]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'drm-msm-fixes-2021-10-18' of https://gitlab.freedesktop.org/drm/msm into...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 };
460 };
461
462 struct io_uring_task {
463 /* submission side */
464 int cached_refs;
465 struct xarray xa;
466 struct wait_queue_head wait;
467 const struct io_ring_ctx *last;
468 struct io_wq *io_wq;
469 struct percpu_counter inflight;
470 atomic_t inflight_tracked;
471 atomic_t in_idle;
472
473 spinlock_t task_lock;
474 struct io_wq_work_list task_list;
475 struct callback_head task_work;
476 bool task_running;
477 };
478
479 /*
480 * First field must be the file pointer in all the
481 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
482 */
483 struct io_poll_iocb {
484 struct file *file;
485 struct wait_queue_head *head;
486 __poll_t events;
487 bool done;
488 bool canceled;
489 struct wait_queue_entry wait;
490 };
491
492 struct io_poll_update {
493 struct file *file;
494 u64 old_user_data;
495 u64 new_user_data;
496 __poll_t events;
497 bool update_events;
498 bool update_user_data;
499 };
500
501 struct io_close {
502 struct file *file;
503 int fd;
504 u32 file_slot;
505 };
506
507 struct io_timeout_data {
508 struct io_kiocb *req;
509 struct hrtimer timer;
510 struct timespec64 ts;
511 enum hrtimer_mode mode;
512 u32 flags;
513 };
514
515 struct io_accept {
516 struct file *file;
517 struct sockaddr __user *addr;
518 int __user *addr_len;
519 int flags;
520 u32 file_slot;
521 unsigned long nofile;
522 };
523
524 struct io_sync {
525 struct file *file;
526 loff_t len;
527 loff_t off;
528 int flags;
529 int mode;
530 };
531
532 struct io_cancel {
533 struct file *file;
534 u64 addr;
535 };
536
537 struct io_timeout {
538 struct file *file;
539 u32 off;
540 u32 target_seq;
541 struct list_head list;
542 /* head of the link, used by linked timeouts only */
543 struct io_kiocb *head;
544 /* for linked completions */
545 struct io_kiocb *prev;
546 };
547
548 struct io_timeout_rem {
549 struct file *file;
550 u64 addr;
551
552 /* timeout update */
553 struct timespec64 ts;
554 u32 flags;
555 bool ltimeout;
556 };
557
558 struct io_rw {
559 /* NOTE: kiocb has the file as the first member, so don't do it here */
560 struct kiocb kiocb;
561 u64 addr;
562 u64 len;
563 };
564
565 struct io_connect {
566 struct file *file;
567 struct sockaddr __user *addr;
568 int addr_len;
569 };
570
571 struct io_sr_msg {
572 struct file *file;
573 union {
574 struct compat_msghdr __user *umsg_compat;
575 struct user_msghdr __user *umsg;
576 void __user *buf;
577 };
578 int msg_flags;
579 int bgid;
580 size_t len;
581 struct io_buffer *kbuf;
582 };
583
584 struct io_open {
585 struct file *file;
586 int dfd;
587 u32 file_slot;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591 };
592
593 struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598 };
599
600 struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605 };
606
607 struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620 };
621
622 struct io_splice {
623 struct file *file_out;
624 struct file *file_in;
625 loff_t off_out;
626 loff_t off_in;
627 u64 len;
628 unsigned int flags;
629 };
630
631 struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638 };
639
640 struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647 };
648
649 struct io_shutdown {
650 struct file *file;
651 int how;
652 };
653
654 struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661 };
662
663 struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668 };
669
670 struct io_mkdir {
671 struct file *file;
672 int dfd;
673 umode_t mode;
674 struct filename *filename;
675 };
676
677 struct io_symlink {
678 struct file *file;
679 int new_dfd;
680 struct filename *oldpath;
681 struct filename *newpath;
682 };
683
684 struct io_hardlink {
685 struct file *file;
686 int old_dfd;
687 int new_dfd;
688 struct filename *oldpath;
689 struct filename *newpath;
690 int flags;
691 };
692
693 struct io_completion {
694 struct file *file;
695 u32 cflags;
696 };
697
698 struct io_async_connect {
699 struct sockaddr_storage address;
700 };
701
702 struct io_async_msghdr {
703 struct iovec fast_iov[UIO_FASTIOV];
704 /* points to an allocated iov, if NULL we use fast_iov instead */
705 struct iovec *free_iov;
706 struct sockaddr __user *uaddr;
707 struct msghdr msg;
708 struct sockaddr_storage addr;
709 };
710
711 struct io_async_rw {
712 struct iovec fast_iov[UIO_FASTIOV];
713 const struct iovec *free_iovec;
714 struct iov_iter iter;
715 struct iov_iter_state iter_state;
716 size_t bytes_done;
717 struct wait_page_queue wpq;
718 };
719
720 enum {
721 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
722 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
723 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
724 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
725 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
726 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
727
728 /* first byte is taken by user flags, shift it to not overlap */
729 REQ_F_FAIL_BIT = 8,
730 REQ_F_INFLIGHT_BIT,
731 REQ_F_CUR_POS_BIT,
732 REQ_F_NOWAIT_BIT,
733 REQ_F_LINK_TIMEOUT_BIT,
734 REQ_F_NEED_CLEANUP_BIT,
735 REQ_F_POLLED_BIT,
736 REQ_F_BUFFER_SELECTED_BIT,
737 REQ_F_COMPLETE_INLINE_BIT,
738 REQ_F_REISSUE_BIT,
739 REQ_F_CREDS_BIT,
740 REQ_F_REFCOUNT_BIT,
741 REQ_F_ARM_LTIMEOUT_BIT,
742 /* keep async read/write and isreg together and in order */
743 REQ_F_NOWAIT_READ_BIT,
744 REQ_F_NOWAIT_WRITE_BIT,
745 REQ_F_ISREG_BIT,
746
747 /* not a real bit, just to check we're not overflowing the space */
748 __REQ_F_LAST_BIT,
749 };
750
751 enum {
752 /* ctx owns file */
753 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
754 /* drain existing IO first */
755 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
756 /* linked sqes */
757 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
758 /* doesn't sever on completion < 0 */
759 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
760 /* IOSQE_ASYNC */
761 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
762 /* IOSQE_BUFFER_SELECT */
763 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
764
765 /* fail rest of links */
766 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
767 /* on inflight list, should be cancelled and waited on exit reliably */
768 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
769 /* read/write uses file position */
770 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
771 /* must not punt to workers */
772 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
773 /* has or had linked timeout */
774 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
775 /* needs cleanup */
776 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
777 /* already went through poll handler */
778 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
779 /* buffer already selected */
780 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
781 /* completion is deferred through io_comp_state */
782 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
783 /* caller should reissue async */
784 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
785 /* supports async reads */
786 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
787 /* supports async writes */
788 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
789 /* regular file */
790 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
791 /* has creds assigned */
792 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
793 /* skip refcounting if not set */
794 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
795 /* there is a linked timeout that has to be armed */
796 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
797 };
798
799 struct async_poll {
800 struct io_poll_iocb poll;
801 struct io_poll_iocb *double_poll;
802 };
803
804 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
805
806 struct io_task_work {
807 union {
808 struct io_wq_work_node node;
809 struct llist_node fallback_node;
810 };
811 io_req_tw_func_t func;
812 };
813
814 enum {
815 IORING_RSRC_FILE = 0,
816 IORING_RSRC_BUFFER = 1,
817 };
818
819 /*
820 * NOTE! Each of the iocb union members has the file pointer
821 * as the first entry in their struct definition. So you can
822 * access the file pointer through any of the sub-structs,
823 * or directly as just 'ki_filp' in this struct.
