]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'configfs-5.11' of git://git.infradead.org/users/hch/configfs
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265
266 /*
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
269 *
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
273 *
274 * The kernel modifies neither the indices array nor the entries
275 * array.
276 */
277 u32 *sq_array;
278 unsigned cached_sq_head;
279 unsigned sq_entries;
280 unsigned sq_mask;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
285
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
289
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
292
293 struct io_rings *rings;
294
295 /* IO offload */
296 struct io_wq *io_wq;
297
298 /*
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
301 */
302 struct task_struct *sqo_task;
303
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
306
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
309 #endif
310
311 struct io_sq_data *sq_data; /* if using sq thread polling */
312
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
315
316 /*
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
320 */
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
323
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
327
328 struct user_struct *user;
329
330 const struct cred *creds;
331
332 #ifdef CONFIG_AUDIT
333 kuid_t loginuid;
334 unsigned int sessionid;
335 #endif
336
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
339
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
342
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
345 #endif
346
347 struct idr io_buffer_idr;
348
349 struct idr personality_idr;
350
351 struct {
352 unsigned cached_cq_tail;
353 unsigned cq_entries;
354 unsigned cq_mask;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
361
362 struct {
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
366
367 struct {
368 spinlock_t completion_lock;
369
370 /*
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
375 */
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
380
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
384
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
387
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
390 };
391
392 /*
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
395 */
396 struct io_poll_iocb {
397 struct file *file;
398 struct wait_queue_head *head;
399 __poll_t events;
400 bool done;
401 bool canceled;
402 struct wait_queue_entry wait;
403 };
404
405 struct io_poll_remove {
406 struct file *file;
407 u64 addr;
408 };
409
410 struct io_close {
411 struct file *file;
412 struct file *put_file;
413 int fd;
414 };
415
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
421 };
422
423 struct io_accept {
424 struct file *file;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
427 int flags;
428 unsigned long nofile;
429 };
430
431 struct io_sync {
432 struct file *file;
433 loff_t len;
434 loff_t off;
435 int flags;
436 int mode;
437 };
438
439 struct io_cancel {
440 struct file *file;
441 u64 addr;
442 };
443
444 struct io_timeout {
445 struct file *file;
446 u32 off;
447 u32 target_seq;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
451 };
452
453 struct io_timeout_rem {
454 struct file *file;
455 u64 addr;
456
457 /* timeout update */
458 struct timespec64 ts;
459 u32 flags;
460 };
461
462 struct io_rw {
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
464 struct kiocb kiocb;
465 u64 addr;
466 u64 len;
467 };
468
469 struct io_connect {
470 struct file *file;
471 struct sockaddr __user *addr;
472 int addr_len;
473 };
474
475 struct io_sr_msg {
476 struct file *file;
477 union {
478 struct user_msghdr __user *umsg;
479 void __user *buf;
480 };
481 int msg_flags;
482 int bgid;
483 size_t len;
484 struct io_buffer *kbuf;
485 };
486
487 struct io_open {
488 struct file *file;
489 int dfd;
490 bool ignore_nonblock;
491 struct filename *filename;
492 struct open_how how;
493 unsigned long nofile;
494 };
495
496 struct io_files_update {
497 struct file *file;
498 u64 arg;
499 u32 nr_args;
500 u32 offset;
501 };
502
503 struct io_fadvise {
504 struct file *file;
505 u64 offset;
506 u32 len;
507 u32 advice;
508 };
509
510 struct io_madvise {
511 struct file *file;
512 u64 addr;
513 u32 len;
514 u32 advice;
515 };
516
517 struct io_epoll {
518 struct file *file;
519 int epfd;
520 int op;
521 int fd;
522 struct epoll_event event;
523 };
524
525 struct io_splice {
526 struct file *file_out;
527 struct file *file_in;
528 loff_t off_out;
529 loff_t off_in;
530 u64 len;
531 unsigned int flags;
532 };
533
534 struct io_provide_buf {
535 struct file *file;
536 __u64 addr;
537 __s32 len;
538 __u32 bgid;
539 __u16 nbufs;
540 __u16 bid;
541 };
542
543 struct io_statx {
544 struct file *file;
545 int dfd;
546 unsigned int mask;
547 unsigned int flags;
548 const char __user *filename;
549 struct statx __user *buffer;
550 };
551
552 struct io_shutdown {
553 struct file *file;
554 int how;
555 };
556
557 struct io_rename {
558 struct file *file;
559 int old_dfd;
560 int new_dfd;
561 struct filename *oldpath;
562 struct filename *newpath;
563 int flags;
564 };
565
566 struct io_unlink {
567 struct file *file;
568 int dfd;
569 int flags;
570 struct filename *filename;
571 };
572
573 struct io_completion {
574 struct file *file;
575 struct list_head list;
576 int cflags;
577 };
578
579 struct io_async_connect {
580 struct sockaddr_storage address;
581 };
582
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
585 struct iovec *iov;
586 struct sockaddr __user *uaddr;
587 struct msghdr msg;
588 struct sockaddr_storage addr;
589 };
590
591 struct io_async_rw {
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
595 size_t bytes_done;
596 struct wait_page_queue wpq;
597 };
598
599 enum {
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
606
607 REQ_F_FAIL_LINK_BIT,
608 REQ_F_INFLIGHT_BIT,
609 REQ_F_CUR_POS_BIT,
610 REQ_F_NOWAIT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
612 REQ_F_ISREG_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
614 REQ_F_POLLED_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
619
620 /* not a real bit, just to check we're not overflowing the space */
621 __REQ_F_LAST_BIT,
622 };
623
624 enum {
625 /* ctx owns file */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
629 /* linked sqes */
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
633 /* IOSQE_ASYNC */
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
637
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
648 /* regular file */
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
650 /* needs cleanup */
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
662 };
663
664 struct async_poll {
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
667 };
668
669 /*
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
674 */
675 struct io_kiocb {
676 union {
677 struct file *file;
678 struct io_rw rw;
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
682 struct io_sync sync;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
688 struct io_open open;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
702 };
703
704 /* opcode allocated if it needs to store data for async defer */
705 void *async_data;
706 u8 opcode;
707 /* polled IO has completed */
708 u8 iopoll_completed;
709
710 u16 buf_index;
711 u32 result;
712
713 struct io_ring_ctx *ctx;
714 unsigned int flags;
715 refcount_t refs;
716 struct task_struct *task;
717 u64 user_data;
718
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
721
722 /*
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
725 */
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
732 };
733
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
737 u32 seq;
738 };
739
740 #define IO_IOPOLL_BATCH 8
741
742 struct io_comp_state {
743 unsigned int nr;
744 struct list_head list;
745 struct io_ring_ctx *ctx;
746 };
747
748 struct io_submit_state {
749 struct blk_plug plug;
750
751 /*
752 * io_kiocb alloc cache
753 */
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
756
757 bool plug_started;
758
759 /*
760 * Batch completion logic
761 */
762 struct io_comp_state comp;
763
764 /*
765 * File reference cache
766 */
767 struct file *file;
768 unsigned int fd;
769 unsigned int file_refs;
770 unsigned int ios_left;
771 };
772
773 struct io_op_def {
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
785 unsigned pollin : 1;
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
792 unsigned plug : 1;
793 /* size of async data needed, if any */
794 unsigned short async_size;
795 unsigned work_flags;
796 };
797
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
801 .needs_file = 1,
802 .unbound_nonreg_file = 1,
803 .pollin = 1,
804 .buffer_select = 1,
805 .needs_async_data = 1,
806 .plug = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
809 },
810 [IORING_OP_WRITEV] = {
811 .needs_file = 1,
812 .hash_reg_file = 1,
813 .unbound_nonreg_file = 1,
814 .pollout = 1,
815 .needs_async_data = 1,
816 .plug = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
819 IO_WQ_WORK_FSIZE,
820 },
821 [IORING_OP_FSYNC] = {
822 .needs_file = 1,
823 .work_flags = IO_WQ_WORK_BLKCG,
824 },
825 [IORING_OP_READ_FIXED] = {
826 .needs_file = 1,
827 .unbound_nonreg_file = 1,
828 .pollin = 1,
829 .plug = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
832 },
833 [IORING_OP_WRITE_FIXED] = {
834 .needs_file = 1,
835 .hash_reg_file = 1,
836 .unbound_nonreg_file = 1,
837 .pollout = 1,
838 .plug = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
841 IO_WQ_WORK_MM,
842 },
843 [IORING_OP_POLL_ADD] = {
844 .needs_file = 1,
845 .unbound_nonreg_file = 1,
846 },
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
849 .needs_file = 1,
850 .work_flags = IO_WQ_WORK_BLKCG,
851 },
852 [IORING_OP_SENDMSG] = {
853 .needs_file = 1,
854 .unbound_nonreg_file = 1,
855 .pollout = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
859 },
860 [IORING_OP_RECVMSG] = {
861 .needs_file = 1,
862 .unbound_nonreg_file = 1,
863 .pollin = 1,
864 .buffer_select = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
868 },
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
873 },
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
877 },
878 [IORING_OP_ACCEPT] = {
879 .needs_file = 1,
880 .unbound_nonreg_file = 1,
881 .pollin = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
883 },
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
889 },
890 [IORING_OP_CONNECT] = {
891 .needs_file = 1,
892 .unbound_nonreg_file = 1,
893 .pollout = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
897 },
898 [IORING_OP_FALLOCATE] = {
899 .needs_file = 1,
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
901 },
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
905 },
906 [IORING_OP_CLOSE] = {
907 .needs_file = 1,
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
910 },
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
913 },
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
917 },
918 [IORING_OP_READ] = {
919 .needs_file = 1,
920 .unbound_nonreg_file = 1,
921 .pollin = 1,
922 .buffer_select = 1,
923 .plug = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
926 },
927 [IORING_OP_WRITE] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollout = 1,
931 .plug = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
934 IO_WQ_WORK_FSIZE,
935 },
936 [IORING_OP_FADVISE] = {
937 .needs_file = 1,
938 .work_flags = IO_WQ_WORK_BLKCG,
939 },
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
942 },
943 [IORING_OP_SEND] = {
944 .needs_file = 1,
945 .unbound_nonreg_file = 1,
946 .pollout = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
948 },
949 [IORING_OP_RECV] = {
950 .needs_file = 1,
951 .unbound_nonreg_file = 1,
952 .pollin = 1,
953 .buffer_select = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
955 },
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
959 },
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
963 },
964 [IORING_OP_SPLICE] = {
965 .needs_file = 1,
966 .hash_reg_file = 1,
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
969 },
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
972 [IORING_OP_TEE] = {
973 .needs_file = 1,
974 .hash_reg_file = 1,
975 .unbound_nonreg_file = 1,
976 },
977 [IORING_OP_SHUTDOWN] = {
978 .needs_file = 1,
979 },
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
983 },
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
987 },
988 };
989
990 enum io_mem_account {
991 ACCT_LOCKED,
992 ACCT_PINNED,
993 };
994
995 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
996 struct io_comp_state *cs);
997 static void io_cqring_fill_event(struct io_kiocb *req, long res);
998 static void io_put_req(struct io_kiocb *req);
999 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1000 static void io_double_put_req(struct io_kiocb *req);
1001 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1002 static void __io_queue_linked_timeout(struct io_kiocb *req);
1003 static void io_queue_linked_timeout(struct io_kiocb *req);
1004 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1005 struct io_uring_files_update *ip,
1006 unsigned nr_args);
1007 static void __io_clean_op(struct io_kiocb *req);
1008 static struct file *io_file_get(struct io_submit_state *state,
1009 struct io_kiocb *req, int fd, bool fixed);
1010 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1011 static void io_file_put_work(struct work_struct *work);
1012
1013 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1014 struct iovec **iovec, struct iov_iter *iter,
1015 bool needs_lock);
1016 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1017 const struct iovec *fast_iov,
1018 struct iov_iter *iter, bool force);
1019
1020 static struct kmem_cache *req_cachep;
1021
1022 static const struct file_operations io_uring_fops;
1023
1024 struct sock *io_uring_get_socket(struct file *file)
1025 {
1026 #if defined(CONFIG_UNIX)
1027 if (file->f_op == &io_uring_fops) {
1028 struct io_ring_ctx *ctx = file->private_data;
1029
1030 return ctx->ring_sock->sk;
1031 }
1032 #endif
1033 return NULL;
1034 }
1035 EXPORT_SYMBOL(io_uring_get_socket);
1036
1037 #define io_for_each_link(pos, head) \
1038 for (pos = (head); pos; pos = pos->link)
1039
1040 static inline void io_clean_op(struct io_kiocb *req)
1041 {
1042 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1043 REQ_F_INFLIGHT))
1044 __io_clean_op(req);
1045 }
1046
1047 static inline void io_set_resource_node(struct io_kiocb *req)
1048 {
1049 struct io_ring_ctx *ctx = req->ctx;
1050
1051 if (!req->fixed_file_refs) {
1052 req->fixed_file_refs = &ctx->file_data->node->refs;
1053 percpu_ref_get(req->fixed_file_refs);
1054 }
1055 }
1056
1057 static bool io_match_task(struct io_kiocb *head,
1058 struct task_struct *task,
1059 struct files_struct *files)
1060 {
1061 struct io_kiocb *req;
1062
1063 if (task && head->task != task)
1064 return false;
1065 if (!files)
1066 return true;
1067
1068 io_for_each_link(req, head) {
1069 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1070 (req->work.flags & IO_WQ_WORK_FILES) &&
1071 req->work.identity->files == files)
1072 return true;
1073 }
1074 return false;
1075 }
1076
1077 static void io_sq_thread_drop_mm_files(void)
1078 {
1079 struct files_struct *files = current->files;
1080 struct mm_struct *mm = current->mm;
1081
1082 if (mm) {
1083 kthread_unuse_mm(mm);
1084 mmput(mm);
1085 current->mm = NULL;
1086 }
1087 if (files) {
1088 struct nsproxy *nsproxy = current->nsproxy;
1089
1090 task_lock(current);
1091 current->files = NULL;
1092 current->nsproxy = NULL;
1093 task_unlock(current);
1094 put_files_struct(files);
1095 put_nsproxy(nsproxy);
1096 }
1097 }
1098
1099 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1100 {
1101 if (!current->files) {
1102 struct files_struct *files;
1103 struct nsproxy *nsproxy;
1104
1105 task_lock(ctx->sqo_task);
1106 files = ctx->sqo_task->files;
1107 if (!files) {
1108 task_unlock(ctx->sqo_task);
1109 return -EOWNERDEAD;
1110 }
1111 atomic_inc(&files->count);
1112 get_nsproxy(ctx->sqo_task->nsproxy);
1113 nsproxy = ctx->sqo_task->nsproxy;
1114 task_unlock(ctx->sqo_task);
1115
1116 task_lock(current);
1117 current->files = files;
1118 current->nsproxy = nsproxy;
1119 task_unlock(current);
1120 }
1121 return 0;
1122 }
1123
1124 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1125 {
1126 struct mm_struct *mm;
1127
1128 if (current->mm)
1129 return 0;
1130
1131 /* Should never happen */
1132 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1133 return -EFAULT;
1134
1135 task_lock(ctx->sqo_task);
1136 mm = ctx->sqo_task->mm;
1137 if (unlikely(!mm || !mmget_not_zero(mm)))
1138 mm = NULL;
1139 task_unlock(ctx->sqo_task);
1140
1141 if (mm) {
1142 kthread_use_mm(mm);
1143 return 0;
1144 }
1145
1146 return -EFAULT;
1147 }
1148
1149 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1150 struct io_kiocb *req)
1151 {
1152 const struct io_op_def *def = &io_op_defs[req->opcode];
1153 int ret;
1154
1155 if (def->work_flags & IO_WQ_WORK_MM) {
1156 ret = __io_sq_thread_acquire_mm(ctx);
1157 if (unlikely(ret))
1158 return ret;
1159 }
1160
1161 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1162 ret = __io_sq_thread_acquire_files(ctx);
1163 if (unlikely(ret))
1164 return ret;
1165 }
1166
1167 return 0;
1168 }
1169
1170 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1171 struct cgroup_subsys_state **cur_css)
1172
1173 {
1174 #ifdef CONFIG_BLK_CGROUP
1175 /* puts the old one when swapping */
1176 if (*cur_css != ctx->sqo_blkcg_css) {
1177 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1178 *cur_css = ctx->sqo_blkcg_css;
1179 }
1180 #endif
1181 }
1182
1183 static void io_sq_thread_unassociate_blkcg(void)
1184 {
1185 #ifdef CONFIG_BLK_CGROUP
1186 kthread_associate_blkcg(NULL);
1187 #endif
1188 }
1189
1190 static inline void req_set_fail_links(struct io_kiocb *req)
1191 {
1192 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1193 req->flags |= REQ_F_FAIL_LINK;
1194 }
1195
1196 /*
1197 * None of these are dereferenced, they are simply used to check if any of
1198 * them have changed. If we're under current and check they are still the
1199 * same, we're fine to grab references to them for actual out-of-line use.
1200 */
1201 static void io_init_identity(struct io_identity *id)
1202 {
1203 id->files = current->files;
1204 id->mm = current->mm;
1205 #ifdef CONFIG_BLK_CGROUP
1206 rcu_read_lock();
1207 id->blkcg_css = blkcg_css();
1208 rcu_read_unlock();
1209 #endif
1210 id->creds = current_cred();
1211 id->nsproxy = current->nsproxy;
1212 id->fs = current->fs;
1213 id->fsize = rlimit(RLIMIT_FSIZE);
1214 #ifdef CONFIG_AUDIT
1215 id->loginuid = current->loginuid;
1216 id->sessionid = current->sessionid;
1217 #endif
1218 refcount_set(&id->count, 1);
1219 }
1220
1221 static inline void __io_req_init_async(struct io_kiocb *req)
1222 {
1223 memset(&req->work, 0, sizeof(req->work));
1224 req->flags |= REQ_F_WORK_INITIALIZED;
1225 }
1226
1227 /*
1228 * Note: must call io_req_init_async() for the first time you
1229 * touch any members of io_wq_work.
1230 */
1231 static inline void io_req_init_async(struct io_kiocb *req)
1232 {
1233 struct io_uring_task *tctx = current->io_uring;
1234
1235 if (req->flags & REQ_F_WORK_INITIALIZED)
1236 return;
1237
1238 __io_req_init_async(req);
1239
1240 /* Grab a ref if this isn't our static identity */
1241 req->work.identity = tctx->identity;
1242 if (tctx->identity != &tctx->__identity)
1243 refcount_inc(&req->work.identity->count);
1244 }
1245
1246 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1247 {
1248 return ctx->flags & IORING_SETUP_SQPOLL;
1249 }
1250
1251 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1252 {
1253 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1254
1255 complete(&ctx->ref_comp);
1256 }
1257
1258 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1259 {
1260 return !req->timeout.off;
1261 }
1262
1263 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1264 {
1265 struct io_ring_ctx *ctx;
1266 int hash_bits;
1267
1268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1269 if (!ctx)
1270 return NULL;
1271
1272 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1273 if (!ctx->fallback_req)
1274 goto err;
1275
1276 /*
1277 * Use 5 bits less than the max cq entries, that should give us around
1278 * 32 entries per hash list if totally full and uniformly spread.
1279 */
1280 hash_bits = ilog2(p->cq_entries);
1281 hash_bits -= 5;
1282 if (hash_bits <= 0)
1283 hash_bits = 1;
1284 ctx->cancel_hash_bits = hash_bits;
1285 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1286 GFP_KERNEL);
1287 if (!ctx->cancel_hash)
1288 goto err;
1289 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1290
1291 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1292 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1293 goto err;
1294
1295 ctx->flags = p->flags;
1296 init_waitqueue_head(&ctx->sqo_sq_wait);
1297 INIT_LIST_HEAD(&ctx->sqd_list);
1298 init_waitqueue_head(&ctx->cq_wait);
1299 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1300 init_completion(&ctx->ref_comp);
1301 init_completion(&ctx->sq_thread_comp);
1302 idr_init(&ctx->io_buffer_idr);
1303 idr_init(&ctx->personality_idr);
1304 mutex_init(&ctx->uring_lock);
1305 init_waitqueue_head(&ctx->wait);
1306 spin_lock_init(&ctx->completion_lock);
1307 INIT_LIST_HEAD(&ctx->iopoll_list);
1308 INIT_LIST_HEAD(&ctx->defer_list);
1309 INIT_LIST_HEAD(&ctx->timeout_list);
1310 spin_lock_init(&ctx->inflight_lock);
1311 INIT_LIST_HEAD(&ctx->inflight_list);
1312 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1313 init_llist_head(&ctx->file_put_llist);
1314 return ctx;
1315 err:
1316 if (ctx->fallback_req)
1317 kmem_cache_free(req_cachep, ctx->fallback_req);
1318 kfree(ctx->cancel_hash);
1319 kfree(ctx);
1320 return NULL;
1321 }
1322
1323 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1324 {
1325 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1326 struct io_ring_ctx *ctx = req->ctx;
1327
1328 return seq != ctx->cached_cq_tail
1329 + READ_ONCE(ctx->cached_cq_overflow);
1330 }
1331
1332 return false;
1333 }
1334
1335 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1336 {
1337 struct io_rings *rings = ctx->rings;
1338
1339 /* order cqe stores with ring update */
1340 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1341
1342 if (wq_has_sleeper(&ctx->cq_wait)) {
1343 wake_up_interruptible(&ctx->cq_wait);
1344 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1345 }
1346 }
1347
1348 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1349 {
1350 if (req->work.identity == &tctx->__identity)
1351 return;
1352 if (refcount_dec_and_test(&req->work.identity->count))
1353 kfree(req->work.identity);
1354 }
1355
1356 static void io_req_clean_work(struct io_kiocb *req)
1357 {
1358 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1359 return;
1360
1361 req->flags &= ~REQ_F_WORK_INITIALIZED;
1362
1363 if (req->work.flags & IO_WQ_WORK_MM) {
1364 mmdrop(req->work.identity->mm);
1365 req->work.flags &= ~IO_WQ_WORK_MM;
1366 }
1367 #ifdef CONFIG_BLK_CGROUP
1368 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1369 css_put(req->work.identity->blkcg_css);
1370 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1371 }
1372 #endif
1373 if (req->work.flags & IO_WQ_WORK_CREDS) {
1374 put_cred(req->work.identity->creds);
1375 req->work.flags &= ~IO_WQ_WORK_CREDS;
1376 }
1377 if (req->work.flags & IO_WQ_WORK_FS) {
1378 struct fs_struct *fs = req->work.identity->fs;
1379
1380 spin_lock(&req->work.identity->fs->lock);
1381 if (--fs->users)
1382 fs = NULL;
1383 spin_unlock(&req->work.identity->fs->lock);
1384 if (fs)
1385 free_fs_struct(fs);
1386 req->work.flags &= ~IO_WQ_WORK_FS;
1387 }
1388
1389 io_put_identity(req->task->io_uring, req);
1390 }
1391
1392 /*
1393 * Create a private copy of io_identity, since some fields don't match
1394 * the current context.
1395 */
1396 static bool io_identity_cow(struct io_kiocb *req)
1397 {
1398 struct io_uring_task *tctx = current->io_uring;
1399 const struct cred *creds = NULL;
1400 struct io_identity *id;
1401
1402 if (req->work.flags & IO_WQ_WORK_CREDS)
1403 creds = req->work.identity->creds;
1404
1405 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1406 if (unlikely(!id)) {
1407 req->work.flags |= IO_WQ_WORK_CANCEL;
1408 return false;
1409 }
1410
1411 /*
1412 * We can safely just re-init the creds we copied Either the field
1413 * matches the current one, or we haven't grabbed it yet. The only
1414 * exception is ->creds, through registered personalities, so handle
1415 * that one separately.
1416 */
1417 io_init_identity(id);
1418 if (creds)
1419 id->creds = creds;
1420
1421 /* add one for this request */
1422 refcount_inc(&id->count);
1423
1424 /* drop tctx and req identity references, if needed */
1425 if (tctx->identity != &tctx->__identity &&
1426 refcount_dec_and_test(&tctx->identity->count))
1427 kfree(tctx->identity);
1428 if (req->work.identity != &tctx->__identity &&
1429 refcount_dec_and_test(&req->work.identity->count))
1430 kfree(req->work.identity);
1431
1432 req->work.identity = id;
1433 tctx->identity = id;
1434 return true;
1435 }
1436
1437 static bool io_grab_identity(struct io_kiocb *req)
1438 {
1439 const struct io_op_def *def = &io_op_defs[req->opcode];
1440 struct io_identity *id = req->work.identity;
1441 struct io_ring_ctx *ctx = req->ctx;
1442
1443 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1444 if (id->fsize != rlimit(RLIMIT_FSIZE))
1445 return false;
1446 req->work.flags |= IO_WQ_WORK_FSIZE;
1447 }
1448 #ifdef CONFIG_BLK_CGROUP
1449 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1450 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1451 rcu_read_lock();
1452 if (id->blkcg_css != blkcg_css()) {
1453 rcu_read_unlock();
1454 return false;
1455 }
1456 /*
1457 * This should be rare, either the cgroup is dying or the task
1458 * is moving cgroups. Just punt to root for the handful of ios.
1459 */
1460 if (css_tryget_online(id->blkcg_css))
1461 req->work.flags |= IO_WQ_WORK_BLKCG;
1462 rcu_read_unlock();
1463 }
1464 #endif
1465 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1466 if (id->creds != current_cred())
1467 return false;
1468 get_cred(id->creds);
1469 req->work.flags |= IO_WQ_WORK_CREDS;
1470 }
1471 #ifdef CONFIG_AUDIT
1472 if (!uid_eq(current->loginuid, id->loginuid) ||
1473 current->sessionid != id->sessionid)
1474 return false;
1475 #endif
1476 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1477 (def->work_flags & IO_WQ_WORK_FS)) {
1478 if (current->fs != id->fs)
1479 return false;
1480 spin_lock(&id->fs->lock);
1481 if (!id->fs->in_exec) {
1482 id->fs->users++;
1483 req->work.flags |= IO_WQ_WORK_FS;
1484 } else {
1485 req->work.flags |= IO_WQ_WORK_CANCEL;
1486 }
1487 spin_unlock(&current->fs->lock);
1488 }
1489 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1490 (def->work_flags & IO_WQ_WORK_FILES) &&
1491 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1492 if (id->files != current->files ||
1493 id->nsproxy != current->nsproxy)
1494 return false;
1495 atomic_inc(&id->files->count);
1496 get_nsproxy(id->nsproxy);
1497 req->flags |= REQ_F_INFLIGHT;
1498
1499 spin_lock_irq(&ctx->inflight_lock);
1500 list_add(&req->inflight_entry, &ctx->inflight_list);
1501 spin_unlock_irq(&ctx->inflight_lock);
1502 req->work.flags |= IO_WQ_WORK_FILES;
1503 }
1504
1505 return true;
1506 }
1507
1508 static void io_prep_async_work(struct io_kiocb *req)
1509 {
1510 const struct io_op_def *def = &io_op_defs[req->opcode];
1511 struct io_ring_ctx *ctx = req->ctx;
1512 struct io_identity *id;
1513
1514 io_req_init_async(req);
1515 id = req->work.identity;
1516
1517 if (req->flags & REQ_F_FORCE_ASYNC)
1518 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1519
1520 if (req->flags & REQ_F_ISREG) {
1521 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1522 io_wq_hash_work(&req->work, file_inode(req->file));
1523 } else {
1524 if (def->unbound_nonreg_file)
1525 req->work.flags |= IO_WQ_WORK_UNBOUND;
1526 }
1527
1528 /* ->mm can never change on us */
1529 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1530 (def->work_flags & IO_WQ_WORK_MM)) {
1531 mmgrab(id->mm);
1532 req->work.flags |= IO_WQ_WORK_MM;
1533 }
1534
1535 /* if we fail grabbing identity, we must COW, regrab, and retry */
1536 if (io_grab_identity(req))
1537 return;
1538
1539 if (!io_identity_cow(req))
1540 return;
1541
1542 /* can't fail at this point */
1543 if (!io_grab_identity(req))
1544 WARN_ON(1);
1545 }
1546
1547 static void io_prep_async_link(struct io_kiocb *req)
1548 {
1549 struct io_kiocb *cur;
1550
1551 io_for_each_link(cur, req)
1552 io_prep_async_work(cur);
1553 }
1554
1555 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1556 {
1557 struct io_ring_ctx *ctx = req->ctx;
1558 struct io_kiocb *link = io_prep_linked_timeout(req);
1559
1560 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1561 &req->work, req->flags);
1562 io_wq_enqueue(ctx->io_wq, &req->work);
1563 return link;
1564 }
1565
1566 static void io_queue_async_work(struct io_kiocb *req)
1567 {
1568 struct io_kiocb *link;
1569
1570 /* init ->work of the whole link before punting */
1571 io_prep_async_link(req);
1572 link = __io_queue_async_work(req);
1573
1574 if (link)
1575 io_queue_linked_timeout(link);
1576 }
1577
1578 static void io_kill_timeout(struct io_kiocb *req)
1579 {
1580 struct io_timeout_data *io = req->async_data;
1581 int ret;
1582
1583 ret = hrtimer_try_to_cancel(&io->timer);
1584 if (ret != -1) {
1585 atomic_set(&req->ctx->cq_timeouts,
1586 atomic_read(&req->ctx->cq_timeouts) + 1);
1587 list_del_init(&req->timeout.list);
1588 io_cqring_fill_event(req, 0);
1589 io_put_req_deferred(req, 1);
1590 }
1591 }
1592
1593 /*
1594 * Returns true if we found and killed one or more timeouts
1595 */
1596 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1597 struct files_struct *files)
1598 {
1599 struct io_kiocb *req, *tmp;
1600 int canceled = 0;
1601
1602 spin_lock_irq(&ctx->completion_lock);
1603 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1604 if (io_match_task(req, tsk, files)) {
1605 io_kill_timeout(req);
1606 canceled++;
1607 }
1608 }
1609 spin_unlock_irq(&ctx->completion_lock);
1610 return canceled != 0;
1611 }
1612
1613 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1614 {
1615 do {
1616 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1617 struct io_defer_entry, list);
1618 struct io_kiocb *link;
1619
1620 if (req_need_defer(de->req, de->seq))
1621 break;
1622 list_del_init(&de->list);
1623 /* punt-init is done before queueing for defer */
1624 link = __io_queue_async_work(de->req);
1625 if (link) {
1626 __io_queue_linked_timeout(link);
1627 /* drop submission reference */
1628 io_put_req_deferred(link, 1);
1629 }
1630 kfree(de);
1631 } while (!list_empty(&ctx->defer_list));
1632 }
1633
1634 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1635 {
1636 while (!list_empty(&ctx->timeout_list)) {
1637 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1638 struct io_kiocb, timeout.list);
1639
1640 if (io_is_timeout_noseq(req))
1641 break;
1642 if (req->timeout.target_seq != ctx->cached_cq_tail
1643 - atomic_read(&ctx->cq_timeouts))
1644 break;
1645
1646 list_del_init(&req->timeout.list);
1647 io_kill_timeout(req);
1648 }
1649 }
1650
1651 static void io_commit_cqring(struct io_ring_ctx *ctx)
1652 {
1653 io_flush_timeouts(ctx);
1654 __io_commit_cqring(ctx);
1655
1656 if (unlikely(!list_empty(&ctx->defer_list)))
1657 __io_queue_deferred(ctx);
1658 }
1659
1660 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1661 {
1662 struct io_rings *r = ctx->rings;
1663
1664 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1665 }
1666
1667 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1668 {
1669 struct io_rings *rings = ctx->rings;
1670 unsigned tail;
1671
1672 tail = ctx->cached_cq_tail;
1673 /*
1674 * writes to the cq entry need to come after reading head; the
1675 * control dependency is enough as we're using WRITE_ONCE to
1676 * fill the cq entry
1677 */
1678 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1679 return NULL;
1680
1681 ctx->cached_cq_tail++;
1682 return &rings->cqes[tail & ctx->cq_mask];
1683 }
1684
1685 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1686 {
1687 if (!ctx->cq_ev_fd)
1688 return false;
1689 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1690 return false;
1691 if (!ctx->eventfd_async)
1692 return true;
1693 return io_wq_current_is_worker();
1694 }
1695
1696 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1697 {
1698 if (waitqueue_active(&ctx->wait))
1699 wake_up(&ctx->wait);
1700 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1701 wake_up(&ctx->sq_data->wait);
1702 if (io_should_trigger_evfd(ctx))
1703 eventfd_signal(ctx->cq_ev_fd, 1);
1704 }
1705
1706 static void io_cqring_mark_overflow(struct io_ring_ctx *ctx)
1707 {
1708 if (list_empty(&ctx->cq_overflow_list)) {
1709 clear_bit(0, &ctx->sq_check_overflow);
1710 clear_bit(0, &ctx->cq_check_overflow);
1711 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1712 }
1713 }
1714
1715 /* Returns true if there are no backlogged entries after the flush */
1716 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1717 struct task_struct *tsk,
1718 struct files_struct *files)
1719 {
1720 struct io_rings *rings = ctx->rings;
1721 struct io_kiocb *req, *tmp;
1722 struct io_uring_cqe *cqe;
1723 unsigned long flags;
1724 LIST_HEAD(list);
1725
1726 if (!force) {
1727 if (list_empty_careful(&ctx->cq_overflow_list))
1728 return true;
1729 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1730 rings->cq_ring_entries))
1731 return false;
1732 }
1733
1734 spin_lock_irqsave(&ctx->completion_lock, flags);
1735
1736 /* if force is set, the ring is going away. always drop after that */
1737 if (force)
1738 ctx->cq_overflow_flushed = 1;
1739
1740 cqe = NULL;
1741 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1742 if (!io_match_task(req, tsk, files))
1743 continue;
1744
1745 cqe = io_get_cqring(ctx);
1746 if (!cqe && !force)
1747 break;
1748
1749 list_move(&req->compl.list, &list);
1750 if (cqe) {
1751 WRITE_ONCE(cqe->user_data, req->user_data);
1752 WRITE_ONCE(cqe->res, req->result);
1753 WRITE_ONCE(cqe->flags, req->compl.cflags);
1754 } else {
1755 ctx->cached_cq_overflow++;
1756 WRITE_ONCE(ctx->rings->cq_overflow,
1757 ctx->cached_cq_overflow);
1758 }
1759 }
1760
1761 io_commit_cqring(ctx);
1762 io_cqring_mark_overflow(ctx);
1763
1764 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1765 io_cqring_ev_posted(ctx);
1766
1767 while (!list_empty(&list)) {
1768 req = list_first_entry(&list, struct io_kiocb, compl.list);
1769 list_del(&req->compl.list);
1770 io_put_req(req);
1771 }
1772
1773 return cqe != NULL;
1774 }
1775
1776 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1777 {
1778 struct io_ring_ctx *ctx = req->ctx;
1779 struct io_uring_cqe *cqe;
1780
1781 trace_io_uring_complete(ctx, req->user_data, res);
1782
1783 /*
1784 * If we can't get a cq entry, userspace overflowed the
1785 * submission (by quite a lot). Increment the overflow count in
1786 * the ring.
