]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'for-linus-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
193 };
194
195 struct io_mapped_ubuf {
196 u64 ubuf;
197 size_t len;
198 struct bio_vec *bvec;
199 unsigned int nr_bvecs;
200 unsigned long acct_pages;
201 };
202
203 struct io_ring_ctx;
204
205 struct io_rsrc_put {
206 struct list_head list;
207 union {
208 void *rsrc;
209 struct file *file;
210 };
211 };
212
213 struct fixed_rsrc_table {
214 struct file **files;
215 };
216
217 struct fixed_rsrc_ref_node {
218 struct percpu_ref refs;
219 struct list_head node;
220 struct list_head rsrc_list;
221 struct fixed_rsrc_data *rsrc_data;
222 void (*rsrc_put)(struct io_ring_ctx *ctx,
223 struct io_rsrc_put *prsrc);
224 struct llist_node llist;
225 bool done;
226 };
227
228 struct fixed_rsrc_data {
229 struct fixed_rsrc_table *table;
230 struct io_ring_ctx *ctx;
231
232 struct fixed_rsrc_ref_node *node;
233 struct percpu_ref refs;
234 struct completion done;
235 };
236
237 struct io_buffer {
238 struct list_head list;
239 __u64 addr;
240 __s32 len;
241 __u16 bid;
242 };
243
244 struct io_restriction {
245 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
246 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
247 u8 sqe_flags_allowed;
248 u8 sqe_flags_required;
249 bool registered;
250 };
251
252 struct io_sq_data {
253 refcount_t refs;
254 struct mutex lock;
255
256 /* ctx's that are using this sqd */
257 struct list_head ctx_list;
258 struct list_head ctx_new_list;
259 struct mutex ctx_lock;
260
261 struct task_struct *thread;
262 struct wait_queue_head wait;
263
264 unsigned sq_thread_idle;
265 };
266
267 #define IO_IOPOLL_BATCH 8
268 #define IO_COMPL_BATCH 32
269 #define IO_REQ_CACHE_SIZE 32
270 #define IO_REQ_ALLOC_BATCH 8
271
272 struct io_comp_state {
273 struct io_kiocb *reqs[IO_COMPL_BATCH];
274 unsigned int nr;
275 unsigned int locked_free_nr;
276 /* inline/task_work completion list, under ->uring_lock */
277 struct list_head free_list;
278 /* IRQ completion list, under ->completion_lock */
279 struct list_head locked_free_list;
280 };
281
282 struct io_submit_state {
283 struct blk_plug plug;
284
285 /*
286 * io_kiocb alloc cache
287 */
288 void *reqs[IO_REQ_CACHE_SIZE];
289 unsigned int free_reqs;
290
291 bool plug_started;
292
293 /*
294 * Batch completion logic
295 */
296 struct io_comp_state comp;
297
298 /*
299 * File reference cache
300 */
301 struct file *file;
302 unsigned int fd;
303 unsigned int file_refs;
304 unsigned int ios_left;
305 };
306
307 struct io_ring_ctx {
308 struct {
309 struct percpu_ref refs;
310 } ____cacheline_aligned_in_smp;
311
312 struct {
313 unsigned int flags;
314 unsigned int compat: 1;
315 unsigned int limit_mem: 1;
316 unsigned int cq_overflow_flushed: 1;
317 unsigned int drain_next: 1;
318 unsigned int eventfd_async: 1;
319 unsigned int restricted: 1;
320 unsigned int sqo_dead: 1;
321
322 /*
323 * Ring buffer of indices into array of io_uring_sqe, which is
324 * mmapped by the application using the IORING_OFF_SQES offset.
325 *
326 * This indirection could e.g. be used to assign fixed
327 * io_uring_sqe entries to operations and only submit them to
328 * the queue when needed.
329 *
330 * The kernel modifies neither the indices array nor the entries
331 * array.
332 */
333 u32 *sq_array;
334 unsigned cached_sq_head;
335 unsigned sq_entries;
336 unsigned sq_mask;
337 unsigned sq_thread_idle;
338 unsigned cached_sq_dropped;
339 unsigned cached_cq_overflow;
340 unsigned long sq_check_overflow;
341
342 struct list_head defer_list;
343 struct list_head timeout_list;
344 struct list_head cq_overflow_list;
345
346 struct io_uring_sqe *sq_sqes;
347 } ____cacheline_aligned_in_smp;
348
349 struct {
350 struct mutex uring_lock;
351 wait_queue_head_t wait;
352 } ____cacheline_aligned_in_smp;
353
354 struct io_submit_state submit_state;
355
356 struct io_rings *rings;
357
358 /* IO offload */
359 struct io_wq *io_wq;
360
361 /*
362 * For SQPOLL usage - we hold a reference to the parent task, so we
363 * have access to the ->files
364 */
365 struct task_struct *sqo_task;
366
367 /* Only used for accounting purposes */
368 struct mm_struct *mm_account;
369
370 #ifdef CONFIG_BLK_CGROUP
371 struct cgroup_subsys_state *sqo_blkcg_css;
372 #endif
373
374 struct io_sq_data *sq_data; /* if using sq thread polling */
375
376 struct wait_queue_head sqo_sq_wait;
377 struct list_head sqd_list;
378
379 /*
380 * If used, fixed file set. Writers must ensure that ->refs is dead,
381 * readers must ensure that ->refs is alive as long as the file* is
382 * used. Only updated through io_uring_register(2).
383 */
384 struct fixed_rsrc_data *file_data;
385 unsigned nr_user_files;
386
387 /* if used, fixed mapped user buffers */
388 unsigned nr_user_bufs;
389 struct io_mapped_ubuf *user_bufs;
390
391 struct user_struct *user;
392
393 const struct cred *creds;
394
395 #ifdef CONFIG_AUDIT
396 kuid_t loginuid;
397 unsigned int sessionid;
398 #endif
399
400 struct completion ref_comp;
401 struct completion sq_thread_comp;
402
403 #if defined(CONFIG_UNIX)
404 struct socket *ring_sock;
405 #endif
406
407 struct idr io_buffer_idr;
408
409 struct idr personality_idr;
410
411 struct {
412 unsigned cached_cq_tail;
413 unsigned cq_entries;
414 unsigned cq_mask;
415 atomic_t cq_timeouts;
416 unsigned cq_last_tm_flush;
417 unsigned long cq_check_overflow;
418 struct wait_queue_head cq_wait;
419 struct fasync_struct *cq_fasync;
420 struct eventfd_ctx *cq_ev_fd;
421 } ____cacheline_aligned_in_smp;
422
423 struct {
424 spinlock_t completion_lock;
425
426 /*
427 * ->iopoll_list is protected by the ctx->uring_lock for
428 * io_uring instances that don't use IORING_SETUP_SQPOLL.
429 * For SQPOLL, only the single threaded io_sq_thread() will
430 * manipulate the list, hence no extra locking is needed there.
431 */
432 struct list_head iopoll_list;
433 struct hlist_head *cancel_hash;
434 unsigned cancel_hash_bits;
435 bool poll_multi_file;
436
437 spinlock_t inflight_lock;
438 struct list_head inflight_list;
439 } ____cacheline_aligned_in_smp;
440
441 struct delayed_work rsrc_put_work;
442 struct llist_head rsrc_put_llist;
443 struct list_head rsrc_ref_list;
444 spinlock_t rsrc_ref_lock;
445
446 struct io_restriction restrictions;
447
448 /* Keep this last, we don't need it for the fast path */
449 struct work_struct exit_work;
450 };
451
452 /*
453 * First field must be the file pointer in all the
454 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
455 */
456 struct io_poll_iocb {
457 struct file *file;
458 struct wait_queue_head *head;
459 __poll_t events;
460 bool done;
461 bool canceled;
462 struct wait_queue_entry wait;
463 };
464
465 struct io_poll_remove {
466 struct file *file;
467 u64 addr;
468 };
469
470 struct io_close {
471 struct file *file;
472 int fd;
473 };
474
475 struct io_timeout_data {
476 struct io_kiocb *req;
477 struct hrtimer timer;
478 struct timespec64 ts;
479 enum hrtimer_mode mode;
480 };
481
482 struct io_accept {
483 struct file *file;
484 struct sockaddr __user *addr;
485 int __user *addr_len;
486 int flags;
487 unsigned long nofile;
488 };
489
490 struct io_sync {
491 struct file *file;
492 loff_t len;
493 loff_t off;
494 int flags;
495 int mode;
496 };
497
498 struct io_cancel {
499 struct file *file;
500 u64 addr;
501 };
502
503 struct io_timeout {
504 struct file *file;
505 u32 off;
506 u32 target_seq;
507 struct list_head list;
508 /* head of the link, used by linked timeouts only */
509 struct io_kiocb *head;
510 };
511
512 struct io_timeout_rem {
513 struct file *file;
514 u64 addr;
515
516 /* timeout update */
517 struct timespec64 ts;
518 u32 flags;
519 };
520
521 struct io_rw {
522 /* NOTE: kiocb has the file as the first member, so don't do it here */
523 struct kiocb kiocb;
524 u64 addr;
525 u64 len;
526 };
527
528 struct io_connect {
529 struct file *file;
530 struct sockaddr __user *addr;
531 int addr_len;
532 };
533
534 struct io_sr_msg {
535 struct file *file;
536 union {
537 struct user_msghdr __user *umsg;
538 void __user *buf;
539 };
540 int msg_flags;
541 int bgid;
542 size_t len;
543 struct io_buffer *kbuf;
544 };
545
546 struct io_open {
547 struct file *file;
548 int dfd;
549 struct filename *filename;
550 struct open_how how;
551 unsigned long nofile;
552 };
553
554 struct io_rsrc_update {
555 struct file *file;
556 u64 arg;
557 u32 nr_args;
558 u32 offset;
559 };
560
561 struct io_fadvise {
562 struct file *file;
563 u64 offset;
564 u32 len;
565 u32 advice;
566 };
567
568 struct io_madvise {
569 struct file *file;
570 u64 addr;
571 u32 len;
572 u32 advice;
573 };
574
575 struct io_epoll {
576 struct file *file;
577 int epfd;
578 int op;
579 int fd;
580 struct epoll_event event;
581 };
582
583 struct io_splice {
584 struct file *file_out;
585 struct file *file_in;
586 loff_t off_out;
587 loff_t off_in;
588 u64 len;
589 unsigned int flags;
590 };
591
592 struct io_provide_buf {
593 struct file *file;
594 __u64 addr;
595 __s32 len;
596 __u32 bgid;
597 __u16 nbufs;
598 __u16 bid;
599 };
600
601 struct io_statx {
602 struct file *file;
603 int dfd;
604 unsigned int mask;
605 unsigned int flags;
606 const char __user *filename;
607 struct statx __user *buffer;
608 };
609
610 struct io_shutdown {
611 struct file *file;
612 int how;
613 };
614
615 struct io_rename {
616 struct file *file;
617 int old_dfd;
618 int new_dfd;
619 struct filename *oldpath;
620 struct filename *newpath;
621 int flags;
622 };
623
624 struct io_unlink {
625 struct file *file;
626 int dfd;
627 int flags;
628 struct filename *filename;
629 };
630
631 struct io_completion {
632 struct file *file;
633 struct list_head list;
634 int cflags;
635 };
636
637 struct io_async_connect {
638 struct sockaddr_storage address;
639 };
640
641 struct io_async_msghdr {
642 struct iovec fast_iov[UIO_FASTIOV];
643 /* points to an allocated iov, if NULL we use fast_iov instead */
644 struct iovec *free_iov;
645 struct sockaddr __user *uaddr;
646 struct msghdr msg;
647 struct sockaddr_storage addr;
648 };
649
650 struct io_async_rw {
651 struct iovec fast_iov[UIO_FASTIOV];
652 const struct iovec *free_iovec;
653 struct iov_iter iter;
654 size_t bytes_done;
655 struct wait_page_queue wpq;
656 };
657
658 enum {
659 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
660 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
661 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
662 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
663 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
664 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
665
666 REQ_F_FAIL_LINK_BIT,
667 REQ_F_INFLIGHT_BIT,
668 REQ_F_CUR_POS_BIT,
669 REQ_F_NOWAIT_BIT,
670 REQ_F_LINK_TIMEOUT_BIT,
671 REQ_F_ISREG_BIT,
672 REQ_F_NEED_CLEANUP_BIT,
673 REQ_F_POLLED_BIT,
674 REQ_F_BUFFER_SELECTED_BIT,
675 REQ_F_NO_FILE_TABLE_BIT,
676 REQ_F_WORK_INITIALIZED_BIT,
677 REQ_F_LTIMEOUT_ACTIVE_BIT,
678 REQ_F_COMPLETE_INLINE_BIT,
679
680 /* not a real bit, just to check we're not overflowing the space */
681 __REQ_F_LAST_BIT,
682 };
683
684 enum {
685 /* ctx owns file */
686 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
687 /* drain existing IO first */
688 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
689 /* linked sqes */
690 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
691 /* doesn't sever on completion < 0 */
692 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
693 /* IOSQE_ASYNC */
694 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
695 /* IOSQE_BUFFER_SELECT */
696 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
697
698 /* fail rest of links */
699 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
700 /* on inflight list */
701 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
702 /* read/write uses file position */
703 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
704 /* must not punt to workers */
705 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
706 /* has or had linked timeout */
707 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
708 /* regular file */
709 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
710 /* needs cleanup */
711 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
712 /* already went through poll handler */
713 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
714 /* buffer already selected */
715 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
716 /* doesn't need file table for this request */
717 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
718 /* io_wq_work is initialized */
719 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
720 /* linked timeout is active, i.e. prepared by link's head */
721 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
722 /* completion is deferred through io_comp_state */
723 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
724 };
725
726 struct async_poll {
727 struct io_poll_iocb poll;
728 struct io_poll_iocb *double_poll;
729 };
730
731 struct io_task_work {
732 struct io_wq_work_node node;
733 task_work_func_t func;
734 };
735
736 /*
737 * NOTE! Each of the iocb union members has the file pointer
738 * as the first entry in their struct definition. So you can
739 * access the file pointer through any of the sub-structs,
740 * or directly as just 'ki_filp' in this struct.
741 */
742 struct io_kiocb {
743 union {
744 struct file *file;
745 struct io_rw rw;
746 struct io_poll_iocb poll;
747 struct io_poll_remove poll_remove;
748 struct io_accept accept;
749 struct io_sync sync;
750 struct io_cancel cancel;
751 struct io_timeout timeout;
752 struct io_timeout_rem timeout_rem;
753 struct io_connect connect;
754 struct io_sr_msg sr_msg;
755 struct io_open open;
756 struct io_close close;
757 struct io_rsrc_update rsrc_update;
758 struct io_fadvise fadvise;
759 struct io_madvise madvise;
760 struct io_epoll epoll;
761 struct io_splice splice;
762 struct io_provide_buf pbuf;
763 struct io_statx statx;
764 struct io_shutdown shutdown;
765 struct io_rename rename;
766 struct io_unlink unlink;
767 /* use only after cleaning per-op data, see io_clean_op() */
768 struct io_completion compl;
769 };
770
771 /* opcode allocated if it needs to store data for async defer */
772 void *async_data;
773 u8 opcode;
774 /* polled IO has completed */
775 u8 iopoll_completed;
776
777 u16 buf_index;
778 u32 result;
779
780 struct io_ring_ctx *ctx;
781 unsigned int flags;
782 refcount_t refs;
783 struct task_struct *task;
784 u64 user_data;
785
786 struct io_kiocb *link;
787 struct percpu_ref *fixed_rsrc_refs;
788
789 /*
790 * 1. used with ctx->iopoll_list with reads/writes
791 * 2. to track reqs with ->files (see io_op_def::file_table)
792 */
793 struct list_head inflight_entry;
794 union {
795 struct io_task_work io_task_work;
796 struct callback_head task_work;
797 };
798 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
799 struct hlist_node hash_node;
800 struct async_poll *apoll;
801 struct io_wq_work work;
802 };
803
804 struct io_defer_entry {
805 struct list_head list;
806 struct io_kiocb *req;
807 u32 seq;
808 };
809
810 struct io_op_def {
811 /* needs req->file assigned */
812 unsigned needs_file : 1;
813 /* hash wq insertion if file is a regular file */
814 unsigned hash_reg_file : 1;
815 /* unbound wq insertion if file is a non-regular file */
816 unsigned unbound_nonreg_file : 1;
817 /* opcode is not supported by this kernel */
818 unsigned not_supported : 1;
819 /* set if opcode supports polled "wait" */
820 unsigned pollin : 1;
821 unsigned pollout : 1;
822 /* op supports buffer selection */
823 unsigned buffer_select : 1;
824 /* must always have async data allocated */
825 unsigned needs_async_data : 1;
826 /* should block plug */
827 unsigned plug : 1;
828 /* size of async data needed, if any */
829 unsigned short async_size;
830 unsigned work_flags;
831 };
832
833 static const struct io_op_def io_op_defs[] = {
834 [IORING_OP_NOP] = {},
835 [IORING_OP_READV] = {
836 .needs_file = 1,
837 .unbound_nonreg_file = 1,
838 .pollin = 1,
839 .buffer_select = 1,
840 .needs_async_data = 1,
841 .plug = 1,
842 .async_size = sizeof(struct io_async_rw),
843 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
844 },
845 [IORING_OP_WRITEV] = {
846 .needs_file = 1,
847 .hash_reg_file = 1,
848 .unbound_nonreg_file = 1,
849 .pollout = 1,
850 .needs_async_data = 1,
851 .plug = 1,
852 .async_size = sizeof(struct io_async_rw),
853 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
854 IO_WQ_WORK_FSIZE,
855 },
856 [IORING_OP_FSYNC] = {
857 .needs_file = 1,
858 .work_flags = IO_WQ_WORK_BLKCG,
859 },
860 [IORING_OP_READ_FIXED] = {
861 .needs_file = 1,
862 .unbound_nonreg_file = 1,
863 .pollin = 1,
864 .plug = 1,
865 .async_size = sizeof(struct io_async_rw),
866 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
867 },
868 [IORING_OP_WRITE_FIXED] = {
869 .needs_file = 1,
870 .hash_reg_file = 1,
871 .unbound_nonreg_file = 1,
872 .pollout = 1,
873 .plug = 1,
874 .async_size = sizeof(struct io_async_rw),
875 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
876 IO_WQ_WORK_MM,
877 },
878 [IORING_OP_POLL_ADD] = {
879 .needs_file = 1,
880 .unbound_nonreg_file = 1,
881 },
882 [IORING_OP_POLL_REMOVE] = {},
883 [IORING_OP_SYNC_FILE_RANGE] = {
884 .needs_file = 1,
885 .work_flags = IO_WQ_WORK_BLKCG,
886 },
887 [IORING_OP_SENDMSG] = {
888 .needs_file = 1,
889 .unbound_nonreg_file = 1,
890 .pollout = 1,
891 .needs_async_data = 1,
892 .async_size = sizeof(struct io_async_msghdr),
893 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
894 IO_WQ_WORK_FS,
895 },
896 [IORING_OP_RECVMSG] = {
897 .needs_file = 1,
898 .unbound_nonreg_file = 1,
899 .pollin = 1,
900 .buffer_select = 1,
901 .needs_async_data = 1,
902 .async_size = sizeof(struct io_async_msghdr),
903 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS,
905 },
906 [IORING_OP_TIMEOUT] = {
907 .needs_async_data = 1,
908 .async_size = sizeof(struct io_timeout_data),
909 .work_flags = IO_WQ_WORK_MM,
910 },
911 [IORING_OP_TIMEOUT_REMOVE] = {
912 /* used by timeout updates' prep() */
913 .work_flags = IO_WQ_WORK_MM,
914 },
915 [IORING_OP_ACCEPT] = {
916 .needs_file = 1,
917 .unbound_nonreg_file = 1,
918 .pollin = 1,
919 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
920 },
921 [IORING_OP_ASYNC_CANCEL] = {},
922 [IORING_OP_LINK_TIMEOUT] = {
923 .needs_async_data = 1,
924 .async_size = sizeof(struct io_timeout_data),
925 .work_flags = IO_WQ_WORK_MM,
926 },
927 [IORING_OP_CONNECT] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollout = 1,
931 .needs_async_data = 1,
932 .async_size = sizeof(struct io_async_connect),
933 .work_flags = IO_WQ_WORK_MM,
934 },
935 [IORING_OP_FALLOCATE] = {
936 .needs_file = 1,
937 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
938 },
939 [IORING_OP_OPENAT] = {
940 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
941 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
942 },
943 [IORING_OP_CLOSE] = {
944 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
945 },
946 [IORING_OP_FILES_UPDATE] = {
947 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
948 },
949 [IORING_OP_STATX] = {
950 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
951 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
952 },
953 [IORING_OP_READ] = {
954 .needs_file = 1,
955 .unbound_nonreg_file = 1,
956 .pollin = 1,
957 .buffer_select = 1,
958 .plug = 1,
959 .async_size = sizeof(struct io_async_rw),
960 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
961 },
962 [IORING_OP_WRITE] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 .pollout = 1,
966 .plug = 1,
967 .async_size = sizeof(struct io_async_rw),
968 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
969 IO_WQ_WORK_FSIZE,
970 },
971 [IORING_OP_FADVISE] = {
972 .needs_file = 1,
973 .work_flags = IO_WQ_WORK_BLKCG,
974 },
975 [IORING_OP_MADVISE] = {
976 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
977 },
978 [IORING_OP_SEND] = {
979 .needs_file = 1,
980 .unbound_nonreg_file = 1,
981 .pollout = 1,
982 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
983 },
984 [IORING_OP_RECV] = {
985 .needs_file = 1,
986 .unbound_nonreg_file = 1,
987 .pollin = 1,
988 .buffer_select = 1,
989 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
990 },
991 [IORING_OP_OPENAT2] = {
992 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
993 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
994 },
995 [IORING_OP_EPOLL_CTL] = {
996 .unbound_nonreg_file = 1,
997 .work_flags = IO_WQ_WORK_FILES,
998 },
999 [IORING_OP_SPLICE] = {
1000 .needs_file = 1,
1001 .hash_reg_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .work_flags = IO_WQ_WORK_BLKCG,
1004 },
1005 [IORING_OP_PROVIDE_BUFFERS] = {},
1006 [IORING_OP_REMOVE_BUFFERS] = {},
1007 [IORING_OP_TEE] = {
1008 .needs_file = 1,
1009 .hash_reg_file = 1,
1010 .unbound_nonreg_file = 1,
1011 },
1012 [IORING_OP_SHUTDOWN] = {
1013 .needs_file = 1,
1014 },
1015 [IORING_OP_RENAMEAT] = {
1016 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1017 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1018 },
1019 [IORING_OP_UNLINKAT] = {
1020 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1021 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1022 },
1023 };
1024
1025 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1026 struct task_struct *task,
1027 struct files_struct *files);
1028 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
1029 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
1030 struct io_ring_ctx *ctx);
1031 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
1032 struct fixed_rsrc_ref_node *ref_node);
1033
1034 static bool io_rw_reissue(struct io_kiocb *req);
1035 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1036 static void io_put_req(struct io_kiocb *req);
1037 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1038 static void io_double_put_req(struct io_kiocb *req);
1039 static void io_dismantle_req(struct io_kiocb *req);
1040 static void io_put_task(struct task_struct *task, int nr);
1041 static void io_queue_next(struct io_kiocb *req);
1042 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1043 static void __io_queue_linked_timeout(struct io_kiocb *req);
1044 static void io_queue_linked_timeout(struct io_kiocb *req);
1045 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1046 struct io_uring_rsrc_update *ip,
1047 unsigned nr_args);
1048 static void __io_clean_op(struct io_kiocb *req);
1049 static struct file *io_file_get(struct io_submit_state *state,
1050 struct io_kiocb *req, int fd, bool fixed);
1051 static void __io_queue_sqe(struct io_kiocb *req);
1052 static void io_rsrc_put_work(struct work_struct *work);
1053
1054 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
1055 struct iov_iter *iter, bool needs_lock);
1056 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1057 const struct iovec *fast_iov,
1058 struct iov_iter *iter, bool force);
1059 static void io_req_task_queue(struct io_kiocb *req);
1060 static void io_submit_flush_completions(struct io_comp_state *cs,
1061 struct io_ring_ctx *ctx);
1062
1063 static struct kmem_cache *req_cachep;
1064
1065 static const struct file_operations io_uring_fops;
1066
1067 struct sock *io_uring_get_socket(struct file *file)
1068 {
1069 #if defined(CONFIG_UNIX)
1070 if (file->f_op == &io_uring_fops) {
1071 struct io_ring_ctx *ctx = file->private_data;
1072
1073 return ctx->ring_sock->sk;
1074 }
1075 #endif
1076 return NULL;
1077 }
1078 EXPORT_SYMBOL(io_uring_get_socket);
1079
1080 #define io_for_each_link(pos, head) \
1081 for (pos = (head); pos; pos = pos->link)
1082
1083 static inline void io_clean_op(struct io_kiocb *req)
1084 {
1085 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1086 __io_clean_op(req);
1087 }
1088
1089 static inline void io_set_resource_node(struct io_kiocb *req)
1090 {
1091 struct io_ring_ctx *ctx = req->ctx;
1092
1093 if (!req->fixed_rsrc_refs) {
1094 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1095 percpu_ref_get(req->fixed_rsrc_refs);
1096 }
1097 }
1098
1099 static bool io_match_task(struct io_kiocb *head,
1100 struct task_struct *task,
1101 struct files_struct *files)
1102 {
1103 struct io_kiocb *req;
1104
1105 if (task && head->task != task) {
1106 /* in terms of cancelation, always match if req task is dead */
1107 if (head->task->flags & PF_EXITING)
1108 return true;
1109 return false;
1110 }
1111 if (!files)
1112 return true;
1113
1114 io_for_each_link(req, head) {
1115 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1116 continue;
1117 if (req->file && req->file->f_op == &io_uring_fops)
1118 return true;
1119 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1120 req->work.identity->files == files)
1121 return true;
1122 }
1123 return false;
1124 }
1125
1126 static void io_sq_thread_drop_mm_files(void)
1127 {
1128 struct files_struct *files = current->files;
1129 struct mm_struct *mm = current->mm;
1130
1131 if (mm) {
1132 kthread_unuse_mm(mm);
1133 mmput(mm);
1134 current->mm = NULL;
1135 }
1136 if (files) {
1137 struct nsproxy *nsproxy = current->nsproxy;
1138
1139 task_lock(current);
1140 current->files = NULL;
1141 current->nsproxy = NULL;
1142 task_unlock(current);
1143 put_files_struct(files);
1144 put_nsproxy(nsproxy);
1145 }
1146 }
1147
1148 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1149 {
1150 if (!current->files) {
1151 struct files_struct *files;
1152 struct nsproxy *nsproxy;
1153
1154 task_lock(ctx->sqo_task);
1155 files = ctx->sqo_task->files;
1156 if (!files) {
1157 task_unlock(ctx->sqo_task);
1158 return -EOWNERDEAD;
1159 }
1160 atomic_inc(&files->count);
1161 get_nsproxy(ctx->sqo_task->nsproxy);
1162 nsproxy = ctx->sqo_task->nsproxy;
1163 task_unlock(ctx->sqo_task);
1164
1165 task_lock(current);
1166 current->files = files;
1167 current->nsproxy = nsproxy;
1168 task_unlock(current);
1169 }
1170 return 0;
1171 }
1172
1173 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1174 {
1175 struct mm_struct *mm;
1176
1177 if (current->mm)
1178 return 0;
1179
1180 task_lock(ctx->sqo_task);
1181 mm = ctx->sqo_task->mm;
1182 if (unlikely(!mm || !mmget_not_zero(mm)))
1183 mm = NULL;
1184 task_unlock(ctx->sqo_task);
1185
1186 if (mm) {
1187 kthread_use_mm(mm);
1188 return 0;
1189 }
1190
1191 return -EFAULT;
1192 }
1193
1194 static int __io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1195 struct io_kiocb *req)
1196 {
1197 const struct io_op_def *def = &io_op_defs[req->opcode];
1198 int ret;
1199
1200 if (def->work_flags & IO_WQ_WORK_MM) {
1201 ret = __io_sq_thread_acquire_mm(ctx);
1202 if (unlikely(ret))
1203 return ret;
1204 }
1205
1206 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1207 ret = __io_sq_thread_acquire_files(ctx);
1208 if (unlikely(ret))
1209 return ret;
1210 }
1211
1212 return 0;
1213 }
1214
1215 static inline int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1216 struct io_kiocb *req)
1217 {
1218 if (!(ctx->flags & IORING_SETUP_SQPOLL))
1219 return 0;
1220 return __io_sq_thread_acquire_mm_files(ctx, req);
1221 }
1222
1223 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1224 struct cgroup_subsys_state **cur_css)
1225
1226 {
1227 #ifdef CONFIG_BLK_CGROUP
1228 /* puts the old one when swapping */
1229 if (*cur_css != ctx->sqo_blkcg_css) {
1230 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1231 *cur_css = ctx->sqo_blkcg_css;
1232 }
1233 #endif
1234 }
1235
1236 static void io_sq_thread_unassociate_blkcg(void)
1237 {
1238 #ifdef CONFIG_BLK_CGROUP
1239 kthread_associate_blkcg(NULL);
1240 #endif
1241 }
1242
1243 static inline void req_set_fail_links(struct io_kiocb *req)
1244 {
1245 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1246 req->flags |= REQ_F_FAIL_LINK;
1247 }
1248
1249 /*
1250 * None of these are dereferenced, they are simply used to check if any of
1251 * them have changed. If we're under current and check they are still the
1252 * same, we're fine to grab references to them for actual out-of-line use.
1253 */
1254 static void io_init_identity(struct io_identity *id)
1255 {
1256 id->files = current->files;
1257 id->mm = current->mm;
1258 #ifdef CONFIG_BLK_CGROUP
1259 rcu_read_lock();
1260 id->blkcg_css = blkcg_css();
1261 rcu_read_unlock();
1262 #endif
1263 id->creds = current_cred();
1264 id->nsproxy = current->nsproxy;
1265 id->fs = current->fs;
1266 id->fsize = rlimit(RLIMIT_FSIZE);
1267 #ifdef CONFIG_AUDIT
1268 id->loginuid = current->loginuid;
1269 id->sessionid = current->sessionid;
1270 #endif
1271 refcount_set(&id->count, 1);
1272 }
1273
1274 static inline void __io_req_init_async(struct io_kiocb *req)
1275 {
1276 memset(&req->work, 0, sizeof(req->work));
1277 req->flags |= REQ_F_WORK_INITIALIZED;
1278 }
1279
1280 /*
1281 * Note: must call io_req_init_async() for the first time you
1282 * touch any members of io_wq_work.
1283 */
1284 static inline void io_req_init_async(struct io_kiocb *req)
1285 {
1286 struct io_uring_task *tctx = current->io_uring;
1287
1288 if (req->flags & REQ_F_WORK_INITIALIZED)
1289 return;
1290
1291 __io_req_init_async(req);
1292
1293 /* Grab a ref if this isn't our static identity */
1294 req->work.identity = tctx->identity;
1295 if (tctx->identity != &tctx->__identity)
1296 refcount_inc(&req->work.identity->count);
1297 }
1298
1299 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1300 {
1301 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1302
1303 complete(&ctx->ref_comp);
1304 }
1305
1306 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1307 {
1308 return !req->timeout.off;
1309 }
1310
1311 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1312 {
1313 struct io_ring_ctx *ctx;
1314 int hash_bits;
1315
1316 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1317 if (!ctx)
1318 return NULL;
1319
1320 /*
1321 * Use 5 bits less than the max cq entries, that should give us around
1322 * 32 entries per hash list if totally full and uniformly spread.
1323 */
1324 hash_bits = ilog2(p->cq_entries);
1325 hash_bits -= 5;
1326 if (hash_bits <= 0)
1327 hash_bits = 1;
1328 ctx->cancel_hash_bits = hash_bits;
1329 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1330 GFP_KERNEL);
1331 if (!ctx->cancel_hash)
1332 goto err;
1333 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->cq_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 init_completion(&ctx->sq_thread_comp);
1346 idr_init(&ctx->io_buffer_idr);
1347 idr_init(&ctx->personality_idr);
1348 mutex_init(&ctx->uring_lock);
1349 init_waitqueue_head(&ctx->wait);
1350 spin_lock_init(&ctx->completion_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 spin_lock_init(&ctx->inflight_lock);
1355 INIT_LIST_HEAD(&ctx->inflight_list);
1356 spin_lock_init(&ctx->rsrc_ref_lock);
1357 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1358 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1359 init_llist_head(&ctx->rsrc_put_llist);
1360 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1361 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1362 return ctx;
1363 err:
1364 kfree(ctx->cancel_hash);
1365 kfree(ctx);
1366 return NULL;
1367 }
1368
1369 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1370 {
1371 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1372 struct io_ring_ctx *ctx = req->ctx;
1373
1374 return seq != ctx->cached_cq_tail
1375 + READ_ONCE(ctx->cached_cq_overflow);
1376 }
1377
1378 return false;
1379 }
1380
1381 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1382 {
1383 if (req->work.identity == &tctx->__identity)
1384 return;
1385 if (refcount_dec_and_test(&req->work.identity->count))
1386 kfree(req->work.identity);
1387 }
1388
1389 static void io_req_clean_work(struct io_kiocb *req)
1390 {
1391 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1392 return;
1393
1394 if (req->work.flags & IO_WQ_WORK_MM)
1395 mmdrop(req->work.identity->mm);
1396 #ifdef CONFIG_BLK_CGROUP
1397 if (req->work.flags & IO_WQ_WORK_BLKCG)
1398 css_put(req->work.identity->blkcg_css);
1399 #endif
1400 if (req->work.flags & IO_WQ_WORK_CREDS)
1401 put_cred(req->work.identity->creds);
1402 if (req->work.flags & IO_WQ_WORK_FS) {
1403 struct fs_struct *fs = req->work.identity->fs;
1404
1405 spin_lock(&req->work.identity->fs->lock);
1406 if (--fs->users)
1407 fs = NULL;
1408 spin_unlock(&req->work.identity->fs->lock);
1409 if (fs)
1410 free_fs_struct(fs);
1411 }
1412 if (req->work.flags & IO_WQ_WORK_FILES) {
1413 put_files_struct(req->work.identity->files);
1414 put_nsproxy(req->work.identity->nsproxy);
1415 }
1416 if (req->flags & REQ_F_INFLIGHT) {
1417 struct io_ring_ctx *ctx = req->ctx;
1418 struct io_uring_task *tctx = req->task->io_uring;
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(&ctx->inflight_lock, flags);
1422 list_del(&req->inflight_entry);
1423 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1424 req->flags &= ~REQ_F_INFLIGHT;
1425 if (atomic_read(&tctx->in_idle))
1426 wake_up(&tctx->wait);
1427 }
1428
1429 req->flags &= ~REQ_F_WORK_INITIALIZED;
1430 req->work.flags &= ~(IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG | IO_WQ_WORK_FS |
1431 IO_WQ_WORK_CREDS | IO_WQ_WORK_FILES);
1432 io_put_identity(req->task->io_uring, req);
1433 }
1434
1435 /*
1436 * Create a private copy of io_identity, since some fields don't match
1437 * the current context.
1438 */
1439 static bool io_identity_cow(struct io_kiocb *req)
1440 {
1441 struct io_uring_task *tctx = current->io_uring;
1442 const struct cred *creds = NULL;
1443 struct io_identity *id;
1444
1445 if (req->work.flags & IO_WQ_WORK_CREDS)
1446 creds = req->work.identity->creds;
1447
1448 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1449 if (unlikely(!id)) {
1450 req->work.flags |= IO_WQ_WORK_CANCEL;
1451 return false;
1452 }
1453
1454 /*
1455 * We can safely just re-init the creds we copied Either the field
1456 * matches the current one, or we haven't grabbed it yet. The only
1457 * exception is ->creds, through registered personalities, so handle
1458 * that one separately.