824 */
825 struct io_kiocb {
826 union {
827 struct file *file;
828 struct io_rw rw;
829 struct io_poll_iocb poll;
830 struct io_poll_update poll_update;
831 struct io_accept accept;
832 struct io_sync sync;
833 struct io_cancel cancel;
834 struct io_timeout timeout;
835 struct io_timeout_rem timeout_rem;
836 struct io_connect connect;
837 struct io_sr_msg sr_msg;
838 struct io_open open;
839 struct io_close close;
840 struct io_rsrc_update rsrc_update;
841 struct io_fadvise fadvise;
842 struct io_madvise madvise;
843 struct io_epoll epoll;
844 struct io_splice splice;
845 struct io_provide_buf pbuf;
846 struct io_statx statx;
847 struct io_shutdown shutdown;
848 struct io_rename rename;
849 struct io_unlink unlink;
850 struct io_mkdir mkdir;
851 struct io_symlink symlink;
852 struct io_hardlink hardlink;
853 /* use only after cleaning per-op data, see io_clean_op() */
854 struct io_completion compl;
855 };
856
857 /* opcode allocated if it needs to store data for async defer */
858 void *async_data;
859 u8 opcode;
860 /* polled IO has completed */
861 u8 iopoll_completed;
862
863 u16 buf_index;
864 u32 result;
865
866 struct io_ring_ctx *ctx;
867 unsigned int flags;
868 atomic_t refs;
869 struct task_struct *task;
870 u64 user_data;
871
872 struct io_kiocb *link;
873 struct percpu_ref *fixed_rsrc_refs;
874
875 /* used with ctx->iopoll_list with reads/writes */
876 struct list_head inflight_entry;
877 struct io_task_work io_task_work;
878 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
879 struct hlist_node hash_node;
880 struct async_poll *apoll;
881 struct io_wq_work work;
882 const struct cred *creds;
883
884 /* store used ubuf, so we can prevent reloading */
885 struct io_mapped_ubuf *imu;
886 };
887
888 struct io_tctx_node {
889 struct list_head ctx_node;
890 struct task_struct *task;
891 struct io_ring_ctx *ctx;
892 };
893
894 struct io_defer_entry {
895 struct list_head list;
896 struct io_kiocb *req;
897 u32 seq;
898 };
899
900 struct io_op_def {
901 /* needs req->file assigned */
902 unsigned needs_file : 1;
903 /* hash wq insertion if file is a regular file */
904 unsigned hash_reg_file : 1;
905 /* unbound wq insertion if file is a non-regular file */
906 unsigned unbound_nonreg_file : 1;
907 /* opcode is not supported by this kernel */
908 unsigned not_supported : 1;
909 /* set if opcode supports polled "wait" */
910 unsigned pollin : 1;
911 unsigned pollout : 1;
912 /* op supports buffer selection */
913 unsigned buffer_select : 1;
914 /* do prep async if is going to be punted */
915 unsigned needs_async_setup : 1;
916 /* should block plug */
917 unsigned plug : 1;
918 /* size of async data needed, if any */
919 unsigned short async_size;
920 };
921
922 static const struct io_op_def io_op_defs[] = {
923 [IORING_OP_NOP] = {},
924 [IORING_OP_READV] = {
925 .needs_file = 1,
926 .unbound_nonreg_file = 1,
927 .pollin = 1,
928 .buffer_select = 1,
929 .needs_async_setup = 1,
930 .plug = 1,
931 .async_size = sizeof(struct io_async_rw),
932 },
933 [IORING_OP_WRITEV] = {
934 .needs_file = 1,
935 .hash_reg_file = 1,
936 .unbound_nonreg_file = 1,
937 .pollout = 1,
938 .needs_async_setup = 1,
939 .plug = 1,
940 .async_size = sizeof(struct io_async_rw),
941 },
942 [IORING_OP_FSYNC] = {
943 .needs_file = 1,
944 },
945 [IORING_OP_READ_FIXED] = {
946 .needs_file = 1,
947 .unbound_nonreg_file = 1,
948 .pollin = 1,
949 .plug = 1,
950 .async_size = sizeof(struct io_async_rw),
951 },
952 [IORING_OP_WRITE_FIXED] = {
953 .needs_file = 1,
954 .hash_reg_file = 1,
955 .unbound_nonreg_file = 1,
956 .pollout = 1,
957 .plug = 1,
958 .async_size = sizeof(struct io_async_rw),
959 },
960 [IORING_OP_POLL_ADD] = {
961 .needs_file = 1,
962 .unbound_nonreg_file = 1,
963 },
964 [IORING_OP_POLL_REMOVE] = {},
965 [IORING_OP_SYNC_FILE_RANGE] = {
966 .needs_file = 1,
967 },
968 [IORING_OP_SENDMSG] = {
969 .needs_file = 1,
970 .unbound_nonreg_file = 1,
971 .pollout = 1,
972 .needs_async_setup = 1,
973 .async_size = sizeof(struct io_async_msghdr),
974 },
975 [IORING_OP_RECVMSG] = {
976 .needs_file = 1,
977 .unbound_nonreg_file = 1,
978 .pollin = 1,
979 .buffer_select = 1,
980 .needs_async_setup = 1,
981 .async_size = sizeof(struct io_async_msghdr),
982 },
983 [IORING_OP_TIMEOUT] = {
984 .async_size = sizeof(struct io_timeout_data),
985 },
986 [IORING_OP_TIMEOUT_REMOVE] = {
987 /* used by timeout updates' prep() */
988 },
989 [IORING_OP_ACCEPT] = {
990 .needs_file = 1,
991 .unbound_nonreg_file = 1,
992 .pollin = 1,
993 },
994 [IORING_OP_ASYNC_CANCEL] = {},
995 [IORING_OP_LINK_TIMEOUT] = {
996 .async_size = sizeof(struct io_timeout_data),
997 },
998 [IORING_OP_CONNECT] = {
999 .needs_file = 1,
1000 .unbound_nonreg_file = 1,
1001 .pollout = 1,
1002 .needs_async_setup = 1,
1003 .async_size = sizeof(struct io_async_connect),
1004 },
1005 [IORING_OP_FALLOCATE] = {
1006 .needs_file = 1,
1007 },
1008 [IORING_OP_OPENAT] = {},
1009 [IORING_OP_CLOSE] = {},
1010 [IORING_OP_FILES_UPDATE] = {},
1011 [IORING_OP_STATX] = {},
1012 [IORING_OP_READ] = {
1013 .needs_file = 1,
1014 .unbound_nonreg_file = 1,
1015 .pollin = 1,
1016 .buffer_select = 1,
1017 .plug = 1,
1018 .async_size = sizeof(struct io_async_rw),
1019 },
1020 [IORING_OP_WRITE] = {
1021 .needs_file = 1,
1022 .hash_reg_file = 1,
1023 .unbound_nonreg_file = 1,
1024 .pollout = 1,
1025 .plug = 1,
1026 .async_size = sizeof(struct io_async_rw),
1027 },
1028 [IORING_OP_FADVISE] = {
1029 .needs_file = 1,
1030 },
1031 [IORING_OP_MADVISE] = {},
1032 [IORING_OP_SEND] = {
1033 .needs_file = 1,
1034 .unbound_nonreg_file = 1,
1035 .pollout = 1,
1036 },
1037 [IORING_OP_RECV] = {
1038 .needs_file = 1,
1039 .unbound_nonreg_file = 1,
1040 .pollin = 1,
1041 .buffer_select = 1,
1042 },
1043 [IORING_OP_OPENAT2] = {
1044 },
1045 [IORING_OP_EPOLL_CTL] = {
1046 .unbound_nonreg_file = 1,
1047 },
1048 [IORING_OP_SPLICE] = {
1049 .needs_file = 1,
1050 .hash_reg_file = 1,
1051 .unbound_nonreg_file = 1,
1052 },
1053 [IORING_OP_PROVIDE_BUFFERS] = {},
1054 [IORING_OP_REMOVE_BUFFERS] = {},
1055 [IORING_OP_TEE] = {
1056 .needs_file = 1,
1057 .hash_reg_file = 1,
1058 .unbound_nonreg_file = 1,
1059 },
1060 [IORING_OP_SHUTDOWN] = {
1061 .needs_file = 1,
1062 },
1063 [IORING_OP_RENAMEAT] = {},
1064 [IORING_OP_UNLINKAT] = {},
1065 [IORING_OP_MKDIRAT] = {},
1066 [IORING_OP_SYMLINKAT] = {},
1067 [IORING_OP_LINKAT] = {},
1068 };
1069
1070 /* requests with any of those set should undergo io_disarm_next() */
1071 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1072
1073 static bool io_disarm_next(struct io_kiocb *req);
1074 static void io_uring_del_tctx_node(unsigned long index);
1075 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1076 struct task_struct *task,
1077 bool cancel_all);
1078 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1079
1080 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1081 long res, unsigned int cflags);
1082 static void io_put_req(struct io_kiocb *req);
1083 static void io_put_req_deferred(struct io_kiocb *req);
1084 static void io_dismantle_req(struct io_kiocb *req);
1085 static void io_queue_linked_timeout(struct io_kiocb *req);
1086 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1087 struct io_uring_rsrc_update2 *up,
1088 unsigned nr_args);
1089 static void io_clean_op(struct io_kiocb *req);
1090 static struct file *io_file_get(struct io_ring_ctx *ctx,
1091 struct io_kiocb *req, int fd, bool fixed);
1092 static void __io_queue_sqe(struct io_kiocb *req);
1093 static void io_rsrc_put_work(struct work_struct *work);
1094
1095 static void io_req_task_queue(struct io_kiocb *req);
1096 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1097 static int io_req_prep_async(struct io_kiocb *req);
1098
1099 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1100 unsigned int issue_flags, u32 slot_index);
1101 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1102
1103 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1104
1105 static struct kmem_cache *req_cachep;
1106
1107 static const struct file_operations io_uring_fops;
1108
1109 struct sock *io_uring_get_socket(struct file *file)
1110 {
1111 #if defined(CONFIG_UNIX)
1112 if (file->f_op == &io_uring_fops) {
1113 struct io_ring_ctx *ctx = file->private_data;
1114
1115 return ctx->ring_sock->sk;
1116 }
1117 #endif
1118 return NULL;
1119 }
1120 EXPORT_SYMBOL(io_uring_get_socket);
1121
1122 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1123 {
1124 if (!*locked) {
1125 mutex_lock(&ctx->uring_lock);
1126 *locked = true;
1127 }
1128 }
1129
1130 #define io_for_each_link(pos, head) \
1131 for (pos = (head); pos; pos = pos->link)
1132
1133 /*
1134 * Shamelessly stolen from the mm implementation of page reference checking,
1135 * see commit f958d7b528b1 for details.