1787 */
1788 cqe = io_get_cqring(ctx);
1789 if (likely(cqe)) {
1790 WRITE_ONCE(cqe->user_data, req->user_data);
1791 WRITE_ONCE(cqe->res, res);
1792 WRITE_ONCE(cqe->flags, cflags);
1793 } else if (ctx->cq_overflow_flushed ||
1794 atomic_read(&req->task->io_uring->in_idle)) {
1795 /*
1796 * If we're in ring overflow flush mode, or in task cancel mode,
1797 * then we cannot store the request for later flushing, we need
1798 * to drop it on the floor.
1799 */
1800 ctx->cached_cq_overflow++;
1801 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1802 } else {
1803 if (list_empty(&ctx->cq_overflow_list)) {
1804 set_bit(0, &ctx->sq_check_overflow);
1805 set_bit(0, &ctx->cq_check_overflow);
1806 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1807 }
1808 io_clean_op(req);
1809 req->result = res;
1810 req->compl.cflags = cflags;
1811 refcount_inc(&req->refs);
1812 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1813 }
1814 }
1815
1816 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1817 {
1818 __io_cqring_fill_event(req, res, 0);
1819 }
1820
1821 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1822 {
1823 struct io_ring_ctx *ctx = req->ctx;
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&ctx->completion_lock, flags);
1827 __io_cqring_fill_event(req, res, cflags);
1828 io_commit_cqring(ctx);
1829 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1830
1831 io_cqring_ev_posted(ctx);
1832 }
1833
1834 static void io_submit_flush_completions(struct io_comp_state *cs)
1835 {
1836 struct io_ring_ctx *ctx = cs->ctx;
1837
1838 spin_lock_irq(&ctx->completion_lock);
1839 while (!list_empty(&cs->list)) {
1840 struct io_kiocb *req;
1841
1842 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1843 list_del(&req->compl.list);
1844 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1845
1846 /*
1847 * io_free_req() doesn't care about completion_lock unless one
1848 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1849 * because of a potential deadlock with req->work.fs->lock
1850 */
1851 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1852 |REQ_F_WORK_INITIALIZED)) {
1853 spin_unlock_irq(&ctx->completion_lock);
1854 io_put_req(req);
1855 spin_lock_irq(&ctx->completion_lock);
1856 } else {
1857 io_put_req(req);
1858 }
1859 }
1860 io_commit_cqring(ctx);
1861 spin_unlock_irq(&ctx->completion_lock);
1862
1863 io_cqring_ev_posted(ctx);
1864 cs->nr = 0;
1865 }
1866
1867 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1868 struct io_comp_state *cs)
1869 {
1870 if (!cs) {
1871 io_cqring_add_event(req, res, cflags);
1872 io_put_req(req);
1873 } else {
1874 io_clean_op(req);
1875 req->result = res;
1876 req->compl.cflags = cflags;
1877 list_add_tail(&req->compl.list, &cs->list);
1878 if (++cs->nr >= 32)
1879 io_submit_flush_completions(cs);
1880 }
1881 }
1882
1883 static void io_req_complete(struct io_kiocb *req, long res)
1884 {
1885 __io_req_complete(req, res, 0, NULL);
1886 }
1887
1888 static inline bool io_is_fallback_req(struct io_kiocb *req)
1889 {
1890 return req == (struct io_kiocb *)
1891 ((unsigned long) req->ctx->fallback_req & ~1UL);
1892 }
1893
1894 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1895 {
1896 struct io_kiocb *req;
1897
1898 req = ctx->fallback_req;
1899 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1900 return req;
1901
1902 return NULL;
1903 }
1904
1905 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1906 struct io_submit_state *state)
1907 {
1908 if (!state->free_reqs) {
1909 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1910 size_t sz;
1911 int ret;
1912
1913 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1914 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1915
1916 /*
1917 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1918 * retry single alloc to be on the safe side.
1919 */
1920 if (unlikely(ret <= 0)) {
1921 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1922 if (!state->reqs[0])
1923 goto fallback;
1924 ret = 1;
1925 }
1926 state->free_reqs = ret;
1927 }
1928
1929 state->free_reqs--;
1930 return state->reqs[state->free_reqs];
1931 fallback:
1932 return io_get_fallback_req(ctx);
1933 }
1934
1935 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1936 bool fixed)
1937 {
1938 if (!fixed)
1939 fput(file);
1940 }
1941
1942 static void io_dismantle_req(struct io_kiocb *req)
1943 {
1944 io_clean_op(req);
1945
1946 if (req->async_data)
1947 kfree(req->async_data);
1948 if (req->file)
1949 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1950 if (req->fixed_file_refs)
1951 percpu_ref_put(req->fixed_file_refs);
1952 io_req_clean_work(req);
1953 }
1954
1955 static void __io_free_req(struct io_kiocb *req)
1956 {
1957 struct io_uring_task *tctx = req->task->io_uring;
1958 struct io_ring_ctx *ctx = req->ctx;
1959
1960 io_dismantle_req(req);
1961
1962 percpu_counter_dec(&tctx->inflight);
1963 if (atomic_read(&tctx->in_idle))
1964 wake_up(&tctx->wait);
1965 put_task_struct(req->task);
1966
1967 if (likely(!io_is_fallback_req(req)))
1968 kmem_cache_free(req_cachep, req);
1969 else
1970 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1971 percpu_ref_put(&ctx->refs);
1972 }
1973
1974 static inline void io_remove_next_linked(struct io_kiocb *req)
1975 {
1976 struct io_kiocb *nxt = req->link;
1977
1978 req->link = nxt->link;
1979 nxt->link = NULL;
1980 }
1981
1982 static void io_kill_linked_timeout(struct io_kiocb *req)
1983 {
1984 struct io_ring_ctx *ctx = req->ctx;
1985 struct io_kiocb *link;
1986 bool cancelled = false;
1987 unsigned long flags;
1988
1989 spin_lock_irqsave(&ctx->completion_lock, flags);
1990 link = req->link;
1991
1992 /*
1993 * Can happen if a linked timeout fired and link had been like
1994 * req -> link t-out -> link t-out [-> ...]
1995 */
1996 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1997 struct io_timeout_data *io = link->async_data;
1998 int ret;
1999
2000 io_remove_next_linked(req);
2001 link->timeout.head = NULL;
2002 ret = hrtimer_try_to_cancel(&io->timer);
2003 if (ret != -1) {
2004 io_cqring_fill_event(link, -ECANCELED);
2005 io_commit_cqring(ctx);
2006 cancelled = true;
2007 }
2008 }
2009 req->flags &= ~REQ_F_LINK_TIMEOUT;
2010 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2011
2012 if (cancelled) {
2013 io_cqring_ev_posted(ctx);
2014 io_put_req(link);
2015 }
2016 }
2017
2018
2019 static void io_fail_links(struct io_kiocb *req)
2020 {
2021 struct io_kiocb *link, *nxt;
2022 struct io_ring_ctx *ctx = req->ctx;
2023 unsigned long flags;
2024
2025 spin_lock_irqsave(&ctx->completion_lock, flags);
2026 link = req->link;
2027 req->link = NULL;
2028
2029 while (link) {
2030 nxt = link->link;
2031 link->link = NULL;
2032
2033 trace_io_uring_fail_link(req, link);
2034 io_cqring_fill_event(link, -ECANCELED);
2035
2036 /*
2037 * It's ok to free under spinlock as they're not linked anymore,
2038 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2039 * work.fs->lock.
2040 */
2041 if (link->flags & REQ_F_WORK_INITIALIZED)
2042 io_put_req_deferred(link, 2);
2043 else
2044 io_double_put_req(link);
2045 link = nxt;
2046 }
2047 io_commit_cqring(ctx);
2048 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2049
2050 io_cqring_ev_posted(ctx);
2051 }
2052
2053 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2054 {
2055 if (req->flags & REQ_F_LINK_TIMEOUT)
2056 io_kill_linked_timeout(req);
2057
2058 /*
2059 * If LINK is set, we have dependent requests in this chain. If we
2060 * didn't fail this request, queue the first one up, moving any other
2061 * dependencies to the next request. In case of failure, fail the rest
2062 * of the chain.
2063 */
2064 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2065 struct io_kiocb *nxt = req->link;
2066
2067 req->link = NULL;
2068 return nxt;
2069 }
2070 io_fail_links(req);
2071 return NULL;
2072 }
2073
2074 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2075 {
2076 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2077 return NULL;
2078 return __io_req_find_next(req);
2079 }
2080
2081 static int io_req_task_work_add(struct io_kiocb *req)
2082 {
2083 struct task_struct *tsk = req->task;
2084 struct io_ring_ctx *ctx = req->ctx;
2085 enum task_work_notify_mode notify;
2086 int ret;
2087
2088 if (tsk->flags & PF_EXITING)
2089 return -ESRCH;
2090
2091 /*
2092 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2093 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2094 * processing task_work. There's no reliable way to tell if TWA_RESUME
2095 * will do the job.
2096 */
2097 notify = TWA_NONE;
2098 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2099 notify = TWA_SIGNAL;
2100
2101 ret = task_work_add(tsk, &req->task_work, notify);
2102 if (!ret)
2103 wake_up_process(tsk);
2104
2105 return ret;
2106 }
2107
2108 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2109 {
2110 struct io_ring_ctx *ctx = req->ctx;
2111
2112 spin_lock_irq(&ctx->completion_lock);
2113 io_cqring_fill_event(req, error);
2114 io_commit_cqring(ctx);
2115 spin_unlock_irq(&ctx->completion_lock);
2116
2117 io_cqring_ev_posted(ctx);
2118 req_set_fail_links(req);
2119 io_double_put_req(req);
2120 }
2121
2122 static void io_req_task_cancel(struct callback_head *cb)
2123 {
2124 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2125 struct io_ring_ctx *ctx = req->ctx;
2126
2127 __io_req_task_cancel(req, -ECANCELED);
2128 percpu_ref_put(&ctx->refs);
2129 }
2130
2131 static void __io_req_task_submit(struct io_kiocb *req)
2132 {
2133 struct io_ring_ctx *ctx = req->ctx;
2134
2135 if (!__io_sq_thread_acquire_mm(ctx) &&
2136 !__io_sq_thread_acquire_files(ctx)) {
2137 mutex_lock(&ctx->uring_lock);
2138 __io_queue_sqe(req, NULL);
2139 mutex_unlock(&ctx->uring_lock);
2140 } else {
2141 __io_req_task_cancel(req, -EFAULT);
2142 }
2143 }
2144
2145 static void io_req_task_submit(struct callback_head *cb)
2146 {
2147 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2148 struct io_ring_ctx *ctx = req->ctx;
2149
2150 __io_req_task_submit(req);
2151 percpu_ref_put(&ctx->refs);
2152 }
2153
2154 static void io_req_task_queue(struct io_kiocb *req)
2155 {
2156 int ret;
2157
2158 init_task_work(&req->task_work, io_req_task_submit);
2159 percpu_ref_get(&req->ctx->refs);
2160
2161 ret = io_req_task_work_add(req);
2162 if (unlikely(ret)) {
2163 struct task_struct *tsk;
2164
2165 init_task_work(&req->task_work, io_req_task_cancel);
2166 tsk = io_wq_get_task(req->ctx->io_wq);
2167 task_work_add(tsk, &req->task_work, TWA_NONE);
2168 wake_up_process(tsk);
2169 }
2170 }
2171
2172 static inline void io_queue_next(struct io_kiocb *req)
2173 {
2174 struct io_kiocb *nxt = io_req_find_next(req);
2175
2176 if (nxt)
2177 io_req_task_queue(nxt);
2178 }
2179
2180 static void io_free_req(struct io_kiocb *req)
2181 {
2182 io_queue_next(req);
2183 __io_free_req(req);
2184 }
2185
2186 struct req_batch {
2187 void *reqs[IO_IOPOLL_BATCH];
2188 int to_free;
2189
2190 struct task_struct *task;
2191 int task_refs;
2192 };
2193
2194 static inline void io_init_req_batch(struct req_batch *rb)
2195 {
2196 rb->to_free = 0;
2197 rb->task_refs = 0;
2198 rb->task = NULL;
2199 }
2200
2201 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2202 struct req_batch *rb)
2203 {
2204 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2205 percpu_ref_put_many(&ctx->refs, rb->to_free);
2206 rb->to_free = 0;
2207 }
2208
2209 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2210 struct req_batch *rb)
2211 {
2212 if (rb->to_free)
2213 __io_req_free_batch_flush(ctx, rb);
2214 if (rb->task) {
2215 struct io_uring_task *tctx = rb->task->io_uring;
2216
2217 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2218 put_task_struct_many(rb->task, rb->task_refs);
2219 rb->task = NULL;
2220 }
2221 }
2222
2223 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2224 {
2225 if (unlikely(io_is_fallback_req(req))) {
2226 io_free_req(req);
2227 return;
2228 }
2229 io_queue_next(req);
2230
2231 if (req->task != rb->task) {
2232 if (rb->task) {
2233 struct io_uring_task *tctx = rb->task->io_uring;
2234
2235 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2236 put_task_struct_many(rb->task, rb->task_refs);
2237 }
2238 rb->task = req->task;
2239 rb->task_refs = 0;
2240 }
2241 rb->task_refs++;
2242
2243 io_dismantle_req(req);
2244 rb->reqs[rb->to_free++] = req;
2245 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2246 __io_req_free_batch_flush(req->ctx, rb);
2247 }
2248
2249 /*
2250 * Drop reference to request, return next in chain (if there is one) if this
2251 * was the last reference to this request.
2252 */
2253 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2254 {
2255 struct io_kiocb *nxt = NULL;
2256
2257 if (refcount_dec_and_test(&req->refs)) {
2258 nxt = io_req_find_next(req);
2259 __io_free_req(req);
2260 }
2261 return nxt;
2262 }
2263
2264 static void io_put_req(struct io_kiocb *req)
2265 {
2266 if (refcount_dec_and_test(&req->refs))
2267 io_free_req(req);
2268 }
2269
2270 static void io_put_req_deferred_cb(struct callback_head *cb)
2271 {
2272 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2273
2274 io_free_req(req);
2275 }
2276
2277 static void io_free_req_deferred(struct io_kiocb *req)
2278 {
2279 int ret;
2280
2281 init_task_work(&req->task_work, io_put_req_deferred_cb);
2282 ret = io_req_task_work_add(req);
2283 if (unlikely(ret)) {
2284 struct task_struct *tsk;
2285
2286 tsk = io_wq_get_task(req->ctx->io_wq);
2287 task_work_add(tsk, &req->task_work, TWA_NONE);
2288 wake_up_process(tsk);
2289 }
2290 }
2291
2292 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2293 {
2294 if (refcount_sub_and_test(refs, &req->refs))
2295 io_free_req_deferred(req);
2296 }
2297
2298 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2299 {
2300 struct io_kiocb *nxt;
2301
2302 /*
2303 * A ref is owned by io-wq in which context we're. So, if that's the
2304 * last one, it's safe to steal next work. False negatives are Ok,
2305 * it just will be re-punted async in io_put_work()
2306 */
2307 if (refcount_read(&req->refs) != 1)
2308 return NULL;
2309
2310 nxt = io_req_find_next(req);
2311 return nxt ? &nxt->work : NULL;
2312 }
2313
2314 static void io_double_put_req(struct io_kiocb *req)
2315 {
2316 /* drop both submit and complete references */
2317 if (refcount_sub_and_test(2, &req->refs))
2318 io_free_req(req);
2319 }
2320
2321 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2322 {
2323 struct io_rings *rings = ctx->rings;
2324
2325 if (test_bit(0, &ctx->cq_check_overflow)) {
2326 /*
2327 * noflush == true is from the waitqueue handler, just ensure
2328 * we wake up the task, and the next invocation will flush the
2329 * entries. We cannot safely to it from here.
2330 */
2331 if (noflush)
2332 return -1U;
2333
2334 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2335 }
2336
2337 /* See comment at the top of this file */
2338 smp_rmb();
2339 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
2340 }
2341
2342 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2343 {
2344 struct io_rings *rings = ctx->rings;
2345
2346 /* make sure SQ entry isn't read before tail */
2347 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2348 }
2349
2350 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2351 {
2352 unsigned int cflags;
2353
2354 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2355 cflags |= IORING_CQE_F_BUFFER;
2356 req->flags &= ~REQ_F_BUFFER_SELECTED;
2357 kfree(kbuf);
2358 return cflags;
2359 }
2360
2361 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2362 {
2363 struct io_buffer *kbuf;
2364
2365 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2366 return io_put_kbuf(req, kbuf);
2367 }
2368
2369 static inline bool io_run_task_work(void)
2370 {
2371 /*
2372 * Not safe to run on exiting task, and the task_work handling will
2373 * not add work to such a task.
2374 */
2375 if (unlikely(current->flags & PF_EXITING))
2376 return false;
2377 if (current->task_works) {
2378 __set_current_state(TASK_RUNNING);
2379 task_work_run();
2380 return true;
2381 }
2382
2383 return false;
2384 }
2385
2386 static void io_iopoll_queue(struct list_head *again)
2387 {
2388 struct io_kiocb *req;
2389
2390 do {
2391 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2392 list_del(&req->inflight_entry);
2393 __io_complete_rw(req, -EAGAIN, 0, NULL);
2394 } while (!list_empty(again));
2395 }
2396
2397 /*
2398 * Find and free completed poll iocbs
2399 */
2400 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2401 struct list_head *done)
2402 {
2403 struct req_batch rb;
2404 struct io_kiocb *req;
2405 LIST_HEAD(again);
2406
2407 /* order with ->result store in io_complete_rw_iopoll() */
2408 smp_rmb();
2409
2410 io_init_req_batch(&rb);
2411 while (!list_empty(done)) {
2412 int cflags = 0;
2413
2414 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2415 if (READ_ONCE(req->result) == -EAGAIN) {
2416 req->result = 0;
2417 req->iopoll_completed = 0;
2418 list_move_tail(&req->inflight_entry, &again);
2419 continue;
2420 }
2421 list_del(&req->inflight_entry);
2422
2423 if (req->flags & REQ_F_BUFFER_SELECTED)
2424 cflags = io_put_rw_kbuf(req);
2425
2426 __io_cqring_fill_event(req, req->result, cflags);
2427 (*nr_events)++;
2428
2429 if (refcount_dec_and_test(&req->refs))
2430 io_req_free_batch(&rb, req);
2431 }
2432
2433 io_commit_cqring(ctx);
2434 if (ctx->flags & IORING_SETUP_SQPOLL)
2435 io_cqring_ev_posted(ctx);
2436 io_req_free_batch_finish(ctx, &rb);
2437
2438 if (!list_empty(&again))
2439 io_iopoll_queue(&again);
2440 }
2441
2442 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2443 long min)
2444 {
2445 struct io_kiocb *req, *tmp;
2446 LIST_HEAD(done);
2447 bool spin;
2448 int ret;
2449
2450 /*
2451 * Only spin for completions if we don't have multiple devices hanging
2452 * off our complete list, and we're under the requested amount.
2453 */
2454 spin = !ctx->poll_multi_file && *nr_events < min;
2455
2456 ret = 0;
2457 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2458 struct kiocb *kiocb = &req->rw.kiocb;
2459
2460 /*
2461 * Move completed and retryable entries to our local lists.
2462 * If we find a request that requires polling, break out
2463 * and complete those lists first, if we have entries there.
2464 */
2465 if (READ_ONCE(req->iopoll_completed)) {
2466 list_move_tail(&req->inflight_entry, &done);
2467 continue;
2468 }
2469 if (!list_empty(&done))
2470 break;
2471
2472 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2473 if (ret < 0)
2474 break;
2475
2476 /* iopoll may have completed current req */
2477 if (READ_ONCE(req->iopoll_completed))
2478 list_move_tail(&req->inflight_entry, &done);
2479
2480 if (ret && spin)
2481 spin = false;
2482 ret = 0;
2483 }
2484
2485 if (!list_empty(&done))
2486 io_iopoll_complete(ctx, nr_events, &done);
2487
2488 return ret;
2489 }
2490
2491 /*
2492 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2493 * non-spinning poll check - we'll still enter the driver poll loop, but only
2494 * as a non-spinning completion check.
2495 */
2496 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2497 long min)
2498 {
2499 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2500 int ret;
2501
2502 ret = io_do_iopoll(ctx, nr_events, min);
2503 if (ret < 0)
2504 return ret;
2505 if (*nr_events >= min)
2506 return 0;
2507 }
2508
2509 return 1;
2510 }
2511
2512 /*
2513 * We can't just wait for polled events to come to us, we have to actively
2514 * find and complete them.
2515 */
2516 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2517 {
2518 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2519 return;
2520
2521 mutex_lock(&ctx->uring_lock);
2522 while (!list_empty(&ctx->iopoll_list)) {
2523 unsigned int nr_events = 0;
2524
2525 io_do_iopoll(ctx, &nr_events, 0);
2526
2527 /* let it sleep and repeat later if can't complete a request */
2528 if (nr_events == 0)
2529 break;
2530 /*
2531 * Ensure we allow local-to-the-cpu processing to take place,
2532 * in this case we need to ensure that we reap all events.
2533 * Also let task_work, etc. to progress by releasing the mutex
2534 */
2535 if (need_resched()) {
2536 mutex_unlock(&ctx->uring_lock);
2537 cond_resched();
2538 mutex_lock(&ctx->uring_lock);
2539 }
2540 }
2541 mutex_unlock(&ctx->uring_lock);
2542 }
2543
2544 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2545 {
2546 unsigned int nr_events = 0;
2547 int iters = 0, ret = 0;
2548
2549 /*
2550 * We disallow the app entering submit/complete with polling, but we
2551 * still need to lock the ring to prevent racing with polled issue
2552 * that got punted to a workqueue.
2553 */
2554 mutex_lock(&ctx->uring_lock);
2555 do {
2556 /*
2557 * Don't enter poll loop if we already have events pending.
2558 * If we do, we can potentially be spinning for commands that
2559 * already triggered a CQE (eg in error).
2560 */
2561 if (io_cqring_events(ctx, false))
2562 break;
2563
2564 /*
2565 * If a submit got punted to a workqueue, we can have the
2566 * application entering polling for a command before it gets
2567 * issued. That app will hold the uring_lock for the duration
2568 * of the poll right here, so we need to take a breather every
2569 * now and then to ensure that the issue has a chance to add
2570 * the poll to the issued list. Otherwise we can spin here
2571 * forever, while the workqueue is stuck trying to acquire the
2572 * very same mutex.
2573 */
2574 if (!(++iters & 7)) {
2575 mutex_unlock(&ctx->uring_lock);
2576 io_run_task_work();
2577 mutex_lock(&ctx->uring_lock);
2578 }
2579
2580 ret = io_iopoll_getevents(ctx, &nr_events, min);
2581 if (ret <= 0)
2582 break;
2583 ret = 0;
2584 } while (min && !nr_events && !need_resched());
2585
2586 mutex_unlock(&ctx->uring_lock);
2587 return ret;
2588 }
2589
2590 static void kiocb_end_write(struct io_kiocb *req)
2591 {
2592 /*
2593 * Tell lockdep we inherited freeze protection from submission
2594 * thread.
2595 */
2596 if (req->flags & REQ_F_ISREG) {
2597 struct inode *inode = file_inode(req->file);
2598
2599 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2600 }
2601 file_end_write(req->file);
2602 }
2603
2604 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2605 struct io_comp_state *cs)
2606 {
2607 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2608 int cflags = 0;
2609
2610 if (kiocb->ki_flags & IOCB_WRITE)
2611 kiocb_end_write(req);
2612
2613 if (res != req->result)
2614 req_set_fail_links(req);
2615 if (req->flags & REQ_F_BUFFER_SELECTED)
2616 cflags = io_put_rw_kbuf(req);
2617 __io_req_complete(req, res, cflags, cs);
2618 }
2619
2620 #ifdef CONFIG_BLOCK
2621 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2622 {
2623 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2624 ssize_t ret = -ECANCELED;
2625 struct iov_iter iter;
2626 int rw;
2627
2628 if (error) {
2629 ret = error;
2630 goto end_req;
2631 }
2632
2633 switch (req->opcode) {
2634 case IORING_OP_READV:
2635 case IORING_OP_READ_FIXED:
2636 case IORING_OP_READ:
2637 rw = READ;
2638 break;
2639 case IORING_OP_WRITEV:
2640 case IORING_OP_WRITE_FIXED:
2641 case IORING_OP_WRITE:
2642 rw = WRITE;
2643 break;
2644 default:
2645 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2646 req->opcode);
2647 goto end_req;
2648 }
2649
2650 if (!req->async_data) {
2651 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2652 if (ret < 0)
2653 goto end_req;
2654 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2655 if (!ret)
2656 return true;
2657 kfree(iovec);
2658 } else {
2659 return true;
2660 }
2661 end_req:
2662 req_set_fail_links(req);
2663 return false;
2664 }
2665 #endif
2666
2667 static bool io_rw_reissue(struct io_kiocb *req, long res)
2668 {
2669 #ifdef CONFIG_BLOCK
2670 umode_t mode = file_inode(req->file)->i_mode;
2671 int ret;
2672
2673 if (!S_ISBLK(mode) && !S_ISREG(mode))
2674 return false;
2675 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2676 return false;
2677
2678 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2679
2680 if (io_resubmit_prep(req, ret)) {
2681 refcount_inc(&req->refs);
2682 io_queue_async_work(req);
2683 return true;
2684 }
2685
2686 #endif
2687 return false;
2688 }
2689
2690 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2691 struct io_comp_state *cs)
2692 {
2693 if (!io_rw_reissue(req, res))
2694 io_complete_rw_common(&req->rw.kiocb, res, cs);
2695 }
2696
2697 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2698 {
2699 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2700
2701 __io_complete_rw(req, res, res2, NULL);
2702 }
2703
2704 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2705 {
2706 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2707
2708 if (kiocb->ki_flags & IOCB_WRITE)
2709 kiocb_end_write(req);
2710
2711 if (res != -EAGAIN && res != req->result)
2712 req_set_fail_links(req);
2713
2714 WRITE_ONCE(req->result, res);
2715 /* order with io_poll_complete() checking ->result */
2716 smp_wmb();
2717 WRITE_ONCE(req->iopoll_completed, 1);
2718 }
2719
2720 /*
2721 * After the iocb has been issued, it's safe to be found on the poll list.
2722 * Adding the kiocb to the list AFTER submission ensures that we don't
2723 * find it from a io_iopoll_getevents() thread before the issuer is done
2724 * accessing the kiocb cookie.
2725 */
2726 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2727 {
2728 struct io_ring_ctx *ctx = req->ctx;
2729
2730 /*
2731 * Track whether we have multiple files in our lists. This will impact
2732 * how we do polling eventually, not spinning if we're on potentially
2733 * different devices.
2734 */
2735 if (list_empty(&ctx->iopoll_list)) {
2736 ctx->poll_multi_file = false;
2737 } else if (!ctx->poll_multi_file) {
2738 struct io_kiocb *list_req;
2739
2740 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2741 inflight_entry);
2742 if (list_req->file != req->file)
2743 ctx->poll_multi_file = true;
2744 }
2745
2746 /*
2747 * For fast devices, IO may have already completed. If it has, add
2748 * it to the front so we find it first.
2749 */
2750 if (READ_ONCE(req->iopoll_completed))
2751 list_add(&req->inflight_entry, &ctx->iopoll_list);
2752 else
2753 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2754
2755 /*
2756 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2757 * task context or in io worker task context. If current task context is
2758 * sq thread, we don't need to check whether should wake up sq thread.
2759 */
2760 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2761 wq_has_sleeper(&ctx->sq_data->wait))
2762 wake_up(&ctx->sq_data->wait);
2763 }
2764
2765 static inline void __io_state_file_put(struct io_submit_state *state)
2766 {
2767 fput_many(state->file, state->file_refs);
2768 state->file_refs = 0;
2769 }
2770
2771 static inline void io_state_file_put(struct io_submit_state *state)
2772 {
2773 if (state->file_refs)
2774 __io_state_file_put(state);
2775 }
2776
2777 /*
2778 * Get as many references to a file as we have IOs left in this submission,
2779 * assuming most submissions are for one file, or at least that each file
2780 * has more than one submission.
2781 */
2782 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2783 {
2784 if (!state)
2785 return fget(fd);
2786
2787 if (state->file_refs) {
2788 if (state->fd == fd) {
2789 state->file_refs--;
2790 return state->file;
2791 }
2792 __io_state_file_put(state);
2793 }
2794 state->file = fget_many(fd, state->ios_left);
2795 if (unlikely(!state->file))
2796 return NULL;
2797
2798 state->fd = fd;
2799 state->file_refs = state->ios_left - 1;
2800 return state->file;
2801 }
2802
2803 static bool io_bdev_nowait(struct block_device *bdev)
2804 {
2805 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2806 }
2807
2808 /*
2809 * If we tracked the file through the SCM inflight mechanism, we could support
2810 * any file. For now, just ensure that anything potentially problematic is done
2811 * inline.
2812 */
2813 static bool io_file_supports_async(struct file *file, int rw)
2814 {
2815 umode_t mode = file_inode(file)->i_mode;
2816
2817 if (S_ISBLK(mode)) {
2818 if (IS_ENABLED(CONFIG_BLOCK) &&
2819 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2820 return true;
2821 return false;
2822 }
2823 if (S_ISCHR(mode) || S_ISSOCK(mode))
2824 return true;
2825 if (S_ISREG(mode)) {
2826 if (IS_ENABLED(CONFIG_BLOCK) &&
2827 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2828 file->f_op != &io_uring_fops)
2829 return true;
2830 return false;
2831 }
2832
2833 /* any ->read/write should understand O_NONBLOCK */
2834 if (file->f_flags & O_NONBLOCK)
2835 return true;
2836
2837 if (!(file->f_mode & FMODE_NOWAIT))
2838 return false;
2839
2840 if (rw == READ)
2841 return file->f_op->read_iter != NULL;
2842
2843 return file->f_op->write_iter != NULL;
2844 }
2845
2846 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2847 {
2848 struct io_ring_ctx *ctx = req->ctx;
2849 struct kiocb *kiocb = &req->rw.kiocb;
2850 unsigned ioprio;
2851 int ret;
2852
2853 if (S_ISREG(file_inode(req->file)->i_mode))
2854 req->flags |= REQ_F_ISREG;
2855
2856 kiocb->ki_pos = READ_ONCE(sqe->off);
2857 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2858 req->flags |= REQ_F_CUR_POS;
2859 kiocb->ki_pos = req->file->f_pos;
2860 }
2861 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2862 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2863 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2864 if (unlikely(ret))
2865 return ret;
2866
2867 ioprio = READ_ONCE(sqe->ioprio);
2868 if (ioprio) {
2869 ret = ioprio_check_cap(ioprio);
2870 if (ret)
2871 return ret;
2872
2873 kiocb->ki_ioprio = ioprio;
2874 } else
2875 kiocb->ki_ioprio = get_current_ioprio();
2876
2877 /* don't allow async punt if RWF_NOWAIT was requested */
2878 if (kiocb->ki_flags & IOCB_NOWAIT)
2879 req->flags |= REQ_F_NOWAIT;
2880
2881 if (ctx->flags & IORING_SETUP_IOPOLL) {
2882 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2883 !kiocb->ki_filp->f_op->iopoll)
2884 return -EOPNOTSUPP;
2885
2886 kiocb->ki_flags |= IOCB_HIPRI;
2887 kiocb->ki_complete = io_complete_rw_iopoll;
2888 req->iopoll_completed = 0;
2889 } else {
2890 if (kiocb->ki_flags & IOCB_HIPRI)
2891 return -EINVAL;
2892 kiocb->ki_complete = io_complete_rw;
2893 }
2894
2895 req->rw.addr = READ_ONCE(sqe->addr);
2896 req->rw.len = READ_ONCE(sqe->len);
2897 req->buf_index = READ_ONCE(sqe->buf_index);
2898 return 0;
2899 }
2900
2901 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2902 {
2903 switch (ret) {
2904 case -EIOCBQUEUED:
2905 break;
2906 case -ERESTARTSYS:
2907 case -ERESTARTNOINTR:
2908 case -ERESTARTNOHAND:
2909 case -ERESTART_RESTARTBLOCK:
2910 /*
2911 * We can't just restart the syscall, since previously
2912 * submitted sqes may already be in progress. Just fail this
2913 * IO with EINTR.
2914 */
2915 ret = -EINTR;
2916 fallthrough;
2917 default:
2918 kiocb->ki_complete(kiocb, ret, 0);
2919 }
2920 }
2921
2922 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2923 struct io_comp_state *cs)
2924 {
2925 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2926 struct io_async_rw *io = req->async_data;
2927
2928 /* add previously done IO, if any */
2929 if (io && io->bytes_done > 0) {
2930 if (ret < 0)
2931 ret = io->bytes_done;
2932 else
2933 ret += io->bytes_done;
2934 }
2935
2936 if (req->flags & REQ_F_CUR_POS)
2937 req->file->f_pos = kiocb->ki_pos;
2938 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2939 __io_complete_rw(req, ret, 0, cs);
2940 else
2941 io_rw_done(kiocb, ret);
2942 }
2943
2944 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2945 struct iov_iter *iter)
2946 {
2947 struct io_ring_ctx *ctx = req->ctx;
2948 size_t len = req->rw.len;
2949 struct io_mapped_ubuf *imu;
2950 u16 index, buf_index = req->buf_index;
2951 size_t offset;
2952 u64 buf_addr;
2953
2954 if (unlikely(buf_index >= ctx->nr_user_bufs))
2955 return -EFAULT;
2956 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2957 imu = &ctx->user_bufs[index];
2958 buf_addr = req->rw.addr;
2959
2960 /* overflow */
2961 if (buf_addr + len < buf_addr)
2962 return -EFAULT;
2963 /* not inside the mapped region */
2964 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2965 return -EFAULT;
2966
2967 /*
2968 * May not be a start of buffer, set size appropriately
2969 * and advance us to the beginning.