1459 */
1460 io_init_identity(id);
1461 if (creds)
1462 id->creds = creds;
1463
1464 /* add one for this request */
1465 refcount_inc(&id->count);
1466
1467 /* drop tctx and req identity references, if needed */
1468 if (tctx->identity != &tctx->__identity &&
1469 refcount_dec_and_test(&tctx->identity->count))
1470 kfree(tctx->identity);
1471 if (req->work.identity != &tctx->__identity &&
1472 refcount_dec_and_test(&req->work.identity->count))
1473 kfree(req->work.identity);
1474
1475 req->work.identity = id;
1476 tctx->identity = id;
1477 return true;
1478 }
1479
1480 static void io_req_track_inflight(struct io_kiocb *req)
1481 {
1482 struct io_ring_ctx *ctx = req->ctx;
1483
1484 if (!(req->flags & REQ_F_INFLIGHT)) {
1485 io_req_init_async(req);
1486 req->flags |= REQ_F_INFLIGHT;
1487
1488 spin_lock_irq(&ctx->inflight_lock);
1489 list_add(&req->inflight_entry, &ctx->inflight_list);
1490 spin_unlock_irq(&ctx->inflight_lock);
1491 }
1492 }
1493
1494 static bool io_grab_identity(struct io_kiocb *req)
1495 {
1496 const struct io_op_def *def = &io_op_defs[req->opcode];
1497 struct io_identity *id = req->work.identity;
1498
1499 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1500 if (id->fsize != rlimit(RLIMIT_FSIZE))
1501 return false;
1502 req->work.flags |= IO_WQ_WORK_FSIZE;
1503 }
1504 #ifdef CONFIG_BLK_CGROUP
1505 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1506 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1507 rcu_read_lock();
1508 if (id->blkcg_css != blkcg_css()) {
1509 rcu_read_unlock();
1510 return false;
1511 }
1512 /*
1513 * This should be rare, either the cgroup is dying or the task
1514 * is moving cgroups. Just punt to root for the handful of ios.
1515 */
1516 if (css_tryget_online(id->blkcg_css))
1517 req->work.flags |= IO_WQ_WORK_BLKCG;
1518 rcu_read_unlock();
1519 }
1520 #endif
1521 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1522 if (id->creds != current_cred())
1523 return false;
1524 get_cred(id->creds);
1525 req->work.flags |= IO_WQ_WORK_CREDS;
1526 }
1527 #ifdef CONFIG_AUDIT
1528 if (!uid_eq(current->loginuid, id->loginuid) ||
1529 current->sessionid != id->sessionid)
1530 return false;
1531 #endif
1532 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1533 (def->work_flags & IO_WQ_WORK_FS)) {
1534 if (current->fs != id->fs)
1535 return false;
1536 spin_lock(&id->fs->lock);
1537 if (!id->fs->in_exec) {
1538 id->fs->users++;
1539 req->work.flags |= IO_WQ_WORK_FS;
1540 } else {
1541 req->work.flags |= IO_WQ_WORK_CANCEL;
1542 }
1543 spin_unlock(&current->fs->lock);
1544 }
1545 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1546 (def->work_flags & IO_WQ_WORK_FILES) &&
1547 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1548 if (id->files != current->files ||
1549 id->nsproxy != current->nsproxy)
1550 return false;
1551 atomic_inc(&id->files->count);
1552 get_nsproxy(id->nsproxy);
1553 req->work.flags |= IO_WQ_WORK_FILES;
1554 io_req_track_inflight(req);
1555 }
1556 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1557 (def->work_flags & IO_WQ_WORK_MM)) {
1558 if (id->mm != current->mm)
1559 return false;
1560 mmgrab(id->mm);
1561 req->work.flags |= IO_WQ_WORK_MM;
1562 }
1563
1564 return true;
1565 }
1566
1567 static void io_prep_async_work(struct io_kiocb *req)
1568 {
1569 const struct io_op_def *def = &io_op_defs[req->opcode];
1570 struct io_ring_ctx *ctx = req->ctx;
1571
1572 io_req_init_async(req);
1573
1574 if (req->flags & REQ_F_FORCE_ASYNC)
1575 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1576
1577 if (req->flags & REQ_F_ISREG) {
1578 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1579 io_wq_hash_work(&req->work, file_inode(req->file));
1580 } else {
1581 if (def->unbound_nonreg_file)
1582 req->work.flags |= IO_WQ_WORK_UNBOUND;
1583 }
1584
1585 /* if we fail grabbing identity, we must COW, regrab, and retry */
1586 if (io_grab_identity(req))
1587 return;
1588
1589 if (!io_identity_cow(req))
1590 return;
1591
1592 /* can't fail at this point */
1593 if (!io_grab_identity(req))
1594 WARN_ON(1);
1595 }
1596
1597 static void io_prep_async_link(struct io_kiocb *req)
1598 {
1599 struct io_kiocb *cur;
1600
1601 io_for_each_link(cur, req)
1602 io_prep_async_work(cur);
1603 }
1604
1605 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1606 {
1607 struct io_ring_ctx *ctx = req->ctx;
1608 struct io_kiocb *link = io_prep_linked_timeout(req);
1609
1610 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1611 &req->work, req->flags);
1612 io_wq_enqueue(ctx->io_wq, &req->work);
1613 return link;
1614 }
1615
1616 static void io_queue_async_work(struct io_kiocb *req)
1617 {
1618 struct io_kiocb *link;
1619
1620 /* init ->work of the whole link before punting */
1621 io_prep_async_link(req);
1622 link = __io_queue_async_work(req);
1623
1624 if (link)
1625 io_queue_linked_timeout(link);
1626 }
1627
1628 static void io_kill_timeout(struct io_kiocb *req)
1629 {
1630 struct io_timeout_data *io = req->async_data;
1631 int ret;
1632
1633 ret = hrtimer_try_to_cancel(&io->timer);
1634 if (ret != -1) {
1635 atomic_set(&req->ctx->cq_timeouts,
1636 atomic_read(&req->ctx->cq_timeouts) + 1);
1637 list_del_init(&req->timeout.list);
1638 io_cqring_fill_event(req, 0);
1639 io_put_req_deferred(req, 1);
1640 }
1641 }
1642
1643 /*
1644 * Returns true if we found and killed one or more timeouts
1645 */
1646 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1647 struct files_struct *files)
1648 {
1649 struct io_kiocb *req, *tmp;
1650 int canceled = 0;
1651
1652 spin_lock_irq(&ctx->completion_lock);
1653 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1654 if (io_match_task(req, tsk, files)) {
1655 io_kill_timeout(req);
1656 canceled++;
1657 }
1658 }
1659 spin_unlock_irq(&ctx->completion_lock);
1660 return canceled != 0;
1661 }
1662
1663 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1664 {
1665 do {
1666 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1667 struct io_defer_entry, list);
1668
1669 if (req_need_defer(de->req, de->seq))
1670 break;
1671 list_del_init(&de->list);
1672 io_req_task_queue(de->req);
1673 kfree(de);
1674 } while (!list_empty(&ctx->defer_list));
1675 }
1676
1677 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1678 {
1679 u32 seq;
1680
1681 if (list_empty(&ctx->timeout_list))
1682 return;
1683
1684 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1685
1686 do {
1687 u32 events_needed, events_got;
1688 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1689 struct io_kiocb, timeout.list);
1690
1691 if (io_is_timeout_noseq(req))
1692 break;
1693
1694 /*
1695 * Since seq can easily wrap around over time, subtract
1696 * the last seq at which timeouts were flushed before comparing.
1697 * Assuming not more than 2^31-1 events have happened since,
1698 * these subtractions won't have wrapped, so we can check if
1699 * target is in [last_seq, current_seq] by comparing the two.
1700 */
1701 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1702 events_got = seq - ctx->cq_last_tm_flush;
1703 if (events_got < events_needed)
1704 break;
1705
1706 list_del_init(&req->timeout.list);
1707 io_kill_timeout(req);
1708 } while (!list_empty(&ctx->timeout_list));
1709
1710 ctx->cq_last_tm_flush = seq;
1711 }
1712
1713 static void io_commit_cqring(struct io_ring_ctx *ctx)
1714 {
1715 io_flush_timeouts(ctx);
1716
1717 /* order cqe stores with ring update */
1718 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1719
1720 if (unlikely(!list_empty(&ctx->defer_list)))
1721 __io_queue_deferred(ctx);
1722 }
1723
1724 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1725 {
1726 struct io_rings *r = ctx->rings;
1727
1728 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1729 }
1730
1731 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1732 {
1733 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1734 }
1735
1736 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1737 {
1738 struct io_rings *rings = ctx->rings;
1739 unsigned tail;
1740
1741 /*
1742 * writes to the cq entry need to come after reading head; the
1743 * control dependency is enough as we're using WRITE_ONCE to
1744 * fill the cq entry
1745 */
1746 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1747 return NULL;
1748
1749 tail = ctx->cached_cq_tail++;
1750 return &rings->cqes[tail & ctx->cq_mask];
1751 }
1752
1753 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1754 {
1755 if (!ctx->cq_ev_fd)
1756 return false;
1757 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1758 return false;
1759 if (!ctx->eventfd_async)
1760 return true;
1761 return io_wq_current_is_worker();
1762 }
1763
1764 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1765 {
1766 /* see waitqueue_active() comment */
1767 smp_mb();
1768
1769 if (waitqueue_active(&ctx->wait))
1770 wake_up(&ctx->wait);
1771 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1772 wake_up(&ctx->sq_data->wait);
1773 if (io_should_trigger_evfd(ctx))
1774 eventfd_signal(ctx->cq_ev_fd, 1);
1775 if (waitqueue_active(&ctx->cq_wait)) {
1776 wake_up_interruptible(&ctx->cq_wait);
1777 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1778 }
1779 }
1780
1781 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1782 {
1783 /* see waitqueue_active() comment */
1784 smp_mb();
1785
1786 if (ctx->flags & IORING_SETUP_SQPOLL) {
1787 if (waitqueue_active(&ctx->wait))
1788 wake_up(&ctx->wait);
1789 }
1790 if (io_should_trigger_evfd(ctx))
1791 eventfd_signal(ctx->cq_ev_fd, 1);
1792 if (waitqueue_active(&ctx->cq_wait)) {
1793 wake_up_interruptible(&ctx->cq_wait);
1794 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1795 }
1796 }
1797
1798 /* Returns true if there are no backlogged entries after the flush */
1799 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1800 struct task_struct *tsk,
1801 struct files_struct *files)
1802 {
1803 struct io_rings *rings = ctx->rings;
1804 struct io_kiocb *req, *tmp;
1805 struct io_uring_cqe *cqe;
1806 unsigned long flags;
1807 bool all_flushed, posted;
1808 LIST_HEAD(list);
1809
1810 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1811 return false;
1812
1813 posted = false;
1814 spin_lock_irqsave(&ctx->completion_lock, flags);
1815 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1816 if (!io_match_task(req, tsk, files))
1817 continue;
1818
1819 cqe = io_get_cqring(ctx);
1820 if (!cqe && !force)
1821 break;
1822
1823 list_move(&req->compl.list, &list);
1824 if (cqe) {
1825 WRITE_ONCE(cqe->user_data, req->user_data);
1826 WRITE_ONCE(cqe->res, req->result);
1827 WRITE_ONCE(cqe->flags, req->compl.cflags);
1828 } else {
1829 ctx->cached_cq_overflow++;
1830 WRITE_ONCE(ctx->rings->cq_overflow,
1831 ctx->cached_cq_overflow);
1832 }
1833 posted = true;
1834 }
1835
1836 all_flushed = list_empty(&ctx->cq_overflow_list);
1837 if (all_flushed) {
1838 clear_bit(0, &ctx->sq_check_overflow);
1839 clear_bit(0, &ctx->cq_check_overflow);
1840 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1841 }
1842
1843 if (posted)
1844 io_commit_cqring(ctx);
1845 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1846 if (posted)
1847 io_cqring_ev_posted(ctx);
1848
1849 while (!list_empty(&list)) {
1850 req = list_first_entry(&list, struct io_kiocb, compl.list);
1851 list_del(&req->compl.list);
1852 io_put_req(req);
1853 }
1854
1855 return all_flushed;
1856 }
1857
1858 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1859 struct task_struct *tsk,
1860 struct files_struct *files)
1861 {
1862 if (test_bit(0, &ctx->cq_check_overflow)) {
1863 /* iopoll syncs against uring_lock, not completion_lock */
1864 if (ctx->flags & IORING_SETUP_IOPOLL)
1865 mutex_lock(&ctx->uring_lock);
1866 __io_cqring_overflow_flush(ctx, force, tsk, files);
1867 if (ctx->flags & IORING_SETUP_IOPOLL)
1868 mutex_unlock(&ctx->uring_lock);
1869 }
1870 }
1871
1872 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1873 {
1874 struct io_ring_ctx *ctx = req->ctx;
1875 struct io_uring_cqe *cqe;
1876
1877 trace_io_uring_complete(ctx, req->user_data, res);
1878
1879 /*
1880 * If we can't get a cq entry, userspace overflowed the
1881 * submission (by quite a lot). Increment the overflow count in
1882 * the ring.
1883 */
1884 cqe = io_get_cqring(ctx);
1885 if (likely(cqe)) {
1886 WRITE_ONCE(cqe->user_data, req->user_data);
1887 WRITE_ONCE(cqe->res, res);
1888 WRITE_ONCE(cqe->flags, cflags);
1889 } else if (ctx->cq_overflow_flushed ||
1890 atomic_read(&req->task->io_uring->in_idle)) {
1891 /*
1892 * If we're in ring overflow flush mode, or in task cancel mode,
1893 * then we cannot store the request for later flushing, we need
1894 * to drop it on the floor.
1895 */
1896 ctx->cached_cq_overflow++;
1897 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1898 } else {
1899 if (list_empty(&ctx->cq_overflow_list)) {
1900 set_bit(0, &ctx->sq_check_overflow);
1901 set_bit(0, &ctx->cq_check_overflow);
1902 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1903 }
1904 io_clean_op(req);
1905 req->result = res;
1906 req->compl.cflags = cflags;
1907 refcount_inc(&req->refs);
1908 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1909 }
1910 }
1911
1912 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1913 {
1914 __io_cqring_fill_event(req, res, 0);
1915 }
1916
1917 static inline void io_req_complete_post(struct io_kiocb *req, long res,
1918 unsigned int cflags)
1919 {
1920 struct io_ring_ctx *ctx = req->ctx;
1921 unsigned long flags;
1922
1923 spin_lock_irqsave(&ctx->completion_lock, flags);
1924 __io_cqring_fill_event(req, res, cflags);
1925 io_commit_cqring(ctx);
1926 /*
1927 * If we're the last reference to this request, add to our locked
1928 * free_list cache.
1929 */
1930 if (refcount_dec_and_test(&req->refs)) {
1931 struct io_comp_state *cs = &ctx->submit_state.comp;
1932
1933 io_dismantle_req(req);
1934 io_put_task(req->task, 1);
1935 list_add(&req->compl.list, &cs->locked_free_list);
1936 cs->locked_free_nr++;
1937 } else
1938 req = NULL;
1939 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1940
1941 io_cqring_ev_posted(ctx);
1942 if (req) {
1943 io_queue_next(req);
1944 percpu_ref_put(&ctx->refs);
1945 }
1946 }
1947
1948 static void io_req_complete_state(struct io_kiocb *req, long res,
1949 unsigned int cflags)
1950 {
1951 io_clean_op(req);
1952 req->result = res;
1953 req->compl.cflags = cflags;
1954 req->flags |= REQ_F_COMPLETE_INLINE;
1955 }
1956
1957 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1958 long res, unsigned cflags)
1959 {
1960 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1961 io_req_complete_state(req, res, cflags);
1962 else
1963 io_req_complete_post(req, res, cflags);
1964 }
1965
1966 static inline void io_req_complete(struct io_kiocb *req, long res)
1967 {
1968 __io_req_complete(req, 0, res, 0);
1969 }
1970
1971 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1972 {
1973 struct io_submit_state *state = &ctx->submit_state;
1974 struct io_comp_state *cs = &state->comp;
1975 struct io_kiocb *req = NULL;
1976
1977 /*
1978 * If we have more than a batch's worth of requests in our IRQ side
1979 * locked cache, grab the lock and move them over to our submission
1980 * side cache.
1981 */
1982 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
1983 spin_lock_irq(&ctx->completion_lock);
1984 list_splice_init(&cs->locked_free_list, &cs->free_list);
1985 cs->locked_free_nr = 0;
1986 spin_unlock_irq(&ctx->completion_lock);
1987 }
1988
1989 while (!list_empty(&cs->free_list)) {
1990 req = list_first_entry(&cs->free_list, struct io_kiocb,
1991 compl.list);
1992 list_del(&req->compl.list);
1993 state->reqs[state->free_reqs++] = req;
1994 if (state->free_reqs == ARRAY_SIZE(state->reqs))
1995 break;
1996 }
1997
1998 return req != NULL;
1999 }
2000
2001 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2002 {
2003 struct io_submit_state *state = &ctx->submit_state;
2004
2005 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
2006
2007 if (!state->free_reqs) {
2008 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2009 int ret;
2010
2011 if (io_flush_cached_reqs(ctx))
2012 goto got_req;
2013
2014 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
2015 state->reqs);
2016
2017 /*
2018 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2019 * retry single alloc to be on the safe side.
2020 */
2021 if (unlikely(ret <= 0)) {
2022 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2023 if (!state->reqs[0])
2024 return NULL;
2025 ret = 1;
2026 }
2027 state->free_reqs = ret;
2028 }
2029 got_req:
2030 state->free_reqs--;
2031 return state->reqs[state->free_reqs];
2032 }
2033
2034 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2035 bool fixed)
2036 {
2037 if (!fixed)
2038 fput(file);
2039 }
2040
2041 static void io_dismantle_req(struct io_kiocb *req)
2042 {
2043 io_clean_op(req);
2044
2045 if (req->async_data)
2046 kfree(req->async_data);
2047 if (req->file)
2048 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2049 if (req->fixed_rsrc_refs)
2050 percpu_ref_put(req->fixed_rsrc_refs);
2051 io_req_clean_work(req);
2052 }
2053
2054 static inline void io_put_task(struct task_struct *task, int nr)
2055 {
2056 struct io_uring_task *tctx = task->io_uring;
2057
2058 percpu_counter_sub(&tctx->inflight, nr);
2059 if (unlikely(atomic_read(&tctx->in_idle)))
2060 wake_up(&tctx->wait);
2061 put_task_struct_many(task, nr);
2062 }
2063
2064 static void __io_free_req(struct io_kiocb *req)
2065 {
2066 struct io_ring_ctx *ctx = req->ctx;
2067
2068 io_dismantle_req(req);
2069 io_put_task(req->task, 1);
2070
2071 kmem_cache_free(req_cachep, req);
2072 percpu_ref_put(&ctx->refs);
2073 }
2074
2075 static inline void io_remove_next_linked(struct io_kiocb *req)
2076 {
2077 struct io_kiocb *nxt = req->link;
2078
2079 req->link = nxt->link;
2080 nxt->link = NULL;
2081 }
2082
2083 static void io_kill_linked_timeout(struct io_kiocb *req)
2084 {
2085 struct io_ring_ctx *ctx = req->ctx;
2086 struct io_kiocb *link;
2087 bool cancelled = false;
2088 unsigned long flags;
2089
2090 spin_lock_irqsave(&ctx->completion_lock, flags);
2091 link = req->link;
2092
2093 /*
2094 * Can happen if a linked timeout fired and link had been like
2095 * req -> link t-out -> link t-out [-> ...]
2096 */
2097 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2098 struct io_timeout_data *io = link->async_data;
2099 int ret;
2100
2101 io_remove_next_linked(req);
2102 link->timeout.head = NULL;
2103 ret = hrtimer_try_to_cancel(&io->timer);
2104 if (ret != -1) {
2105 io_cqring_fill_event(link, -ECANCELED);
2106 io_commit_cqring(ctx);
2107 cancelled = true;
2108 }
2109 }
2110 req->flags &= ~REQ_F_LINK_TIMEOUT;
2111 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2112
2113 if (cancelled) {
2114 io_cqring_ev_posted(ctx);
2115 io_put_req(link);
2116 }
2117 }
2118
2119
2120 static void io_fail_links(struct io_kiocb *req)
2121 {
2122 struct io_kiocb *link, *nxt;
2123 struct io_ring_ctx *ctx = req->ctx;
2124 unsigned long flags;
2125
2126 spin_lock_irqsave(&ctx->completion_lock, flags);
2127 link = req->link;
2128 req->link = NULL;
2129
2130 while (link) {
2131 nxt = link->link;
2132 link->link = NULL;
2133
2134 trace_io_uring_fail_link(req, link);
2135 io_cqring_fill_event(link, -ECANCELED);
2136
2137 /*
2138 * It's ok to free under spinlock as they're not linked anymore,
2139 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2140 * work.fs->lock.
2141 */
2142 if (link->flags & REQ_F_WORK_INITIALIZED)
2143 io_put_req_deferred(link, 2);
2144 else
2145 io_double_put_req(link);
2146 link = nxt;
2147 }
2148 io_commit_cqring(ctx);
2149 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2150
2151 io_cqring_ev_posted(ctx);
2152 }
2153
2154 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2155 {
2156 if (req->flags & REQ_F_LINK_TIMEOUT)
2157 io_kill_linked_timeout(req);
2158
2159 /*
2160 * If LINK is set, we have dependent requests in this chain. If we
2161 * didn't fail this request, queue the first one up, moving any other
2162 * dependencies to the next request. In case of failure, fail the rest
2163 * of the chain.
2164 */
2165 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2166 struct io_kiocb *nxt = req->link;
2167
2168 req->link = NULL;
2169 return nxt;
2170 }
2171 io_fail_links(req);
2172 return NULL;
2173 }
2174
2175 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2176 {
2177 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2178 return NULL;
2179 return __io_req_find_next(req);
2180 }
2181
2182 static bool __tctx_task_work(struct io_uring_task *tctx)
2183 {
2184 struct io_ring_ctx *ctx = NULL;
2185 struct io_wq_work_list list;
2186 struct io_wq_work_node *node;
2187
2188 if (wq_list_empty(&tctx->task_list))
2189 return false;
2190
2191 spin_lock_irq(&tctx->task_lock);
2192 list = tctx->task_list;
2193 INIT_WQ_LIST(&tctx->task_list);
2194 spin_unlock_irq(&tctx->task_lock);
2195
2196 node = list.first;
2197 while (node) {
2198 struct io_wq_work_node *next = node->next;
2199 struct io_ring_ctx *this_ctx;
2200 struct io_kiocb *req;
2201
2202 req = container_of(node, struct io_kiocb, io_task_work.node);
2203 this_ctx = req->ctx;
2204 req->task_work.func(&req->task_work);
2205 node = next;
2206
2207 if (!ctx) {
2208 ctx = this_ctx;
2209 } else if (ctx != this_ctx) {
2210 mutex_lock(&ctx->uring_lock);
2211 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2212 mutex_unlock(&ctx->uring_lock);
2213 ctx = this_ctx;
2214 }
2215 }
2216
2217 if (ctx && ctx->submit_state.comp.nr) {
2218 mutex_lock(&ctx->uring_lock);
2219 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2220 mutex_unlock(&ctx->uring_lock);
2221 }
2222
2223 return list.first != NULL;
2224 }
2225
2226 static void tctx_task_work(struct callback_head *cb)
2227 {
2228 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
2229
2230 while (__tctx_task_work(tctx))
2231 cond_resched();
2232
2233 clear_bit(0, &tctx->task_state);
2234 }
2235
2236 static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
2237 enum task_work_notify_mode notify)
2238 {
2239 struct io_uring_task *tctx = tsk->io_uring;
2240 struct io_wq_work_node *node, *prev;
2241 unsigned long flags;
2242 int ret;
2243
2244 WARN_ON_ONCE(!tctx);
2245
2246 spin_lock_irqsave(&tctx->task_lock, flags);
2247 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2248 spin_unlock_irqrestore(&tctx->task_lock, flags);
2249
2250 /* task_work already pending, we're done */
2251 if (test_bit(0, &tctx->task_state) ||
2252 test_and_set_bit(0, &tctx->task_state))
2253 return 0;
2254
2255 if (!task_work_add(tsk, &tctx->task_work, notify))
2256 return 0;
2257
2258 /*
2259 * Slow path - we failed, find and delete work. if the work is not
2260 * in the list, it got run and we're fine.
2261 */
2262 ret = 0;
2263 spin_lock_irqsave(&tctx->task_lock, flags);
2264 wq_list_for_each(node, prev, &tctx->task_list) {
2265 if (&req->io_task_work.node == node) {
2266 wq_list_del(&tctx->task_list, node, prev);
2267 ret = 1;
2268 break;
2269 }
2270 }
2271 spin_unlock_irqrestore(&tctx->task_lock, flags);
2272 clear_bit(0, &tctx->task_state);
2273 return ret;
2274 }
2275
2276 static int io_req_task_work_add(struct io_kiocb *req)
2277 {
2278 struct task_struct *tsk = req->task;
2279 struct io_ring_ctx *ctx = req->ctx;
2280 enum task_work_notify_mode notify;
2281 int ret;
2282
2283 if (tsk->flags & PF_EXITING)
2284 return -ESRCH;
2285
2286 /*
2287 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2288 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2289 * processing task_work. There's no reliable way to tell if TWA_RESUME
2290 * will do the job.
2291 */
2292 notify = TWA_NONE;
2293 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2294 notify = TWA_SIGNAL;
2295
2296 ret = io_task_work_add(tsk, req, notify);
2297 if (!ret)
2298 wake_up_process(tsk);
2299
2300 return ret;
2301 }
2302
2303 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2304 task_work_func_t cb)
2305 {
2306 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2307
2308 init_task_work(&req->task_work, cb);
2309 task_work_add(tsk, &req->task_work, TWA_NONE);
2310 wake_up_process(tsk);
2311 }
2312
2313 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2314 {
2315 struct io_ring_ctx *ctx = req->ctx;
2316
2317 spin_lock_irq(&ctx->completion_lock);
2318 io_cqring_fill_event(req, error);
2319 io_commit_cqring(ctx);
2320 spin_unlock_irq(&ctx->completion_lock);
2321
2322 io_cqring_ev_posted(ctx);
2323 req_set_fail_links(req);
2324 io_double_put_req(req);
2325 }
2326
2327 static void io_req_task_cancel(struct callback_head *cb)
2328 {
2329 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2330 struct io_ring_ctx *ctx = req->ctx;
2331
2332 __io_req_task_cancel(req, -ECANCELED);
2333 percpu_ref_put(&ctx->refs);
2334 }
2335
2336 static void __io_req_task_submit(struct io_kiocb *req)
2337 {
2338 struct io_ring_ctx *ctx = req->ctx;
2339
2340 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2341 mutex_lock(&ctx->uring_lock);
2342 if (!ctx->sqo_dead && !(current->flags & PF_EXITING) &&
2343 !io_sq_thread_acquire_mm_files(ctx, req))
2344 __io_queue_sqe(req);
2345 else
2346 __io_req_task_cancel(req, -EFAULT);
2347 mutex_unlock(&ctx->uring_lock);
2348
2349 if (ctx->flags & IORING_SETUP_SQPOLL)
2350 io_sq_thread_drop_mm_files();
2351 }
2352
2353 static void io_req_task_submit(struct callback_head *cb)
2354 {
2355 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2356
2357 __io_req_task_submit(req);
2358 }
2359
2360 static void io_req_task_queue(struct io_kiocb *req)
2361 {
2362 int ret;
2363
2364 req->task_work.func = io_req_task_submit;
2365 ret = io_req_task_work_add(req);
2366 if (unlikely(ret)) {
2367 percpu_ref_get(&req->ctx->refs);
2368 io_req_task_work_add_fallback(req, io_req_task_cancel);
2369 }
2370 }
2371
2372 static inline void io_queue_next(struct io_kiocb *req)
2373 {
2374 struct io_kiocb *nxt = io_req_find_next(req);
2375
2376 if (nxt)
2377 io_req_task_queue(nxt);
2378 }
2379
2380 static void io_free_req(struct io_kiocb *req)
2381 {
2382 io_queue_next(req);
2383 __io_free_req(req);
2384 }
2385
2386 struct req_batch {
2387 struct task_struct *task;
2388 int task_refs;
2389 int ctx_refs;
2390 };
2391
2392 static inline void io_init_req_batch(struct req_batch *rb)
2393 {
2394 rb->task_refs = 0;
2395 rb->ctx_refs = 0;
2396 rb->task = NULL;
2397 }
2398
2399 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2400 struct req_batch *rb)
2401 {
2402 if (rb->task)
2403 io_put_task(rb->task, rb->task_refs);
2404 if (rb->ctx_refs)
2405 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2406 }
2407
2408 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2409 struct io_submit_state *state)
2410 {
2411 io_queue_next(req);
2412
2413 if (req->task != rb->task) {
2414 if (rb->task)
2415 io_put_task(rb->task, rb->task_refs);
2416 rb->task = req->task;
2417 rb->task_refs = 0;
2418 }
2419 rb->task_refs++;
2420 rb->ctx_refs++;
2421
2422 io_dismantle_req(req);
2423 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2424 state->reqs[state->free_reqs++] = req;
2425 else
2426 list_add(&req->compl.list, &state->comp.free_list);
2427 }
2428
2429 static void io_submit_flush_completions(struct io_comp_state *cs,
2430 struct io_ring_ctx *ctx)
2431 {
2432 int i, nr = cs->nr;
2433 struct io_kiocb *req;
2434 struct req_batch rb;
2435
2436 io_init_req_batch(&rb);
2437 spin_lock_irq(&ctx->completion_lock);
2438 for (i = 0; i < nr; i++) {
2439 req = cs->reqs[i];
2440 __io_cqring_fill_event(req, req->result, req->compl.cflags);
2441 }
2442 io_commit_cqring(ctx);
2443 spin_unlock_irq(&ctx->completion_lock);
2444
2445 io_cqring_ev_posted(ctx);
2446 for (i = 0; i < nr; i++) {
2447 req = cs->reqs[i];
2448
2449 /* submission and completion refs */
2450 if (refcount_sub_and_test(2, &req->refs))
2451 io_req_free_batch(&rb, req, &ctx->submit_state);
2452 }
2453
2454 io_req_free_batch_finish(ctx, &rb);
2455 cs->nr = 0;
2456 }
2457
2458 /*
2459 * Drop reference to request, return next in chain (if there is one) if this
2460 * was the last reference to this request.
2461 */
2462 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2463 {
2464 struct io_kiocb *nxt = NULL;
2465
2466 if (refcount_dec_and_test(&req->refs)) {
2467 nxt = io_req_find_next(req);
2468 __io_free_req(req);
2469 }
2470 return nxt;
2471 }
2472
2473 static void io_put_req(struct io_kiocb *req)
2474 {
2475 if (refcount_dec_and_test(&req->refs))
2476 io_free_req(req);
2477 }
2478
2479 static void io_put_req_deferred_cb(struct callback_head *cb)
2480 {
2481 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2482
2483 io_free_req(req);
2484 }
2485
2486 static void io_free_req_deferred(struct io_kiocb *req)
2487 {
2488 int ret;
2489
2490 req->task_work.func = io_put_req_deferred_cb;
2491 ret = io_req_task_work_add(req);
2492 if (unlikely(ret))
2493 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2494 }
2495
2496 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2497 {
2498 if (refcount_sub_and_test(refs, &req->refs))
2499 io_free_req_deferred(req);
2500 }
2501
2502 static void io_double_put_req(struct io_kiocb *req)
2503 {
2504 /* drop both submit and complete references */
2505 if (refcount_sub_and_test(2, &req->refs))
2506 io_free_req(req);
2507 }
2508
2509 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2510 {
2511 /* See comment at the top of this file */
2512 smp_rmb();
2513 return __io_cqring_events(ctx);
2514 }
2515
2516 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2517 {
2518 struct io_rings *rings = ctx->rings;
2519
2520 /* make sure SQ entry isn't read before tail */
2521 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2522 }
2523
2524 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2525 {
2526 unsigned int cflags;
2527
2528 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2529 cflags |= IORING_CQE_F_BUFFER;
2530 req->flags &= ~REQ_F_BUFFER_SELECTED;
2531 kfree(kbuf);
2532 return cflags;
2533 }
2534
2535 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2536 {
2537 struct io_buffer *kbuf;
2538
2539 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2540 return io_put_kbuf(req, kbuf);
2541 }
2542
2543 static inline bool io_run_task_work(void)
2544 {
2545 /*
2546 * Not safe to run on exiting task, and the task_work handling will
2547 * not add work to such a task.
2548 */
2549 if (unlikely(current->flags & PF_EXITING))
2550 return false;
2551 if (current->task_works) {
2552 __set_current_state(TASK_RUNNING);
2553 task_work_run();
2554 return true;
2555 }
2556
2557 return false;
2558 }
2559
2560 /*
2561 * Find and free completed poll iocbs
2562 */
2563 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2564 struct list_head *done)
2565 {
2566 struct req_batch rb;
2567 struct io_kiocb *req;
2568
2569 /* order with ->result store in io_complete_rw_iopoll() */
2570 smp_rmb();
2571
2572 io_init_req_batch(&rb);
2573 while (!list_empty(done)) {
2574 int cflags = 0;
2575
2576 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2577 list_del(&req->inflight_entry);
2578
2579 if (READ_ONCE(req->result) == -EAGAIN) {
2580 req->iopoll_completed = 0;
2581 if (io_rw_reissue(req))
2582 continue;
2583 }
2584
2585 if (req->flags & REQ_F_BUFFER_SELECTED)
2586 cflags = io_put_rw_kbuf(req);
2587
2588 __io_cqring_fill_event(req, req->result, cflags);
2589 (*nr_events)++;
2590
2591 if (refcount_dec_and_test(&req->refs))
2592 io_req_free_batch(&rb, req, &ctx->submit_state);
2593 }
2594
2595 io_commit_cqring(ctx);
2596 io_cqring_ev_posted_iopoll(ctx);
2597 io_req_free_batch_finish(ctx, &rb);
2598 }
2599
2600 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2601 long min)
2602 {
2603 struct io_kiocb *req, *tmp;
2604 LIST_HEAD(done);
2605 bool spin;
2606 int ret;
2607
2608 /*
2609 * Only spin for completions if we don't have multiple devices hanging
2610 * off our complete list, and we're under the requested amount.
2611 */
2612 spin = !ctx->poll_multi_file && *nr_events < min;
2613
2614 ret = 0;
2615 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2616 struct kiocb *kiocb = &req->rw.kiocb;
2617
2618 /*
2619 * Move completed and retryable entries to our local lists.
2620 * If we find a request that requires polling, break out
2621 * and complete those lists first, if we have entries there.
2622 */
2623 if (READ_ONCE(req->iopoll_completed)) {
2624 list_move_tail(&req->inflight_entry, &done);
2625 continue;
2626 }
2627 if (!list_empty(&done))
2628 break;
2629
2630 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2631 if (ret < 0)
2632 break;
2633
2634 /* iopoll may have completed current req */
2635 if (READ_ONCE(req->iopoll_completed))
2636 list_move_tail(&req->inflight_entry, &done);
2637
2638 if (ret && spin)
2639 spin = false;
2640 ret = 0;
2641 }
2642
2643 if (!list_empty(&done))
2644 io_iopoll_complete(ctx, nr_events, &done);
2645
2646 return ret;
2647 }
2648
2649 /*
2650 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2651 * non-spinning poll check - we'll still enter the driver poll loop, but only
2652 * as a non-spinning completion check.
2653 */
2654 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2655 long min)
2656 {
2657 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2658 int ret;
2659
2660 ret = io_do_iopoll(ctx, nr_events, min);
2661 if (ret < 0)
2662 return ret;
2663 if (*nr_events >= min)
2664 return 0;
2665 }
2666
2667 return 1;
2668 }
2669
2670 /*
2671 * We can't just wait for polled events to come to us, we have to actively
2672 * find and complete them.
2673 */
2674 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2675 {
2676 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2677 return;
2678
2679 mutex_lock(&ctx->uring_lock);
2680 while (!list_empty(&ctx->iopoll_list)) {
2681 unsigned int nr_events = 0;
2682
2683 io_do_iopoll(ctx, &nr_events, 0);
2684
2685 /* let it sleep and repeat later if can't complete a request */
2686 if (nr_events == 0)
2687 break;
2688 /*
2689 * Ensure we allow local-to-the-cpu processing to take place,
2690 * in this case we need to ensure that we reap all events.
2691 * Also let task_work, etc. to progress by releasing the mutex
2692 */
2693 if (need_resched()) {
2694 mutex_unlock(&ctx->uring_lock);
2695 cond_resched();
2696 mutex_lock(&ctx->uring_lock);
2697 }
2698 }
2699 mutex_unlock(&ctx->uring_lock);
2700 }
2701
2702 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2703 {
2704 unsigned int nr_events = 0;
2705 int iters = 0, ret = 0;
2706
2707 /*
2708 * We disallow the app entering submit/complete with polling, but we
2709 * still need to lock the ring to prevent racing with polled issue
2710 * that got punted to a workqueue.
