);
6513 }
6514
6515 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6516 struct io_comp_state *cs)
6517 {
6518 int ret;
6519
6520 ret = io_req_defer(req, sqe);
6521 if (ret) {
6522 if (ret != -EIOCBQUEUED) {
6523 fail_req:
6524 req_set_fail_links(req);
6525 io_put_req(req);
6526 io_req_complete(req, ret);
6527 }
6528 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6529 if (!req->async_data) {
6530 ret = io_req_defer_prep(req, sqe);
6531 if (unlikely(ret))
6532 goto fail_req;
6533 }
6534 io_queue_async_work(req);
6535 } else {
6536 if (sqe) {
6537 ret = io_req_prep(req, sqe);
6538 if (unlikely(ret))
6539 goto fail_req;
6540 }
6541 __io_queue_sqe(req, cs);
6542 }
6543 }
6544
6545 static inline void io_queue_link_head(struct io_kiocb *req,
6546 struct io_comp_state *cs)
6547 {
6548 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6549 io_put_req(req);
6550 io_req_complete(req, -ECANCELED);
6551 } else
6552 io_queue_sqe(req, NULL, cs);
6553 }
6554
6555 struct io_submit_link {
6556 struct io_kiocb *head;
6557 struct io_kiocb *last;
6558 };
6559
6560 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6561 struct io_submit_link *link, struct io_comp_state *cs)
6562 {
6563 struct io_ring_ctx *ctx = req->ctx;
6564 int ret;
6565
6566 /*
6567 * If we already have a head request, queue this one for async
6568 * submittal once the head completes. If we don't have a head but
6569 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6570 * submitted sync once the chain is complete. If none of those
6571 * conditions are true (normal request), then just queue it.
6572 */
6573 if (link->head) {
6574 struct io_kiocb *head = link->head;
6575
6576 /*
6577 * Taking sequential execution of a link, draining both sides
6578 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6579 * requests in the link. So, it drains the head and the
6580 * next after the link request. The last one is done via
6581 * drain_next flag to persist the effect across calls.
6582 */
6583 if (req->flags & REQ_F_IO_DRAIN) {
6584 head->flags |= REQ_F_IO_DRAIN;
6585 ctx->drain_next = 1;
6586 }
6587 ret = io_req_defer_prep(req, sqe);
6588 if (unlikely(ret)) {
6589 /* fail even hard links since we don't submit */
6590 head->flags |= REQ_F_FAIL_LINK;
6591 return ret;
6592 }
6593 trace_io_uring_link(ctx, req, head);
6594 link->last->link = req;
6595 link->last = req;
6596
6597 /* last request of a link, enqueue the link */
6598 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6599 io_queue_link_head(head, cs);
6600 link->head = NULL;
6601 }
6602 } else {
6603 if (unlikely(ctx->drain_next)) {
6604 req->flags |= REQ_F_IO_DRAIN;
6605 ctx->drain_next = 0;
6606 }
6607 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6608 ret = io_req_defer_prep(req, sqe);
6609 if (unlikely(ret))
6610 req->flags |= REQ_F_FAIL_LINK;
6611 link->head = req;
6612 link->last = req;
6613 } else {
6614 io_queue_sqe(req, sqe, cs);
6615 }
6616 }
6617
6618 return 0;
6619 }
6620
6621 /*
6622 * Batched submission is done, ensure local IO is flushed out.
6623 */
6624 static void io_submit_state_end(struct io_submit_state *state)
6625 {
6626 if (!list_empty(&state->comp.list))
6627 io_submit_flush_completions(&state->comp);
6628 if (state->plug_started)
6629 blk_finish_plug(&state->plug);
6630 io_state_file_put(state);
6631 if (state->free_reqs)
6632 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6633 }
6634
6635 /*
6636 * Start submission side cache.
6637 */
6638 static void io_submit_state_start(struct io_submit_state *state,
6639 struct io_ring_ctx *ctx, unsigned int max_ios)
6640 {
6641 state->plug_started = false;
6642 state->comp.nr = 0;
6643 INIT_LIST_HEAD(&state->comp.list);
6644 state->comp.ctx = ctx;
6645 state->free_reqs = 0;
6646 state->file_refs = 0;
6647 state->ios_left = max_ios;
6648 }
6649
6650 static void io_commit_sqring(struct io_ring_ctx *ctx)
6651 {
6652 struct io_rings *rings = ctx->rings;
6653
6654 /*
6655 * Ensure any loads from the SQEs are done at this point,
6656 * since once we write the new head, the application could
6657 * write new data to them.
6658 */
6659 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6660 }
6661
6662 /*
6663 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6664 * that is mapped by userspace. This means that care needs to be taken to
6665 * ensure that reads are stable, as we cannot rely on userspace always
6666 * being a good citizen. If members of the sqe are validated and then later
6667 * used, it's important that those reads are done through READ_ONCE() to
6668 * prevent a re-load down the line.
6669 */
6670 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6671 {
6672 u32 *sq_array = ctx->sq_array;
6673 unsigned head;
6674
6675 /*
6676 * The cached sq head (or cq tail) serves two purposes:
6677 *
6678 * 1) allows us to batch the cost of updating the user visible
6679 * head updates.
6680 * 2) allows the kernel side to track the head on its own, even
6681 * though the application is the one updating it.
6682 */
6683 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6684 if (likely(head < ctx->sq_entries))
6685 return &ctx->sq_sqes[head];
6686
6687 /* drop invalid entries */
6688 ctx->cached_sq_dropped++;
6689 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6690 return NULL;
6691 }
6692
6693 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6694 {
6695 ctx->cached_sq_head++;
6696 }
6697
6698 /*
6699 * Check SQE restrictions (opcode and flags).
6700 *
6701 * Returns 'true' if SQE is allowed, 'false' otherwise.
6702 */
6703 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6704 struct io_kiocb *req,
6705 unsigned int sqe_flags)
6706 {
6707 if (!ctx->restricted)
6708 return true;
6709
6710 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6711 return false;
6712
6713 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6714 ctx->restrictions.sqe_flags_required)
6715 return false;
6716
6717 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6718 ctx->restrictions.sqe_flags_required))
6719 return false;
6720
6721 return true;
6722 }
6723
6724 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6725 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6726 IOSQE_BUFFER_SELECT)
6727
6728 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6729 const struct io_uring_sqe *sqe,
6730 struct io_submit_state *state)
6731 {
6732 unsigned int sqe_flags;
6733 int id, ret;
6734
6735 req->opcode = READ_ONCE(sqe->opcode);
6736 req->user_data = READ_ONCE(sqe->user_data);
6737 req->async_data = NULL;
6738 req->file = NULL;
6739 req->ctx = ctx;
6740 req->flags = 0;
6741 req->link = NULL;
6742 req->fixed_file_refs = NULL;
6743 /* one is dropped after submission, the other at completion */
6744 refcount_set(&req->refs, 2);
6745 req->task = current;
6746 req->result = 0;
6747
6748 if (unlikely(req->opcode >= IORING_OP_LAST))
6749 return -EINVAL;
6750
6751 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6752 return -EFAULT;
6753
6754 sqe_flags = READ_ONCE(sqe->flags);
6755 /* enforce forwards compatibility on users */
6756 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6757 return -EINVAL;
6758
6759 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6760 return -EACCES;
6761
6762 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6763 !io_op_defs[req->opcode].buffer_select)
6764 return -EOPNOTSUPP;
6765
6766 id = READ_ONCE(sqe->personality);
6767 if (id) {
6768 struct io_identity *iod;
6769
6770 iod = idr_find(&ctx->personality_idr, id);
6771 if (unlikely(!iod))
6772 return -EINVAL;
6773 refcount_inc(&iod->count);
6774
6775 __io_req_init_async(req);
6776 get_cred(iod->creds);
6777 req->work.identity = iod;
6778 req->work.flags |= IO_WQ_WORK_CREDS;
6779 }
6780
6781 /* same numerical values with corresponding REQ_F_*, safe to copy */
6782 req->flags |= sqe_flags;
6783
6784 /*
6785 * Plug now if we have more than 1 IO left after this, and the target
6786 * is potentially a read/write to block based storage.
6787 */
6788 if (!state->plug_started && state->ios_left > 1 &&
6789 io_op_defs[req->opcode].plug) {
6790 blk_start_plug(&state->plug);
6791 state->plug_started = true;
6792 }
6793
6794 ret = 0;
6795 if (io_op_defs[req->opcode].needs_file) {
6796 bool fixed = req->flags & REQ_F_FIXED_FILE;
6797
6798 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6799 if (unlikely(!req->file &&
6800 !io_op_defs[req->opcode].needs_file_no_error))
6801 ret = -EBADF;
6802 }
6803
6804 state->ios_left--;
6805 return ret;
6806 }
6807
6808 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6809 {
6810 struct io_submit_state state;
6811 struct io_submit_link link;
6812 int i, submitted = 0;
6813
6814 /* if we have a backlog and couldn't flush it all, return BUSY */
6815 if (test_bit(0, &ctx->sq_check_overflow)) {
6816 if (!io_cqring_overflow_flush(ctx, false, NULL, NULL))
6817 return -EBUSY;
6818 }
6819
6820 /* make sure SQ entry isn't read before tail */
6821 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6822
6823 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6824 return -EAGAIN;
6825
6826 percpu_counter_add(&current->io_uring->inflight, nr);
6827 refcount_add(nr, &current->usage);
6828
6829 io_submit_state_start(&state, ctx, nr);
6830 link.head = NULL;
6831
6832 for (i = 0; i < nr; i++) {
6833 const struct io_uring_sqe *sqe;
6834 struct io_kiocb *req;
6835 int err;
6836
6837 sqe = io_get_sqe(ctx);
6838 if (unlikely(!sqe)) {
6839 io_consume_sqe(ctx);
6840 break;
6841 }
6842 req = io_alloc_req(ctx, &state);
6843 if (unlikely(!req)) {
6844 if (!submitted)
6845 submitted = -EAGAIN;
6846 break;
6847 }
6848 io_consume_sqe(ctx);
6849 /* will complete beyond this point, count as submitted */
6850 submitted++;
6851
6852 err = io_init_req(ctx, req, sqe, &state);
6853 if (unlikely(err)) {
6854 fail_req:
6855 io_put_req(req);
6856 io_req_complete(req, err);
6857 break;
6858 }
6859
6860 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6861 true, io_async_submit(ctx));
6862 err = io_submit_sqe(req, sqe, &link, &state.comp);
6863 if (err)
6864 goto fail_req;
6865 }
6866
6867 if (unlikely(submitted != nr)) {
6868 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6869 struct io_uring_task *tctx = current->io_uring;
6870 int unused = nr - ref_used;
6871
6872 percpu_ref_put_many(&ctx->refs, unused);
6873 percpu_counter_sub(&tctx->inflight, unused);
6874 put_task_struct_many(current, unused);
6875 }
6876 if (link.head)
6877 io_queue_link_head(link.head, &state.comp);
6878 io_submit_state_end(&state);
6879
6880 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6881 io_commit_sqring(ctx);
6882
6883 return submitted;
6884 }
6885
6886 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6887 {
6888 /* Tell userspace we may need a wakeup call */
6889 spin_lock_irq(&ctx->completion_lock);
6890 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6891 spin_unlock_irq(&ctx->completion_lock);
6892 }
6893
6894 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6895 {
6896 spin_lock_irq(&ctx->completion_lock);
6897 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6898 spin_unlock_irq(&ctx->completion_lock);
6899 }
6900
6901 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6902 {
6903 unsigned int to_submit;
6904 int ret = 0;
6905
6906 to_submit = io_sqring_entries(ctx);
6907 /* if we're handling multiple rings, cap submit size for fairness */
6908 if (cap_entries && to_submit > 8)
6909 to_submit = 8;
6910
6911 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6912 unsigned nr_events = 0;
6913
6914 mutex_lock(&ctx->uring_lock);
6915 if (!list_empty(&ctx->iopoll_list))
6916 io_do_iopoll(ctx, &nr_events, 0);
6917
6918 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6919 ret = io_submit_sqes(ctx, to_submit);
6920 mutex_unlock(&ctx->uring_lock);
6921 }
6922
6923 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6924 wake_up(&ctx->sqo_sq_wait);
6925
6926 return ret;
6927 }
6928
6929 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6930 {
6931 struct io_ring_ctx *ctx;
6932 unsigned sq_thread_idle = 0;
6933
6934 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6935 if (sq_thread_idle < ctx->sq_thread_idle)
6936 sq_thread_idle = ctx->sq_thread_idle;
6937 }
6938
6939 sqd->sq_thread_idle = sq_thread_idle;
6940 }
6941
6942 static void io_sqd_init_new(struct io_sq_data *sqd)
6943 {
6944 struct io_ring_ctx *ctx;
6945
6946 while (!list_empty(&sqd->ctx_new_list)) {
6947 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6948 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6949 complete(&ctx->sq_thread_comp);
6950 }
6951
6952 io_sqd_update_thread_idle(sqd);
6953 }
6954
6955 static int io_sq_thread(void *data)
6956 {
6957 struct cgroup_subsys_state *cur_css = NULL;
6958 struct files_struct *old_files = current->files;
6959 struct nsproxy *old_nsproxy = current->nsproxy;
6960 const struct cred *old_cred = NULL;
6961 struct io_sq_data *sqd = data;
6962 struct io_ring_ctx *ctx;
6963 unsigned long timeout = 0;
6964 DEFINE_WAIT(wait);
6965
6966 task_lock(current);
6967 current->files = NULL;
6968 current->nsproxy = NULL;
6969 task_unlock(current);
6970
6971 while (!kthread_should_stop()) {
6972 int ret;
6973 bool cap_entries, sqt_spin, needs_sched;
6974
6975 /*
6976 * Any changes to the sqd lists are synchronized through the
6977 * kthread parking. This synchronizes the thread vs users,
6978 * the users are synchronized on the sqd->ctx_lock.