2970 */
2971 offset = buf_addr - imu->ubuf;
2972 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2973
2974 if (offset) {
2975 /*
2976 * Don't use iov_iter_advance() here, as it's really slow for
2977 * using the latter parts of a big fixed buffer - it iterates
2978 * over each segment manually. We can cheat a bit here, because
2979 * we know that:
2980 *
2981 * 1) it's a BVEC iter, we set it up
2982 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2983 * first and last bvec
2984 *
2985 * So just find our index, and adjust the iterator afterwards.
2986 * If the offset is within the first bvec (or the whole first
2987 * bvec, just use iov_iter_advance(). This makes it easier
2988 * since we can just skip the first segment, which may not
2989 * be PAGE_SIZE aligned.
2990 */
2991 const struct bio_vec *bvec = imu->bvec;
2992
2993 if (offset <= bvec->bv_len) {
2994 iov_iter_advance(iter, offset);
2995 } else {
2996 unsigned long seg_skip;
2997
2998 /* skip first vec */
2999 offset -= bvec->bv_len;
3000 seg_skip = 1 + (offset >> PAGE_SHIFT);
3001
3002 iter->bvec = bvec + seg_skip;
3003 iter->nr_segs -= seg_skip;
3004 iter->count -= bvec->bv_len + offset;
3005 iter->iov_offset = offset & ~PAGE_MASK;
3006 }
3007 }
3008
3009 return len;
3010 }
3011
3012 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3013 {
3014 if (needs_lock)
3015 mutex_unlock(&ctx->uring_lock);
3016 }
3017
3018 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3019 {
3020 /*
3021 * "Normal" inline submissions always hold the uring_lock, since we
3022 * grab it from the system call. Same is true for the SQPOLL offload.
3023 * The only exception is when we've detached the request and issue it
3024 * from an async worker thread, grab the lock for that case.
3025 */
3026 if (needs_lock)
3027 mutex_lock(&ctx->uring_lock);
3028 }
3029
3030 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3031 int bgid, struct io_buffer *kbuf,
3032 bool needs_lock)
3033 {
3034 struct io_buffer *head;
3035
3036 if (req->flags & REQ_F_BUFFER_SELECTED)
3037 return kbuf;
3038
3039 io_ring_submit_lock(req->ctx, needs_lock);
3040
3041 lockdep_assert_held(&req->ctx->uring_lock);
3042
3043 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3044 if (head) {
3045 if (!list_empty(&head->list)) {
3046 kbuf = list_last_entry(&head->list, struct io_buffer,
3047 list);
3048 list_del(&kbuf->list);
3049 } else {
3050 kbuf = head;
3051 idr_remove(&req->ctx->io_buffer_idr, bgid);
3052 }
3053 if (*len > kbuf->len)
3054 *len = kbuf->len;
3055 } else {
3056 kbuf = ERR_PTR(-ENOBUFS);
3057 }
3058
3059 io_ring_submit_unlock(req->ctx, needs_lock);
3060
3061 return kbuf;
3062 }
3063
3064 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3065 bool needs_lock)
3066 {
3067 struct io_buffer *kbuf;
3068 u16 bgid;
3069
3070 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3071 bgid = req->buf_index;
3072 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3073 if (IS_ERR(kbuf))
3074 return kbuf;
3075 req->rw.addr = (u64) (unsigned long) kbuf;
3076 req->flags |= REQ_F_BUFFER_SELECTED;
3077 return u64_to_user_ptr(kbuf->addr);
3078 }
3079
3080 #ifdef CONFIG_COMPAT
3081 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3082 bool needs_lock)
3083 {
3084 struct compat_iovec __user *uiov;
3085 compat_ssize_t clen;
3086 void __user *buf;
3087 ssize_t len;
3088
3089 uiov = u64_to_user_ptr(req->rw.addr);
3090 if (!access_ok(uiov, sizeof(*uiov)))
3091 return -EFAULT;
3092 if (__get_user(clen, &uiov->iov_len))
3093 return -EFAULT;
3094 if (clen < 0)
3095 return -EINVAL;
3096
3097 len = clen;
3098 buf = io_rw_buffer_select(req, &len, needs_lock);
3099 if (IS_ERR(buf))
3100 return PTR_ERR(buf);
3101 iov[0].iov_base = buf;
3102 iov[0].iov_len = (compat_size_t) len;
3103 return 0;
3104 }
3105 #endif
3106
3107 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3108 bool needs_lock)
3109 {
3110 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3111 void __user *buf;
3112 ssize_t len;
3113
3114 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3115 return -EFAULT;
3116
3117 len = iov[0].iov_len;
3118 if (len < 0)
3119 return -EINVAL;
3120 buf = io_rw_buffer_select(req, &len, needs_lock);
3121 if (IS_ERR(buf))
3122 return PTR_ERR(buf);
3123 iov[0].iov_base = buf;
3124 iov[0].iov_len = len;
3125 return 0;
3126 }
3127
3128 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3129 bool needs_lock)
3130 {
3131 if (req->flags & REQ_F_BUFFER_SELECTED) {
3132 struct io_buffer *kbuf;
3133
3134 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3135 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3136 iov[0].iov_len = kbuf->len;
3137 return 0;
3138 }
3139 if (!req->rw.len)
3140 return 0;
3141 else if (req->rw.len > 1)
3142 return -EINVAL;
3143
3144 #ifdef CONFIG_COMPAT
3145 if (req->ctx->compat)
3146 return io_compat_import(req, iov, needs_lock);
3147 #endif
3148
3149 return __io_iov_buffer_select(req, iov, needs_lock);
3150 }
3151
3152 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3153 struct iovec **iovec, struct iov_iter *iter,
3154 bool needs_lock)
3155 {
3156 void __user *buf = u64_to_user_ptr(req->rw.addr);
3157 size_t sqe_len = req->rw.len;
3158 ssize_t ret;
3159 u8 opcode;
3160
3161 opcode = req->opcode;
3162 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3163 *iovec = NULL;
3164 return io_import_fixed(req, rw, iter);
3165 }
3166
3167 /* buffer index only valid with fixed read/write, or buffer select */
3168 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3169 return -EINVAL;
3170
3171 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3172 if (req->flags & REQ_F_BUFFER_SELECT) {
3173 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3174 if (IS_ERR(buf))
3175 return PTR_ERR(buf);
3176 req->rw.len = sqe_len;
3177 }
3178
3179 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3180 *iovec = NULL;
3181 return ret;
3182 }
3183
3184 if (req->flags & REQ_F_BUFFER_SELECT) {
3185 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3186 if (!ret) {
3187 ret = (*iovec)->iov_len;
3188 iov_iter_init(iter, rw, *iovec, 1, ret);
3189 }
3190 *iovec = NULL;
3191 return ret;
3192 }
3193
3194 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3195 req->ctx->compat);
3196 }
3197
3198 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3199 {
3200 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3201 }
3202
3203 /*
3204 * For files that don't have ->read_iter() and ->write_iter(), handle them
3205 * by looping over ->read() or ->write() manually.
3206 */
3207 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3208 {
3209 struct kiocb *kiocb = &req->rw.kiocb;
3210 struct file *file = req->file;
3211 ssize_t ret = 0;
3212
3213 /*
3214 * Don't support polled IO through this interface, and we can't
3215 * support non-blocking either. For the latter, this just causes
3216 * the kiocb to be handled from an async context.
3217 */
3218 if (kiocb->ki_flags & IOCB_HIPRI)
3219 return -EOPNOTSUPP;
3220 if (kiocb->ki_flags & IOCB_NOWAIT)
3221 return -EAGAIN;
3222
3223 while (iov_iter_count(iter)) {
3224 struct iovec iovec;
3225 ssize_t nr;
3226
3227 if (!iov_iter_is_bvec(iter)) {
3228 iovec = iov_iter_iovec(iter);
3229 } else {
3230 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3231 iovec.iov_len = req->rw.len;
3232 }
3233
3234 if (rw == READ) {
3235 nr = file->f_op->read(file, iovec.iov_base,
3236 iovec.iov_len, io_kiocb_ppos(kiocb));
3237 } else {
3238 nr = file->f_op->write(file, iovec.iov_base,
3239 iovec.iov_len, io_kiocb_ppos(kiocb));
3240 }
3241
3242 if (nr < 0) {
3243 if (!ret)
3244 ret = nr;
3245 break;
3246 }
3247 ret += nr;
3248 if (nr != iovec.iov_len)
3249 break;
3250 req->rw.len -= nr;
3251 req->rw.addr += nr;
3252 iov_iter_advance(iter, nr);
3253 }
3254
3255 return ret;
3256 }
3257
3258 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3259 const struct iovec *fast_iov, struct iov_iter *iter)
3260 {
3261 struct io_async_rw *rw = req->async_data;
3262
3263 memcpy(&rw->iter, iter, sizeof(*iter));
3264 rw->free_iovec = iovec;
3265 rw->bytes_done = 0;
3266 /* can only be fixed buffers, no need to do anything */
3267 if (iov_iter_is_bvec(iter))
3268 return;
3269 if (!iovec) {
3270 unsigned iov_off = 0;
3271
3272 rw->iter.iov = rw->fast_iov;
3273 if (iter->iov != fast_iov) {
3274 iov_off = iter->iov - fast_iov;
3275 rw->iter.iov += iov_off;
3276 }
3277 if (rw->fast_iov != fast_iov)
3278 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3279 sizeof(struct iovec) * iter->nr_segs);
3280 } else {
3281 req->flags |= REQ_F_NEED_CLEANUP;
3282 }
3283 }
3284
3285 static inline int __io_alloc_async_data(struct io_kiocb *req)
3286 {
3287 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3288 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3289 return req->async_data == NULL;
3290 }
3291
3292 static int io_alloc_async_data(struct io_kiocb *req)
3293 {
3294 if (!io_op_defs[req->opcode].needs_async_data)
3295 return 0;
3296
3297 return __io_alloc_async_data(req);
3298 }
3299
3300 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3301 const struct iovec *fast_iov,
3302 struct iov_iter *iter, bool force)
3303 {
3304 if (!force && !io_op_defs[req->opcode].needs_async_data)
3305 return 0;
3306 if (!req->async_data) {
3307 if (__io_alloc_async_data(req))
3308 return -ENOMEM;
3309
3310 io_req_map_rw(req, iovec, fast_iov, iter);
3311 }
3312 return 0;
3313 }
3314
3315 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3316 {
3317 struct io_async_rw *iorw = req->async_data;
3318 struct iovec *iov = iorw->fast_iov;
3319 ssize_t ret;
3320
3321 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3322 if (unlikely(ret < 0))
3323 return ret;
3324
3325 iorw->bytes_done = 0;
3326 iorw->free_iovec = iov;
3327 if (iov)
3328 req->flags |= REQ_F_NEED_CLEANUP;
3329 return 0;
3330 }
3331
3332 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3333 {
3334 ssize_t ret;
3335
3336 ret = io_prep_rw(req, sqe);
3337 if (ret)
3338 return ret;
3339
3340 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3341 return -EBADF;
3342
3343 /* either don't need iovec imported or already have it */
3344 if (!req->async_data)
3345 return 0;
3346 return io_rw_prep_async(req, READ);
3347 }
3348
3349 /*
3350 * This is our waitqueue callback handler, registered through lock_page_async()
3351 * when we initially tried to do the IO with the iocb armed our waitqueue.
3352 * This gets called when the page is unlocked, and we generally expect that to
3353 * happen when the page IO is completed and the page is now uptodate. This will
3354 * queue a task_work based retry of the operation, attempting to copy the data
3355 * again. If the latter fails because the page was NOT uptodate, then we will
3356 * do a thread based blocking retry of the operation. That's the unexpected
3357 * slow path.
3358 */
3359 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3360 int sync, void *arg)
3361 {
3362 struct wait_page_queue *wpq;
3363 struct io_kiocb *req = wait->private;
3364 struct wait_page_key *key = arg;
3365 int ret;
3366
3367 wpq = container_of(wait, struct wait_page_queue, wait);
3368
3369 if (!wake_page_match(wpq, key))
3370 return 0;
3371
3372 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3373 list_del_init(&wait->entry);
3374
3375 init_task_work(&req->task_work, io_req_task_submit);
3376 percpu_ref_get(&req->ctx->refs);
3377
3378 /* submit ref gets dropped, acquire a new one */
3379 refcount_inc(&req->refs);
3380 ret = io_req_task_work_add(req);
3381 if (unlikely(ret)) {
3382 struct task_struct *tsk;
3383
3384 /* queue just for cancelation */
3385 init_task_work(&req->task_work, io_req_task_cancel);
3386 tsk = io_wq_get_task(req->ctx->io_wq);
3387 task_work_add(tsk, &req->task_work, TWA_NONE);
3388 wake_up_process(tsk);
3389 }
3390 return 1;
3391 }
3392
3393 /*
3394 * This controls whether a given IO request should be armed for async page
3395 * based retry. If we return false here, the request is handed to the async
3396 * worker threads for retry. If we're doing buffered reads on a regular file,
3397 * we prepare a private wait_page_queue entry and retry the operation. This
3398 * will either succeed because the page is now uptodate and unlocked, or it
3399 * will register a callback when the page is unlocked at IO completion. Through
3400 * that callback, io_uring uses task_work to setup a retry of the operation.
3401 * That retry will attempt the buffered read again. The retry will generally
3402 * succeed, or in rare cases where it fails, we then fall back to using the
3403 * async worker threads for a blocking retry.
3404 */
3405 static bool io_rw_should_retry(struct io_kiocb *req)
3406 {
3407 struct io_async_rw *rw = req->async_data;
3408 struct wait_page_queue *wait = &rw->wpq;
3409 struct kiocb *kiocb = &req->rw.kiocb;
3410
3411 /* never retry for NOWAIT, we just complete with -EAGAIN */
3412 if (req->flags & REQ_F_NOWAIT)
3413 return false;
3414
3415 /* Only for buffered IO */
3416 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3417 return false;
3418
3419 /*
3420 * just use poll if we can, and don't attempt if the fs doesn't
3421 * support callback based unlocks
3422 */
3423 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3424 return false;
3425
3426 wait->wait.func = io_async_buf_func;
3427 wait->wait.private = req;
3428 wait->wait.flags = 0;
3429 INIT_LIST_HEAD(&wait->wait.entry);
3430 kiocb->ki_flags |= IOCB_WAITQ;
3431 kiocb->ki_flags &= ~IOCB_NOWAIT;
3432 kiocb->ki_waitq = wait;
3433 return true;
3434 }
3435
3436 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3437 {
3438 if (req->file->f_op->read_iter)
3439 return call_read_iter(req->file, &req->rw.kiocb, iter);
3440 else if (req->file->f_op->read)
3441 return loop_rw_iter(READ, req, iter);
3442 else
3443 return -EINVAL;
3444 }
3445
3446 static int io_read(struct io_kiocb *req, bool force_nonblock,
3447 struct io_comp_state *cs)
3448 {
3449 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3450 struct kiocb *kiocb = &req->rw.kiocb;
3451 struct iov_iter __iter, *iter = &__iter;
3452 struct io_async_rw *rw = req->async_data;
3453 ssize_t io_size, ret, ret2;
3454 bool no_async;
3455
3456 if (rw) {
3457 iter = &rw->iter;
3458 iovec = NULL;
3459 } else {
3460 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3461 if (ret < 0)
3462 return ret;
3463 }
3464 io_size = iov_iter_count(iter);
3465 req->result = io_size;
3466 ret = 0;
3467
3468 /* Ensure we clear previously set non-block flag */
3469 if (!force_nonblock)
3470 kiocb->ki_flags &= ~IOCB_NOWAIT;
3471 else
3472 kiocb->ki_flags |= IOCB_NOWAIT;
3473
3474
3475 /* If the file doesn't support async, just async punt */
3476 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3477 if (no_async)
3478 goto copy_iov;
3479
3480 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3481 if (unlikely(ret))
3482 goto out_free;
3483
3484 ret = io_iter_do_read(req, iter);
3485
3486 if (!ret) {
3487 goto done;
3488 } else if (ret == -EIOCBQUEUED) {
3489 ret = 0;
3490 goto out_free;
3491 } else if (ret == -EAGAIN) {
3492 /* IOPOLL retry should happen for io-wq threads */
3493 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3494 goto done;
3495 /* no retry on NONBLOCK marked file */
3496 if (req->file->f_flags & O_NONBLOCK)
3497 goto done;
3498 /* some cases will consume bytes even on error returns */
3499 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3500 ret = 0;
3501 goto copy_iov;
3502 } else if (ret < 0) {
3503 /* make sure -ERESTARTSYS -> -EINTR is done */
3504 goto done;
3505 }
3506
3507 /* read it all, or we did blocking attempt. no retry. */
3508 if (!iov_iter_count(iter) || !force_nonblock ||
3509 (req->file->f_flags & O_NONBLOCK))
3510 goto done;
3511
3512 io_size -= ret;
3513 copy_iov:
3514 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3515 if (ret2) {
3516 ret = ret2;
3517 goto out_free;
3518 }
3519 if (no_async)
3520 return -EAGAIN;
3521 rw = req->async_data;
3522 /* it's copied and will be cleaned with ->io */
3523 iovec = NULL;
3524 /* now use our persistent iterator, if we aren't already */
3525 iter = &rw->iter;
3526 retry:
3527 rw->bytes_done += ret;
3528 /* if we can retry, do so with the callbacks armed */
3529 if (!io_rw_should_retry(req)) {
3530 kiocb->ki_flags &= ~IOCB_WAITQ;
3531 return -EAGAIN;
3532 }
3533
3534 /*
3535 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3536 * get -EIOCBQUEUED, then we'll get a notification when the desired
3537 * page gets unlocked. We can also get a partial read here, and if we
3538 * do, then just retry at the new offset.
3539 */
3540 ret = io_iter_do_read(req, iter);
3541 if (ret == -EIOCBQUEUED) {
3542 ret = 0;
3543 goto out_free;
3544 } else if (ret > 0 && ret < io_size) {
3545 /* we got some bytes, but not all. retry. */
3546 goto retry;
3547 }
3548 done:
3549 kiocb_done(kiocb, ret, cs);
3550 ret = 0;
3551 out_free:
3552 /* it's reportedly faster than delegating the null check to kfree() */
3553 if (iovec)
3554 kfree(iovec);
3555 return ret;
3556 }
3557
3558 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3559 {
3560 ssize_t ret;
3561
3562 ret = io_prep_rw(req, sqe);
3563 if (ret)
3564 return ret;
3565
3566 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3567 return -EBADF;
3568
3569 /* either don't need iovec imported or already have it */
3570 if (!req->async_data)
3571 return 0;
3572 return io_rw_prep_async(req, WRITE);
3573 }
3574
3575 static int io_write(struct io_kiocb *req, bool force_nonblock,
3576 struct io_comp_state *cs)
3577 {
3578 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3579 struct kiocb *kiocb = &req->rw.kiocb;
3580 struct iov_iter __iter, *iter = &__iter;
3581 struct io_async_rw *rw = req->async_data;
3582 ssize_t ret, ret2, io_size;
3583
3584 if (rw) {
3585 iter = &rw->iter;
3586 iovec = NULL;
3587 } else {
3588 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3589 if (ret < 0)
3590 return ret;
3591 }
3592 io_size = iov_iter_count(iter);
3593 req->result = io_size;
3594
3595 /* Ensure we clear previously set non-block flag */
3596 if (!force_nonblock)
3597 kiocb->ki_flags &= ~IOCB_NOWAIT;
3598 else
3599 kiocb->ki_flags |= IOCB_NOWAIT;
3600
3601 /* If the file doesn't support async, just async punt */
3602 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3603 goto copy_iov;
3604
3605 /* file path doesn't support NOWAIT for non-direct_IO */
3606 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3607 (req->flags & REQ_F_ISREG))
3608 goto copy_iov;
3609
3610 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3611 if (unlikely(ret))
3612 goto out_free;
3613
3614 /*
3615 * Open-code file_start_write here to grab freeze protection,
3616 * which will be released by another thread in
3617 * io_complete_rw(). Fool lockdep by telling it the lock got
3618 * released so that it doesn't complain about the held lock when
3619 * we return to userspace.
3620 */
3621 if (req->flags & REQ_F_ISREG) {
3622 sb_start_write(file_inode(req->file)->i_sb);
3623 __sb_writers_release(file_inode(req->file)->i_sb,
3624 SB_FREEZE_WRITE);
3625 }
3626 kiocb->ki_flags |= IOCB_WRITE;
3627
3628 if (req->file->f_op->write_iter)
3629 ret2 = call_write_iter(req->file, kiocb, iter);
3630 else if (req->file->f_op->write)
3631 ret2 = loop_rw_iter(WRITE, req, iter);
3632 else
3633 ret2 = -EINVAL;
3634
3635 /*
3636 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3637 * retry them without IOCB_NOWAIT.
3638 */
3639 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3640 ret2 = -EAGAIN;
3641 /* no retry on NONBLOCK marked file */
3642 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3643 goto done;
3644 if (!force_nonblock || ret2 != -EAGAIN) {
3645 /* IOPOLL retry should happen for io-wq threads */
3646 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3647 goto copy_iov;
3648 done:
3649 kiocb_done(kiocb, ret2, cs);
3650 } else {
3651 copy_iov:
3652 /* some cases will consume bytes even on error returns */
3653 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3654 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3655 if (!ret)
3656 return -EAGAIN;
3657 }
3658 out_free:
3659 /* it's reportedly faster than delegating the null check to kfree() */
3660 if (iovec)
3661 kfree(iovec);
3662 return ret;
3663 }
3664
3665 static int io_renameat_prep(struct io_kiocb *req,
3666 const struct io_uring_sqe *sqe)
3667 {
3668 struct io_rename *ren = &req->rename;
3669 const char __user *oldf, *newf;
3670
3671 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3672 return -EBADF;
3673
3674 ren->old_dfd = READ_ONCE(sqe->fd);
3675 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3676 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3677 ren->new_dfd = READ_ONCE(sqe->len);
3678 ren->flags = READ_ONCE(sqe->rename_flags);
3679
3680 ren->oldpath = getname(oldf);
3681 if (IS_ERR(ren->oldpath))
3682 return PTR_ERR(ren->oldpath);
3683
3684 ren->newpath = getname(newf);
3685 if (IS_ERR(ren->newpath)) {
3686 putname(ren->oldpath);
3687 return PTR_ERR(ren->newpath);
3688 }
3689
3690 req->flags |= REQ_F_NEED_CLEANUP;
3691 return 0;
3692 }
3693
3694 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3695 {
3696 struct io_rename *ren = &req->rename;
3697 int ret;
3698
3699 if (force_nonblock)
3700 return -EAGAIN;
3701
3702 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3703 ren->newpath, ren->flags);
3704
3705 req->flags &= ~REQ_F_NEED_CLEANUP;
3706 if (ret < 0)
3707 req_set_fail_links(req);
3708 io_req_complete(req, ret);
3709 return 0;
3710 }
3711
3712 static int io_unlinkat_prep(struct io_kiocb *req,
3713 const struct io_uring_sqe *sqe)
3714 {
3715 struct io_unlink *un = &req->unlink;
3716 const char __user *fname;
3717
3718 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3719 return -EBADF;
3720
3721 un->dfd = READ_ONCE(sqe->fd);
3722
3723 un->flags = READ_ONCE(sqe->unlink_flags);
3724 if (un->flags & ~AT_REMOVEDIR)
3725 return -EINVAL;
3726
3727 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3728 un->filename = getname(fname);
3729 if (IS_ERR(un->filename))
3730 return PTR_ERR(un->filename);
3731
3732 req->flags |= REQ_F_NEED_CLEANUP;
3733 return 0;
3734 }
3735
3736 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3737 {
3738 struct io_unlink *un = &req->unlink;
3739 int ret;
3740
3741 if (force_nonblock)
3742 return -EAGAIN;
3743
3744 if (un->flags & AT_REMOVEDIR)
3745 ret = do_rmdir(un->dfd, un->filename);
3746 else
3747 ret = do_unlinkat(un->dfd, un->filename);
3748
3749 req->flags &= ~REQ_F_NEED_CLEANUP;
3750 if (ret < 0)
3751 req_set_fail_links(req);
3752 io_req_complete(req, ret);
3753 return 0;
3754 }
3755
3756 static int io_shutdown_prep(struct io_kiocb *req,
3757 const struct io_uring_sqe *sqe)
3758 {
3759 #if defined(CONFIG_NET)
3760 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3761 return -EINVAL;
3762 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3763 sqe->buf_index)
3764 return -EINVAL;
3765
3766 req->shutdown.how = READ_ONCE(sqe->len);
3767 return 0;
3768 #else
3769 return -EOPNOTSUPP;
3770 #endif
3771 }
3772
3773 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3774 {
3775 #if defined(CONFIG_NET)
3776 struct socket *sock;
3777 int ret;
3778
3779 if (force_nonblock)
3780 return -EAGAIN;
3781
3782 sock = sock_from_file(req->file);
3783 if (unlikely(!sock))
3784 return -ENOTSOCK;
3785
3786 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3787 io_req_complete(req, ret);
3788 return 0;
3789 #else
3790 return -EOPNOTSUPP;
3791 #endif
3792 }
3793
3794 static int __io_splice_prep(struct io_kiocb *req,
3795 const struct io_uring_sqe *sqe)
3796 {
3797 struct io_splice* sp = &req->splice;
3798 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3799
3800 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3801 return -EINVAL;
3802
3803 sp->file_in = NULL;
3804 sp->len = READ_ONCE(sqe->len);
3805 sp->flags = READ_ONCE(sqe->splice_flags);
3806
3807 if (unlikely(sp->flags & ~valid_flags))
3808 return -EINVAL;
3809
3810 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3811 (sp->flags & SPLICE_F_FD_IN_FIXED));
3812 if (!sp->file_in)
3813 return -EBADF;
3814 req->flags |= REQ_F_NEED_CLEANUP;
3815
3816 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3817 /*
3818 * Splice operation will be punted aync, and here need to
3819 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3820 */
3821 io_req_init_async(req);
3822 req->work.flags |= IO_WQ_WORK_UNBOUND;
3823 }
3824
3825 return 0;
3826 }
3827
3828 static int io_tee_prep(struct io_kiocb *req,
3829 const struct io_uring_sqe *sqe)
3830 {
3831 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3832 return -EINVAL;
3833 return __io_splice_prep(req, sqe);
3834 }
3835
3836 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3837 {
3838 struct io_splice *sp = &req->splice;
3839 struct file *in = sp->file_in;
3840 struct file *out = sp->file_out;
3841 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3842 long ret = 0;
3843
3844 if (force_nonblock)
3845 return -EAGAIN;
3846 if (sp->len)
3847 ret = do_tee(in, out, sp->len, flags);
3848
3849 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3850 req->flags &= ~REQ_F_NEED_CLEANUP;
3851
3852 if (ret != sp->len)
3853 req_set_fail_links(req);
3854 io_req_complete(req, ret);
3855 return 0;
3856 }
3857
3858 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3859 {
3860 struct io_splice* sp = &req->splice;
3861
3862 sp->off_in = READ_ONCE(sqe->splice_off_in);
3863 sp->off_out = READ_ONCE(sqe->off);
3864 return __io_splice_prep(req, sqe);
3865 }
3866
3867 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3868 {
3869 struct io_splice *sp = &req->splice;
3870 struct file *in = sp->file_in;
3871 struct file *out = sp->file_out;
3872 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3873 loff_t *poff_in, *poff_out;
3874 long ret = 0;
3875
3876 if (force_nonblock)
3877 return -EAGAIN;
3878
3879 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3880 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3881
3882 if (sp->len)
3883 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3884
3885 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3886 req->flags &= ~REQ_F_NEED_CLEANUP;
3887
3888 if (ret != sp->len)
3889 req_set_fail_links(req);
3890 io_req_complete(req, ret);
3891 return 0;
3892 }
3893
3894 /*
3895 * IORING_OP_NOP just posts a completion event, nothing else.
3896 */
3897 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3898 {
3899 struct io_ring_ctx *ctx = req->ctx;
3900
3901 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3902 return -EINVAL;
3903
3904 __io_req_complete(req, 0, 0, cs);
3905 return 0;
3906 }
3907
3908 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3909 {
3910 struct io_ring_ctx *ctx = req->ctx;
3911
3912 if (!req->file)
3913 return -EBADF;
3914
3915 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3916 return -EINVAL;
3917 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3918 return -EINVAL;
3919
3920 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3921 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3922 return -EINVAL;
3923
3924 req->sync.off = READ_ONCE(sqe->off);
3925 req->sync.len = READ_ONCE(sqe->len);
3926 return 0;
3927 }
3928
3929 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3930 {
3931 loff_t end = req->sync.off + req->sync.len;
3932 int ret;
3933
3934 /* fsync always requires a blocking context */
3935 if (force_nonblock)
3936 return -EAGAIN;
3937
3938 ret = vfs_fsync_range(req->file, req->sync.off,
3939 end > 0 ? end : LLONG_MAX,
3940 req->sync.flags & IORING_FSYNC_DATASYNC);
3941 if (ret < 0)
3942 req_set_fail_links(req);
3943 io_req_complete(req, ret);
3944 return 0;
3945 }
3946
3947 static int io_fallocate_prep(struct io_kiocb *req,
3948 const struct io_uring_sqe *sqe)
3949 {
3950 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3951 return -EINVAL;
3952 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3953 return -EINVAL;
3954
3955 req->sync.off = READ_ONCE(sqe->off);
3956 req->sync.len = READ_ONCE(sqe->addr);
3957 req->sync.mode = READ_ONCE(sqe->len);
3958 return 0;
3959 }
3960
3961 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3962 {
3963 int ret;
3964
3965 /* fallocate always requiring blocking context */
3966 if (force_nonblock)
3967 return -EAGAIN;
3968 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3969 req->sync.len);
3970 if (ret < 0)
3971 req_set_fail_links(req);
3972 io_req_complete(req, ret);
3973 return 0;
3974 }
3975
3976 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3977 {
3978 const char __user *fname;
3979 int ret;
3980
3981 if (unlikely(sqe->ioprio || sqe->buf_index))
3982 return -EINVAL;
3983 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3984 return -EBADF;
3985
3986 /* open.how should be already initialised */
3987 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3988 req->open.how.flags |= O_LARGEFILE;
3989
3990 req->open.dfd = READ_ONCE(sqe->fd);
3991 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3992 req->open.filename = getname(fname);
3993 if (IS_ERR(req->open.filename)) {
3994 ret = PTR_ERR(req->open.filename);
3995 req->open.filename = NULL;
3996 return ret;
3997 }
3998 req->open.nofile = rlimit(RLIMIT_NOFILE);
3999 req->open.ignore_nonblock = false;
4000 req->flags |= REQ_F_NEED_CLEANUP;
4001 return 0;
4002 }
4003
4004 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4005 {
4006 u64 flags, mode;
4007
4008 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4009 return -EINVAL;
4010 mode = READ_ONCE(sqe->len);
4011 flags = READ_ONCE(sqe->open_flags);
4012 req->open.how = build_open_how(flags, mode);
4013 return __io_openat_prep(req, sqe);
4014 }
4015
4016 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4017 {
4018 struct open_how __user *how;
4019 size_t len;
4020 int ret;
4021
4022 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4023 return -EINVAL;
4024 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4025 len = READ_ONCE(sqe->len);
4026 if (len < OPEN_HOW_SIZE_VER0)
4027 return -EINVAL;
4028
4029 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4030 len);
4031 if (ret)
4032 return ret;
4033
4034 return __io_openat_prep(req, sqe);
4035 }
4036
4037 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4038 {
4039 struct open_flags op;
4040 struct file *file;
4041 int ret;
4042
4043 if (force_nonblock && !req->open.ignore_nonblock)
4044 return -EAGAIN;
4045
4046 ret = build_open_flags(&req->open.how, &op);
4047 if (ret)
4048 goto err;
4049
4050 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4051 if (ret < 0)
4052 goto err;
4053
4054 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4055 if (IS_ERR(file)) {
4056 put_unused_fd(ret);
4057 ret = PTR_ERR(file);
4058 /*
4059 * A work-around to ensure that /proc/self works that way
4060 * that it should - if we get -EOPNOTSUPP back, then assume
4061 * that proc_self_get_link() failed us because we're in async
4062 * context. We should be safe to retry this from the task
4063 * itself with force_nonblock == false set, as it should not
4064 * block on lookup. Would be nice to know this upfront and
4065 * avoid the async dance, but doesn't seem feasible.