2711 */
2712 mutex_lock(&ctx->uring_lock);
2713 do {
2714 /*
2715 * Don't enter poll loop if we already have events pending.
2716 * If we do, we can potentially be spinning for commands that
2717 * already triggered a CQE (eg in error).
2718 */
2719 if (test_bit(0, &ctx->cq_check_overflow))
2720 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2721 if (io_cqring_events(ctx))
2722 break;
2723
2724 /*
2725 * If a submit got punted to a workqueue, we can have the
2726 * application entering polling for a command before it gets
2727 * issued. That app will hold the uring_lock for the duration
2728 * of the poll right here, so we need to take a breather every
2729 * now and then to ensure that the issue has a chance to add
2730 * the poll to the issued list. Otherwise we can spin here
2731 * forever, while the workqueue is stuck trying to acquire the
2732 * very same mutex.
2733 */
2734 if (!(++iters & 7)) {
2735 mutex_unlock(&ctx->uring_lock);
2736 io_run_task_work();
2737 mutex_lock(&ctx->uring_lock);
2738 }
2739
2740 ret = io_iopoll_getevents(ctx, &nr_events, min);
2741 if (ret <= 0)
2742 break;
2743 ret = 0;
2744 } while (min && !nr_events && !need_resched());
2745
2746 mutex_unlock(&ctx->uring_lock);
2747 return ret;
2748 }
2749
2750 static void kiocb_end_write(struct io_kiocb *req)
2751 {
2752 /*
2753 * Tell lockdep we inherited freeze protection from submission
2754 * thread.
2755 */
2756 if (req->flags & REQ_F_ISREG) {
2757 struct inode *inode = file_inode(req->file);
2758
2759 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2760 }
2761 file_end_write(req->file);
2762 }
2763
2764 #ifdef CONFIG_BLOCK
2765 static bool io_resubmit_prep(struct io_kiocb *req)
2766 {
2767 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2768 int rw, ret;
2769 struct iov_iter iter;
2770
2771 /* already prepared */
2772 if (req->async_data)
2773 return true;
2774
2775 switch (req->opcode) {
2776 case IORING_OP_READV:
2777 case IORING_OP_READ_FIXED:
2778 case IORING_OP_READ:
2779 rw = READ;
2780 break;
2781 case IORING_OP_WRITEV:
2782 case IORING_OP_WRITE_FIXED:
2783 case IORING_OP_WRITE:
2784 rw = WRITE;
2785 break;
2786 default:
2787 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2788 req->opcode);
2789 return false;
2790 }
2791
2792 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2793 if (ret < 0)
2794 return false;
2795 return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2796 }
2797 #endif
2798
2799 static bool io_rw_reissue(struct io_kiocb *req)
2800 {
2801 #ifdef CONFIG_BLOCK
2802 umode_t mode = file_inode(req->file)->i_mode;
2803 int ret;
2804
2805 if (!S_ISBLK(mode) && !S_ISREG(mode))
2806 return false;
2807 if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
2808 return false;
2809
2810 lockdep_assert_held(&req->ctx->uring_lock);
2811
2812 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2813
2814 if (!ret && io_resubmit_prep(req)) {
2815 refcount_inc(&req->refs);
2816 io_queue_async_work(req);
2817 return true;
2818 }
2819 req_set_fail_links(req);
2820 #endif
2821 return false;
2822 }
2823
2824 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2825 unsigned int issue_flags)
2826 {
2827 int cflags = 0;
2828
2829 if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
2830 return;
2831 if (res != req->result)
2832 req_set_fail_links(req);
2833
2834 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2835 kiocb_end_write(req);
2836 if (req->flags & REQ_F_BUFFER_SELECTED)
2837 cflags = io_put_rw_kbuf(req);
2838 __io_req_complete(req, issue_flags, res, cflags);
2839 }
2840
2841 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2842 {
2843 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2844
2845 __io_complete_rw(req, res, res2, 0);
2846 }
2847
2848 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2849 {
2850 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2851
2852 if (kiocb->ki_flags & IOCB_WRITE)
2853 kiocb_end_write(req);
2854
2855 if (res != -EAGAIN && res != req->result)
2856 req_set_fail_links(req);
2857
2858 WRITE_ONCE(req->result, res);
2859 /* order with io_poll_complete() checking ->result */
2860 smp_wmb();
2861 WRITE_ONCE(req->iopoll_completed, 1);
2862 }
2863
2864 /*
2865 * After the iocb has been issued, it's safe to be found on the poll list.
2866 * Adding the kiocb to the list AFTER submission ensures that we don't
2867 * find it from a io_iopoll_getevents() thread before the issuer is done
2868 * accessing the kiocb cookie.
2869 */
2870 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2871 {
2872 struct io_ring_ctx *ctx = req->ctx;
2873
2874 /*
2875 * Track whether we have multiple files in our lists. This will impact
2876 * how we do polling eventually, not spinning if we're on potentially
2877 * different devices.
2878 */
2879 if (list_empty(&ctx->iopoll_list)) {
2880 ctx->poll_multi_file = false;
2881 } else if (!ctx->poll_multi_file) {
2882 struct io_kiocb *list_req;
2883
2884 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2885 inflight_entry);
2886 if (list_req->file != req->file)
2887 ctx->poll_multi_file = true;
2888 }
2889
2890 /*
2891 * For fast devices, IO may have already completed. If it has, add
2892 * it to the front so we find it first.
2893 */
2894 if (READ_ONCE(req->iopoll_completed))
2895 list_add(&req->inflight_entry, &ctx->iopoll_list);
2896 else
2897 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2898
2899 /*
2900 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2901 * task context or in io worker task context. If current task context is
2902 * sq thread, we don't need to check whether should wake up sq thread.
2903 */
2904 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2905 wq_has_sleeper(&ctx->sq_data->wait))
2906 wake_up(&ctx->sq_data->wait);
2907 }
2908
2909 static inline void io_state_file_put(struct io_submit_state *state)
2910 {
2911 if (state->file_refs) {
2912 fput_many(state->file, state->file_refs);
2913 state->file_refs = 0;
2914 }
2915 }
2916
2917 /*
2918 * Get as many references to a file as we have IOs left in this submission,
2919 * assuming most submissions are for one file, or at least that each file
2920 * has more than one submission.
2921 */
2922 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2923 {
2924 if (!state)
2925 return fget(fd);
2926
2927 if (state->file_refs) {
2928 if (state->fd == fd) {
2929 state->file_refs--;
2930 return state->file;
2931 }
2932 io_state_file_put(state);
2933 }
2934 state->file = fget_many(fd, state->ios_left);
2935 if (unlikely(!state->file))
2936 return NULL;
2937
2938 state->fd = fd;
2939 state->file_refs = state->ios_left - 1;
2940 return state->file;
2941 }
2942
2943 static bool io_bdev_nowait(struct block_device *bdev)
2944 {
2945 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2946 }
2947
2948 /*
2949 * If we tracked the file through the SCM inflight mechanism, we could support
2950 * any file. For now, just ensure that anything potentially problematic is done
2951 * inline.
2952 */
2953 static bool io_file_supports_async(struct file *file, int rw)
2954 {
2955 umode_t mode = file_inode(file)->i_mode;
2956
2957 if (S_ISBLK(mode)) {
2958 if (IS_ENABLED(CONFIG_BLOCK) &&
2959 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2960 return true;
2961 return false;
2962 }
2963 if (S_ISCHR(mode) || S_ISSOCK(mode))
2964 return true;
2965 if (S_ISREG(mode)) {
2966 if (IS_ENABLED(CONFIG_BLOCK) &&
2967 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2968 file->f_op != &io_uring_fops)
2969 return true;
2970 return false;
2971 }
2972
2973 /* any ->read/write should understand O_NONBLOCK */
2974 if (file->f_flags & O_NONBLOCK)
2975 return true;
2976
2977 if (!(file->f_mode & FMODE_NOWAIT))
2978 return false;
2979
2980 if (rw == READ)
2981 return file->f_op->read_iter != NULL;
2982
2983 return file->f_op->write_iter != NULL;
2984 }
2985
2986 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2987 {
2988 struct io_ring_ctx *ctx = req->ctx;
2989 struct kiocb *kiocb = &req->rw.kiocb;
2990 struct file *file = req->file;
2991 unsigned ioprio;
2992 int ret;
2993
2994 if (S_ISREG(file_inode(file)->i_mode))
2995 req->flags |= REQ_F_ISREG;
2996
2997 kiocb->ki_pos = READ_ONCE(sqe->off);
2998 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2999 req->flags |= REQ_F_CUR_POS;
3000 kiocb->ki_pos = file->f_pos;
3001 }
3002 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
3003 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
3004 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
3005 if (unlikely(ret))
3006 return ret;
3007
3008 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
3009 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
3010 req->flags |= REQ_F_NOWAIT;
3011
3012 ioprio = READ_ONCE(sqe->ioprio);
3013 if (ioprio) {
3014 ret = ioprio_check_cap(ioprio);
3015 if (ret)
3016 return ret;
3017
3018 kiocb->ki_ioprio = ioprio;
3019 } else
3020 kiocb->ki_ioprio = get_current_ioprio();
3021
3022 if (ctx->flags & IORING_SETUP_IOPOLL) {
3023 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3024 !kiocb->ki_filp->f_op->iopoll)
3025 return -EOPNOTSUPP;
3026
3027 kiocb->ki_flags |= IOCB_HIPRI;
3028 kiocb->ki_complete = io_complete_rw_iopoll;
3029 req->iopoll_completed = 0;
3030 } else {
3031 if (kiocb->ki_flags & IOCB_HIPRI)
3032 return -EINVAL;
3033 kiocb->ki_complete = io_complete_rw;
3034 }
3035
3036 req->rw.addr = READ_ONCE(sqe->addr);
3037 req->rw.len = READ_ONCE(sqe->len);
3038 req->buf_index = READ_ONCE(sqe->buf_index);
3039 return 0;
3040 }
3041
3042 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3043 {
3044 switch (ret) {
3045 case -EIOCBQUEUED:
3046 break;
3047 case -ERESTARTSYS:
3048 case -ERESTARTNOINTR:
3049 case -ERESTARTNOHAND:
3050 case -ERESTART_RESTARTBLOCK:
3051 /*
3052 * We can't just restart the syscall, since previously
3053 * submitted sqes may already be in progress. Just fail this
3054 * IO with EINTR.
3055 */
3056 ret = -EINTR;
3057 fallthrough;
3058 default:
3059 kiocb->ki_complete(kiocb, ret, 0);
3060 }
3061 }
3062
3063 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3064 unsigned int issue_flags)
3065 {
3066 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3067 struct io_async_rw *io = req->async_data;
3068
3069 /* add previously done IO, if any */
3070 if (io && io->bytes_done > 0) {
3071 if (ret < 0)
3072 ret = io->bytes_done;
3073 else
3074 ret += io->bytes_done;
3075 }
3076
3077 if (req->flags & REQ_F_CUR_POS)
3078 req->file->f_pos = kiocb->ki_pos;
3079 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3080 __io_complete_rw(req, ret, 0, issue_flags);
3081 else
3082 io_rw_done(kiocb, ret);
3083 }
3084
3085 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3086 {
3087 struct io_ring_ctx *ctx = req->ctx;
3088 size_t len = req->rw.len;
3089 struct io_mapped_ubuf *imu;
3090 u16 index, buf_index = req->buf_index;
3091 size_t offset;
3092 u64 buf_addr;
3093
3094 if (unlikely(buf_index >= ctx->nr_user_bufs))
3095 return -EFAULT;
3096 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3097 imu = &ctx->user_bufs[index];
3098 buf_addr = req->rw.addr;
3099
3100 /* overflow */
3101 if (buf_addr + len < buf_addr)
3102 return -EFAULT;
3103 /* not inside the mapped region */
3104 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3105 return -EFAULT;
3106
3107 /*
3108 * May not be a start of buffer, set size appropriately
3109 * and advance us to the beginning.
3110 */
3111 offset = buf_addr - imu->ubuf;
3112 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3113
3114 if (offset) {
3115 /*
3116 * Don't use iov_iter_advance() here, as it's really slow for
3117 * using the latter parts of a big fixed buffer - it iterates
3118 * over each segment manually. We can cheat a bit here, because
3119 * we know that:
3120 *
3121 * 1) it's a BVEC iter, we set it up
3122 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3123 * first and last bvec
3124 *
3125 * So just find our index, and adjust the iterator afterwards.
3126 * If the offset is within the first bvec (or the whole first
3127 * bvec, just use iov_iter_advance(). This makes it easier
3128 * since we can just skip the first segment, which may not
3129 * be PAGE_SIZE aligned.
3130 */
3131 const struct bio_vec *bvec = imu->bvec;
3132
3133 if (offset <= bvec->bv_len) {
3134 iov_iter_advance(iter, offset);
3135 } else {
3136 unsigned long seg_skip;
3137
3138 /* skip first vec */
3139 offset -= bvec->bv_len;
3140 seg_skip = 1 + (offset >> PAGE_SHIFT);
3141
3142 iter->bvec = bvec + seg_skip;
3143 iter->nr_segs -= seg_skip;
3144 iter->count -= bvec->bv_len + offset;
3145 iter->iov_offset = offset & ~PAGE_MASK;
3146 }
3147 }
3148
3149 return 0;
3150 }
3151
3152 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3153 {
3154 if (needs_lock)
3155 mutex_unlock(&ctx->uring_lock);
3156 }
3157
3158 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3159 {
3160 /*
3161 * "Normal" inline submissions always hold the uring_lock, since we
3162 * grab it from the system call. Same is true for the SQPOLL offload.
3163 * The only exception is when we've detached the request and issue it
3164 * from an async worker thread, grab the lock for that case.
3165 */
3166 if (needs_lock)
3167 mutex_lock(&ctx->uring_lock);
3168 }
3169
3170 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3171 int bgid, struct io_buffer *kbuf,
3172 bool needs_lock)
3173 {
3174 struct io_buffer *head;
3175
3176 if (req->flags & REQ_F_BUFFER_SELECTED)
3177 return kbuf;
3178
3179 io_ring_submit_lock(req->ctx, needs_lock);
3180
3181 lockdep_assert_held(&req->ctx->uring_lock);
3182
3183 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3184 if (head) {
3185 if (!list_empty(&head->list)) {
3186 kbuf = list_last_entry(&head->list, struct io_buffer,
3187 list);
3188 list_del(&kbuf->list);
3189 } else {
3190 kbuf = head;
3191 idr_remove(&req->ctx->io_buffer_idr, bgid);
3192 }
3193 if (*len > kbuf->len)
3194 *len = kbuf->len;
3195 } else {
3196 kbuf = ERR_PTR(-ENOBUFS);
3197 }
3198
3199 io_ring_submit_unlock(req->ctx, needs_lock);
3200
3201 return kbuf;
3202 }
3203
3204 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3205 bool needs_lock)
3206 {
3207 struct io_buffer *kbuf;
3208 u16 bgid;
3209
3210 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3211 bgid = req->buf_index;
3212 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3213 if (IS_ERR(kbuf))
3214 return kbuf;
3215 req->rw.addr = (u64) (unsigned long) kbuf;
3216 req->flags |= REQ_F_BUFFER_SELECTED;
3217 return u64_to_user_ptr(kbuf->addr);
3218 }
3219
3220 #ifdef CONFIG_COMPAT
3221 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3222 bool needs_lock)
3223 {
3224 struct compat_iovec __user *uiov;
3225 compat_ssize_t clen;
3226 void __user *buf;
3227 ssize_t len;
3228
3229 uiov = u64_to_user_ptr(req->rw.addr);
3230 if (!access_ok(uiov, sizeof(*uiov)))
3231 return -EFAULT;
3232 if (__get_user(clen, &uiov->iov_len))
3233 return -EFAULT;
3234 if (clen < 0)
3235 return -EINVAL;
3236
3237 len = clen;
3238 buf = io_rw_buffer_select(req, &len, needs_lock);
3239 if (IS_ERR(buf))
3240 return PTR_ERR(buf);
3241 iov[0].iov_base = buf;
3242 iov[0].iov_len = (compat_size_t) len;
3243 return 0;
3244 }
3245 #endif
3246
3247 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3248 bool needs_lock)
3249 {
3250 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3251 void __user *buf;
3252 ssize_t len;
3253
3254 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3255 return -EFAULT;
3256
3257 len = iov[0].iov_len;
3258 if (len < 0)
3259 return -EINVAL;
3260 buf = io_rw_buffer_select(req, &len, needs_lock);
3261 if (IS_ERR(buf))
3262 return PTR_ERR(buf);
3263 iov[0].iov_base = buf;
3264 iov[0].iov_len = len;
3265 return 0;
3266 }
3267
3268 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3269 bool needs_lock)
3270 {
3271 if (req->flags & REQ_F_BUFFER_SELECTED) {
3272 struct io_buffer *kbuf;
3273
3274 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3275 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3276 iov[0].iov_len = kbuf->len;
3277 return 0;
3278 }
3279 if (req->rw.len != 1)
3280 return -EINVAL;
3281
3282 #ifdef CONFIG_COMPAT
3283 if (req->ctx->compat)
3284 return io_compat_import(req, iov, needs_lock);
3285 #endif
3286
3287 return __io_iov_buffer_select(req, iov, needs_lock);
3288 }
3289
3290 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3291 struct iov_iter *iter, bool needs_lock)
3292 {
3293 void __user *buf = u64_to_user_ptr(req->rw.addr);
3294 size_t sqe_len = req->rw.len;
3295 u8 opcode = req->opcode;
3296 ssize_t ret;
3297
3298 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3299 *iovec = NULL;
3300 return io_import_fixed(req, rw, iter);
3301 }
3302
3303 /* buffer index only valid with fixed read/write, or buffer select */
3304 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3305 return -EINVAL;
3306
3307 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3308 if (req->flags & REQ_F_BUFFER_SELECT) {
3309 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3310 if (IS_ERR(buf))
3311 return PTR_ERR(buf);
3312 req->rw.len = sqe_len;
3313 }
3314
3315 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3316 *iovec = NULL;
3317 return ret;
3318 }
3319
3320 if (req->flags & REQ_F_BUFFER_SELECT) {
3321 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3322 if (!ret)
3323 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3324 *iovec = NULL;
3325 return ret;
3326 }
3327
3328 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3329 req->ctx->compat);
3330 }
3331
3332 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3333 {
3334 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3335 }
3336
3337 /*
3338 * For files that don't have ->read_iter() and ->write_iter(), handle them
3339 * by looping over ->read() or ->write() manually.
3340 */
3341 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3342 {
3343 struct kiocb *kiocb = &req->rw.kiocb;
3344 struct file *file = req->file;
3345 ssize_t ret = 0;
3346
3347 /*
3348 * Don't support polled IO through this interface, and we can't
3349 * support non-blocking either. For the latter, this just causes
3350 * the kiocb to be handled from an async context.
3351 */
3352 if (kiocb->ki_flags & IOCB_HIPRI)
3353 return -EOPNOTSUPP;
3354 if (kiocb->ki_flags & IOCB_NOWAIT)
3355 return -EAGAIN;
3356
3357 while (iov_iter_count(iter)) {
3358 struct iovec iovec;
3359 ssize_t nr;
3360
3361 if (!iov_iter_is_bvec(iter)) {
3362 iovec = iov_iter_iovec(iter);
3363 } else {
3364 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3365 iovec.iov_len = req->rw.len;
3366 }
3367
3368 if (rw == READ) {
3369 nr = file->f_op->read(file, iovec.iov_base,
3370 iovec.iov_len, io_kiocb_ppos(kiocb));
3371 } else {
3372 nr = file->f_op->write(file, iovec.iov_base,
3373 iovec.iov_len, io_kiocb_ppos(kiocb));
3374 }
3375
3376 if (nr < 0) {
3377 if (!ret)
3378 ret = nr;
3379 break;
3380 }
3381 ret += nr;
3382 if (nr != iovec.iov_len)
3383 break;
3384 req->rw.len -= nr;
3385 req->rw.addr += nr;
3386 iov_iter_advance(iter, nr);
3387 }
3388
3389 return ret;
3390 }
3391
3392 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3393 const struct iovec *fast_iov, struct iov_iter *iter)
3394 {
3395 struct io_async_rw *rw = req->async_data;
3396
3397 memcpy(&rw->iter, iter, sizeof(*iter));
3398 rw->free_iovec = iovec;
3399 rw->bytes_done = 0;
3400 /* can only be fixed buffers, no need to do anything */
3401 if (iov_iter_is_bvec(iter))
3402 return;
3403 if (!iovec) {
3404 unsigned iov_off = 0;
3405
3406 rw->iter.iov = rw->fast_iov;
3407 if (iter->iov != fast_iov) {
3408 iov_off = iter->iov - fast_iov;
3409 rw->iter.iov += iov_off;
3410 }
3411 if (rw->fast_iov != fast_iov)
3412 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3413 sizeof(struct iovec) * iter->nr_segs);
3414 } else {
3415 req->flags |= REQ_F_NEED_CLEANUP;
3416 }
3417 }
3418
3419 static inline int __io_alloc_async_data(struct io_kiocb *req)
3420 {
3421 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3422 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3423 return req->async_data == NULL;
3424 }
3425
3426 static int io_alloc_async_data(struct io_kiocb *req)
3427 {
3428 if (!io_op_defs[req->opcode].needs_async_data)
3429 return 0;
3430
3431 return __io_alloc_async_data(req);
3432 }
3433
3434 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3435 const struct iovec *fast_iov,
3436 struct iov_iter *iter, bool force)
3437 {
3438 if (!force && !io_op_defs[req->opcode].needs_async_data)
3439 return 0;
3440 if (!req->async_data) {
3441 if (__io_alloc_async_data(req)) {
3442 kfree(iovec);
3443 return -ENOMEM;
3444 }
3445
3446 io_req_map_rw(req, iovec, fast_iov, iter);
3447 }
3448 return 0;
3449 }
3450
3451 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3452 {
3453 struct io_async_rw *iorw = req->async_data;
3454 struct iovec *iov = iorw->fast_iov;
3455 int ret;
3456
3457 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3458 if (unlikely(ret < 0))
3459 return ret;
3460
3461 iorw->bytes_done = 0;
3462 iorw->free_iovec = iov;
3463 if (iov)
3464 req->flags |= REQ_F_NEED_CLEANUP;
3465 return 0;
3466 }
3467
3468 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3469 {
3470 ssize_t ret;
3471
3472 ret = io_prep_rw(req, sqe);
3473 if (ret)
3474 return ret;
3475
3476 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3477 return -EBADF;
3478
3479 /* either don't need iovec imported or already have it */
3480 if (!req->async_data)
3481 return 0;
3482 return io_rw_prep_async(req, READ);
3483 }
3484
3485 /*
3486 * This is our waitqueue callback handler, registered through lock_page_async()
3487 * when we initially tried to do the IO with the iocb armed our waitqueue.
3488 * This gets called when the page is unlocked, and we generally expect that to
3489 * happen when the page IO is completed and the page is now uptodate. This will
3490 * queue a task_work based retry of the operation, attempting to copy the data
3491 * again. If the latter fails because the page was NOT uptodate, then we will
3492 * do a thread based blocking retry of the operation. That's the unexpected
3493 * slow path.
3494 */
3495 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3496 int sync, void *arg)
3497 {
3498 struct wait_page_queue *wpq;
3499 struct io_kiocb *req = wait->private;
3500 struct wait_page_key *key = arg;
3501
3502 wpq = container_of(wait, struct wait_page_queue, wait);
3503
3504 if (!wake_page_match(wpq, key))
3505 return 0;
3506
3507 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3508 list_del_init(&wait->entry);
3509
3510 /* submit ref gets dropped, acquire a new one */
3511 refcount_inc(&req->refs);
3512 io_req_task_queue(req);
3513 return 1;
3514 }
3515
3516 /*
3517 * This controls whether a given IO request should be armed for async page
3518 * based retry. If we return false here, the request is handed to the async
3519 * worker threads for retry. If we're doing buffered reads on a regular file,
3520 * we prepare a private wait_page_queue entry and retry the operation. This
3521 * will either succeed because the page is now uptodate and unlocked, or it
3522 * will register a callback when the page is unlocked at IO completion. Through
3523 * that callback, io_uring uses task_work to setup a retry of the operation.
3524 * That retry will attempt the buffered read again. The retry will generally
3525 * succeed, or in rare cases where it fails, we then fall back to using the
3526 * async worker threads for a blocking retry.
3527 */
3528 static bool io_rw_should_retry(struct io_kiocb *req)
3529 {
3530 struct io_async_rw *rw = req->async_data;
3531 struct wait_page_queue *wait = &rw->wpq;
3532 struct kiocb *kiocb = &req->rw.kiocb;
3533
3534 /* never retry for NOWAIT, we just complete with -EAGAIN */
3535 if (req->flags & REQ_F_NOWAIT)
3536 return false;
3537
3538 /* Only for buffered IO */
3539 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3540 return false;
3541
3542 /*
3543 * just use poll if we can, and don't attempt if the fs doesn't
3544 * support callback based unlocks
3545 */
3546 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3547 return false;
3548
3549 wait->wait.func = io_async_buf_func;
3550 wait->wait.private = req;
3551 wait->wait.flags = 0;
3552 INIT_LIST_HEAD(&wait->wait.entry);
3553 kiocb->ki_flags |= IOCB_WAITQ;
3554 kiocb->ki_flags &= ~IOCB_NOWAIT;
3555 kiocb->ki_waitq = wait;
3556 return true;
3557 }
3558
3559 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3560 {
3561 if (req->file->f_op->read_iter)
3562 return call_read_iter(req->file, &req->rw.kiocb, iter);
3563 else if (req->file->f_op->read)
3564 return loop_rw_iter(READ, req, iter);
3565 else
3566 return -EINVAL;
3567 }
3568
3569 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3570 {
3571 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3572 struct kiocb *kiocb = &req->rw.kiocb;
3573 struct iov_iter __iter, *iter = &__iter;
3574 struct io_async_rw *rw = req->async_data;
3575 ssize_t io_size, ret, ret2;
3576 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3577
3578 if (rw) {
3579 iter = &rw->iter;
3580 iovec = NULL;
3581 } else {
3582 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3583 if (ret < 0)
3584 return ret;
3585 }
3586 io_size = iov_iter_count(iter);
3587 req->result = io_size;
3588
3589 /* Ensure we clear previously set non-block flag */
3590 if (!force_nonblock)
3591 kiocb->ki_flags &= ~IOCB_NOWAIT;
3592 else
3593 kiocb->ki_flags |= IOCB_NOWAIT;
3594
3595 /* If the file doesn't support async, just async punt */
3596 if (force_nonblock && !io_file_supports_async(req->file, READ)) {
3597 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3598 return ret ?: -EAGAIN;
3599 }
3600
3601 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3602 if (unlikely(ret)) {
3603 kfree(iovec);
3604 return ret;
3605 }
3606
3607 ret = io_iter_do_read(req, iter);
3608
3609 if (ret == -EIOCBQUEUED) {
3610 /* it's faster to check here then delegate to kfree */
3611 if (iovec)
3612 kfree(iovec);
3613 return 0;
3614 } else if (ret == -EAGAIN) {
3615 /* IOPOLL retry should happen for io-wq threads */
3616 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3617 goto done;
3618 /* no retry on NONBLOCK nor RWF_NOWAIT */
3619 if (req->flags & REQ_F_NOWAIT)
3620 goto done;
3621 /* some cases will consume bytes even on error returns */
3622 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3623 ret = 0;
3624 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3625 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3626 /* read all, failed, already did sync or don't want to retry */
3627 goto done;
3628 }
3629
3630 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3631 if (ret2)
3632 return ret2;
3633
3634 rw = req->async_data;
3635 /* now use our persistent iterator, if we aren't already */
3636 iter = &rw->iter;
3637
3638 do {
3639 io_size -= ret;
3640 rw->bytes_done += ret;
3641 /* if we can retry, do so with the callbacks armed */
3642 if (!io_rw_should_retry(req)) {
3643 kiocb->ki_flags &= ~IOCB_WAITQ;
3644 return -EAGAIN;
3645 }
3646
3647 /*
3648 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3649 * we get -EIOCBQUEUED, then we'll get a notification when the
3650 * desired page gets unlocked. We can also get a partial read
3651 * here, and if we do, then just retry at the new offset.
3652 */
3653 ret = io_iter_do_read(req, iter);
3654 if (ret == -EIOCBQUEUED)
3655 return 0;
3656 /* we got some bytes, but not all. retry. */
3657 } while (ret > 0 && ret < io_size);
3658 done:
3659 kiocb_done(kiocb, ret, issue_flags);
3660 return 0;
3661 }
3662
3663 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3664 {
3665 ssize_t ret;
3666
3667 ret = io_prep_rw(req, sqe);
3668 if (ret)
3669 return ret;
3670
3671 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3672 return -EBADF;
3673
3674 /* either don't need iovec imported or already have it */
3675 if (!req->async_data)
3676 return 0;
3677 return io_rw_prep_async(req, WRITE);
3678 }
3679
3680 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3681 {
3682 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3683 struct kiocb *kiocb = &req->rw.kiocb;
3684 struct iov_iter __iter, *iter = &__iter;
3685 struct io_async_rw *rw = req->async_data;
3686 ssize_t ret, ret2, io_size;
3687 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3688
3689 if (rw) {
3690 iter = &rw->iter;
3691 iovec = NULL;
3692 } else {
3693 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3694 if (ret < 0)
3695 return ret;
3696 }
3697 io_size = iov_iter_count(iter);
3698 req->result = io_size;
3699
3700 /* Ensure we clear previously set non-block flag */
3701 if (!force_nonblock)
3702 kiocb->ki_flags &= ~IOCB_NOWAIT;
3703 else
3704 kiocb->ki_flags |= IOCB_NOWAIT;
3705
3706 /* If the file doesn't support async, just async punt */
3707 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3708 goto copy_iov;
3709
3710 /* file path doesn't support NOWAIT for non-direct_IO */
3711 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3712 (req->flags & REQ_F_ISREG))
3713 goto copy_iov;
3714
3715 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3716 if (unlikely(ret))
3717 goto out_free;
3718
3719 /*
3720 * Open-code file_start_write here to grab freeze protection,
3721 * which will be released by another thread in
3722 * io_complete_rw(). Fool lockdep by telling it the lock got
3723 * released so that it doesn't complain about the held lock when
3724 * we return to userspace.
3725 */
3726 if (req->flags & REQ_F_ISREG) {
3727 sb_start_write(file_inode(req->file)->i_sb);
3728 __sb_writers_release(file_inode(req->file)->i_sb,
3729 SB_FREEZE_WRITE);
3730 }
3731 kiocb->ki_flags |= IOCB_WRITE;
3732
3733 if (req->file->f_op->write_iter)
3734 ret2 = call_write_iter(req->file, kiocb, iter);
3735 else if (req->file->f_op->write)
3736 ret2 = loop_rw_iter(WRITE, req, iter);
3737 else
3738 ret2 = -EINVAL;
3739
3740 /*
3741 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3742 * retry them without IOCB_NOWAIT.
3743 */
3744 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3745 ret2 = -EAGAIN;
3746 /* no retry on NONBLOCK nor RWF_NOWAIT */
3747 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3748 goto done;
3749 if (!force_nonblock || ret2 != -EAGAIN) {
3750 /* IOPOLL retry should happen for io-wq threads */
3751 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3752 goto copy_iov;
3753 done:
3754 kiocb_done(kiocb, ret2, issue_flags);
3755 } else {
3756 copy_iov:
3757 /* some cases will consume bytes even on error returns */
3758 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3759 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3760 return ret ?: -EAGAIN;
3761 }
3762 out_free:
3763 /* it's reportedly faster than delegating the null check to kfree() */
3764 if (iovec)
3765 kfree(iovec);
3766 return ret;
3767 }
3768
3769 static int io_renameat_prep(struct io_kiocb *req,
3770 const struct io_uring_sqe *sqe)
3771 {
3772 struct io_rename *ren = &req->rename;
3773 const char __user *oldf, *newf;
3774
3775 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3776 return -EBADF;
3777
3778 ren->old_dfd = READ_ONCE(sqe->fd);
3779 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3780 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3781 ren->new_dfd = READ_ONCE(sqe->len);
3782 ren->flags = READ_ONCE(sqe->rename_flags);
3783
3784 ren->oldpath = getname(oldf);
3785 if (IS_ERR(ren->oldpath))
3786 return PTR_ERR(ren->oldpath);
3787
3788 ren->newpath = getname(newf);
3789 if (IS_ERR(ren->newpath)) {
3790 putname(ren->oldpath);
3791 return PTR_ERR(ren->newpath);
3792 }
3793
3794 req->flags |= REQ_F_NEED_CLEANUP;
3795 return 0;
3796 }
3797
3798 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3799 {
3800 struct io_rename *ren = &req->rename;
3801 int ret;
3802
3803 if (issue_flags & IO_URING_F_NONBLOCK)
3804 return -EAGAIN;
3805
3806 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3807 ren->newpath, ren->flags);
3808
3809 req->flags &= ~REQ_F_NEED_CLEANUP;
3810 if (ret < 0)
3811 req_set_fail_links(req);
3812 io_req_complete(req, ret);
3813 return 0;
3814 }
3815
3816 static int io_unlinkat_prep(struct io_kiocb *req,
3817 const struct io_uring_sqe *sqe)
3818 {
3819 struct io_unlink *un = &req->unlink;
3820 const char __user *fname;
3821
3822 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3823 return -EBADF;
3824
3825 un->dfd = READ_ONCE(sqe->fd);
3826
3827 un->flags = READ_ONCE(sqe->unlink_flags);
3828 if (un->flags & ~AT_REMOVEDIR)
3829 return -EINVAL;
3830
3831 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3832 un->filename = getname(fname);
3833 if (IS_ERR(un->filename))
3834 return PTR_ERR(un->filename);
3835
3836 req->flags |= REQ_F_NEED_CLEANUP;
3837 return 0;
3838 }
3839
3840 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3841 {
3842 struct io_unlink *un = &req->unlink;
3843 int ret;
3844
3845 if (issue_flags & IO_URING_F_NONBLOCK)
3846 return -EAGAIN;
3847
3848 if (un->flags & AT_REMOVEDIR)
3849 ret = do_rmdir(un->dfd, un->filename);
3850 else
3851 ret = do_unlinkat(un->dfd, un->filename);
3852
3853 req->flags &= ~REQ_F_NEED_CLEANUP;
3854 if (ret < 0)
3855 req_set_fail_links(req);
3856 io_req_complete(req, ret);
3857 return 0;
3858 }
3859
3860 static int io_shutdown_prep(struct io_kiocb *req,
3861 const struct io_uring_sqe *sqe)
3862 {
3863 #if defined(CONFIG_NET)
3864 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3865 return -EINVAL;
3866 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3867 sqe->buf_index)
3868 return -EINVAL;
3869
3870 req->shutdown.how = READ_ONCE(sqe->len);
3871 return 0;
3872 #else
3873 return -EOPNOTSUPP;
3874 #endif
3875 }
3876
3877 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3878 {
3879 #if defined(CONFIG_NET)
3880 struct socket *sock;
3881 int ret;
3882
3883 if (issue_flags & IO_URING_F_NONBLOCK)
3884 return -EAGAIN;
3885
3886 sock = sock_from_file(req->file);
3887 if (unlikely(!sock))
3888 return -ENOTSOCK;
3889
3890 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3891 if (ret < 0)
3892 req_set_fail_links(req);
3893 io_req_complete(req, ret);
3894 return 0;
3895 #else
3896 return -EOPNOTSUPP;
3897 #endif
3898 }
3899
3900 static int __io_splice_prep(struct io_kiocb *req,
3901 const struct io_uring_sqe *sqe)
3902 {
3903 struct io_splice* sp = &req->splice;
3904 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3905
3906 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3907 return -EINVAL;
3908
3909 sp->file_in = NULL;
3910 sp->len = READ_ONCE(sqe->len);
3911 sp->flags = READ_ONCE(sqe->splice_flags);
3912
3913 if (unlikely(sp->flags & ~valid_flags))
3914 return -EINVAL;
3915
3916 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3917 (sp->flags & SPLICE_F_FD_IN_FIXED));
3918 if (!sp->file_in)
3919 return -EBADF;
3920 req->flags |= REQ_F_NEED_CLEANUP;
3921
3922 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3923 /*
3924 * Splice operation will be punted aync, and here need to
3925 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3926 */
3927 io_req_init_async(req);
3928 req->work.flags |= IO_WQ_WORK_UNBOUND;
3929 }
3930
3931 return 0;
3932 }
3933
3934 static int io_tee_prep(struct io_kiocb *req,
3935 const struct io_uring_sqe *sqe)
3936 {
3937 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3938 return -EINVAL;
3939 return __io_splice_prep(req, sqe);
3940 }
3941
3942 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3943 {
3944 struct io_splice *sp = &req->splice;
3945 struct file *in = sp->file_in;
3946 struct file *out = sp->file_out;
3947 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3948 long ret = 0;
3949
3950 if (issue_flags & IO_URING_F_NONBLOCK)
3951 return -EAGAIN;
3952 if (sp->len)
3953 ret = do_tee(in, out, sp->len, flags);
3954
3955 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3956 req->flags &= ~REQ_F_NEED_CLEANUP;
3957
3958 if (ret != sp->len)
3959 req_set_fail_links(req);
3960 io_req_complete(req, ret);
3961 return 0;
3962 }
3963
3964 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3965 {
3966 struct io_splice* sp = &req->splice;
3967
3968 sp->off_in = READ_ONCE(sqe->splice_off_in);
3969 sp->off_out = READ_ONCE(sqe->off);
3970 return __io_splice_prep(req, sqe);
3971 }
3972
3973 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3974 {
3975 struct io_splice *sp = &req->splice;
3976 struct file *in = sp->file_in;
3977 struct file *out = sp->file_out;
3978 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3979 loff_t *poff_in, *poff_out;
3980 long ret = 0;
3981
3982 if (issue_flags & IO_URING_F_NONBLOCK)
3983 return -EAGAIN;
3984
3985 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3986 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3987
3988 if (sp->len)
3989 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3990
3991 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3992 req->flags &= ~REQ_F_NEED_CLEANUP;
3993
3994 if (ret != sp->len)
3995 req_set_fail_links(req);
3996 io_req_complete(req, ret);
3997 return 0;
3998 }
3999
4000 /*
4001 * IORING_OP_NOP just posts a completion event, nothing else.