1136 */
1137 #define req_ref_zero_or_close_to_overflow(req) \
1138 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1139
1140 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1141 {
1142 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1143 return atomic_inc_not_zero(&req->refs);
1144 }
1145
1146 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1147 {
1148 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1149 return true;
1150
1151 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1152 return atomic_dec_and_test(&req->refs);
1153 }
1154
1155 static inline void req_ref_put(struct io_kiocb *req)
1156 {
1157 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1158 WARN_ON_ONCE(req_ref_put_and_test(req));
1159 }
1160
1161 static inline void req_ref_get(struct io_kiocb *req)
1162 {
1163 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1164 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1165 atomic_inc(&req->refs);
1166 }
1167
1168 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1169 {
1170 if (!(req->flags & REQ_F_REFCOUNT)) {
1171 req->flags |= REQ_F_REFCOUNT;
1172 atomic_set(&req->refs, nr);
1173 }
1174 }
1175
1176 static inline void io_req_set_refcount(struct io_kiocb *req)
1177 {
1178 __io_req_set_refcount(req, 1);
1179 }
1180
1181 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1182 {
1183 struct io_ring_ctx *ctx = req->ctx;
1184
1185 if (!req->fixed_rsrc_refs) {
1186 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1187 percpu_ref_get(req->fixed_rsrc_refs);
1188 }
1189 }
1190
1191 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1192 {
1193 bool got = percpu_ref_tryget(ref);
1194
1195 /* already at zero, wait for ->release() */
1196 if (!got)
1197 wait_for_completion(compl);
1198 percpu_ref_resurrect(ref);
1199 if (got)
1200 percpu_ref_put(ref);
1201 }
1202
1203 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1204 bool cancel_all)
1205 {
1206 struct io_kiocb *req;
1207
1208 if (task && head->task != task)
1209 return false;
1210 if (cancel_all)
1211 return true;
1212
1213 io_for_each_link(req, head) {
1214 if (req->flags & REQ_F_INFLIGHT)
1215 return true;
1216 }
1217 return false;
1218 }
1219
1220 static inline void req_set_fail(struct io_kiocb *req)
1221 {
1222 req->flags |= REQ_F_FAIL;
1223 }
1224
1225 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1226 {
1227 req_set_fail(req);
1228 req->result = res;
1229 }
1230
1231 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1232 {
1233 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1234
1235 complete(&ctx->ref_comp);
1236 }
1237
1238 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1239 {
1240 return !req->timeout.off;
1241 }
1242
1243 static void io_fallback_req_func(struct work_struct *work)
1244 {
1245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1246 fallback_work.work);
1247 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1248 struct io_kiocb *req, *tmp;
1249 bool locked = false;
1250
1251 percpu_ref_get(&ctx->refs);
1252 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1253 req->io_task_work.func(req, &locked);
1254
1255 if (locked) {
1256 if (ctx->submit_state.compl_nr)
1257 io_submit_flush_completions(ctx);
1258 mutex_unlock(&ctx->uring_lock);
1259 }
1260 percpu_ref_put(&ctx->refs);
1261
1262 }
1263
1264 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1265 {
1266 struct io_ring_ctx *ctx;
1267 int hash_bits;
1268
1269 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1270 if (!ctx)
1271 return NULL;
1272
1273 /*
1274 * Use 5 bits less than the max cq entries, that should give us around
1275 * 32 entries per hash list if totally full and uniformly spread.