4066 */
4067 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4068 req->open.ignore_nonblock = true;
4069 refcount_inc(&req->refs);
4070 io_req_task_queue(req);
4071 return 0;
4072 }
4073 } else {
4074 fsnotify_open(file);
4075 fd_install(ret, file);
4076 }
4077 err:
4078 putname(req->open.filename);
4079 req->flags &= ~REQ_F_NEED_CLEANUP;
4080 if (ret < 0)
4081 req_set_fail_links(req);
4082 io_req_complete(req, ret);
4083 return 0;
4084 }
4085
4086 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4087 {
4088 return io_openat2(req, force_nonblock);
4089 }
4090
4091 static int io_remove_buffers_prep(struct io_kiocb *req,
4092 const struct io_uring_sqe *sqe)
4093 {
4094 struct io_provide_buf *p = &req->pbuf;
4095 u64 tmp;
4096
4097 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4098 return -EINVAL;
4099
4100 tmp = READ_ONCE(sqe->fd);
4101 if (!tmp || tmp > USHRT_MAX)
4102 return -EINVAL;
4103
4104 memset(p, 0, sizeof(*p));
4105 p->nbufs = tmp;
4106 p->bgid = READ_ONCE(sqe->buf_group);
4107 return 0;
4108 }
4109
4110 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4111 int bgid, unsigned nbufs)
4112 {
4113 unsigned i = 0;
4114
4115 /* shouldn't happen */
4116 if (!nbufs)
4117 return 0;
4118
4119 /* the head kbuf is the list itself */
4120 while (!list_empty(&buf->list)) {
4121 struct io_buffer *nxt;
4122
4123 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4124 list_del(&nxt->list);
4125 kfree(nxt);
4126 if (++i == nbufs)
4127 return i;
4128 }
4129 i++;
4130 kfree(buf);
4131 idr_remove(&ctx->io_buffer_idr, bgid);
4132
4133 return i;
4134 }
4135
4136 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4137 struct io_comp_state *cs)
4138 {
4139 struct io_provide_buf *p = &req->pbuf;
4140 struct io_ring_ctx *ctx = req->ctx;
4141 struct io_buffer *head;
4142 int ret = 0;
4143
4144 io_ring_submit_lock(ctx, !force_nonblock);
4145
4146 lockdep_assert_held(&ctx->uring_lock);
4147
4148 ret = -ENOENT;
4149 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4150 if (head)
4151 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4152 if (ret < 0)
4153 req_set_fail_links(req);
4154
4155 /* need to hold the lock to complete IOPOLL requests */
4156 if (ctx->flags & IORING_SETUP_IOPOLL) {
4157 __io_req_complete(req, ret, 0, cs);
4158 io_ring_submit_unlock(ctx, !force_nonblock);
4159 } else {
4160 io_ring_submit_unlock(ctx, !force_nonblock);
4161 __io_req_complete(req, ret, 0, cs);
4162 }
4163 return 0;
4164 }
4165
4166 static int io_provide_buffers_prep(struct io_kiocb *req,
4167 const struct io_uring_sqe *sqe)
4168 {
4169 struct io_provide_buf *p = &req->pbuf;
4170 u64 tmp;
4171
4172 if (sqe->ioprio || sqe->rw_flags)
4173 return -EINVAL;
4174
4175 tmp = READ_ONCE(sqe->fd);
4176 if (!tmp || tmp > USHRT_MAX)
4177 return -E2BIG;
4178 p->nbufs = tmp;
4179 p->addr = READ_ONCE(sqe->addr);
4180 p->len = READ_ONCE(sqe->len);
4181
4182 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4183 return -EFAULT;
4184
4185 p->bgid = READ_ONCE(sqe->buf_group);
4186 tmp = READ_ONCE(sqe->off);
4187 if (tmp > USHRT_MAX)
4188 return -E2BIG;
4189 p->bid = tmp;
4190 return 0;
4191 }
4192
4193 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4194 {
4195 struct io_buffer *buf;
4196 u64 addr = pbuf->addr;
4197 int i, bid = pbuf->bid;
4198
4199 for (i = 0; i < pbuf->nbufs; i++) {
4200 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4201 if (!buf)
4202 break;
4203
4204 buf->addr = addr;
4205 buf->len = pbuf->len;
4206 buf->bid = bid;
4207 addr += pbuf->len;
4208 bid++;
4209 if (!*head) {
4210 INIT_LIST_HEAD(&buf->list);
4211 *head = buf;
4212 } else {
4213 list_add_tail(&buf->list, &(*head)->list);
4214 }
4215 }
4216
4217 return i ? i : -ENOMEM;
4218 }
4219
4220 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4221 struct io_comp_state *cs)
4222 {
4223 struct io_provide_buf *p = &req->pbuf;
4224 struct io_ring_ctx *ctx = req->ctx;
4225 struct io_buffer *head, *list;
4226 int ret = 0;
4227
4228 io_ring_submit_lock(ctx, !force_nonblock);
4229
4230 lockdep_assert_held(&ctx->uring_lock);
4231
4232 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4233
4234 ret = io_add_buffers(p, &head);
4235 if (ret < 0)
4236 goto out;
4237
4238 if (!list) {
4239 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4240 GFP_KERNEL);
4241 if (ret < 0) {
4242 __io_remove_buffers(ctx, head, p->bgid, -1U);
4243 goto out;
4244 }
4245 }
4246 out:
4247 if (ret < 0)
4248 req_set_fail_links(req);
4249
4250 /* need to hold the lock to complete IOPOLL requests */
4251 if (ctx->flags & IORING_SETUP_IOPOLL) {
4252 __io_req_complete(req, ret, 0, cs);
4253 io_ring_submit_unlock(ctx, !force_nonblock);
4254 } else {
4255 io_ring_submit_unlock(ctx, !force_nonblock);
4256 __io_req_complete(req, ret, 0, cs);
4257 }
4258 return 0;
4259 }
4260
4261 static int io_epoll_ctl_prep(struct io_kiocb *req,
4262 const struct io_uring_sqe *sqe)
4263 {
4264 #if defined(CONFIG_EPOLL)
4265 if (sqe->ioprio || sqe->buf_index)
4266 return -EINVAL;
4267 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4268 return -EINVAL;
4269
4270 req->epoll.epfd = READ_ONCE(sqe->fd);
4271 req->epoll.op = READ_ONCE(sqe->len);
4272 req->epoll.fd = READ_ONCE(sqe->off);
4273
4274 if (ep_op_has_event(req->epoll.op)) {
4275 struct epoll_event __user *ev;
4276
4277 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4278 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4279 return -EFAULT;
4280 }
4281
4282 return 0;
4283 #else
4284 return -EOPNOTSUPP;
4285 #endif
4286 }
4287
4288 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4289 struct io_comp_state *cs)
4290 {
4291 #if defined(CONFIG_EPOLL)
4292 struct io_epoll *ie = &req->epoll;
4293 int ret;
4294
4295 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4296 if (force_nonblock && ret == -EAGAIN)
4297 return -EAGAIN;
4298
4299 if (ret < 0)
4300 req_set_fail_links(req);
4301 __io_req_complete(req, ret, 0, cs);
4302 return 0;
4303 #else
4304 return -EOPNOTSUPP;
4305 #endif
4306 }
4307
4308 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4309 {
4310 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4311 if (sqe->ioprio || sqe->buf_index || sqe->off)
4312 return -EINVAL;
4313 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4314 return -EINVAL;
4315
4316 req->madvise.addr = READ_ONCE(sqe->addr);
4317 req->madvise.len = READ_ONCE(sqe->len);
4318 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4319 return 0;
4320 #else
4321 return -EOPNOTSUPP;
4322 #endif
4323 }
4324
4325 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4326 {
4327 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4328 struct io_madvise *ma = &req->madvise;
4329 int ret;
4330
4331 if (force_nonblock)
4332 return -EAGAIN;
4333
4334 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4335 if (ret < 0)
4336 req_set_fail_links(req);
4337 io_req_complete(req, ret);
4338 return 0;
4339 #else
4340 return -EOPNOTSUPP;
4341 #endif
4342 }
4343
4344 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4345 {
4346 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4347 return -EINVAL;
4348 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4349 return -EINVAL;
4350
4351 req->fadvise.offset = READ_ONCE(sqe->off);
4352 req->fadvise.len = READ_ONCE(sqe->len);
4353 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4354 return 0;
4355 }
4356
4357 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4358 {
4359 struct io_fadvise *fa = &req->fadvise;
4360 int ret;
4361
4362 if (force_nonblock) {
4363 switch (fa->advice) {
4364 case POSIX_FADV_NORMAL:
4365 case POSIX_FADV_RANDOM:
4366 case POSIX_FADV_SEQUENTIAL:
4367 break;
4368 default:
4369 return -EAGAIN;
4370 }
4371 }
4372
4373 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4374 if (ret < 0)
4375 req_set_fail_links(req);
4376 io_req_complete(req, ret);
4377 return 0;
4378 }
4379
4380 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4381 {
4382 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4383 return -EINVAL;
4384 if (sqe->ioprio || sqe->buf_index)
4385 return -EINVAL;
4386 if (req->flags & REQ_F_FIXED_FILE)
4387 return -EBADF;
4388
4389 req->statx.dfd = READ_ONCE(sqe->fd);
4390 req->statx.mask = READ_ONCE(sqe->len);
4391 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4392 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4393 req->statx.flags = READ_ONCE(sqe->statx_flags);
4394
4395 return 0;
4396 }
4397
4398 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4399 {
4400 struct io_statx *ctx = &req->statx;
4401 int ret;
4402
4403 if (force_nonblock) {
4404 /* only need file table for an actual valid fd */
4405 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4406 req->flags |= REQ_F_NO_FILE_TABLE;
4407 return -EAGAIN;
4408 }
4409
4410 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4411 ctx->buffer);
4412
4413 if (ret < 0)
4414 req_set_fail_links(req);
4415 io_req_complete(req, ret);
4416 return 0;
4417 }
4418
4419 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4420 {
4421 /*
4422 * If we queue this for async, it must not be cancellable. That would
4423 * leave the 'file' in an undeterminate state, and here need to modify
4424 * io_wq_work.flags, so initialize io_wq_work firstly.
4425 */
4426 io_req_init_async(req);
4427 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4428
4429 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4430 return -EINVAL;
4431 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4432 sqe->rw_flags || sqe->buf_index)
4433 return -EINVAL;
4434 if (req->flags & REQ_F_FIXED_FILE)
4435 return -EBADF;
4436
4437 req->close.fd = READ_ONCE(sqe->fd);
4438 if ((req->file && req->file->f_op == &io_uring_fops))
4439 return -EBADF;
4440
4441 req->close.put_file = NULL;
4442 return 0;
4443 }
4444
4445 static int io_close(struct io_kiocb *req, bool force_nonblock,
4446 struct io_comp_state *cs)
4447 {
4448 struct io_close *close = &req->close;
4449 int ret;
4450
4451 /* might be already done during nonblock submission */
4452 if (!close->put_file) {
4453 ret = close_fd_get_file(close->fd, &close->put_file);
4454 if (ret < 0)
4455 return (ret == -ENOENT) ? -EBADF : ret;
4456 }
4457
4458 /* if the file has a flush method, be safe and punt to async */
4459 if (close->put_file->f_op->flush && force_nonblock) {
4460 /* was never set, but play safe */
4461 req->flags &= ~REQ_F_NOWAIT;
4462 /* avoid grabbing files - we don't need the files */
4463 req->flags |= REQ_F_NO_FILE_TABLE;
4464 return -EAGAIN;
4465 }
4466
4467 /* No ->flush() or already async, safely close from here */
4468 ret = filp_close(close->put_file, req->work.identity->files);
4469 if (ret < 0)
4470 req_set_fail_links(req);
4471 fput(close->put_file);
4472 close->put_file = NULL;
4473 __io_req_complete(req, ret, 0, cs);
4474 return 0;
4475 }
4476
4477 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4478 {
4479 struct io_ring_ctx *ctx = req->ctx;
4480
4481 if (!req->file)
4482 return -EBADF;
4483
4484 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4485 return -EINVAL;
4486 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4487 return -EINVAL;
4488
4489 req->sync.off = READ_ONCE(sqe->off);
4490 req->sync.len = READ_ONCE(sqe->len);
4491 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4492 return 0;
4493 }
4494
4495 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4496 {
4497 int ret;
4498
4499 /* sync_file_range always requires a blocking context */
4500 if (force_nonblock)
4501 return -EAGAIN;
4502
4503 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4504 req->sync.flags);
4505 if (ret < 0)
4506 req_set_fail_links(req);
4507 io_req_complete(req, ret);
4508 return 0;
4509 }
4510
4511 #if defined(CONFIG_NET)
4512 static int io_setup_async_msg(struct io_kiocb *req,
4513 struct io_async_msghdr *kmsg)
4514 {
4515 struct io_async_msghdr *async_msg = req->async_data;
4516
4517 if (async_msg)
4518 return -EAGAIN;
4519 if (io_alloc_async_data(req)) {
4520 if (kmsg->iov != kmsg->fast_iov)
4521 kfree(kmsg->iov);
4522 return -ENOMEM;
4523 }
4524 async_msg = req->async_data;
4525 req->flags |= REQ_F_NEED_CLEANUP;
4526 memcpy(async_msg, kmsg, sizeof(*kmsg));
4527 return -EAGAIN;
4528 }
4529
4530 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4531 struct io_async_msghdr *iomsg)
4532 {
4533 iomsg->iov = iomsg->fast_iov;
4534 iomsg->msg.msg_name = &iomsg->addr;
4535 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4536 req->sr_msg.msg_flags, &iomsg->iov);
4537 }
4538
4539 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4540 {
4541 struct io_async_msghdr *async_msg = req->async_data;
4542 struct io_sr_msg *sr = &req->sr_msg;
4543 int ret;
4544
4545 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4546 return -EINVAL;
4547
4548 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4549 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4550 sr->len = READ_ONCE(sqe->len);
4551
4552 #ifdef CONFIG_COMPAT
4553 if (req->ctx->compat)
4554 sr->msg_flags |= MSG_CMSG_COMPAT;
4555 #endif
4556
4557 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4558 return 0;
4559 ret = io_sendmsg_copy_hdr(req, async_msg);
4560 if (!ret)
4561 req->flags |= REQ_F_NEED_CLEANUP;
4562 return ret;
4563 }
4564
4565 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4566 struct io_comp_state *cs)
4567 {
4568 struct io_async_msghdr iomsg, *kmsg;
4569 struct socket *sock;
4570 unsigned flags;
4571 int ret;
4572
4573 sock = sock_from_file(req->file);
4574 if (unlikely(!sock))
4575 return -ENOTSOCK;
4576
4577 if (req->async_data) {
4578 kmsg = req->async_data;
4579 kmsg->msg.msg_name = &kmsg->addr;
4580 /* if iov is set, it's allocated already */
4581 if (!kmsg->iov)
4582 kmsg->iov = kmsg->fast_iov;
4583 kmsg->msg.msg_iter.iov = kmsg->iov;
4584 } else {
4585 ret = io_sendmsg_copy_hdr(req, &iomsg);
4586 if (ret)
4587 return ret;
4588 kmsg = &iomsg;
4589 }
4590
4591 flags = req->sr_msg.msg_flags;
4592 if (flags & MSG_DONTWAIT)
4593 req->flags |= REQ_F_NOWAIT;
4594 else if (force_nonblock)
4595 flags |= MSG_DONTWAIT;
4596
4597 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4598 if (force_nonblock && ret == -EAGAIN)
4599 return io_setup_async_msg(req, kmsg);
4600 if (ret == -ERESTARTSYS)
4601 ret = -EINTR;
4602
4603 if (kmsg->iov != kmsg->fast_iov)
4604 kfree(kmsg->iov);
4605 req->flags &= ~REQ_F_NEED_CLEANUP;
4606 if (ret < 0)
4607 req_set_fail_links(req);
4608 __io_req_complete(req, ret, 0, cs);
4609 return 0;
4610 }
4611
4612 static int io_send(struct io_kiocb *req, bool force_nonblock,
4613 struct io_comp_state *cs)
4614 {
4615 struct io_sr_msg *sr = &req->sr_msg;
4616 struct msghdr msg;
4617 struct iovec iov;
4618 struct socket *sock;
4619 unsigned flags;
4620 int ret;
4621
4622 sock = sock_from_file(req->file);
4623 if (unlikely(!sock))
4624 return -ENOTSOCK;
4625
4626 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4627 if (unlikely(ret))
4628 return ret;
4629
4630 msg.msg_name = NULL;
4631 msg.msg_control = NULL;
4632 msg.msg_controllen = 0;
4633 msg.msg_namelen = 0;
4634
4635 flags = req->sr_msg.msg_flags;
4636 if (flags & MSG_DONTWAIT)
4637 req->flags |= REQ_F_NOWAIT;
4638 else if (force_nonblock)
4639 flags |= MSG_DONTWAIT;
4640
4641 msg.msg_flags = flags;
4642 ret = sock_sendmsg(sock, &msg);
4643 if (force_nonblock && ret == -EAGAIN)
4644 return -EAGAIN;
4645 if (ret == -ERESTARTSYS)
4646 ret = -EINTR;
4647
4648 if (ret < 0)
4649 req_set_fail_links(req);
4650 __io_req_complete(req, ret, 0, cs);
4651 return 0;
4652 }
4653
4654 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4655 struct io_async_msghdr *iomsg)
4656 {
4657 struct io_sr_msg *sr = &req->sr_msg;
4658 struct iovec __user *uiov;
4659 size_t iov_len;
4660 int ret;
4661
4662 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4663 &iomsg->uaddr, &uiov, &iov_len);
4664 if (ret)
4665 return ret;
4666
4667 if (req->flags & REQ_F_BUFFER_SELECT) {
4668 if (iov_len > 1)
4669 return -EINVAL;
4670 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4671 return -EFAULT;
4672 sr->len = iomsg->iov[0].iov_len;
4673 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4674 sr->len);
4675 iomsg->iov = NULL;
4676 } else {
4677 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4678 &iomsg->iov, &iomsg->msg.msg_iter,
4679 false);
4680 if (ret > 0)
4681 ret = 0;
4682 }
4683
4684 return ret;
4685 }
4686
4687 #ifdef CONFIG_COMPAT
4688 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4689 struct io_async_msghdr *iomsg)
4690 {
4691 struct compat_msghdr __user *msg_compat;
4692 struct io_sr_msg *sr = &req->sr_msg;
4693 struct compat_iovec __user *uiov;
4694 compat_uptr_t ptr;
4695 compat_size_t len;
4696 int ret;
4697
4698 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4699 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4700 &ptr, &len);
4701 if (ret)
4702 return ret;
4703
4704 uiov = compat_ptr(ptr);
4705 if (req->flags & REQ_F_BUFFER_SELECT) {
4706 compat_ssize_t clen;
4707
4708 if (len > 1)
4709 return -EINVAL;
4710 if (!access_ok(uiov, sizeof(*uiov)))
4711 return -EFAULT;
4712 if (__get_user(clen, &uiov->iov_len))
4713 return -EFAULT;
4714 if (clen < 0)
4715 return -EINVAL;
4716 sr->len = clen;
4717 iomsg->iov[0].iov_len = clen;
4718 iomsg->iov = NULL;
4719 } else {
4720 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4721 UIO_FASTIOV, &iomsg->iov,
4722 &iomsg->msg.msg_iter, true);
4723 if (ret < 0)
4724 return ret;
4725 }
4726
4727 return 0;
4728 }
4729 #endif
4730
4731 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4732 struct io_async_msghdr *iomsg)
4733 {
4734 iomsg->msg.msg_name = &iomsg->addr;
4735 iomsg->iov = iomsg->fast_iov;
4736
4737 #ifdef CONFIG_COMPAT
4738 if (req->ctx->compat)
4739 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4740 #endif
4741
4742 return __io_recvmsg_copy_hdr(req, iomsg);
4743 }
4744
4745 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4746 bool needs_lock)
4747 {
4748 struct io_sr_msg *sr = &req->sr_msg;
4749 struct io_buffer *kbuf;
4750
4751 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4752 if (IS_ERR(kbuf))
4753 return kbuf;
4754
4755 sr->kbuf = kbuf;
4756 req->flags |= REQ_F_BUFFER_SELECTED;
4757 return kbuf;
4758 }
4759
4760 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4761 {
4762 return io_put_kbuf(req, req->sr_msg.kbuf);
4763 }
4764
4765 static int io_recvmsg_prep(struct io_kiocb *req,
4766 const struct io_uring_sqe *sqe)
4767 {
4768 struct io_async_msghdr *async_msg = req->async_data;
4769 struct io_sr_msg *sr = &req->sr_msg;
4770 int ret;
4771
4772 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4773 return -EINVAL;
4774
4775 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4776 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4777 sr->len = READ_ONCE(sqe->len);
4778 sr->bgid = READ_ONCE(sqe->buf_group);
4779
4780 #ifdef CONFIG_COMPAT
4781 if (req->ctx->compat)
4782 sr->msg_flags |= MSG_CMSG_COMPAT;
4783 #endif
4784
4785 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4786 return 0;
4787 ret = io_recvmsg_copy_hdr(req, async_msg);
4788 if (!ret)
4789 req->flags |= REQ_F_NEED_CLEANUP;
4790 return ret;
4791 }
4792
4793 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4794 struct io_comp_state *cs)
4795 {
4796 struct io_async_msghdr iomsg, *kmsg;
4797 struct socket *sock;
4798 struct io_buffer *kbuf;
4799 unsigned flags;
4800 int ret, cflags = 0;
4801
4802 sock = sock_from_file(req->file);
4803 if (unlikely(!sock))
4804 return -ENOTSOCK;
4805
4806 if (req->async_data) {
4807 kmsg = req->async_data;
4808 kmsg->msg.msg_name = &kmsg->addr;
4809 /* if iov is set, it's allocated already */
4810 if (!kmsg->iov)
4811 kmsg->iov = kmsg->fast_iov;
4812 kmsg->msg.msg_iter.iov = kmsg->iov;
4813 } else {
4814 ret = io_recvmsg_copy_hdr(req, &iomsg);
4815 if (ret)
4816 return ret;
4817 kmsg = &iomsg;
4818 }
4819
4820 if (req->flags & REQ_F_BUFFER_SELECT) {
4821 kbuf = io_recv_buffer_select(req, !force_nonblock);
4822 if (IS_ERR(kbuf))
4823 return PTR_ERR(kbuf);
4824 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4825 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4826 1, req->sr_msg.len);
4827 }
4828
4829 flags = req->sr_msg.msg_flags;
4830 if (flags & MSG_DONTWAIT)
4831 req->flags |= REQ_F_NOWAIT;
4832 else if (force_nonblock)
4833 flags |= MSG_DONTWAIT;
4834
4835 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4836 kmsg->uaddr, flags);
4837 if (force_nonblock && ret == -EAGAIN)
4838 return io_setup_async_msg(req, kmsg);
4839 if (ret == -ERESTARTSYS)
4840 ret = -EINTR;
4841
4842 if (req->flags & REQ_F_BUFFER_SELECTED)
4843 cflags = io_put_recv_kbuf(req);
4844 if (kmsg->iov != kmsg->fast_iov)
4845 kfree(kmsg->iov);
4846 req->flags &= ~REQ_F_NEED_CLEANUP;
4847 if (ret < 0)
4848 req_set_fail_links(req);
4849 __io_req_complete(req, ret, cflags, cs);
4850 return 0;
4851 }
4852
4853 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4854 struct io_comp_state *cs)
4855 {
4856 struct io_buffer *kbuf;
4857 struct io_sr_msg *sr = &req->sr_msg;
4858 struct msghdr msg;
4859 void __user *buf = sr->buf;
4860 struct socket *sock;
4861 struct iovec iov;
4862 unsigned flags;
4863 int ret, cflags = 0;
4864
4865 sock = sock_from_file(req->file);
4866 if (unlikely(!sock))
4867 return -ENOTSOCK;
4868
4869 if (req->flags & REQ_F_BUFFER_SELECT) {
4870 kbuf = io_recv_buffer_select(req, !force_nonblock);
4871 if (IS_ERR(kbuf))
4872 return PTR_ERR(kbuf);
4873 buf = u64_to_user_ptr(kbuf->addr);
4874 }
4875
4876 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4877 if (unlikely(ret))
4878 goto out_free;
4879
4880 msg.msg_name = NULL;
4881 msg.msg_control = NULL;
4882 msg.msg_controllen = 0;
4883 msg.msg_namelen = 0;
4884 msg.msg_iocb = NULL;
4885 msg.msg_flags = 0;
4886
4887 flags = req->sr_msg.msg_flags;
4888 if (flags & MSG_DONTWAIT)
4889 req->flags |= REQ_F_NOWAIT;
4890 else if (force_nonblock)
4891 flags |= MSG_DONTWAIT;
4892
4893 ret = sock_recvmsg(sock, &msg, flags);
4894 if (force_nonblock && ret == -EAGAIN)
4895 return -EAGAIN;
4896 if (ret == -ERESTARTSYS)
4897 ret = -EINTR;
4898 out_free:
4899 if (req->flags & REQ_F_BUFFER_SELECTED)
4900 cflags = io_put_recv_kbuf(req);
4901 if (ret < 0)
4902 req_set_fail_links(req);
4903 __io_req_complete(req, ret, cflags, cs);
4904 return 0;
4905 }
4906
4907 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4908 {
4909 struct io_accept *accept = &req->accept;
4910
4911 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4912 return -EINVAL;
4913 if (sqe->ioprio || sqe->len || sqe->buf_index)
4914 return -EINVAL;
4915
4916 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4917 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4918 accept->flags = READ_ONCE(sqe->accept_flags);
4919 accept->nofile = rlimit(RLIMIT_NOFILE);
4920 return 0;
4921 }
4922
4923 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4924 struct io_comp_state *cs)
4925 {
4926 struct io_accept *accept = &req->accept;
4927 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4928 int ret;
4929
4930 if (req->file->f_flags & O_NONBLOCK)
4931 req->flags |= REQ_F_NOWAIT;
4932
4933 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4934 accept->addr_len, accept->flags,
4935 accept->nofile);
4936 if (ret == -EAGAIN && force_nonblock)
4937 return -EAGAIN;
4938 if (ret < 0) {
4939 if (ret == -ERESTARTSYS)
4940 ret = -EINTR;
4941 req_set_fail_links(req);
4942 }
4943 __io_req_complete(req, ret, 0, cs);
4944 return 0;
4945 }
4946
4947 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4948 {
4949 struct io_connect *conn = &req->connect;
4950 struct io_async_connect *io = req->async_data;
4951
4952 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4953 return -EINVAL;
4954 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4955 return -EINVAL;
4956
4957 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4958 conn->addr_len = READ_ONCE(sqe->addr2);
4959
4960 if (!io)
4961 return 0;
4962
4963 return move_addr_to_kernel(conn->addr, conn->addr_len,
4964 &io->address);
4965 }
4966
4967 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4968 struct io_comp_state *cs)
4969 {
4970 struct io_async_connect __io, *io;
4971 unsigned file_flags;
4972 int ret;
4973
4974 if (req->async_data) {
4975 io = req->async_data;
4976 } else {
4977 ret = move_addr_to_kernel(req->connect.addr,
4978 req->connect.addr_len,
4979 &__io.address);
4980 if (ret)
4981 goto out;
4982 io = &__io;
4983 }
4984
4985 file_flags = force_nonblock ? O_NONBLOCK : 0;
4986
4987 ret = __sys_connect_file(req->file, &io->address,
4988 req->connect.addr_len, file_flags);
4989 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4990 if (req->async_data)
4991 return -EAGAIN;
4992 if (io_alloc_async_data(req)) {
4993 ret = -ENOMEM;
4994 goto out;
4995 }
4996 io = req->async_data;
4997 memcpy(req->async_data, &__io, sizeof(__io));
4998 return -EAGAIN;
4999 }
5000 if (ret == -ERESTARTSYS)
5001 ret = -EINTR;
5002 out:
5003 if (ret < 0)
5004 req_set_fail_links(req);
5005 __io_req_complete(req, ret, 0, cs);
5006 return 0;
5007 }
5008 #else /* !CONFIG_NET */
5009 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5010 {
5011 return -EOPNOTSUPP;
5012 }
5013
5014 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5015 struct io_comp_state *cs)
5016 {
5017 return -EOPNOTSUPP;
5018 }
5019
5020 static int io_send(struct io_kiocb *req, bool force_nonblock,
5021 struct io_comp_state *cs)
5022 {
5023 return -EOPNOTSUPP;
5024 }
5025
5026 static int io_recvmsg_prep(struct io_kiocb *req,
5027 const struct io_uring_sqe *sqe)
5028 {
5029 return -EOPNOTSUPP;
5030 }
5031
5032 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5033 struct io_comp_state *cs)
5034 {
5035 return -EOPNOTSUPP;
5036 }
5037
5038 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5039 struct io_comp_state *cs)
5040 {
5041 return -EOPNOTSUPP;
5042 }
5043
5044 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5045 {
5046 return -EOPNOTSUPP;
5047 }
5048
5049 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5050 struct io_comp_state *cs)
5051 {
5052 return -EOPNOTSUPP;
5053 }
5054
5055 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5056 {
5057 return -EOPNOTSUPP;
5058 }
5059
5060 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5061 struct io_comp_state *cs)
5062 {
5063 return -EOPNOTSUPP;
5064 }
5065 #endif /* CONFIG_NET */
5066
5067 struct io_poll_table {
5068 struct poll_table_struct pt;
5069 struct io_kiocb *req;
5070 int error;
5071 };
5072
5073 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5074 __poll_t mask, task_work_func_t func)
5075 {
5076 int ret;
5077
5078 /* for instances that support it check for an event match first: */
5079 if (mask && !(mask & poll->events))
5080 return 0;
5081
5082 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5083
5084 list_del_init(&poll->wait.entry);
5085
5086 req->result = mask;
5087 init_task_work(&req->task_work, func);
5088 percpu_ref_get(&req->ctx->refs);
5089
5090 /*
5091 * If this fails, then the task is exiting. When a task exits, the
5092 * work gets canceled, so just cancel this request as well instead
5093 * of executing it. We can't safely execute it anyway, as we may not
5094 * have the needed state needed for it anyway.
5095 */
5096 ret = io_req_task_work_add(req);
5097 if (unlikely(ret)) {
5098 struct task_struct *tsk;
5099
5100 WRITE_ONCE(poll->canceled, true);
5101 tsk = io_wq_get_task(req->ctx->io_wq);
5102 task_work_add(tsk, &req->task_work, TWA_NONE);
5103 wake_up_process(tsk);
5104 }
5105 return 1;
5106 }
5107
5108 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5109 __acquires(&req->ctx->completion_lock)
5110 {
5111 struct io_ring_ctx *ctx = req->ctx;
5112
5113 if (!req->result && !READ_ONCE(poll->canceled)) {
5114 struct poll_table_struct pt = { ._key = poll->events };
5115
5116 req->result = vfs_poll(req->file, &pt) & poll->events;
5117 }
5118
5119 spin_lock_irq(&ctx->completion_lock);
5120 if (!req->result && !READ_ONCE(poll->canceled)) {
5121 add_wait_queue(poll->head, &poll->wait);
5122 return true;
5123 }
5124
5125 return false;
5126 }
5127
5128 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5129 {
5130 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5131 if (req->opcode == IORING_OP_POLL_ADD)
5132 return req->async_data;
5133 return req->apoll->double_poll;
5134 }
5135
5136 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5137 {
5138 if (req->opcode == IORING_OP_POLL_ADD)
5139 return &req->poll;
5140 return &req->apoll->poll;
5141 }
5142
5143 static void io_poll_remove_double(struct io_kiocb *req)
5144 {
5145 struct io_poll_iocb *poll = io_poll_get_double(req);
5146
5147 lockdep_assert_held(&req->ctx->completion_lock);
5148
5149 if (poll && poll->head) {
5150 struct wait_queue_head *head = poll->head;
5151
5152 spin_lock(&head->lock);
5153 list_del_init(&poll->wait.entry);
5154 if (poll->wait.private)
5155 refcount_dec(&req->refs);
5156 poll->head = NULL;
5157 spin_unlock(&head->lock);
5158 }
5159 }
5160
5161 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5162 {
5163 struct io_ring_ctx *ctx = req->ctx;
5164
5165 io_poll_remove_double(req);
5166 req->poll.done = true;
5167 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5168 io_commit_cqring(ctx);
5169 }
5170
5171 static void io_poll_task_func(struct callback_head *cb)
5172 {
5173 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5174 struct io_ring_ctx *ctx = req->ctx;
5175 struct io_kiocb *nxt;
5176
5177 if (io_poll_rewait(req, &req->poll)) {
5178 spin_unlock_irq(&ctx->completion_lock);
5179 } else {
5180 hash_del(&req->hash_node);
5181 io_poll_complete(req, req->result, 0);
5182 spin_unlock_irq(&ctx->completion_lock);
5183
5184 nxt = io_put_req_find_next(req);
5185 io_cqring_ev_posted(ctx);
5186 if (nxt)
5187 __io_req_task_submit(nxt);
5188 }
5189
5190 percpu_ref_put(&ctx->refs);
5191 }
5192
5193 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5194 int sync, void *key)
5195 {
5196 struct io_kiocb *req = wait->private;
5197 struct io_poll_iocb *poll = io_poll_get_single(req);
5198 __poll_t mask = key_to_poll(key);
5199
5200 /* for instances that support it check for an event match first: */
5201 if (mask && !(mask & poll->events))
5202 return 0;
5203
5204 list_del_init(&wait->entry);
5205
5206 if (poll && poll->head) {
5207 bool done;
5208
5209 spin_lock(&poll->head->lock);
5210 done = list_empty(&poll->wait.entry);
5211 if (!done)
5212 list_del_init(&poll->wait.entry);
5213 /* make sure double remove sees this as being gone */
5214 wait->private = NULL;
5215 spin_unlock(&poll->head->lock);
5216 if (!done) {
5217 /* use wait func handler, so it matches the rq type */
5218 poll->wait.func(&poll->wait, mode, sync, key);
5219 }
5220 }
5221 refcount_dec(&req->refs);
5222 return 1;
5223 }
5224
5225 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5226 wait_queue_func_t wake_func)
5227 {
5228 poll->head = NULL;
5229 poll->done = false;
5230 poll->canceled = false;
5231 poll->events = events;
5232 INIT_LIST_HEAD(&poll->wait.entry);
5233 init_waitqueue_func_entry(&poll->wait, wake_func);
5234 }
5235
5236 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5237 struct wait_queue_head *head,
5238 struct io_poll_iocb **poll_ptr)
5239 {
5240 struct io_kiocb *req = pt->req;
5241
5242 /*
5243 * If poll->head is already set, it's because the file being polled
5244 * uses multiple waitqueues for poll handling (eg one for read, one
5245 * for write). Setup a separate io_poll_iocb if this happens.