4002 */
4003 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4004 {
4005 struct io_ring_ctx *ctx = req->ctx;
4006
4007 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4008 return -EINVAL;
4009
4010 __io_req_complete(req, issue_flags, 0, 0);
4011 return 0;
4012 }
4013
4014 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4015 {
4016 struct io_ring_ctx *ctx = req->ctx;
4017
4018 if (!req->file)
4019 return -EBADF;
4020
4021 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4022 return -EINVAL;
4023 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4024 return -EINVAL;
4025
4026 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4027 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4028 return -EINVAL;
4029
4030 req->sync.off = READ_ONCE(sqe->off);
4031 req->sync.len = READ_ONCE(sqe->len);
4032 return 0;
4033 }
4034
4035 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4036 {
4037 loff_t end = req->sync.off + req->sync.len;
4038 int ret;
4039
4040 /* fsync always requires a blocking context */
4041 if (issue_flags & IO_URING_F_NONBLOCK)
4042 return -EAGAIN;
4043
4044 ret = vfs_fsync_range(req->file, req->sync.off,
4045 end > 0 ? end : LLONG_MAX,
4046 req->sync.flags & IORING_FSYNC_DATASYNC);
4047 if (ret < 0)
4048 req_set_fail_links(req);
4049 io_req_complete(req, ret);
4050 return 0;
4051 }
4052
4053 static int io_fallocate_prep(struct io_kiocb *req,
4054 const struct io_uring_sqe *sqe)
4055 {
4056 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4057 return -EINVAL;
4058 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4059 return -EINVAL;
4060
4061 req->sync.off = READ_ONCE(sqe->off);
4062 req->sync.len = READ_ONCE(sqe->addr);
4063 req->sync.mode = READ_ONCE(sqe->len);
4064 return 0;
4065 }
4066
4067 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4068 {
4069 int ret;
4070
4071 /* fallocate always requiring blocking context */
4072 if (issue_flags & IO_URING_F_NONBLOCK)
4073 return -EAGAIN;
4074 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4075 req->sync.len);
4076 if (ret < 0)
4077 req_set_fail_links(req);
4078 io_req_complete(req, ret);
4079 return 0;
4080 }
4081
4082 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4083 {
4084 const char __user *fname;
4085 int ret;
4086
4087 if (unlikely(sqe->ioprio || sqe->buf_index))
4088 return -EINVAL;
4089 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4090 return -EBADF;
4091
4092 /* open.how should be already initialised */
4093 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4094 req->open.how.flags |= O_LARGEFILE;
4095
4096 req->open.dfd = READ_ONCE(sqe->fd);
4097 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4098 req->open.filename = getname(fname);
4099 if (IS_ERR(req->open.filename)) {
4100 ret = PTR_ERR(req->open.filename);
4101 req->open.filename = NULL;
4102 return ret;
4103 }
4104 req->open.nofile = rlimit(RLIMIT_NOFILE);
4105 req->flags |= REQ_F_NEED_CLEANUP;
4106 return 0;
4107 }
4108
4109 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4110 {
4111 u64 flags, mode;
4112
4113 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4114 return -EINVAL;
4115 mode = READ_ONCE(sqe->len);
4116 flags = READ_ONCE(sqe->open_flags);
4117 req->open.how = build_open_how(flags, mode);
4118 return __io_openat_prep(req, sqe);
4119 }
4120
4121 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4122 {
4123 struct open_how __user *how;
4124 size_t len;
4125 int ret;
4126
4127 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4128 return -EINVAL;
4129 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4130 len = READ_ONCE(sqe->len);
4131 if (len < OPEN_HOW_SIZE_VER0)
4132 return -EINVAL;
4133
4134 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4135 len);
4136 if (ret)
4137 return ret;
4138
4139 return __io_openat_prep(req, sqe);
4140 }
4141
4142 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4143 {
4144 struct open_flags op;
4145 struct file *file;
4146 bool nonblock_set;
4147 bool resolve_nonblock;
4148 int ret;
4149
4150 ret = build_open_flags(&req->open.how, &op);
4151 if (ret)
4152 goto err;
4153 nonblock_set = op.open_flag & O_NONBLOCK;
4154 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4155 if (issue_flags & IO_URING_F_NONBLOCK) {
4156 /*
4157 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4158 * it'll always -EAGAIN
4159 */
4160 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4161 return -EAGAIN;
4162 op.lookup_flags |= LOOKUP_CACHED;
4163 op.open_flag |= O_NONBLOCK;
4164 }
4165
4166 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4167 if (ret < 0)
4168 goto err;
4169
4170 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4171 /* only retry if RESOLVE_CACHED wasn't already set by application */
4172 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
4173 file == ERR_PTR(-EAGAIN)) {
4174 /*
4175 * We could hang on to this 'fd', but seems like marginal
4176 * gain for something that is now known to be a slower path.
4177 * So just put it, and we'll get a new one when we retry.
4178 */
4179 put_unused_fd(ret);
4180 return -EAGAIN;
4181 }
4182
4183 if (IS_ERR(file)) {
4184 put_unused_fd(ret);
4185 ret = PTR_ERR(file);
4186 } else {
4187 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4188 file->f_flags &= ~O_NONBLOCK;
4189 fsnotify_open(file);
4190 fd_install(ret, file);
4191 }
4192 err:
4193 putname(req->open.filename);
4194 req->flags &= ~REQ_F_NEED_CLEANUP;
4195 if (ret < 0)
4196 req_set_fail_links(req);
4197 io_req_complete(req, ret);
4198 return 0;
4199 }
4200
4201 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4202 {
4203 return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
4204 }
4205
4206 static int io_remove_buffers_prep(struct io_kiocb *req,
4207 const struct io_uring_sqe *sqe)
4208 {
4209 struct io_provide_buf *p = &req->pbuf;
4210 u64 tmp;
4211
4212 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4213 return -EINVAL;
4214
4215 tmp = READ_ONCE(sqe->fd);
4216 if (!tmp || tmp > USHRT_MAX)
4217 return -EINVAL;
4218
4219 memset(p, 0, sizeof(*p));
4220 p->nbufs = tmp;
4221 p->bgid = READ_ONCE(sqe->buf_group);
4222 return 0;
4223 }
4224
4225 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4226 int bgid, unsigned nbufs)
4227 {
4228 unsigned i = 0;
4229
4230 /* shouldn't happen */
4231 if (!nbufs)
4232 return 0;
4233
4234 /* the head kbuf is the list itself */
4235 while (!list_empty(&buf->list)) {
4236 struct io_buffer *nxt;
4237
4238 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4239 list_del(&nxt->list);
4240 kfree(nxt);
4241 if (++i == nbufs)
4242 return i;
4243 }
4244 i++;
4245 kfree(buf);
4246 idr_remove(&ctx->io_buffer_idr, bgid);
4247
4248 return i;
4249 }
4250
4251 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4252 {
4253 struct io_provide_buf *p = &req->pbuf;
4254 struct io_ring_ctx *ctx = req->ctx;
4255 struct io_buffer *head;
4256 int ret = 0;
4257 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4258
4259 io_ring_submit_lock(ctx, !force_nonblock);
4260
4261 lockdep_assert_held(&ctx->uring_lock);
4262
4263 ret = -ENOENT;
4264 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4265 if (head)
4266 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4267 if (ret < 0)
4268 req_set_fail_links(req);
4269
4270 /* need to hold the lock to complete IOPOLL requests */
4271 if (ctx->flags & IORING_SETUP_IOPOLL) {
4272 __io_req_complete(req, issue_flags, ret, 0);
4273 io_ring_submit_unlock(ctx, !force_nonblock);
4274 } else {
4275 io_ring_submit_unlock(ctx, !force_nonblock);
4276 __io_req_complete(req, issue_flags, ret, 0);
4277 }
4278 return 0;
4279 }
4280
4281 static int io_provide_buffers_prep(struct io_kiocb *req,
4282 const struct io_uring_sqe *sqe)
4283 {
4284 struct io_provide_buf *p = &req->pbuf;
4285 u64 tmp;
4286
4287 if (sqe->ioprio || sqe->rw_flags)
4288 return -EINVAL;
4289
4290 tmp = READ_ONCE(sqe->fd);
4291 if (!tmp || tmp > USHRT_MAX)
4292 return -E2BIG;
4293 p->nbufs = tmp;
4294 p->addr = READ_ONCE(sqe->addr);
4295 p->len = READ_ONCE(sqe->len);
4296
4297 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4298 return -EFAULT;
4299
4300 p->bgid = READ_ONCE(sqe->buf_group);
4301 tmp = READ_ONCE(sqe->off);
4302 if (tmp > USHRT_MAX)
4303 return -E2BIG;
4304 p->bid = tmp;
4305 return 0;
4306 }
4307
4308 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4309 {
4310 struct io_buffer *buf;
4311 u64 addr = pbuf->addr;
4312 int i, bid = pbuf->bid;
4313
4314 for (i = 0; i < pbuf->nbufs; i++) {
4315 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4316 if (!buf)
4317 break;
4318
4319 buf->addr = addr;
4320 buf->len = pbuf->len;
4321 buf->bid = bid;
4322 addr += pbuf->len;
4323 bid++;
4324 if (!*head) {
4325 INIT_LIST_HEAD(&buf->list);
4326 *head = buf;
4327 } else {
4328 list_add_tail(&buf->list, &(*head)->list);
4329 }
4330 }
4331
4332 return i ? i : -ENOMEM;
4333 }
4334
4335 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4336 {
4337 struct io_provide_buf *p = &req->pbuf;
4338 struct io_ring_ctx *ctx = req->ctx;
4339 struct io_buffer *head, *list;
4340 int ret = 0;
4341 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4342
4343 io_ring_submit_lock(ctx, !force_nonblock);
4344
4345 lockdep_assert_held(&ctx->uring_lock);
4346
4347 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4348
4349 ret = io_add_buffers(p, &head);
4350 if (ret < 0)
4351 goto out;
4352
4353 if (!list) {
4354 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4355 GFP_KERNEL);
4356 if (ret < 0) {
4357 __io_remove_buffers(ctx, head, p->bgid, -1U);
4358 goto out;
4359 }
4360 }
4361 out:
4362 if (ret < 0)
4363 req_set_fail_links(req);
4364
4365 /* need to hold the lock to complete IOPOLL requests */
4366 if (ctx->flags & IORING_SETUP_IOPOLL) {
4367 __io_req_complete(req, issue_flags, ret, 0);
4368 io_ring_submit_unlock(ctx, !force_nonblock);
4369 } else {
4370 io_ring_submit_unlock(ctx, !force_nonblock);
4371 __io_req_complete(req, issue_flags, ret, 0);
4372 }
4373 return 0;
4374 }
4375
4376 static int io_epoll_ctl_prep(struct io_kiocb *req,
4377 const struct io_uring_sqe *sqe)
4378 {
4379 #if defined(CONFIG_EPOLL)
4380 if (sqe->ioprio || sqe->buf_index)
4381 return -EINVAL;
4382 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4383 return -EINVAL;
4384
4385 req->epoll.epfd = READ_ONCE(sqe->fd);
4386 req->epoll.op = READ_ONCE(sqe->len);
4387 req->epoll.fd = READ_ONCE(sqe->off);
4388
4389 if (ep_op_has_event(req->epoll.op)) {
4390 struct epoll_event __user *ev;
4391
4392 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4393 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4394 return -EFAULT;
4395 }
4396
4397 return 0;
4398 #else
4399 return -EOPNOTSUPP;
4400 #endif
4401 }
4402
4403 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4404 {
4405 #if defined(CONFIG_EPOLL)
4406 struct io_epoll *ie = &req->epoll;
4407 int ret;
4408 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4409
4410 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4411 if (force_nonblock && ret == -EAGAIN)
4412 return -EAGAIN;
4413
4414 if (ret < 0)
4415 req_set_fail_links(req);
4416 __io_req_complete(req, issue_flags, ret, 0);
4417 return 0;
4418 #else
4419 return -EOPNOTSUPP;
4420 #endif
4421 }
4422
4423 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4424 {
4425 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4426 if (sqe->ioprio || sqe->buf_index || sqe->off)
4427 return -EINVAL;
4428 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4429 return -EINVAL;
4430
4431 req->madvise.addr = READ_ONCE(sqe->addr);
4432 req->madvise.len = READ_ONCE(sqe->len);
4433 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4434 return 0;
4435 #else
4436 return -EOPNOTSUPP;
4437 #endif
4438 }
4439
4440 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4441 {
4442 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4443 struct io_madvise *ma = &req->madvise;
4444 int ret;
4445
4446 if (issue_flags & IO_URING_F_NONBLOCK)
4447 return -EAGAIN;
4448
4449 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4450 if (ret < 0)
4451 req_set_fail_links(req);
4452 io_req_complete(req, ret);
4453 return 0;
4454 #else
4455 return -EOPNOTSUPP;
4456 #endif
4457 }
4458
4459 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4460 {
4461 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4462 return -EINVAL;
4463 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4464 return -EINVAL;
4465
4466 req->fadvise.offset = READ_ONCE(sqe->off);
4467 req->fadvise.len = READ_ONCE(sqe->len);
4468 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4469 return 0;
4470 }
4471
4472 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4473 {
4474 struct io_fadvise *fa = &req->fadvise;
4475 int ret;
4476
4477 if (issue_flags & IO_URING_F_NONBLOCK) {
4478 switch (fa->advice) {
4479 case POSIX_FADV_NORMAL:
4480 case POSIX_FADV_RANDOM:
4481 case POSIX_FADV_SEQUENTIAL:
4482 break;
4483 default:
4484 return -EAGAIN;
4485 }
4486 }
4487
4488 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4489 if (ret < 0)
4490 req_set_fail_links(req);
4491 io_req_complete(req, ret);
4492 return 0;
4493 }
4494
4495 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4496 {
4497 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4498 return -EINVAL;
4499 if (sqe->ioprio || sqe->buf_index)
4500 return -EINVAL;
4501 if (req->flags & REQ_F_FIXED_FILE)
4502 return -EBADF;
4503
4504 req->statx.dfd = READ_ONCE(sqe->fd);
4505 req->statx.mask = READ_ONCE(sqe->len);
4506 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4507 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4508 req->statx.flags = READ_ONCE(sqe->statx_flags);
4509
4510 return 0;
4511 }
4512
4513 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4514 {
4515 struct io_statx *ctx = &req->statx;
4516 int ret;
4517
4518 if (issue_flags & IO_URING_F_NONBLOCK) {
4519 /* only need file table for an actual valid fd */
4520 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4521 req->flags |= REQ_F_NO_FILE_TABLE;
4522 return -EAGAIN;
4523 }
4524
4525 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4526 ctx->buffer);
4527
4528 if (ret < 0)
4529 req_set_fail_links(req);
4530 io_req_complete(req, ret);
4531 return 0;
4532 }
4533
4534 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4535 {
4536 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4537 return -EINVAL;
4538 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4539 sqe->rw_flags || sqe->buf_index)
4540 return -EINVAL;
4541 if (req->flags & REQ_F_FIXED_FILE)
4542 return -EBADF;
4543
4544 req->close.fd = READ_ONCE(sqe->fd);
4545 return 0;
4546 }
4547
4548 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4549 {
4550 struct files_struct *files = current->files;
4551 struct io_close *close = &req->close;
4552 struct fdtable *fdt;
4553 struct file *file;
4554 int ret;
4555
4556 file = NULL;
4557 ret = -EBADF;
4558 spin_lock(&files->file_lock);
4559 fdt = files_fdtable(files);
4560 if (close->fd >= fdt->max_fds) {
4561 spin_unlock(&files->file_lock);
4562 goto err;
4563 }
4564 file = fdt->fd[close->fd];
4565 if (!file) {
4566 spin_unlock(&files->file_lock);
4567 goto err;
4568 }
4569
4570 if (file->f_op == &io_uring_fops) {
4571 spin_unlock(&files->file_lock);
4572 file = NULL;
4573 goto err;
4574 }
4575
4576 /* if the file has a flush method, be safe and punt to async */
4577 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4578 spin_unlock(&files->file_lock);
4579 return -EAGAIN;
4580 }
4581
4582 ret = __close_fd_get_file(close->fd, &file);
4583 spin_unlock(&files->file_lock);
4584 if (ret < 0) {
4585 if (ret == -ENOENT)
4586 ret = -EBADF;
4587 goto err;
4588 }
4589
4590 /* No ->flush() or already async, safely close from here */
4591 ret = filp_close(file, current->files);
4592 err:
4593 if (ret < 0)
4594 req_set_fail_links(req);
4595 if (file)
4596 fput(file);
4597 __io_req_complete(req, issue_flags, ret, 0);
4598 return 0;
4599 }
4600
4601 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4602 {
4603 struct io_ring_ctx *ctx = req->ctx;
4604
4605 if (!req->file)
4606 return -EBADF;
4607
4608 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4609 return -EINVAL;
4610 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4611 return -EINVAL;
4612
4613 req->sync.off = READ_ONCE(sqe->off);
4614 req->sync.len = READ_ONCE(sqe->len);
4615 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4616 return 0;
4617 }
4618
4619 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4620 {
4621 int ret;
4622
4623 /* sync_file_range always requires a blocking context */
4624 if (issue_flags & IO_URING_F_NONBLOCK)
4625 return -EAGAIN;
4626
4627 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4628 req->sync.flags);
4629 if (ret < 0)
4630 req_set_fail_links(req);
4631 io_req_complete(req, ret);
4632 return 0;
4633 }
4634
4635 #if defined(CONFIG_NET)
4636 static int io_setup_async_msg(struct io_kiocb *req,
4637 struct io_async_msghdr *kmsg)
4638 {
4639 struct io_async_msghdr *async_msg = req->async_data;
4640
4641 if (async_msg)
4642 return -EAGAIN;
4643 if (io_alloc_async_data(req)) {
4644 kfree(kmsg->free_iov);
4645 return -ENOMEM;
4646 }
4647 async_msg = req->async_data;
4648 req->flags |= REQ_F_NEED_CLEANUP;
4649 memcpy(async_msg, kmsg, sizeof(*kmsg));
4650 async_msg->msg.msg_name = &async_msg->addr;
4651 /* if were using fast_iov, set it to the new one */
4652 if (!async_msg->free_iov)
4653 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4654
4655 return -EAGAIN;
4656 }
4657
4658 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4659 struct io_async_msghdr *iomsg)
4660 {
4661 iomsg->msg.msg_name = &iomsg->addr;
4662 iomsg->free_iov = iomsg->fast_iov;
4663 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4664 req->sr_msg.msg_flags, &iomsg->free_iov);
4665 }
4666
4667 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4668 {
4669 struct io_async_msghdr *async_msg = req->async_data;
4670 struct io_sr_msg *sr = &req->sr_msg;
4671 int ret;
4672
4673 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4674 return -EINVAL;
4675
4676 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4677 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4678 sr->len = READ_ONCE(sqe->len);
4679
4680 #ifdef CONFIG_COMPAT
4681 if (req->ctx->compat)
4682 sr->msg_flags |= MSG_CMSG_COMPAT;
4683 #endif
4684
4685 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4686 return 0;
4687 ret = io_sendmsg_copy_hdr(req, async_msg);
4688 if (!ret)
4689 req->flags |= REQ_F_NEED_CLEANUP;
4690 return ret;
4691 }
4692
4693 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4694 {
4695 struct io_async_msghdr iomsg, *kmsg;
4696 struct socket *sock;
4697 unsigned flags;
4698 int ret;
4699
4700 sock = sock_from_file(req->file);
4701 if (unlikely(!sock))
4702 return -ENOTSOCK;
4703
4704 kmsg = req->async_data;
4705 if (!kmsg) {
4706 ret = io_sendmsg_copy_hdr(req, &iomsg);
4707 if (ret)
4708 return ret;
4709 kmsg = &iomsg;
4710 }
4711
4712 flags = req->sr_msg.msg_flags;
4713 if (flags & MSG_DONTWAIT)
4714 req->flags |= REQ_F_NOWAIT;
4715 else if (issue_flags & IO_URING_F_NONBLOCK)
4716 flags |= MSG_DONTWAIT;
4717
4718 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4719 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4720 return io_setup_async_msg(req, kmsg);
4721 if (ret == -ERESTARTSYS)
4722 ret = -EINTR;
4723
4724 /* fast path, check for non-NULL to avoid function call */
4725 if (kmsg->free_iov)
4726 kfree(kmsg->free_iov);
4727 req->flags &= ~REQ_F_NEED_CLEANUP;
4728 if (ret < 0)
4729 req_set_fail_links(req);
4730 __io_req_complete(req, issue_flags, ret, 0);
4731 return 0;
4732 }
4733
4734 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4735 {
4736 struct io_sr_msg *sr = &req->sr_msg;
4737 struct msghdr msg;
4738 struct iovec iov;
4739 struct socket *sock;
4740 unsigned flags;
4741 int ret;
4742
4743 sock = sock_from_file(req->file);
4744 if (unlikely(!sock))
4745 return -ENOTSOCK;
4746
4747 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4748 if (unlikely(ret))
4749 return ret;
4750
4751 msg.msg_name = NULL;
4752 msg.msg_control = NULL;
4753 msg.msg_controllen = 0;
4754 msg.msg_namelen = 0;
4755
4756 flags = req->sr_msg.msg_flags;
4757 if (flags & MSG_DONTWAIT)
4758 req->flags |= REQ_F_NOWAIT;
4759 else if (issue_flags & IO_URING_F_NONBLOCK)
4760 flags |= MSG_DONTWAIT;
4761
4762 msg.msg_flags = flags;
4763 ret = sock_sendmsg(sock, &msg);
4764 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4765 return -EAGAIN;
4766 if (ret == -ERESTARTSYS)
4767 ret = -EINTR;
4768
4769 if (ret < 0)
4770 req_set_fail_links(req);
4771 __io_req_complete(req, issue_flags, ret, 0);
4772 return 0;
4773 }
4774
4775 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4776 struct io_async_msghdr *iomsg)
4777 {
4778 struct io_sr_msg *sr = &req->sr_msg;
4779 struct iovec __user *uiov;
4780 size_t iov_len;
4781 int ret;
4782
4783 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4784 &iomsg->uaddr, &uiov, &iov_len);
4785 if (ret)
4786 return ret;
4787
4788 if (req->flags & REQ_F_BUFFER_SELECT) {
4789 if (iov_len > 1)
4790 return -EINVAL;
4791 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4792 return -EFAULT;
4793 sr->len = iomsg->fast_iov[0].iov_len;
4794 iomsg->free_iov = NULL;
4795 } else {
4796 iomsg->free_iov = iomsg->fast_iov;
4797 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4798 &iomsg->free_iov, &iomsg->msg.msg_iter,
4799 false);
4800 if (ret > 0)
4801 ret = 0;
4802 }
4803
4804 return ret;
4805 }
4806
4807 #ifdef CONFIG_COMPAT
4808 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4809 struct io_async_msghdr *iomsg)
4810 {
4811 struct compat_msghdr __user *msg_compat;
4812 struct io_sr_msg *sr = &req->sr_msg;
4813 struct compat_iovec __user *uiov;
4814 compat_uptr_t ptr;
4815 compat_size_t len;
4816 int ret;
4817
4818 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4819 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4820 &ptr, &len);
4821 if (ret)
4822 return ret;
4823
4824 uiov = compat_ptr(ptr);
4825 if (req->flags & REQ_F_BUFFER_SELECT) {
4826 compat_ssize_t clen;
4827
4828 if (len > 1)
4829 return -EINVAL;
4830 if (!access_ok(uiov, sizeof(*uiov)))
4831 return -EFAULT;
4832 if (__get_user(clen, &uiov->iov_len))
4833 return -EFAULT;
4834 if (clen < 0)
4835 return -EINVAL;
4836 sr->len = clen;
4837 iomsg->free_iov = NULL;
4838 } else {
4839 iomsg->free_iov = iomsg->fast_iov;
4840 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4841 UIO_FASTIOV, &iomsg->free_iov,
4842 &iomsg->msg.msg_iter, true);
4843 if (ret < 0)
4844 return ret;
4845 }
4846
4847 return 0;
4848 }
4849 #endif
4850
4851 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4852 struct io_async_msghdr *iomsg)
4853 {
4854 iomsg->msg.msg_name = &iomsg->addr;
4855
4856 #ifdef CONFIG_COMPAT
4857 if (req->ctx->compat)
4858 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4859 #endif
4860
4861 return __io_recvmsg_copy_hdr(req, iomsg);
4862 }
4863
4864 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4865 bool needs_lock)
4866 {
4867 struct io_sr_msg *sr = &req->sr_msg;
4868 struct io_buffer *kbuf;
4869
4870 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4871 if (IS_ERR(kbuf))
4872 return kbuf;
4873
4874 sr->kbuf = kbuf;
4875 req->flags |= REQ_F_BUFFER_SELECTED;
4876 return kbuf;
4877 }
4878
4879 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4880 {
4881 return io_put_kbuf(req, req->sr_msg.kbuf);
4882 }
4883
4884 static int io_recvmsg_prep(struct io_kiocb *req,
4885 const struct io_uring_sqe *sqe)
4886 {
4887 struct io_async_msghdr *async_msg = req->async_data;
4888 struct io_sr_msg *sr = &req->sr_msg;
4889 int ret;
4890
4891 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4892 return -EINVAL;
4893
4894 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4895 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4896 sr->len = READ_ONCE(sqe->len);
4897 sr->bgid = READ_ONCE(sqe->buf_group);
4898
4899 #ifdef CONFIG_COMPAT
4900 if (req->ctx->compat)
4901 sr->msg_flags |= MSG_CMSG_COMPAT;
4902 #endif
4903
4904 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4905 return 0;
4906 ret = io_recvmsg_copy_hdr(req, async_msg);
4907 if (!ret)
4908 req->flags |= REQ_F_NEED_CLEANUP;
4909 return ret;
4910 }
4911
4912 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4913 {
4914 struct io_async_msghdr iomsg, *kmsg;
4915 struct socket *sock;
4916 struct io_buffer *kbuf;
4917 unsigned flags;
4918 int ret, cflags = 0;
4919 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4920
4921 sock = sock_from_file(req->file);
4922 if (unlikely(!sock))
4923 return -ENOTSOCK;
4924
4925 kmsg = req->async_data;
4926 if (!kmsg) {
4927 ret = io_recvmsg_copy_hdr(req, &iomsg);
4928 if (ret)
4929 return ret;
4930 kmsg = &iomsg;
4931 }
4932
4933 if (req->flags & REQ_F_BUFFER_SELECT) {
4934 kbuf = io_recv_buffer_select(req, !force_nonblock);
4935 if (IS_ERR(kbuf))
4936 return PTR_ERR(kbuf);
4937 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4938 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4939 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4940 1, req->sr_msg.len);
4941 }
4942
4943 flags = req->sr_msg.msg_flags;
4944 if (flags & MSG_DONTWAIT)
4945 req->flags |= REQ_F_NOWAIT;
4946 else if (force_nonblock)
4947 flags |= MSG_DONTWAIT;
4948
4949 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4950 kmsg->uaddr, flags);
4951 if (force_nonblock && ret == -EAGAIN)
4952 return io_setup_async_msg(req, kmsg);
4953 if (ret == -ERESTARTSYS)
4954 ret = -EINTR;
4955
4956 if (req->flags & REQ_F_BUFFER_SELECTED)
4957 cflags = io_put_recv_kbuf(req);
4958 /* fast path, check for non-NULL to avoid function call */
4959 if (kmsg->free_iov)
4960 kfree(kmsg->free_iov);
4961 req->flags &= ~REQ_F_NEED_CLEANUP;
4962 if (ret < 0)
4963 req_set_fail_links(req);
4964 __io_req_complete(req, issue_flags, ret, cflags);
4965 return 0;
4966 }
4967
4968 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4969 {
4970 struct io_buffer *kbuf;
4971 struct io_sr_msg *sr = &req->sr_msg;
4972 struct msghdr msg;
4973 void __user *buf = sr->buf;
4974 struct socket *sock;
4975 struct iovec iov;
4976 unsigned flags;
4977 int ret, cflags = 0;
4978 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4979
4980 sock = sock_from_file(req->file);
4981 if (unlikely(!sock))
4982 return -ENOTSOCK;
4983
4984 if (req->flags & REQ_F_BUFFER_SELECT) {
4985 kbuf = io_recv_buffer_select(req, !force_nonblock);
4986 if (IS_ERR(kbuf))
4987 return PTR_ERR(kbuf);
4988 buf = u64_to_user_ptr(kbuf->addr);
4989 }
4990
4991 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4992 if (unlikely(ret))
4993 goto out_free;
4994
4995 msg.msg_name = NULL;
4996 msg.msg_control = NULL;
4997 msg.msg_controllen = 0;
4998 msg.msg_namelen = 0;
4999 msg.msg_iocb = NULL;
5000 msg.msg_flags = 0;
5001
5002 flags = req->sr_msg.msg_flags;
5003 if (flags & MSG_DONTWAIT)
5004 req->flags |= REQ_F_NOWAIT;
5005 else if (force_nonblock)
5006 flags |= MSG_DONTWAIT;
5007
5008 ret = sock_recvmsg(sock, &msg, flags);
5009 if (force_nonblock && ret == -EAGAIN)
5010 return -EAGAIN;
5011 if (ret == -ERESTARTSYS)
5012 ret = -EINTR;
5013 out_free:
5014 if (req->flags & REQ_F_BUFFER_SELECTED)
5015 cflags = io_put_recv_kbuf(req);
5016 if (ret < 0)
5017 req_set_fail_links(req);
5018 __io_req_complete(req, issue_flags, ret, cflags);
5019 return 0;
5020 }
5021
5022 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5023 {
5024 struct io_accept *accept = &req->accept;
5025
5026 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5027 return -EINVAL;
5028 if (sqe->ioprio || sqe->len || sqe->buf_index)
5029 return -EINVAL;
5030
5031 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5032 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5033 accept->flags = READ_ONCE(sqe->accept_flags);
5034 accept->nofile = rlimit(RLIMIT_NOFILE);
5035 return 0;
5036 }
5037
5038 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5039 {
5040 struct io_accept *accept = &req->accept;
5041 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5042 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5043 int ret;
5044
5045 if (req->file->f_flags & O_NONBLOCK)
5046 req->flags |= REQ_F_NOWAIT;
5047
5048 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5049 accept->addr_len, accept->flags,
5050 accept->nofile);
5051 if (ret == -EAGAIN && force_nonblock)
5052 return -EAGAIN;
5053 if (ret < 0) {
5054 if (ret == -ERESTARTSYS)
5055 ret = -EINTR;
5056 req_set_fail_links(req);
5057 }
5058 __io_req_complete(req, issue_flags, ret, 0);
5059 return 0;
5060 }
5061
5062 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5063 {
5064 struct io_connect *conn = &req->connect;
5065 struct io_async_connect *io = req->async_data;
5066
5067 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5068 return -EINVAL;
5069 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5070 return -EINVAL;
5071
5072 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5073 conn->addr_len = READ_ONCE(sqe->addr2);
5074
5075 if (!io)
5076 return 0;
5077
5078 return move_addr_to_kernel(conn->addr, conn->addr_len,
5079 &io->address);
5080 }
5081
5082 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5083 {
5084 struct io_async_connect __io, *io;
5085 unsigned file_flags;
5086 int ret;
5087 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5088
5089 if (req->async_data) {
5090 io = req->async_data;
5091 } else {
5092 ret = move_addr_to_kernel(req->connect.addr,
5093 req->connect.addr_len,
5094 &__io.address);
5095 if (ret)
5096 goto out;
5097 io = &__io;
5098 }
5099
5100 file_flags = force_nonblock ? O_NONBLOCK : 0;
5101
5102 ret = __sys_connect_file(req->file, &io->address,
5103 req->connect.addr_len, file_flags);
5104 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5105 if (req->async_data)
5106 return -EAGAIN;
5107 if (io_alloc_async_data(req)) {
5108 ret = -ENOMEM;
5109 goto out;
5110 }
5111 io = req->async_data;
5112 memcpy(req->async_data, &__io, sizeof(__io));
5113 return -EAGAIN;
5114 }
5115 if (ret == -ERESTARTSYS)
5116 ret = -EINTR;
5117 out:
5118 if (ret < 0)
5119 req_set_fail_links(req);
5120 __io_req_complete(req, issue_flags, ret, 0);
5121 return 0;
5122 }
5123 #else /* !CONFIG_NET */
5124 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5125 {
5126 return -EOPNOTSUPP;
5127 }
5128
5129 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
5130 {
5131 return -EOPNOTSUPP;
5132 }
5133
5134 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5135 {
5136 return -EOPNOTSUPP;
5137 }
5138
5139 static int io_recvmsg_prep(struct io_kiocb *req,
5140 const struct io_uring_sqe *sqe)
5141 {
5142 return -EOPNOTSUPP;
5143 }
5144
5145 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5146 {
5147 return -EOPNOTSUPP;
5148 }
5149
5150 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5151 {
5152 return -EOPNOTSUPP;
5153 }
5154
5155 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5156 {
5157 return -EOPNOTSUPP;
5158 }
5159
5160 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5161 {
5162 return -EOPNOTSUPP;
5163 }
5164
5165 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5166 {
5167 return -EOPNOTSUPP;
5168 }
5169
5170 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5171 {
5172 return -EOPNOTSUPP;
5173 }
5174 #endif /* CONFIG_NET */
5175
5176 struct io_poll_table {
5177 struct poll_table_struct pt;
5178 struct io_kiocb *req;
5179 int error;
5180 };
5181
5182 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5183 __poll_t mask, task_work_func_t func)
5184 {
5185 int ret;
5186
5187 /* for instances that support it check for an event match first: */
5188 if (mask && !(mask & poll->events))
5189 return 0;
5190
5191 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5192
5193 list_del_init(&poll->wait.entry);
5194
5195 req->result = mask;
5196 req->task_work.func = func;
5197 percpu_ref_get(&req->ctx->refs);
5198
5199 /*
5200 * If this fails, then the task is exiting. When a task exits, the
5201 * work gets canceled, so just cancel this request as well instead
5202 * of executing it. We can't safely execute it anyway, as we may not
5203 * have the needed state needed for it anyway.