6979 */
6980 if (kthread_should_park()) {
6981 kthread_parkme();
6982 /*
6983 * When sq thread is unparked, in case the previous park operation
6984 * comes from io_put_sq_data(), which means that sq thread is going
6985 * to be stopped, so here needs to have a check.
6986 */
6987 if (kthread_should_stop())
6988 break;
6989 }
6990
6991 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
6992 io_sqd_init_new(sqd);
6993 timeout = jiffies + sqd->sq_thread_idle;
6994 }
6995
6996 sqt_spin = false;
6997 cap_entries = !list_is_singular(&sqd->ctx_list);
6998 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6999 if (current->cred != ctx->creds) {
7000 if (old_cred)
7001 revert_creds(old_cred);
7002 old_cred = override_creds(ctx->creds);
7003 }
7004 io_sq_thread_associate_blkcg(ctx, &cur_css);
7005 #ifdef CONFIG_AUDIT
7006 current->loginuid = ctx->loginuid;
7007 current->sessionid = ctx->sessionid;
7008 #endif
7009
7010 ret = __io_sq_thread(ctx, cap_entries);
7011 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7012 sqt_spin = true;
7013
7014 io_sq_thread_drop_mm_files();
7015 }
7016
7017 if (sqt_spin || !time_after(jiffies, timeout)) {
7018 io_run_task_work();
7019 cond_resched();
7020 if (sqt_spin)
7021 timeout = jiffies + sqd->sq_thread_idle;
7022 continue;
7023 }
7024
7025 if (kthread_should_park())
7026 continue;
7027
7028 needs_sched = true;
7029 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7030 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7031 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7032 !list_empty_careful(&ctx->iopoll_list)) {
7033 needs_sched = false;
7034 break;
7035 }
7036 if (io_sqring_entries(ctx)) {
7037 needs_sched = false;
7038 break;
7039 }
7040 }
7041
7042 if (needs_sched) {
7043 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7044 io_ring_set_wakeup_flag(ctx);
7045
7046 schedule();
7047 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7048 io_ring_clear_wakeup_flag(ctx);
7049 }
7050
7051 finish_wait(&sqd->wait, &wait);
7052 timeout = jiffies + sqd->sq_thread_idle;
7053 }
7054
7055 io_run_task_work();
7056
7057 if (cur_css)
7058 io_sq_thread_unassociate_blkcg();
7059 if (old_cred)
7060 revert_creds(old_cred);
7061
7062 task_lock(current);
7063 current->files = old_files;
7064 current->nsproxy = old_nsproxy;
7065 task_unlock(current);
7066
7067 kthread_parkme();
7068
7069 return 0;
7070 }
7071
7072 struct io_wait_queue {
7073 struct wait_queue_entry wq;
7074 struct io_ring_ctx *ctx;
7075 unsigned to_wait;
7076 unsigned nr_timeouts;
7077 };
7078
7079 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
7080 {
7081 struct io_ring_ctx *ctx = iowq->ctx;
7082
7083 /*
7084 * Wake up if we have enough events, or if a timeout occurred since we
7085 * started waiting. For timeouts, we always want to return to userspace,
7086 * regardless of event count.
7087 */
7088 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
7089 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7090 }
7091
7092 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7093 int wake_flags, void *key)
7094 {
7095 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7096 wq);
7097
7098 /* use noflush == true, as we can't safely rely on locking context */
7099 if (!io_should_wake(iowq, true))
7100 return -1;
7101
7102 return autoremove_wake_function(curr, mode, wake_flags, key);
7103 }
7104
7105 static int io_run_task_work_sig(void)
7106 {
7107 if (io_run_task_work())
7108 return 1;
7109 if (!signal_pending(current))
7110 return 0;
7111 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7112 return -ERESTARTSYS;
7113 return -EINTR;
7114 }
7115
7116 /*
7117 * Wait until events become available, if we don't already have some. The
7118 * application must reap them itself, as they reside on the shared cq ring.
7119 */
7120 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7121 const sigset_t __user *sig, size_t sigsz,
7122 struct __kernel_timespec __user *uts)
7123 {
7124 struct io_wait_queue iowq = {
7125 .wq = {
7126 .private = current,
7127 .func = io_wake_function,
7128 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7129 },
7130 .ctx = ctx,
7131 .to_wait = min_events,
7132 };
7133 struct io_rings *rings = ctx->rings;
7134 struct timespec64 ts;
7135 signed long timeout = 0;
7136 int ret = 0;
7137
7138 do {
7139 if (io_cqring_events(ctx, false) >= min_events)
7140 return 0;
7141 if (!io_run_task_work())
7142 break;
7143 } while (1);
7144
7145 if (sig) {
7146 #ifdef CONFIG_COMPAT
7147 if (in_compat_syscall())
7148 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7149 sigsz);
7150 else
7151 #endif
7152 ret = set_user_sigmask(sig, sigsz);
7153
7154 if (ret)
7155 return ret;
7156 }
7157
7158 if (uts) {
7159 if (get_timespec64(&ts, uts))
7160 return -EFAULT;
7161 timeout = timespec64_to_jiffies(&ts);
7162 }
7163
7164 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7165 trace_io_uring_cqring_wait(ctx, min_events);
7166 do {
7167 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7168 TASK_INTERRUPTIBLE);
7169 /* make sure we run task_work before checking for signals */
7170 ret = io_run_task_work_sig();
7171 if (ret > 0)
7172 continue;
7173 else if (ret < 0)
7174 break;
7175 if (io_should_wake(&iowq, false))
7176 break;
7177 if (uts) {
7178 timeout = schedule_timeout(timeout);
7179 if (timeout == 0) {
7180 ret = -ETIME;
7181 break;
7182 }
7183 } else {
7184 schedule();
7185 }
7186 } while (1);
7187 finish_wait(&ctx->wait, &iowq.wq);
7188
7189 restore_saved_sigmask_unless(ret == -EINTR);
7190
7191 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7192 }
7193
7194 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7195 {
7196 #if defined(CONFIG_UNIX)
7197 if (ctx->ring_sock) {
7198 struct sock *sock = ctx->ring_sock->sk;
7199 struct sk_buff *skb;
7200
7201 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7202 kfree_skb(skb);
7203 }
7204 #else
7205 int i;
7206
7207 for (i = 0; i < ctx->nr_user_files; i++) {
7208 struct file *file;
7209
7210 file = io_file_from_index(ctx, i);
7211 if (file)
7212 fput(file);
7213 }
7214 #endif
7215 }
7216
7217 static void io_file_ref_kill(struct percpu_ref *ref)
7218 {
7219 struct fixed_file_data *data;
7220
7221 data = container_of(ref, struct fixed_file_data, refs);
7222 complete(&data->done);
7223 }
7224
7225 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7226 {
7227 struct fixed_file_data *data = ctx->file_data;
7228 struct fixed_file_ref_node *ref_node = NULL;
7229 unsigned nr_tables, i;
7230
7231 if (!data)
7232 return -ENXIO;
7233
7234 spin_lock_bh(&data->lock);
7235 ref_node = data->node;
7236 spin_unlock_bh(&data->lock);
7237 if (ref_node)
7238 percpu_ref_kill(&ref_node->refs);
7239
7240 percpu_ref_kill(&data->refs);
7241
7242 /* wait for all refs nodes to complete */
7243 flush_delayed_work(&ctx->file_put_work);
7244 wait_for_completion(&data->done);
7245
7246 __io_sqe_files_unregister(ctx);
7247 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7248 for (i = 0; i < nr_tables; i++)
7249 kfree(data->table[i].files);
7250 kfree(data->table);
7251 percpu_ref_exit(&data->refs);
7252 kfree(data);
7253 ctx->file_data = NULL;
7254 ctx->nr_user_files = 0;
7255 return 0;
7256 }
7257
7258 static void io_put_sq_data(struct io_sq_data *sqd)
7259 {
7260 if (refcount_dec_and_test(&sqd->refs)) {
7261 /*
7262 * The park is a bit of a work-around, without it we get
7263 * warning spews on shutdown with SQPOLL set and affinity
7264 * set to a single CPU.
7265 */
7266 if (sqd->thread) {
7267 kthread_park(sqd->thread);
7268 kthread_stop(sqd->thread);
7269 }
7270
7271 kfree(sqd);
7272 }
7273 }
7274
7275 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7276 {
7277 struct io_ring_ctx *ctx_attach;
7278 struct io_sq_data *sqd;
7279 struct fd f;
7280
7281 f = fdget(p->wq_fd);
7282 if (!f.file)
7283 return ERR_PTR(-ENXIO);
7284 if (f.file->f_op != &io_uring_fops) {
7285 fdput(f);
7286 return ERR_PTR(-EINVAL);
7287 }
7288
7289 ctx_attach = f.file->private_data;
7290 sqd = ctx_attach->sq_data;
7291 if (!sqd) {
7292 fdput(f);
7293 return ERR_PTR(-EINVAL);
7294 }
7295
7296 refcount_inc(&sqd->refs);
7297 fdput(f);
7298 return sqd;
7299 }
7300
7301 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7302 {
7303 struct io_sq_data *sqd;
7304
7305 if (p->flags & IORING_SETUP_ATTACH_WQ)
7306 return io_attach_sq_data(p);
7307
7308 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7309 if (!sqd)
7310 return ERR_PTR(-ENOMEM);
7311
7312 refcount_set(&sqd->refs, 1);
7313 INIT_LIST_HEAD(&sqd->ctx_list);
7314 INIT_LIST_HEAD(&sqd->ctx_new_list);
7315 mutex_init(&sqd->ctx_lock);
7316 mutex_init(&sqd->lock);
7317 init_waitqueue_head(&sqd->wait);
7318 return sqd;
7319 }
7320
7321 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7322 __releases(&sqd->lock)
7323 {
7324 if (!sqd->thread)
7325 return;
7326 kthread_unpark(sqd->thread);
7327 mutex_unlock(&sqd->lock);
7328 }
7329
7330 static void io_sq_thread_park(struct io_sq_data *sqd)
7331 __acquires(&sqd->lock)
7332 {
7333 if (!sqd->thread)
7334 return;
7335 mutex_lock(&sqd->lock);
7336 kthread_park(sqd->thread);
7337 }
7338
7339 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7340 {
7341 struct io_sq_data *sqd = ctx->sq_data;
7342
7343 if (sqd) {
7344 if (sqd->thread) {
7345 /*
7346 * We may arrive here from the error branch in
7347 * io_sq_offload_create() where the kthread is created
7348 * without being waked up, thus wake it up now to make
7349 * sure the wait will complete.
7350 */
7351 wake_up_process(sqd->thread);
7352 wait_for_completion(&ctx->sq_thread_comp);
7353
7354 io_sq_thread_park(sqd);
7355 }
7356
7357 mutex_lock(&sqd->ctx_lock);
7358 list_del(&ctx->sqd_list);
7359 io_sqd_update_thread_idle(sqd);
7360 mutex_unlock(&sqd->ctx_lock);
7361
7362 if (sqd->thread)
7363 io_sq_thread_unpark(sqd);
7364
7365 io_put_sq_data(sqd);
7366 ctx->sq_data = NULL;
7367 }
7368 }
7369
7370 static void io_finish_async(struct io_ring_ctx *ctx)
7371 {
7372 io_sq_thread_stop(ctx);
7373
7374 if (ctx->io_wq) {
7375 io_wq_destroy(ctx->io_wq);
7376 ctx->io_wq = NULL;
7377 }
7378 }
7379
7380 #if defined(CONFIG_UNIX)
7381 /*
7382 * Ensure the UNIX gc is aware of our file set, so we are certain that
7383 * the io_uring can be safely unregistered on process exit, even if we have
7384 * loops in the file referencing.