5246 */
5247 if (unlikely(poll->head)) {
5248 struct io_poll_iocb *poll_one = poll;
5249
5250 /* already have a 2nd entry, fail a third attempt */
5251 if (*poll_ptr) {
5252 pt->error = -EINVAL;
5253 return;
5254 }
5255 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5256 if (!poll) {
5257 pt->error = -ENOMEM;
5258 return;
5259 }
5260 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5261 refcount_inc(&req->refs);
5262 poll->wait.private = req;
5263 *poll_ptr = poll;
5264 }
5265
5266 pt->error = 0;
5267 poll->head = head;
5268
5269 if (poll->events & EPOLLEXCLUSIVE)
5270 add_wait_queue_exclusive(head, &poll->wait);
5271 else
5272 add_wait_queue(head, &poll->wait);
5273 }
5274
5275 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5276 struct poll_table_struct *p)
5277 {
5278 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5279 struct async_poll *apoll = pt->req->apoll;
5280
5281 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5282 }
5283
5284 static void io_async_task_func(struct callback_head *cb)
5285 {
5286 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5287 struct async_poll *apoll = req->apoll;
5288 struct io_ring_ctx *ctx = req->ctx;
5289
5290 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5291
5292 if (io_poll_rewait(req, &apoll->poll)) {
5293 spin_unlock_irq(&ctx->completion_lock);
5294 percpu_ref_put(&ctx->refs);
5295 return;
5296 }
5297
5298 /* If req is still hashed, it cannot have been canceled. Don't check. */
5299 if (hash_hashed(&req->hash_node))
5300 hash_del(&req->hash_node);
5301
5302 io_poll_remove_double(req);
5303 spin_unlock_irq(&ctx->completion_lock);
5304
5305 if (!READ_ONCE(apoll->poll.canceled))
5306 __io_req_task_submit(req);
5307 else
5308 __io_req_task_cancel(req, -ECANCELED);
5309
5310 percpu_ref_put(&ctx->refs);
5311 kfree(apoll->double_poll);
5312 kfree(apoll);
5313 }
5314
5315 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5316 void *key)
5317 {
5318 struct io_kiocb *req = wait->private;
5319 struct io_poll_iocb *poll = &req->apoll->poll;
5320
5321 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5322 key_to_poll(key));
5323
5324 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5325 }
5326
5327 static void io_poll_req_insert(struct io_kiocb *req)
5328 {
5329 struct io_ring_ctx *ctx = req->ctx;
5330 struct hlist_head *list;
5331
5332 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5333 hlist_add_head(&req->hash_node, list);
5334 }
5335
5336 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5337 struct io_poll_iocb *poll,
5338 struct io_poll_table *ipt, __poll_t mask,
5339 wait_queue_func_t wake_func)
5340 __acquires(&ctx->completion_lock)
5341 {
5342 struct io_ring_ctx *ctx = req->ctx;
5343 bool cancel = false;
5344
5345 INIT_HLIST_NODE(&req->hash_node);
5346 io_init_poll_iocb(poll, mask, wake_func);
5347 poll->file = req->file;
5348 poll->wait.private = req;
5349
5350 ipt->pt._key = mask;
5351 ipt->req = req;
5352 ipt->error = -EINVAL;
5353
5354 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5355
5356 spin_lock_irq(&ctx->completion_lock);
5357 if (likely(poll->head)) {
5358 spin_lock(&poll->head->lock);
5359 if (unlikely(list_empty(&poll->wait.entry))) {
5360 if (ipt->error)
5361 cancel = true;
5362 ipt->error = 0;
5363 mask = 0;
5364 }
5365 if (mask || ipt->error)
5366 list_del_init(&poll->wait.entry);
5367 else if (cancel)
5368 WRITE_ONCE(poll->canceled, true);
5369 else if (!poll->done) /* actually waiting for an event */
5370 io_poll_req_insert(req);
5371 spin_unlock(&poll->head->lock);
5372 }
5373
5374 return mask;
5375 }
5376
5377 static bool io_arm_poll_handler(struct io_kiocb *req)
5378 {
5379 const struct io_op_def *def = &io_op_defs[req->opcode];
5380 struct io_ring_ctx *ctx = req->ctx;
5381 struct async_poll *apoll;
5382 struct io_poll_table ipt;
5383 __poll_t mask, ret;
5384 int rw;
5385
5386 if (!req->file || !file_can_poll(req->file))
5387 return false;
5388 if (req->flags & REQ_F_POLLED)
5389 return false;
5390 if (def->pollin)
5391 rw = READ;
5392 else if (def->pollout)
5393 rw = WRITE;
5394 else
5395 return false;
5396 /* if we can't nonblock try, then no point in arming a poll handler */
5397 if (!io_file_supports_async(req->file, rw))
5398 return false;
5399
5400 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5401 if (unlikely(!apoll))
5402 return false;
5403 apoll->double_poll = NULL;
5404
5405 req->flags |= REQ_F_POLLED;
5406 req->apoll = apoll;
5407
5408 mask = 0;
5409 if (def->pollin)
5410 mask |= POLLIN | POLLRDNORM;
5411 if (def->pollout)
5412 mask |= POLLOUT | POLLWRNORM;
5413
5414 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5415 if ((req->opcode == IORING_OP_RECVMSG) &&
5416 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5417 mask &= ~POLLIN;
5418
5419 mask |= POLLERR | POLLPRI;
5420
5421 ipt.pt._qproc = io_async_queue_proc;
5422
5423 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5424 io_async_wake);
5425 if (ret || ipt.error) {
5426 io_poll_remove_double(req);
5427 spin_unlock_irq(&ctx->completion_lock);
5428 kfree(apoll->double_poll);
5429 kfree(apoll);
5430 return false;
5431 }
5432 spin_unlock_irq(&ctx->completion_lock);
5433 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5434 apoll->poll.events);
5435 return true;
5436 }
5437
5438 static bool __io_poll_remove_one(struct io_kiocb *req,
5439 struct io_poll_iocb *poll)
5440 {
5441 bool do_complete = false;
5442
5443 spin_lock(&poll->head->lock);
5444 WRITE_ONCE(poll->canceled, true);
5445 if (!list_empty(&poll->wait.entry)) {
5446 list_del_init(&poll->wait.entry);
5447 do_complete = true;
5448 }
5449 spin_unlock(&poll->head->lock);
5450 hash_del(&req->hash_node);
5451 return do_complete;
5452 }
5453
5454 static bool io_poll_remove_one(struct io_kiocb *req)
5455 {
5456 bool do_complete;
5457
5458 io_poll_remove_double(req);
5459
5460 if (req->opcode == IORING_OP_POLL_ADD) {
5461 do_complete = __io_poll_remove_one(req, &req->poll);
5462 } else {
5463 struct async_poll *apoll = req->apoll;
5464
5465 /* non-poll requests have submit ref still */
5466 do_complete = __io_poll_remove_one(req, &apoll->poll);
5467 if (do_complete) {
5468 io_put_req(req);
5469 kfree(apoll->double_poll);
5470 kfree(apoll);
5471 }
5472 }
5473
5474 if (do_complete) {
5475 io_cqring_fill_event(req, -ECANCELED);
5476 io_commit_cqring(req->ctx);
5477 req_set_fail_links(req);
5478 io_put_req_deferred(req, 1);
5479 }
5480
5481 return do_complete;
5482 }
5483
5484 /*
5485 * Returns true if we found and killed one or more poll requests
5486 */
5487 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5488 struct files_struct *files)
5489 {
5490 struct hlist_node *tmp;
5491 struct io_kiocb *req;
5492 int posted = 0, i;
5493
5494 spin_lock_irq(&ctx->completion_lock);
5495 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5496 struct hlist_head *list;
5497
5498 list = &ctx->cancel_hash[i];
5499 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5500 if (io_match_task(req, tsk, files))
5501 posted += io_poll_remove_one(req);
5502 }
5503 }
5504 spin_unlock_irq(&ctx->completion_lock);
5505
5506 if (posted)
5507 io_cqring_ev_posted(ctx);
5508
5509 return posted != 0;
5510 }
5511
5512 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5513 {
5514 struct hlist_head *list;
5515 struct io_kiocb *req;
5516
5517 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5518 hlist_for_each_entry(req, list, hash_node) {
5519 if (sqe_addr != req->user_data)
5520 continue;
5521 if (io_poll_remove_one(req))
5522 return 0;
5523 return -EALREADY;
5524 }
5525
5526 return -ENOENT;
5527 }
5528
5529 static int io_poll_remove_prep(struct io_kiocb *req,
5530 const struct io_uring_sqe *sqe)
5531 {
5532 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5533 return -EINVAL;
5534 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5535 sqe->poll_events)
5536 return -EINVAL;
5537
5538 req->poll_remove.addr = READ_ONCE(sqe->addr);
5539 return 0;
5540 }
5541
5542 /*
5543 * Find a running poll command that matches one specified in sqe->addr,
5544 * and remove it if found.
5545 */
5546 static int io_poll_remove(struct io_kiocb *req)
5547 {
5548 struct io_ring_ctx *ctx = req->ctx;
5549 int ret;
5550
5551 spin_lock_irq(&ctx->completion_lock);
5552 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5553 spin_unlock_irq(&ctx->completion_lock);
5554
5555 if (ret < 0)
5556 req_set_fail_links(req);
5557 io_req_complete(req, ret);
5558 return 0;
5559 }
5560
5561 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5562 void *key)
5563 {
5564 struct io_kiocb *req = wait->private;
5565 struct io_poll_iocb *poll = &req->poll;
5566
5567 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5568 }
5569
5570 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5571 struct poll_table_struct *p)
5572 {
5573 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5574
5575 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5576 }
5577
5578 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5579 {
5580 struct io_poll_iocb *poll = &req->poll;
5581 u32 events;
5582
5583 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5584 return -EINVAL;
5585 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5586 return -EINVAL;
5587
5588 events = READ_ONCE(sqe->poll32_events);
5589 #ifdef __BIG_ENDIAN
5590 events = swahw32(events);
5591 #endif
5592 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5593 (events & EPOLLEXCLUSIVE);
5594 return 0;
5595 }
5596
5597 static int io_poll_add(struct io_kiocb *req)
5598 {
5599 struct io_poll_iocb *poll = &req->poll;
5600 struct io_ring_ctx *ctx = req->ctx;
5601 struct io_poll_table ipt;
5602 __poll_t mask;
5603
5604 ipt.pt._qproc = io_poll_queue_proc;
5605
5606 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5607 io_poll_wake);
5608
5609 if (mask) { /* no async, we'd stolen it */
5610 ipt.error = 0;
5611 io_poll_complete(req, mask, 0);
5612 }
5613 spin_unlock_irq(&ctx->completion_lock);
5614
5615 if (mask) {
5616 io_cqring_ev_posted(ctx);
5617 io_put_req(req);
5618 }
5619 return ipt.error;
5620 }
5621
5622 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5623 {
5624 struct io_timeout_data *data = container_of(timer,
5625 struct io_timeout_data, timer);
5626 struct io_kiocb *req = data->req;
5627 struct io_ring_ctx *ctx = req->ctx;
5628 unsigned long flags;
5629
5630 spin_lock_irqsave(&ctx->completion_lock, flags);
5631 list_del_init(&req->timeout.list);
5632 atomic_set(&req->ctx->cq_timeouts,
5633 atomic_read(&req->ctx->cq_timeouts) + 1);
5634
5635 io_cqring_fill_event(req, -ETIME);
5636 io_commit_cqring(ctx);
5637 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5638
5639 io_cqring_ev_posted(ctx);
5640 req_set_fail_links(req);
5641 io_put_req(req);
5642 return HRTIMER_NORESTART;
5643 }
5644
5645 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5646 __u64 user_data)
5647 {
5648 struct io_timeout_data *io;
5649 struct io_kiocb *req;
5650 int ret = -ENOENT;
5651
5652 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5653 if (user_data == req->user_data) {
5654 ret = 0;
5655 break;
5656 }
5657 }
5658
5659 if (ret == -ENOENT)
5660 return ERR_PTR(ret);
5661
5662 io = req->async_data;
5663 ret = hrtimer_try_to_cancel(&io->timer);
5664 if (ret == -1)
5665 return ERR_PTR(-EALREADY);
5666 list_del_init(&req->timeout.list);
5667 return req;
5668 }
5669
5670 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5671 {
5672 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5673
5674 if (IS_ERR(req))
5675 return PTR_ERR(req);
5676
5677 req_set_fail_links(req);
5678 io_cqring_fill_event(req, -ECANCELED);
5679 io_put_req_deferred(req, 1);
5680 return 0;
5681 }
5682
5683 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5684 struct timespec64 *ts, enum hrtimer_mode mode)
5685 {
5686 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5687 struct io_timeout_data *data;
5688
5689 if (IS_ERR(req))
5690 return PTR_ERR(req);
5691
5692 req->timeout.off = 0; /* noseq */
5693 data = req->async_data;
5694 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5695 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5696 data->timer.function = io_timeout_fn;
5697 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5698 return 0;
5699 }
5700
5701 static int io_timeout_remove_prep(struct io_kiocb *req,
5702 const struct io_uring_sqe *sqe)
5703 {
5704 struct io_timeout_rem *tr = &req->timeout_rem;
5705
5706 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5707 return -EINVAL;
5708 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5709 return -EINVAL;
5710 if (sqe->ioprio || sqe->buf_index || sqe->len)
5711 return -EINVAL;
5712
5713 tr->addr = READ_ONCE(sqe->addr);
5714 tr->flags = READ_ONCE(sqe->timeout_flags);
5715 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5716 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5717 return -EINVAL;
5718 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5719 return -EFAULT;
5720 } else if (tr->flags) {
5721 /* timeout removal doesn't support flags */
5722 return -EINVAL;
5723 }
5724
5725 return 0;
5726 }
5727
5728 /*
5729 * Remove or update an existing timeout command
5730 */
5731 static int io_timeout_remove(struct io_kiocb *req)
5732 {
5733 struct io_timeout_rem *tr = &req->timeout_rem;
5734 struct io_ring_ctx *ctx = req->ctx;
5735 int ret;
5736
5737 spin_lock_irq(&ctx->completion_lock);
5738 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5739 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5740 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5741
5742 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5743 } else {
5744 ret = io_timeout_cancel(ctx, tr->addr);
5745 }
5746
5747 io_cqring_fill_event(req, ret);
5748 io_commit_cqring(ctx);
5749 spin_unlock_irq(&ctx->completion_lock);
5750 io_cqring_ev_posted(ctx);
5751 if (ret < 0)
5752 req_set_fail_links(req);
5753 io_put_req(req);
5754 return 0;
5755 }
5756
5757 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5758 bool is_timeout_link)
5759 {
5760 struct io_timeout_data *data;
5761 unsigned flags;
5762 u32 off = READ_ONCE(sqe->off);
5763
5764 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5765 return -EINVAL;
5766 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5767 return -EINVAL;
5768 if (off && is_timeout_link)
5769 return -EINVAL;
5770 flags = READ_ONCE(sqe->timeout_flags);
5771 if (flags & ~IORING_TIMEOUT_ABS)
5772 return -EINVAL;
5773
5774 req->timeout.off = off;
5775
5776 if (!req->async_data && io_alloc_async_data(req))
5777 return -ENOMEM;
5778
5779 data = req->async_data;
5780 data->req = req;
5781
5782 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5783 return -EFAULT;
5784
5785 if (flags & IORING_TIMEOUT_ABS)
5786 data->mode = HRTIMER_MODE_ABS;
5787 else
5788 data->mode = HRTIMER_MODE_REL;
5789
5790 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5791 return 0;
5792 }
5793
5794 static int io_timeout(struct io_kiocb *req)
5795 {
5796 struct io_ring_ctx *ctx = req->ctx;
5797 struct io_timeout_data *data = req->async_data;
5798 struct list_head *entry;
5799 u32 tail, off = req->timeout.off;
5800
5801 spin_lock_irq(&ctx->completion_lock);
5802
5803 /*
5804 * sqe->off holds how many events that need to occur for this
5805 * timeout event to be satisfied. If it isn't set, then this is
5806 * a pure timeout request, sequence isn't used.
5807 */
5808 if (io_is_timeout_noseq(req)) {
5809 entry = ctx->timeout_list.prev;
5810 goto add;
5811 }
5812
5813 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5814 req->timeout.target_seq = tail + off;
5815
5816 /*
5817 * Insertion sort, ensuring the first entry in the list is always
5818 * the one we need first.
5819 */
5820 list_for_each_prev(entry, &ctx->timeout_list) {
5821 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5822 timeout.list);
5823
5824 if (io_is_timeout_noseq(nxt))
5825 continue;
5826 /* nxt.seq is behind @tail, otherwise would've been completed */
5827 if (off >= nxt->timeout.target_seq - tail)
5828 break;
5829 }
5830 add:
5831 list_add(&req->timeout.list, entry);
5832 data->timer.function = io_timeout_fn;
5833 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5834 spin_unlock_irq(&ctx->completion_lock);
5835 return 0;
5836 }
5837
5838 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5839 {
5840 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5841
5842 return req->user_data == (unsigned long) data;
5843 }
5844
5845 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5846 {
5847 enum io_wq_cancel cancel_ret;
5848 int ret = 0;
5849
5850 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5851 switch (cancel_ret) {
5852 case IO_WQ_CANCEL_OK:
5853 ret = 0;
5854 break;
5855 case IO_WQ_CANCEL_RUNNING:
5856 ret = -EALREADY;
5857 break;
5858 case IO_WQ_CANCEL_NOTFOUND:
5859 ret = -ENOENT;
5860 break;
5861 }
5862
5863 return ret;
5864 }
5865
5866 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5867 struct io_kiocb *req, __u64 sqe_addr,
5868 int success_ret)
5869 {
5870 unsigned long flags;
5871 int ret;
5872
5873 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5874 if (ret != -ENOENT) {
5875 spin_lock_irqsave(&ctx->completion_lock, flags);
5876 goto done;
5877 }
5878
5879 spin_lock_irqsave(&ctx->completion_lock, flags);
5880 ret = io_timeout_cancel(ctx, sqe_addr);
5881 if (ret != -ENOENT)
5882 goto done;
5883 ret = io_poll_cancel(ctx, sqe_addr);
5884 done:
5885 if (!ret)
5886 ret = success_ret;
5887 io_cqring_fill_event(req, ret);
5888 io_commit_cqring(ctx);
5889 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5890 io_cqring_ev_posted(ctx);
5891
5892 if (ret < 0)
5893 req_set_fail_links(req);
5894 io_put_req(req);
5895 }
5896
5897 static int io_async_cancel_prep(struct io_kiocb *req,
5898 const struct io_uring_sqe *sqe)
5899 {
5900 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5901 return -EINVAL;
5902 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5903 return -EINVAL;
5904 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5905 return -EINVAL;
5906
5907 req->cancel.addr = READ_ONCE(sqe->addr);
5908 return 0;
5909 }
5910
5911 static int io_async_cancel(struct io_kiocb *req)
5912 {
5913 struct io_ring_ctx *ctx = req->ctx;
5914
5915 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5916 return 0;
5917 }
5918
5919 static int io_files_update_prep(struct io_kiocb *req,
5920 const struct io_uring_sqe *sqe)
5921 {
5922 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5923 return -EINVAL;
5924 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5925 return -EINVAL;
5926 if (sqe->ioprio || sqe->rw_flags)
5927 return -EINVAL;
5928
5929 req->files_update.offset = READ_ONCE(sqe->off);
5930 req->files_update.nr_args = READ_ONCE(sqe->len);
5931 if (!req->files_update.nr_args)
5932 return -EINVAL;
5933 req->files_update.arg = READ_ONCE(sqe->addr);
5934 return 0;
5935 }
5936
5937 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5938 struct io_comp_state *cs)
5939 {
5940 struct io_ring_ctx *ctx = req->ctx;
5941 struct io_uring_files_update up;
5942 int ret;
5943
5944 if (force_nonblock)
5945 return -EAGAIN;
5946
5947 up.offset = req->files_update.offset;
5948 up.fds = req->files_update.arg;
5949
5950 mutex_lock(&ctx->uring_lock);
5951 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5952 mutex_unlock(&ctx->uring_lock);
5953
5954 if (ret < 0)
5955 req_set_fail_links(req);
5956 __io_req_complete(req, ret, 0, cs);
5957 return 0;
5958 }
5959
5960 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5961 {
5962 switch (req->opcode) {
5963 case IORING_OP_NOP:
5964 return 0;
5965 case IORING_OP_READV:
5966 case IORING_OP_READ_FIXED:
5967 case IORING_OP_READ:
5968 return io_read_prep(req, sqe);
5969 case IORING_OP_WRITEV:
5970 case IORING_OP_WRITE_FIXED:
5971 case IORING_OP_WRITE:
5972 return io_write_prep(req, sqe);
5973 case IORING_OP_POLL_ADD:
5974 return io_poll_add_prep(req, sqe);
5975 case IORING_OP_POLL_REMOVE:
5976 return io_poll_remove_prep(req, sqe);
5977 case IORING_OP_FSYNC:
5978 return io_prep_fsync(req, sqe);
5979 case IORING_OP_SYNC_FILE_RANGE:
5980 return io_prep_sfr(req, sqe);
5981 case IORING_OP_SENDMSG:
5982 case IORING_OP_SEND:
5983 return io_sendmsg_prep(req, sqe);
5984 case IORING_OP_RECVMSG:
5985 case IORING_OP_RECV:
5986 return io_recvmsg_prep(req, sqe);
5987 case IORING_OP_CONNECT:
5988 return io_connect_prep(req, sqe);
5989 case IORING_OP_TIMEOUT:
5990 return io_timeout_prep(req, sqe, false);
5991 case IORING_OP_TIMEOUT_REMOVE:
5992 return io_timeout_remove_prep(req, sqe);
5993 case IORING_OP_ASYNC_CANCEL:
5994 return io_async_cancel_prep(req, sqe);
5995 case IORING_OP_LINK_TIMEOUT:
5996 return io_timeout_prep(req, sqe, true);
5997 case IORING_OP_ACCEPT:
5998 return io_accept_prep(req, sqe);
5999 case IORING_OP_FALLOCATE:
6000 return io_fallocate_prep(req, sqe);
6001 case IORING_OP_OPENAT:
6002 return io_openat_prep(req, sqe);
6003 case IORING_OP_CLOSE:
6004 return io_close_prep(req, sqe);
6005 case IORING_OP_FILES_UPDATE:
6006 return io_files_update_prep(req, sqe);
6007 case IORING_OP_STATX:
6008 return io_statx_prep(req, sqe);
6009 case IORING_OP_FADVISE:
6010 return io_fadvise_prep(req, sqe);
6011 case IORING_OP_MADVISE:
6012 return io_madvise_prep(req, sqe);
6013 case IORING_OP_OPENAT2:
6014 return io_openat2_prep(req, sqe);
6015 case IORING_OP_EPOLL_CTL:
6016 return io_epoll_ctl_prep(req, sqe);
6017 case IORING_OP_SPLICE:
6018 return io_splice_prep(req, sqe);
6019 case IORING_OP_PROVIDE_BUFFERS:
6020 return io_provide_buffers_prep(req, sqe);
6021 case IORING_OP_REMOVE_BUFFERS:
6022 return io_remove_buffers_prep(req, sqe);
6023 case IORING_OP_TEE:
6024 return io_tee_prep(req, sqe);
6025 case IORING_OP_SHUTDOWN:
6026 return io_shutdown_prep(req, sqe);
6027 case IORING_OP_RENAMEAT:
6028 return io_renameat_prep(req, sqe);
6029 case IORING_OP_UNLINKAT:
6030 return io_unlinkat_prep(req, sqe);
6031 }
6032
6033 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6034 req->opcode);
6035 return-EINVAL;
6036 }
6037
6038 static int io_req_defer_prep(struct io_kiocb *req,
6039 const struct io_uring_sqe *sqe)
6040 {
6041 if (!sqe)
6042 return 0;
6043 if (io_alloc_async_data(req))
6044 return -EAGAIN;
6045 return io_req_prep(req, sqe);
6046 }
6047
6048 static u32 io_get_sequence(struct io_kiocb *req)
6049 {
6050 struct io_kiocb *pos;
6051 struct io_ring_ctx *ctx = req->ctx;
6052 u32 total_submitted, nr_reqs = 0;
6053
6054 io_for_each_link(pos, req)
6055 nr_reqs++;
6056
6057 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6058 return total_submitted - nr_reqs;
6059 }
6060
6061 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6062 {
6063 struct io_ring_ctx *ctx = req->ctx;
6064 struct io_defer_entry *de;
6065 int ret;
6066 u32 seq;
6067
6068 /* Still need defer if there is pending req in defer list. */
6069 if (likely(list_empty_careful(&ctx->defer_list) &&
6070 !(req->flags & REQ_F_IO_DRAIN)))
6071 return 0;
6072
6073 seq = io_get_sequence(req);
6074 /* Still a chance to pass the sequence check */
6075 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6076 return 0;
6077
6078 if (!req->async_data) {
6079 ret = io_req_defer_prep(req, sqe);
6080 if (ret)
6081 return ret;
6082 }
6083 io_prep_async_link(req);
6084 de = kmalloc(sizeof(*de), GFP_KERNEL);
6085 if (!de)
6086 return -ENOMEM;
6087
6088 spin_lock_irq(&ctx->completion_lock);
6089 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6090 spin_unlock_irq(&ctx->completion_lock);
6091 kfree(de);
6092 io_queue_async_work(req);
6093 return -EIOCBQUEUED;
6094 }
6095
6096 trace_io_uring_defer(ctx, req, req->user_data);
6097 de->req = req;
6098 de->seq = seq;
6099 list_add_tail(&de->list, &ctx->defer_list);
6100 spin_unlock_irq(&ctx->completion_lock);
6101 return -EIOCBQUEUED;
6102 }
6103
6104 static void io_req_drop_files(struct io_kiocb *req)
6105 {
6106 struct io_ring_ctx *ctx = req->ctx;
6107 struct io_uring_task *tctx = req->task->io_uring;
6108 unsigned long flags;
6109
6110 spin_lock_irqsave(&ctx->inflight_lock, flags);
6111 list_del(&req->inflight_entry);
6112 if (atomic_read(&tctx->in_idle))
6113 wake_up(&tctx->wait);
6114 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6115 req->flags &= ~REQ_F_INFLIGHT;
6116 put_files_struct(req->work.identity->files);
6117 put_nsproxy(req->work.identity->nsproxy);
6118 req->work.flags &= ~IO_WQ_WORK_FILES;
6119 }
6120
6121 static void __io_clean_op(struct io_kiocb *req)
6122 {
6123 if (req->flags & REQ_F_BUFFER_SELECTED) {
6124 switch (req->opcode) {
6125 case IORING_OP_READV:
6126 case IORING_OP_READ_FIXED:
6127 case IORING_OP_READ:
6128 kfree((void *)(unsigned long)req->rw.addr);
6129 break;
6130 case IORING_OP_RECVMSG:
6131 case IORING_OP_RECV:
6132 kfree(req->sr_msg.kbuf);
6133 break;
6134 }
6135 req->flags &= ~REQ_F_BUFFER_SELECTED;
6136 }
6137
6138 if (req->flags & REQ_F_NEED_CLEANUP) {
6139 switch (req->opcode) {
6140 case IORING_OP_READV:
6141 case IORING_OP_READ_FIXED:
6142 case IORING_OP_READ:
6143 case IORING_OP_WRITEV:
6144 case IORING_OP_WRITE_FIXED:
6145 case IORING_OP_WRITE: {
6146 struct io_async_rw *io = req->async_data;
6147 if (io->free_iovec)
6148 kfree(io->free_iovec);
6149 break;
6150 }
6151 case IORING_OP_RECVMSG:
6152 case IORING_OP_SENDMSG: {
6153 struct io_async_msghdr *io = req->async_data;
6154 if (io->iov != io->fast_iov)
6155 kfree(io->iov);
6156 break;
6157 }
6158 case IORING_OP_SPLICE:
6159 case IORING_OP_TEE:
6160 io_put_file(req, req->splice.file_in,
6161 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6162 break;
6163 case IORING_OP_OPENAT:
6164 case IORING_OP_OPENAT2:
6165 if (req->open.filename)
6166 putname(req->open.filename);
6167 break;
6168 case IORING_OP_RENAMEAT:
6169 putname(req->rename.oldpath);
6170 putname(req->rename.newpath);
6171 break;
6172 case IORING_OP_UNLINKAT:
6173 putname(req->unlink.filename);
6174 break;
6175 }
6176 req->flags &= ~REQ_F_NEED_CLEANUP;
6177 }
6178
6179 if (req->flags & REQ_F_INFLIGHT)
6180 io_req_drop_files(req);
6181 }
6182
6183 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6184 struct io_comp_state *cs)
6185 {
6186 struct io_ring_ctx *ctx = req->ctx;
6187 int ret;
6188
6189 switch (req->opcode) {
6190 case IORING_OP_NOP:
6191 ret = io_nop(req, cs);
6192 break;
6193 case IORING_OP_READV:
6194 case IORING_OP_READ_FIXED:
6195 case IORING_OP_READ:
6196 ret = io_read(req, force_nonblock, cs);
6197 break;
6198 case IORING_OP_WRITEV:
6199 case IORING_OP_WRITE_FIXED:
6200 case IORING_OP_WRITE:
6201 ret = io_write(req, force_nonblock, cs);
6202 break;
6203 case IORING_OP_FSYNC:
6204 ret = io_fsync(req, force_nonblock);
6205 break;
6206 case IORING_OP_POLL_ADD:
6207 ret = io_poll_add(req);
6208 break;
6209 case IORING_OP_POLL_REMOVE:
6210 ret = io_poll_remove(req);
6211 break;
6212 case IORING_OP_SYNC_FILE_RANGE:
6213 ret = io_sync_file_range(req, force_nonblock);
6214 break;
6215 case IORING_OP_SENDMSG:
6216 ret = io_sendmsg(req, force_nonblock, cs);
6217 break;
6218 case IORING_OP_SEND:
6219 ret = io_send(req, force_nonblock, cs);
6220 break;
6221 case IORING_OP_RECVMSG:
6222 ret = io_recvmsg(req, force_nonblock, cs);
6223 break;
6224 case IORING_OP_RECV:
6225 ret = io_recv(req, force_nonblock, cs);
6226 break;
6227 case IORING_OP_TIMEOUT:
6228 ret = io_timeout(req);
6229 break;
6230 case IORING_OP_TIMEOUT_REMOVE:
6231 ret = io_timeout_remove(req);
6232 break;
6233 case IORING_OP_ACCEPT:
6234 ret = io_accept(req, force_nonblock, cs);
6235 break;
6236 case IORING_OP_CONNECT:
6237 ret = io_connect(req, force_nonblock, cs);
6238 break;
6239 case IORING_OP_ASYNC_CANCEL:
6240 ret = io_async_cancel(req);
6241 break;
6242 case IORING_OP_FALLOCATE:
6243 ret = io_fallocate(req, force_nonblock);
6244 break;
6245 case IORING_OP_OPENAT:
6246 ret = io_openat(req, force_nonblock);
6247 break;
6248 case IORING_OP_CLOSE:
6249 ret = io_close(req, force_nonblock, cs);
6250 break;
6251 case IORING_OP_FILES_UPDATE:
6252 ret = io_files_update(req, force_nonblock, cs);
6253 break;
6254 case IORING_OP_STATX:
6255 ret = io_statx(req, force_nonblock);
6256 break;
6257 case IORING_OP_FADVISE:
6258 ret = io_fadvise(req, force_nonblock);
6259 break;
6260 case IORING_OP_MADVISE:
6261 ret = io_madvise(req, force_nonblock);
6262 break;
6263 case IORING_OP_OPENAT2:
6264 ret = io_openat2(req, force_nonblock);
6265 break;
6266 case IORING_OP_EPOLL_CTL:
6267 ret = io_epoll_ctl(req, force_nonblock, cs);
6268 break;
6269 case IORING_OP_SPLICE:
6270 ret = io_splice(req, force_nonblock);
6271 break;
6272 case IORING_OP_PROVIDE_BUFFERS:
6273 ret = io_provide_buffers(req, force_nonblock, cs);
6274 break;
6275 case IORING_OP_REMOVE_BUFFERS:
6276 ret = io_remove_buffers(req, force_nonblock, cs);
6277 break;
6278 case IORING_OP_TEE:
6279 ret = io_tee(req, force_nonblock);
6280 break;
6281 case IORING_OP_SHUTDOWN:
6282 ret = io_shutdown(req, force_nonblock);
6283 break;
6284 case IORING_OP_RENAMEAT:
6285 ret = io_renameat(req, force_nonblock);
6286 break;
6287 case IORING_OP_UNLINKAT:
6288 ret = io_unlinkat(req, force_nonblock);
6289 break;
6290 default:
6291 ret = -EINVAL;
6292 break;
6293 }
6294
6295 if (ret)
6296 return ret;
6297
6298 /* If the op doesn't have a file, we're not polling for it */
6299 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6300 const bool in_async = io_wq_current_is_worker();
6301
6302 /* workqueue context doesn't hold uring_lock, grab it now */
6303 if (in_async)
6304 mutex_lock(&ctx->uring_lock);
6305
6306 io_iopoll_req_issued(req, in_async);
6307
6308 if (in_async)
6309 mutex_unlock(&ctx->uring_lock);
6310 }
6311
6312 return 0;
6313 }
6314
6315 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6316 {
6317 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6318 struct io_kiocb *timeout;
6319 int ret = 0;
6320
6321 timeout = io_prep_linked_timeout(req);
6322 if (timeout)
6323 io_queue_linked_timeout(timeout);
6324
6325 /* if NO_CANCEL is set, we must still run the work */
6326 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6327 IO_WQ_WORK_CANCEL) {
6328 ret = -ECANCELED;
6329 }
6330
6331 if (!ret) {
6332 do {
6333 ret = io_issue_sqe(req, false, NULL);
6334 /*
6335 * We can get EAGAIN for polled IO even though we're
6336 * forcing a sync submission from here, since we can't
6337 * wait for request slots on the block side.
6338 */
6339 if (ret != -EAGAIN)
6340 break;
6341 cond_resched();
6342 } while (1);
6343 }
6344
6345 if (ret) {
6346 /*
6347 * io_iopoll_complete() does not hold completion_lock to complete
6348 * polled io, so here for polled io, just mark it done and still let
6349 * io_iopoll_complete() complete it.
6350 */
6351 if (req->ctx->flags & IORING_SETUP_IOPOLL) {
6352 struct kiocb *kiocb = &req->rw.kiocb;
6353
6354 kiocb_done(kiocb, ret, NULL);
6355 } else {
6356 req_set_fail_links(req);
6357 io_req_complete(req, ret);
6358 }
6359 }
6360
6361 return io_steal_work(req);
6362 }
6363
6364 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6365 int index)
6366 {
6367 struct fixed_file_table *table;
6368
6369 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6370 return table->files[index & IORING_FILE_TABLE_MASK];
6371 }
6372
6373 static struct file *io_file_get(struct io_submit_state *state,
6374 struct io_kiocb *req, int fd, bool fixed)
6375 {
6376 struct io_ring_ctx *ctx = req->ctx;
6377 struct file *file;
6378
6379 if (fixed) {
6380 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6381 return NULL;
6382 fd = array_index_nospec(fd, ctx->nr_user_files);
6383 file = io_file_from_index(ctx, fd);
6384 io_set_resource_node(req);
6385 } else {
6386 trace_io_uring_file_get(ctx, fd);
6387 file = __io_file_get(state, fd);
6388 }
6389
6390 return file;
6391 }
6392
6393 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6394 {
6395 struct io_timeout_data *data = container_of(timer,
6396 struct io_timeout_data, timer);
6397 struct io_kiocb *prev, *req = data->req;
6398 struct io_ring_ctx *ctx = req->ctx;
6399 unsigned long flags;
6400
6401 spin_lock_irqsave(&ctx->completion_lock, flags);
6402 prev = req->timeout.head;
6403 req->timeout.head = NULL;
6404
6405 /*
6406 * We don't expect the list to be empty, that will only happen if we
6407 * race with the completion of the linked work.