1276 */
1277 hash_bits = ilog2(p->cq_entries);
1278 hash_bits -= 5;
1279 if (hash_bits <= 0)
1280 hash_bits = 1;
1281 ctx->cancel_hash_bits = hash_bits;
1282 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1283 GFP_KERNEL);
1284 if (!ctx->cancel_hash)
1285 goto err;
1286 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1287
1288 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1289 if (!ctx->dummy_ubuf)
1290 goto err;
1291 /* set invalid range, so io_import_fixed() fails meeting it */
1292 ctx->dummy_ubuf->ubuf = -1UL;
1293
1294 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1295 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1296 goto err;
1297
1298 ctx->flags = p->flags;
1299 init_waitqueue_head(&ctx->sqo_sq_wait);
1300 INIT_LIST_HEAD(&ctx->sqd_list);
1301 init_waitqueue_head(&ctx->poll_wait);
1302 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1303 init_completion(&ctx->ref_comp);
1304 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1305 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1306 mutex_init(&ctx->uring_lock);
1307 init_waitqueue_head(&ctx->cq_wait);
1308 spin_lock_init(&ctx->completion_lock);
1309 spin_lock_init(&ctx->timeout_lock);
1310 INIT_LIST_HEAD(&ctx->iopoll_list);
1311 INIT_LIST_HEAD(&ctx->defer_list);
1312 INIT_LIST_HEAD(&ctx->timeout_list);
1313 INIT_LIST_HEAD(&ctx->ltimeout_list);
1314 spin_lock_init(&ctx->rsrc_ref_lock);
1315 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1316 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1317 init_llist_head(&ctx->rsrc_put_llist);
1318 INIT_LIST_HEAD(&ctx->tctx_list);
1319 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1320 INIT_LIST_HEAD(&ctx->locked_free_list);
1321 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1322 return ctx;
1323 err:
1324 kfree(ctx->dummy_ubuf);
1325 kfree(ctx->cancel_hash);
1326 kfree(ctx);
1327 return NULL;
1328 }
1329
1330 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1331 {
1332 struct io_rings *r = ctx->rings;
1333
1334 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1335 ctx->cq_extra--;
1336 }
1337
1338 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1339 {
1340 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1341 struct io_ring_ctx *ctx = req->ctx;
1342
1343 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1344 }
1345
1346 return false;
1347 }
1348
1349 #define FFS_ASYNC_READ 0x1UL
1350 #define FFS_ASYNC_WRITE 0x2UL
1351 #ifdef CONFIG_64BIT
1352 #define FFS_ISREG 0x4UL
1353 #else
1354 #define FFS_ISREG 0x0UL
1355 #endif
1356 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1357
1358 static inline bool io_req_ffs_set(struct io_kiocb *req)
1359 {
1360 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1361 }
1362
1363 static void io_req_track_inflight(struct io_kiocb *req)
1364 {
1365 if (!(req->flags & REQ_F_INFLIGHT)) {
1366 req->flags |= REQ_F_INFLIGHT;
1367 atomic_inc(&current->io_uring->inflight_tracked);
1368 }
1369 }
1370
1371 static inline void io_unprep_linked_timeout(struct io_kiocb *req)
1372 {
1373 req->flags &= ~REQ_F_LINK_TIMEOUT;
1374 }
1375
1376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1377 {
1378 if (WARN_ON_ONCE(!req->link))
1379 return NULL;
1380
1381 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1382 req->flags |= REQ_F_LINK_TIMEOUT;
1383
1384 /* linked timeouts should have two refs once prep'ed */
1385 io_req_set_refcount(req);
1386 __io_req_set_refcount(req->link, 2);
1387 return req->link;
1388 }
1389
1390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1391 {
1392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1393 return NULL;
1394 return __io_prep_linked_timeout(req);
1395 }
1396
1397 static void io_prep_async_work(struct io_kiocb *req)
1398 {
1399 const struct io_op_def *def = &io_op_defs[req->opcode];
1400 struct io_ring_ctx *ctx = req->ctx;
1401
1402 if (!(req->flags & REQ_F_CREDS)) {
1403 req->flags |= REQ_F_CREDS;
1404 req->creds = get_current_cred();
1405 }
1406
1407 req->work.list.next = NULL;
1408 req->work.flags = 0;
1409 if (req->flags & REQ_F_FORCE_ASYNC)
1410 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1411
1412 if (req->flags & REQ_F_ISREG) {
1413 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1414 io_wq_hash_work(&req->work, file_inode(req->file));
1415 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1416 if (def->unbound_nonreg_file)
1417 req->work.flags |= IO_WQ_WORK_UNBOUND;
1418 }
1419
1420 switch (req->opcode) {
1421 case IORING_OP_SPLICE:
1422 case IORING_OP_TEE:
1423 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1424 req->work.flags |= IO_WQ_WORK_UNBOUND;
1425 break;
1426 }
1427 }
1428
1429 static void io_prep_async_link(struct io_kiocb *req)
1430 {
1431 struct io_kiocb *cur;
1432
1433 if (req->flags & REQ_F_LINK_TIMEOUT) {
1434 struct io_ring_ctx *ctx = req->ctx;
1435
1436 spin_lock(&ctx->completion_lock);
1437 io_for_each_link(cur, req)
1438 io_prep_async_work(cur);
1439 spin_unlock(&ctx->completion_lock);
1440 } else {
1441 io_for_each_link(cur, req)
1442 io_prep_async_work(cur);
1443 }
1444 }
1445
1446 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1447 {
1448 struct io_ring_ctx *ctx = req->ctx;
1449 struct io_kiocb *link = io_prep_linked_timeout(req);
1450 struct io_uring_task *tctx = req->task->io_uring;
1451
1452 /* must not take the lock, NULL it as a precaution */
1453 locked = NULL;
1454
1455 BUG_ON(!tctx);
1456 BUG_ON(!tctx->io_wq);
1457
1458 /* init ->work of the whole link before punting */
1459 io_prep_async_link(req);
1460
1461 /*
1462 * Not expected to happen, but if we do have a bug where this _can_
1463 * happen, catch it here and ensure the request is marked as
1464 * canceled. That will make io-wq go through the usual work cancel
1465 * procedure rather than attempt to run this request (or create a new
1466 * worker for it).
1467 */
1468 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1469 req->work.flags |= IO_WQ_WORK_CANCEL;
1470
1471 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1472 &req->work, req->flags);
1473 io_wq_enqueue(tctx->io_wq, &req->work);
1474 if (link)
1475 io_queue_linked_timeout(link);
1476 }
1477
1478 static void io_kill_timeout(struct io_kiocb *req, int status)
1479 __must_hold(&req->ctx->completion_lock)
1480 __must_hold(&req->ctx->timeout_lock)
1481 {
1482 struct io_timeout_data *io = req->async_data;
1483
1484 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1485 if (status)
1486 req_set_fail(req);
1487 atomic_set(&req->ctx->cq_timeouts,
1488 atomic_read(&req->ctx->cq_timeouts) + 1);
1489 list_del_init(&req->timeout.list);
1490 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1491 io_put_req_deferred(req);
1492 }
1493 }
1494
1495 static void io_queue_deferred(struct io_ring_ctx *ctx)
1496 {
1497 while (!list_empty(&ctx->defer_list)) {
1498 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1499 struct io_defer_entry, list);
1500
1501 if (req_need_defer(de->req, de->seq))
1502 break;
1503 list_del_init(&de->list);
1504 io_req_task_queue(de->req);
1505 kfree(de);
1506 }
1507 }
1508
1509 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1510 __must_hold(&ctx->completion_lock)
1511 {
1512 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1513
1514 spin_lock_irq(&ctx->timeout_lock);
1515 while (!list_empty(&ctx->timeout_list)) {
1516 u32 events_needed, events_got;
1517 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1518 struct io_kiocb, timeout.list);
1519
1520 if (io_is_timeout_noseq(req))
1521 break;
1522
1523 /*
1524 * Since seq can easily wrap around over time, subtract
1525 * the last seq at which timeouts were flushed before comparing.
1526 * Assuming not more than 2^31-1 events have happened since,
1527 * these subtractions won't have wrapped, so we can check if
1528 * target is in [last_seq, current_seq] by comparing the two.
1529 */
1530 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1531 events_got = seq - ctx->cq_last_tm_flush;
1532 if (events_got < events_needed)
1533 break;
1534
1535 list_del_init(&req->timeout.list);
1536 io_kill_timeout(req, 0);
1537 }
1538 ctx->cq_last_tm_flush = seq;
1539 spin_unlock_irq(&ctx->timeout_lock);
1540 }
1541
1542 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1543 {
1544 if (ctx->off_timeout_used)
1545 io_flush_timeouts(ctx);
1546 if (ctx->drain_active)
1547 io_queue_deferred(ctx);
1548 }
1549
1550 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1551 {
1552 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1553 __io_commit_cqring_flush(ctx);
1554 /* order cqe stores with ring update */
1555 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1556 }
1557
1558 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1559 {
1560 struct io_rings *r = ctx->rings;
1561
1562 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1563 }
1564
1565 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1566 {
1567 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1568 }
1569
1570 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1571 {
1572 struct io_rings *rings = ctx->rings;
1573 unsigned tail, mask = ctx->cq_entries - 1;
1574
1575 /*
1576 * writes to the cq entry need to come after reading head; the
1577 * control dependency is enough as we're using WRITE_ONCE to
1578 * fill the cq entry
1579 */
1580 if (__io_cqring_events(ctx) == ctx->cq_entries)
1581 return NULL;
1582
1583 tail = ctx->cached_cq_tail++;
1584 return &rings->cqes[tail & mask];
1585 }
1586
1587 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1588 {
1589 if (likely(!ctx->cq_ev_fd))
1590 return false;
1591 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1592 return false;
1593 return !ctx->eventfd_async || io_wq_current_is_worker();
1594 }
1595
1596 /*
1597 * This should only get called when at least one event has been posted.
1598 * Some applications rely on the eventfd notification count only changing
1599 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1600 * 1:1 relationship between how many times this function is called (and
1601 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1602 */
1603 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1604 {
1605 /*
1606 * wake_up_all() may seem excessive, but io_wake_function() and
1607 * io_should_wake() handle the termination of the loop and only
1608 * wake as many waiters as we need to.