5204 */
5205 ret = io_req_task_work_add(req);
5206 if (unlikely(ret)) {
5207 WRITE_ONCE(poll->canceled, true);
5208 io_req_task_work_add_fallback(req, func);
5209 }
5210 return 1;
5211 }
5212
5213 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5214 __acquires(&req->ctx->completion_lock)
5215 {
5216 struct io_ring_ctx *ctx = req->ctx;
5217
5218 if (!req->result && !READ_ONCE(poll->canceled)) {
5219 struct poll_table_struct pt = { ._key = poll->events };
5220
5221 req->result = vfs_poll(req->file, &pt) & poll->events;
5222 }
5223
5224 spin_lock_irq(&ctx->completion_lock);
5225 if (!req->result && !READ_ONCE(poll->canceled)) {
5226 add_wait_queue(poll->head, &poll->wait);
5227 return true;
5228 }
5229
5230 return false;
5231 }
5232
5233 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5234 {
5235 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5236 if (req->opcode == IORING_OP_POLL_ADD)
5237 return req->async_data;
5238 return req->apoll->double_poll;
5239 }
5240
5241 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5242 {
5243 if (req->opcode == IORING_OP_POLL_ADD)
5244 return &req->poll;
5245 return &req->apoll->poll;
5246 }
5247
5248 static void io_poll_remove_double(struct io_kiocb *req)
5249 {
5250 struct io_poll_iocb *poll = io_poll_get_double(req);
5251
5252 lockdep_assert_held(&req->ctx->completion_lock);
5253
5254 if (poll && poll->head) {
5255 struct wait_queue_head *head = poll->head;
5256
5257 spin_lock(&head->lock);
5258 list_del_init(&poll->wait.entry);
5259 if (poll->wait.private)
5260 refcount_dec(&req->refs);
5261 poll->head = NULL;
5262 spin_unlock(&head->lock);
5263 }
5264 }
5265
5266 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5267 {
5268 struct io_ring_ctx *ctx = req->ctx;
5269
5270 io_poll_remove_double(req);
5271 req->poll.done = true;
5272 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5273 io_commit_cqring(ctx);
5274 }
5275
5276 static void io_poll_task_func(struct callback_head *cb)
5277 {
5278 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5279 struct io_ring_ctx *ctx = req->ctx;
5280 struct io_kiocb *nxt;
5281
5282 if (io_poll_rewait(req, &req->poll)) {
5283 spin_unlock_irq(&ctx->completion_lock);
5284 } else {
5285 hash_del(&req->hash_node);
5286 io_poll_complete(req, req->result, 0);
5287 spin_unlock_irq(&ctx->completion_lock);
5288
5289 nxt = io_put_req_find_next(req);
5290 io_cqring_ev_posted(ctx);
5291 if (nxt)
5292 __io_req_task_submit(nxt);
5293 }
5294
5295 percpu_ref_put(&ctx->refs);
5296 }
5297
5298 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5299 int sync, void *key)
5300 {
5301 struct io_kiocb *req = wait->private;
5302 struct io_poll_iocb *poll = io_poll_get_single(req);
5303 __poll_t mask = key_to_poll(key);
5304
5305 /* for instances that support it check for an event match first: */
5306 if (mask && !(mask & poll->events))
5307 return 0;
5308
5309 list_del_init(&wait->entry);
5310
5311 if (poll && poll->head) {
5312 bool done;
5313
5314 spin_lock(&poll->head->lock);
5315 done = list_empty(&poll->wait.entry);
5316 if (!done)
5317 list_del_init(&poll->wait.entry);
5318 /* make sure double remove sees this as being gone */
5319 wait->private = NULL;
5320 spin_unlock(&poll->head->lock);
5321 if (!done) {
5322 /* use wait func handler, so it matches the rq type */
5323 poll->wait.func(&poll->wait, mode, sync, key);
5324 }
5325 }
5326 refcount_dec(&req->refs);
5327 return 1;
5328 }
5329
5330 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5331 wait_queue_func_t wake_func)
5332 {
5333 poll->head = NULL;
5334 poll->done = false;
5335 poll->canceled = false;
5336 poll->events = events;
5337 INIT_LIST_HEAD(&poll->wait.entry);
5338 init_waitqueue_func_entry(&poll->wait, wake_func);
5339 }
5340
5341 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5342 struct wait_queue_head *head,
5343 struct io_poll_iocb **poll_ptr)
5344 {
5345 struct io_kiocb *req = pt->req;
5346
5347 /*
5348 * If poll->head is already set, it's because the file being polled
5349 * uses multiple waitqueues for poll handling (eg one for read, one
5350 * for write). Setup a separate io_poll_iocb if this happens.
5351 */
5352 if (unlikely(poll->head)) {
5353 struct io_poll_iocb *poll_one = poll;
5354
5355 /* already have a 2nd entry, fail a third attempt */
5356 if (*poll_ptr) {
5357 pt->error = -EINVAL;
5358 return;
5359 }
5360 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5361 if (!poll) {
5362 pt->error = -ENOMEM;
5363 return;
5364 }
5365 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5366 refcount_inc(&req->refs);
5367 poll->wait.private = req;
5368 *poll_ptr = poll;
5369 }
5370
5371 pt->error = 0;
5372 poll->head = head;
5373
5374 if (poll->events & EPOLLEXCLUSIVE)
5375 add_wait_queue_exclusive(head, &poll->wait);
5376 else
5377 add_wait_queue(head, &poll->wait);
5378 }
5379
5380 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5381 struct poll_table_struct *p)
5382 {
5383 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5384 struct async_poll *apoll = pt->req->apoll;
5385
5386 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5387 }
5388
5389 static void io_async_task_func(struct callback_head *cb)
5390 {
5391 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5392 struct async_poll *apoll = req->apoll;
5393 struct io_ring_ctx *ctx = req->ctx;
5394
5395 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5396
5397 if (io_poll_rewait(req, &apoll->poll)) {
5398 spin_unlock_irq(&ctx->completion_lock);
5399 percpu_ref_put(&ctx->refs);
5400 return;
5401 }
5402
5403 /* If req is still hashed, it cannot have been canceled. Don't check. */
5404 if (hash_hashed(&req->hash_node))
5405 hash_del(&req->hash_node);
5406
5407 io_poll_remove_double(req);
5408 spin_unlock_irq(&ctx->completion_lock);
5409
5410 if (!READ_ONCE(apoll->poll.canceled))
5411 __io_req_task_submit(req);
5412 else
5413 __io_req_task_cancel(req, -ECANCELED);
5414
5415 percpu_ref_put(&ctx->refs);
5416 kfree(apoll->double_poll);
5417 kfree(apoll);
5418 }
5419
5420 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5421 void *key)
5422 {
5423 struct io_kiocb *req = wait->private;
5424 struct io_poll_iocb *poll = &req->apoll->poll;
5425
5426 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5427 key_to_poll(key));
5428
5429 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5430 }
5431
5432 static void io_poll_req_insert(struct io_kiocb *req)
5433 {
5434 struct io_ring_ctx *ctx = req->ctx;
5435 struct hlist_head *list;
5436
5437 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5438 hlist_add_head(&req->hash_node, list);
5439 }
5440
5441 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5442 struct io_poll_iocb *poll,
5443 struct io_poll_table *ipt, __poll_t mask,
5444 wait_queue_func_t wake_func)
5445 __acquires(&ctx->completion_lock)
5446 {
5447 struct io_ring_ctx *ctx = req->ctx;
5448 bool cancel = false;
5449
5450 INIT_HLIST_NODE(&req->hash_node);
5451 io_init_poll_iocb(poll, mask, wake_func);
5452 poll->file = req->file;
5453 poll->wait.private = req;
5454
5455 ipt->pt._key = mask;
5456 ipt->req = req;
5457 ipt->error = -EINVAL;
5458
5459 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5460
5461 spin_lock_irq(&ctx->completion_lock);
5462 if (likely(poll->head)) {
5463 spin_lock(&poll->head->lock);
5464 if (unlikely(list_empty(&poll->wait.entry))) {
5465 if (ipt->error)
5466 cancel = true;
5467 ipt->error = 0;
5468 mask = 0;
5469 }
5470 if (mask || ipt->error)
5471 list_del_init(&poll->wait.entry);
5472 else if (cancel)
5473 WRITE_ONCE(poll->canceled, true);
5474 else if (!poll->done) /* actually waiting for an event */
5475 io_poll_req_insert(req);
5476 spin_unlock(&poll->head->lock);
5477 }
5478
5479 return mask;
5480 }
5481
5482 static bool io_arm_poll_handler(struct io_kiocb *req)
5483 {
5484 const struct io_op_def *def = &io_op_defs[req->opcode];
5485 struct io_ring_ctx *ctx = req->ctx;
5486 struct async_poll *apoll;
5487 struct io_poll_table ipt;
5488 __poll_t mask, ret;
5489 int rw;
5490
5491 if (!req->file || !file_can_poll(req->file))
5492 return false;
5493 if (req->flags & REQ_F_POLLED)
5494 return false;
5495 if (def->pollin)
5496 rw = READ;
5497 else if (def->pollout)
5498 rw = WRITE;
5499 else
5500 return false;
5501 /* if we can't nonblock try, then no point in arming a poll handler */
5502 if (!io_file_supports_async(req->file, rw))
5503 return false;
5504
5505 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5506 if (unlikely(!apoll))
5507 return false;
5508 apoll->double_poll = NULL;
5509
5510 req->flags |= REQ_F_POLLED;
5511 req->apoll = apoll;
5512
5513 mask = 0;
5514 if (def->pollin)
5515 mask |= POLLIN | POLLRDNORM;
5516 if (def->pollout)
5517 mask |= POLLOUT | POLLWRNORM;
5518
5519 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5520 if ((req->opcode == IORING_OP_RECVMSG) &&
5521 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5522 mask &= ~POLLIN;
5523
5524 mask |= POLLERR | POLLPRI;
5525
5526 ipt.pt._qproc = io_async_queue_proc;
5527
5528 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5529 io_async_wake);
5530 if (ret || ipt.error) {
5531 io_poll_remove_double(req);
5532 spin_unlock_irq(&ctx->completion_lock);
5533 kfree(apoll->double_poll);
5534 kfree(apoll);
5535 return false;
5536 }
5537 spin_unlock_irq(&ctx->completion_lock);
5538 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5539 apoll->poll.events);
5540 return true;
5541 }
5542
5543 static bool __io_poll_remove_one(struct io_kiocb *req,
5544 struct io_poll_iocb *poll)
5545 {
5546 bool do_complete = false;
5547
5548 spin_lock(&poll->head->lock);
5549 WRITE_ONCE(poll->canceled, true);
5550 if (!list_empty(&poll->wait.entry)) {
5551 list_del_init(&poll->wait.entry);
5552 do_complete = true;
5553 }
5554 spin_unlock(&poll->head->lock);
5555 hash_del(&req->hash_node);
5556 return do_complete;
5557 }
5558
5559 static bool io_poll_remove_one(struct io_kiocb *req)
5560 {
5561 bool do_complete;
5562
5563 io_poll_remove_double(req);
5564
5565 if (req->opcode == IORING_OP_POLL_ADD) {
5566 do_complete = __io_poll_remove_one(req, &req->poll);
5567 } else {
5568 struct async_poll *apoll = req->apoll;
5569
5570 /* non-poll requests have submit ref still */
5571 do_complete = __io_poll_remove_one(req, &apoll->poll);
5572 if (do_complete) {
5573 io_put_req(req);
5574 kfree(apoll->double_poll);
5575 kfree(apoll);
5576 }
5577 }
5578
5579 if (do_complete) {
5580 io_cqring_fill_event(req, -ECANCELED);
5581 io_commit_cqring(req->ctx);
5582 req_set_fail_links(req);
5583 io_put_req_deferred(req, 1);
5584 }
5585
5586 return do_complete;
5587 }
5588
5589 /*
5590 * Returns true if we found and killed one or more poll requests
5591 */
5592 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5593 struct files_struct *files)
5594 {
5595 struct hlist_node *tmp;
5596 struct io_kiocb *req;
5597 int posted = 0, i;
5598
5599 spin_lock_irq(&ctx->completion_lock);
5600 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5601 struct hlist_head *list;
5602
5603 list = &ctx->cancel_hash[i];
5604 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5605 if (io_match_task(req, tsk, files))
5606 posted += io_poll_remove_one(req);
5607 }
5608 }
5609 spin_unlock_irq(&ctx->completion_lock);
5610
5611 if (posted)
5612 io_cqring_ev_posted(ctx);
5613
5614 return posted != 0;
5615 }
5616
5617 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5618 {
5619 struct hlist_head *list;
5620 struct io_kiocb *req;
5621
5622 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5623 hlist_for_each_entry(req, list, hash_node) {
5624 if (sqe_addr != req->user_data)
5625 continue;
5626 if (io_poll_remove_one(req))
5627 return 0;
5628 return -EALREADY;
5629 }
5630
5631 return -ENOENT;
5632 }
5633
5634 static int io_poll_remove_prep(struct io_kiocb *req,
5635 const struct io_uring_sqe *sqe)
5636 {
5637 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5638 return -EINVAL;
5639 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5640 sqe->poll_events)
5641 return -EINVAL;
5642
5643 req->poll_remove.addr = READ_ONCE(sqe->addr);
5644 return 0;
5645 }
5646
5647 /*
5648 * Find a running poll command that matches one specified in sqe->addr,
5649 * and remove it if found.
5650 */
5651 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
5652 {
5653 struct io_ring_ctx *ctx = req->ctx;
5654 int ret;
5655
5656 spin_lock_irq(&ctx->completion_lock);
5657 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5658 spin_unlock_irq(&ctx->completion_lock);
5659
5660 if (ret < 0)
5661 req_set_fail_links(req);
5662 io_req_complete(req, ret);
5663 return 0;
5664 }
5665
5666 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5667 void *key)
5668 {
5669 struct io_kiocb *req = wait->private;
5670 struct io_poll_iocb *poll = &req->poll;
5671
5672 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5673 }
5674
5675 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5676 struct poll_table_struct *p)
5677 {
5678 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5679
5680 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5681 }
5682
5683 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5684 {
5685 struct io_poll_iocb *poll = &req->poll;
5686 u32 events;
5687
5688 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5689 return -EINVAL;
5690 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5691 return -EINVAL;
5692
5693 events = READ_ONCE(sqe->poll32_events);
5694 #ifdef __BIG_ENDIAN
5695 events = swahw32(events);
5696 #endif
5697 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5698 (events & EPOLLEXCLUSIVE);
5699 return 0;
5700 }
5701
5702 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5703 {
5704 struct io_poll_iocb *poll = &req->poll;
5705 struct io_ring_ctx *ctx = req->ctx;
5706 struct io_poll_table ipt;
5707 __poll_t mask;
5708
5709 ipt.pt._qproc = io_poll_queue_proc;
5710
5711 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5712 io_poll_wake);
5713
5714 if (mask) { /* no async, we'd stolen it */
5715 ipt.error = 0;
5716 io_poll_complete(req, mask, 0);
5717 }
5718 spin_unlock_irq(&ctx->completion_lock);
5719
5720 if (mask) {
5721 io_cqring_ev_posted(ctx);
5722 io_put_req(req);
5723 }
5724 return ipt.error;
5725 }
5726
5727 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5728 {
5729 struct io_timeout_data *data = container_of(timer,
5730 struct io_timeout_data, timer);
5731 struct io_kiocb *req = data->req;
5732 struct io_ring_ctx *ctx = req->ctx;
5733 unsigned long flags;
5734
5735 spin_lock_irqsave(&ctx->completion_lock, flags);
5736 list_del_init(&req->timeout.list);
5737 atomic_set(&req->ctx->cq_timeouts,
5738 atomic_read(&req->ctx->cq_timeouts) + 1);
5739
5740 io_cqring_fill_event(req, -ETIME);
5741 io_commit_cqring(ctx);
5742 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5743
5744 io_cqring_ev_posted(ctx);
5745 req_set_fail_links(req);
5746 io_put_req(req);
5747 return HRTIMER_NORESTART;
5748 }
5749
5750 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5751 __u64 user_data)
5752 {
5753 struct io_timeout_data *io;
5754 struct io_kiocb *req;
5755 int ret = -ENOENT;
5756
5757 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5758 if (user_data == req->user_data) {
5759 ret = 0;
5760 break;
5761 }
5762 }
5763
5764 if (ret == -ENOENT)
5765 return ERR_PTR(ret);
5766
5767 io = req->async_data;
5768 ret = hrtimer_try_to_cancel(&io->timer);
5769 if (ret == -1)
5770 return ERR_PTR(-EALREADY);
5771 list_del_init(&req->timeout.list);
5772 return req;
5773 }
5774
5775 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5776 {
5777 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5778
5779 if (IS_ERR(req))
5780 return PTR_ERR(req);
5781
5782 req_set_fail_links(req);
5783 io_cqring_fill_event(req, -ECANCELED);
5784 io_put_req_deferred(req, 1);
5785 return 0;
5786 }
5787
5788 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5789 struct timespec64 *ts, enum hrtimer_mode mode)
5790 {
5791 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5792 struct io_timeout_data *data;
5793
5794 if (IS_ERR(req))
5795 return PTR_ERR(req);
5796
5797 req->timeout.off = 0; /* noseq */
5798 data = req->async_data;
5799 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5800 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5801 data->timer.function = io_timeout_fn;
5802 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5803 return 0;
5804 }
5805
5806 static int io_timeout_remove_prep(struct io_kiocb *req,
5807 const struct io_uring_sqe *sqe)
5808 {
5809 struct io_timeout_rem *tr = &req->timeout_rem;
5810
5811 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5812 return -EINVAL;
5813 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5814 return -EINVAL;
5815 if (sqe->ioprio || sqe->buf_index || sqe->len)
5816 return -EINVAL;
5817
5818 tr->addr = READ_ONCE(sqe->addr);
5819 tr->flags = READ_ONCE(sqe->timeout_flags);
5820 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5821 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5822 return -EINVAL;
5823 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5824 return -EFAULT;
5825 } else if (tr->flags) {
5826 /* timeout removal doesn't support flags */
5827 return -EINVAL;
5828 }
5829
5830 return 0;
5831 }
5832
5833 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5834 {
5835 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5836 : HRTIMER_MODE_REL;
5837 }
5838
5839 /*
5840 * Remove or update an existing timeout command
5841 */
5842 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5843 {
5844 struct io_timeout_rem *tr = &req->timeout_rem;
5845 struct io_ring_ctx *ctx = req->ctx;
5846 int ret;
5847
5848 spin_lock_irq(&ctx->completion_lock);
5849 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5850 ret = io_timeout_cancel(ctx, tr->addr);
5851 else
5852 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5853 io_translate_timeout_mode(tr->flags));
5854
5855 io_cqring_fill_event(req, ret);
5856 io_commit_cqring(ctx);
5857 spin_unlock_irq(&ctx->completion_lock);
5858 io_cqring_ev_posted(ctx);
5859 if (ret < 0)
5860 req_set_fail_links(req);
5861 io_put_req(req);
5862 return 0;
5863 }
5864
5865 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5866 bool is_timeout_link)
5867 {
5868 struct io_timeout_data *data;
5869 unsigned flags;
5870 u32 off = READ_ONCE(sqe->off);
5871
5872 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5873 return -EINVAL;
5874 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5875 return -EINVAL;
5876 if (off && is_timeout_link)
5877 return -EINVAL;
5878 flags = READ_ONCE(sqe->timeout_flags);
5879 if (flags & ~IORING_TIMEOUT_ABS)
5880 return -EINVAL;
5881
5882 req->timeout.off = off;
5883
5884 if (!req->async_data && io_alloc_async_data(req))
5885 return -ENOMEM;
5886
5887 data = req->async_data;
5888 data->req = req;
5889
5890 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5891 return -EFAULT;
5892
5893 data->mode = io_translate_timeout_mode(flags);
5894 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5895 return 0;
5896 }
5897
5898 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5899 {
5900 struct io_ring_ctx *ctx = req->ctx;
5901 struct io_timeout_data *data = req->async_data;
5902 struct list_head *entry;
5903 u32 tail, off = req->timeout.off;
5904
5905 spin_lock_irq(&ctx->completion_lock);
5906
5907 /*
5908 * sqe->off holds how many events that need to occur for this
5909 * timeout event to be satisfied. If it isn't set, then this is
5910 * a pure timeout request, sequence isn't used.
5911 */
5912 if (io_is_timeout_noseq(req)) {
5913 entry = ctx->timeout_list.prev;
5914 goto add;
5915 }
5916
5917 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5918 req->timeout.target_seq = tail + off;
5919
5920 /* Update the last seq here in case io_flush_timeouts() hasn't.
5921 * This is safe because ->completion_lock is held, and submissions
5922 * and completions are never mixed in the same ->completion_lock section.
5923 */
5924 ctx->cq_last_tm_flush = tail;
5925
5926 /*
5927 * Insertion sort, ensuring the first entry in the list is always
5928 * the one we need first.
5929 */
5930 list_for_each_prev(entry, &ctx->timeout_list) {
5931 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5932 timeout.list);
5933
5934 if (io_is_timeout_noseq(nxt))
5935 continue;
5936 /* nxt.seq is behind @tail, otherwise would've been completed */
5937 if (off >= nxt->timeout.target_seq - tail)
5938 break;
5939 }
5940 add:
5941 list_add(&req->timeout.list, entry);
5942 data->timer.function = io_timeout_fn;
5943 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5944 spin_unlock_irq(&ctx->completion_lock);
5945 return 0;
5946 }
5947
5948 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5949 {
5950 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5951
5952 return req->user_data == (unsigned long) data;
5953 }
5954
5955 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5956 {
5957 enum io_wq_cancel cancel_ret;
5958 int ret = 0;
5959
5960 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5961 switch (cancel_ret) {
5962 case IO_WQ_CANCEL_OK:
5963 ret = 0;
5964 break;
5965 case IO_WQ_CANCEL_RUNNING:
5966 ret = -EALREADY;
5967 break;
5968 case IO_WQ_CANCEL_NOTFOUND:
5969 ret = -ENOENT;
5970 break;
5971 }
5972
5973 return ret;
5974 }
5975
5976 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5977 struct io_kiocb *req, __u64 sqe_addr,
5978 int success_ret)
5979 {
5980 unsigned long flags;
5981 int ret;
5982
5983 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5984 if (ret != -ENOENT) {
5985 spin_lock_irqsave(&ctx->completion_lock, flags);
5986 goto done;
5987 }
5988
5989 spin_lock_irqsave(&ctx->completion_lock, flags);
5990 ret = io_timeout_cancel(ctx, sqe_addr);
5991 if (ret != -ENOENT)
5992 goto done;
5993 ret = io_poll_cancel(ctx, sqe_addr);
5994 done:
5995 if (!ret)
5996 ret = success_ret;
5997 io_cqring_fill_event(req, ret);
5998 io_commit_cqring(ctx);
5999 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6000 io_cqring_ev_posted(ctx);
6001
6002 if (ret < 0)
6003 req_set_fail_links(req);
6004 io_put_req(req);
6005 }
6006
6007 static int io_async_cancel_prep(struct io_kiocb *req,
6008 const struct io_uring_sqe *sqe)
6009 {
6010 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6011 return -EINVAL;
6012 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6013 return -EINVAL;
6014 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
6015 return -EINVAL;
6016
6017 req->cancel.addr = READ_ONCE(sqe->addr);
6018 return 0;
6019 }
6020
6021 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6022 {
6023 struct io_ring_ctx *ctx = req->ctx;
6024
6025 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6026 return 0;
6027 }
6028
6029 static int io_rsrc_update_prep(struct io_kiocb *req,
6030 const struct io_uring_sqe *sqe)
6031 {
6032 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6033 return -EINVAL;
6034 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6035 return -EINVAL;
6036 if (sqe->ioprio || sqe->rw_flags)
6037 return -EINVAL;
6038
6039 req->rsrc_update.offset = READ_ONCE(sqe->off);
6040 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6041 if (!req->rsrc_update.nr_args)
6042 return -EINVAL;
6043 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6044 return 0;
6045 }
6046
6047 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6048 {
6049 struct io_ring_ctx *ctx = req->ctx;
6050 struct io_uring_rsrc_update up;
6051 int ret;
6052
6053 if (issue_flags & IO_URING_F_NONBLOCK)
6054 return -EAGAIN;
6055
6056 up.offset = req->rsrc_update.offset;
6057 up.data = req->rsrc_update.arg;
6058
6059 mutex_lock(&ctx->uring_lock);
6060 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
6061 mutex_unlock(&ctx->uring_lock);
6062
6063 if (ret < 0)
6064 req_set_fail_links(req);
6065 __io_req_complete(req, issue_flags, ret, 0);
6066 return 0;
6067 }
6068
6069 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6070 {
6071 switch (req->opcode) {
6072 case IORING_OP_NOP:
6073 return 0;
6074 case IORING_OP_READV:
6075 case IORING_OP_READ_FIXED:
6076 case IORING_OP_READ:
6077 return io_read_prep(req, sqe);
6078 case IORING_OP_WRITEV:
6079 case IORING_OP_WRITE_FIXED:
6080 case IORING_OP_WRITE:
6081 return io_write_prep(req, sqe);
6082 case IORING_OP_POLL_ADD:
6083 return io_poll_add_prep(req, sqe);
6084 case IORING_OP_POLL_REMOVE:
6085 return io_poll_remove_prep(req, sqe);
6086 case IORING_OP_FSYNC:
6087 return io_prep_fsync(req, sqe);
6088 case IORING_OP_SYNC_FILE_RANGE:
6089 return io_prep_sfr(req, sqe);
6090 case IORING_OP_SENDMSG:
6091 case IORING_OP_SEND:
6092 return io_sendmsg_prep(req, sqe);
6093 case IORING_OP_RECVMSG:
6094 case IORING_OP_RECV:
6095 return io_recvmsg_prep(req, sqe);
6096 case IORING_OP_CONNECT:
6097 return io_connect_prep(req, sqe);
6098 case IORING_OP_TIMEOUT:
6099 return io_timeout_prep(req, sqe, false);
6100 case IORING_OP_TIMEOUT_REMOVE:
6101 return io_timeout_remove_prep(req, sqe);
6102 case IORING_OP_ASYNC_CANCEL:
6103 return io_async_cancel_prep(req, sqe);
6104 case IORING_OP_LINK_TIMEOUT:
6105 return io_timeout_prep(req, sqe, true);
6106 case IORING_OP_ACCEPT:
6107 return io_accept_prep(req, sqe);
6108 case IORING_OP_FALLOCATE:
6109 return io_fallocate_prep(req, sqe);
6110 case IORING_OP_OPENAT:
6111 return io_openat_prep(req, sqe);
6112 case IORING_OP_CLOSE:
6113 return io_close_prep(req, sqe);
6114 case IORING_OP_FILES_UPDATE:
6115 return io_rsrc_update_prep(req, sqe);
6116 case IORING_OP_STATX:
6117 return io_statx_prep(req, sqe);
6118 case IORING_OP_FADVISE:
6119 return io_fadvise_prep(req, sqe);
6120 case IORING_OP_MADVISE:
6121 return io_madvise_prep(req, sqe);
6122 case IORING_OP_OPENAT2:
6123 return io_openat2_prep(req, sqe);
6124 case IORING_OP_EPOLL_CTL:
6125 return io_epoll_ctl_prep(req, sqe);
6126 case IORING_OP_SPLICE:
6127 return io_splice_prep(req, sqe);
6128 case IORING_OP_PROVIDE_BUFFERS:
6129 return io_provide_buffers_prep(req, sqe);
6130 case IORING_OP_REMOVE_BUFFERS:
6131 return io_remove_buffers_prep(req, sqe);
6132 case IORING_OP_TEE:
6133 return io_tee_prep(req, sqe);
6134 case IORING_OP_SHUTDOWN:
6135 return io_shutdown_prep(req, sqe);
6136 case IORING_OP_RENAMEAT:
6137 return io_renameat_prep(req, sqe);
6138 case IORING_OP_UNLINKAT:
6139 return io_unlinkat_prep(req, sqe);
6140 }
6141
6142 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6143 req->opcode);
6144 return-EINVAL;
6145 }
6146
6147 static int io_req_defer_prep(struct io_kiocb *req,
6148 const struct io_uring_sqe *sqe)
6149 {
6150 if (!sqe)
6151 return 0;
6152 if (io_alloc_async_data(req))
6153 return -EAGAIN;
6154 return io_req_prep(req, sqe);
6155 }
6156
6157 static u32 io_get_sequence(struct io_kiocb *req)
6158 {
6159 struct io_kiocb *pos;
6160 struct io_ring_ctx *ctx = req->ctx;
6161 u32 total_submitted, nr_reqs = 0;
6162
6163 io_for_each_link(pos, req)
6164 nr_reqs++;
6165
6166 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6167 return total_submitted - nr_reqs;
6168 }
6169
6170 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6171 {
6172 struct io_ring_ctx *ctx = req->ctx;
6173 struct io_defer_entry *de;
6174 int ret;
6175 u32 seq;
6176
6177 /* Still need defer if there is pending req in defer list. */
6178 if (likely(list_empty_careful(&ctx->defer_list) &&
6179 !(req->flags & REQ_F_IO_DRAIN)))
6180 return 0;
6181
6182 seq = io_get_sequence(req);
6183 /* Still a chance to pass the sequence check */
6184 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6185 return 0;
6186
6187 if (!req->async_data) {
6188 ret = io_req_defer_prep(req, sqe);
6189 if (ret)
6190 return ret;
6191 }
6192 io_prep_async_link(req);
6193 de = kmalloc(sizeof(*de), GFP_KERNEL);
6194 if (!de)
6195 return -ENOMEM;
6196
6197 spin_lock_irq(&ctx->completion_lock);
6198 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6199 spin_unlock_irq(&ctx->completion_lock);
6200 kfree(de);
6201 io_queue_async_work(req);
6202 return -EIOCBQUEUED;
6203 }
6204
6205 trace_io_uring_defer(ctx, req, req->user_data);
6206 de->req = req;
6207 de->seq = seq;
6208 list_add_tail(&de->list, &ctx->defer_list);
6209 spin_unlock_irq(&ctx->completion_lock);
6210 return -EIOCBQUEUED;
6211 }
6212
6213 static void __io_clean_op(struct io_kiocb *req)
6214 {
6215 if (req->flags & REQ_F_BUFFER_SELECTED) {
6216 switch (req->opcode) {
6217 case IORING_OP_READV:
6218 case IORING_OP_READ_FIXED:
6219 case IORING_OP_READ:
6220 kfree((void *)(unsigned long)req->rw.addr);
6221 break;
6222 case IORING_OP_RECVMSG:
6223 case IORING_OP_RECV:
6224 kfree(req->sr_msg.kbuf);
6225 break;
6226 }
6227 req->flags &= ~REQ_F_BUFFER_SELECTED;
6228 }
6229
6230 if (req->flags & REQ_F_NEED_CLEANUP) {
6231 switch (req->opcode) {
6232 case IORING_OP_READV:
6233 case IORING_OP_READ_FIXED:
6234 case IORING_OP_READ:
6235 case IORING_OP_WRITEV:
6236 case IORING_OP_WRITE_FIXED:
6237 case IORING_OP_WRITE: {
6238 struct io_async_rw *io = req->async_data;
6239 if (io->free_iovec)
6240 kfree(io->free_iovec);
6241 break;
6242 }
6243 case IORING_OP_RECVMSG:
6244 case IORING_OP_SENDMSG: {
6245 struct io_async_msghdr *io = req->async_data;
6246
6247 kfree(io->free_iov);
6248 break;
6249 }
6250 case IORING_OP_SPLICE:
6251 case IORING_OP_TEE:
6252 io_put_file(req, req->splice.file_in,
6253 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6254 break;
6255 case IORING_OP_OPENAT:
6256 case IORING_OP_OPENAT2:
6257 if (req->open.filename)
6258 putname(req->open.filename);
6259 break;
6260 case IORING_OP_RENAMEAT:
6261 putname(req->rename.oldpath);
6262 putname(req->rename.newpath);
6263 break;
6264 case IORING_OP_UNLINKAT:
6265 putname(req->unlink.filename);
6266 break;
6267 }
6268 req->flags &= ~REQ_F_NEED_CLEANUP;
6269 }
6270 }
6271
6272 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6273 {
6274 struct io_ring_ctx *ctx = req->ctx;
6275 int ret;
6276
6277 switch (req->opcode) {
6278 case IORING_OP_NOP:
6279 ret = io_nop(req, issue_flags);
6280 break;
6281 case IORING_OP_READV:
6282 case IORING_OP_READ_FIXED:
6283 case IORING_OP_READ:
6284 ret = io_read(req, issue_flags);
6285 break;
6286 case IORING_OP_WRITEV:
6287 case IORING_OP_WRITE_FIXED:
6288 case IORING_OP_WRITE:
6289 ret = io_write(req, issue_flags);
6290 break;
6291 case IORING_OP_FSYNC:
6292 ret = io_fsync(req, issue_flags);
6293 break;
6294 case IORING_OP_POLL_ADD:
6295 ret = io_poll_add(req, issue_flags);
6296 break;
6297 case IORING_OP_POLL_REMOVE:
6298 ret = io_poll_remove(req, issue_flags);
6299 break;
6300 case IORING_OP_SYNC_FILE_RANGE:
6301 ret = io_sync_file_range(req, issue_flags);
6302 break;
6303 case IORING_OP_SENDMSG:
6304 ret = io_sendmsg(req, issue_flags);
6305 break;
6306 case IORING_OP_SEND:
6307 ret = io_send(req, issue_flags);
6308 break;
6309 case IORING_OP_RECVMSG:
6310 ret = io_recvmsg(req, issue_flags);
6311 break;
6312 case IORING_OP_RECV:
6313 ret = io_recv(req, issue_flags);
6314 break;
6315 case IORING_OP_TIMEOUT:
6316 ret = io_timeout(req, issue_flags);
6317 break;
6318 case IORING_OP_TIMEOUT_REMOVE:
6319 ret = io_timeout_remove(req, issue_flags);
6320 break;
6321 case IORING_OP_ACCEPT:
6322 ret = io_accept(req, issue_flags);
6323 break;
6324 case IORING_OP_CONNECT:
6325 ret = io_connect(req, issue_flags);
6326 break;
6327 case IORING_OP_ASYNC_CANCEL:
6328 ret = io_async_cancel(req, issue_flags);
6329 break;
6330 case IORING_OP_FALLOCATE:
6331 ret = io_fallocate(req, issue_flags);
6332 break;
6333 case IORING_OP_OPENAT:
6334 ret = io_openat(req, issue_flags);
6335 break;
6336 case IORING_OP_CLOSE:
6337 ret = io_close(req, issue_flags);
6338 break;
6339 case IORING_OP_FILES_UPDATE:
6340 ret = io_files_update(req, issue_flags);
6341 break;
6342 case IORING_OP_STATX:
6343 ret = io_statx(req, issue_flags);
6344 break;
6345 case IORING_OP_FADVISE:
6346 ret = io_fadvise(req, issue_flags);
6347 break;
6348 case IORING_OP_MADVISE:
6349 ret = io_madvise(req, issue_flags);
6350 break;
6351 case IORING_OP_OPENAT2:
6352 ret = io_openat2(req, issue_flags);
6353 break;
6354 case IORING_OP_EPOLL_CTL:
6355 ret = io_epoll_ctl(req, issue_flags);
6356 break;
6357 case IORING_OP_SPLICE:
6358 ret = io_splice(req, issue_flags);
6359 break;
6360 case IORING_OP_PROVIDE_BUFFERS:
6361 ret = io_provide_buffers(req, issue_flags);
6362 break;
6363 case IORING_OP_REMOVE_BUFFERS:
6364 ret = io_remove_buffers(req, issue_flags);
6365 break;
6366 case IORING_OP_TEE:
6367 ret = io_tee(req, issue_flags);
6368 break;
6369 case IORING_OP_SHUTDOWN:
6370 ret = io_shutdown(req, issue_flags);
6371 break;
6372 case IORING_OP_RENAMEAT:
6373 ret = io_renameat(req, issue_flags);
6374 break;
6375 case IORING_OP_UNLINKAT:
6376 ret = io_unlinkat(req, issue_flags);
6377 break;
6378 default:
6379 ret = -EINVAL;
6380 break;
6381 }
6382
6383 if (ret)
6384 return ret;
6385
6386 /* If the op doesn't have a file, we're not polling for it */
6387 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6388 const bool in_async = io_wq_current_is_worker();
6389
6390 /* workqueue context doesn't hold uring_lock, grab it now */
6391 if (in_async)
6392 mutex_lock(&ctx->uring_lock);
6393
6394 io_iopoll_req_issued(req, in_async);
6395
6396 if (in_async)
6397 mutex_unlock(&ctx->uring_lock);
6398 }
6399
6400 return 0;
6401 }
6402
6403 static void io_wq_submit_work(struct io_wq_work *work)
6404 {
6405 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6406 struct io_kiocb *timeout;
6407 int ret = 0;
6408
6409 timeout = io_prep_linked_timeout(req);
6410 if (timeout)
6411 io_queue_linked_timeout(timeout);
6412
6413 if (work->flags & IO_WQ_WORK_CANCEL)
6414 ret = -ECANCELED;
6415
6416 if (!ret) {
6417 do {
6418 ret = io_issue_sqe(req, 0);
6419 /*
6420 * We can get EAGAIN for polled IO even though we're
6421 * forcing a sync submission from here, since we can't
6422 * wait for request slots on the block side.