6408 */
6409 if (prev && refcount_inc_not_zero(&prev->refs))
6410 io_remove_next_linked(prev);
6411 else
6412 prev = NULL;
6413 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6414
6415 if (prev) {
6416 req_set_fail_links(prev);
6417 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6418 io_put_req(prev);
6419 } else {
6420 io_req_complete(req, -ETIME);
6421 }
6422 return HRTIMER_NORESTART;
6423 }
6424
6425 static void __io_queue_linked_timeout(struct io_kiocb *req)
6426 {
6427 /*
6428 * If the back reference is NULL, then our linked request finished
6429 * before we got a chance to setup the timer
6430 */
6431 if (req->timeout.head) {
6432 struct io_timeout_data *data = req->async_data;
6433
6434 data->timer.function = io_link_timeout_fn;
6435 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6436 data->mode);
6437 }
6438 }
6439
6440 static void io_queue_linked_timeout(struct io_kiocb *req)
6441 {
6442 struct io_ring_ctx *ctx = req->ctx;
6443
6444 spin_lock_irq(&ctx->completion_lock);
6445 __io_queue_linked_timeout(req);
6446 spin_unlock_irq(&ctx->completion_lock);
6447
6448 /* drop submission reference */
6449 io_put_req(req);
6450 }
6451
6452 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6453 {
6454 struct io_kiocb *nxt = req->link;
6455
6456 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6457 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6458 return NULL;
6459
6460 nxt->timeout.head = req;
6461 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6462 req->flags |= REQ_F_LINK_TIMEOUT;
6463 return nxt;
6464 }
6465
6466 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6467 {
6468 struct io_kiocb *linked_timeout;
6469 const struct cred *old_creds = NULL;
6470 int ret;
6471
6472 again:
6473 linked_timeout = io_prep_linked_timeout(req);
6474
6475 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6476 (req->work.flags & IO_WQ_WORK_CREDS) &&
6477 req->work.identity->creds != current_cred()) {
6478 if (old_creds)
6479 revert_creds(old_creds);
6480 if (old_creds == req->work.identity->creds)
6481 old_creds = NULL; /* restored original creds */
6482 else
6483 old_creds = override_creds(req->work.identity->creds);
6484 }
6485
6486 ret = io_issue_sqe(req, true, cs);
6487
6488 /*
6489 * We async punt it if the file wasn't marked NOWAIT, or if the file
6490 * doesn't support non-blocking read/write attempts
6491 */
6492 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6493 if (!io_arm_poll_handler(req)) {
6494 /*
6495 * Queued up for async execution, worker will release
6496 * submit reference when the iocb is actually submitted.
6497 */
6498 io_queue_async_work(req);
6499 }
6500
6501 if (linked_timeout)
6502 io_queue_linked_timeout(linked_timeout);
6503 } else if (likely(!ret)) {
6504 /* drop submission reference */
6505 req = io_put_req_find_next(req);
6506 if (linked_timeout)
6507 io_queue_linked_timeout(linked_timeout);
6508
6509 if (req) {
6510 if (!(req->flags & REQ_F_FORCE_ASYNC))
6511 goto again;
6512 io_queue_async_work(req);
6513 }
6514 } else {
6515 /* un-prep timeout, so it'll be killed as any other linked */
6516 req->flags &= ~REQ_F_LINK_TIMEOUT;
6517 req_set_fail_links(req);
6518 io_put_req(req);
6519 io_req_complete(req, ret);
6520 }
6521
6522 if (old_creds)
6523 revert_creds(old_creds);
6524 }
6525
6526 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6527 struct io_comp_state *cs)
6528 {
6529 int ret;
6530
6531 ret = io_req_defer(req, sqe);
6532 if (ret) {
6533 if (ret != -EIOCBQUEUED) {
6534 fail_req:
6535 req_set_fail_links(req);
6536 io_put_req(req);
6537 io_req_complete(req, ret);
6538 }
6539 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6540 if (!req->async_data) {
6541 ret = io_req_defer_prep(req, sqe);
6542 if (unlikely(ret))
6543 goto fail_req;
6544 }
6545 io_queue_async_work(req);
6546 } else {
6547 if (sqe) {
6548 ret = io_req_prep(req, sqe);
6549 if (unlikely(ret))
6550 goto fail_req;
6551 }
6552 __io_queue_sqe(req, cs);
6553 }
6554 }
6555
6556 static inline void io_queue_link_head(struct io_kiocb *req,
6557 struct io_comp_state *cs)
6558 {
6559 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6560 io_put_req(req);
6561 io_req_complete(req, -ECANCELED);
6562 } else
6563 io_queue_sqe(req, NULL, cs);
6564 }
6565
6566 struct io_submit_link {
6567 struct io_kiocb *head;
6568 struct io_kiocb *last;
6569 };
6570
6571 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6572 struct io_submit_link *link, struct io_comp_state *cs)
6573 {
6574 struct io_ring_ctx *ctx = req->ctx;
6575 int ret;
6576
6577 /*
6578 * If we already have a head request, queue this one for async
6579 * submittal once the head completes. If we don't have a head but
6580 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6581 * submitted sync once the chain is complete. If none of those
6582 * conditions are true (normal request), then just queue it.
6583 */
6584 if (link->head) {
6585 struct io_kiocb *head = link->head;
6586
6587 /*
6588 * Taking sequential execution of a link, draining both sides
6589 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6590 * requests in the link. So, it drains the head and the
6591 * next after the link request. The last one is done via
6592 * drain_next flag to persist the effect across calls.
6593 */
6594 if (req->flags & REQ_F_IO_DRAIN) {
6595 head->flags |= REQ_F_IO_DRAIN;
6596 ctx->drain_next = 1;
6597 }
6598 ret = io_req_defer_prep(req, sqe);
6599 if (unlikely(ret)) {
6600 /* fail even hard links since we don't submit */
6601 head->flags |= REQ_F_FAIL_LINK;
6602 return ret;
6603 }
6604 trace_io_uring_link(ctx, req, head);
6605 link->last->link = req;
6606 link->last = req;
6607
6608 /* last request of a link, enqueue the link */
6609 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6610 io_queue_link_head(head, cs);
6611 link->head = NULL;
6612 }
6613 } else {
6614 if (unlikely(ctx->drain_next)) {
6615 req->flags |= REQ_F_IO_DRAIN;
6616 ctx->drain_next = 0;
6617 }
6618 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6619 ret = io_req_defer_prep(req, sqe);
6620 if (unlikely(ret))
6621 req->flags |= REQ_F_FAIL_LINK;
6622 link->head = req;
6623 link->last = req;
6624 } else {
6625 io_queue_sqe(req, sqe, cs);
6626 }
6627 }
6628
6629 return 0;
6630 }
6631
6632 /*
6633 * Batched submission is done, ensure local IO is flushed out.
6634 */
6635 static void io_submit_state_end(struct io_submit_state *state)
6636 {
6637 if (!list_empty(&state->comp.list))
6638 io_submit_flush_completions(&state->comp);
6639 if (state->plug_started)
6640 blk_finish_plug(&state->plug);
6641 io_state_file_put(state);
6642 if (state->free_reqs)
6643 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6644 }
6645
6646 /*
6647 * Start submission side cache.
6648 */
6649 static void io_submit_state_start(struct io_submit_state *state,
6650 struct io_ring_ctx *ctx, unsigned int max_ios)
6651 {
6652 state->plug_started = false;
6653 state->comp.nr = 0;
6654 INIT_LIST_HEAD(&state->comp.list);
6655 state->comp.ctx = ctx;
6656 state->free_reqs = 0;
6657 state->file_refs = 0;
6658 state->ios_left = max_ios;
6659 }
6660
6661 static void io_commit_sqring(struct io_ring_ctx *ctx)
6662 {
6663 struct io_rings *rings = ctx->rings;
6664
6665 /*
6666 * Ensure any loads from the SQEs are done at this point,
6667 * since once we write the new head, the application could
6668 * write new data to them.
6669 */
6670 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6671 }
6672
6673 /*
6674 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6675 * that is mapped by userspace. This means that care needs to be taken to
6676 * ensure that reads are stable, as we cannot rely on userspace always
6677 * being a good citizen. If members of the sqe are validated and then later
6678 * used, it's important that those reads are done through READ_ONCE() to
6679 * prevent a re-load down the line.
6680 */
6681 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6682 {
6683 u32 *sq_array = ctx->sq_array;
6684 unsigned head;
6685
6686 /*
6687 * The cached sq head (or cq tail) serves two purposes:
6688 *
6689 * 1) allows us to batch the cost of updating the user visible
6690 * head updates.
6691 * 2) allows the kernel side to track the head on its own, even
6692 * though the application is the one updating it.
6693 */
6694 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6695 if (likely(head < ctx->sq_entries))
6696 return &ctx->sq_sqes[head];
6697
6698 /* drop invalid entries */
6699 ctx->cached_sq_dropped++;
6700 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6701 return NULL;
6702 }
6703
6704 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6705 {
6706 ctx->cached_sq_head++;
6707 }
6708
6709 /*
6710 * Check SQE restrictions (opcode and flags).
6711 *
6712 * Returns 'true' if SQE is allowed, 'false' otherwise.
6713 */
6714 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6715 struct io_kiocb *req,
6716 unsigned int sqe_flags)
6717 {
6718 if (!ctx->restricted)
6719 return true;
6720
6721 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6722 return false;
6723
6724 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6725 ctx->restrictions.sqe_flags_required)
6726 return false;
6727
6728 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6729 ctx->restrictions.sqe_flags_required))
6730 return false;
6731
6732 return true;
6733 }
6734
6735 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6736 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6737 IOSQE_BUFFER_SELECT)
6738
6739 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6740 const struct io_uring_sqe *sqe,
6741 struct io_submit_state *state)
6742 {
6743 unsigned int sqe_flags;
6744 int id, ret;
6745
6746 req->opcode = READ_ONCE(sqe->opcode);
6747 req->user_data = READ_ONCE(sqe->user_data);
6748 req->async_data = NULL;
6749 req->file = NULL;
6750 req->ctx = ctx;
6751 req->flags = 0;
6752 req->link = NULL;
6753 req->fixed_file_refs = NULL;
6754 /* one is dropped after submission, the other at completion */
6755 refcount_set(&req->refs, 2);
6756 req->task = current;
6757 req->result = 0;
6758
6759 if (unlikely(req->opcode >= IORING_OP_LAST))
6760 return -EINVAL;
6761
6762 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6763 return -EFAULT;
6764
6765 sqe_flags = READ_ONCE(sqe->flags);
6766 /* enforce forwards compatibility on users */
6767 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6768 return -EINVAL;
6769
6770 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6771 return -EACCES;
6772
6773 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6774 !io_op_defs[req->opcode].buffer_select)
6775 return -EOPNOTSUPP;
6776
6777 id = READ_ONCE(sqe->personality);
6778 if (id) {
6779 struct io_identity *iod;
6780
6781 iod = idr_find(&ctx->personality_idr, id);
6782 if (unlikely(!iod))
6783 return -EINVAL;
6784 refcount_inc(&iod->count);
6785
6786 __io_req_init_async(req);
6787 get_cred(iod->creds);
6788 req->work.identity = iod;
6789 req->work.flags |= IO_WQ_WORK_CREDS;
6790 }
6791
6792 /* same numerical values with corresponding REQ_F_*, safe to copy */
6793 req->flags |= sqe_flags;
6794
6795 /*
6796 * Plug now if we have more than 1 IO left after this, and the target
6797 * is potentially a read/write to block based storage.
6798 */
6799 if (!state->plug_started && state->ios_left > 1 &&
6800 io_op_defs[req->opcode].plug) {
6801 blk_start_plug(&state->plug);
6802 state->plug_started = true;
6803 }
6804
6805 ret = 0;
6806 if (io_op_defs[req->opcode].needs_file) {
6807 bool fixed = req->flags & REQ_F_FIXED_FILE;
6808
6809 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6810 if (unlikely(!req->file &&
6811 !io_op_defs[req->opcode].needs_file_no_error))
6812 ret = -EBADF;
6813 }
6814
6815 state->ios_left--;
6816 return ret;
6817 }
6818
6819 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6820 {
6821 struct io_submit_state state;
6822 struct io_submit_link link;
6823 int i, submitted = 0;
6824
6825 /* if we have a backlog and couldn't flush it all, return BUSY */
6826 if (test_bit(0, &ctx->sq_check_overflow)) {
6827 if (!list_empty(&ctx->cq_overflow_list) &&
6828 !io_cqring_overflow_flush(ctx, false, NULL, NULL))
6829 return -EBUSY;
6830 }
6831
6832 /* make sure SQ entry isn't read before tail */
6833 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6834
6835 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6836 return -EAGAIN;
6837
6838 percpu_counter_add(&current->io_uring->inflight, nr);
6839 refcount_add(nr, &current->usage);
6840
6841 io_submit_state_start(&state, ctx, nr);
6842 link.head = NULL;
6843
6844 for (i = 0; i < nr; i++) {
6845 const struct io_uring_sqe *sqe;
6846 struct io_kiocb *req;
6847 int err;
6848
6849 sqe = io_get_sqe(ctx);
6850 if (unlikely(!sqe)) {
6851 io_consume_sqe(ctx);
6852 break;
6853 }
6854 req = io_alloc_req(ctx, &state);
6855 if (unlikely(!req)) {
6856 if (!submitted)
6857 submitted = -EAGAIN;
6858 break;
6859 }
6860 io_consume_sqe(ctx);
6861 /* will complete beyond this point, count as submitted */
6862 submitted++;
6863
6864 err = io_init_req(ctx, req, sqe, &state);
6865 if (unlikely(err)) {
6866 fail_req:
6867 io_put_req(req);
6868 io_req_complete(req, err);
6869 break;
6870 }
6871
6872 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6873 true, io_async_submit(ctx));
6874 err = io_submit_sqe(req, sqe, &link, &state.comp);
6875 if (err)
6876 goto fail_req;
6877 }
6878
6879 if (unlikely(submitted != nr)) {
6880 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6881 struct io_uring_task *tctx = current->io_uring;
6882 int unused = nr - ref_used;
6883
6884 percpu_ref_put_many(&ctx->refs, unused);
6885 percpu_counter_sub(&tctx->inflight, unused);
6886 put_task_struct_many(current, unused);
6887 }
6888 if (link.head)
6889 io_queue_link_head(link.head, &state.comp);
6890 io_submit_state_end(&state);
6891
6892 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6893 io_commit_sqring(ctx);
6894
6895 return submitted;
6896 }
6897
6898 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6899 {
6900 /* Tell userspace we may need a wakeup call */
6901 spin_lock_irq(&ctx->completion_lock);
6902 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6903 spin_unlock_irq(&ctx->completion_lock);
6904 }
6905
6906 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6907 {
6908 spin_lock_irq(&ctx->completion_lock);
6909 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6910 spin_unlock_irq(&ctx->completion_lock);
6911 }
6912
6913 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6914 {
6915 unsigned int to_submit;
6916 int ret = 0;
6917
6918 to_submit = io_sqring_entries(ctx);
6919 /* if we're handling multiple rings, cap submit size for fairness */
6920 if (cap_entries && to_submit > 8)
6921 to_submit = 8;
6922
6923 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6924 unsigned nr_events = 0;
6925
6926 mutex_lock(&ctx->uring_lock);
6927 if (!list_empty(&ctx->iopoll_list))
6928 io_do_iopoll(ctx, &nr_events, 0);
6929
6930 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6931 ret = io_submit_sqes(ctx, to_submit);
6932 mutex_unlock(&ctx->uring_lock);
6933 }
6934
6935 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6936 wake_up(&ctx->sqo_sq_wait);
6937
6938 return ret;
6939 }
6940
6941 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6942 {
6943 struct io_ring_ctx *ctx;
6944 unsigned sq_thread_idle = 0;
6945
6946 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6947 if (sq_thread_idle < ctx->sq_thread_idle)
6948 sq_thread_idle = ctx->sq_thread_idle;
6949 }
6950
6951 sqd->sq_thread_idle = sq_thread_idle;
6952 }
6953
6954 static void io_sqd_init_new(struct io_sq_data *sqd)
6955 {
6956 struct io_ring_ctx *ctx;
6957
6958 while (!list_empty(&sqd->ctx_new_list)) {
6959 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6960 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6961 complete(&ctx->sq_thread_comp);
6962 }
6963
6964 io_sqd_update_thread_idle(sqd);
6965 }
6966
6967 static int io_sq_thread(void *data)
6968 {
6969 struct cgroup_subsys_state *cur_css = NULL;
6970 struct files_struct *old_files = current->files;
6971 struct nsproxy *old_nsproxy = current->nsproxy;
6972 const struct cred *old_cred = NULL;
6973 struct io_sq_data *sqd = data;
6974 struct io_ring_ctx *ctx;
6975 unsigned long timeout = 0;
6976 DEFINE_WAIT(wait);
6977
6978 task_lock(current);
6979 current->files = NULL;
6980 current->nsproxy = NULL;
6981 task_unlock(current);
6982
6983 while (!kthread_should_stop()) {
6984 int ret;
6985 bool cap_entries, sqt_spin, needs_sched;
6986
6987 /*
6988 * Any changes to the sqd lists are synchronized through the
6989 * kthread parking. This synchronizes the thread vs users,
6990 * the users are synchronized on the sqd->ctx_lock.
6991 */
6992 if (kthread_should_park()) {
6993 kthread_parkme();
6994 /*
6995 * When sq thread is unparked, in case the previous park operation
6996 * comes from io_put_sq_data(), which means that sq thread is going
6997 * to be stopped, so here needs to have a check.
6998 */
6999 if (kthread_should_stop())
7000 break;
7001 }
7002
7003 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7004 io_sqd_init_new(sqd);
7005 timeout = jiffies + sqd->sq_thread_idle;
7006 }
7007
7008 sqt_spin = false;
7009 cap_entries = !list_is_singular(&sqd->ctx_list);
7010 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7011 if (current->cred != ctx->creds) {
7012 if (old_cred)
7013 revert_creds(old_cred);
7014 old_cred = override_creds(ctx->creds);
7015 }
7016 io_sq_thread_associate_blkcg(ctx, &cur_css);
7017 #ifdef CONFIG_AUDIT
7018 current->loginuid = ctx->loginuid;
7019 current->sessionid = ctx->sessionid;
7020 #endif
7021
7022 ret = __io_sq_thread(ctx, cap_entries);
7023 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7024 sqt_spin = true;
7025
7026 io_sq_thread_drop_mm_files();
7027 }
7028
7029 if (sqt_spin || !time_after(jiffies, timeout)) {
7030 io_run_task_work();
7031 cond_resched();
7032 if (sqt_spin)
7033 timeout = jiffies + sqd->sq_thread_idle;
7034 continue;
7035 }
7036
7037 if (kthread_should_park())
7038 continue;
7039
7040 needs_sched = true;
7041 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7042 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7043 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7044 !list_empty_careful(&ctx->iopoll_list)) {
7045 needs_sched = false;
7046 break;
7047 }
7048 if (io_sqring_entries(ctx)) {
7049 needs_sched = false;
7050 break;
7051 }
7052 }
7053
7054 if (needs_sched) {
7055 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7056 io_ring_set_wakeup_flag(ctx);
7057
7058 schedule();
7059 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7060 io_ring_clear_wakeup_flag(ctx);
7061 }
7062
7063 finish_wait(&sqd->wait, &wait);
7064 timeout = jiffies + sqd->sq_thread_idle;
7065 }
7066
7067 io_run_task_work();
7068
7069 if (cur_css)
7070 io_sq_thread_unassociate_blkcg();
7071 if (old_cred)
7072 revert_creds(old_cred);
7073
7074 task_lock(current);
7075 current->files = old_files;
7076 current->nsproxy = old_nsproxy;
7077 task_unlock(current);
7078
7079 kthread_parkme();
7080
7081 return 0;
7082 }
7083
7084 struct io_wait_queue {
7085 struct wait_queue_entry wq;
7086 struct io_ring_ctx *ctx;
7087 unsigned to_wait;
7088 unsigned nr_timeouts;
7089 };
7090
7091 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
7092 {
7093 struct io_ring_ctx *ctx = iowq->ctx;
7094
7095 /*
7096 * Wake up if we have enough events, or if a timeout occurred since we
7097 * started waiting. For timeouts, we always want to return to userspace,
7098 * regardless of event count.
7099 */
7100 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
7101 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7102 }
7103
7104 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7105 int wake_flags, void *key)
7106 {
7107 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7108 wq);
7109
7110 /* use noflush == true, as we can't safely rely on locking context */
7111 if (!io_should_wake(iowq, true))
7112 return -1;
7113
7114 return autoremove_wake_function(curr, mode, wake_flags, key);
7115 }
7116
7117 static int io_run_task_work_sig(void)
7118 {
7119 if (io_run_task_work())
7120 return 1;
7121 if (!signal_pending(current))
7122 return 0;
7123 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7124 return -ERESTARTSYS;
7125 return -EINTR;
7126 }
7127
7128 /*
7129 * Wait until events become available, if we don't already have some. The
7130 * application must reap them itself, as they reside on the shared cq ring.
7131 */
7132 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7133 const sigset_t __user *sig, size_t sigsz,
7134 struct __kernel_timespec __user *uts)
7135 {
7136 struct io_wait_queue iowq = {
7137 .wq = {
7138 .private = current,
7139 .func = io_wake_function,
7140 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7141 },
7142 .ctx = ctx,
7143 .to_wait = min_events,
7144 };
7145 struct io_rings *rings = ctx->rings;
7146 struct timespec64 ts;
7147 signed long timeout = 0;
7148 int ret = 0;
7149
7150 do {
7151 if (io_cqring_events(ctx, false) >= min_events)
7152 return 0;
7153 if (!io_run_task_work())
7154 break;
7155 } while (1);
7156
7157 if (sig) {
7158 #ifdef CONFIG_COMPAT
7159 if (in_compat_syscall())
7160 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7161 sigsz);
7162 else
7163 #endif
7164 ret = set_user_sigmask(sig, sigsz);
7165
7166 if (ret)
7167 return ret;
7168 }
7169
7170 if (uts) {
7171 if (get_timespec64(&ts, uts))
7172 return -EFAULT;
7173 timeout = timespec64_to_jiffies(&ts);
7174 }
7175
7176 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7177 trace_io_uring_cqring_wait(ctx, min_events);
7178 do {
7179 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7180 TASK_INTERRUPTIBLE);
7181 /* make sure we run task_work before checking for signals */
7182 ret = io_run_task_work_sig();
7183 if (ret > 0)
7184 continue;
7185 else if (ret < 0)
7186 break;
7187 if (io_should_wake(&iowq, false))
7188 break;
7189 if (uts) {
7190 timeout = schedule_timeout(timeout);
7191 if (timeout == 0) {
7192 ret = -ETIME;
7193 break;
7194 }
7195 } else {
7196 schedule();
7197 }
7198 } while (1);
7199 finish_wait(&ctx->wait, &iowq.wq);
7200
7201 restore_saved_sigmask_unless(ret == -EINTR);
7202
7203 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7204 }
7205
7206 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7207 {
7208 #if defined(CONFIG_UNIX)
7209 if (ctx->ring_sock) {
7210 struct sock *sock = ctx->ring_sock->sk;
7211 struct sk_buff *skb;
7212
7213 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7214 kfree_skb(skb);
7215 }
7216 #else
7217 int i;
7218
7219 for (i = 0; i < ctx->nr_user_files; i++) {
7220 struct file *file;
7221
7222 file = io_file_from_index(ctx, i);
7223 if (file)
7224 fput(file);
7225 }
7226 #endif
7227 }
7228
7229 static void io_file_ref_kill(struct percpu_ref *ref)
7230 {
7231 struct fixed_file_data *data;
7232
7233 data = container_of(ref, struct fixed_file_data, refs);
7234 complete(&data->done);
7235 }
7236
7237 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7238 {
7239 struct fixed_file_data *data = ctx->file_data;
7240 struct fixed_file_ref_node *ref_node = NULL;
7241 unsigned nr_tables, i;
7242
7243 if (!data)
7244 return -ENXIO;
7245
7246 spin_lock_bh(&data->lock);
7247 ref_node = data->node;
7248 spin_unlock_bh(&data->lock);
7249 if (ref_node)
7250 percpu_ref_kill(&ref_node->refs);
7251
7252 percpu_ref_kill(&data->refs);
7253
7254 /* wait for all refs nodes to complete */
7255 flush_delayed_work(&ctx->file_put_work);
7256 wait_for_completion(&data->done);
7257
7258 __io_sqe_files_unregister(ctx);
7259 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7260 for (i = 0; i < nr_tables; i++)
7261 kfree(data->table[i].files);
7262 kfree(data->table);
7263 percpu_ref_exit(&data->refs);
7264 kfree(data);
7265 ctx->file_data = NULL;
7266 ctx->nr_user_files = 0;
7267 return 0;
7268 }
7269
7270 static void io_put_sq_data(struct io_sq_data *sqd)
7271 {
7272 if (refcount_dec_and_test(&sqd->refs)) {
7273 /*
7274 * The park is a bit of a work-around, without it we get
7275 * warning spews on shutdown with SQPOLL set and affinity
7276 * set to a single CPU.
7277 */
7278 if (sqd->thread) {
7279 kthread_park(sqd->thread);
7280 kthread_stop(sqd->thread);
7281 }
7282
7283 kfree(sqd);
7284 }
7285 }
7286
7287 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7288 {
7289 struct io_ring_ctx *ctx_attach;
7290 struct io_sq_data *sqd;
7291 struct fd f;
7292
7293 f = fdget(p->wq_fd);
7294 if (!f.file)
7295 return ERR_PTR(-ENXIO);
7296 if (f.file->f_op != &io_uring_fops) {
7297 fdput(f);
7298 return ERR_PTR(-EINVAL);
7299 }
7300
7301 ctx_attach = f.file->private_data;
7302 sqd = ctx_attach->sq_data;
7303 if (!sqd) {
7304 fdput(f);
7305 return ERR_PTR(-EINVAL);
7306 }
7307
7308 refcount_inc(&sqd->refs);
7309 fdput(f);
7310 return sqd;
7311 }
7312
7313 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7314 {
7315 struct io_sq_data *sqd;
7316
7317 if (p->flags & IORING_SETUP_ATTACH_WQ)
7318 return io_attach_sq_data(p);
7319
7320 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7321 if (!sqd)
7322 return ERR_PTR(-ENOMEM);
7323
7324 refcount_set(&sqd->refs, 1);
7325 INIT_LIST_HEAD(&sqd->ctx_list);
7326 INIT_LIST_HEAD(&sqd->ctx_new_list);
7327 mutex_init(&sqd->ctx_lock);
7328 mutex_init(&sqd->lock);
7329 init_waitqueue_head(&sqd->wait);
7330 return sqd;
7331 }
7332
7333 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7334 __releases(&sqd->lock)
7335 {
7336 if (!sqd->thread)
7337 return;
7338 kthread_unpark(sqd->thread);
7339 mutex_unlock(&sqd->lock);
7340 }
7341
7342 static void io_sq_thread_park(struct io_sq_data *sqd)
7343 __acquires(&sqd->lock)
7344 {
7345 if (!sqd->thread)
7346 return;
7347 mutex_lock(&sqd->lock);
7348 kthread_park(sqd->thread);
7349 }
7350
7351 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7352 {
7353 struct io_sq_data *sqd = ctx->sq_data;
7354
7355 if (sqd) {
7356 if (sqd->thread) {
7357 /*
7358 * We may arrive here from the error branch in
7359 * io_sq_offload_create() where the kthread is created
7360 * without being waked up, thus wake it up now to make
7361 * sure the wait will complete.
7362 */
7363 wake_up_process(sqd->thread);
7364 wait_for_completion(&ctx->sq_thread_comp);
7365
7366 io_sq_thread_park(sqd);
7367 }
7368
7369 mutex_lock(&sqd->ctx_lock);
7370 list_del(&ctx->sqd_list);
7371 io_sqd_update_thread_idle(sqd);
7372 mutex_unlock(&sqd->ctx_lock);
7373
7374 if (sqd->thread)
7375 io_sq_thread_unpark(sqd);
7376
7377 io_put_sq_data(sqd);
7378 ctx->sq_data = NULL;
7379 }
7380 }
7381
7382 static void io_finish_async(struct io_ring_ctx *ctx)
7383 {
7384 io_sq_thread_stop(ctx);
7385
7386 if (ctx->io_wq) {
7387 io_wq_destroy(ctx->io_wq);
7388 ctx->io_wq = NULL;
7389 }
7390 }
7391
7392 #if defined(CONFIG_UNIX)
7393 /*
7394 * Ensure the UNIX gc is aware of our file set, so we are certain that
7395 * the io_uring can be safely unregistered on process exit, even if we have
7396 * loops in the file referencing.
7397 */
7398 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7399 {
7400 struct sock *sk = ctx->ring_sock->sk;
7401 struct scm_fp_list *fpl;
7402 struct sk_buff *skb;
7403 int i, nr_files;
7404
7405 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7406 if (!fpl)
7407 return -ENOMEM;
7408
7409 skb = alloc_skb(0, GFP_KERNEL);
7410 if (!skb) {
7411 kfree(fpl);
7412 return -ENOMEM;
7413 }
7414
7415 skb->sk = sk;
7416
7417 nr_files = 0;
7418 fpl->user = get_uid(ctx->user);
7419 for (i = 0; i < nr; i++) {
7420 struct file *file = io_file_from_index(ctx, i + offset);
7421
7422 if (!file)
7423 continue;
7424 fpl->fp[nr_files] = get_file(file);
7425 unix_inflight(fpl->user, fpl->fp[nr_files]);
7426 nr_files++;
7427 }
7428
7429 if (nr_files) {
7430 fpl->max = SCM_MAX_FD;
7431 fpl->count = nr_files;
7432 UNIXCB(skb).fp = fpl;
7433 skb->destructor = unix_destruct_scm;
7434 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7435 skb_queue_head(&sk->sk_receive_queue, skb);
7436
7437 for (i = 0; i < nr_files; i++)
7438 fput(fpl->fp[i]);
7439 } else {
7440 kfree_skb(skb);
7441 kfree(fpl);
7442 }
7443
7444 return 0;
7445 }
7446
7447 /*
7448 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7449 * causes regular reference counting to break down. We rely on the UNIX
7450 * garbage collection to take care of this problem for us.
7451 */
7452 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7453 {
7454 unsigned left, total;
7455 int ret = 0;
7456
7457 total = 0;
7458 left = ctx->nr_user_files;
7459 while (left) {
7460 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7461
7462 ret = __io_sqe_files_scm(ctx, this_files, total);
7463 if (ret)
7464 break;
7465 left -= this_files;
7466 total += this_files;
7467 }
7468
7469 if (!ret)
7470 return 0;
7471
7472 while (total < ctx->nr_user_files) {
7473 struct file *file = io_file_from_index(ctx, total);
7474
7475 if (file)
7476 fput(file);
7477 total++;
7478 }
7479
7480 return ret;
7481 }
7482 #else
7483 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7484 {
7485 return 0;
7486 }
7487 #endif
7488
7489 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7490 unsigned nr_tables, unsigned nr_files)
7491 {
7492 int i;
7493
7494 for (i = 0; i < nr_tables; i++) {
7495 struct fixed_file_table *table = &file_data->table[i];
7496 unsigned this_files;
7497
7498 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7499 table->files = kcalloc(this_files, sizeof(struct file *),
7500 GFP_KERNEL);
7501 if (!table->files)
7502 break;
7503 nr_files -= this_files;
7504 }
7505
7506 if (i == nr_tables)
7507 return 0;
7508
7509 for (i = 0; i < nr_tables; i++) {
7510 struct fixed_file_table *table = &file_data->table[i];
7511 kfree(table->files);
7512 }
7513 return 1;
7514 }
7515
7516 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7517 {
7518 #if defined(CONFIG_UNIX)
7519 struct sock *sock = ctx->ring_sock->sk;
7520 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7521 struct sk_buff *skb;
7522 int i;
7523
7524 __skb_queue_head_init(&list);
7525
7526 /*
7527 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7528 * remove this entry and rearrange the file array.