7385 */
7386 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7387 {
7388 struct sock *sk = ctx->ring_sock->sk;
7389 struct scm_fp_list *fpl;
7390 struct sk_buff *skb;
7391 int i, nr_files;
7392
7393 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7394 if (!fpl)
7395 return -ENOMEM;
7396
7397 skb = alloc_skb(0, GFP_KERNEL);
7398 if (!skb) {
7399 kfree(fpl);
7400 return -ENOMEM;
7401 }
7402
7403 skb->sk = sk;
7404
7405 nr_files = 0;
7406 fpl->user = get_uid(ctx->user);
7407 for (i = 0; i < nr; i++) {
7408 struct file *file = io_file_from_index(ctx, i + offset);
7409
7410 if (!file)
7411 continue;
7412 fpl->fp[nr_files] = get_file(file);
7413 unix_inflight(fpl->user, fpl->fp[nr_files]);
7414 nr_files++;
7415 }
7416
7417 if (nr_files) {
7418 fpl->max = SCM_MAX_FD;
7419 fpl->count = nr_files;
7420 UNIXCB(skb).fp = fpl;
7421 skb->destructor = unix_destruct_scm;
7422 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7423 skb_queue_head(&sk->sk_receive_queue, skb);
7424
7425 for (i = 0; i < nr_files; i++)
7426 fput(fpl->fp[i]);
7427 } else {
7428 kfree_skb(skb);
7429 kfree(fpl);
7430 }
7431
7432 return 0;
7433 }
7434
7435 /*
7436 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7437 * causes regular reference counting to break down. We rely on the UNIX
7438 * garbage collection to take care of this problem for us.
7439 */
7440 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7441 {
7442 unsigned left, total;
7443 int ret = 0;
7444
7445 total = 0;
7446 left = ctx->nr_user_files;
7447 while (left) {
7448 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7449
7450 ret = __io_sqe_files_scm(ctx, this_files, total);
7451 if (ret)
7452 break;
7453 left -= this_files;
7454 total += this_files;
7455 }
7456
7457 if (!ret)
7458 return 0;
7459
7460 while (total < ctx->nr_user_files) {
7461 struct file *file = io_file_from_index(ctx, total);
7462
7463 if (file)
7464 fput(file);
7465 total++;
7466 }
7467
7468 return ret;
7469 }
7470 #else
7471 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7472 {
7473 return 0;
7474 }
7475 #endif
7476
7477 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7478 unsigned nr_tables, unsigned nr_files)
7479 {
7480 int i;
7481
7482 for (i = 0; i < nr_tables; i++) {
7483 struct fixed_file_table *table = &file_data->table[i];
7484 unsigned this_files;
7485
7486 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7487 table->files = kcalloc(this_files, sizeof(struct file *),
7488 GFP_KERNEL);
7489 if (!table->files)
7490 break;
7491 nr_files -= this_files;
7492 }
7493
7494 if (i == nr_tables)
7495 return 0;
7496
7497 for (i = 0; i < nr_tables; i++) {
7498 struct fixed_file_table *table = &file_data->table[i];
7499 kfree(table->files);
7500 }
7501 return 1;
7502 }
7503
7504 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7505 {
7506 #if defined(CONFIG_UNIX)
7507 struct sock *sock = ctx->ring_sock->sk;
7508 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7509 struct sk_buff *skb;
7510 int i;
7511
7512 __skb_queue_head_init(&list);
7513
7514 /*
7515 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7516 * remove this entry and rearrange the file array.
7517 */
7518 skb = skb_dequeue(head);
7519 while (skb) {
7520 struct scm_fp_list *fp;
7521
7522 fp = UNIXCB(skb).fp;
7523 for (i = 0; i < fp->count; i++) {
7524 int left;
7525
7526 if (fp->fp[i] != file)
7527 continue;
7528
7529 unix_notinflight(fp->user, fp->fp[i]);
7530 left = fp->count - 1 - i;
7531 if (left) {
7532 memmove(&fp->fp[i], &fp->fp[i + 1],
7533 left * sizeof(struct file *));
7534 }
7535 fp->count--;
7536 if (!fp->count) {
7537 kfree_skb(skb);
7538 skb = NULL;
7539 } else {
7540 __skb_queue_tail(&list, skb);
7541 }
7542 fput(file);
7543 file = NULL;
7544 break;
7545 }
7546
7547 if (!file)
7548 break;
7549
7550 __skb_queue_tail(&list, skb);
7551
7552 skb = skb_dequeue(head);
7553 }
7554
7555 if (skb_peek(&list)) {
7556 spin_lock_irq(&head->lock);
7557 while ((skb = __skb_dequeue(&list)) != NULL)
7558 __skb_queue_tail(head, skb);
7559 spin_unlock_irq(&head->lock);
7560 }
7561 #else
7562 fput(file);
7563 #endif
7564 }
7565
7566 struct io_file_put {
7567 struct list_head list;
7568 struct file *file;
7569 };
7570
7571 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7572 {
7573 struct fixed_file_data *file_data = ref_node->file_data;
7574 struct io_ring_ctx *ctx = file_data->ctx;
7575 struct io_file_put *pfile, *tmp;
7576
7577 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7578 list_del(&pfile->list);
7579 io_ring_file_put(ctx, pfile->file);
7580 kfree(pfile);
7581 }
7582
7583 percpu_ref_exit(&ref_node->refs);
7584 kfree(ref_node);
7585 percpu_ref_put(&file_data->refs);
7586 }
7587
7588 static void io_file_put_work(struct work_struct *work)
7589 {
7590 struct io_ring_ctx *ctx;
7591 struct llist_node *node;
7592
7593 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7594 node = llist_del_all(&ctx->file_put_llist);
7595
7596 while (node) {
7597 struct fixed_file_ref_node *ref_node;
7598 struct llist_node *next = node->next;
7599
7600 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7601 __io_file_put_work(ref_node);
7602 node = next;
7603 }
7604 }
7605
7606 static void io_file_data_ref_zero(struct percpu_ref *ref)
7607 {
7608 struct fixed_file_ref_node *ref_node;
7609 struct fixed_file_data *data;
7610 struct io_ring_ctx *ctx;
7611 bool first_add = false;
7612 int delay = HZ;
7613
7614 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7615 data = ref_node->file_data;
7616 ctx = data->ctx;
7617
7618 spin_lock_bh(&data->lock);
7619 ref_node->done = true;
7620
7621 while (!list_empty(&data->ref_list)) {
7622 ref_node = list_first_entry(&data->ref_list,
7623 struct fixed_file_ref_node, node);
7624 /* recycle ref nodes in order */
7625 if (!ref_node->done)
7626 break;
7627 list_del(&ref_node->node);
7628 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7629 }
7630 spin_unlock_bh(&data->lock);
7631
7632 if (percpu_ref_is_dying(&data->refs))
7633 delay = 0;
7634
7635 if (!delay)
7636 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7637 else if (first_add)
7638 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7639 }
7640
7641 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7642 struct io_ring_ctx *ctx)
7643 {
7644 struct fixed_file_ref_node *ref_node;
7645
7646 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7647 if (!ref_node)
7648 return ERR_PTR(-ENOMEM);
7649
7650 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7651 0, GFP_KERNEL)) {
7652 kfree(ref_node);
7653 return ERR_PTR(-ENOMEM);
7654 }
7655 INIT_LIST_HEAD(&ref_node->node);
7656 INIT_LIST_HEAD(&ref_node->file_list);
7657 ref_node->file_data = ctx->file_data;
7658 ref_node->done = false;
7659 return ref_node;
7660 }
7661
7662 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7663 {
7664 percpu_ref_exit(&ref_node->refs);
7665 kfree(ref_node);
7666 }
7667
7668 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7669 unsigned nr_args)
7670 {
7671 __s32 __user *fds = (__s32 __user *) arg;
7672 unsigned nr_tables, i;
7673 struct file *file;
7674 int fd, ret = -ENOMEM;
7675 struct fixed_file_ref_node *ref_node;
7676 struct fixed_file_data *file_data;
7677
7678 if (ctx->file_data)
7679 return -EBUSY;
7680 if (!nr_args)
7681 return -EINVAL;
7682 if (nr_args > IORING_MAX_FIXED_FILES)
7683 return -EMFILE;
7684
7685 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7686 if (!file_data)
7687 return -ENOMEM;
7688 file_data->ctx = ctx;
7689 init_completion(&file_data->done);
7690 INIT_LIST_HEAD(&file_data->ref_list);
7691 spin_lock_init(&file_data->lock);
7692
7693 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7694 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7695 GFP_KERNEL);
7696 if (!file_data->table)
7697 goto out_free;
7698
7699 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7700 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7701 goto out_free;
7702
7703 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7704 goto out_ref;
7705 ctx->file_data = file_data;
7706
7707 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7708 struct fixed_file_table *table;
7709 unsigned index;
7710
7711 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7712 ret = -EFAULT;
7713 goto out_fput;
7714 }
7715 /* allow sparse sets */
7716 if (fd == -1)
7717 continue;
7718
7719 file = fget(fd);
7720 ret = -EBADF;
7721 if (!file)
7722 goto out_fput;
7723
7724 /*
7725 * Don't allow io_uring instances to be registered. If UNIX
7726 * isn't enabled, then this causes a reference cycle and this
7727 * instance can never get freed. If UNIX is enabled we'll
7728 * handle it just fine, but there's still no point in allowing
7729 * a ring fd as it doesn't support regular read/write anyway.
7730 */
7731 if (file->f_op == &io_uring_fops) {
7732 fput(file);
7733 goto out_fput;
7734 }
7735 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7736 index = i & IORING_FILE_TABLE_MASK;
7737 table->files[index] = file;
7738 }
7739
7740 ret = io_sqe_files_scm(ctx);
7741 if (ret) {
7742 io_sqe_files_unregister(ctx);
7743 return ret;
7744 }
7745
7746 ref_node = alloc_fixed_file_ref_node(ctx);
7747 if (IS_ERR(ref_node)) {
7748 io_sqe_files_unregister(ctx);
7749 return PTR_ERR(ref_node);
7750 }
7751
7752 file_data->node = ref_node;
7753 spin_lock_bh(&file_data->lock);
7754 list_add_tail(&ref_node->node, &file_data->ref_list);
7755 spin_unlock_bh(&file_data->lock);
7756 percpu_ref_get(&file_data->refs);
7757 return ret;
7758 out_fput:
7759 for (i = 0; i < ctx->nr_user_files; i++) {
7760 file = io_file_from_index(ctx, i);
7761 if (file)
7762 fput(file);
7763 }
7764 for (i = 0; i < nr_tables; i++)
7765 kfree(file_data->table[i].files);
7766 ctx->nr_user_files = 0;
7767 out_ref:
7768 percpu_ref_exit(&file_data->refs);
7769 out_free:
7770 kfree(file_data->table);
7771 kfree(file_data);
7772 ctx->file_data = NULL;
7773 return ret;
7774 }
7775
7776 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7777 int index)
7778 {
7779 #if defined(CONFIG_UNIX)
7780 struct sock *sock = ctx->ring_sock->sk;
7781 struct sk_buff_head *head = &sock->sk_receive_queue;
7782 struct sk_buff *skb;
7783
7784 /*
7785 * See if we can merge this file into an existing skb SCM_RIGHTS
7786 * file set. If there's no room, fall back to allocating a new skb
7787 * and filling it in.