6423 */
6424 if (ret != -EAGAIN)
6425 break;
6426 cond_resched();
6427 } while (1);
6428 }
6429
6430 if (ret) {
6431 struct io_ring_ctx *lock_ctx = NULL;
6432
6433 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6434 lock_ctx = req->ctx;
6435
6436 /*
6437 * io_iopoll_complete() does not hold completion_lock to
6438 * complete polled io, so here for polled io, we can not call
6439 * io_req_complete() directly, otherwise there maybe concurrent
6440 * access to cqring, defer_list, etc, which is not safe. Given
6441 * that io_iopoll_complete() is always called under uring_lock,
6442 * so here for polled io, we also get uring_lock to complete
6443 * it.
6444 */
6445 if (lock_ctx)
6446 mutex_lock(&lock_ctx->uring_lock);
6447
6448 req_set_fail_links(req);
6449 io_req_complete(req, ret);
6450
6451 if (lock_ctx)
6452 mutex_unlock(&lock_ctx->uring_lock);
6453 }
6454 }
6455
6456 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6457 int index)
6458 {
6459 struct fixed_rsrc_table *table;
6460
6461 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6462 return table->files[index & IORING_FILE_TABLE_MASK];
6463 }
6464
6465 static struct file *io_file_get(struct io_submit_state *state,
6466 struct io_kiocb *req, int fd, bool fixed)
6467 {
6468 struct io_ring_ctx *ctx = req->ctx;
6469 struct file *file;
6470
6471 if (fixed) {
6472 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6473 return NULL;
6474 fd = array_index_nospec(fd, ctx->nr_user_files);
6475 file = io_file_from_index(ctx, fd);
6476 io_set_resource_node(req);
6477 } else {
6478 trace_io_uring_file_get(ctx, fd);
6479 file = __io_file_get(state, fd);
6480 }
6481
6482 if (file && unlikely(file->f_op == &io_uring_fops))
6483 io_req_track_inflight(req);
6484 return file;
6485 }
6486
6487 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6488 {
6489 struct io_timeout_data *data = container_of(timer,
6490 struct io_timeout_data, timer);
6491 struct io_kiocb *prev, *req = data->req;
6492 struct io_ring_ctx *ctx = req->ctx;
6493 unsigned long flags;
6494
6495 spin_lock_irqsave(&ctx->completion_lock, flags);
6496 prev = req->timeout.head;
6497 req->timeout.head = NULL;
6498
6499 /*
6500 * We don't expect the list to be empty, that will only happen if we
6501 * race with the completion of the linked work.
6502 */
6503 if (prev && refcount_inc_not_zero(&prev->refs))
6504 io_remove_next_linked(prev);
6505 else
6506 prev = NULL;
6507 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6508
6509 if (prev) {
6510 req_set_fail_links(prev);
6511 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6512 io_put_req_deferred(prev, 1);
6513 } else {
6514 io_req_complete_post(req, -ETIME, 0);
6515 io_put_req_deferred(req, 1);
6516 }
6517 return HRTIMER_NORESTART;
6518 }
6519
6520 static void __io_queue_linked_timeout(struct io_kiocb *req)
6521 {
6522 /*
6523 * If the back reference is NULL, then our linked request finished
6524 * before we got a chance to setup the timer
6525 */
6526 if (req->timeout.head) {
6527 struct io_timeout_data *data = req->async_data;
6528
6529 data->timer.function = io_link_timeout_fn;
6530 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6531 data->mode);
6532 }
6533 }
6534
6535 static void io_queue_linked_timeout(struct io_kiocb *req)
6536 {
6537 struct io_ring_ctx *ctx = req->ctx;
6538
6539 spin_lock_irq(&ctx->completion_lock);
6540 __io_queue_linked_timeout(req);
6541 spin_unlock_irq(&ctx->completion_lock);
6542
6543 /* drop submission reference */
6544 io_put_req(req);
6545 }
6546
6547 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6548 {
6549 struct io_kiocb *nxt = req->link;
6550
6551 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6552 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6553 return NULL;
6554
6555 nxt->timeout.head = req;
6556 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6557 req->flags |= REQ_F_LINK_TIMEOUT;
6558 return nxt;
6559 }
6560
6561 static void __io_queue_sqe(struct io_kiocb *req)
6562 {
6563 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6564 const struct cred *old_creds = NULL;
6565 int ret;
6566
6567 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6568 (req->work.flags & IO_WQ_WORK_CREDS) &&
6569 req->work.identity->creds != current_cred())
6570 old_creds = override_creds(req->work.identity->creds);
6571
6572 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6573
6574 if (old_creds)
6575 revert_creds(old_creds);
6576
6577 /*
6578 * We async punt it if the file wasn't marked NOWAIT, or if the file
6579 * doesn't support non-blocking read/write attempts
6580 */
6581 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6582 if (!io_arm_poll_handler(req)) {
6583 /*
6584 * Queued up for async execution, worker will release
6585 * submit reference when the iocb is actually submitted.
6586 */
6587 io_queue_async_work(req);
6588 }
6589 } else if (likely(!ret)) {
6590 /* drop submission reference */
6591 if (req->flags & REQ_F_COMPLETE_INLINE) {
6592 struct io_ring_ctx *ctx = req->ctx;
6593 struct io_comp_state *cs = &ctx->submit_state.comp;
6594
6595 cs->reqs[cs->nr++] = req;
6596 if (cs->nr == ARRAY_SIZE(cs->reqs))
6597 io_submit_flush_completions(cs, ctx);
6598 } else {
6599 io_put_req(req);
6600 }
6601 } else {
6602 req_set_fail_links(req);
6603 io_put_req(req);
6604 io_req_complete(req, ret);
6605 }
6606 if (linked_timeout)
6607 io_queue_linked_timeout(linked_timeout);
6608 }
6609
6610 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6611 {
6612 int ret;
6613
6614 ret = io_req_defer(req, sqe);
6615 if (ret) {
6616 if (ret != -EIOCBQUEUED) {
6617 fail_req:
6618 req_set_fail_links(req);
6619 io_put_req(req);
6620 io_req_complete(req, ret);
6621 }
6622 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6623 if (!req->async_data) {
6624 ret = io_req_defer_prep(req, sqe);
6625 if (unlikely(ret))
6626 goto fail_req;
6627 }
6628 io_queue_async_work(req);
6629 } else {
6630 if (sqe) {
6631 ret = io_req_prep(req, sqe);
6632 if (unlikely(ret))
6633 goto fail_req;
6634 }
6635 __io_queue_sqe(req);
6636 }
6637 }
6638
6639 static inline void io_queue_link_head(struct io_kiocb *req)
6640 {
6641 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6642 io_put_req(req);
6643 io_req_complete(req, -ECANCELED);
6644 } else
6645 io_queue_sqe(req, NULL);
6646 }
6647
6648 struct io_submit_link {
6649 struct io_kiocb *head;
6650 struct io_kiocb *last;
6651 };
6652
6653 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6654 struct io_submit_link *link)
6655 {
6656 struct io_ring_ctx *ctx = req->ctx;
6657 int ret;
6658
6659 /*
6660 * If we already have a head request, queue this one for async
6661 * submittal once the head completes. If we don't have a head but
6662 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6663 * submitted sync once the chain is complete. If none of those
6664 * conditions are true (normal request), then just queue it.
6665 */
6666 if (link->head) {
6667 struct io_kiocb *head = link->head;
6668
6669 /*
6670 * Taking sequential execution of a link, draining both sides
6671 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6672 * requests in the link. So, it drains the head and the
6673 * next after the link request. The last one is done via
6674 * drain_next flag to persist the effect across calls.
6675 */
6676 if (req->flags & REQ_F_IO_DRAIN) {
6677 head->flags |= REQ_F_IO_DRAIN;
6678 ctx->drain_next = 1;
6679 }
6680 ret = io_req_defer_prep(req, sqe);
6681 if (unlikely(ret)) {
6682 /* fail even hard links since we don't submit */
6683 head->flags |= REQ_F_FAIL_LINK;
6684 return ret;
6685 }
6686 trace_io_uring_link(ctx, req, head);
6687 link->last->link = req;
6688 link->last = req;
6689
6690 /* last request of a link, enqueue the link */
6691 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6692 io_queue_link_head(head);
6693 link->head = NULL;
6694 }
6695 } else {
6696 if (unlikely(ctx->drain_next)) {
6697 req->flags |= REQ_F_IO_DRAIN;
6698 ctx->drain_next = 0;
6699 }
6700 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6701 ret = io_req_defer_prep(req, sqe);
6702 if (unlikely(ret))
6703 req->flags |= REQ_F_FAIL_LINK;
6704 link->head = req;
6705 link->last = req;
6706 } else {
6707 io_queue_sqe(req, sqe);
6708 }
6709 }
6710
6711 return 0;
6712 }
6713
6714 /*
6715 * Batched submission is done, ensure local IO is flushed out.
6716 */
6717 static void io_submit_state_end(struct io_submit_state *state,
6718 struct io_ring_ctx *ctx)
6719 {
6720 if (state->comp.nr)
6721 io_submit_flush_completions(&state->comp, ctx);
6722 if (state->plug_started)
6723 blk_finish_plug(&state->plug);
6724 io_state_file_put(state);
6725 }
6726
6727 /*
6728 * Start submission side cache.
6729 */
6730 static void io_submit_state_start(struct io_submit_state *state,
6731 unsigned int max_ios)
6732 {
6733 state->plug_started = false;
6734 state->ios_left = max_ios;
6735 }
6736
6737 static void io_commit_sqring(struct io_ring_ctx *ctx)
6738 {
6739 struct io_rings *rings = ctx->rings;
6740
6741 /*
6742 * Ensure any loads from the SQEs are done at this point,
6743 * since once we write the new head, the application could
6744 * write new data to them.
6745 */
6746 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6747 }
6748
6749 /*
6750 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6751 * that is mapped by userspace. This means that care needs to be taken to
6752 * ensure that reads are stable, as we cannot rely on userspace always
6753 * being a good citizen. If members of the sqe are validated and then later
6754 * used, it's important that those reads are done through READ_ONCE() to
6755 * prevent a re-load down the line.
6756 */
6757 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6758 {
6759 u32 *sq_array = ctx->sq_array;
6760 unsigned head;
6761
6762 /*
6763 * The cached sq head (or cq tail) serves two purposes:
6764 *
6765 * 1) allows us to batch the cost of updating the user visible
6766 * head updates.
6767 * 2) allows the kernel side to track the head on its own, even
6768 * though the application is the one updating it.
6769 */
6770 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6771 if (likely(head < ctx->sq_entries))
6772 return &ctx->sq_sqes[head];
6773
6774 /* drop invalid entries */
6775 ctx->cached_sq_dropped++;
6776 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6777 return NULL;
6778 }
6779
6780 /*
6781 * Check SQE restrictions (opcode and flags).
6782 *
6783 * Returns 'true' if SQE is allowed, 'false' otherwise.
6784 */
6785 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6786 struct io_kiocb *req,
6787 unsigned int sqe_flags)
6788 {
6789 if (!ctx->restricted)
6790 return true;
6791
6792 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6793 return false;
6794
6795 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6796 ctx->restrictions.sqe_flags_required)
6797 return false;
6798
6799 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6800 ctx->restrictions.sqe_flags_required))
6801 return false;
6802
6803 return true;
6804 }
6805
6806 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6807 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6808 IOSQE_BUFFER_SELECT)
6809
6810 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6811 const struct io_uring_sqe *sqe)
6812 {
6813 struct io_submit_state *state;
6814 unsigned int sqe_flags;
6815 int id, ret = 0;
6816
6817 req->opcode = READ_ONCE(sqe->opcode);
6818 /* same numerical values with corresponding REQ_F_*, safe to copy */
6819 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6820 req->user_data = READ_ONCE(sqe->user_data);
6821 req->async_data = NULL;
6822 req->file = NULL;
6823 req->ctx = ctx;
6824 req->link = NULL;
6825 req->fixed_rsrc_refs = NULL;
6826 /* one is dropped after submission, the other at completion */
6827 refcount_set(&req->refs, 2);
6828 req->task = current;
6829 req->result = 0;
6830
6831 /* enforce forwards compatibility on users */
6832 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6833 return -EINVAL;
6834
6835 if (unlikely(req->opcode >= IORING_OP_LAST))
6836 return -EINVAL;
6837
6838 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6839 return -EFAULT;
6840
6841 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6842 return -EACCES;
6843
6844 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6845 !io_op_defs[req->opcode].buffer_select)
6846 return -EOPNOTSUPP;
6847
6848 id = READ_ONCE(sqe->personality);
6849 if (id) {
6850 struct io_identity *iod;
6851
6852 iod = idr_find(&ctx->personality_idr, id);
6853 if (unlikely(!iod))
6854 return -EINVAL;
6855 refcount_inc(&iod->count);
6856
6857 __io_req_init_async(req);
6858 get_cred(iod->creds);
6859 req->work.identity = iod;
6860 req->work.flags |= IO_WQ_WORK_CREDS;
6861 }
6862
6863 state = &ctx->submit_state;
6864
6865 /*
6866 * Plug now if we have more than 1 IO left after this, and the target
6867 * is potentially a read/write to block based storage.
6868 */
6869 if (!state->plug_started && state->ios_left > 1 &&
6870 io_op_defs[req->opcode].plug) {
6871 blk_start_plug(&state->plug);
6872 state->plug_started = true;
6873 }
6874
6875 if (io_op_defs[req->opcode].needs_file) {
6876 bool fixed = req->flags & REQ_F_FIXED_FILE;
6877
6878 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6879 if (unlikely(!req->file))
6880 ret = -EBADF;
6881 }
6882
6883 state->ios_left--;
6884 return ret;
6885 }
6886
6887 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6888 {
6889 struct io_submit_link link;
6890 int i, submitted = 0;
6891
6892 /* if we have a backlog and couldn't flush it all, return BUSY */
6893 if (test_bit(0, &ctx->sq_check_overflow)) {
6894 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6895 return -EBUSY;
6896 }
6897
6898 /* make sure SQ entry isn't read before tail */
6899 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6900
6901 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6902 return -EAGAIN;
6903
6904 percpu_counter_add(&current->io_uring->inflight, nr);
6905 refcount_add(nr, &current->usage);
6906
6907 io_submit_state_start(&ctx->submit_state, nr);
6908 link.head = NULL;
6909
6910 for (i = 0; i < nr; i++) {
6911 const struct io_uring_sqe *sqe;
6912 struct io_kiocb *req;
6913 int err;
6914
6915 req = io_alloc_req(ctx);
6916 if (unlikely(!req)) {
6917 if (!submitted)
6918 submitted = -EAGAIN;
6919 break;
6920 }
6921 sqe = io_get_sqe(ctx);
6922 if (unlikely(!sqe)) {
6923 kmem_cache_free(req_cachep, req);
6924 break;
6925 }
6926 /* will complete beyond this point, count as submitted */
6927 submitted++;
6928
6929 err = io_init_req(ctx, req, sqe);
6930 if (unlikely(err)) {
6931 fail_req:
6932 io_put_req(req);
6933 io_req_complete(req, err);
6934 break;
6935 }
6936
6937 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6938 true, ctx->flags & IORING_SETUP_SQPOLL);
6939 err = io_submit_sqe(req, sqe, &link);
6940 if (err)
6941 goto fail_req;
6942 }
6943
6944 if (unlikely(submitted != nr)) {
6945 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6946 struct io_uring_task *tctx = current->io_uring;
6947 int unused = nr - ref_used;
6948
6949 percpu_ref_put_many(&ctx->refs, unused);
6950 percpu_counter_sub(&tctx->inflight, unused);
6951 put_task_struct_many(current, unused);
6952 }
6953 if (link.head)
6954 io_queue_link_head(link.head);
6955 io_submit_state_end(&ctx->submit_state, ctx);
6956
6957 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6958 io_commit_sqring(ctx);
6959
6960 return submitted;
6961 }
6962
6963 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6964 {
6965 /* Tell userspace we may need a wakeup call */
6966 spin_lock_irq(&ctx->completion_lock);
6967 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6968 spin_unlock_irq(&ctx->completion_lock);
6969 }
6970
6971 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6972 {
6973 spin_lock_irq(&ctx->completion_lock);
6974 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6975 spin_unlock_irq(&ctx->completion_lock);
6976 }
6977
6978 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6979 {
6980 unsigned int to_submit;
6981 int ret = 0;
6982
6983 to_submit = io_sqring_entries(ctx);
6984 /* if we're handling multiple rings, cap submit size for fairness */
6985 if (cap_entries && to_submit > 8)
6986 to_submit = 8;
6987
6988 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6989 unsigned nr_events = 0;
6990
6991 mutex_lock(&ctx->uring_lock);
6992 if (!list_empty(&ctx->iopoll_list))
6993 io_do_iopoll(ctx, &nr_events, 0);
6994
6995 if (to_submit && !ctx->sqo_dead &&
6996 likely(!percpu_ref_is_dying(&ctx->refs)))
6997 ret = io_submit_sqes(ctx, to_submit);
6998 mutex_unlock(&ctx->uring_lock);
6999 }
7000
7001 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7002 wake_up(&ctx->sqo_sq_wait);
7003
7004 return ret;
7005 }
7006
7007 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7008 {
7009 struct io_ring_ctx *ctx;
7010 unsigned sq_thread_idle = 0;
7011
7012 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7013 if (sq_thread_idle < ctx->sq_thread_idle)
7014 sq_thread_idle = ctx->sq_thread_idle;
7015 }
7016
7017 sqd->sq_thread_idle = sq_thread_idle;
7018 }
7019
7020 static void io_sqd_init_new(struct io_sq_data *sqd)
7021 {
7022 struct io_ring_ctx *ctx;
7023
7024 while (!list_empty(&sqd->ctx_new_list)) {
7025 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7026 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7027 complete(&ctx->sq_thread_comp);
7028 }
7029
7030 io_sqd_update_thread_idle(sqd);
7031 }
7032
7033 static int io_sq_thread(void *data)
7034 {
7035 struct cgroup_subsys_state *cur_css = NULL;
7036 struct files_struct *old_files = current->files;
7037 struct nsproxy *old_nsproxy = current->nsproxy;
7038 const struct cred *old_cred = NULL;
7039 struct io_sq_data *sqd = data;
7040 struct io_ring_ctx *ctx;
7041 unsigned long timeout = 0;
7042 DEFINE_WAIT(wait);
7043
7044 task_lock(current);
7045 current->files = NULL;
7046 current->nsproxy = NULL;
7047 task_unlock(current);
7048
7049 while (!kthread_should_stop()) {
7050 int ret;
7051 bool cap_entries, sqt_spin, needs_sched;
7052
7053 /*
7054 * Any changes to the sqd lists are synchronized through the
7055 * kthread parking. This synchronizes the thread vs users,
7056 * the users are synchronized on the sqd->ctx_lock.
7057 */
7058 if (kthread_should_park()) {
7059 kthread_parkme();
7060 /*
7061 * When sq thread is unparked, in case the previous park operation
7062 * comes from io_put_sq_data(), which means that sq thread is going
7063 * to be stopped, so here needs to have a check.
7064 */
7065 if (kthread_should_stop())
7066 break;
7067 }
7068
7069 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7070 io_sqd_init_new(sqd);
7071 timeout = jiffies + sqd->sq_thread_idle;
7072 }
7073
7074 sqt_spin = false;
7075 cap_entries = !list_is_singular(&sqd->ctx_list);
7076 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7077 if (current->cred != ctx->creds) {
7078 if (old_cred)
7079 revert_creds(old_cred);
7080 old_cred = override_creds(ctx->creds);
7081 }
7082 io_sq_thread_associate_blkcg(ctx, &cur_css);
7083 #ifdef CONFIG_AUDIT
7084 current->loginuid = ctx->loginuid;
7085 current->sessionid = ctx->sessionid;
7086 #endif
7087
7088 ret = __io_sq_thread(ctx, cap_entries);
7089 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7090 sqt_spin = true;
7091
7092 io_sq_thread_drop_mm_files();
7093 }
7094
7095 if (sqt_spin || !time_after(jiffies, timeout)) {
7096 io_run_task_work();
7097 io_sq_thread_drop_mm_files();
7098 cond_resched();
7099 if (sqt_spin)
7100 timeout = jiffies + sqd->sq_thread_idle;
7101 continue;
7102 }
7103
7104 needs_sched = true;
7105 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7106 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7107 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7108 !list_empty_careful(&ctx->iopoll_list)) {
7109 needs_sched = false;
7110 break;
7111 }
7112 if (io_sqring_entries(ctx)) {
7113 needs_sched = false;
7114 break;
7115 }
7116 }
7117
7118 if (needs_sched && !kthread_should_park()) {
7119 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7120 io_ring_set_wakeup_flag(ctx);
7121
7122 schedule();
7123 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7124 io_ring_clear_wakeup_flag(ctx);
7125 }
7126
7127 finish_wait(&sqd->wait, &wait);
7128 timeout = jiffies + sqd->sq_thread_idle;
7129 }
7130
7131 io_run_task_work();
7132 io_sq_thread_drop_mm_files();
7133
7134 if (cur_css)
7135 io_sq_thread_unassociate_blkcg();
7136 if (old_cred)
7137 revert_creds(old_cred);
7138
7139 task_lock(current);
7140 current->files = old_files;
7141 current->nsproxy = old_nsproxy;
7142 task_unlock(current);
7143
7144 kthread_parkme();
7145
7146 return 0;
7147 }
7148
7149 struct io_wait_queue {
7150 struct wait_queue_entry wq;
7151 struct io_ring_ctx *ctx;
7152 unsigned to_wait;
7153 unsigned nr_timeouts;
7154 };
7155
7156 static inline bool io_should_wake(struct io_wait_queue *iowq)
7157 {
7158 struct io_ring_ctx *ctx = iowq->ctx;
7159
7160 /*
7161 * Wake up if we have enough events, or if a timeout occurred since we
7162 * started waiting. For timeouts, we always want to return to userspace,
7163 * regardless of event count.
7164 */
7165 return io_cqring_events(ctx) >= iowq->to_wait ||
7166 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7167 }
7168
7169 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7170 int wake_flags, void *key)
7171 {
7172 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7173 wq);
7174
7175 /*
7176 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7177 * the task, and the next invocation will do it.
7178 */
7179 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7180 return autoremove_wake_function(curr, mode, wake_flags, key);
7181 return -1;
7182 }
7183
7184 static int io_run_task_work_sig(void)
7185 {
7186 if (io_run_task_work())
7187 return 1;
7188 if (!signal_pending(current))
7189 return 0;
7190 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7191 return -ERESTARTSYS;
7192 return -EINTR;
7193 }
7194
7195 /* when returns >0, the caller should retry */
7196 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7197 struct io_wait_queue *iowq,
7198 signed long *timeout)
7199 {
7200 int ret;
7201
7202 /* make sure we run task_work before checking for signals */
7203 ret = io_run_task_work_sig();
7204 if (ret || io_should_wake(iowq))
7205 return ret;
7206 /* let the caller flush overflows, retry */
7207 if (test_bit(0, &ctx->cq_check_overflow))
7208 return 1;
7209
7210 *timeout = schedule_timeout(*timeout);
7211 return !*timeout ? -ETIME : 1;
7212 }
7213
7214 /*
7215 * Wait until events become available, if we don't already have some. The
7216 * application must reap them itself, as they reside on the shared cq ring.
7217 */
7218 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7219 const sigset_t __user *sig, size_t sigsz,
7220 struct __kernel_timespec __user *uts)
7221 {
7222 struct io_wait_queue iowq = {
7223 .wq = {
7224 .private = current,
7225 .func = io_wake_function,
7226 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7227 },
7228 .ctx = ctx,
7229 .to_wait = min_events,
7230 };
7231 struct io_rings *rings = ctx->rings;
7232 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7233 int ret;
7234
7235 do {
7236 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7237 if (io_cqring_events(ctx) >= min_events)
7238 return 0;
7239 if (!io_run_task_work())
7240 break;
7241 } while (1);
7242
7243 if (sig) {
7244 #ifdef CONFIG_COMPAT
7245 if (in_compat_syscall())
7246 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7247 sigsz);
7248 else
7249 #endif
7250 ret = set_user_sigmask(sig, sigsz);
7251
7252 if (ret)
7253 return ret;
7254 }
7255
7256 if (uts) {
7257 struct timespec64 ts;
7258
7259 if (get_timespec64(&ts, uts))
7260 return -EFAULT;
7261 timeout = timespec64_to_jiffies(&ts);
7262 }
7263
7264 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7265 trace_io_uring_cqring_wait(ctx, min_events);
7266 do {
7267 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7268 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7269 TASK_INTERRUPTIBLE);
7270 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7271 finish_wait(&ctx->wait, &iowq.wq);
7272 } while (ret > 0);
7273
7274 restore_saved_sigmask_unless(ret == -EINTR);
7275
7276 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7277 }
7278
7279 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7280 {
7281 #if defined(CONFIG_UNIX)
7282 if (ctx->ring_sock) {
7283 struct sock *sock = ctx->ring_sock->sk;
7284 struct sk_buff *skb;
7285
7286 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7287 kfree_skb(skb);
7288 }
7289 #else
7290 int i;
7291
7292 for (i = 0; i < ctx->nr_user_files; i++) {
7293 struct file *file;
7294
7295 file = io_file_from_index(ctx, i);
7296 if (file)
7297 fput(file);
7298 }
7299 #endif
7300 }
7301
7302 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7303 {
7304 struct fixed_rsrc_data *data;
7305
7306 data = container_of(ref, struct fixed_rsrc_data, refs);
7307 complete(&data->done);
7308 }
7309
7310 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7311 {
7312 spin_lock_bh(&ctx->rsrc_ref_lock);
7313 }
7314
7315 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7316 {
7317 spin_unlock_bh(&ctx->rsrc_ref_lock);
7318 }
7319
7320 static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
7321 struct fixed_rsrc_data *rsrc_data,
7322 struct fixed_rsrc_ref_node *ref_node)
7323 {
7324 io_rsrc_ref_lock(ctx);
7325 rsrc_data->node = ref_node;
7326 list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
7327 io_rsrc_ref_unlock(ctx);
7328 percpu_ref_get(&rsrc_data->refs);
7329 }
7330
7331 static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
7332 struct io_ring_ctx *ctx,
7333 struct fixed_rsrc_ref_node *backup_node)
7334 {
7335 struct fixed_rsrc_ref_node *ref_node;
7336 int ret;
7337
7338 io_rsrc_ref_lock(ctx);
7339 ref_node = data->node;
7340 io_rsrc_ref_unlock(ctx);
7341 if (ref_node)
7342 percpu_ref_kill(&ref_node->refs);
7343
7344 percpu_ref_kill(&data->refs);
7345
7346 /* wait for all refs nodes to complete */
7347 flush_delayed_work(&ctx->rsrc_put_work);
7348 do {
7349 ret = wait_for_completion_interruptible(&data->done);
7350 if (!ret)
7351 break;
7352 ret = io_run_task_work_sig();
7353 if (ret < 0) {
7354 percpu_ref_resurrect(&data->refs);
7355 reinit_completion(&data->done);
7356 io_sqe_rsrc_set_node(ctx, data, backup_node);
7357 return ret;
7358 }
7359 } while (1);
7360
7361 destroy_fixed_rsrc_ref_node(backup_node);
7362 return 0;
7363 }
7364
7365 static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
7366 {
7367 struct fixed_rsrc_data *data;
7368
7369 data = kzalloc(sizeof(*data), GFP_KERNEL);
7370 if (!data)
7371 return NULL;
7372
7373 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7374 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7375 kfree(data);
7376 return NULL;
7377 }
7378 data->ctx = ctx;
7379 init_completion(&data->done);
7380 return data;
7381 }
7382
7383 static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
7384 {
7385 percpu_ref_exit(&data->refs);
7386 kfree(data->table);
7387 kfree(data);
7388 }
7389
7390 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7391 {
7392 struct fixed_rsrc_data *data = ctx->file_data;
7393 struct fixed_rsrc_ref_node *backup_node;
7394 unsigned nr_tables, i;
7395 int ret;
7396
7397 if (!data)
7398 return -ENXIO;
7399 backup_node = alloc_fixed_rsrc_ref_node(ctx);
7400 if (!backup_node)
7401 return -ENOMEM;
7402 init_fixed_file_ref_node(ctx, backup_node);
7403
7404 ret = io_rsrc_ref_quiesce(data, ctx, backup_node);
7405 if (ret)
7406 return ret;
7407
7408 __io_sqe_files_unregister(ctx);
7409 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7410 for (i = 0; i < nr_tables; i++)
7411 kfree(data->table[i].files);
7412 free_fixed_rsrc_data(data);
7413 ctx->file_data = NULL;
7414 ctx->nr_user_files = 0;
7415 return 0;
7416 }
7417
7418 static void io_put_sq_data(struct io_sq_data *sqd)
7419 {
7420 if (refcount_dec_and_test(&sqd->refs)) {
7421 /*
7422 * The park is a bit of a work-around, without it we get
7423 * warning spews on shutdown with SQPOLL set and affinity
7424 * set to a single CPU.
7425 */
7426 if (sqd->thread) {
7427 kthread_park(sqd->thread);
7428 kthread_stop(sqd->thread);
7429 }
7430
7431 kfree(sqd);
7432 }
7433 }
7434
7435 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7436 {
7437 struct io_ring_ctx *ctx_attach;
7438 struct io_sq_data *sqd;
7439 struct fd f;
7440
7441 f = fdget(p->wq_fd);
7442 if (!f.file)
7443 return ERR_PTR(-ENXIO);
7444 if (f.file->f_op != &io_uring_fops) {
7445 fdput(f);
7446 return ERR_PTR(-EINVAL);
7447 }
7448
7449 ctx_attach = f.file->private_data;
7450 sqd = ctx_attach->sq_data;
7451 if (!sqd) {
7452 fdput(f);
7453 return ERR_PTR(-EINVAL);
7454 }
7455
7456 refcount_inc(&sqd->refs);
7457 fdput(f);
7458 return sqd;
7459 }
7460
7461 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7462 {
7463 struct io_sq_data *sqd;
7464
7465 if (p->flags & IORING_SETUP_ATTACH_WQ)
7466 return io_attach_sq_data(p);
7467
7468 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7469 if (!sqd)
7470 return ERR_PTR(-ENOMEM);
7471
7472 refcount_set(&sqd->refs, 1);
7473 INIT_LIST_HEAD(&sqd->ctx_list);
7474 INIT_LIST_HEAD(&sqd->ctx_new_list);
7475 mutex_init(&sqd->ctx_lock);
7476 mutex_init(&sqd->lock);
7477 init_waitqueue_head(&sqd->wait);
7478 return sqd;
7479 }
7480
7481 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7482 __releases(&sqd->lock)
7483 {
7484 if (!sqd->thread)
7485 return;
7486 kthread_unpark(sqd->thread);
7487 mutex_unlock(&sqd->lock);
7488 }
7489
7490 static void io_sq_thread_park(struct io_sq_data *sqd)
7491 __acquires(&sqd->lock)
7492 {
7493 if (!sqd->thread)
7494 return;
7495 mutex_lock(&sqd->lock);
7496 kthread_park(sqd->thread);
7497 }
7498
7499 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7500 {
7501 struct io_sq_data *sqd = ctx->sq_data;
7502
7503 if (sqd) {
7504 if (sqd->thread) {
7505 /*
7506 * We may arrive here from the error branch in
7507 * io_sq_offload_create() where the kthread is created
7508 * without being waked up, thus wake it up now to make
7509 * sure the wait will complete.
7510 */
7511 wake_up_process(sqd->thread);
7512 wait_for_completion(&ctx->sq_thread_comp);
7513
7514 io_sq_thread_park(sqd);
7515 }
7516
7517 mutex_lock(&sqd->ctx_lock);
7518 list_del(&ctx->sqd_list);
7519 io_sqd_update_thread_idle(sqd);
7520 mutex_unlock(&sqd->ctx_lock);
7521
7522 if (sqd->thread)
7523 io_sq_thread_unpark(sqd);
7524
7525 io_put_sq_data(sqd);
7526 ctx->sq_data = NULL;
7527 }
7528 }
7529
7530 static void io_finish_async(struct io_ring_ctx *ctx)
7531 {
7532 io_sq_thread_stop(ctx);
7533
7534 if (ctx->io_wq) {
7535 io_wq_destroy(ctx->io_wq);
7536 ctx->io_wq = NULL;
7537 }
7538 }
7539
7540 #if defined(CONFIG_UNIX)
7541 /*
7542 * Ensure the UNIX gc is aware of our file set, so we are certain that
7543 * the io_uring can be safely unregistered on process exit, even if we have
7544 * loops in the file referencing.
7545 */
7546 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7547 {
7548 struct sock *sk = ctx->ring_sock->sk;
7549 struct scm_fp_list *fpl;
7550 struct sk_buff *skb;
7551 int i, nr_files;
7552
7553 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7554 if (!fpl)
7555 return -ENOMEM;
7556
7557 skb = alloc_skb(0, GFP_KERNEL);
7558 if (!skb) {
7559 kfree(fpl);
7560 return -ENOMEM;
7561 }
7562
7563 skb->sk = sk;
7564
7565 nr_files = 0;
7566 fpl->user = get_uid(ctx->user);
7567 for (i = 0; i < nr; i++) {
7568 struct file *file = io_file_from_index(ctx, i + offset);
7569
7570 if (!file)
7571 continue;
7572 fpl->fp[nr_files] = get_file(file);
7573 unix_inflight(fpl->user, fpl->fp[nr_files]);
7574 nr_files++;
7575 }
7576
7577 if (nr_files) {
7578 fpl->max = SCM_MAX_FD;
7579 fpl->count = nr_files;
7580 UNIXCB(skb).fp = fpl;
7581 skb->destructor = unix_destruct_scm;
7582 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7583 skb_queue_head(&sk->sk_receive_queue, skb);
7584
7585 for (i = 0; i < nr_files; i++)
7586 fput(fpl->fp[i]);
7587 } else {
7588 kfree_skb(skb);
7589 kfree(fpl);
7590 }
7591
7592 return 0;
7593 }
7594
7595 /*
7596 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7597 * causes regular reference counting to break down. We rely on the UNIX
7598 * garbage collection to take care of this problem for us.
7599 */
7600 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7601 {
7602 unsigned left, total;
7603 int ret = 0;
7604
7605 total = 0;
7606 left = ctx->nr_user_files;
7607 while (left) {
7608 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7609
7610 ret = __io_sqe_files_scm(ctx, this_files, total);
7611 if (ret)
7612 break;
7613 left -= this_files;
7614 total += this_files;
7615 }
7616
7617 if (!ret)
7618 return 0;
7619
7620 while (total < ctx->nr_user_files) {
7621 struct file *file = io_file_from_index(ctx, total);
7622
7623 if (file)
7624 fput(file);
7625 total++;
7626 }
7627
7628 return ret;
7629 }
7630 #else
7631 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7632 {
7633 return 0;
7634 }
7635 #endif
7636
7637 static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
7638 unsigned nr_tables, unsigned nr_files)
7639 {
7640 int i;
7641
7642 for (i = 0; i < nr_tables; i++) {
7643 struct fixed_rsrc_table *table = &file_data->table[i];
7644 unsigned this_files;
7645
7646 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7647 table->files = kcalloc(this_files, sizeof(struct file *),
7648 GFP_KERNEL);
7649 if (!table->files)
7650 break;
7651 nr_files -= this_files;
7652 }
7653
7654 if (i == nr_tables)
7655 return 0;
7656
7657 for (i = 0; i < nr_tables; i++) {
7658 struct fixed_rsrc_table *table = &file_data->table[i];
7659 kfree(table->files);
7660 }
7661 return 1;
7662 }
7663
7664 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7665 {
7666 struct file *file = prsrc->file;
7667 #if defined(CONFIG_UNIX)
7668 struct sock *sock = ctx->ring_sock->sk;
7669 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7670 struct sk_buff *skb;
7671 int i;
7672
7673 __skb_queue_head_init(&list);
7674
7675 /*
7676 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7677 * remove this entry and rearrange the file array.