7529 */
7530 skb = skb_dequeue(head);
7531 while (skb) {
7532 struct scm_fp_list *fp;
7533
7534 fp = UNIXCB(skb).fp;
7535 for (i = 0; i < fp->count; i++) {
7536 int left;
7537
7538 if (fp->fp[i] != file)
7539 continue;
7540
7541 unix_notinflight(fp->user, fp->fp[i]);
7542 left = fp->count - 1 - i;
7543 if (left) {
7544 memmove(&fp->fp[i], &fp->fp[i + 1],
7545 left * sizeof(struct file *));
7546 }
7547 fp->count--;
7548 if (!fp->count) {
7549 kfree_skb(skb);
7550 skb = NULL;
7551 } else {
7552 __skb_queue_tail(&list, skb);
7553 }
7554 fput(file);
7555 file = NULL;
7556 break;
7557 }
7558
7559 if (!file)
7560 break;
7561
7562 __skb_queue_tail(&list, skb);
7563
7564 skb = skb_dequeue(head);
7565 }
7566
7567 if (skb_peek(&list)) {
7568 spin_lock_irq(&head->lock);
7569 while ((skb = __skb_dequeue(&list)) != NULL)
7570 __skb_queue_tail(head, skb);
7571 spin_unlock_irq(&head->lock);
7572 }
7573 #else
7574 fput(file);
7575 #endif
7576 }
7577
7578 struct io_file_put {
7579 struct list_head list;
7580 struct file *file;
7581 };
7582
7583 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7584 {
7585 struct fixed_file_data *file_data = ref_node->file_data;
7586 struct io_ring_ctx *ctx = file_data->ctx;
7587 struct io_file_put *pfile, *tmp;
7588
7589 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7590 list_del(&pfile->list);
7591 io_ring_file_put(ctx, pfile->file);
7592 kfree(pfile);
7593 }
7594
7595 percpu_ref_exit(&ref_node->refs);
7596 kfree(ref_node);
7597 percpu_ref_put(&file_data->refs);
7598 }
7599
7600 static void io_file_put_work(struct work_struct *work)
7601 {
7602 struct io_ring_ctx *ctx;
7603 struct llist_node *node;
7604
7605 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7606 node = llist_del_all(&ctx->file_put_llist);
7607
7608 while (node) {
7609 struct fixed_file_ref_node *ref_node;
7610 struct llist_node *next = node->next;
7611
7612 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7613 __io_file_put_work(ref_node);
7614 node = next;
7615 }
7616 }
7617
7618 static void io_file_data_ref_zero(struct percpu_ref *ref)
7619 {
7620 struct fixed_file_ref_node *ref_node;
7621 struct fixed_file_data *data;
7622 struct io_ring_ctx *ctx;
7623 bool first_add = false;
7624 int delay = HZ;
7625
7626 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7627 data = ref_node->file_data;
7628 ctx = data->ctx;
7629
7630 spin_lock_bh(&data->lock);
7631 ref_node->done = true;
7632
7633 while (!list_empty(&data->ref_list)) {
7634 ref_node = list_first_entry(&data->ref_list,
7635 struct fixed_file_ref_node, node);
7636 /* recycle ref nodes in order */
7637 if (!ref_node->done)
7638 break;
7639 list_del(&ref_node->node);
7640 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7641 }
7642 spin_unlock_bh(&data->lock);
7643
7644 if (percpu_ref_is_dying(&data->refs))
7645 delay = 0;
7646
7647 if (!delay)
7648 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7649 else if (first_add)
7650 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7651 }
7652
7653 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7654 struct io_ring_ctx *ctx)
7655 {
7656 struct fixed_file_ref_node *ref_node;
7657
7658 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7659 if (!ref_node)
7660 return ERR_PTR(-ENOMEM);
7661
7662 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7663 0, GFP_KERNEL)) {
7664 kfree(ref_node);
7665 return ERR_PTR(-ENOMEM);
7666 }
7667 INIT_LIST_HEAD(&ref_node->node);
7668 INIT_LIST_HEAD(&ref_node->file_list);
7669 ref_node->file_data = ctx->file_data;
7670 ref_node->done = false;
7671 return ref_node;
7672 }
7673
7674 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7675 {
7676 percpu_ref_exit(&ref_node->refs);
7677 kfree(ref_node);
7678 }
7679
7680 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7681 unsigned nr_args)
7682 {
7683 __s32 __user *fds = (__s32 __user *) arg;
7684 unsigned nr_tables, i;
7685 struct file *file;
7686 int fd, ret = -ENOMEM;
7687 struct fixed_file_ref_node *ref_node;
7688 struct fixed_file_data *file_data;
7689
7690 if (ctx->file_data)
7691 return -EBUSY;
7692 if (!nr_args)
7693 return -EINVAL;
7694 if (nr_args > IORING_MAX_FIXED_FILES)
7695 return -EMFILE;
7696
7697 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7698 if (!file_data)
7699 return -ENOMEM;
7700 file_data->ctx = ctx;
7701 init_completion(&file_data->done);
7702 INIT_LIST_HEAD(&file_data->ref_list);
7703 spin_lock_init(&file_data->lock);
7704
7705 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7706 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7707 GFP_KERNEL);
7708 if (!file_data->table)
7709 goto out_free;
7710
7711 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7712 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7713 goto out_free;
7714
7715 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7716 goto out_ref;
7717 ctx->file_data = file_data;
7718
7719 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7720 struct fixed_file_table *table;
7721 unsigned index;
7722
7723 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7724 ret = -EFAULT;
7725 goto out_fput;
7726 }
7727 /* allow sparse sets */
7728 if (fd == -1)
7729 continue;
7730
7731 file = fget(fd);
7732 ret = -EBADF;
7733 if (!file)
7734 goto out_fput;
7735
7736 /*
7737 * Don't allow io_uring instances to be registered. If UNIX
7738 * isn't enabled, then this causes a reference cycle and this
7739 * instance can never get freed. If UNIX is enabled we'll
7740 * handle it just fine, but there's still no point in allowing
7741 * a ring fd as it doesn't support regular read/write anyway.
7742 */
7743 if (file->f_op == &io_uring_fops) {
7744 fput(file);
7745 goto out_fput;
7746 }
7747 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7748 index = i & IORING_FILE_TABLE_MASK;
7749 table->files[index] = file;
7750 }
7751
7752 ret = io_sqe_files_scm(ctx);
7753 if (ret) {
7754 io_sqe_files_unregister(ctx);
7755 return ret;
7756 }
7757
7758 ref_node = alloc_fixed_file_ref_node(ctx);
7759 if (IS_ERR(ref_node)) {
7760 io_sqe_files_unregister(ctx);
7761 return PTR_ERR(ref_node);
7762 }
7763
7764 file_data->node = ref_node;
7765 spin_lock_bh(&file_data->lock);
7766 list_add_tail(&ref_node->node, &file_data->ref_list);
7767 spin_unlock_bh(&file_data->lock);
7768 percpu_ref_get(&file_data->refs);
7769 return ret;
7770 out_fput:
7771 for (i = 0; i < ctx->nr_user_files; i++) {
7772 file = io_file_from_index(ctx, i);
7773 if (file)
7774 fput(file);
7775 }
7776 for (i = 0; i < nr_tables; i++)
7777 kfree(file_data->table[i].files);
7778 ctx->nr_user_files = 0;
7779 out_ref:
7780 percpu_ref_exit(&file_data->refs);
7781 out_free:
7782 kfree(file_data->table);
7783 kfree(file_data);
7784 ctx->file_data = NULL;
7785 return ret;
7786 }
7787
7788 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7789 int index)
7790 {
7791 #if defined(CONFIG_UNIX)
7792 struct sock *sock = ctx->ring_sock->sk;
7793 struct sk_buff_head *head = &sock->sk_receive_queue;
7794 struct sk_buff *skb;
7795
7796 /*
7797 * See if we can merge this file into an existing skb SCM_RIGHTS
7798 * file set. If there's no room, fall back to allocating a new skb
7799 * and filling it in.
7800 */
7801 spin_lock_irq(&head->lock);
7802 skb = skb_peek(head);
7803 if (skb) {
7804 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7805
7806 if (fpl->count < SCM_MAX_FD) {
7807 __skb_unlink(skb, head);
7808 spin_unlock_irq(&head->lock);
7809 fpl->fp[fpl->count] = get_file(file);
7810 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7811 fpl->count++;
7812 spin_lock_irq(&head->lock);
7813 __skb_queue_head(head, skb);
7814 } else {
7815 skb = NULL;
7816 }
7817 }
7818 spin_unlock_irq(&head->lock);
7819
7820 if (skb) {
7821 fput(file);
7822 return 0;
7823 }
7824
7825 return __io_sqe_files_scm(ctx, 1, index);
7826 #else
7827 return 0;
7828 #endif
7829 }
7830
7831 static int io_queue_file_removal(struct fixed_file_data *data,
7832 struct file *file)
7833 {
7834 struct io_file_put *pfile;
7835 struct fixed_file_ref_node *ref_node = data->node;
7836
7837 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7838 if (!pfile)
7839 return -ENOMEM;
7840
7841 pfile->file = file;
7842 list_add(&pfile->list, &ref_node->file_list);
7843
7844 return 0;
7845 }
7846
7847 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7848 struct io_uring_files_update *up,
7849 unsigned nr_args)
7850 {
7851 struct fixed_file_data *data = ctx->file_data;
7852 struct fixed_file_ref_node *ref_node;
7853 struct file *file;
7854 __s32 __user *fds;
7855 int fd, i, err;
7856 __u32 done;
7857 bool needs_switch = false;
7858
7859 if (check_add_overflow(up->offset, nr_args, &done))
7860 return -EOVERFLOW;
7861 if (done > ctx->nr_user_files)
7862 return -EINVAL;
7863
7864 ref_node = alloc_fixed_file_ref_node(ctx);
7865 if (IS_ERR(ref_node))
7866 return PTR_ERR(ref_node);
7867
7868 done = 0;
7869 fds = u64_to_user_ptr(up->fds);
7870 while (nr_args) {
7871 struct fixed_file_table *table;
7872 unsigned index;
7873
7874 err = 0;
7875 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7876 err = -EFAULT;
7877 break;
7878 }
7879 i = array_index_nospec(up->offset, ctx->nr_user_files);
7880 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7881 index = i & IORING_FILE_TABLE_MASK;
7882 if (table->files[index]) {
7883 file = table->files[index];
7884 err = io_queue_file_removal(data, file);
7885 if (err)
7886 break;
7887 table->files[index] = NULL;
7888 needs_switch = true;
7889 }
7890 if (fd != -1) {
7891 file = fget(fd);
7892 if (!file) {
7893 err = -EBADF;
7894 break;
7895 }
7896 /*
7897 * Don't allow io_uring instances to be registered. If
7898 * UNIX isn't enabled, then this causes a reference
7899 * cycle and this instance can never get freed. If UNIX
7900 * is enabled we'll handle it just fine, but there's
7901 * still no point in allowing a ring fd as it doesn't
7902 * support regular read/write anyway.
7903 */
7904 if (file->f_op == &io_uring_fops) {
7905 fput(file);
7906 err = -EBADF;
7907 break;
7908 }
7909 table->files[index] = file;
7910 err = io_sqe_file_register(ctx, file, i);
7911 if (err) {
7912 table->files[index] = NULL;
7913 fput(file);
7914 break;
7915 }
7916 }
7917 nr_args--;
7918 done++;
7919 up->offset++;
7920 }
7921
7922 if (needs_switch) {
7923 percpu_ref_kill(&data->node->refs);
7924 spin_lock_bh(&data->lock);
7925 list_add_tail(&ref_node->node, &data->ref_list);
7926 data->node = ref_node;
7927 spin_unlock_bh(&data->lock);
7928 percpu_ref_get(&ctx->file_data->refs);
7929 } else
7930 destroy_fixed_file_ref_node(ref_node);
7931
7932 return done ? done : err;
7933 }
7934
7935 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7936 unsigned nr_args)
7937 {
7938 struct io_uring_files_update up;
7939
7940 if (!ctx->file_data)
7941 return -ENXIO;
7942 if (!nr_args)
7943 return -EINVAL;
7944 if (copy_from_user(&up, arg, sizeof(up)))
7945 return -EFAULT;
7946 if (up.resv)
7947 return -EINVAL;
7948
7949 return __io_sqe_files_update(ctx, &up, nr_args);
7950 }
7951
7952 static void io_free_work(struct io_wq_work *work)
7953 {
7954 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7955
7956 /* Consider that io_steal_work() relies on this ref */
7957 io_put_req(req);
7958 }
7959
7960 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7961 struct io_uring_params *p)
7962 {
7963 struct io_wq_data data;
7964 struct fd f;
7965 struct io_ring_ctx *ctx_attach;
7966 unsigned int concurrency;
7967 int ret = 0;
7968
7969 data.user = ctx->user;
7970 data.free_work = io_free_work;
7971 data.do_work = io_wq_submit_work;
7972
7973 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7974 /* Do QD, or 4 * CPUS, whatever is smallest */
7975 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7976
7977 ctx->io_wq = io_wq_create(concurrency, &data);
7978 if (IS_ERR(ctx->io_wq)) {
7979 ret = PTR_ERR(ctx->io_wq);
7980 ctx->io_wq = NULL;
7981 }
7982 return ret;
7983 }
7984
7985 f = fdget(p->wq_fd);
7986 if (!f.file)
7987 return -EBADF;
7988
7989 if (f.file->f_op != &io_uring_fops) {
7990 ret = -EINVAL;
7991 goto out_fput;
7992 }
7993
7994 ctx_attach = f.file->private_data;
7995 /* @io_wq is protected by holding the fd */
7996 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7997 ret = -EINVAL;
7998 goto out_fput;
7999 }
8000
8001 ctx->io_wq = ctx_attach->io_wq;
8002 out_fput:
8003 fdput(f);
8004 return ret;
8005 }
8006
8007 static int io_uring_alloc_task_context(struct task_struct *task)
8008 {
8009 struct io_uring_task *tctx;
8010 int ret;
8011
8012 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8013 if (unlikely(!tctx))
8014 return -ENOMEM;
8015
8016 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8017 if (unlikely(ret)) {
8018 kfree(tctx);
8019 return ret;
8020 }
8021
8022 xa_init(&tctx->xa);
8023 init_waitqueue_head(&tctx->wait);
8024 tctx->last = NULL;
8025 atomic_set(&tctx->in_idle, 0);
8026 tctx->sqpoll = false;
8027 io_init_identity(&tctx->__identity);
8028 tctx->identity = &tctx->__identity;
8029 task->io_uring = tctx;
8030 return 0;
8031 }
8032
8033 void __io_uring_free(struct task_struct *tsk)
8034 {
8035 struct io_uring_task *tctx = tsk->io_uring;
8036
8037 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8038 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8039 if (tctx->identity != &tctx->__identity)
8040 kfree(tctx->identity);
8041 percpu_counter_destroy(&tctx->inflight);
8042 kfree(tctx);
8043 tsk->io_uring = NULL;
8044 }
8045
8046 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8047 struct io_uring_params *p)
8048 {
8049 int ret;
8050
8051 if (ctx->flags & IORING_SETUP_SQPOLL) {
8052 struct io_sq_data *sqd;
8053
8054 ret = -EPERM;
8055 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8056 goto err;
8057
8058 sqd = io_get_sq_data(p);
8059 if (IS_ERR(sqd)) {
8060 ret = PTR_ERR(sqd);
8061 goto err;
8062 }
8063
8064 ctx->sq_data = sqd;
8065 io_sq_thread_park(sqd);
8066 mutex_lock(&sqd->ctx_lock);
8067 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8068 mutex_unlock(&sqd->ctx_lock);
8069 io_sq_thread_unpark(sqd);
8070
8071 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8072 if (!ctx->sq_thread_idle)
8073 ctx->sq_thread_idle = HZ;
8074
8075 if (sqd->thread)
8076 goto done;
8077
8078 if (p->flags & IORING_SETUP_SQ_AFF) {
8079 int cpu = p->sq_thread_cpu;
8080
8081 ret = -EINVAL;
8082 if (cpu >= nr_cpu_ids)
8083 goto err;
8084 if (!cpu_online(cpu))
8085 goto err;
8086
8087 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8088 cpu, "io_uring-sq");
8089 } else {
8090 sqd->thread = kthread_create(io_sq_thread, sqd,
8091 "io_uring-sq");
8092 }
8093 if (IS_ERR(sqd->thread)) {
8094 ret = PTR_ERR(sqd->thread);
8095 sqd->thread = NULL;
8096 goto err;
8097 }
8098 ret = io_uring_alloc_task_context(sqd->thread);
8099 if (ret)
8100 goto err;
8101 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8102 /* Can't have SQ_AFF without SQPOLL */
8103 ret = -EINVAL;
8104 goto err;
8105 }
8106
8107 done:
8108 ret = io_init_wq_offload(ctx, p);
8109 if (ret)
8110 goto err;
8111
8112 return 0;
8113 err:
8114 io_finish_async(ctx);
8115 return ret;
8116 }
8117
8118 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8119 {
8120 struct io_sq_data *sqd = ctx->sq_data;
8121
8122 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8123 wake_up_process(sqd->thread);
8124 }
8125
8126 static inline void __io_unaccount_mem(struct user_struct *user,
8127 unsigned long nr_pages)
8128 {
8129 atomic_long_sub(nr_pages, &user->locked_vm);
8130 }
8131
8132 static inline int __io_account_mem(struct user_struct *user,
8133 unsigned long nr_pages)
8134 {
8135 unsigned long page_limit, cur_pages, new_pages;
8136
8137 /* Don't allow more pages than we can safely lock */
8138 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8139
8140 do {
8141 cur_pages = atomic_long_read(&user->locked_vm);
8142 new_pages = cur_pages + nr_pages;
8143 if (new_pages > page_limit)
8144 return -ENOMEM;
8145 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8146 new_pages) != cur_pages);
8147
8148 return 0;
8149 }
8150
8151 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8152 enum io_mem_account acct)
8153 {
8154 if (ctx->limit_mem)
8155 __io_unaccount_mem(ctx->user, nr_pages);
8156
8157 if (ctx->mm_account) {
8158 if (acct == ACCT_LOCKED)
8159 ctx->mm_account->locked_vm -= nr_pages;
8160 else if (acct == ACCT_PINNED)
8161 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8162 }
8163 }
8164
8165 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8166 enum io_mem_account acct)
8167 {
8168 int ret;
8169
8170 if (ctx->limit_mem) {
8171 ret = __io_account_mem(ctx->user, nr_pages);
8172 if (ret)
8173 return ret;
8174 }
8175
8176 if (ctx->mm_account) {
8177 if (acct == ACCT_LOCKED)
8178 ctx->mm_account->locked_vm += nr_pages;
8179 else if (acct == ACCT_PINNED)
8180 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8181 }
8182
8183 return 0;
8184 }
8185
8186 static void io_mem_free(void *ptr)
8187 {
8188 struct page *page;
8189
8190 if (!ptr)
8191 return;
8192
8193 page = virt_to_head_page(ptr);
8194 if (put_page_testzero(page))
8195 free_compound_page(page);
8196 }
8197
8198 static void *io_mem_alloc(size_t size)
8199 {
8200 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8201 __GFP_NORETRY;
8202
8203 return (void *) __get_free_pages(gfp_flags, get_order(size));
8204 }
8205
8206 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8207 size_t *sq_offset)
8208 {
8209 struct io_rings *rings;
8210 size_t off, sq_array_size;
8211
8212 off = struct_size(rings, cqes, cq_entries);
8213 if (off == SIZE_MAX)
8214 return SIZE_MAX;
8215
8216 #ifdef CONFIG_SMP
8217 off = ALIGN(off, SMP_CACHE_BYTES);
8218 if (off == 0)
8219 return SIZE_MAX;
8220 #endif
8221
8222 if (sq_offset)
8223 *sq_offset = off;
8224
8225 sq_array_size = array_size(sizeof(u32), sq_entries);
8226 if (sq_array_size == SIZE_MAX)
8227 return SIZE_MAX;
8228
8229 if (check_add_overflow(off, sq_array_size, &off))
8230 return SIZE_MAX;
8231
8232 return off;
8233 }
8234
8235 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8236 {
8237 size_t pages;
8238
8239 pages = (size_t)1 << get_order(
8240 rings_size(sq_entries, cq_entries, NULL));
8241 pages += (size_t)1 << get_order(
8242 array_size(sizeof(struct io_uring_sqe), sq_entries));
8243
8244 return pages;
8245 }
8246
8247 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8248 {
8249 int i, j;
8250
8251 if (!ctx->user_bufs)
8252 return -ENXIO;
8253
8254 for (i = 0; i < ctx->nr_user_bufs; i++) {
8255 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8256
8257 for (j = 0; j < imu->nr_bvecs; j++)
8258 unpin_user_page(imu->bvec[j].bv_page);
8259
8260 if (imu->acct_pages)
8261 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8262 kvfree(imu->bvec);
8263 imu->nr_bvecs = 0;
8264 }
8265
8266 kfree(ctx->user_bufs);
8267 ctx->user_bufs = NULL;
8268 ctx->nr_user_bufs = 0;
8269 return 0;
8270 }
8271
8272 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8273 void __user *arg, unsigned index)
8274 {
8275 struct iovec __user *src;
8276
8277 #ifdef CONFIG_COMPAT
8278 if (ctx->compat) {
8279 struct compat_iovec __user *ciovs;
8280 struct compat_iovec ciov;
8281
8282 ciovs = (struct compat_iovec __user *) arg;
8283 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8284 return -EFAULT;
8285
8286 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8287 dst->iov_len = ciov.iov_len;
8288 return 0;
8289 }
8290 #endif
8291 src = (struct iovec __user *) arg;
8292 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8293 return -EFAULT;
8294 return 0;
8295 }
8296
8297 /*
8298 * Not super efficient, but this is just a registration time. And we do cache
8299 * the last compound head, so generally we'll only do a full search if we don't
8300 * match that one.
8301 *
8302 * We check if the given compound head page has already been accounted, to
8303 * avoid double accounting it. This allows us to account the full size of the
8304 * page, not just the constituent pages of a huge page.
8305 */
8306 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8307 int nr_pages, struct page *hpage)
8308 {
8309 int i, j;
8310
8311 /* check current page array */
8312 for (i = 0; i < nr_pages; i++) {
8313 if (!PageCompound(pages[i]))
8314 continue;
8315 if (compound_head(pages[i]) == hpage)
8316 return true;
8317 }
8318
8319 /* check previously registered pages */
8320 for (i = 0; i < ctx->nr_user_bufs; i++) {
8321 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8322
8323 for (j = 0; j < imu->nr_bvecs; j++) {
8324 if (!PageCompound(imu->bvec[j].bv_page))
8325 continue;
8326 if (compound_head(imu->bvec[j].bv_page) == hpage)
8327 return true;
8328 }
8329 }
8330
8331 return false;
8332 }
8333
8334 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8335 int nr_pages, struct io_mapped_ubuf *imu,
8336 struct page **last_hpage)
8337 {
8338 int i, ret;
8339
8340 for (i = 0; i < nr_pages; i++) {
8341 if (!PageCompound(pages[i])) {
8342 imu->acct_pages++;
8343 } else {
8344 struct page *hpage;
8345
8346 hpage = compound_head(pages[i]);
8347 if (hpage == *last_hpage)
8348 continue;
8349 *last_hpage = hpage;
8350 if (headpage_already_acct(ctx, pages, i, hpage))
8351 continue;
8352 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8353 }
8354 }
8355
8356 if (!imu->acct_pages)
8357 return 0;
8358
8359 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8360 if (ret)
8361 imu->acct_pages = 0;
8362 return ret;
8363 }
8364
8365 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8366 unsigned nr_args)
8367 {
8368 struct vm_area_struct **vmas = NULL;
8369 struct page **pages = NULL;
8370 struct page *last_hpage = NULL;
8371 int i, j, got_pages = 0;
8372 int ret = -EINVAL;
8373
8374 if (ctx->user_bufs)
8375 return -EBUSY;
8376 if (!nr_args || nr_args > UIO_MAXIOV)
8377 return -EINVAL;
8378
8379 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8380 GFP_KERNEL);
8381 if (!ctx->user_bufs)
8382 return -ENOMEM;
8383
8384 for (i = 0; i < nr_args; i++) {
8385 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8386 unsigned long off, start, end, ubuf;
8387 int pret, nr_pages;
8388 struct iovec iov;
8389 size_t size;
8390
8391 ret = io_copy_iov(ctx, &iov, arg, i);
8392 if (ret)
8393 goto err;
8394
8395 /*
8396 * Don't impose further limits on the size and buffer
8397 * constraints here, we'll -EINVAL later when IO is
8398 * submitted if they are wrong.
8399 */
8400 ret = -EFAULT;
8401 if (!iov.iov_base || !iov.iov_len)
8402 goto err;
8403
8404 /* arbitrary limit, but we need something */
8405 if (iov.iov_len > SZ_1G)
8406 goto err;
8407
8408 ubuf = (unsigned long) iov.iov_base;
8409 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8410 start = ubuf >> PAGE_SHIFT;
8411 nr_pages = end - start;
8412
8413 ret = 0;
8414 if (!pages || nr_pages > got_pages) {
8415 kvfree(vmas);
8416 kvfree(pages);
8417 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8418 GFP_KERNEL);
8419 vmas = kvmalloc_array(nr_pages,
8420 sizeof(struct vm_area_struct *),
8421 GFP_KERNEL);
8422 if (!pages || !vmas) {
8423 ret = -ENOMEM;
8424 goto err;
8425 }
8426 got_pages = nr_pages;
8427 }
8428
8429 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8430 GFP_KERNEL);
8431 ret = -ENOMEM;
8432 if (!imu->bvec)
8433 goto err;
8434
8435 ret = 0;
8436 mmap_read_lock(current->mm);
8437 pret = pin_user_pages(ubuf, nr_pages,
8438 FOLL_WRITE | FOLL_LONGTERM,
8439 pages, vmas);
8440 if (pret == nr_pages) {
8441 /* don't support file backed memory */
8442 for (j = 0; j < nr_pages; j++) {
8443 struct vm_area_struct *vma = vmas[j];
8444
8445 if (vma->vm_file &&
8446 !is_file_hugepages(vma->vm_file)) {
8447 ret = -EOPNOTSUPP;
8448 break;
8449 }
8450 }
8451 } else {
8452 ret = pret < 0 ? pret : -EFAULT;
8453 }
8454 mmap_read_unlock(current->mm);
8455 if (ret) {
8456 /*
8457 * if we did partial map, or found file backed vmas,
8458 * release any pages we did get
8459 */
8460 if (pret > 0)
8461 unpin_user_pages(pages, pret);
8462 kvfree(imu->bvec);
8463 goto err;
8464 }
8465
8466 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8467 if (ret) {
8468 unpin_user_pages(pages, pret);
8469 kvfree(imu->bvec);
8470 goto err;
8471 }
8472
8473 off = ubuf & ~PAGE_MASK;
8474 size = iov.iov_len;
8475 for (j = 0; j < nr_pages; j++) {
8476 size_t vec_len;
8477
8478 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8479 imu->bvec[j].bv_page = pages[j];
8480 imu->bvec[j].bv_len = vec_len;
8481 imu->bvec[j].bv_offset = off;
8482 off = 0;
8483 size -= vec_len;
8484 }
8485 /* store original address for later verification */
8486 imu->ubuf = ubuf;
8487 imu->len = iov.iov_len;
8488 imu->nr_bvecs = nr_pages;
8489
8490 ctx->nr_user_bufs++;
8491 }
8492 kvfree(pages);
8493 kvfree(vmas);
8494 return 0;
8495 err:
8496 kvfree(pages);
8497 kvfree(vmas);
8498 io_sqe_buffer_unregister(ctx);
8499 return ret;
8500 }
8501
8502 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8503 {
8504 __s32 __user *fds = arg;
8505 int fd;
8506
8507 if (ctx->cq_ev_fd)
8508 return -EBUSY;
8509
8510 if (copy_from_user(&fd, fds, sizeof(*fds)))
8511 return -EFAULT;
8512
8513 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8514 if (IS_ERR(ctx->cq_ev_fd)) {
8515 int ret = PTR_ERR(ctx->cq_ev_fd);
8516 ctx->cq_ev_fd = NULL;
8517 return ret;
8518 }
8519
8520 return 0;
8521 }
8522
8523 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8524 {
8525 if (ctx->cq_ev_fd) {
8526 eventfd_ctx_put(ctx->cq_ev_fd);
8527 ctx->cq_ev_fd = NULL;
8528 return 0;
8529 }
8530
8531 return -ENXIO;
8532 }
8533
8534 static int __io_destroy_buffers(int id, void *p, void *data)
8535 {
8536 struct io_ring_ctx *ctx = data;
8537 struct io_buffer *buf = p;
8538
8539 __io_remove_buffers(ctx, buf, id, -1U);
8540 return 0;
8541 }
8542
8543 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8544 {
8545 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8546 idr_destroy(&ctx->io_buffer_idr);
8547 }
8548
8549 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8550 {
8551 io_finish_async(ctx);
8552 io_sqe_buffer_unregister(ctx);
8553
8554 if (ctx->sqo_task) {
8555 put_task_struct(ctx->sqo_task);
8556 ctx->sqo_task = NULL;
8557 mmdrop(ctx->mm_account);
8558 ctx->mm_account = NULL;
8559 }
8560
8561 #ifdef CONFIG_BLK_CGROUP
8562 if (ctx->sqo_blkcg_css)
8563 css_put(ctx->sqo_blkcg_css);
8564 #endif
8565
8566 io_sqe_files_unregister(ctx);
8567 io_eventfd_unregister(ctx);
8568 io_destroy_buffers(ctx);
8569 idr_destroy(&ctx->personality_idr);
8570
8571 #if defined(CONFIG_UNIX)
8572 if (ctx->ring_sock) {
8573 ctx->ring_sock->file = NULL; /* so that iput() is called */
8574 sock_release(ctx->ring_sock);
8575 }
8576 #endif
8577
8578 io_mem_free(ctx->rings);
8579 io_mem_free(ctx->sq_sqes);
8580
8581 percpu_ref_exit(&ctx->refs);
8582 free_uid(ctx->user);
8583 put_cred(ctx->creds);
8584 kfree(ctx->cancel_hash);
8585 kmem_cache_free(req_cachep, ctx->fallback_req);
8586 kfree(ctx);
8587 }
8588
8589 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8590 {
8591 struct io_ring_ctx *ctx = file->private_data;
8592 __poll_t mask = 0;
8593
8594 poll_wait(file, &ctx->cq_wait, wait);
8595 /*
8596 * synchronizes with barrier from wq_has_sleeper call in
8597 * io_commit_cqring
8598 */
8599 smp_rmb();
8600 if (!io_sqring_full(ctx))
8601 mask |= EPOLLOUT | EPOLLWRNORM;
8602 if (io_cqring_events(ctx, false))
8603 mask |= EPOLLIN | EPOLLRDNORM;
8604
8605 return mask;
8606 }
8607
8608 static int io_uring_fasync(int fd, struct file *file, int on)
8609 {
8610 struct io_ring_ctx *ctx = file->private_data;
8611
8612 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8613 }
8614
8615 static int io_remove_personalities(int id, void *p, void *data)
8616 {
8617 struct io_ring_ctx *ctx = data;
8618 struct io_identity *iod;
8619
8620 iod = idr_remove(&ctx->personality_idr, id);
8621 if (iod) {
8622 put_cred(iod->creds);
8623 if (refcount_dec_and_test(&iod->count))
8624 kfree(iod);
8625 }
8626 return 0;
8627 }
8628
8629 static void io_ring_exit_work(struct work_struct *work)
8630 {
8631 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8632 exit_work);
8633
8634 /*
8635 * If we're doing polled IO and end up having requests being
8636 * submitted async (out-of-line), then completions can come in while
8637 * we're waiting for refs to drop. We need to reap these manually,
8638 * as nobody else will be looking for them.
8639 */
8640 do {
8641 io_iopoll_try_reap_events(ctx);
8642 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8643 io_ring_ctx_free(ctx);
8644 }
8645
8646 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8647 {
8648 mutex_lock(&ctx->uring_lock);
8649 percpu_ref_kill(&ctx->refs);
8650 if (ctx->rings)
8651 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8652 mutex_unlock(&ctx->uring_lock);
8653
8654 io_kill_timeouts(ctx, NULL, NULL);
8655 io_poll_remove_all(ctx, NULL, NULL);
8656
8657 if (ctx->io_wq)
8658 io_wq_cancel_all(ctx->io_wq);
8659
8660 /* if we failed setting up the ctx, we might not have any rings */
8661 io_iopoll_try_reap_events(ctx);
8662 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8663
8664 /*
8665 * Do this upfront, so we won't have a grace period where the ring
8666 * is closed but resources aren't reaped yet. This can cause
8667 * spurious failure in setting up a new ring.
8668 */
8669 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8670 ACCT_LOCKED);
8671
8672 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8673 /*
8674 * Use system_unbound_wq to avoid spawning tons of event kworkers
8675 * if we're exiting a ton of rings at the same time. It just adds
8676 * noise and overhead, there's no discernable change in runtime
8677 * over using system_wq.
8678 */
8679 queue_work(system_unbound_wq, &ctx->exit_work);
8680 }
8681
8682 static int io_uring_release(struct inode *inode, struct file *file)
8683 {
8684 struct io_ring_ctx *ctx = file->private_data;
8685
8686 file->private_data = NULL;
8687 io_ring_ctx_wait_and_kill(ctx);
8688 return 0;
8689 }
8690
8691 struct io_task_cancel {
8692 struct task_struct *task;
8693 struct files_struct *files;
8694 };
8695
8696 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8697 {
8698 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8699 struct io_task_cancel *cancel = data;
8700 bool ret;
8701
8702 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8703 unsigned long flags;
8704 struct io_ring_ctx *ctx = req->ctx;
8705
8706 /* protect against races with linked timeouts */
8707 spin_lock_irqsave(&ctx->completion_lock, flags);
8708 ret = io_match_task(req, cancel->task, cancel->files);
8709 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8710 } else {
8711 ret = io_match_task(req, cancel->task, cancel->files);
8712 }
8713 return ret;
8714 }
8715
8716 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8717 struct task_struct *task,
8718 struct files_struct *files)
8719 {
8720 struct io_defer_entry *de = NULL;
8721 LIST_HEAD(list);
8722
8723 spin_lock_irq(&ctx->completion_lock);
8724 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8725 if (io_match_task(de->req, task, files)) {
8726 list_cut_position(&list, &ctx->defer_list, &de->list);
8727 break;
8728 }
8729 }
8730 spin_unlock_irq(&ctx->completion_lock);
8731
8732 while (!list_empty(&list)) {
8733 de = list_first_entry(&list, struct io_defer_entry, list);
8734 list_del_init(&de->list);
8735 req_set_fail_links(de->req);
8736 io_put_req(de->req);
8737 io_req_complete(de->req, -ECANCELED);
8738 kfree(de);
8739 }
8740 }
8741
8742 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8743 struct task_struct *task,
8744 struct files_struct *files)
8745 {
8746 while (!list_empty_careful(&ctx->inflight_list)) {
8747 struct io_task_cancel cancel = { .task = task, .files = files };
8748 struct io_kiocb *req;
8749 DEFINE_WAIT(wait);
8750 bool found = false;
8751
8752 spin_lock_irq(&ctx->inflight_lock);
8753 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8754 if (req->task != task ||
8755 req->work.identity->files != files)
8756 continue;
8757 found = true;
8758 break;
8759 }
8760 if (found)
8761 prepare_to_wait(&task->io_uring->wait, &wait,
8762 TASK_UNINTERRUPTIBLE);
8763 spin_unlock_irq(&ctx->inflight_lock);
8764
8765 /* We need to keep going until we don't find a matching req */
8766 if (!found)
8767 break;
8768
8769 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8770 io_poll_remove_all(ctx, task, files);
8771 io_kill_timeouts(ctx, task, files);
8772 /* cancellations _may_ trigger task work */
8773 io_run_task_work();
8774 schedule();
8775 finish_wait(&task->io_uring->wait, &wait);
8776 }
8777 }
8778
8779 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8780 struct task_struct *task)
8781 {
8782 while (1) {
8783 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8784 enum io_wq_cancel cret;
8785 bool ret = false;
8786
8787 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8788 if (cret != IO_WQ_CANCEL_NOTFOUND)
8789 ret = true;
8790
8791 /* SQPOLL thread does its own polling */
8792 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8793 while (!list_empty_careful(&ctx->iopoll_list)) {
8794 io_iopoll_try_reap_events(ctx);
8795 ret = true;
8796 }
8797 }
8798
8799 ret |= io_poll_remove_all(ctx, task, NULL);
8800 ret |= io_kill_timeouts(ctx, task, NULL);
8801 if (!ret)
8802 break;
8803 io_run_task_work();
8804 cond_resched();
8805 }
8806 }
8807
8808 /*
8809 * We need to iteratively cancel requests, in case a request has dependent
8810 * hard links. These persist even for failure of cancelations, hence keep
8811 * looping until none are found.