7788 */
7789 spin_lock_irq(&head->lock);
7790 skb = skb_peek(head);
7791 if (skb) {
7792 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7793
7794 if (fpl->count < SCM_MAX_FD) {
7795 __skb_unlink(skb, head);
7796 spin_unlock_irq(&head->lock);
7797 fpl->fp[fpl->count] = get_file(file);
7798 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7799 fpl->count++;
7800 spin_lock_irq(&head->lock);
7801 __skb_queue_head(head, skb);
7802 } else {
7803 skb = NULL;
7804 }
7805 }
7806 spin_unlock_irq(&head->lock);
7807
7808 if (skb) {
7809 fput(file);
7810 return 0;
7811 }
7812
7813 return __io_sqe_files_scm(ctx, 1, index);
7814 #else
7815 return 0;
7816 #endif
7817 }
7818
7819 static int io_queue_file_removal(struct fixed_file_data *data,
7820 struct file *file)
7821 {
7822 struct io_file_put *pfile;
7823 struct fixed_file_ref_node *ref_node = data->node;
7824
7825 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7826 if (!pfile)
7827 return -ENOMEM;
7828
7829 pfile->file = file;
7830 list_add(&pfile->list, &ref_node->file_list);
7831
7832 return 0;
7833 }
7834
7835 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7836 struct io_uring_files_update *up,
7837 unsigned nr_args)
7838 {
7839 struct fixed_file_data *data = ctx->file_data;
7840 struct fixed_file_ref_node *ref_node;
7841 struct file *file;
7842 __s32 __user *fds;
7843 int fd, i, err;
7844 __u32 done;
7845 bool needs_switch = false;
7846
7847 if (check_add_overflow(up->offset, nr_args, &done))
7848 return -EOVERFLOW;
7849 if (done > ctx->nr_user_files)
7850 return -EINVAL;
7851
7852 ref_node = alloc_fixed_file_ref_node(ctx);
7853 if (IS_ERR(ref_node))
7854 return PTR_ERR(ref_node);
7855
7856 done = 0;
7857 fds = u64_to_user_ptr(up->fds);
7858 while (nr_args) {
7859 struct fixed_file_table *table;
7860 unsigned index;
7861
7862 err = 0;
7863 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7864 err = -EFAULT;
7865 break;
7866 }
7867 i = array_index_nospec(up->offset, ctx->nr_user_files);
7868 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7869 index = i & IORING_FILE_TABLE_MASK;
7870 if (table->files[index]) {
7871 file = table->files[index];
7872 err = io_queue_file_removal(data, file);
7873 if (err)
7874 break;
7875 table->files[index] = NULL;
7876 needs_switch = true;
7877 }
7878 if (fd != -1) {
7879 file = fget(fd);
7880 if (!file) {
7881 err = -EBADF;
7882 break;
7883 }
7884 /*
7885 * Don't allow io_uring instances to be registered. If
7886 * UNIX isn't enabled, then this causes a reference
7887 * cycle and this instance can never get freed. If UNIX
7888 * is enabled we'll handle it just fine, but there's
7889 * still no point in allowing a ring fd as it doesn't
7890 * support regular read/write anyway.
7891 */
7892 if (file->f_op == &io_uring_fops) {
7893 fput(file);
7894 err = -EBADF;
7895 break;
7896 }
7897 table->files[index] = file;
7898 err = io_sqe_file_register(ctx, file, i);
7899 if (err) {
7900 table->files[index] = NULL;
7901 fput(file);
7902 break;
7903 }
7904 }
7905 nr_args--;
7906 done++;
7907 up->offset++;
7908 }
7909
7910 if (needs_switch) {
7911 percpu_ref_kill(&data->node->refs);
7912 spin_lock_bh(&data->lock);
7913 list_add_tail(&ref_node->node, &data->ref_list);
7914 data->node = ref_node;
7915 spin_unlock_bh(&data->lock);
7916 percpu_ref_get(&ctx->file_data->refs);
7917 } else
7918 destroy_fixed_file_ref_node(ref_node);
7919
7920 return done ? done : err;
7921 }
7922
7923 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7924 unsigned nr_args)
7925 {
7926 struct io_uring_files_update up;
7927
7928 if (!ctx->file_data)
7929 return -ENXIO;
7930 if (!nr_args)
7931 return -EINVAL;
7932 if (copy_from_user(&up, arg, sizeof(up)))
7933 return -EFAULT;
7934 if (up.resv)
7935 return -EINVAL;
7936
7937 return __io_sqe_files_update(ctx, &up, nr_args);
7938 }
7939
7940 static void io_free_work(struct io_wq_work *work)
7941 {
7942 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7943
7944 /* Consider that io_steal_work() relies on this ref */
7945 io_put_req(req);
7946 }
7947
7948 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7949 struct io_uring_params *p)
7950 {
7951 struct io_wq_data data;
7952 struct fd f;
7953 struct io_ring_ctx *ctx_attach;
7954 unsigned int concurrency;
7955 int ret = 0;
7956
7957 data.user = ctx->user;
7958 data.free_work = io_free_work;
7959 data.do_work = io_wq_submit_work;
7960
7961 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7962 /* Do QD, or 4 * CPUS, whatever is smallest */
7963 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7964
7965 ctx->io_wq = io_wq_create(concurrency, &data);
7966 if (IS_ERR(ctx->io_wq)) {
7967 ret = PTR_ERR(ctx->io_wq);
7968 ctx->io_wq = NULL;
7969 }
7970 return ret;
7971 }
7972
7973 f = fdget(p->wq_fd);
7974 if (!f.file)
7975 return -EBADF;
7976
7977 if (f.file->f_op != &io_uring_fops) {
7978 ret = -EINVAL;
7979 goto out_fput;
7980 }
7981
7982 ctx_attach = f.file->private_data;
7983 /* @io_wq is protected by holding the fd */
7984 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7985 ret = -EINVAL;
7986 goto out_fput;
7987 }
7988
7989 ctx->io_wq = ctx_attach->io_wq;
7990 out_fput:
7991 fdput(f);
7992 return ret;
7993 }
7994
7995 static int io_uring_alloc_task_context(struct task_struct *task)
7996 {
7997 struct io_uring_task *tctx;
7998 int ret;
7999
8000 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8001 if (unlikely(!tctx))
8002 return -ENOMEM;
8003
8004 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8005 if (unlikely(ret)) {
8006 kfree(tctx);
8007 return ret;
8008 }
8009
8010 xa_init(&tctx->xa);
8011 init_waitqueue_head(&tctx->wait);
8012 tctx->last = NULL;
8013 atomic_set(&tctx->in_idle, 0);
8014 tctx->sqpoll = false;
8015 io_init_identity(&tctx->__identity);
8016 tctx->identity = &tctx->__identity;
8017 task->io_uring = tctx;
8018 return 0;
8019 }
8020
8021 void __io_uring_free(struct task_struct *tsk)
8022 {
8023 struct io_uring_task *tctx = tsk->io_uring;
8024
8025 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8026 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8027 if (tctx->identity != &tctx->__identity)
8028 kfree(tctx->identity);
8029 percpu_counter_destroy(&tctx->inflight);
8030 kfree(tctx);
8031 tsk->io_uring = NULL;
8032 }
8033
8034 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8035 struct io_uring_params *p)
8036 {
8037 int ret;
8038
8039 if (ctx->flags & IORING_SETUP_SQPOLL) {
8040 struct io_sq_data *sqd;
8041
8042 ret = -EPERM;
8043 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8044 goto err;
8045
8046 sqd = io_get_sq_data(p);
8047 if (IS_ERR(sqd)) {
8048 ret = PTR_ERR(sqd);
8049 goto err;
8050 }
8051
8052 ctx->sq_data = sqd;
8053 io_sq_thread_park(sqd);
8054 mutex_lock(&sqd->ctx_lock);
8055 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8056 mutex_unlock(&sqd->ctx_lock);
8057 io_sq_thread_unpark(sqd);
8058
8059 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8060 if (!ctx->sq_thread_idle)
8061 ctx->sq_thread_idle = HZ;
8062
8063 if (sqd->thread)
8064 goto done;
8065
8066 if (p->flags & IORING_SETUP_SQ_AFF) {
8067 int cpu = p->sq_thread_cpu;
8068
8069 ret = -EINVAL;
8070 if (cpu >= nr_cpu_ids)
8071 goto err;
8072 if (!cpu_online(cpu))
8073 goto err;
8074
8075 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8076 cpu, "io_uring-sq");
8077 } else {
8078 sqd->thread = kthread_create(io_sq_thread, sqd,
8079 "io_uring-sq");
8080 }
8081 if (IS_ERR(sqd->thread)) {
8082 ret = PTR_ERR(sqd->thread);
8083 sqd->thread = NULL;
8084 goto err;
8085 }
8086 ret = io_uring_alloc_task_context(sqd->thread);
8087 if (ret)
8088 goto err;
8089 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8090 /* Can't have SQ_AFF without SQPOLL */
8091 ret = -EINVAL;
8092 goto err;
8093 }
8094
8095 done:
8096 ret = io_init_wq_offload(ctx, p);
8097 if (ret)
8098 goto err;
8099
8100 return 0;
8101 err:
8102 io_finish_async(ctx);
8103 return ret;
8104 }
8105
8106 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8107 {
8108 struct io_sq_data *sqd = ctx->sq_data;
8109
8110 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8111 wake_up_process(sqd->thread);
8112 }
8113
8114 static inline void __io_unaccount_mem(struct user_struct *user,
8115 unsigned long nr_pages)
8116 {
8117 atomic_long_sub(nr_pages, &user->locked_vm);
8118 }
8119
8120 static inline int __io_account_mem(struct user_struct *user,
8121 unsigned long nr_pages)
8122 {
8123 unsigned long page_limit, cur_pages, new_pages;
8124
8125 /* Don't allow more pages than we can safely lock */
8126 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8127
8128 do {
8129 cur_pages = atomic_long_read(&user->locked_vm);
8130 new_pages = cur_pages + nr_pages;
8131 if (new_pages > page_limit)
8132 return -ENOMEM;
8133 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8134 new_pages) != cur_pages);
8135
8136 return 0;
8137 }
8138
8139 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8140 enum io_mem_account acct)
8141 {
8142 if (ctx->limit_mem)
8143 __io_unaccount_mem(ctx->user, nr_pages);
8144
8145 if (ctx->mm_account) {
8146 if (acct == ACCT_LOCKED) {
8147 mmap_write_lock(ctx->mm_account);
8148 ctx->mm_account->locked_vm -= nr_pages;
8149 mmap_write_unlock(ctx->mm_account);
8150 }else if (acct == ACCT_PINNED) {
8151 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8152 }
8153 }
8154 }
8155
8156 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8157 enum io_mem_account acct)
8158 {
8159 int ret;
8160
8161 if (ctx->limit_mem) {
8162 ret = __io_account_mem(ctx->user, nr_pages);
8163 if (ret)
8164 return ret;
8165 }
8166
8167 if (ctx->mm_account) {
8168 if (acct == ACCT_LOCKED) {
8169 mmap_write_lock(ctx->mm_account);
8170 ctx->mm_account->locked_vm += nr_pages;
8171 mmap_write_unlock(ctx->mm_account);
8172 } else if (acct == ACCT_PINNED) {
8173 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8174 }
8175 }
8176
8177 return 0;
8178 }
8179
8180 static void io_mem_free(void *ptr)
8181 {
8182 struct page *page;
8183
8184 if (!ptr)
8185 return;
8186
8187 page = virt_to_head_page(ptr);
8188 if (put_page_testzero(page))
8189 free_compound_page(page);
8190 }
8191
8192 static void *io_mem_alloc(size_t size)
8193 {
8194 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8195 __GFP_NORETRY;
8196
8197 return (void *) __get_free_pages(gfp_flags, get_order(size));
8198 }
8199
8200 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8201 size_t *sq_offset)
8202 {
8203 struct io_rings *rings;
8204 size_t off, sq_array_size;
8205
8206 off = struct_size(rings, cqes, cq_entries);
8207 if (off == SIZE_MAX)
8208 return SIZE_MAX;
8209
8210 #ifdef CONFIG_SMP
8211 off = ALIGN(off, SMP_CACHE_BYTES);
8212 if (off == 0)
8213 return SIZE_MAX;
8214 #endif
8215
8216 if (sq_offset)
8217 *sq_offset = off;
8218
8219 sq_array_size = array_size(sizeof(u32), sq_entries);
8220 if (sq_array_size == SIZE_MAX)
8221 return SIZE_MAX;
8222
8223 if (check_add_overflow(off, sq_array_size, &off))
8224 return SIZE_MAX;
8225
8226 return off;
8227 }
8228
8229 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8230 {
8231 size_t pages;
8232
8233 pages = (size_t)1 << get_order(
8234 rings_size(sq_entries, cq_entries, NULL));
8235 pages += (size_t)1 << get_order(
8236 array_size(sizeof(struct io_uring_sqe), sq_entries));
8237
8238 return pages;
8239 }
8240
8241 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8242 {
8243 int i, j;
8244
8245 if (!ctx->user_bufs)
8246 return -ENXIO;
8247
8248 for (i = 0; i < ctx->nr_user_bufs; i++) {
8249 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8250
8251 for (j = 0; j < imu->nr_bvecs; j++)
8252 unpin_user_page(imu->bvec[j].bv_page);
8253
8254 if (imu->acct_pages)
8255 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8256 kvfree(imu->bvec);
8257 imu->nr_bvecs = 0;
8258 }
8259
8260 kfree(ctx->user_bufs);
8261 ctx->user_bufs = NULL;
8262 ctx->nr_user_bufs = 0;
8263 return 0;
8264 }
8265
8266 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8267 void __user *arg, unsigned index)
8268 {
8269 struct iovec __user *src;
8270
8271 #ifdef CONFIG_COMPAT
8272 if (ctx->compat) {
8273 struct compat_iovec __user *ciovs;
8274 struct compat_iovec ciov;
8275
8276 ciovs = (struct compat_iovec __user *) arg;
8277 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8278 return -EFAULT;
8279
8280 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8281 dst->iov_len = ciov.iov_len;
8282 return 0;
8283 }
8284 #endif
8285 src = (struct iovec __user *) arg;
8286 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8287 return -EFAULT;
8288 return 0;
8289 }
8290
8291 /*
8292 * Not super efficient, but this is just a registration time. And we do cache
8293 * the last compound head, so generally we'll only do a full search if we don't
8294 * match that one.