1609 */
1610 if (wq_has_sleeper(&ctx->cq_wait))
1611 wake_up_all(&ctx->cq_wait);
1612 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1613 wake_up(&ctx->sq_data->wait);
1614 if (io_should_trigger_evfd(ctx))
1615 eventfd_signal(ctx->cq_ev_fd, 1);
1616 if (waitqueue_active(&ctx->poll_wait))
1617 wake_up_interruptible(&ctx->poll_wait);
1618 }
1619
1620 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1621 {
1622 /* see waitqueue_active() comment */
1623 smp_mb();
1624
1625 if (ctx->flags & IORING_SETUP_SQPOLL) {
1626 if (waitqueue_active(&ctx->cq_wait))
1627 wake_up_all(&ctx->cq_wait);
1628 }
1629 if (io_should_trigger_evfd(ctx))
1630 eventfd_signal(ctx->cq_ev_fd, 1);
1631 if (waitqueue_active(&ctx->poll_wait))
1632 wake_up_interruptible(&ctx->poll_wait);
1633 }
1634
1635 /* Returns true if there are no backlogged entries after the flush */
1636 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1637 {
1638 bool all_flushed, posted;
1639
1640 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1641 return false;
1642
1643 posted = false;
1644 spin_lock(&ctx->completion_lock);
1645 while (!list_empty(&ctx->cq_overflow_list)) {
1646 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1647 struct io_overflow_cqe *ocqe;
1648
1649 if (!cqe && !force)
1650 break;
1651 ocqe = list_first_entry(&ctx->cq_overflow_list,
1652 struct io_overflow_cqe, list);
1653 if (cqe)
1654 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1655 else
1656 io_account_cq_overflow(ctx);
1657
1658 posted = true;
1659 list_del(&ocqe->list);
1660 kfree(ocqe);
1661 }
1662
1663 all_flushed = list_empty(&ctx->cq_overflow_list);
1664 if (all_flushed) {
1665 clear_bit(0, &ctx->check_cq_overflow);
1666 WRITE_ONCE(ctx->rings->sq_flags,
1667 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1668 }
1669
1670 if (posted)
1671 io_commit_cqring(ctx);
1672 spin_unlock(&ctx->completion_lock);
1673 if (posted)
1674 io_cqring_ev_posted(ctx);
1675 return all_flushed;
1676 }
1677
1678 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1679 {
1680 bool ret = true;
1681
1682 if (test_bit(0, &ctx->check_cq_overflow)) {
1683 /* iopoll syncs against uring_lock, not completion_lock */
1684 if (ctx->flags & IORING_SETUP_IOPOLL)
1685 mutex_lock(&ctx->uring_lock);
1686 ret = __io_cqring_overflow_flush(ctx, false);
1687 if (ctx->flags & IORING_SETUP_IOPOLL)
1688 mutex_unlock(&ctx->uring_lock);
1689 }
1690
1691 return ret;
1692 }
1693
1694 /* must to be called somewhat shortly after putting a request */
1695 static inline void io_put_task(struct task_struct *task, int nr)
1696 {
1697 struct io_uring_task *tctx = task->io_uring;
1698
1699 if (likely(task == current)) {
1700 tctx->cached_refs += nr;
1701 } else {
1702 percpu_counter_sub(&tctx->inflight, nr);
1703 if (unlikely(atomic_read(&tctx->in_idle)))
1704 wake_up(&tctx->wait);
1705 put_task_struct_many(task, nr);
1706 }
1707 }
1708
1709 static void io_task_refs_refill(struct io_uring_task *tctx)
1710 {
1711 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1712
1713 percpu_counter_add(&tctx->inflight, refill);
1714 refcount_add(refill, &current->usage);
1715 tctx->cached_refs += refill;
1716 }
1717
1718 static inline void io_get_task_refs(int nr)
1719 {
1720 struct io_uring_task *tctx = current->io_uring;
1721
1722 tctx->cached_refs -= nr;
1723 if (unlikely(tctx->cached_refs < 0))
1724 io_task_refs_refill(tctx);
1725 }
1726
1727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1728 long res, unsigned int cflags)
1729 {
1730 struct io_overflow_cqe *ocqe;
1731
1732 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1733 if (!ocqe) {
1734 /*
1735 * If we're in ring overflow flush mode, or in task cancel mode,
1736 * or cannot allocate an overflow entry, then we need to drop it
1737 * on the floor.
1738 */
1739 io_account_cq_overflow(ctx);
1740 return false;
1741 }
1742 if (list_empty(&ctx->cq_overflow_list)) {
1743 set_bit(0, &ctx->check_cq_overflow);
1744 WRITE_ONCE(ctx->rings->sq_flags,
1745 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1746
1747 }
1748 ocqe->cqe.user_data = user_data;
1749 ocqe->cqe.res = res;
1750 ocqe->cqe.flags = cflags;
1751 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1752 return true;
1753 }
1754
1755 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1756 long res, unsigned int cflags)
1757 {
1758 struct io_uring_cqe *cqe;
1759
1760 trace_io_uring_complete(ctx, user_data, res, cflags);
1761
1762 /*
1763 * If we can't get a cq entry, userspace overflowed the
1764 * submission (by quite a lot). Increment the overflow count in
1765 * the ring.
1766 */
1767 cqe = io_get_cqe(ctx);
1768 if (likely(cqe)) {
1769 WRITE_ONCE(cqe->user_data, user_data);
1770 WRITE_ONCE(cqe->res, res);
1771 WRITE_ONCE(cqe->flags, cflags);
1772 return true;
1773 }
1774 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1775 }
1776
1777 /* not as hot to bloat with inlining */
1778 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1779 long res, unsigned int cflags)
1780 {
1781 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1782 }
1783
1784 static void io_req_complete_post(struct io_kiocb *req, long res,
1785 unsigned int cflags)
1786 {
1787 struct io_ring_ctx *ctx = req->ctx;
1788
1789 spin_lock(&ctx->completion_lock);
1790 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1791 /*
1792 * If we're the last reference to this request, add to our locked
1793 * free_list cache.
1794 */
1795 if (req_ref_put_and_test(req)) {
1796 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1797 if (req->flags & IO_DISARM_MASK)
1798 io_disarm_next(req);
1799 if (req->link) {
1800 io_req_task_queue(req->link);
1801 req->link = NULL;
1802 }
1803 }
1804 io_dismantle_req(req);
1805 io_put_task(req->task, 1);
1806 list_add(&req->inflight_entry, &ctx->locked_free_list);
1807 ctx->locked_free_nr++;
1808 } else {
1809 if (!percpu_ref_tryget(&ctx->refs))
1810 req = NULL;
1811 }
1812 io_commit_cqring(ctx);
1813 spin_unlock(&ctx->completion_lock);
1814
1815 if (req) {
1816 io_cqring_ev_posted(ctx);
1817 percpu_ref_put(&ctx->refs);
1818 }
1819 }
1820
1821 static inline bool io_req_needs_clean(struct io_kiocb *req)
1822 {
1823 return req->flags & IO_REQ_CLEAN_FLAGS;
1824 }
1825
1826 static void io_req_complete_state(struct io_kiocb *req, long res,
1827 unsigned int cflags)
1828 {
1829 if (io_req_needs_clean(req))
1830 io_clean_op(req);
1831 req->result = res;
1832 req->compl.cflags = cflags;
1833 req->flags |= REQ_F_COMPLETE_INLINE;
1834 }
1835
1836 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1837 long res, unsigned cflags)
1838 {
1839 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1840 io_req_complete_state(req, res, cflags);
1841 else
1842 io_req_complete_post(req, res, cflags);
1843 }
1844
1845 static inline void io_req_complete(struct io_kiocb *req, long res)
1846 {
1847 __io_req_complete(req, 0, res, 0);
1848 }
1849
1850 static void io_req_complete_failed(struct io_kiocb *req, long res)
1851 {
1852 req_set_fail(req);
1853 io_req_complete_post(req, res, 0);
1854 }
1855
1856 static void io_req_complete_fail_submit(struct io_kiocb *req)
1857 {
1858 /*
1859 * We don't submit, fail them all, for that replace hardlinks with
1860 * normal links. Extra REQ_F_LINK is tolerated.