8812 */
8813 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8814 struct files_struct *files)
8815 {
8816 struct task_struct *task = current;
8817
8818 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8819 task = ctx->sq_data->thread;
8820 atomic_inc(&task->io_uring->in_idle);
8821 io_sq_thread_park(ctx->sq_data);
8822 }
8823
8824 io_cancel_defer_files(ctx, task, files);
8825 io_ring_submit_lock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8826 io_cqring_overflow_flush(ctx, true, task, files);
8827 io_ring_submit_unlock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
8828
8829 if (!files)
8830 __io_uring_cancel_task_requests(ctx, task);
8831 else
8832 io_uring_cancel_files(ctx, task, files);
8833
8834 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8835 atomic_dec(&task->io_uring->in_idle);
8836 /*
8837 * If the files that are going away are the ones in the thread
8838 * identity, clear them out.
8839 */
8840 if (task->io_uring->identity->files == files)
8841 task->io_uring->identity->files = NULL;
8842 io_sq_thread_unpark(ctx->sq_data);
8843 }
8844 }
8845
8846 /*
8847 * Note that this task has used io_uring. We use it for cancelation purposes.
8848 */
8849 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8850 {
8851 struct io_uring_task *tctx = current->io_uring;
8852
8853 if (unlikely(!tctx)) {
8854 int ret;
8855
8856 ret = io_uring_alloc_task_context(current);
8857 if (unlikely(ret))
8858 return ret;
8859 tctx = current->io_uring;
8860 }
8861 if (tctx->last != file) {
8862 void *old = xa_load(&tctx->xa, (unsigned long)file);
8863
8864 if (!old) {
8865 get_file(file);
8866 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8867 }
8868 tctx->last = file;
8869 }
8870
8871 /*
8872 * This is race safe in that the task itself is doing this, hence it
8873 * cannot be going through the exit/cancel paths at the same time.
8874 * This cannot be modified while exit/cancel is running.
8875 */
8876 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8877 tctx->sqpoll = true;
8878
8879 return 0;
8880 }
8881
8882 /*
8883 * Remove this io_uring_file -> task mapping.
8884 */
8885 static void io_uring_del_task_file(struct file *file)
8886 {
8887 struct io_uring_task *tctx = current->io_uring;
8888
8889 if (tctx->last == file)
8890 tctx->last = NULL;
8891 file = xa_erase(&tctx->xa, (unsigned long)file);
8892 if (file)
8893 fput(file);
8894 }
8895
8896 /*
8897 * Drop task note for this file if we're the only ones that hold it after
8898 * pending fput()
8899 */
8900 static void io_uring_attempt_task_drop(struct file *file)
8901 {
8902 if (!current->io_uring)
8903 return;
8904 /*
8905 * fput() is pending, will be 2 if the only other ref is our potential
8906 * task file note. If the task is exiting, drop regardless of count.
8907 */
8908 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8909 atomic_long_read(&file->f_count) == 2)
8910 io_uring_del_task_file(file);
8911 }
8912
8913 void __io_uring_files_cancel(struct files_struct *files)
8914 {
8915 struct io_uring_task *tctx = current->io_uring;
8916 struct file *file;
8917 unsigned long index;
8918
8919 /* make sure overflow events are dropped */
8920 atomic_inc(&tctx->in_idle);
8921
8922 xa_for_each(&tctx->xa, index, file) {
8923 struct io_ring_ctx *ctx = file->private_data;
8924
8925 io_uring_cancel_task_requests(ctx, files);
8926 if (files)
8927 io_uring_del_task_file(file);
8928 }
8929
8930 atomic_dec(&tctx->in_idle);
8931 }
8932
8933 static s64 tctx_inflight(struct io_uring_task *tctx)
8934 {
8935 unsigned long index;
8936 struct file *file;
8937 s64 inflight;
8938
8939 inflight = percpu_counter_sum(&tctx->inflight);
8940 if (!tctx->sqpoll)
8941 return inflight;
8942
8943 /*
8944 * If we have SQPOLL rings, then we need to iterate and find them, and
8945 * add the pending count for those.
8946 */
8947 xa_for_each(&tctx->xa, index, file) {
8948 struct io_ring_ctx *ctx = file->private_data;
8949
8950 if (ctx->flags & IORING_SETUP_SQPOLL) {
8951 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
8952
8953 inflight += percpu_counter_sum(&__tctx->inflight);
8954 }
8955 }
8956
8957 return inflight;
8958 }
8959
8960 /*
8961 * Find any io_uring fd that this task has registered or done IO on, and cancel
8962 * requests.
8963 */
8964 void __io_uring_task_cancel(void)
8965 {
8966 struct io_uring_task *tctx = current->io_uring;
8967 DEFINE_WAIT(wait);
8968 s64 inflight;
8969
8970 /* make sure overflow events are dropped */
8971 atomic_inc(&tctx->in_idle);
8972
8973 do {
8974 /* read completions before cancelations */
8975 inflight = tctx_inflight(tctx);
8976 if (!inflight)
8977 break;
8978 __io_uring_files_cancel(NULL);
8979
8980 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8981
8982 /*
8983 * If we've seen completions, retry. This avoids a race where
8984 * a completion comes in before we did prepare_to_wait().
8985 */
8986 if (inflight != tctx_inflight(tctx))
8987 continue;
8988 schedule();
8989 } while (1);
8990
8991 finish_wait(&tctx->wait, &wait);
8992 atomic_dec(&tctx->in_idle);
8993 }
8994
8995 static int io_uring_flush(struct file *file, void *data)
8996 {
8997 io_uring_attempt_task_drop(file);
8998 return 0;
8999 }
9000
9001 static void *io_uring_validate_mmap_request(struct file *file,
9002 loff_t pgoff, size_t sz)
9003 {
9004 struct io_ring_ctx *ctx = file->private_data;
9005 loff_t offset = pgoff << PAGE_SHIFT;
9006 struct page *page;
9007 void *ptr;
9008
9009 switch (offset) {
9010 case IORING_OFF_SQ_RING:
9011 case IORING_OFF_CQ_RING:
9012 ptr = ctx->rings;
9013 break;
9014 case IORING_OFF_SQES:
9015 ptr = ctx->sq_sqes;
9016 break;
9017 default:
9018 return ERR_PTR(-EINVAL);
9019 }
9020
9021 page = virt_to_head_page(ptr);
9022 if (sz > page_size(page))
9023 return ERR_PTR(-EINVAL);
9024
9025 return ptr;
9026 }
9027
9028 #ifdef CONFIG_MMU
9029
9030 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9031 {
9032 size_t sz = vma->vm_end - vma->vm_start;
9033 unsigned long pfn;
9034 void *ptr;
9035
9036 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9037 if (IS_ERR(ptr))
9038 return PTR_ERR(ptr);
9039
9040 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9041 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9042 }
9043
9044 #else /* !CONFIG_MMU */
9045
9046 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9047 {
9048 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9049 }
9050
9051 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9052 {
9053 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9054 }
9055
9056 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9057 unsigned long addr, unsigned long len,
9058 unsigned long pgoff, unsigned long flags)
9059 {
9060 void *ptr;
9061
9062 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9063 if (IS_ERR(ptr))
9064 return PTR_ERR(ptr);
9065
9066 return (unsigned long) ptr;
9067 }
9068
9069 #endif /* !CONFIG_MMU */
9070
9071 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9072 {
9073 DEFINE_WAIT(wait);
9074
9075 do {
9076 if (!io_sqring_full(ctx))
9077 break;
9078
9079 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9080
9081 if (!io_sqring_full(ctx))
9082 break;
9083
9084 schedule();
9085 } while (!signal_pending(current));
9086
9087 finish_wait(&ctx->sqo_sq_wait, &wait);
9088 }
9089
9090 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9091 struct __kernel_timespec __user **ts,
9092 const sigset_t __user **sig)
9093 {
9094 struct io_uring_getevents_arg arg;
9095
9096 /*
9097 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9098 * is just a pointer to the sigset_t.
9099 */
9100 if (!(flags & IORING_ENTER_EXT_ARG)) {
9101 *sig = (const sigset_t __user *) argp;
9102 *ts = NULL;
9103 return 0;
9104 }
9105
9106 /*
9107 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9108 * timespec and sigset_t pointers if good.
9109 */
9110 if (*argsz != sizeof(arg))
9111 return -EINVAL;
9112 if (copy_from_user(&arg, argp, sizeof(arg)))
9113 return -EFAULT;
9114 *sig = u64_to_user_ptr(arg.sigmask);
9115 *argsz = arg.sigmask_sz;
9116 *ts = u64_to_user_ptr(arg.ts);
9117 return 0;
9118 }
9119
9120 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9121 u32, min_complete, u32, flags, const void __user *, argp,
9122 size_t, argsz)
9123 {
9124 struct io_ring_ctx *ctx;
9125 long ret = -EBADF;
9126 int submitted = 0;
9127 struct fd f;
9128
9129 io_run_task_work();
9130
9131 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9132 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9133 return -EINVAL;
9134
9135 f = fdget(fd);
9136 if (!f.file)
9137 return -EBADF;
9138
9139 ret = -EOPNOTSUPP;
9140 if (f.file->f_op != &io_uring_fops)
9141 goto out_fput;
9142
9143 ret = -ENXIO;
9144 ctx = f.file->private_data;
9145 if (!percpu_ref_tryget(&ctx->refs))
9146 goto out_fput;
9147
9148 ret = -EBADFD;
9149 if (ctx->flags & IORING_SETUP_R_DISABLED)
9150 goto out;
9151
9152 /*
9153 * For SQ polling, the thread will do all submissions and completions.
9154 * Just return the requested submit count, and wake the thread if
9155 * we were asked to.
9156 */
9157 ret = 0;
9158 if (ctx->flags & IORING_SETUP_SQPOLL) {
9159 io_ring_submit_lock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
9160 if (!list_empty_careful(&ctx->cq_overflow_list))
9161 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9162 io_ring_submit_unlock(ctx, (ctx->flags & IORING_SETUP_IOPOLL));
9163 if (flags & IORING_ENTER_SQ_WAKEUP)
9164 wake_up(&ctx->sq_data->wait);
9165 if (flags & IORING_ENTER_SQ_WAIT)
9166 io_sqpoll_wait_sq(ctx);
9167 submitted = to_submit;
9168 } else if (to_submit) {
9169 ret = io_uring_add_task_file(ctx, f.file);
9170 if (unlikely(ret))
9171 goto out;
9172 mutex_lock(&ctx->uring_lock);
9173 submitted = io_submit_sqes(ctx, to_submit);
9174 mutex_unlock(&ctx->uring_lock);
9175
9176 if (submitted != to_submit)
9177 goto out;
9178 }
9179 if (flags & IORING_ENTER_GETEVENTS) {
9180 const sigset_t __user *sig;
9181 struct __kernel_timespec __user *ts;
9182
9183 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9184 if (unlikely(ret))
9185 goto out;
9186
9187 min_complete = min(min_complete, ctx->cq_entries);
9188
9189 /*
9190 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9191 * space applications don't need to do io completion events
9192 * polling again, they can rely on io_sq_thread to do polling
9193 * work, which can reduce cpu usage and uring_lock contention.
9194 */
9195 if (ctx->flags & IORING_SETUP_IOPOLL &&
9196 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9197 ret = io_iopoll_check(ctx, min_complete);
9198 } else {
9199 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9200 }
9201 }
9202
9203 out:
9204 percpu_ref_put(&ctx->refs);
9205 out_fput:
9206 fdput(f);
9207 return submitted ? submitted : ret;
9208 }
9209
9210 #ifdef CONFIG_PROC_FS
9211 static int io_uring_show_cred(int id, void *p, void *data)
9212 {
9213 struct io_identity *iod = p;
9214 const struct cred *cred = iod->creds;
9215 struct seq_file *m = data;
9216 struct user_namespace *uns = seq_user_ns(m);
9217 struct group_info *gi;
9218 kernel_cap_t cap;
9219 unsigned __capi;
9220 int g;
9221
9222 seq_printf(m, "%5d\n", id);
9223 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9224 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9225 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9226 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9227 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9228 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9229 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9230 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9231 seq_puts(m, "\n\tGroups:\t");
9232 gi = cred->group_info;
9233 for (g = 0; g < gi->ngroups; g++) {
9234 seq_put_decimal_ull(m, g ? " " : "",
9235 from_kgid_munged(uns, gi->gid[g]));
9236 }
9237 seq_puts(m, "\n\tCapEff:\t");
9238 cap = cred->cap_effective;
9239 CAP_FOR_EACH_U32(__capi)
9240 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9241 seq_putc(m, '\n');
9242 return 0;
9243 }
9244
9245 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9246 {
9247 struct io_sq_data *sq = NULL;
9248 bool has_lock;
9249 int i;
9250
9251 /*
9252 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9253 * since fdinfo case grabs it in the opposite direction of normal use
9254 * cases. If we fail to get the lock, we just don't iterate any
9255 * structures that could be going away outside the io_uring mutex.
9256 */
9257 has_lock = mutex_trylock(&ctx->uring_lock);
9258
9259 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9260 sq = ctx->sq_data;
9261
9262 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9263 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9264 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9265 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9266 struct fixed_file_table *table;
9267 struct file *f;
9268
9269 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9270 f = table->files[i & IORING_FILE_TABLE_MASK];
9271 if (f)
9272 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9273 else
9274 seq_printf(m, "%5u: <none>\n", i);
9275 }
9276 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9277 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9278 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9279
9280 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9281 (unsigned int) buf->len);
9282 }
9283 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9284 seq_printf(m, "Personalities:\n");
9285 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9286 }
9287 seq_printf(m, "PollList:\n");
9288 spin_lock_irq(&ctx->completion_lock);
9289 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9290 struct hlist_head *list = &ctx->cancel_hash[i];
9291 struct io_kiocb *req;
9292
9293 hlist_for_each_entry(req, list, hash_node)
9294 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9295 req->task->task_works != NULL);
9296 }
9297 spin_unlock_irq(&ctx->completion_lock);
9298 if (has_lock)
9299 mutex_unlock(&ctx->uring_lock);
9300 }
9301
9302 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9303 {
9304 struct io_ring_ctx *ctx = f->private_data;
9305
9306 if (percpu_ref_tryget(&ctx->refs)) {
9307 __io_uring_show_fdinfo(ctx, m);
9308 percpu_ref_put(&ctx->refs);
9309 }
9310 }
9311 #endif
9312
9313 static const struct file_operations io_uring_fops = {
9314 .release = io_uring_release,
9315 .flush = io_uring_flush,
9316 .mmap = io_uring_mmap,
9317 #ifndef CONFIG_MMU
9318 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9319 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9320 #endif
9321 .poll = io_uring_poll,
9322 .fasync = io_uring_fasync,
9323 #ifdef CONFIG_PROC_FS
9324 .show_fdinfo = io_uring_show_fdinfo,
9325 #endif
9326 };
9327
9328 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9329 struct io_uring_params *p)
9330 {
9331 struct io_rings *rings;
9332 size_t size, sq_array_offset;
9333
9334 /* make sure these are sane, as we already accounted them */
9335 ctx->sq_entries = p->sq_entries;
9336 ctx->cq_entries = p->cq_entries;
9337
9338 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9339 if (size == SIZE_MAX)
9340 return -EOVERFLOW;
9341
9342 rings = io_mem_alloc(size);
9343 if (!rings)
9344 return -ENOMEM;
9345
9346 ctx->rings = rings;
9347 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9348 rings->sq_ring_mask = p->sq_entries - 1;
9349 rings->cq_ring_mask = p->cq_entries - 1;
9350 rings->sq_ring_entries = p->sq_entries;
9351 rings->cq_ring_entries = p->cq_entries;
9352 ctx->sq_mask = rings->sq_ring_mask;
9353 ctx->cq_mask = rings->cq_ring_mask;
9354
9355 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9356 if (size == SIZE_MAX) {
9357 io_mem_free(ctx->rings);
9358 ctx->rings = NULL;
9359 return -EOVERFLOW;
9360 }
9361
9362 ctx->sq_sqes = io_mem_alloc(size);
9363 if (!ctx->sq_sqes) {
9364 io_mem_free(ctx->rings);
9365 ctx->rings = NULL;
9366 return -ENOMEM;
9367 }
9368
9369 return 0;
9370 }
9371
9372 /*
9373 * Allocate an anonymous fd, this is what constitutes the application
9374 * visible backing of an io_uring instance. The application mmaps this
9375 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9376 * we have to tie this fd to a socket for file garbage collection purposes.
9377 */
9378 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9379 {
9380 struct file *file;
9381 int ret;
9382 int fd;
9383
9384 #if defined(CONFIG_UNIX)
9385 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9386 &ctx->ring_sock);
9387 if (ret)
9388 return ret;
9389 #endif
9390
9391 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9392 if (ret < 0)
9393 goto err;
9394 fd = ret;
9395
9396 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9397 O_RDWR | O_CLOEXEC);
9398 if (IS_ERR(file)) {
9399 put_unused_fd(fd);
9400 ret = PTR_ERR(file);
9401 goto err;
9402 }
9403
9404 #if defined(CONFIG_UNIX)
9405 ctx->ring_sock->file = file;
9406 #endif
9407 ret = io_uring_add_task_file(ctx, file);
9408 if (ret) {
9409 fput(file);
9410 put_unused_fd(fd);
9411 goto err;
9412 }
9413 fd_install(fd, file);
9414 return fd;
9415 err:
9416 #if defined(CONFIG_UNIX)
9417 sock_release(ctx->ring_sock);
9418 ctx->ring_sock = NULL;
9419 #endif
9420 return ret;
9421 }
9422
9423 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9424 struct io_uring_params __user *params)
9425 {
9426 struct user_struct *user = NULL;
9427 struct io_ring_ctx *ctx;
9428 bool limit_mem;
9429 int ret;
9430
9431 if (!entries)
9432 return -EINVAL;
9433 if (entries > IORING_MAX_ENTRIES) {
9434 if (!(p->flags & IORING_SETUP_CLAMP))
9435 return -EINVAL;
9436 entries = IORING_MAX_ENTRIES;
9437 }
9438
9439 /*
9440 * Use twice as many entries for the CQ ring. It's possible for the
9441 * application to drive a higher depth than the size of the SQ ring,
9442 * since the sqes are only used at submission time. This allows for
9443 * some flexibility in overcommitting a bit. If the application has
9444 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9445 * of CQ ring entries manually.
9446 */
9447 p->sq_entries = roundup_pow_of_two(entries);
9448 if (p->flags & IORING_SETUP_CQSIZE) {
9449 /*
9450 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9451 * to a power-of-two, if it isn't already. We do NOT impose
9452 * any cq vs sq ring sizing.
9453 */
9454 if (!p->cq_entries)
9455 return -EINVAL;
9456 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9457 if (!(p->flags & IORING_SETUP_CLAMP))
9458 return -EINVAL;
9459 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9460 }
9461 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9462 if (p->cq_entries < p->sq_entries)
9463 return -EINVAL;
9464 } else {
9465 p->cq_entries = 2 * p->sq_entries;
9466 }
9467
9468 user = get_uid(current_user());
9469 limit_mem = !capable(CAP_IPC_LOCK);
9470
9471 if (limit_mem) {
9472 ret = __io_account_mem(user,
9473 ring_pages(p->sq_entries, p->cq_entries));
9474 if (ret) {
9475 free_uid(user);
9476 return ret;
9477 }
9478 }
9479
9480 ctx = io_ring_ctx_alloc(p);
9481 if (!ctx) {
9482 if (limit_mem)
9483 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9484 p->cq_entries));
9485 free_uid(user);
9486 return -ENOMEM;
9487 }
9488 ctx->compat = in_compat_syscall();
9489 ctx->user = user;
9490 ctx->creds = get_current_cred();
9491 #ifdef CONFIG_AUDIT
9492 ctx->loginuid = current->loginuid;
9493 ctx->sessionid = current->sessionid;
9494 #endif
9495 ctx->sqo_task = get_task_struct(current);
9496
9497 /*
9498 * This is just grabbed for accounting purposes. When a process exits,
9499 * the mm is exited and dropped before the files, hence we need to hang
9500 * on to this mm purely for the purposes of being able to unaccount
9501 * memory (locked/pinned vm). It's not used for anything else.
9502 */
9503 mmgrab(current->mm);
9504 ctx->mm_account = current->mm;
9505
9506 #ifdef CONFIG_BLK_CGROUP
9507 /*
9508 * The sq thread will belong to the original cgroup it was inited in.
9509 * If the cgroup goes offline (e.g. disabling the io controller), then
9510 * issued bios will be associated with the closest cgroup later in the
9511 * block layer.
9512 */
9513 rcu_read_lock();
9514 ctx->sqo_blkcg_css = blkcg_css();
9515 ret = css_tryget_online(ctx->sqo_blkcg_css);
9516 rcu_read_unlock();
9517 if (!ret) {
9518 /* don't init against a dying cgroup, have the user try again */
9519 ctx->sqo_blkcg_css = NULL;
9520 ret = -ENODEV;
9521 goto err;
9522 }
9523 #endif
9524
9525 /*
9526 * Account memory _before_ installing the file descriptor. Once
9527 * the descriptor is installed, it can get closed at any time. Also
9528 * do this before hitting the general error path, as ring freeing
9529 * will un-account as well.
9530 */
9531 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9532 ACCT_LOCKED);
9533 ctx->limit_mem = limit_mem;
9534
9535 ret = io_allocate_scq_urings(ctx, p);
9536 if (ret)
9537 goto err;
9538
9539 ret = io_sq_offload_create(ctx, p);
9540 if (ret)
9541 goto err;
9542
9543 if (!(p->flags & IORING_SETUP_R_DISABLED))
9544 io_sq_offload_start(ctx);
9545
9546 memset(&p->sq_off, 0, sizeof(p->sq_off));
9547 p->sq_off.head = offsetof(struct io_rings, sq.head);
9548 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9549 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9550 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9551 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9552 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9553 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9554
9555 memset(&p->cq_off, 0, sizeof(p->cq_off));
9556 p->cq_off.head = offsetof(struct io_rings, cq.head);
9557 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9558 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9559 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9560 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9561 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9562 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9563
9564 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9565 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9566 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9567 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9568 IORING_FEAT_EXT_ARG;
9569
9570 if (copy_to_user(params, p, sizeof(*p))) {
9571 ret = -EFAULT;
9572 goto err;
9573 }
9574
9575 /*
9576 * Install ring fd as the very last thing, so we don't risk someone
9577 * having closed it before we finish setup
9578 */
9579 ret = io_uring_get_fd(ctx);
9580 if (ret < 0)
9581 goto err;
9582
9583 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9584 return ret;
9585 err:
9586 io_ring_ctx_wait_and_kill(ctx);
9587 return ret;
9588 }
9589
9590 /*
9591 * Sets up an aio uring context, and returns the fd. Applications asks for a
9592 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9593 * params structure passed in.
9594 */
9595 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9596 {
9597 struct io_uring_params p;
9598 int i;
9599
9600 if (copy_from_user(&p, params, sizeof(p)))
9601 return -EFAULT;
9602 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9603 if (p.resv[i])
9604 return -EINVAL;
9605 }
9606
9607 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9608 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9609 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9610 IORING_SETUP_R_DISABLED))
9611 return -EINVAL;
9612
9613 return io_uring_create(entries, &p, params);
9614 }
9615
9616 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9617 struct io_uring_params __user *, params)
9618 {
9619 return io_uring_setup(entries, params);
9620 }
9621
9622 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9623 {
9624 struct io_uring_probe *p;
9625 size_t size;
9626 int i, ret;
9627
9628 size = struct_size(p, ops, nr_args);
9629 if (size == SIZE_MAX)
9630 return -EOVERFLOW;
9631 p = kzalloc(size, GFP_KERNEL);
9632 if (!p)
9633 return -ENOMEM;
9634
9635 ret = -EFAULT;
9636 if (copy_from_user(p, arg, size))
9637 goto out;
9638 ret = -EINVAL;
9639 if (memchr_inv(p, 0, size))
9640 goto out;
9641
9642 p->last_op = IORING_OP_LAST - 1;
9643 if (nr_args > IORING_OP_LAST)
9644 nr_args = IORING_OP_LAST;
9645
9646 for (i = 0; i < nr_args; i++) {
9647 p->ops[i].op = i;
9648 if (!io_op_defs[i].not_supported)
9649 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9650 }
9651 p->ops_len = i;
9652
9653 ret = 0;
9654 if (copy_to_user(arg, p, size))
9655 ret = -EFAULT;
9656 out:
9657 kfree(p);
9658 return ret;
9659 }
9660
9661 static int io_register_personality(struct io_ring_ctx *ctx)
9662 {
9663 struct io_identity *id;
9664 int ret;
9665
9666 id = kmalloc(sizeof(*id), GFP_KERNEL);
9667 if (unlikely(!id))
9668 return -ENOMEM;
9669
9670 io_init_identity(id);
9671 id->creds = get_current_cred();
9672
9673 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9674 if (ret < 0) {
9675 put_cred(id->creds);
9676 kfree(id);
9677 }
9678 return ret;
9679 }
9680
9681 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9682 {
9683 struct io_identity *iod;
9684
9685 iod = idr_remove(&ctx->personality_idr, id);
9686 if (iod) {
9687 put_cred(iod->creds);
9688 if (refcount_dec_and_test(&iod->count))
9689 kfree(iod);
9690 return 0;
9691 }
9692
9693 return -EINVAL;
9694 }
9695
9696 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9697 unsigned int nr_args)
9698 {
9699 struct io_uring_restriction *res;
9700 size_t size;
9701 int i, ret;
9702
9703 /* Restrictions allowed only if rings started disabled */
9704 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9705 return -EBADFD;
9706
9707 /* We allow only a single restrictions registration */
9708 if (ctx->restrictions.registered)
9709 return -EBUSY;
9710
9711 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9712 return -EINVAL;
9713
9714 size = array_size(nr_args, sizeof(*res));
9715 if (size == SIZE_MAX)
9716 return -EOVERFLOW;
9717
9718 res = memdup_user(arg, size);
9719 if (IS_ERR(res))
9720 return PTR_ERR(res);
9721
9722 ret = 0;
9723
9724 for (i = 0; i < nr_args; i++) {
9725 switch (res[i].opcode) {
9726 case IORING_RESTRICTION_REGISTER_OP:
9727 if (res[i].register_op >= IORING_REGISTER_LAST) {
9728 ret = -EINVAL;
9729 goto out;
9730 }
9731
9732 __set_bit(res[i].register_op,
9733 ctx->restrictions.register_op);
9734 break;
9735 case IORING_RESTRICTION_SQE_OP:
9736 if (res[i].sqe_op >= IORING_OP_LAST) {
9737 ret = -EINVAL;
9738 goto out;
9739 }
9740
9741 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9742 break;
9743 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9744 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9745 break;
9746 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9747 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9748 break;
9749 default:
9750 ret = -EINVAL;
9751 goto out;
9752 }
9753 }
9754
9755 out:
9756 /* Reset all restrictions if an error happened */
9757 if (ret != 0)
9758 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9759 else
9760 ctx->restrictions.registered = true;
9761
9762 kfree(res);
9763 return ret;
9764 }
9765
9766 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9767 {
9768 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9769 return -EBADFD;
9770
9771 if (ctx->restrictions.registered)
9772 ctx->restricted = 1;
9773
9774 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9775
9776 io_sq_offload_start(ctx);
9777
9778 return 0;
9779 }
9780
9781 static bool io_register_op_must_quiesce(int op)
9782 {
9783 switch (op) {
9784 case IORING_UNREGISTER_FILES:
9785 case IORING_REGISTER_FILES_UPDATE:
9786 case IORING_REGISTER_PROBE:
9787 case IORING_REGISTER_PERSONALITY:
9788 case IORING_UNREGISTER_PERSONALITY:
9789 return false;
9790 default:
9791 return true;
9792 }
9793 }
9794
9795 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9796 void __user *arg, unsigned nr_args)
9797 __releases(ctx->uring_lock)
9798 __acquires(ctx->uring_lock)
9799 {
9800 int ret;
9801
9802 /*
9803 * We're inside the ring mutex, if the ref is already dying, then
9804 * someone else killed the ctx or is already going through
9805 * io_uring_register().
9806 */
9807 if (percpu_ref_is_dying(&ctx->refs))
9808 return -ENXIO;
9809
9810 if (io_register_op_must_quiesce(opcode)) {
9811 percpu_ref_kill(&ctx->refs);
9812
9813 /*
9814 * Drop uring mutex before waiting for references to exit. If
9815 * another thread is currently inside io_uring_enter() it might
9816 * need to grab the uring_lock to make progress. If we hold it
9817 * here across the drain wait, then we can deadlock. It's safe
9818 * to drop the mutex here, since no new references will come in
9819 * after we've killed the percpu ref.
9820 */
9821 mutex_unlock(&ctx->uring_lock);
9822 do {
9823 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9824 if (!ret)
9825 break;
9826 ret = io_run_task_work_sig();
9827 if (ret < 0)
9828 break;
9829 } while (1);
9830
9831 mutex_lock(&ctx->uring_lock);
9832
9833 if (ret) {
9834 percpu_ref_resurrect(&ctx->refs);
9835 goto out_quiesce;
9836 }
9837 }
9838
9839 if (ctx->restricted) {
9840 if (opcode >= IORING_REGISTER_LAST) {
9841 ret = -EINVAL;
9842 goto out;
9843 }
9844
9845 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9846 ret = -EACCES;
9847 goto out;
9848 }
9849 }
9850
9851 switch (opcode) {
9852 case IORING_REGISTER_BUFFERS:
9853 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9854 break;
9855 case IORING_UNREGISTER_BUFFERS:
9856 ret = -EINVAL;
9857 if (arg || nr_args)
9858 break;
9859 ret = io_sqe_buffer_unregister(ctx);
9860 break;
9861 case IORING_REGISTER_FILES:
9862 ret = io_sqe_files_register(ctx, arg, nr_args);
9863 break;
9864 case IORING_UNREGISTER_FILES:
9865 ret = -EINVAL;
9866 if (arg || nr_args)
9867 break;
9868 ret = io_sqe_files_unregister(ctx);
9869 break;
9870 case IORING_REGISTER_FILES_UPDATE:
9871 ret = io_sqe_files_update(ctx, arg, nr_args);
9872 break;
9873 case IORING_REGISTER_EVENTFD:
9874 case IORING_REGISTER_EVENTFD_ASYNC:
9875 ret = -EINVAL;
9876 if (nr_args != 1)
9877 break;
9878 ret = io_eventfd_register(ctx, arg);
9879 if (ret)
9880 break;
9881 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9882 ctx->eventfd_async = 1;
9883 else
9884 ctx->eventfd_async = 0;
9885 break;
9886 case IORING_UNREGISTER_EVENTFD:
9887 ret = -EINVAL;
9888 if (arg || nr_args)
9889 break;
9890 ret = io_eventfd_unregister(ctx);
9891 break;
9892 case IORING_REGISTER_PROBE:
9893 ret = -EINVAL;
9894 if (!arg || nr_args > 256)
9895 break;
9896 ret = io_probe(ctx, arg, nr_args);
9897 break;
9898 case IORING_REGISTER_PERSONALITY:
9899 ret = -EINVAL;
9900 if (arg || nr_args)
9901 break;
9902 ret = io_register_personality(ctx);
9903 break;
9904 case IORING_UNREGISTER_PERSONALITY:
9905 ret = -EINVAL;
9906 if (arg)
9907 break;
9908 ret = io_unregister_personality(ctx, nr_args);
9909 break;
9910 case IORING_REGISTER_ENABLE_RINGS:
9911 ret = -EINVAL;
9912 if (arg || nr_args)
9913 break;
9914 ret = io_register_enable_rings(ctx);
9915 break;
9916 case IORING_REGISTER_RESTRICTIONS:
9917 ret = io_register_restrictions(ctx, arg, nr_args);
9918 break;
9919 default:
9920 ret = -EINVAL;
9921 break;
9922 }
9923
9924 out:
9925 if (io_register_op_must_quiesce(opcode)) {
9926 /* bring the ctx back to life */
9927 percpu_ref_reinit(&ctx->refs);
9928 out_quiesce:
9929 reinit_completion(&ctx->ref_comp);
9930 }
9931 return ret;
9932 }
9933
9934 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9935 void __user *, arg, unsigned int, nr_args)
9936 {
9937 struct io_ring_ctx *ctx;
9938 long ret = -EBADF;
9939 struct fd f;
9940
9941 f = fdget(fd);
9942 if (!f.file)
9943 return -EBADF;
9944
9945 ret = -EOPNOTSUPP;
9946 if (f.file->f_op != &io_uring_fops)
9947 goto out_fput;
9948
9949 ctx = f.file->private_data;
9950
9951 mutex_lock(&ctx->uring_lock);
9952 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9953 mutex_unlock(&ctx->uring_lock);
9954 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9955 ctx->cq_ev_fd != NULL, ret);
9956 out_fput:
9957 fdput(f);
9958 return ret;
9959 }
9960
9961 static int __init io_uring_init(void)
9962 {
9963 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9964 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9965 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9966 } while (0)
9967
9968 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9969 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9970 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9971 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9972 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9973 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9974 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9975 BUILD_BUG_SQE_ELEM(8, __u64, off);
9976 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9977 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9978 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9979 BUILD_BUG_SQE_ELEM(24, __u32, len);
9980 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9981 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9982 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9983 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9984 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9985 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9986 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9987 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9988 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9989 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9990 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9991 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9992 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9993 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
9994 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
9995 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
9996 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
9997 BUILD_BUG_SQE_ELEM(42, __u16, personality);
9998 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
9999
10000 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10001 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10002 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10003 return 0;
10004 };
10005 __initcall(io_uring_init);