8295 *
8296 * We check if the given compound head page has already been accounted, to
8297 * avoid double accounting it. This allows us to account the full size of the
8298 * page, not just the constituent pages of a huge page.
8299 */
8300 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8301 int nr_pages, struct page *hpage)
8302 {
8303 int i, j;
8304
8305 /* check current page array */
8306 for (i = 0; i < nr_pages; i++) {
8307 if (!PageCompound(pages[i]))
8308 continue;
8309 if (compound_head(pages[i]) == hpage)
8310 return true;
8311 }
8312
8313 /* check previously registered pages */
8314 for (i = 0; i < ctx->nr_user_bufs; i++) {
8315 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8316
8317 for (j = 0; j < imu->nr_bvecs; j++) {
8318 if (!PageCompound(imu->bvec[j].bv_page))
8319 continue;
8320 if (compound_head(imu->bvec[j].bv_page) == hpage)
8321 return true;
8322 }
8323 }
8324
8325 return false;
8326 }
8327
8328 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8329 int nr_pages, struct io_mapped_ubuf *imu,
8330 struct page **last_hpage)
8331 {
8332 int i, ret;
8333
8334 for (i = 0; i < nr_pages; i++) {
8335 if (!PageCompound(pages[i])) {
8336 imu->acct_pages++;
8337 } else {
8338 struct page *hpage;
8339
8340 hpage = compound_head(pages[i]);
8341 if (hpage == *last_hpage)
8342 continue;
8343 *last_hpage = hpage;
8344 if (headpage_already_acct(ctx, pages, i, hpage))
8345 continue;
8346 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8347 }
8348 }
8349
8350 if (!imu->acct_pages)
8351 return 0;
8352
8353 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8354 if (ret)
8355 imu->acct_pages = 0;
8356 return ret;
8357 }
8358
8359 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8360 unsigned nr_args)
8361 {
8362 struct vm_area_struct **vmas = NULL;
8363 struct page **pages = NULL;
8364 struct page *last_hpage = NULL;
8365 int i, j, got_pages = 0;
8366 int ret = -EINVAL;
8367
8368 if (ctx->user_bufs)
8369 return -EBUSY;
8370 if (!nr_args || nr_args > UIO_MAXIOV)
8371 return -EINVAL;
8372
8373 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8374 GFP_KERNEL);
8375 if (!ctx->user_bufs)
8376 return -ENOMEM;
8377
8378 for (i = 0; i < nr_args; i++) {
8379 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8380 unsigned long off, start, end, ubuf;
8381 int pret, nr_pages;
8382 struct iovec iov;
8383 size_t size;
8384
8385 ret = io_copy_iov(ctx, &iov, arg, i);
8386 if (ret)
8387 goto err;
8388
8389 /*
8390 * Don't impose further limits on the size and buffer
8391 * constraints here, we'll -EINVAL later when IO is
8392 * submitted if they are wrong.
8393 */
8394 ret = -EFAULT;
8395 if (!iov.iov_base || !iov.iov_len)
8396 goto err;
8397
8398 /* arbitrary limit, but we need something */
8399 if (iov.iov_len > SZ_1G)
8400 goto err;
8401
8402 ubuf = (unsigned long) iov.iov_base;
8403 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8404 start = ubuf >> PAGE_SHIFT;
8405 nr_pages = end - start;
8406
8407 ret = 0;
8408 if (!pages || nr_pages > got_pages) {
8409 kvfree(vmas);
8410 kvfree(pages);
8411 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8412 GFP_KERNEL);
8413 vmas = kvmalloc_array(nr_pages,
8414 sizeof(struct vm_area_struct *),
8415 GFP_KERNEL);
8416 if (!pages || !vmas) {
8417 ret = -ENOMEM;
8418 goto err;
8419 }
8420 got_pages = nr_pages;
8421 }
8422
8423 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8424 GFP_KERNEL);
8425 ret = -ENOMEM;
8426 if (!imu->bvec)
8427 goto err;
8428
8429 ret = 0;
8430 mmap_read_lock(current->mm);
8431 pret = pin_user_pages(ubuf, nr_pages,
8432 FOLL_WRITE | FOLL_LONGTERM,
8433 pages, vmas);
8434 if (pret == nr_pages) {
8435 /* don't support file backed memory */
8436 for (j = 0; j < nr_pages; j++) {
8437 struct vm_area_struct *vma = vmas[j];
8438
8439 if (vma->vm_file &&
8440 !is_file_hugepages(vma->vm_file)) {
8441 ret = -EOPNOTSUPP;
8442 break;
8443 }
8444 }
8445 } else {
8446 ret = pret < 0 ? pret : -EFAULT;
8447 }
8448 mmap_read_unlock(current->mm);
8449 if (ret) {
8450 /*
8451 * if we did partial map, or found file backed vmas,
8452 * release any pages we did get
8453 */
8454 if (pret > 0)
8455 unpin_user_pages(pages, pret);
8456 kvfree(imu->bvec);
8457 goto err;
8458 }
8459
8460 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8461 if (ret) {
8462 unpin_user_pages(pages, pret);
8463 kvfree(imu->bvec);
8464 goto err;
8465 }
8466
8467 off = ubuf & ~PAGE_MASK;
8468 size = iov.iov_len;
8469 for (j = 0; j < nr_pages; j++) {
8470 size_t vec_len;
8471
8472 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8473 imu->bvec[j].bv_page = pages[j];
8474 imu->bvec[j].bv_len = vec_len;
8475 imu->bvec[j].bv_offset = off;
8476 off = 0;
8477 size -= vec_len;
8478 }
8479 /* store original address for later verification */
8480 imu->ubuf = ubuf;
8481 imu->len = iov.iov_len;
8482 imu->nr_bvecs = nr_pages;
8483
8484 ctx->nr_user_bufs++;
8485 }
8486 kvfree(pages);
8487 kvfree(vmas);
8488 return 0;
8489 err:
8490 kvfree(pages);
8491 kvfree(vmas);
8492 io_sqe_buffer_unregister(ctx);
8493 return ret;
8494 }
8495
8496 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8497 {
8498 __s32 __user *fds = arg;
8499 int fd;
8500
8501 if (ctx->cq_ev_fd)
8502 return -EBUSY;
8503
8504 if (copy_from_user(&fd, fds, sizeof(*fds)))
8505 return -EFAULT;
8506
8507 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8508 if (IS_ERR(ctx->cq_ev_fd)) {
8509 int ret = PTR_ERR(ctx->cq_ev_fd);
8510 ctx->cq_ev_fd = NULL;
8511 return ret;
8512 }
8513
8514 return 0;
8515 }
8516
8517 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8518 {
8519 if (ctx->cq_ev_fd) {
8520 eventfd_ctx_put(ctx->cq_ev_fd);
8521 ctx->cq_ev_fd = NULL;
8522 return 0;
8523 }
8524
8525 return -ENXIO;
8526 }
8527
8528 static int __io_destroy_buffers(int id, void *p, void *data)
8529 {
8530 struct io_ring_ctx *ctx = data;
8531 struct io_buffer *buf = p;
8532
8533 __io_remove_buffers(ctx, buf, id, -1U);
8534 return 0;
8535 }
8536
8537 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8538 {
8539 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8540 idr_destroy(&ctx->io_buffer_idr);
8541 }
8542
8543 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8544 {
8545 io_finish_async(ctx);
8546 io_sqe_buffer_unregister(ctx);
8547
8548 if (ctx->sqo_task) {
8549 put_task_struct(ctx->sqo_task);
8550 ctx->sqo_task = NULL;
8551 mmdrop(ctx->mm_account);
8552 ctx->mm_account = NULL;
8553 }
8554
8555 #ifdef CONFIG_BLK_CGROUP
8556 if (ctx->sqo_blkcg_css)
8557 css_put(ctx->sqo_blkcg_css);
8558 #endif
8559
8560 io_sqe_files_unregister(ctx);
8561 io_eventfd_unregister(ctx);
8562 io_destroy_buffers(ctx);
8563 idr_destroy(&ctx->personality_idr);
8564
8565 #if defined(CONFIG_UNIX)
8566 if (ctx->ring_sock) {
8567 ctx->ring_sock->file = NULL; /* so that iput() is called */
8568 sock_release(ctx->ring_sock);
8569 }
8570 #endif
8571
8572 io_mem_free(ctx->rings);
8573 io_mem_free(ctx->sq_sqes);
8574
8575 percpu_ref_exit(&ctx->refs);
8576 free_uid(ctx->user);
8577 put_cred(ctx->creds);
8578 kfree(ctx->cancel_hash);
8579 kmem_cache_free(req_cachep, ctx->fallback_req);
8580 kfree(ctx);
8581 }
8582
8583 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8584 {
8585 struct io_ring_ctx *ctx = file->private_data;
8586 __poll_t mask = 0;
8587
8588 poll_wait(file, &ctx->cq_wait, wait);
8589 /*
8590 * synchronizes with barrier from wq_has_sleeper call in
8591 * io_commit_cqring
8592 */
8593 smp_rmb();
8594 if (!io_sqring_full(ctx))
8595 mask |= EPOLLOUT | EPOLLWRNORM;
8596 if (io_cqring_events(ctx, false))
8597 mask |= EPOLLIN | EPOLLRDNORM;
8598
8599 return mask;
8600 }
8601
8602 static int io_uring_fasync(int fd, struct file *file, int on)
8603 {
8604 struct io_ring_ctx *ctx = file->private_data;
8605
8606 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8607 }
8608
8609 static int io_remove_personalities(int id, void *p, void *data)
8610 {
8611 struct io_ring_ctx *ctx = data;
8612 struct io_identity *iod;
8613
8614 iod = idr_remove(&ctx->personality_idr, id);
8615 if (iod) {
8616 put_cred(iod->creds);
8617 if (refcount_dec_and_test(&iod->count))
8618 kfree(iod);
8619 }
8620 return 0;
8621 }
8622
8623 static void io_ring_exit_work(struct work_struct *work)
8624 {
8625 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8626 exit_work);
8627
8628 /*
8629 * If we're doing polled IO and end up having requests being
8630 * submitted async (out-of-line), then completions can come in while
8631 * we're waiting for refs to drop. We need to reap these manually,
8632 * as nobody else will be looking for them.
8633 */
8634 do {
8635 io_iopoll_try_reap_events(ctx);
8636 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8637 io_ring_ctx_free(ctx);
8638 }
8639
8640 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8641 {
8642 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8643
8644 return req->ctx == data;
8645 }
8646
8647 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8648 {
8649 mutex_lock(&ctx->uring_lock);
8650 percpu_ref_kill(&ctx->refs);
8651 /* if force is set, the ring is going away. always drop after that */
8652 ctx->cq_overflow_flushed = 1;
8653 if (ctx->rings)
8654 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8655 mutex_unlock(&ctx->uring_lock);
8656
8657 io_kill_timeouts(ctx, NULL, NULL);
8658 io_poll_remove_all(ctx, NULL, NULL);
8659
8660 if (ctx->io_wq)
8661 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8662
8663 /* if we failed setting up the ctx, we might not have any rings */
8664 io_iopoll_try_reap_events(ctx);
8665 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8666
8667 /*
8668 * Do this upfront, so we won't have a grace period where the ring
8669 * is closed but resources aren't reaped yet. This can cause
8670 * spurious failure in setting up a new ring.
8671 */
8672 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8673 ACCT_LOCKED);
8674
8675 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8676 /*
8677 * Use system_unbound_wq to avoid spawning tons of event kworkers
8678 * if we're exiting a ton of rings at the same time. It just adds
8679 * noise and overhead, there's no discernable change in runtime
8680 * over using system_wq.