1861 */
1862 req->flags &= ~REQ_F_HARDLINK;
1863 req->flags |= REQ_F_LINK;
1864 io_req_complete_failed(req, req->result);
1865 }
1866
1867 /*
1868 * Don't initialise the fields below on every allocation, but do that in
1869 * advance and keep them valid across allocations.
1870 */
1871 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1872 {
1873 req->ctx = ctx;
1874 req->link = NULL;
1875 req->async_data = NULL;
1876 /* not necessary, but safer to zero */
1877 req->result = 0;
1878 }
1879
1880 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1881 struct io_submit_state *state)
1882 {
1883 spin_lock(&ctx->completion_lock);
1884 list_splice_init(&ctx->locked_free_list, &state->free_list);
1885 ctx->locked_free_nr = 0;
1886 spin_unlock(&ctx->completion_lock);
1887 }
1888
1889 /* Returns true IFF there are requests in the cache */
1890 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1891 {
1892 struct io_submit_state *state = &ctx->submit_state;
1893 int nr;
1894
1895 /*
1896 * If we have more than a batch's worth of requests in our IRQ side
1897 * locked cache, grab the lock and move them over to our submission
1898 * side cache.
1899 */
1900 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1901 io_flush_cached_locked_reqs(ctx, state);
1902
1903 nr = state->free_reqs;
1904 while (!list_empty(&state->free_list)) {
1905 struct io_kiocb *req = list_first_entry(&state->free_list,
1906 struct io_kiocb, inflight_entry);
1907
1908 list_del(&req->inflight_entry);
1909 state->reqs[nr++] = req;
1910 if (nr == ARRAY_SIZE(state->reqs))
1911 break;
1912 }
1913
1914 state->free_reqs = nr;
1915 return nr != 0;
1916 }
1917
1918 /*
1919 * A request might get retired back into the request caches even before opcode
1920 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1921 * Because of that, io_alloc_req() should be called only under ->uring_lock
1922 * and with extra caution to not get a request that is still worked on.
1923 */
1924 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1925 __must_hold(&ctx->uring_lock)
1926 {
1927 struct io_submit_state *state = &ctx->submit_state;
1928 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1929 int ret, i;
1930
1931 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1932
1933 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1934 goto got_req;
1935
1936 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1937 state->reqs);
1938
1939 /*
1940 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1941 * retry single alloc to be on the safe side.
1942 */
1943 if (unlikely(ret <= 0)) {
1944 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1945 if (!state->reqs[0])
1946 return NULL;
1947 ret = 1;
1948 }
1949
1950 for (i = 0; i < ret; i++)
1951 io_preinit_req(state->reqs[i], ctx);
1952 state->free_reqs = ret;
1953 got_req:
1954 state->free_reqs--;
1955 return state->reqs[state->free_reqs];
1956 }
1957
1958 static inline void io_put_file(struct file *file)
1959 {
1960 if (file)
1961 fput(file);
1962 }
1963
1964 static void io_dismantle_req(struct io_kiocb *req)
1965 {
1966 unsigned int flags = req->flags;
1967
1968 if (io_req_needs_clean(req))
1969 io_clean_op(req);
1970 if (!(flags & REQ_F_FIXED_FILE))
1971 io_put_file(req->file);
1972 if (req->fixed_rsrc_refs)
1973 percpu_ref_put(req->fixed_rsrc_refs);
1974 if (req->async_data) {
1975 kfree(req->async_data);
1976 req->async_data = NULL;
1977 }
1978 }
1979
1980 static void __io_free_req(struct io_kiocb *req)
1981 {
1982 struct io_ring_ctx *ctx = req->ctx;
1983
1984 io_dismantle_req(req);
1985 io_put_task(req->task, 1);
1986
1987 spin_lock(&ctx->completion_lock);
1988 list_add(&req->inflight_entry, &ctx->locked_free_list);
1989 ctx->locked_free_nr++;
1990 spin_unlock(&ctx->completion_lock);
1991
1992 percpu_ref_put(&ctx->refs);
1993 }
1994
1995 static inline void io_remove_next_linked(struct io_kiocb *req)
1996 {
1997 struct io_kiocb *nxt = req->link;
1998
1999 req->link = nxt->link;
2000 nxt->link = NULL;
2001 }
2002
2003 static bool io_kill_linked_timeout(struct io_kiocb *req)
2004 __must_hold(&req->ctx->completion_lock)
2005 __must_hold(&req->ctx->timeout_lock)
2006 {
2007 struct io_kiocb *link = req->link;
2008
2009 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2010 struct io_timeout_data *io = link->async_data;
2011
2012 io_remove_next_linked(req);
2013 link->timeout.head = NULL;
2014 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2015 list_del(&link->timeout.list);
2016 io_cqring_fill_event(link->ctx, link->user_data,
2017 -ECANCELED, 0);
2018 io_put_req_deferred(link);
2019 return true;
2020 }
2021 }
2022 return false;
2023 }
2024
2025 static void io_fail_links(struct io_kiocb *req)
2026 __must_hold(&req->ctx->completion_lock)
2027 {
2028 struct io_kiocb *nxt, *link = req->link;
2029
2030 req->link = NULL;
2031 while (link) {
2032 long res = -ECANCELED;
2033
2034 if (link->flags & REQ_F_FAIL)
2035 res = link->result;
2036
2037 nxt = link->link;
2038 link->link = NULL;
2039
2040 trace_io_uring_fail_link(req, link);
2041 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2042 io_put_req_deferred(link);
2043 link = nxt;
2044 }
2045 }
2046
2047 static bool io_disarm_next(struct io_kiocb *req)
2048 __must_hold(&req->ctx->completion_lock)
2049 {
2050 bool posted = false;
2051
2052 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2053 struct io_kiocb *link = req->link;
2054
2055 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2056 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2057 io_remove_next_linked(req);
2058 io_cqring_fill_event(link->ctx, link->user_data,
2059 -ECANCELED, 0);
2060 io_put_req_deferred(link);
2061 posted = true;
2062 }
2063 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2064 struct io_ring_ctx *ctx = req->ctx;
2065
2066 spin_lock_irq(&ctx->timeout_lock);
2067 posted = io_kill_linked_timeout(req);
2068 spin_unlock_irq(&ctx->timeout_lock);
2069 }
2070 if (unlikely((req->flags & REQ_F_FAIL) &&
2071 !(req->flags & REQ_F_HARDLINK))) {
2072 posted |= (req->link != NULL);
2073 io_fail_links(req);
2074 }
2075 return posted;
2076 }
2077
2078 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2079 {
2080 struct io_kiocb *nxt;
2081
2082 /*
2083 * If LINK is set, we have dependent requests in this chain. If we
2084 * didn't fail this request, queue the first one up, moving any other
2085 * dependencies to the next request. In case of failure, fail the rest
2086 * of the chain.