7678 */
7679 skb = skb_dequeue(head);
7680 while (skb) {
7681 struct scm_fp_list *fp;
7682
7683 fp = UNIXCB(skb).fp;
7684 for (i = 0; i < fp->count; i++) {
7685 int left;
7686
7687 if (fp->fp[i] != file)
7688 continue;
7689
7690 unix_notinflight(fp->user, fp->fp[i]);
7691 left = fp->count - 1 - i;
7692 if (left) {
7693 memmove(&fp->fp[i], &fp->fp[i + 1],
7694 left * sizeof(struct file *));
7695 }
7696 fp->count--;
7697 if (!fp->count) {
7698 kfree_skb(skb);
7699 skb = NULL;
7700 } else {
7701 __skb_queue_tail(&list, skb);
7702 }
7703 fput(file);
7704 file = NULL;
7705 break;
7706 }
7707
7708 if (!file)
7709 break;
7710
7711 __skb_queue_tail(&list, skb);
7712
7713 skb = skb_dequeue(head);
7714 }
7715
7716 if (skb_peek(&list)) {
7717 spin_lock_irq(&head->lock);
7718 while ((skb = __skb_dequeue(&list)) != NULL)
7719 __skb_queue_tail(head, skb);
7720 spin_unlock_irq(&head->lock);
7721 }
7722 #else
7723 fput(file);
7724 #endif
7725 }
7726
7727 static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
7728 {
7729 struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
7730 struct io_ring_ctx *ctx = rsrc_data->ctx;
7731 struct io_rsrc_put *prsrc, *tmp;
7732
7733 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7734 list_del(&prsrc->list);
7735 ref_node->rsrc_put(ctx, prsrc);
7736 kfree(prsrc);
7737 }
7738
7739 percpu_ref_exit(&ref_node->refs);
7740 kfree(ref_node);
7741 percpu_ref_put(&rsrc_data->refs);
7742 }
7743
7744 static void io_rsrc_put_work(struct work_struct *work)
7745 {
7746 struct io_ring_ctx *ctx;
7747 struct llist_node *node;
7748
7749 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7750 node = llist_del_all(&ctx->rsrc_put_llist);
7751
7752 while (node) {
7753 struct fixed_rsrc_ref_node *ref_node;
7754 struct llist_node *next = node->next;
7755
7756 ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
7757 __io_rsrc_put_work(ref_node);
7758 node = next;
7759 }
7760 }
7761
7762 static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
7763 unsigned i)
7764 {
7765 struct fixed_rsrc_table *table;
7766
7767 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7768 return &table->files[i & IORING_FILE_TABLE_MASK];
7769 }
7770
7771 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7772 {
7773 struct fixed_rsrc_ref_node *ref_node;
7774 struct fixed_rsrc_data *data;
7775 struct io_ring_ctx *ctx;
7776 bool first_add = false;
7777 int delay = HZ;
7778
7779 ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
7780 data = ref_node->rsrc_data;
7781 ctx = data->ctx;
7782
7783 io_rsrc_ref_lock(ctx);
7784 ref_node->done = true;
7785
7786 while (!list_empty(&ctx->rsrc_ref_list)) {
7787 ref_node = list_first_entry(&ctx->rsrc_ref_list,
7788 struct fixed_rsrc_ref_node, node);
7789 /* recycle ref nodes in order */
7790 if (!ref_node->done)
7791 break;
7792 list_del(&ref_node->node);
7793 first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
7794 }
7795 io_rsrc_ref_unlock(ctx);
7796
7797 if (percpu_ref_is_dying(&data->refs))
7798 delay = 0;
7799
7800 if (!delay)
7801 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7802 else if (first_add)
7803 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7804 }
7805
7806 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
7807 struct io_ring_ctx *ctx)
7808 {
7809 struct fixed_rsrc_ref_node *ref_node;
7810
7811 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7812 if (!ref_node)
7813 return NULL;
7814
7815 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7816 0, GFP_KERNEL)) {
7817 kfree(ref_node);
7818 return NULL;
7819 }
7820 INIT_LIST_HEAD(&ref_node->node);
7821 INIT_LIST_HEAD(&ref_node->rsrc_list);
7822 ref_node->done = false;
7823 return ref_node;
7824 }
7825
7826 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7827 struct fixed_rsrc_ref_node *ref_node)
7828 {
7829 ref_node->rsrc_data = ctx->file_data;
7830 ref_node->rsrc_put = io_ring_file_put;
7831 }
7832
7833 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
7834 {
7835 percpu_ref_exit(&ref_node->refs);
7836 kfree(ref_node);
7837 }
7838
7839
7840 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7841 unsigned nr_args)
7842 {
7843 __s32 __user *fds = (__s32 __user *) arg;
7844 unsigned nr_tables, i;
7845 struct file *file;
7846 int fd, ret = -ENOMEM;
7847 struct fixed_rsrc_ref_node *ref_node;
7848 struct fixed_rsrc_data *file_data;
7849
7850 if (ctx->file_data)
7851 return -EBUSY;
7852 if (!nr_args)
7853 return -EINVAL;
7854 if (nr_args > IORING_MAX_FIXED_FILES)
7855 return -EMFILE;
7856
7857 file_data = alloc_fixed_rsrc_data(ctx);
7858 if (!file_data)
7859 return -ENOMEM;
7860 ctx->file_data = file_data;
7861
7862 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7863 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7864 GFP_KERNEL);
7865 if (!file_data->table)
7866 goto out_free;
7867
7868 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7869 goto out_free;
7870
7871 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7872 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7873 ret = -EFAULT;
7874 goto out_fput;
7875 }
7876 /* allow sparse sets */
7877 if (fd == -1)
7878 continue;
7879
7880 file = fget(fd);
7881 ret = -EBADF;
7882 if (!file)
7883 goto out_fput;
7884
7885 /*
7886 * Don't allow io_uring instances to be registered. If UNIX
7887 * isn't enabled, then this causes a reference cycle and this
7888 * instance can never get freed. If UNIX is enabled we'll
7889 * handle it just fine, but there's still no point in allowing
7890 * a ring fd as it doesn't support regular read/write anyway.
7891 */
7892 if (file->f_op == &io_uring_fops) {
7893 fput(file);
7894 goto out_fput;
7895 }
7896 *io_fixed_file_slot(file_data, i) = file;
7897 }
7898
7899 ret = io_sqe_files_scm(ctx);
7900 if (ret) {
7901 io_sqe_files_unregister(ctx);
7902 return ret;
7903 }
7904
7905 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7906 if (!ref_node) {
7907 io_sqe_files_unregister(ctx);
7908 return -ENOMEM;
7909 }
7910 init_fixed_file_ref_node(ctx, ref_node);
7911
7912 io_sqe_rsrc_set_node(ctx, file_data, ref_node);
7913 return ret;
7914 out_fput:
7915 for (i = 0; i < ctx->nr_user_files; i++) {
7916 file = io_file_from_index(ctx, i);
7917 if (file)
7918 fput(file);
7919 }
7920 for (i = 0; i < nr_tables; i++)
7921 kfree(file_data->table[i].files);
7922 ctx->nr_user_files = 0;
7923 out_free:
7924 free_fixed_rsrc_data(ctx->file_data);
7925 ctx->file_data = NULL;
7926 return ret;
7927 }
7928
7929 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7930 int index)
7931 {
7932 #if defined(CONFIG_UNIX)
7933 struct sock *sock = ctx->ring_sock->sk;
7934 struct sk_buff_head *head = &sock->sk_receive_queue;
7935 struct sk_buff *skb;
7936
7937 /*
7938 * See if we can merge this file into an existing skb SCM_RIGHTS
7939 * file set. If there's no room, fall back to allocating a new skb
7940 * and filling it in.
7941 */
7942 spin_lock_irq(&head->lock);
7943 skb = skb_peek(head);
7944 if (skb) {
7945 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7946
7947 if (fpl->count < SCM_MAX_FD) {
7948 __skb_unlink(skb, head);
7949 spin_unlock_irq(&head->lock);
7950 fpl->fp[fpl->count] = get_file(file);
7951 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7952 fpl->count++;
7953 spin_lock_irq(&head->lock);
7954 __skb_queue_head(head, skb);
7955 } else {
7956 skb = NULL;
7957 }
7958 }
7959 spin_unlock_irq(&head->lock);
7960
7961 if (skb) {
7962 fput(file);
7963 return 0;
7964 }
7965
7966 return __io_sqe_files_scm(ctx, 1, index);
7967 #else
7968 return 0;
7969 #endif
7970 }
7971
7972 static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
7973 {
7974 struct io_rsrc_put *prsrc;
7975 struct fixed_rsrc_ref_node *ref_node = data->node;
7976
7977 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7978 if (!prsrc)
7979 return -ENOMEM;
7980
7981 prsrc->rsrc = rsrc;
7982 list_add(&prsrc->list, &ref_node->rsrc_list);
7983
7984 return 0;
7985 }
7986
7987 static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
7988 struct file *file)
7989 {
7990 return io_queue_rsrc_removal(data, (void *)file);
7991 }
7992
7993 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7994 struct io_uring_rsrc_update *up,
7995 unsigned nr_args)
7996 {
7997 struct fixed_rsrc_data *data = ctx->file_data;
7998 struct fixed_rsrc_ref_node *ref_node;
7999 struct file *file, **file_slot;
8000 __s32 __user *fds;
8001 int fd, i, err;
8002 __u32 done;
8003 bool needs_switch = false;
8004
8005 if (check_add_overflow(up->offset, nr_args, &done))
8006 return -EOVERFLOW;
8007 if (done > ctx->nr_user_files)
8008 return -EINVAL;
8009
8010 ref_node = alloc_fixed_rsrc_ref_node(ctx);
8011 if (!ref_node)
8012 return -ENOMEM;
8013 init_fixed_file_ref_node(ctx, ref_node);
8014
8015 fds = u64_to_user_ptr(up->data);
8016 for (done = 0; done < nr_args; done++) {
8017 err = 0;
8018 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8019 err = -EFAULT;
8020 break;
8021 }
8022 if (fd == IORING_REGISTER_FILES_SKIP)
8023 continue;
8024
8025 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8026 file_slot = io_fixed_file_slot(ctx->file_data, i);
8027
8028 if (*file_slot) {
8029 err = io_queue_file_removal(data, *file_slot);
8030 if (err)
8031 break;
8032 *file_slot = NULL;
8033 needs_switch = true;
8034 }
8035 if (fd != -1) {
8036 file = fget(fd);
8037 if (!file) {
8038 err = -EBADF;
8039 break;
8040 }
8041 /*
8042 * Don't allow io_uring instances to be registered. If
8043 * UNIX isn't enabled, then this causes a reference
8044 * cycle and this instance can never get freed. If UNIX
8045 * is enabled we'll handle it just fine, but there's
8046 * still no point in allowing a ring fd as it doesn't
8047 * support regular read/write anyway.
8048 */
8049 if (file->f_op == &io_uring_fops) {
8050 fput(file);
8051 err = -EBADF;
8052 break;
8053 }
8054 *file_slot = file;
8055 err = io_sqe_file_register(ctx, file, i);
8056 if (err) {
8057 *file_slot = NULL;
8058 fput(file);
8059 break;
8060 }
8061 }
8062 }
8063
8064 if (needs_switch) {
8065 percpu_ref_kill(&data->node->refs);
8066 io_sqe_rsrc_set_node(ctx, data, ref_node);
8067 } else
8068 destroy_fixed_rsrc_ref_node(ref_node);
8069
8070 return done ? done : err;
8071 }
8072
8073 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8074 unsigned nr_args)
8075 {
8076 struct io_uring_rsrc_update up;
8077
8078 if (!ctx->file_data)
8079 return -ENXIO;
8080 if (!nr_args)
8081 return -EINVAL;
8082 if (copy_from_user(&up, arg, sizeof(up)))
8083 return -EFAULT;
8084 if (up.resv)
8085 return -EINVAL;
8086
8087 return __io_sqe_files_update(ctx, &up, nr_args);
8088 }
8089
8090 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8091 {
8092 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8093
8094 req = io_put_req_find_next(req);
8095 return req ? &req->work : NULL;
8096 }
8097
8098 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8099 struct io_uring_params *p)
8100 {
8101 struct io_wq_data data;
8102 struct fd f;
8103 struct io_ring_ctx *ctx_attach;
8104 unsigned int concurrency;
8105 int ret = 0;
8106
8107 data.user = ctx->user;
8108 data.free_work = io_free_work;
8109 data.do_work = io_wq_submit_work;
8110
8111 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8112 /* Do QD, or 4 * CPUS, whatever is smallest */
8113 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8114
8115 ctx->io_wq = io_wq_create(concurrency, &data);
8116 if (IS_ERR(ctx->io_wq)) {
8117 ret = PTR_ERR(ctx->io_wq);
8118 ctx->io_wq = NULL;
8119 }
8120 return ret;
8121 }
8122
8123 f = fdget(p->wq_fd);
8124 if (!f.file)
8125 return -EBADF;
8126
8127 if (f.file->f_op != &io_uring_fops) {
8128 ret = -EINVAL;
8129 goto out_fput;
8130 }
8131
8132 ctx_attach = f.file->private_data;
8133 /* @io_wq is protected by holding the fd */
8134 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8135 ret = -EINVAL;
8136 goto out_fput;
8137 }
8138
8139 ctx->io_wq = ctx_attach->io_wq;
8140 out_fput:
8141 fdput(f);
8142 return ret;
8143 }
8144
8145 static int io_uring_alloc_task_context(struct task_struct *task)
8146 {
8147 struct io_uring_task *tctx;
8148 int ret;
8149
8150 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8151 if (unlikely(!tctx))
8152 return -ENOMEM;
8153
8154 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8155 if (unlikely(ret)) {
8156 kfree(tctx);
8157 return ret;
8158 }
8159
8160 xa_init(&tctx->xa);
8161 init_waitqueue_head(&tctx->wait);
8162 tctx->last = NULL;
8163 atomic_set(&tctx->in_idle, 0);
8164 tctx->sqpoll = false;
8165 io_init_identity(&tctx->__identity);
8166 tctx->identity = &tctx->__identity;
8167 task->io_uring = tctx;
8168 spin_lock_init(&tctx->task_lock);
8169 INIT_WQ_LIST(&tctx->task_list);
8170 tctx->task_state = 0;
8171 init_task_work(&tctx->task_work, tctx_task_work);
8172 return 0;
8173 }
8174
8175 void __io_uring_free(struct task_struct *tsk)
8176 {
8177 struct io_uring_task *tctx = tsk->io_uring;
8178
8179 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8180 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8181 if (tctx->identity != &tctx->__identity)
8182 kfree(tctx->identity);
8183 percpu_counter_destroy(&tctx->inflight);
8184 kfree(tctx);
8185 tsk->io_uring = NULL;
8186 }
8187
8188 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8189 struct io_uring_params *p)
8190 {
8191 int ret;
8192
8193 if (ctx->flags & IORING_SETUP_SQPOLL) {
8194 struct io_sq_data *sqd;
8195
8196 ret = -EPERM;
8197 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8198 goto err;
8199
8200 sqd = io_get_sq_data(p);
8201 if (IS_ERR(sqd)) {
8202 ret = PTR_ERR(sqd);
8203 goto err;
8204 }
8205
8206 ctx->sq_data = sqd;
8207 io_sq_thread_park(sqd);
8208 mutex_lock(&sqd->ctx_lock);
8209 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8210 mutex_unlock(&sqd->ctx_lock);
8211 io_sq_thread_unpark(sqd);
8212
8213 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8214 if (!ctx->sq_thread_idle)
8215 ctx->sq_thread_idle = HZ;
8216
8217 if (sqd->thread)
8218 goto done;
8219
8220 if (p->flags & IORING_SETUP_SQ_AFF) {
8221 int cpu = p->sq_thread_cpu;
8222
8223 ret = -EINVAL;
8224 if (cpu >= nr_cpu_ids)
8225 goto err;
8226 if (!cpu_online(cpu))
8227 goto err;
8228
8229 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8230 cpu, "io_uring-sq");
8231 } else {
8232 sqd->thread = kthread_create(io_sq_thread, sqd,
8233 "io_uring-sq");
8234 }
8235 if (IS_ERR(sqd->thread)) {
8236 ret = PTR_ERR(sqd->thread);
8237 sqd->thread = NULL;
8238 goto err;
8239 }
8240 ret = io_uring_alloc_task_context(sqd->thread);
8241 if (ret)
8242 goto err;
8243 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8244 /* Can't have SQ_AFF without SQPOLL */
8245 ret = -EINVAL;
8246 goto err;
8247 }
8248
8249 done:
8250 ret = io_init_wq_offload(ctx, p);
8251 if (ret)
8252 goto err;
8253
8254 return 0;
8255 err:
8256 io_finish_async(ctx);
8257 return ret;
8258 }
8259
8260 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8261 {
8262 struct io_sq_data *sqd = ctx->sq_data;
8263
8264 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8265 wake_up_process(sqd->thread);
8266 }
8267
8268 static inline void __io_unaccount_mem(struct user_struct *user,
8269 unsigned long nr_pages)
8270 {
8271 atomic_long_sub(nr_pages, &user->locked_vm);
8272 }
8273
8274 static inline int __io_account_mem(struct user_struct *user,
8275 unsigned long nr_pages)
8276 {
8277 unsigned long page_limit, cur_pages, new_pages;
8278
8279 /* Don't allow more pages than we can safely lock */
8280 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8281
8282 do {
8283 cur_pages = atomic_long_read(&user->locked_vm);
8284 new_pages = cur_pages + nr_pages;
8285 if (new_pages > page_limit)
8286 return -ENOMEM;
8287 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8288 new_pages) != cur_pages);
8289
8290 return 0;
8291 }
8292
8293 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8294 {
8295 if (ctx->limit_mem)
8296 __io_unaccount_mem(ctx->user, nr_pages);
8297
8298 if (ctx->mm_account)
8299 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8300 }
8301
8302 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8303 {
8304 int ret;
8305
8306 if (ctx->limit_mem) {
8307 ret = __io_account_mem(ctx->user, nr_pages);
8308 if (ret)
8309 return ret;
8310 }
8311
8312 if (ctx->mm_account)
8313 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8314
8315 return 0;
8316 }
8317
8318 static void io_mem_free(void *ptr)
8319 {
8320 struct page *page;
8321
8322 if (!ptr)
8323 return;
8324
8325 page = virt_to_head_page(ptr);
8326 if (put_page_testzero(page))
8327 free_compound_page(page);
8328 }
8329
8330 static void *io_mem_alloc(size_t size)
8331 {
8332 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8333 __GFP_NORETRY | __GFP_ACCOUNT;
8334
8335 return (void *) __get_free_pages(gfp_flags, get_order(size));
8336 }
8337
8338 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8339 size_t *sq_offset)
8340 {
8341 struct io_rings *rings;
8342 size_t off, sq_array_size;
8343
8344 off = struct_size(rings, cqes, cq_entries);
8345 if (off == SIZE_MAX)
8346 return SIZE_MAX;
8347
8348 #ifdef CONFIG_SMP
8349 off = ALIGN(off, SMP_CACHE_BYTES);
8350 if (off == 0)
8351 return SIZE_MAX;
8352 #endif
8353
8354 if (sq_offset)
8355 *sq_offset = off;
8356
8357 sq_array_size = array_size(sizeof(u32), sq_entries);
8358 if (sq_array_size == SIZE_MAX)
8359 return SIZE_MAX;
8360
8361 if (check_add_overflow(off, sq_array_size, &off))
8362 return SIZE_MAX;
8363
8364 return off;
8365 }
8366
8367 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8368 {
8369 int i, j;
8370
8371 if (!ctx->user_bufs)
8372 return -ENXIO;
8373
8374 for (i = 0; i < ctx->nr_user_bufs; i++) {
8375 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8376
8377 for (j = 0; j < imu->nr_bvecs; j++)
8378 unpin_user_page(imu->bvec[j].bv_page);
8379
8380 if (imu->acct_pages)
8381 io_unaccount_mem(ctx, imu->acct_pages);
8382 kvfree(imu->bvec);
8383 imu->nr_bvecs = 0;
8384 }
8385
8386 kfree(ctx->user_bufs);
8387 ctx->user_bufs = NULL;
8388 ctx->nr_user_bufs = 0;
8389 return 0;
8390 }
8391
8392 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8393 void __user *arg, unsigned index)
8394 {
8395 struct iovec __user *src;
8396
8397 #ifdef CONFIG_COMPAT
8398 if (ctx->compat) {
8399 struct compat_iovec __user *ciovs;
8400 struct compat_iovec ciov;
8401
8402 ciovs = (struct compat_iovec __user *) arg;
8403 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8404 return -EFAULT;
8405
8406 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8407 dst->iov_len = ciov.iov_len;
8408 return 0;
8409 }
8410 #endif
8411 src = (struct iovec __user *) arg;
8412 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8413 return -EFAULT;
8414 return 0;
8415 }
8416
8417 /*
8418 * Not super efficient, but this is just a registration time. And we do cache
8419 * the last compound head, so generally we'll only do a full search if we don't
8420 * match that one.
8421 *
8422 * We check if the given compound head page has already been accounted, to
8423 * avoid double accounting it. This allows us to account the full size of the
8424 * page, not just the constituent pages of a huge page.
8425 */
8426 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8427 int nr_pages, struct page *hpage)
8428 {
8429 int i, j;
8430
8431 /* check current page array */
8432 for (i = 0; i < nr_pages; i++) {
8433 if (!PageCompound(pages[i]))
8434 continue;
8435 if (compound_head(pages[i]) == hpage)
8436 return true;
8437 }
8438
8439 /* check previously registered pages */
8440 for (i = 0; i < ctx->nr_user_bufs; i++) {
8441 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8442
8443 for (j = 0; j < imu->nr_bvecs; j++) {
8444 if (!PageCompound(imu->bvec[j].bv_page))
8445 continue;
8446 if (compound_head(imu->bvec[j].bv_page) == hpage)
8447 return true;
8448 }
8449 }
8450
8451 return false;
8452 }
8453
8454 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8455 int nr_pages, struct io_mapped_ubuf *imu,
8456 struct page **last_hpage)
8457 {
8458 int i, ret;
8459
8460 for (i = 0; i < nr_pages; i++) {
8461 if (!PageCompound(pages[i])) {
8462 imu->acct_pages++;
8463 } else {
8464 struct page *hpage;
8465
8466 hpage = compound_head(pages[i]);
8467 if (hpage == *last_hpage)
8468 continue;
8469 *last_hpage = hpage;
8470 if (headpage_already_acct(ctx, pages, i, hpage))
8471 continue;
8472 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8473 }
8474 }
8475
8476 if (!imu->acct_pages)
8477 return 0;
8478
8479 ret = io_account_mem(ctx, imu->acct_pages);
8480 if (ret)
8481 imu->acct_pages = 0;
8482 return ret;
8483 }
8484
8485 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8486 struct io_mapped_ubuf *imu,
8487 struct page **last_hpage)
8488 {
8489 struct vm_area_struct **vmas = NULL;
8490 struct page **pages = NULL;
8491 unsigned long off, start, end, ubuf;
8492 size_t size;
8493 int ret, pret, nr_pages, i;
8494
8495 ubuf = (unsigned long) iov->iov_base;
8496 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8497 start = ubuf >> PAGE_SHIFT;
8498 nr_pages = end - start;
8499
8500 ret = -ENOMEM;
8501
8502 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8503 if (!pages)
8504 goto done;
8505
8506 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8507 GFP_KERNEL);
8508 if (!vmas)
8509 goto done;
8510
8511 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8512 GFP_KERNEL);
8513 if (!imu->bvec)
8514 goto done;
8515
8516 ret = 0;
8517 mmap_read_lock(current->mm);
8518 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8519 pages, vmas);
8520 if (pret == nr_pages) {
8521 /* don't support file backed memory */
8522 for (i = 0; i < nr_pages; i++) {
8523 struct vm_area_struct *vma = vmas[i];
8524
8525 if (vma->vm_file &&
8526 !is_file_hugepages(vma->vm_file)) {
8527 ret = -EOPNOTSUPP;
8528 break;
8529 }
8530 }
8531 } else {
8532 ret = pret < 0 ? pret : -EFAULT;
8533 }
8534 mmap_read_unlock(current->mm);
8535 if (ret) {
8536 /*
8537 * if we did partial map, or found file backed vmas,
8538 * release any pages we did get
8539 */
8540 if (pret > 0)
8541 unpin_user_pages(pages, pret);
8542 kvfree(imu->bvec);
8543 goto done;
8544 }
8545
8546 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8547 if (ret) {
8548 unpin_user_pages(pages, pret);
8549 kvfree(imu->bvec);
8550 goto done;
8551 }
8552
8553 off = ubuf & ~PAGE_MASK;
8554 size = iov->iov_len;
8555 for (i = 0; i < nr_pages; i++) {
8556 size_t vec_len;
8557
8558 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8559 imu->bvec[i].bv_page = pages[i];
8560 imu->bvec[i].bv_len = vec_len;
8561 imu->bvec[i].bv_offset = off;
8562 off = 0;
8563 size -= vec_len;
8564 }
8565 /* store original address for later verification */
8566 imu->ubuf = ubuf;
8567 imu->len = iov->iov_len;
8568 imu->nr_bvecs = nr_pages;
8569 ret = 0;
8570 done:
8571 kvfree(pages);
8572 kvfree(vmas);
8573 return ret;
8574 }
8575
8576 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8577 {
8578 if (ctx->user_bufs)
8579 return -EBUSY;
8580 if (!nr_args || nr_args > UIO_MAXIOV)
8581 return -EINVAL;
8582
8583 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8584 GFP_KERNEL);
8585 if (!ctx->user_bufs)
8586 return -ENOMEM;
8587
8588 return 0;
8589 }
8590
8591 static int io_buffer_validate(struct iovec *iov)
8592 {
8593 /*
8594 * Don't impose further limits on the size and buffer
8595 * constraints here, we'll -EINVAL later when IO is
8596 * submitted if they are wrong.
8597 */
8598 if (!iov->iov_base || !iov->iov_len)
8599 return -EFAULT;
8600
8601 /* arbitrary limit, but we need something */
8602 if (iov->iov_len > SZ_1G)
8603 return -EFAULT;
8604
8605 return 0;
8606 }
8607
8608 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8609 unsigned int nr_args)
8610 {
8611 int i, ret;
8612 struct iovec iov;
8613 struct page *last_hpage = NULL;
8614
8615 ret = io_buffers_map_alloc(ctx, nr_args);
8616 if (ret)
8617 return ret;
8618
8619 for (i = 0; i < nr_args; i++) {
8620 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8621
8622 ret = io_copy_iov(ctx, &iov, arg, i);
8623 if (ret)
8624 break;
8625
8626 ret = io_buffer_validate(&iov);
8627 if (ret)
8628 break;
8629
8630 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8631 if (ret)
8632 break;
8633
8634 ctx->nr_user_bufs++;
8635 }
8636
8637 if (ret)
8638 io_sqe_buffers_unregister(ctx);
8639
8640 return ret;
8641 }
8642
8643 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8644 {
8645 __s32 __user *fds = arg;
8646 int fd;
8647
8648 if (ctx->cq_ev_fd)
8649 return -EBUSY;
8650
8651 if (copy_from_user(&fd, fds, sizeof(*fds)))
8652 return -EFAULT;
8653
8654 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8655 if (IS_ERR(ctx->cq_ev_fd)) {
8656 int ret = PTR_ERR(ctx->cq_ev_fd);
8657 ctx->cq_ev_fd = NULL;
8658 return ret;
8659 }
8660
8661 return 0;
8662 }
8663
8664 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8665 {
8666 if (ctx->cq_ev_fd) {
8667 eventfd_ctx_put(ctx->cq_ev_fd);
8668 ctx->cq_ev_fd = NULL;
8669 return 0;
8670 }
8671
8672 return -ENXIO;
8673 }
8674
8675 static int __io_destroy_buffers(int id, void *p, void *data)
8676 {
8677 struct io_ring_ctx *ctx = data;
8678 struct io_buffer *buf = p;
8679
8680 __io_remove_buffers(ctx, buf, id, -1U);
8681 return 0;
8682 }
8683
8684 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8685 {
8686 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8687 idr_destroy(&ctx->io_buffer_idr);
8688 }
8689
8690 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8691 {
8692 struct io_kiocb *req, *nxt;
8693
8694 list_for_each_entry_safe(req, nxt, list, compl.list) {
8695 if (tsk && req->task != tsk)
8696 continue;
8697 list_del(&req->compl.list);
8698 kmem_cache_free(req_cachep, req);
8699 }
8700 }
8701
8702 static void io_req_caches_free(struct io_ring_ctx *ctx, struct task_struct *tsk)
8703 {
8704 struct io_submit_state *submit_state = &ctx->submit_state;
8705
8706 mutex_lock(&ctx->uring_lock);
8707
8708 if (submit_state->free_reqs)
8709 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8710 submit_state->reqs);
8711
8712 io_req_cache_free(&submit_state->comp.free_list, NULL);
8713
8714 spin_lock_irq(&ctx->completion_lock);
8715 io_req_cache_free(&submit_state->comp.locked_free_list, NULL);
8716 spin_unlock_irq(&ctx->completion_lock);
8717
8718 mutex_unlock(&ctx->uring_lock);
8719 }
8720
8721 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8722 {
8723 /*
8724 * Some may use context even when all refs and requests have been put,
8725 * and they are free to do so while still holding uring_lock, see
8726 * __io_req_task_submit(). Wait for them to finish.
8727 */
8728 mutex_lock(&ctx->uring_lock);
8729 mutex_unlock(&ctx->uring_lock);
8730
8731 io_finish_async(ctx);
8732 io_sqe_buffers_unregister(ctx);
8733
8734 if (ctx->sqo_task) {
8735 put_task_struct(ctx->sqo_task);
8736 ctx->sqo_task = NULL;
8737 mmdrop(ctx->mm_account);
8738 ctx->mm_account = NULL;
8739 }
8740
8741 #ifdef CONFIG_BLK_CGROUP
8742 if (ctx->sqo_blkcg_css)
8743 css_put(ctx->sqo_blkcg_css);
8744 #endif
8745
8746 io_sqe_files_unregister(ctx);
8747 io_eventfd_unregister(ctx);
8748 io_destroy_buffers(ctx);
8749 idr_destroy(&ctx->personality_idr);
8750
8751 #if defined(CONFIG_UNIX)
8752 if (ctx->ring_sock) {
8753 ctx->ring_sock->file = NULL; /* so that iput() is called */
8754 sock_release(ctx->ring_sock);
8755 }
8756 #endif
8757
8758 io_mem_free(ctx->rings);
8759 io_mem_free(ctx->sq_sqes);
8760
8761 percpu_ref_exit(&ctx->refs);
8762 free_uid(ctx->user);
8763 put_cred(ctx->creds);
8764 io_req_caches_free(ctx, NULL);
8765 kfree(ctx->cancel_hash);
8766 kfree(ctx);
8767 }
8768
8769 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8770 {
8771 struct io_ring_ctx *ctx = file->private_data;
8772 __poll_t mask = 0;
8773
8774 poll_wait(file, &ctx->cq_wait, wait);
8775 /*
8776 * synchronizes with barrier from wq_has_sleeper call in
8777 * io_commit_cqring
8778 */
8779 smp_rmb();
8780 if (!io_sqring_full(ctx))
8781 mask |= EPOLLOUT | EPOLLWRNORM;
8782
8783 /*
8784 * Don't flush cqring overflow list here, just do a simple check.
8785 * Otherwise there could possible be ABBA deadlock:
8786 * CPU0 CPU1
8787 * ---- ----
8788 * lock(&ctx->uring_lock);
8789 * lock(&ep->mtx);
8790 * lock(&ctx->uring_lock);
8791 * lock(&ep->mtx);
8792 *
8793 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8794 * pushs them to do the flush.
8795 */
8796 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8797 mask |= EPOLLIN | EPOLLRDNORM;
8798
8799 return mask;
8800 }
8801
8802 static int io_uring_fasync(int fd, struct file *file, int on)
8803 {
8804 struct io_ring_ctx *ctx = file->private_data;
8805
8806 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8807 }
8808
8809 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8810 {
8811 struct io_identity *iod;
8812
8813 iod = idr_remove(&ctx->personality_idr, id);
8814 if (iod) {
8815 put_cred(iod->creds);
8816 if (refcount_dec_and_test(&iod->count))
8817 kfree(iod);
8818 return 0;
8819 }
8820
8821 return -EINVAL;
8822 }
8823
8824 static int io_remove_personalities(int id, void *p, void *data)
8825 {
8826 struct io_ring_ctx *ctx = data;
8827
8828 io_unregister_personality(ctx, id);
8829 return 0;
8830 }
8831
8832 static void io_ring_exit_work(struct work_struct *work)
8833 {
8834 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8835 exit_work);
8836
8837 /*
8838 * If we're doing polled IO and end up having requests being
8839 * submitted async (out-of-line), then completions can come in while
8840 * we're waiting for refs to drop. We need to reap these manually,
8841 * as nobody else will be looking for them.
8842 */
8843 do {
8844 io_uring_try_cancel_requests(ctx, NULL, NULL);
8845 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8846 io_ring_ctx_free(ctx);
8847 }
8848
8849 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8850 {
8851 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8852
8853 return req->ctx == data;
8854 }
8855
8856 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8857 {
8858 mutex_lock(&ctx->uring_lock);
8859 percpu_ref_kill(&ctx->refs);
8860
8861 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8862 ctx->sqo_dead = 1;
8863
8864 /* if force is set, the ring is going away. always drop after that */
8865 ctx->cq_overflow_flushed = 1;
8866 if (ctx->rings)
8867 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8868 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8869 mutex_unlock(&ctx->uring_lock);
8870
8871 io_kill_timeouts(ctx, NULL, NULL);
8872 io_poll_remove_all(ctx, NULL, NULL);
8873
8874 if (ctx->io_wq)
8875 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8876
8877 /* if we failed setting up the ctx, we might not have any rings */
8878 io_iopoll_try_reap_events(ctx);
8879
8880 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8881 /*
8882 * Use system_unbound_wq to avoid spawning tons of event kworkers
8883 * if we're exiting a ton of rings at the same time. It just adds
8884 * noise and overhead, there's no discernable change in runtime
8885 * over using system_wq.
8886 */
8887 queue_work(system_unbound_wq, &ctx->exit_work);
8888 }
8889
8890 static int io_uring_release(struct inode *inode, struct file *file)
8891 {
8892 struct io_ring_ctx *ctx = file->private_data;
8893
8894 file->private_data = NULL;
8895 io_ring_ctx_wait_and_kill(ctx);
8896 return 0;
8897 }
8898
8899 struct io_task_cancel {
8900 struct task_struct *task;
8901 struct files_struct *files;
8902 };
8903
8904 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8905 {
8906 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8907 struct io_task_cancel *cancel = data;
8908 bool ret;
8909
8910 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8911 unsigned long flags;
8912 struct io_ring_ctx *ctx = req->ctx;
8913
8914 /* protect against races with linked timeouts */
8915 spin_lock_irqsave(&ctx->completion_lock, flags);
8916 ret = io_match_task(req, cancel->task, cancel->files);
8917 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8918 } else {
8919 ret = io_match_task(req, cancel->task, cancel->files);
8920 }
8921 return ret;
8922 }
8923
8924 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8925 struct task_struct *task,
8926 struct files_struct *files)
8927 {
8928 struct io_defer_entry *de = NULL;
8929 LIST_HEAD(list);
8930
8931 spin_lock_irq(&ctx->completion_lock);
8932 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8933 if (io_match_task(de->req, task, files)) {
8934 list_cut_position(&list, &ctx->defer_list, &de->list);
8935 break;
8936 }
8937 }
8938 spin_unlock_irq(&ctx->completion_lock);
8939
8940 while (!list_empty(&list)) {
8941 de = list_first_entry(&list, struct io_defer_entry, list);
8942 list_del_init(&de->list);
8943 req_set_fail_links(de->req);
8944 io_put_req(de->req);
8945 io_req_complete(de->req, -ECANCELED);
8946 kfree(de);
8947 }
8948 }
8949
8950 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8951 struct task_struct *task,
8952 struct files_struct *files)
8953 {
8954 struct io_task_cancel cancel = { .task = task, .files = files, };
8955
8956 while (1) {
8957 enum io_wq_cancel cret;
8958 bool ret = false;
8959
8960 if (ctx->io_wq) {
8961 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8962 &cancel, true);
8963 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8964 }
8965
8966 /* SQPOLL thread does its own polling */
8967 if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
8968 while (!list_empty_careful(&ctx->iopoll_list)) {
8969 io_iopoll_try_reap_events(ctx);
8970 ret = true;
8971 }
8972 }
8973
8974 ret |= io_poll_remove_all(ctx, task, files);
8975 ret |= io_kill_timeouts(ctx, task, files);
8976 ret |= io_run_task_work();
8977 io_cqring_overflow_flush(ctx, true, task, files);
8978 if (!ret)
8979 break;
8980 cond_resched();
8981 }
8982 }
8983
8984 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8985 struct task_struct *task,
8986 struct files_struct *files)
8987 {
8988 struct io_kiocb *req;
8989 int cnt = 0;
8990
8991 spin_lock_irq(&ctx->inflight_lock);
8992 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8993 cnt += io_match_task(req, task, files);
8994 spin_unlock_irq(&ctx->inflight_lock);
8995 return cnt;
8996 }
8997
8998 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8999 struct task_struct *task,
9000 struct files_struct *files)
9001 {
9002 while (!list_empty_careful(&ctx->inflight_list)) {
9003 DEFINE_WAIT(wait);
9004 int inflight;
9005
9006 inflight = io_uring_count_inflight(ctx, task, files);
9007 if (!inflight)
9008 break;
9009
9010 io_uring_try_cancel_requests(ctx, task, files);
9011
9012 if (ctx->sq_data)
9013 io_sq_thread_unpark(ctx->sq_data);
9014 prepare_to_wait(&task->io_uring->wait, &wait,
9015 TASK_UNINTERRUPTIBLE);
9016 if (inflight == io_uring_count_inflight(ctx, task, files))
9017 schedule();
9018 finish_wait(&task->io_uring->wait, &wait);
9019 if (ctx->sq_data)
9020 io_sq_thread_park(ctx->sq_data);
9021 }
9022 }
9023
9024 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9025 {
9026 mutex_lock(&ctx->uring_lock);
9027 ctx->sqo_dead = 1;
9028 mutex_unlock(&ctx->uring_lock);
9029
9030 /* make sure callers enter the ring to get error */
9031 if (ctx->rings)
9032 io_ring_set_wakeup_flag(ctx);
9033 }
9034
9035 /*
9036 * We need to iteratively cancel requests, in case a request has dependent
9037 * hard links. These persist even for failure of cancelations, hence keep
9038 * looping until none are found.