8681 */
8682 queue_work(system_unbound_wq, &ctx->exit_work);
8683 }
8684
8685 static int io_uring_release(struct inode *inode, struct file *file)
8686 {
8687 struct io_ring_ctx *ctx = file->private_data;
8688
8689 file->private_data = NULL;
8690 io_ring_ctx_wait_and_kill(ctx);
8691 return 0;
8692 }
8693
8694 struct io_task_cancel {
8695 struct task_struct *task;
8696 struct files_struct *files;
8697 };
8698
8699 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8700 {
8701 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8702 struct io_task_cancel *cancel = data;
8703 bool ret;
8704
8705 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8706 unsigned long flags;
8707 struct io_ring_ctx *ctx = req->ctx;
8708
8709 /* protect against races with linked timeouts */
8710 spin_lock_irqsave(&ctx->completion_lock, flags);
8711 ret = io_match_task(req, cancel->task, cancel->files);
8712 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8713 } else {
8714 ret = io_match_task(req, cancel->task, cancel->files);
8715 }
8716 return ret;
8717 }
8718
8719 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8720 struct task_struct *task,
8721 struct files_struct *files)
8722 {
8723 struct io_defer_entry *de = NULL;
8724 LIST_HEAD(list);
8725
8726 spin_lock_irq(&ctx->completion_lock);
8727 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8728 if (io_match_task(de->req, task, files)) {
8729 list_cut_position(&list, &ctx->defer_list, &de->list);
8730 break;
8731 }
8732 }
8733 spin_unlock_irq(&ctx->completion_lock);
8734
8735 while (!list_empty(&list)) {
8736 de = list_first_entry(&list, struct io_defer_entry, list);
8737 list_del_init(&de->list);
8738 req_set_fail_links(de->req);
8739 io_put_req(de->req);
8740 io_req_complete(de->req, -ECANCELED);
8741 kfree(de);
8742 }
8743 }
8744
8745 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8746 struct task_struct *task,
8747 struct files_struct *files)
8748 {
8749 while (!list_empty_careful(&ctx->inflight_list)) {
8750 struct io_task_cancel cancel = { .task = task, .files = files };
8751 struct io_kiocb *req;
8752 DEFINE_WAIT(wait);
8753 bool found = false;
8754
8755 spin_lock_irq(&ctx->inflight_lock);
8756 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8757 if (req->task != task ||
8758 req->work.identity->files != files)
8759 continue;
8760 found = true;
8761 break;
8762 }
8763 if (found)
8764 prepare_to_wait(&task->io_uring->wait, &wait,
8765 TASK_UNINTERRUPTIBLE);
8766 spin_unlock_irq(&ctx->inflight_lock);
8767
8768 /* We need to keep going until we don't find a matching req */
8769 if (!found)
8770 break;
8771
8772 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8773 io_poll_remove_all(ctx, task, files);
8774 io_kill_timeouts(ctx, task, files);
8775 /* cancellations _may_ trigger task work */
8776 io_run_task_work();
8777 schedule();
8778 finish_wait(&task->io_uring->wait, &wait);
8779 }
8780 }
8781
8782 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8783 struct task_struct *task)
8784 {
8785 while (1) {
8786 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8787 enum io_wq_cancel cret;
8788 bool ret = false;
8789
8790 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8791 if (cret != IO_WQ_CANCEL_NOTFOUND)
8792 ret = true;
8793
8794 /* SQPOLL thread does its own polling */
8795 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8796 while (!list_empty_careful(&ctx->iopoll_list)) {
8797 io_iopoll_try_reap_events(ctx);
8798 ret = true;
8799 }
8800 }
8801
8802 ret |= io_poll_remove_all(ctx, task, NULL);
8803 ret |= io_kill_timeouts(ctx, task, NULL);
8804 if (!ret)
8805 break;
8806 io_run_task_work();
8807 cond_resched();
8808 }
8809 }
8810
8811 /*
8812 * We need to iteratively cancel requests, in case a request has dependent
8813 * hard links. These persist even for failure of cancelations, hence keep
8814 * looping until none are found.
8815 */
8816 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8817 struct files_struct *files)
8818 {
8819 struct task_struct *task = current;
8820
8821 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8822 task = ctx->sq_data->thread;
8823 atomic_inc(&task->io_uring->in_idle);
8824 io_sq_thread_park(ctx->sq_data);
8825 }
8826
8827 io_cancel_defer_files(ctx, task, files);
8828 io_ring_submit_lock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8829 io_cqring_overflow_flush(ctx, true, task, files);
8830 io_ring_submit_unlock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8831
8832 if (!files)
8833 __io_uring_cancel_task_requests(ctx, task);
8834 else
8835 io_uring_cancel_files(ctx, task, files);
8836
8837 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8838 atomic_dec(&task->io_uring->in_idle);
8839 /*
8840 * If the files that are going away are the ones in the thread
8841 * identity, clear them out.
8842 */
8843 if (task->io_uring->identity->files == files)
8844 task->io_uring->identity->files = NULL;
8845 io_sq_thread_unpark(ctx->sq_data);
8846 }
8847 }
8848
8849 /*
8850 * Note that this task has used io_uring. We use it for cancelation purposes.
8851 */
8852 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8853 {
8854 struct io_uring_task *tctx = current->io_uring;
8855
8856 if (unlikely(!tctx)) {
8857 int ret;
8858
8859 ret = io_uring_alloc_task_context(current);
8860 if (unlikely(ret))
8861 return ret;
8862 tctx = current->io_uring;
8863 }
8864 if (tctx->last != file) {
8865 void *old = xa_load(&tctx->xa, (unsigned long)file);
8866
8867 if (!old) {
8868 get_file(file);
8869 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8870 }
8871 tctx->last = file;
8872 }
8873
8874 /*
8875 * This is race safe in that the task itself is doing this, hence it
8876 * cannot be going through the exit/cancel paths at the same time.
8877 * This cannot be modified while exit/cancel is running.
8878 */
8879 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8880 tctx->sqpoll = true;
8881
8882 return 0;
8883 }
8884
8885 /*
8886 * Remove this io_uring_file -> task mapping.
8887 */
8888 static void io_uring_del_task_file(struct file *file)
8889 {
8890 struct io_uring_task *tctx = current->io_uring;
8891
8892 if (tctx->last == file)
8893 tctx->last = NULL;
8894 file = xa_erase(&tctx->xa, (unsigned long)file);
8895 if (file)
8896 fput(file);
8897 }
8898
8899 /*
8900 * Drop task note for this file if we're the only ones that hold it after
8901 * pending fput()
8902 */
8903 static void io_uring_attempt_task_drop(struct file *file)
8904 {
8905 if (!current->io_uring)
8906 return;
8907 /*
8908 * fput() is pending, will be 2 if the only other ref is our potential
8909 * task file note. If the task is exiting, drop regardless of count.
8910 */
8911 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8912 atomic_long_read(&file->f_count) == 2)
8913 io_uring_del_task_file(file);
8914 }
8915
8916 void __io_uring_files_cancel(struct files_struct *files)
8917 {
8918 struct io_uring_task *tctx = current->io_uring;
8919 struct file *file;
8920 unsigned long index;
8921
8922 /* make sure overflow events are dropped */
8923 atomic_inc(&tctx->in_idle);
8924
8925 xa_for_each(&tctx->xa, index, file) {
8926 struct io_ring_ctx *ctx = file->private_data;
8927
8928 io_uring_cancel_task_requests(ctx, files);
8929 if (files)
8930 io_uring_del_task_file(file);
8931 }
8932
8933 atomic_dec(&tctx->in_idle);
8934 }
8935
8936 static s64 tctx_inflight(struct io_uring_task *tctx)
8937 {
8938 unsigned long index;
8939 struct file *file;
8940 s64 inflight;
8941
8942 inflight = percpu_counter_sum(&tctx->inflight);
8943 if (!tctx->sqpoll)
8944 return inflight;
8945
8946 /*
8947 * If we have SQPOLL rings, then we need to iterate and find them, and
8948 * add the pending count for those.
8949 */
8950 xa_for_each(&tctx->xa, index, file) {
8951 struct io_ring_ctx *ctx = file->private_data;
8952
8953 if (ctx->flags & IORING_SETUP_SQPOLL) {
8954 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
8955
8956 inflight += percpu_counter_sum(&__tctx->inflight);
8957 }
8958 }
8959
8960 return inflight;
8961 }
8962
8963 /*
8964 * Find any io_uring fd that this task has registered or done IO on, and cancel
8965 * requests.
8966 */
8967 void __io_uring_task_cancel(void)
8968 {
8969 struct io_uring_task *tctx = current->io_uring;
8970 DEFINE_WAIT(wait);
8971 s64 inflight;
8972
8973 /* make sure overflow events are dropped */
8974 atomic_inc(&tctx->in_idle);
8975
8976 do {
8977 /* read completions before cancelations */
8978 inflight = tctx_inflight(tctx);
8979 if (!inflight)
8980 break;
8981 __io_uring_files_cancel(NULL);
8982
8983 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8984
8985 /*
8986 * If we've seen completions, retry. This avoids a race where
8987 * a completion comes in before we did prepare_to_wait().
8988 */
8989 if (inflight != tctx_inflight(tctx))
8990 continue;
8991 schedule();
8992 } while (1);
8993
8994 finish_wait(&tctx->wait, &wait);
8995 atomic_dec(&tctx->in_idle);
8996 }
8997
8998 static int io_uring_flush(struct file *file, void *data)
8999 {
9000 io_uring_attempt_task_drop(file);
9001 return 0;
9002 }
9003
9004 static void *io_uring_validate_mmap_request(struct file *file,
9005 loff_t pgoff, size_t sz)
9006 {
9007 struct io_ring_ctx *ctx = file->private_data;
9008 loff_t offset = pgoff << PAGE_SHIFT;
9009 struct page *page;
9010 void *ptr;
9011
9012 switch (offset) {
9013 case IORING_OFF_SQ_RING:
9014 case IORING_OFF_CQ_RING:
9015 ptr = ctx->rings;
9016 break;
9017 case IORING_OFF_SQES:
9018 ptr = ctx->sq_sqes;
9019 break;
9020 default:
9021 return ERR_PTR(-EINVAL);
9022 }
9023
9024 page = virt_to_head_page(ptr);
9025 if (sz > page_size(page))
9026 return ERR_PTR(-EINVAL);
9027
9028 return ptr;
9029 }
9030
9031 #ifdef CONFIG_MMU
9032
9033 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9034 {
9035 size_t sz = vma->vm_end - vma->vm_start;
9036 unsigned long pfn;
9037 void *ptr;
9038
9039 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9040 if (IS_ERR(ptr))
9041 return PTR_ERR(ptr);
9042
9043 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9044 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9045 }
9046
9047 #else /* !CONFIG_MMU */
9048
9049 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9050 {
9051 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9052 }
9053
9054 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9055 {
9056 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9057 }
9058
9059 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9060 unsigned long addr, unsigned long len,
9061 unsigned long pgoff, unsigned long flags)
9062 {
9063 void *ptr;
9064
9065 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9066 if (IS_ERR(ptr))
9067 return PTR_ERR(ptr);
9068
9069 return (unsigned long) ptr;
9070 }
9071
9072 #endif /* !CONFIG_MMU */
9073
9074 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9075 {
9076 DEFINE_WAIT(wait);
9077
9078 do {
9079 if (!io_sqring_full(ctx))
9080 break;
9081
9082 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9083
9084 if (!io_sqring_full(ctx))
9085 break;
9086
9087 schedule();
9088 } while (!signal_pending(current));
9089
9090 finish_wait(&ctx->sqo_sq_wait, &wait);
9091 }
9092
9093 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9094 struct __kernel_timespec __user **ts,
9095 const sigset_t __user **sig)
9096 {
9097 struct io_uring_getevents_arg arg;
9098
9099 /*
9100 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9101 * is just a pointer to the sigset_t.
9102 */
9103 if (!(flags & IORING_ENTER_EXT_ARG)) {
9104 *sig = (const sigset_t __user *) argp;
9105 *ts = NULL;
9106 return 0;
9107 }
9108
9109 /*
9110 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9111 * timespec and sigset_t pointers if good.