2087 */
2088 if (req->flags & IO_DISARM_MASK) {
2089 struct io_ring_ctx *ctx = req->ctx;
2090 bool posted;
2091
2092 spin_lock(&ctx->completion_lock);
2093 posted = io_disarm_next(req);
2094 if (posted)
2095 io_commit_cqring(req->ctx);
2096 spin_unlock(&ctx->completion_lock);
2097 if (posted)
2098 io_cqring_ev_posted(ctx);
2099 }
2100 nxt = req->link;
2101 req->link = NULL;
2102 return nxt;
2103 }
2104
2105 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2106 {
2107 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2108 return NULL;
2109 return __io_req_find_next(req);
2110 }
2111
2112 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2113 {
2114 if (!ctx)
2115 return;
2116 if (*locked) {
2117 if (ctx->submit_state.compl_nr)
2118 io_submit_flush_completions(ctx);
2119 mutex_unlock(&ctx->uring_lock);
2120 *locked = false;
2121 }
2122 percpu_ref_put(&ctx->refs);
2123 }
2124
2125 static void tctx_task_work(struct callback_head *cb)
2126 {
2127 bool locked = false;
2128 struct io_ring_ctx *ctx = NULL;
2129 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2130 task_work);
2131
2132 while (1) {
2133 struct io_wq_work_node *node;
2134
2135 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2136 io_submit_flush_completions(ctx);
2137
2138 spin_lock_irq(&tctx->task_lock);
2139 node = tctx->task_list.first;
2140 INIT_WQ_LIST(&tctx->task_list);
2141 if (!node)
2142 tctx->task_running = false;
2143 spin_unlock_irq(&tctx->task_lock);
2144 if (!node)
2145 break;
2146
2147 do {
2148 struct io_wq_work_node *next = node->next;
2149 struct io_kiocb *req = container_of(node, struct io_kiocb,
2150 io_task_work.node);
2151
2152 if (req->ctx != ctx) {
2153 ctx_flush_and_put(ctx, &locked);
2154 ctx = req->ctx;
2155 /* if not contended, grab and improve batching */
2156 locked = mutex_trylock(&ctx->uring_lock);
2157 percpu_ref_get(&ctx->refs);
2158 }
2159 req->io_task_work.func(req, &locked);
2160 node = next;
2161 } while (node);
2162
2163 cond_resched();
2164 }
2165
2166 ctx_flush_and_put(ctx, &locked);
2167 }
2168
2169 static void io_req_task_work_add(struct io_kiocb *req)
2170 {
2171 struct task_struct *tsk = req->task;
2172 struct io_uring_task *tctx = tsk->io_uring;
2173 enum task_work_notify_mode notify;
2174 struct io_wq_work_node *node;
2175 unsigned long flags;
2176 bool running;
2177
2178 WARN_ON_ONCE(!tctx);
2179
2180 spin_lock_irqsave(&tctx->task_lock, flags);
2181 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2182 running = tctx->task_running;
2183 if (!running)
2184 tctx->task_running = true;
2185 spin_unlock_irqrestore(&tctx->task_lock, flags);
2186
2187 /* task_work already pending, we're done */
2188 if (running)
2189 return;
2190
2191 /*
2192 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2193 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2194 * processing task_work. There's no reliable way to tell if TWA_RESUME
2195 * will do the job.
2196 */
2197 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2198 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2199 wake_up_process(tsk);
2200 return;
2201 }
2202
2203 spin_lock_irqsave(&tctx->task_lock, flags);
2204 tctx->task_running = false;
2205 node = tctx->task_list.first;
2206 INIT_WQ_LIST(&tctx->task_list);
2207 spin_unlock_irqrestore(&tctx->task_lock, flags);
2208
2209 while (node) {
2210 req = container_of(node, struct io_kiocb, io_task_work.node);
2211 node = node->next;
2212 if (llist_add(&req->io_task_work.fallback_node,
2213 &req->ctx->fallback_llist))
2214 schedule_delayed_work(&req->ctx->fallback_work, 1);
2215 }
2216 }
2217
2218 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2219 {
2220 struct io_ring_ctx *ctx = req->ctx;
2221
2222 /* not needed for normal modes, but SQPOLL depends on it */
2223 io_tw_lock(ctx, locked);
2224 io_req_complete_failed(req, req->result);
2225 }
2226
2227 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2228 {
2229 struct io_ring_ctx *ctx = req->ctx;
2230
2231 io_tw_lock(ctx, locked);
2232 /* req->task == current here, checking PF_EXITING is safe */
2233 if (likely(!(req->task->flags & PF_EXITING)))
2234 __io_queue_sqe(req);
2235 else
2236 io_req_complete_failed(req, -EFAULT);
2237 }
2238
2239 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2240 {
2241 req->result = ret;
2242 req->io_task_work.func = io_req_task_cancel;
2243 io_req_task_work_add(req);
2244 }
2245
2246 static void io_req_task_queue(struct io_kiocb *req)
2247 {
2248 req->io_task_work.func = io_req_task_submit;
2249 io_req_task_work_add(req);
2250 }
2251
2252 static void io_req_task_queue_reissue(struct io_kiocb *req)
2253 {
2254 req->io_task_work.func = io_queue_async_work;
2255 io_req_task_work_add(req);
2256 }
2257
2258 static inline void io_queue_next(struct io_kiocb *req)
2259 {
2260 struct io_kiocb *nxt = io_req_find_next(req);
2261
2262 if (nxt)
2263 io_req_task_queue(nxt);
2264 }
2265
2266 static void io_free_req(struct io_kiocb *req)
2267 {
2268 io_queue_next(req);
2269 __io_free_req(req);
2270 }
2271
2272 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2273 {
2274 io_free_req(req);
2275 }
2276
2277 struct req_batch {
2278 struct task_struct *task;
2279 int task_refs;
2280 int ctx_refs;
2281 };
2282
2283 static inline void io_init_req_batch(struct req_batch *rb)
2284 {
2285 rb->task_refs = 0;
2286 rb->ctx_refs = 0;
2287 rb->task = NULL;
2288 }
2289
2290 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2291 struct req_batch *rb)
2292 {
2293 if (rb->ctx_refs)
2294 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2295 if (rb->task)
2296 io_put_task(rb->task, rb->task_refs);
2297 }
2298
2299 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2300 struct io_submit_state *state)
2301 {
2302 io_queue_next(req);
2303 io_dismantle_req(req);
2304
2305 if (req->task != rb->task) {
2306 if (rb->task)
2307 io_put_task(rb->task, rb->task_refs);
2308 rb->task = req->task;
2309 rb->task_refs = 0;
2310 }
2311 rb->task_refs++;
2312 rb->ctx_refs++;
2313
2314 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2315 state->reqs[state->free_reqs++] = req;
2316 else
2317 list_add(&req->inflight_entry, &state->free_list);
2318 }
2319
2320 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2321 __must_hold(&ctx->uring_lock)
2322 {
2323 struct io_submit_state *state = &ctx->submit_state;
2324 int i, nr = state->compl_nr;
2325 struct req_batch rb;
2326
2327 spin_lock(&ctx->completion_lock);
2328 for (i = 0; i < nr; i++) {
2329 struct io_kiocb *req = state->compl_reqs[i];
2330
2331 __io_cqring_fill_event(ctx, req->user_data, req->result,
2332 req->compl.cflags);
2333 }
2334 io_commit_cqring(ctx);
2335 spin_unlock(&ctx->completion_lock);
2336 io_cqring_ev_posted(ctx);
2337
2338 io_init_req_batch(&rb);
2339 for (i = 0; i < nr; i++) {
2340 struct io_kiocb *req = state->compl_reqs[i];
2341
2342 if (req_ref_put_and_test(req))
2343 io_req_free_batch(&rb, req, &ctx->submit_state);
2344 }
2345
2346 io_req_free_batch_finish(ctx, &rb);
2347 state->compl_nr = 0;
2348 }
2349
2350 /*
2351 * Drop reference to request, return next in chain (if there is one) if this
2352 * was the last reference to this request.