9039 */
9040 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9041 struct files_struct *files)
9042 {
9043 struct task_struct *task = current;
9044
9045 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9046 io_disable_sqo_submit(ctx);
9047 task = ctx->sq_data->thread;
9048 atomic_inc(&task->io_uring->in_idle);
9049 io_sq_thread_park(ctx->sq_data);
9050 }
9051
9052 io_cancel_defer_files(ctx, task, files);
9053
9054 io_uring_cancel_files(ctx, task, files);
9055 if (!files)
9056 io_uring_try_cancel_requests(ctx, task, NULL);
9057
9058 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9059 atomic_dec(&task->io_uring->in_idle);
9060 io_sq_thread_unpark(ctx->sq_data);
9061 }
9062 }
9063
9064 /*
9065 * Note that this task has used io_uring. We use it for cancelation purposes.
9066 */
9067 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9068 {
9069 struct io_uring_task *tctx = current->io_uring;
9070 int ret;
9071
9072 if (unlikely(!tctx)) {
9073 ret = io_uring_alloc_task_context(current);
9074 if (unlikely(ret))
9075 return ret;
9076 tctx = current->io_uring;
9077 }
9078 if (tctx->last != file) {
9079 void *old = xa_load(&tctx->xa, (unsigned long)file);
9080
9081 if (!old) {
9082 get_file(file);
9083 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9084 file, GFP_KERNEL));
9085 if (ret) {
9086 fput(file);
9087 return ret;
9088 }
9089
9090 /* one and only SQPOLL file note, held by sqo_task */
9091 WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
9092 current != ctx->sqo_task);
9093 }
9094 tctx->last = file;
9095 }
9096
9097 /*
9098 * This is race safe in that the task itself is doing this, hence it
9099 * cannot be going through the exit/cancel paths at the same time.
9100 * This cannot be modified while exit/cancel is running.
9101 */
9102 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9103 tctx->sqpoll = true;
9104
9105 return 0;
9106 }
9107
9108 /*
9109 * Remove this io_uring_file -> task mapping.
9110 */
9111 static void io_uring_del_task_file(struct file *file)
9112 {
9113 struct io_uring_task *tctx = current->io_uring;
9114
9115 if (tctx->last == file)
9116 tctx->last = NULL;
9117 file = xa_erase(&tctx->xa, (unsigned long)file);
9118 if (file)
9119 fput(file);
9120 }
9121
9122 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9123 {
9124 struct file *file;
9125 unsigned long index;
9126
9127 xa_for_each(&tctx->xa, index, file)
9128 io_uring_del_task_file(file);
9129 }
9130
9131 void __io_uring_files_cancel(struct files_struct *files)
9132 {
9133 struct io_uring_task *tctx = current->io_uring;
9134 struct file *file;
9135 unsigned long index;
9136
9137 /* make sure overflow events are dropped */
9138 atomic_inc(&tctx->in_idle);
9139 xa_for_each(&tctx->xa, index, file)
9140 io_uring_cancel_task_requests(file->private_data, files);
9141 atomic_dec(&tctx->in_idle);
9142
9143 if (files)
9144 io_uring_remove_task_files(tctx);
9145 }
9146
9147 static s64 tctx_inflight(struct io_uring_task *tctx)
9148 {
9149 return percpu_counter_sum(&tctx->inflight);
9150 }
9151
9152 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
9153 {
9154 struct io_uring_task *tctx;
9155 s64 inflight;
9156 DEFINE_WAIT(wait);
9157
9158 if (!ctx->sq_data)
9159 return;
9160 tctx = ctx->sq_data->thread->io_uring;
9161 io_disable_sqo_submit(ctx);
9162
9163 atomic_inc(&tctx->in_idle);
9164 do {
9165 /* read completions before cancelations */
9166 inflight = tctx_inflight(tctx);
9167 if (!inflight)
9168 break;
9169 io_uring_cancel_task_requests(ctx, NULL);
9170
9171 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9172 /*
9173 * If we've seen completions, retry without waiting. This
9174 * avoids a race where a completion comes in before we did
9175 * prepare_to_wait().
9176 */
9177 if (inflight == tctx_inflight(tctx))
9178 schedule();
9179 finish_wait(&tctx->wait, &wait);
9180 } while (1);
9181 atomic_dec(&tctx->in_idle);
9182 }
9183
9184 /*
9185 * Find any io_uring fd that this task has registered or done IO on, and cancel
9186 * requests.
9187 */
9188 void __io_uring_task_cancel(void)
9189 {
9190 struct io_uring_task *tctx = current->io_uring;
9191 DEFINE_WAIT(wait);
9192 s64 inflight;
9193
9194 /* make sure overflow events are dropped */
9195 atomic_inc(&tctx->in_idle);
9196
9197 /* trigger io_disable_sqo_submit() */
9198 if (tctx->sqpoll) {
9199 struct file *file;
9200 unsigned long index;
9201
9202 xa_for_each(&tctx->xa, index, file)
9203 io_uring_cancel_sqpoll(file->private_data);
9204 }
9205
9206 do {
9207 /* read completions before cancelations */
9208 inflight = tctx_inflight(tctx);
9209 if (!inflight)
9210 break;
9211 __io_uring_files_cancel(NULL);
9212
9213 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9214
9215 /*
9216 * If we've seen completions, retry without waiting. This
9217 * avoids a race where a completion comes in before we did
9218 * prepare_to_wait().
9219 */
9220 if (inflight == tctx_inflight(tctx))
9221 schedule();
9222 finish_wait(&tctx->wait, &wait);
9223 } while (1);
9224
9225 atomic_dec(&tctx->in_idle);
9226
9227 io_uring_remove_task_files(tctx);
9228 }
9229
9230 static int io_uring_flush(struct file *file, void *data)
9231 {
9232 struct io_uring_task *tctx = current->io_uring;
9233 struct io_ring_ctx *ctx = file->private_data;
9234
9235 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
9236 io_uring_cancel_task_requests(ctx, NULL);
9237 io_req_caches_free(ctx, current);
9238 }
9239
9240 if (!tctx)
9241 return 0;
9242
9243 /* we should have cancelled and erased it before PF_EXITING */
9244 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9245 xa_load(&tctx->xa, (unsigned long)file));
9246
9247 /*
9248 * fput() is pending, will be 2 if the only other ref is our potential
9249 * task file note. If the task is exiting, drop regardless of count.
9250 */
9251 if (atomic_long_read(&file->f_count) != 2)
9252 return 0;
9253
9254 if (ctx->flags & IORING_SETUP_SQPOLL) {
9255 /* there is only one file note, which is owned by sqo_task */
9256 WARN_ON_ONCE(ctx->sqo_task != current &&
9257 xa_load(&tctx->xa, (unsigned long)file));
9258 /* sqo_dead check is for when this happens after cancellation */
9259 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9260 !xa_load(&tctx->xa, (unsigned long)file));
9261
9262 io_disable_sqo_submit(ctx);
9263 }
9264
9265 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9266 io_uring_del_task_file(file);
9267 return 0;
9268 }
9269
9270 static void *io_uring_validate_mmap_request(struct file *file,
9271 loff_t pgoff, size_t sz)
9272 {
9273 struct io_ring_ctx *ctx = file->private_data;
9274 loff_t offset = pgoff << PAGE_SHIFT;
9275 struct page *page;
9276 void *ptr;
9277
9278 switch (offset) {
9279 case IORING_OFF_SQ_RING:
9280 case IORING_OFF_CQ_RING:
9281 ptr = ctx->rings;
9282 break;
9283 case IORING_OFF_SQES:
9284 ptr = ctx->sq_sqes;
9285 break;
9286 default:
9287 return ERR_PTR(-EINVAL);
9288 }
9289
9290 page = virt_to_head_page(ptr);
9291 if (sz > page_size(page))
9292 return ERR_PTR(-EINVAL);
9293
9294 return ptr;
9295 }
9296
9297 #ifdef CONFIG_MMU
9298
9299 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9300 {
9301 size_t sz = vma->vm_end - vma->vm_start;
9302 unsigned long pfn;
9303 void *ptr;
9304
9305 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9306 if (IS_ERR(ptr))
9307 return PTR_ERR(ptr);
9308
9309 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9310 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9311 }
9312
9313 #else /* !CONFIG_MMU */
9314
9315 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9316 {
9317 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9318 }
9319
9320 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9321 {
9322 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9323 }
9324
9325 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9326 unsigned long addr, unsigned long len,
9327 unsigned long pgoff, unsigned long flags)
9328 {
9329 void *ptr;
9330
9331 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9332 if (IS_ERR(ptr))
9333 return PTR_ERR(ptr);
9334
9335 return (unsigned long) ptr;
9336 }
9337
9338 #endif /* !CONFIG_MMU */
9339
9340 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9341 {
9342 int ret = 0;
9343 DEFINE_WAIT(wait);
9344
9345 do {
9346 if (!io_sqring_full(ctx))
9347 break;
9348
9349 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9350
9351 if (unlikely(ctx->sqo_dead)) {
9352 ret = -EOWNERDEAD;
9353 goto out;
9354 }
9355
9356 if (!io_sqring_full(ctx))
9357 break;
9358
9359 schedule();
9360 } while (!signal_pending(current));
9361
9362 finish_wait(&ctx->sqo_sq_wait, &wait);
9363 out:
9364 return ret;
9365 }
9366
9367 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9368 struct __kernel_timespec __user **ts,
9369 const sigset_t __user **sig)
9370 {
9371 struct io_uring_getevents_arg arg;
9372
9373 /*
9374 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9375 * is just a pointer to the sigset_t.
9376 */
9377 if (!(flags & IORING_ENTER_EXT_ARG)) {
9378 *sig = (const sigset_t __user *) argp;
9379 *ts = NULL;
9380 return 0;
9381 }
9382
9383 /*
9384 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9385 * timespec and sigset_t pointers if good.
9386 */
9387 if (*argsz != sizeof(arg))
9388 return -EINVAL;
9389 if (copy_from_user(&arg, argp, sizeof(arg)))
9390 return -EFAULT;
9391 *sig = u64_to_user_ptr(arg.sigmask);
9392 *argsz = arg.sigmask_sz;
9393 *ts = u64_to_user_ptr(arg.ts);
9394 return 0;
9395 }
9396
9397 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9398 u32, min_complete, u32, flags, const void __user *, argp,
9399 size_t, argsz)
9400 {
9401 struct io_ring_ctx *ctx;
9402 long ret = -EBADF;
9403 int submitted = 0;
9404 struct fd f;
9405
9406 io_run_task_work();
9407
9408 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9409 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9410 return -EINVAL;
9411
9412 f = fdget(fd);
9413 if (!f.file)
9414 return -EBADF;
9415
9416 ret = -EOPNOTSUPP;
9417 if (f.file->f_op != &io_uring_fops)
9418 goto out_fput;
9419
9420 ret = -ENXIO;
9421 ctx = f.file->private_data;
9422 if (!percpu_ref_tryget(&ctx->refs))
9423 goto out_fput;
9424
9425 ret = -EBADFD;
9426 if (ctx->flags & IORING_SETUP_R_DISABLED)
9427 goto out;
9428
9429 /*
9430 * For SQ polling, the thread will do all submissions and completions.
9431 * Just return the requested submit count, and wake the thread if
9432 * we were asked to.
9433 */
9434 ret = 0;
9435 if (ctx->flags & IORING_SETUP_SQPOLL) {
9436 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9437
9438 ret = -EOWNERDEAD;
9439 if (unlikely(ctx->sqo_dead))
9440 goto out;
9441 if (flags & IORING_ENTER_SQ_WAKEUP)
9442 wake_up(&ctx->sq_data->wait);
9443 if (flags & IORING_ENTER_SQ_WAIT) {
9444 ret = io_sqpoll_wait_sq(ctx);
9445 if (ret)
9446 goto out;
9447 }
9448 submitted = to_submit;
9449 } else if (to_submit) {
9450 ret = io_uring_add_task_file(ctx, f.file);
9451 if (unlikely(ret))
9452 goto out;
9453 mutex_lock(&ctx->uring_lock);
9454 submitted = io_submit_sqes(ctx, to_submit);
9455 mutex_unlock(&ctx->uring_lock);
9456
9457 if (submitted != to_submit)
9458 goto out;
9459 }
9460 if (flags & IORING_ENTER_GETEVENTS) {
9461 const sigset_t __user *sig;
9462 struct __kernel_timespec __user *ts;
9463
9464 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9465 if (unlikely(ret))
9466 goto out;
9467
9468 min_complete = min(min_complete, ctx->cq_entries);
9469
9470 /*
9471 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9472 * space applications don't need to do io completion events
9473 * polling again, they can rely on io_sq_thread to do polling
9474 * work, which can reduce cpu usage and uring_lock contention.
9475 */
9476 if (ctx->flags & IORING_SETUP_IOPOLL &&
9477 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9478 ret = io_iopoll_check(ctx, min_complete);
9479 } else {
9480 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9481 }
9482 }
9483
9484 out:
9485 percpu_ref_put(&ctx->refs);
9486 out_fput:
9487 fdput(f);
9488 return submitted ? submitted : ret;
9489 }
9490
9491 #ifdef CONFIG_PROC_FS
9492 static int io_uring_show_cred(int id, void *p, void *data)
9493 {
9494 struct io_identity *iod = p;
9495 const struct cred *cred = iod->creds;
9496 struct seq_file *m = data;
9497 struct user_namespace *uns = seq_user_ns(m);
9498 struct group_info *gi;
9499 kernel_cap_t cap;
9500 unsigned __capi;
9501 int g;
9502
9503 seq_printf(m, "%5d\n", id);
9504 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9505 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9506 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9507 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9508 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9509 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9510 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9511 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9512 seq_puts(m, "\n\tGroups:\t");
9513 gi = cred->group_info;
9514 for (g = 0; g < gi->ngroups; g++) {
9515 seq_put_decimal_ull(m, g ? " " : "",
9516 from_kgid_munged(uns, gi->gid[g]));
9517 }
9518 seq_puts(m, "\n\tCapEff:\t");
9519 cap = cred->cap_effective;
9520 CAP_FOR_EACH_U32(__capi)
9521 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9522 seq_putc(m, '\n');
9523 return 0;
9524 }
9525
9526 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9527 {
9528 struct io_sq_data *sq = NULL;
9529 bool has_lock;
9530 int i;
9531
9532 /*
9533 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9534 * since fdinfo case grabs it in the opposite direction of normal use
9535 * cases. If we fail to get the lock, we just don't iterate any
9536 * structures that could be going away outside the io_uring mutex.
9537 */
9538 has_lock = mutex_trylock(&ctx->uring_lock);
9539
9540 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9541 sq = ctx->sq_data;
9542
9543 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9544 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9545 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9546 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9547 struct file *f = *io_fixed_file_slot(ctx->file_data, i);
9548
9549 if (f)
9550 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9551 else
9552 seq_printf(m, "%5u: <none>\n", i);
9553 }
9554 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9555 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9556 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9557
9558 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9559 (unsigned int) buf->len);
9560 }
9561 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9562 seq_printf(m, "Personalities:\n");
9563 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9564 }
9565 seq_printf(m, "PollList:\n");
9566 spin_lock_irq(&ctx->completion_lock);
9567 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9568 struct hlist_head *list = &ctx->cancel_hash[i];
9569 struct io_kiocb *req;
9570
9571 hlist_for_each_entry(req, list, hash_node)
9572 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9573 req->task->task_works != NULL);
9574 }
9575 spin_unlock_irq(&ctx->completion_lock);
9576 if (has_lock)
9577 mutex_unlock(&ctx->uring_lock);
9578 }
9579
9580 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9581 {
9582 struct io_ring_ctx *ctx = f->private_data;
9583
9584 if (percpu_ref_tryget(&ctx->refs)) {
9585 __io_uring_show_fdinfo(ctx, m);
9586 percpu_ref_put(&ctx->refs);
9587 }
9588 }
9589 #endif
9590
9591 static const struct file_operations io_uring_fops = {
9592 .release = io_uring_release,
9593 .flush = io_uring_flush,
9594 .mmap = io_uring_mmap,
9595 #ifndef CONFIG_MMU
9596 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9597 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9598 #endif
9599 .poll = io_uring_poll,
9600 .fasync = io_uring_fasync,
9601 #ifdef CONFIG_PROC_FS
9602 .show_fdinfo = io_uring_show_fdinfo,
9603 #endif
9604 };
9605
9606 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9607 struct io_uring_params *p)
9608 {
9609 struct io_rings *rings;
9610 size_t size, sq_array_offset;
9611
9612 /* make sure these are sane, as we already accounted them */
9613 ctx->sq_entries = p->sq_entries;
9614 ctx->cq_entries = p->cq_entries;
9615
9616 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9617 if (size == SIZE_MAX)
9618 return -EOVERFLOW;
9619
9620 rings = io_mem_alloc(size);
9621 if (!rings)
9622 return -ENOMEM;
9623
9624 ctx->rings = rings;
9625 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9626 rings->sq_ring_mask = p->sq_entries - 1;
9627 rings->cq_ring_mask = p->cq_entries - 1;
9628 rings->sq_ring_entries = p->sq_entries;
9629 rings->cq_ring_entries = p->cq_entries;
9630 ctx->sq_mask = rings->sq_ring_mask;
9631 ctx->cq_mask = rings->cq_ring_mask;
9632
9633 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9634 if (size == SIZE_MAX) {
9635 io_mem_free(ctx->rings);
9636 ctx->rings = NULL;
9637 return -EOVERFLOW;
9638 }
9639
9640 ctx->sq_sqes = io_mem_alloc(size);
9641 if (!ctx->sq_sqes) {
9642 io_mem_free(ctx->rings);
9643 ctx->rings = NULL;
9644 return -ENOMEM;
9645 }
9646
9647 return 0;
9648 }
9649
9650 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9651 {
9652 int ret, fd;
9653
9654 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9655 if (fd < 0)
9656 return fd;
9657
9658 ret = io_uring_add_task_file(ctx, file);
9659 if (ret) {
9660 put_unused_fd(fd);
9661 return ret;
9662 }
9663 fd_install(fd, file);
9664 return fd;
9665 }
9666
9667 /*
9668 * Allocate an anonymous fd, this is what constitutes the application
9669 * visible backing of an io_uring instance. The application mmaps this
9670 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9671 * we have to tie this fd to a socket for file garbage collection purposes.
9672 */
9673 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9674 {
9675 struct file *file;
9676 #if defined(CONFIG_UNIX)
9677 int ret;
9678
9679 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9680 &ctx->ring_sock);
9681 if (ret)
9682 return ERR_PTR(ret);
9683 #endif
9684
9685 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9686 O_RDWR | O_CLOEXEC);
9687 #if defined(CONFIG_UNIX)
9688 if (IS_ERR(file)) {
9689 sock_release(ctx->ring_sock);
9690 ctx->ring_sock = NULL;
9691 } else {
9692 ctx->ring_sock->file = file;
9693 }
9694 #endif
9695 return file;
9696 }
9697
9698 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9699 struct io_uring_params __user *params)
9700 {
9701 struct user_struct *user = NULL;
9702 struct io_ring_ctx *ctx;
9703 struct file *file;
9704 int ret;
9705
9706 if (!entries)
9707 return -EINVAL;
9708 if (entries > IORING_MAX_ENTRIES) {
9709 if (!(p->flags & IORING_SETUP_CLAMP))
9710 return -EINVAL;
9711 entries = IORING_MAX_ENTRIES;
9712 }
9713
9714 /*
9715 * Use twice as many entries for the CQ ring. It's possible for the
9716 * application to drive a higher depth than the size of the SQ ring,
9717 * since the sqes are only used at submission time. This allows for
9718 * some flexibility in overcommitting a bit. If the application has
9719 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9720 * of CQ ring entries manually.
9721 */
9722 p->sq_entries = roundup_pow_of_two(entries);
9723 if (p->flags & IORING_SETUP_CQSIZE) {
9724 /*
9725 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9726 * to a power-of-two, if it isn't already. We do NOT impose
9727 * any cq vs sq ring sizing.
9728 */
9729 if (!p->cq_entries)
9730 return -EINVAL;
9731 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9732 if (!(p->flags & IORING_SETUP_CLAMP))
9733 return -EINVAL;
9734 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9735 }
9736 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9737 if (p->cq_entries < p->sq_entries)
9738 return -EINVAL;
9739 } else {
9740 p->cq_entries = 2 * p->sq_entries;
9741 }
9742
9743 user = get_uid(current_user());
9744
9745 ctx = io_ring_ctx_alloc(p);
9746 if (!ctx) {
9747 free_uid(user);
9748 return -ENOMEM;
9749 }
9750 ctx->compat = in_compat_syscall();
9751 ctx->limit_mem = !capable(CAP_IPC_LOCK);
9752 ctx->user = user;
9753 ctx->creds = get_current_cred();
9754 #ifdef CONFIG_AUDIT
9755 ctx->loginuid = current->loginuid;
9756 ctx->sessionid = current->sessionid;
9757 #endif
9758 ctx->sqo_task = get_task_struct(current);
9759
9760 /*
9761 * This is just grabbed for accounting purposes. When a process exits,
9762 * the mm is exited and dropped before the files, hence we need to hang
9763 * on to this mm purely for the purposes of being able to unaccount
9764 * memory (locked/pinned vm). It's not used for anything else.
9765 */
9766 mmgrab(current->mm);
9767 ctx->mm_account = current->mm;
9768
9769 #ifdef CONFIG_BLK_CGROUP
9770 /*
9771 * The sq thread will belong to the original cgroup it was inited in.
9772 * If the cgroup goes offline (e.g. disabling the io controller), then
9773 * issued bios will be associated with the closest cgroup later in the
9774 * block layer.
9775 */
9776 rcu_read_lock();
9777 ctx->sqo_blkcg_css = blkcg_css();
9778 ret = css_tryget_online(ctx->sqo_blkcg_css);
9779 rcu_read_unlock();
9780 if (!ret) {
9781 /* don't init against a dying cgroup, have the user try again */
9782 ctx->sqo_blkcg_css = NULL;
9783 ret = -ENODEV;
9784 goto err;
9785 }
9786 #endif
9787 ret = io_allocate_scq_urings(ctx, p);
9788 if (ret)
9789 goto err;
9790
9791 ret = io_sq_offload_create(ctx, p);
9792 if (ret)
9793 goto err;
9794
9795 if (!(p->flags & IORING_SETUP_R_DISABLED))
9796 io_sq_offload_start(ctx);
9797
9798 memset(&p->sq_off, 0, sizeof(p->sq_off));
9799 p->sq_off.head = offsetof(struct io_rings, sq.head);
9800 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9801 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9802 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9803 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9804 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9805 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9806
9807 memset(&p->cq_off, 0, sizeof(p->cq_off));
9808 p->cq_off.head = offsetof(struct io_rings, cq.head);
9809 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9810 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9811 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9812 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9813 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9814 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9815
9816 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9817 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9818 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9819 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9820 IORING_FEAT_EXT_ARG;
9821
9822 if (copy_to_user(params, p, sizeof(*p))) {
9823 ret = -EFAULT;
9824 goto err;
9825 }
9826
9827 file = io_uring_get_file(ctx);
9828 if (IS_ERR(file)) {
9829 ret = PTR_ERR(file);
9830 goto err;
9831 }
9832
9833 /*
9834 * Install ring fd as the very last thing, so we don't risk someone
9835 * having closed it before we finish setup
9836 */
9837 ret = io_uring_install_fd(ctx, file);
9838 if (ret < 0) {
9839 io_disable_sqo_submit(ctx);
9840 /* fput will clean it up */
9841 fput(file);
9842 return ret;
9843 }
9844
9845 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9846 return ret;
9847 err:
9848 io_disable_sqo_submit(ctx);
9849 io_ring_ctx_wait_and_kill(ctx);
9850 return ret;
9851 }
9852
9853 /*
9854 * Sets up an aio uring context, and returns the fd. Applications asks for a
9855 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9856 * params structure passed in.
9857 */
9858 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9859 {
9860 struct io_uring_params p;
9861 int i;
9862
9863 if (copy_from_user(&p, params, sizeof(p)))
9864 return -EFAULT;
9865 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9866 if (p.resv[i])
9867 return -EINVAL;
9868 }
9869
9870 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9871 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9872 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9873 IORING_SETUP_R_DISABLED))
9874 return -EINVAL;
9875
9876 return io_uring_create(entries, &p, params);
9877 }
9878
9879 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9880 struct io_uring_params __user *, params)
9881 {
9882 return io_uring_setup(entries, params);
9883 }
9884
9885 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9886 {
9887 struct io_uring_probe *p;
9888 size_t size;
9889 int i, ret;
9890
9891 size = struct_size(p, ops, nr_args);
9892 if (size == SIZE_MAX)
9893 return -EOVERFLOW;
9894 p = kzalloc(size, GFP_KERNEL);
9895 if (!p)
9896 return -ENOMEM;
9897
9898 ret = -EFAULT;
9899 if (copy_from_user(p, arg, size))
9900 goto out;
9901 ret = -EINVAL;
9902 if (memchr_inv(p, 0, size))
9903 goto out;
9904
9905 p->last_op = IORING_OP_LAST - 1;
9906 if (nr_args > IORING_OP_LAST)
9907 nr_args = IORING_OP_LAST;
9908
9909 for (i = 0; i < nr_args; i++) {
9910 p->ops[i].op = i;
9911 if (!io_op_defs[i].not_supported)
9912 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9913 }
9914 p->ops_len = i;
9915
9916 ret = 0;
9917 if (copy_to_user(arg, p, size))
9918 ret = -EFAULT;
9919 out:
9920 kfree(p);
9921 return ret;
9922 }
9923
9924 static int io_register_personality(struct io_ring_ctx *ctx)
9925 {
9926 struct io_identity *id;
9927 int ret;
9928
9929 id = kmalloc(sizeof(*id), GFP_KERNEL);
9930 if (unlikely(!id))
9931 return -ENOMEM;
9932
9933 io_init_identity(id);
9934 id->creds = get_current_cred();
9935
9936 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9937 if (ret < 0) {
9938 put_cred(id->creds);
9939 kfree(id);
9940 }
9941 return ret;
9942 }
9943
9944 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9945 unsigned int nr_args)
9946 {
9947 struct io_uring_restriction *res;
9948 size_t size;
9949 int i, ret;
9950
9951 /* Restrictions allowed only if rings started disabled */
9952 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9953 return -EBADFD;
9954
9955 /* We allow only a single restrictions registration */
9956 if (ctx->restrictions.registered)
9957 return -EBUSY;
9958
9959 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9960 return -EINVAL;
9961
9962 size = array_size(nr_args, sizeof(*res));
9963 if (size == SIZE_MAX)
9964 return -EOVERFLOW;
9965
9966 res = memdup_user(arg, size);
9967 if (IS_ERR(res))
9968 return PTR_ERR(res);
9969
9970 ret = 0;
9971
9972 for (i = 0; i < nr_args; i++) {
9973 switch (res[i].opcode) {
9974 case IORING_RESTRICTION_REGISTER_OP:
9975 if (res[i].register_op >= IORING_REGISTER_LAST) {
9976 ret = -EINVAL;
9977 goto out;
9978 }
9979
9980 __set_bit(res[i].register_op,
9981 ctx->restrictions.register_op);
9982 break;
9983 case IORING_RESTRICTION_SQE_OP:
9984 if (res[i].sqe_op >= IORING_OP_LAST) {
9985 ret = -EINVAL;
9986 goto out;
9987 }
9988
9989 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9990 break;
9991 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9992 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9993 break;
9994 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9995 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9996 break;
9997 default:
9998 ret = -EINVAL;
9999 goto out;
10000 }
10001 }
10002
10003 out:
10004 /* Reset all restrictions if an error happened */
10005 if (ret != 0)
10006 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10007 else
10008 ctx->restrictions.registered = true;
10009
10010 kfree(res);
10011 return ret;
10012 }
10013
10014 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10015 {
10016 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10017 return -EBADFD;
10018
10019 if (ctx->restrictions.registered)
10020 ctx->restricted = 1;
10021
10022 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10023
10024 io_sq_offload_start(ctx);
10025
10026 return 0;
10027 }
10028
10029 static bool io_register_op_must_quiesce(int op)
10030 {
10031 switch (op) {
10032 case IORING_UNREGISTER_FILES:
10033 case IORING_REGISTER_FILES_UPDATE:
10034 case IORING_REGISTER_PROBE:
10035 case IORING_REGISTER_PERSONALITY:
10036 case IORING_UNREGISTER_PERSONALITY:
10037 return false;
10038 default:
10039 return true;
10040 }
10041 }
10042
10043 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10044 void __user *arg, unsigned nr_args)
10045 __releases(ctx->uring_lock)
10046 __acquires(ctx->uring_lock)
10047 {
10048 int ret;
10049
10050 /*
10051 * We're inside the ring mutex, if the ref is already dying, then
10052 * someone else killed the ctx or is already going through
10053 * io_uring_register().
10054 */
10055 if (percpu_ref_is_dying(&ctx->refs))
10056 return -ENXIO;
10057
10058 if (io_register_op_must_quiesce(opcode)) {
10059 percpu_ref_kill(&ctx->refs);
10060
10061 /*
10062 * Drop uring mutex before waiting for references to exit. If
10063 * another thread is currently inside io_uring_enter() it might
10064 * need to grab the uring_lock to make progress. If we hold it
10065 * here across the drain wait, then we can deadlock. It's safe
10066 * to drop the mutex here, since no new references will come in
10067 * after we've killed the percpu ref.
10068 */
10069 mutex_unlock(&ctx->uring_lock);
10070 do {
10071 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10072 if (!ret)
10073 break;
10074 ret = io_run_task_work_sig();
10075 if (ret < 0)
10076 break;
10077 } while (1);
10078
10079 mutex_lock(&ctx->uring_lock);
10080
10081 if (ret) {
10082 percpu_ref_resurrect(&ctx->refs);
10083 goto out_quiesce;
10084 }
10085 }
10086
10087 if (ctx->restricted) {
10088 if (opcode >= IORING_REGISTER_LAST) {
10089 ret = -EINVAL;
10090 goto out;
10091 }
10092
10093 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10094 ret = -EACCES;
10095 goto out;
10096 }
10097 }
10098
10099 switch (opcode) {
10100 case IORING_REGISTER_BUFFERS:
10101 ret = io_sqe_buffers_register(ctx, arg, nr_args);
10102 break;
10103 case IORING_UNREGISTER_BUFFERS:
10104 ret = -EINVAL;
10105 if (arg || nr_args)
10106 break;
10107 ret = io_sqe_buffers_unregister(ctx);
10108 break;
10109 case IORING_REGISTER_FILES:
10110 ret = io_sqe_files_register(ctx, arg, nr_args);
10111 break;
10112 case IORING_UNREGISTER_FILES:
10113 ret = -EINVAL;
10114 if (arg || nr_args)
10115 break;
10116 ret = io_sqe_files_unregister(ctx);
10117 break;
10118 case IORING_REGISTER_FILES_UPDATE:
10119 ret = io_sqe_files_update(ctx, arg, nr_args);
10120 break;
10121 case IORING_REGISTER_EVENTFD:
10122 case IORING_REGISTER_EVENTFD_ASYNC:
10123 ret = -EINVAL;
10124 if (nr_args != 1)
10125 break;
10126 ret = io_eventfd_register(ctx, arg);
10127 if (ret)
10128 break;
10129 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10130 ctx->eventfd_async = 1;
10131 else
10132 ctx->eventfd_async = 0;
10133 break;
10134 case IORING_UNREGISTER_EVENTFD:
10135 ret = -EINVAL;
10136 if (arg || nr_args)
10137 break;
10138 ret = io_eventfd_unregister(ctx);
10139 break;
10140 case IORING_REGISTER_PROBE:
10141 ret = -EINVAL;
10142 if (!arg || nr_args > 256)
10143 break;
10144 ret = io_probe(ctx, arg, nr_args);
10145 break;
10146 case IORING_REGISTER_PERSONALITY:
10147 ret = -EINVAL;
10148 if (arg || nr_args)
10149 break;
10150 ret = io_register_personality(ctx);
10151 break;
10152 case IORING_UNREGISTER_PERSONALITY:
10153 ret = -EINVAL;
10154 if (arg)
10155 break;
10156 ret = io_unregister_personality(ctx, nr_args);
10157 break;
10158 case IORING_REGISTER_ENABLE_RINGS:
10159 ret = -EINVAL;
10160 if (arg || nr_args)
10161 break;
10162 ret = io_register_enable_rings(ctx);
10163 break;
10164 case IORING_REGISTER_RESTRICTIONS:
10165 ret = io_register_restrictions(ctx, arg, nr_args);
10166 break;
10167 default:
10168 ret = -EINVAL;
10169 break;
10170 }
10171
10172 out:
10173 if (io_register_op_must_quiesce(opcode)) {
10174 /* bring the ctx back to life */
10175 percpu_ref_reinit(&ctx->refs);
10176 out_quiesce:
10177 reinit_completion(&ctx->ref_comp);
10178 }
10179 return ret;
10180 }
10181
10182 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10183 void __user *, arg, unsigned int, nr_args)
10184 {
10185 struct io_ring_ctx *ctx;
10186 long ret = -EBADF;
10187 struct fd f;
10188
10189 f = fdget(fd);
10190 if (!f.file)
10191 return -EBADF;
10192
10193 ret = -EOPNOTSUPP;
10194 if (f.file->f_op != &io_uring_fops)
10195 goto out_fput;
10196
10197 ctx = f.file->private_data;
10198
10199 mutex_lock(&ctx->uring_lock);
10200 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10201 mutex_unlock(&ctx->uring_lock);
10202 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10203 ctx->cq_ev_fd != NULL, ret);
10204 out_fput:
10205 fdput(f);
10206 return ret;
10207 }
10208
10209 static int __init io_uring_init(void)
10210 {
10211 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10212 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10213 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10214 } while (0)
10215
10216 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10217 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10218 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10219 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10220 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10221 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10222 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10223 BUILD_BUG_SQE_ELEM(8, __u64, off);
10224 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10225 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10226 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10227 BUILD_BUG_SQE_ELEM(24, __u32, len);
10228 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10229 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10231 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10232 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10233 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10234 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10235 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10237 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10238 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10239 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10240 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10241 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10242 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10243 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10244 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10245 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10246 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10247
10248 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10249 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10250 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10251 SLAB_ACCOUNT);
10252 return 0;
10253 };
10254 __initcall(io_uring_init);