9112 */
9113 if (*argsz != sizeof(arg))
9114 return -EINVAL;
9115 if (copy_from_user(&arg, argp, sizeof(arg)))
9116 return -EFAULT;
9117 *sig = u64_to_user_ptr(arg.sigmask);
9118 *argsz = arg.sigmask_sz;
9119 *ts = u64_to_user_ptr(arg.ts);
9120 return 0;
9121 }
9122
9123 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9124 u32, min_complete, u32, flags, const void __user *, argp,
9125 size_t, argsz)
9126 {
9127 struct io_ring_ctx *ctx;
9128 long ret = -EBADF;
9129 int submitted = 0;
9130 struct fd f;
9131
9132 io_run_task_work();
9133
9134 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9135 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9136 return -EINVAL;
9137
9138 f = fdget(fd);
9139 if (!f.file)
9140 return -EBADF;
9141
9142 ret = -EOPNOTSUPP;
9143 if (f.file->f_op != &io_uring_fops)
9144 goto out_fput;
9145
9146 ret = -ENXIO;
9147 ctx = f.file->private_data;
9148 if (!percpu_ref_tryget(&ctx->refs))
9149 goto out_fput;
9150
9151 ret = -EBADFD;
9152 if (ctx->flags & IORING_SETUP_R_DISABLED)
9153 goto out;
9154
9155 /*
9156 * For SQ polling, the thread will do all submissions and completions.
9157 * Just return the requested submit count, and wake the thread if
9158 * we were asked to.
9159 */
9160 ret = 0;
9161 if (ctx->flags & IORING_SETUP_SQPOLL) {
9162 if (!list_empty_careful(&ctx->cq_overflow_list)) {
9163 bool needs_lock = ctx->flags & IORING_SETUP_IOPOLL;
9164
9165 io_ring_submit_lock(ctx, needs_lock);
9166 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9167 io_ring_submit_unlock(ctx, needs_lock);
9168 }
9169 if (flags & IORING_ENTER_SQ_WAKEUP)
9170 wake_up(&ctx->sq_data->wait);
9171 if (flags & IORING_ENTER_SQ_WAIT)
9172 io_sqpoll_wait_sq(ctx);
9173 submitted = to_submit;
9174 } else if (to_submit) {
9175 ret = io_uring_add_task_file(ctx, f.file);
9176 if (unlikely(ret))
9177 goto out;
9178 mutex_lock(&ctx->uring_lock);
9179 submitted = io_submit_sqes(ctx, to_submit);
9180 mutex_unlock(&ctx->uring_lock);
9181
9182 if (submitted != to_submit)
9183 goto out;
9184 }
9185 if (flags & IORING_ENTER_GETEVENTS) {
9186 const sigset_t __user *sig;
9187 struct __kernel_timespec __user *ts;
9188
9189 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9190 if (unlikely(ret))
9191 goto out;
9192
9193 min_complete = min(min_complete, ctx->cq_entries);
9194
9195 /*
9196 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9197 * space applications don't need to do io completion events
9198 * polling again, they can rely on io_sq_thread to do polling
9199 * work, which can reduce cpu usage and uring_lock contention.
9200 */
9201 if (ctx->flags & IORING_SETUP_IOPOLL &&
9202 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9203 ret = io_iopoll_check(ctx, min_complete);
9204 } else {
9205 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9206 }
9207 }
9208
9209 out:
9210 percpu_ref_put(&ctx->refs);
9211 out_fput:
9212 fdput(f);
9213 return submitted ? submitted : ret;
9214 }
9215
9216 #ifdef CONFIG_PROC_FS
9217 static int io_uring_show_cred(int id, void *p, void *data)
9218 {
9219 struct io_identity *iod = p;
9220 const struct cred *cred = iod->creds;
9221 struct seq_file *m = data;
9222 struct user_namespace *uns = seq_user_ns(m);
9223 struct group_info *gi;
9224 kernel_cap_t cap;
9225 unsigned __capi;
9226 int g;
9227
9228 seq_printf(m, "%5d\n", id);
9229 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9230 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9231 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9232 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9233 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9234 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9235 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9236 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9237 seq_puts(m, "\n\tGroups:\t");
9238 gi = cred->group_info;
9239 for (g = 0; g < gi->ngroups; g++) {
9240 seq_put_decimal_ull(m, g ? " " : "",
9241 from_kgid_munged(uns, gi->gid[g]));
9242 }
9243 seq_puts(m, "\n\tCapEff:\t");
9244 cap = cred->cap_effective;
9245 CAP_FOR_EACH_U32(__capi)
9246 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9247 seq_putc(m, '\n');
9248 return 0;
9249 }
9250
9251 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9252 {
9253 struct io_sq_data *sq = NULL;
9254 bool has_lock;
9255 int i;
9256
9257 /*
9258 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9259 * since fdinfo case grabs it in the opposite direction of normal use
9260 * cases. If we fail to get the lock, we just don't iterate any
9261 * structures that could be going away outside the io_uring mutex.
9262 */
9263 has_lock = mutex_trylock(&ctx->uring_lock);
9264
9265 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9266 sq = ctx->sq_data;
9267
9268 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9269 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9270 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9271 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9272 struct fixed_file_table *table;
9273 struct file *f;
9274
9275 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9276 f = table->files[i & IORING_FILE_TABLE_MASK];
9277 if (f)
9278 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9279 else
9280 seq_printf(m, "%5u: <none>\n", i);
9281 }
9282 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9283 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9284 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9285
9286 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9287 (unsigned int) buf->len);
9288 }
9289 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9290 seq_printf(m, "Personalities:\n");
9291 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9292 }
9293 seq_printf(m, "PollList:\n");
9294 spin_lock_irq(&ctx->completion_lock);
9295 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9296 struct hlist_head *list = &ctx->cancel_hash[i];
9297 struct io_kiocb *req;
9298
9299 hlist_for_each_entry(req, list, hash_node)
9300 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9301 req->task->task_works != NULL);
9302 }
9303 spin_unlock_irq(&ctx->completion_lock);
9304 if (has_lock)
9305 mutex_unlock(&ctx->uring_lock);
9306 }
9307
9308 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9309 {
9310 struct io_ring_ctx *ctx = f->private_data;
9311
9312 if (percpu_ref_tryget(&ctx->refs)) {
9313 __io_uring_show_fdinfo(ctx, m);
9314 percpu_ref_put(&ctx->refs);
9315 }
9316 }
9317 #endif
9318
9319 static const struct file_operations io_uring_fops = {
9320 .release = io_uring_release,
9321 .flush = io_uring_flush,
9322 .mmap = io_uring_mmap,
9323 #ifndef CONFIG_MMU
9324 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9325 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9326 #endif
9327 .poll = io_uring_poll,
9328 .fasync = io_uring_fasync,
9329 #ifdef CONFIG_PROC_FS
9330 .show_fdinfo = io_uring_show_fdinfo,
9331 #endif
9332 };
9333
9334 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9335 struct io_uring_params *p)
9336 {
9337 struct io_rings *rings;
9338 size_t size, sq_array_offset;
9339
9340 /* make sure these are sane, as we already accounted them */
9341 ctx->sq_entries = p->sq_entries;
9342 ctx->cq_entries = p->cq_entries;
9343
9344 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9345 if (size == SIZE_MAX)
9346 return -EOVERFLOW;
9347
9348 rings = io_mem_alloc(size);
9349 if (!rings)
9350 return -ENOMEM;
9351
9352 ctx->rings = rings;
9353 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9354 rings->sq_ring_mask = p->sq_entries - 1;
9355 rings->cq_ring_mask = p->cq_entries - 1;
9356 rings->sq_ring_entries = p->sq_entries;
9357 rings->cq_ring_entries = p->cq_entries;
9358 ctx->sq_mask = rings->sq_ring_mask;
9359 ctx->cq_mask = rings->cq_ring_mask;
9360
9361 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9362 if (size == SIZE_MAX) {
9363 io_mem_free(ctx->rings);
9364 ctx->rings = NULL;
9365 return -EOVERFLOW;
9366 }
9367
9368 ctx->sq_sqes = io_mem_alloc(size);
9369 if (!ctx->sq_sqes) {
9370 io_mem_free(ctx->rings);
9371 ctx->rings = NULL;
9372 return -ENOMEM;
9373 }
9374
9375 return 0;
9376 }
9377
9378 /*
9379 * Allocate an anonymous fd, this is what constitutes the application
9380 * visible backing of an io_uring instance. The application mmaps this
9381 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9382 * we have to tie this fd to a socket for file garbage collection purposes.
9383 */
9384 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9385 {
9386 struct file *file;
9387 int ret;
9388 int fd;
9389
9390 #if defined(CONFIG_UNIX)
9391 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9392 &ctx->ring_sock);
9393 if (ret)
9394 return ret;
9395 #endif
9396
9397 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9398 if (ret < 0)
9399 goto err;
9400 fd = ret;
9401
9402 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9403 O_RDWR | O_CLOEXEC);
9404 if (IS_ERR(file)) {
9405 put_unused_fd(fd);
9406 ret = PTR_ERR(file);
9407 goto err;
9408 }
9409
9410 #if defined(CONFIG_UNIX)
9411 ctx->ring_sock->file = file;
9412 #endif
9413 ret = io_uring_add_task_file(ctx, file);
9414 if (ret) {
9415 fput(file);
9416 put_unused_fd(fd);
9417 goto err;
9418 }
9419 fd_install(fd, file);
9420 return fd;
9421 err:
9422 #if defined(CONFIG_UNIX)
9423 sock_release(ctx->ring_sock);
9424 ctx->ring_sock = NULL;
9425 #endif
9426 return ret;
9427 }
9428
9429 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9430 struct io_uring_params __user *params)
9431 {
9432 struct user_struct *user = NULL;
9433 struct io_ring_ctx *ctx;
9434 bool limit_mem;
9435 int ret;
9436
9437 if (!entries)
9438 return -EINVAL;
9439 if (entries > IORING_MAX_ENTRIES) {
9440 if (!(p->flags & IORING_SETUP_CLAMP))
9441 return -EINVAL;
9442 entries = IORING_MAX_ENTRIES;
9443 }
9444
9445 /*
9446 * Use twice as many entries for the CQ ring. It's possible for the
9447 * application to drive a higher depth than the size of the SQ ring,
9448 * since the sqes are only used at submission time. This allows for
9449 * some flexibility in overcommitting a bit. If the application has
9450 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9451 * of CQ ring entries manually.
9452 */
9453 p->sq_entries = roundup_pow_of_two(entries);
9454 if (p->flags & IORING_SETUP_CQSIZE) {
9455 /*
9456 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9457 * to a power-of-two, if it isn't already. We do NOT impose
9458 * any cq vs sq ring sizing.
9459 */
9460 if (!p->cq_entries)
9461 return -EINVAL;
9462 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9463 if (!(p->flags & IORING_SETUP_CLAMP))
9464 return -EINVAL;
9465 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9466 }
9467 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9468 if (p->cq_entries < p->sq_entries)
9469 return -EINVAL;
9470 } else {
9471 p->cq_entries = 2 * p->sq_entries;
9472 }
9473
9474 user = get_uid(current_user());
9475 limit_mem = !capable(CAP_IPC_LOCK);
9476
9477 if (limit_mem) {
9478 ret = __io_account_mem(user,
9479 ring_pages(p->sq_entries, p->cq_entries));
9480 if (ret) {
9481 free_uid(user);
9482 return ret;
9483 }
9484 }
9485
9486 ctx = io_ring_ctx_alloc(p);
9487 if (!ctx) {
9488 if (limit_mem)
9489 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9490 p->cq_entries));
9491 free_uid(user);
9492 return -ENOMEM;
9493 }
9494 ctx->compat = in_compat_syscall();
9495 ctx->user = user;
9496 ctx->creds = get_current_cred();
9497 #ifdef CONFIG_AUDIT
9498 ctx->loginuid = current->loginuid;
9499 ctx->sessionid = current->sessionid;
9500 #endif
9501 ctx->sqo_task = get_task_struct(current);
9502
9503 /*
9504 * This is just grabbed for accounting purposes. When a process exits,
9505 * the mm is exited and dropped before the files, hence we need to hang
9506 * on to this mm purely for the purposes of being able to unaccount
9507 * memory (locked/pinned vm). It's not used for anything else.
9508 */
9509 mmgrab(current->mm);
9510 ctx->mm_account = current->mm;
9511
9512 #ifdef CONFIG_BLK_CGROUP
9513 /*
9514 * The sq thread will belong to the original cgroup it was inited in.
9515 * If the cgroup goes offline (e.g. disabling the io controller), then
9516 * issued bios will be associated with the closest cgroup later in the
9517 * block layer.
9518 */
9519 rcu_read_lock();
9520 ctx->sqo_blkcg_css = blkcg_css();
9521 ret = css_tryget_online(ctx->sqo_blkcg_css);
9522 rcu_read_unlock();
9523 if (!ret) {
9524 /* don't init against a dying cgroup, have the user try again */
9525 ctx->sqo_blkcg_css = NULL;
9526 ret = -ENODEV;
9527 goto err;
9528 }
9529 #endif
9530
9531 /*
9532 * Account memory _before_ installing the file descriptor. Once
9533 * the descriptor is installed, it can get closed at any time. Also
9534 * do this before hitting the general error path, as ring freeing
9535 * will un-account as well.
9536 */
9537 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9538 ACCT_LOCKED);
9539 ctx->limit_mem = limit_mem;
9540
9541 ret = io_allocate_scq_urings(ctx, p);
9542 if (ret)
9543 goto err;
9544
9545 ret = io_sq_offload_create(ctx, p);
9546 if (ret)
9547 goto err;
9548
9549 if (!(p->flags & IORING_SETUP_R_DISABLED))
9550 io_sq_offload_start(ctx);
9551
9552 memset(&p->sq_off, 0, sizeof(p->sq_off));
9553 p->sq_off.head = offsetof(struct io_rings, sq.head);
9554 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9555 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9556 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9557 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9558 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9559 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9560
9561 memset(&p->cq_off, 0, sizeof(p->cq_off));
9562 p->cq_off.head = offsetof(struct io_rings, cq.head);
9563 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9564 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9565 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9566 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9567 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9568 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9569
9570 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9571 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9572 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9573 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9574 IORING_FEAT_EXT_ARG;
9575
9576 if (copy_to_user(params, p, sizeof(*p))) {
9577 ret = -EFAULT;
9578 goto err;
9579 }
9580
9581 /*
9582 * Install ring fd as the very last thing, so we don't risk someone
9583 * having closed it before we finish setup
9584 */
9585 ret = io_uring_get_fd(ctx);
9586 if (ret < 0)
9587 goto err;
9588
9589 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9590 return ret;
9591 err:
9592 io_ring_ctx_wait_and_kill(ctx);
9593 return ret;
9594 }
9595
9596 /*
9597 * Sets up an aio uring context, and returns the fd. Applications asks for a
9598 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9599 * params structure passed in.
9600 */
9601 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9602 {
9603 struct io_uring_params p;
9604 int i;
9605
9606 if (copy_from_user(&p, params, sizeof(p)))
9607 return -EFAULT;
9608 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9609 if (p.resv[i])
9610 return -EINVAL;
9611 }
9612
9613 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9614 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9615 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9616 IORING_SETUP_R_DISABLED))
9617 return -EINVAL;
9618
9619 return io_uring_create(entries, &p, params);
9620 }
9621
9622 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9623 struct io_uring_params __user *, params)
9624 {
9625 return io_uring_setup(entries, params);
9626 }
9627
9628 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9629 {
9630 struct io_uring_probe *p;
9631 size_t size;
9632 int i, ret;
9633
9634 size = struct_size(p, ops, nr_args);
9635 if (size == SIZE_MAX)
9636 return -EOVERFLOW;
9637 p = kzalloc(size, GFP_KERNEL);
9638 if (!p)
9639 return -ENOMEM;
9640
9641 ret = -EFAULT;
9642 if (copy_from_user(p, arg, size))
9643 goto out;
9644 ret = -EINVAL;
9645 if (memchr_inv(p, 0, size))
9646 goto out;
9647
9648 p->last_op = IORING_OP_LAST - 1;
9649 if (nr_args > IORING_OP_LAST)
9650 nr_args = IORING_OP_LAST;
9651
9652 for (i = 0; i < nr_args; i++) {
9653 p->ops[i].op = i;
9654 if (!io_op_defs[i].not_supported)
9655 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9656 }
9657 p->ops_len = i;
9658
9659 ret = 0;
9660 if (copy_to_user(arg, p, size))
9661 ret = -EFAULT;
9662 out:
9663 kfree(p);
9664 return ret;
9665 }
9666
9667 static int io_register_personality(struct io_ring_ctx *ctx)
9668 {
9669 struct io_identity *id;
9670 int ret;
9671
9672 id = kmalloc(sizeof(*id), GFP_KERNEL);
9673 if (unlikely(!id))
9674 return -ENOMEM;
9675
9676 io_init_identity(id);
9677 id->creds = get_current_cred();
9678
9679 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9680 if (ret < 0) {
9681 put_cred(id->creds);
9682 kfree(id);
9683 }
9684 return ret;
9685 }
9686
9687 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9688 {
9689 struct io_identity *iod;
9690
9691 iod = idr_remove(&ctx->personality_idr, id);
9692 if (iod) {
9693 put_cred(iod->creds);
9694 if (refcount_dec_and_test(&iod->count))
9695 kfree(iod);
9696 return 0;
9697 }
9698
9699 return -EINVAL;
9700 }
9701
9702 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9703 unsigned int nr_args)
9704 {
9705 struct io_uring_restriction *res;
9706 size_t size;
9707 int i, ret;
9708
9709 /* Restrictions allowed only if rings started disabled */
9710 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9711 return -EBADFD;
9712
9713 /* We allow only a single restrictions registration */
9714 if (ctx->restrictions.registered)
9715 return -EBUSY;
9716
9717 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9718 return -EINVAL;
9719
9720 size = array_size(nr_args, sizeof(*res));
9721 if (size == SIZE_MAX)
9722 return -EOVERFLOW;
9723
9724 res = memdup_user(arg, size);
9725 if (IS_ERR(res))
9726 return PTR_ERR(res);
9727
9728 ret = 0;
9729
9730 for (i = 0; i < nr_args; i++) {
9731 switch (res[i].opcode) {
9732 case IORING_RESTRICTION_REGISTER_OP:
9733 if (res[i].register_op >= IORING_REGISTER_LAST) {
9734 ret = -EINVAL;
9735 goto out;
9736 }
9737
9738 __set_bit(res[i].register_op,
9739 ctx->restrictions.register_op);
9740 break;
9741 case IORING_RESTRICTION_SQE_OP:
9742 if (res[i].sqe_op >= IORING_OP_LAST) {
9743 ret = -EINVAL;
9744 goto out;
9745 }
9746
9747 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9748 break;
9749 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9750 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9751 break;
9752 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9753 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9754 break;
9755 default:
9756 ret = -EINVAL;
9757 goto out;
9758 }
9759 }
9760
9761 out:
9762 /* Reset all restrictions if an error happened */
9763 if (ret != 0)
9764 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9765 else
9766 ctx->restrictions.registered = true;
9767
9768 kfree(res);
9769 return ret;
9770 }
9771
9772 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9773 {
9774 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9775 return -EBADFD;
9776
9777 if (ctx->restrictions.registered)
9778 ctx->restricted = 1;
9779
9780 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9781
9782 io_sq_offload_start(ctx);
9783
9784 return 0;
9785 }
9786
9787 static bool io_register_op_must_quiesce(int op)
9788 {
9789 switch (op) {
9790 case IORING_UNREGISTER_FILES:
9791 case IORING_REGISTER_FILES_UPDATE:
9792 case IORING_REGISTER_PROBE:
9793 case IORING_REGISTER_PERSONALITY:
9794 case IORING_UNREGISTER_PERSONALITY:
9795 return false;
9796 default:
9797 return true;
9798 }
9799 }
9800
9801 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9802 void __user *arg, unsigned nr_args)
9803 __releases(ctx->uring_lock)
9804 __acquires(ctx->uring_lock)
9805 {
9806 int ret;
9807
9808 /*
9809 * We're inside the ring mutex, if the ref is already dying, then
9810 * someone else killed the ctx or is already going through
9811 * io_uring_register().
9812 */
9813 if (percpu_ref_is_dying(&ctx->refs))
9814 return -ENXIO;
9815
9816 if (io_register_op_must_quiesce(opcode)) {
9817 percpu_ref_kill(&ctx->refs);
9818
9819 /*
9820 * Drop uring mutex before waiting for references to exit. If
9821 * another thread is currently inside io_uring_enter() it might
9822 * need to grab the uring_lock to make progress. If we hold it
9823 * here across the drain wait, then we can deadlock. It's safe
9824 * to drop the mutex here, since no new references will come in
9825 * after we've killed the percpu ref.
9826 */
9827 mutex_unlock(&ctx->uring_lock);
9828 do {
9829 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9830 if (!ret)
9831 break;
9832 ret = io_run_task_work_sig();
9833 if (ret < 0)
9834 break;
9835 } while (1);
9836
9837 mutex_lock(&ctx->uring_lock);
9838
9839 if (ret) {
9840 percpu_ref_resurrect(&ctx->refs);
9841 goto out_quiesce;
9842 }
9843 }
9844
9845 if (ctx->restricted) {
9846 if (opcode >= IORING_REGISTER_LAST) {
9847 ret = -EINVAL;
9848 goto out;
9849 }
9850
9851 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9852 ret = -EACCES;
9853 goto out;
9854 }
9855 }
9856
9857 switch (opcode) {
9858 case IORING_REGISTER_BUFFERS:
9859 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9860 break;
9861 case IORING_UNREGISTER_BUFFERS:
9862 ret = -EINVAL;
9863 if (arg || nr_args)
9864 break;
9865 ret = io_sqe_buffer_unregister(ctx);
9866 break;
9867 case IORING_REGISTER_FILES:
9868 ret = io_sqe_files_register(ctx, arg, nr_args);
9869 break;
9870 case IORING_UNREGISTER_FILES:
9871 ret = -EINVAL;
9872 if (arg || nr_args)
9873 break;
9874 ret = io_sqe_files_unregister(ctx);
9875 break;
9876 case IORING_REGISTER_FILES_UPDATE:
9877 ret = io_sqe_files_update(ctx, arg, nr_args);
9878 break;
9879 case IORING_REGISTER_EVENTFD:
9880 case IORING_REGISTER_EVENTFD_ASYNC:
9881 ret = -EINVAL;
9882 if (nr_args != 1)
9883 break;
9884 ret = io_eventfd_register(ctx, arg);
9885 if (ret)
9886 break;
9887 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9888 ctx->eventfd_async = 1;
9889 else
9890 ctx->eventfd_async = 0;
9891 break;
9892 case IORING_UNREGISTER_EVENTFD:
9893 ret = -EINVAL;
9894 if (arg || nr_args)
9895 break;
9896 ret = io_eventfd_unregister(ctx);
9897 break;
9898 case IORING_REGISTER_PROBE:
9899 ret = -EINVAL;
9900 if (!arg || nr_args > 256)
9901 break;
9902 ret = io_probe(ctx, arg, nr_args);
9903 break;
9904 case IORING_REGISTER_PERSONALITY:
9905 ret = -EINVAL;
9906 if (arg || nr_args)
9907 break;
9908 ret = io_register_personality(ctx);
9909 break;
9910 case IORING_UNREGISTER_PERSONALITY:
9911 ret = -EINVAL;
9912 if (arg)
9913 break;
9914 ret = io_unregister_personality(ctx, nr_args);
9915 break;
9916 case IORING_REGISTER_ENABLE_RINGS:
9917 ret = -EINVAL;
9918 if (arg || nr_args)
9919 break;
9920 ret = io_register_enable_rings(ctx);
9921 break;
9922 case IORING_REGISTER_RESTRICTIONS:
9923 ret = io_register_restrictions(ctx, arg, nr_args);
9924 break;
9925 default:
9926 ret = -EINVAL;
9927 break;
9928 }
9929
9930 out:
9931 if (io_register_op_must_quiesce(opcode)) {
9932 /* bring the ctx back to life */
9933 percpu_ref_reinit(&ctx->refs);
9934 out_quiesce:
9935 reinit_completion(&ctx->ref_comp);
9936 }
9937 return ret;
9938 }
9939
9940 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9941 void __user *, arg, unsigned int, nr_args)
9942 {
9943 struct io_ring_ctx *ctx;
9944 long ret = -EBADF;
9945 struct fd f;
9946
9947 f = fdget(fd);
9948 if (!f.file)
9949 return -EBADF;
9950
9951 ret = -EOPNOTSUPP;
9952 if (f.file->f_op != &io_uring_fops)
9953 goto out_fput;
9954
9955 ctx = f.file->private_data;
9956
9957 mutex_lock(&ctx->uring_lock);
9958 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9959 mutex_unlock(&ctx->uring_lock);
9960 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9961 ctx->cq_ev_fd != NULL, ret);
9962 out_fput:
9963 fdput(f);
9964 return ret;
9965 }
9966
9967 static int __init io_uring_init(void)
9968 {
9969 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9970 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9971 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9972 } while (0)
9973
9974 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9975 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9976 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9977 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9978 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9979 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9980 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9981 BUILD_BUG_SQE_ELEM(8, __u64, off);
9982 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9983 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9984 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9985 BUILD_BUG_SQE_ELEM(24, __u32, len);
9986 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9987 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9988 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9989 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9990 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9991 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9992 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9993 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9994 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9995 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9996 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9997 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9998 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9999 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10000 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10001 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10002 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10003 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10004 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10005
10006 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10007 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10008 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10009 return 0;
10010 };
10011 __initcall(io_uring_init);