2353 */
2354 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2355 {
2356 struct io_kiocb *nxt = NULL;
2357
2358 if (req_ref_put_and_test(req)) {
2359 nxt = io_req_find_next(req);
2360 __io_free_req(req);
2361 }
2362 return nxt;
2363 }
2364
2365 static inline void io_put_req(struct io_kiocb *req)
2366 {
2367 if (req_ref_put_and_test(req))
2368 io_free_req(req);
2369 }
2370
2371 static inline void io_put_req_deferred(struct io_kiocb *req)
2372 {
2373 if (req_ref_put_and_test(req)) {
2374 req->io_task_work.func = io_free_req_work;
2375 io_req_task_work_add(req);
2376 }
2377 }
2378
2379 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2380 {
2381 /* See comment at the top of this file */
2382 smp_rmb();
2383 return __io_cqring_events(ctx);
2384 }
2385
2386 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2387 {
2388 struct io_rings *rings = ctx->rings;
2389
2390 /* make sure SQ entry isn't read before tail */
2391 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2392 }
2393
2394 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2395 {
2396 unsigned int cflags;
2397
2398 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2399 cflags |= IORING_CQE_F_BUFFER;
2400 req->flags &= ~REQ_F_BUFFER_SELECTED;
2401 kfree(kbuf);
2402 return cflags;
2403 }
2404
2405 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2406 {
2407 struct io_buffer *kbuf;
2408
2409 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2410 return 0;
2411 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2412 return io_put_kbuf(req, kbuf);
2413 }
2414
2415 static inline bool io_run_task_work(void)
2416 {
2417 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2418 __set_current_state(TASK_RUNNING);
2419 tracehook_notify_signal();
2420 return true;
2421 }
2422
2423 return false;
2424 }
2425
2426 /*
2427 * Find and free completed poll iocbs
2428 */
2429 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2430 struct list_head *done)
2431 {
2432 struct req_batch rb;
2433 struct io_kiocb *req;
2434
2435 /* order with ->result store in io_complete_rw_iopoll() */
2436 smp_rmb();
2437
2438 io_init_req_batch(&rb);
2439 while (!list_empty(done)) {
2440 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2441 list_del(&req->inflight_entry);
2442
2443 __io_cqring_fill_event(ctx, req->user_data, req->result,
2444 io_put_rw_kbuf(req));
2445 (*nr_events)++;
2446
2447 if (req_ref_put_and_test(req))
2448 io_req_free_batch(&rb, req, &ctx->submit_state);
2449 }
2450
2451 io_commit_cqring(ctx);
2452 io_cqring_ev_posted_iopoll(ctx);
2453 io_req_free_batch_finish(ctx, &rb);
2454 }
2455
2456 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2457 long min)
2458 {
2459 struct io_kiocb *req, *tmp;
2460 LIST_HEAD(done);
2461 bool spin;
2462
2463 /*
2464 * Only spin for completions if we don't have multiple devices hanging
2465 * off our complete list, and we're under the requested amount.
2466 */
2467 spin = !ctx->poll_multi_queue && *nr_events < min;
2468
2469 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2470 struct kiocb *kiocb = &req->rw.kiocb;
2471 int ret;
2472
2473 /*
2474 * Move completed and retryable entries to our local lists.
2475 * If we find a request that requires polling, break out
2476 * and complete those lists first, if we have entries there.
2477 */
2478 if (READ_ONCE(req->iopoll_completed)) {
2479 list_move_tail(&req->inflight_entry, &done);
2480 continue;
2481 }
2482 if (!list_empty(&done))
2483 break;
2484
2485 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2486 if (unlikely(ret < 0))
2487 return ret;
2488 else if (ret)
2489 spin = false;
2490
2491 /* iopoll may have completed current req */
2492 if (READ_ONCE(req->iopoll_completed))
2493 list_move_tail(&req->inflight_entry, &done);
2494 }
2495
2496 if (!list_empty(&done))
2497 io_iopoll_complete(ctx, nr_events, &done);
2498
2499 return 0;
2500 }
2501
2502 /*
2503 * We can't just wait for polled events to come to us, we have to actively
2504 * find and complete them.
2505 */
2506 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2507 {
2508 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2509 return;
2510
2511 mutex_lock(&ctx->uring_lock);
2512 while (!list_empty(&ctx->iopoll_list)) {
2513 unsigned int nr_events = 0;
2514
2515 io_do_iopoll(ctx, &nr_events, 0);
2516
2517 /* let it sleep and repeat later if can't complete a request */
2518 if (nr_events == 0)
2519 break;
2520 /*
2521 * Ensure we allow local-to-the-cpu processing to take place,
2522 * in this case we need to ensure that we reap all events.
2523 * Also let task_work, etc. to progress by releasing the mutex
2524 */
2525 if (need_resched()) {
2526 mutex_unlock(&ctx->uring_lock);
2527 cond_resched();
2528 mutex_lock(&ctx->uring_lock);
2529 }
2530 }
2531 mutex_unlock(&ctx->uring_lock);
2532 }
2533
2534 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2535 {
2536 unsigned int nr_events = 0;
2537 int ret = 0;
2538
2539 /*
2540 * We disallow the app entering submit/complete with polling, but we
2541 * still need to lock the ring to prevent racing with polled issue
2542 * that got punted to a workqueue.
2543 */
2544 mutex_lock(&ctx->uring_lock);
2545 /*
2546 * Don't enter poll loop if we already have events pending.
2547 * If we do, we can potentially be spinning for commands that
2548 * already triggered a CQE (eg in error).
2549 */
2550 if (test_bit(0, &ctx->check_cq_overflow))
2551 __io_cqring_overflow_flush(ctx, false);
2552 if (io_cqring_events(ctx))
2553 goto out;
2554 do {
2555 /*
2556 * If a submit got punted to a workqueue, we can have the
2557 * application entering polling for a command before it gets
2558 * issued. That app will hold the uring_lock for the duration
2559 * of the poll right here, so we need to take a breather every
2560 * now and then to ensure that the issue has a chance to add
2561 * the poll to the issued list. Otherwise we can spin here
2562 * forever, while the workqueue is stuck trying to acquire the
2563 * very same mutex.
2564 */
2565 if (list_empty(&ctx->iopoll_list)) {
2566 u32 tail = ctx->cached_cq_tail;
2567
2568 mutex_unlock(&ctx->uring_lock);
2569 io_run_task_work();
2570 mutex_lock(&ctx->uring_lock);
2571
2572 /* some requests don't go through iopoll_list */
2573 if (tail != ctx->cached_cq_tail ||
2574 list_empty(&ctx->iopoll_list))
2575 break;
2576 }
2577 ret = io_do_iopoll(ctx, &nr_events, min);
2578 } while (!ret && nr_events < min && !need_resched());
2579 out:
2580 mutex_unlock(&ctx->uring_lock);
2581 return ret;
2582 }
2583
2584 static void kiocb_end_write(struct io_kiocb *req)
2585 {
2586 /*
2587 * Tell lockdep we inherited freeze protection from submission
2588 * thread.
2589 */
2590 if (req->flags & REQ_F_ISREG) {
2591 struct super_block *sb = file_inode(req->file)->i_sb;
2592
2593 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2594 sb_end_write(sb);
2595 }
2596 }
2597
2598 #ifdef CONFIG_BLOCK
2599 static bool io_resubmit_prep(struct io_kiocb *req)
2600 {
2601 struct io_async_rw *rw = req->async_data;
2602
2603 if (!rw)
2604 return !io_req_prep_async(req);
2605 iov_iter_restore(&rw->iter, &rw->iter_state);
2606 return true;
2607 }
2608
2609 static bool io_rw_should_reissue(struct io_kiocb *req)
2610 {
2611 umode_t mode = file_inode(req->file)->i_mode;
2612 struct io_ring_ctx *ctx = req->ctx;
2613
2614 if (!S_ISBLK(mode) && !S_ISREG(mode))
2615 return false;
2616 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2617 !(ctx->flags & IORING_SETUP_IOPOLL)))
2618 return false;
2619 /*
2620 * If ref is dying, we might be running poll reap from the exit work.
2621 * Don't attempt to reissue from that path, just let it fail with
2622 * -EAGAIN.
2623 */
2624 if (percpu_ref_is_dying(&ctx->refs))
2625 return false;
2626 /*
2627 * Play it safe and assume not safe to re-import and reissue if we're
2628 * not in the original thread group (or in task context).
2629 */
2630 if (!same_thread_group(req->task, current) || !in_task())
2631 return false;
2632 return true;
2633 }
2634 #else
2635 static bool io_resubmit_prep(struct io_kiocb *req)
2636 {
2637 return false;
2638 }
2639 static bool io_rw_should_reissue(struct io_kiocb *req)
2640 {
2641 return false;
2642 }
2643 #endif
2644
2645 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2646 {
2647 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2648 kiocb_end_write(req);
2649 if (res != req->result) {
2650 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2651 io_rw_should_reissue(req)) {
2652 req->flags |= REQ_F_REISSUE;
2653 return true;
2654 }
2655 req_set_fail(req);
2656 req->result = res;
2657 }
2658 return false;
2659 }
2660
2661 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2662 {
2663 unsigned int cflags = io_put_rw_kbuf(req);
2664 long res = req->result;
2665
2666 if (*locked) {
2667 struct io_ring_ctx *ctx = req->ctx;
2668 struct io_submit_state *state = &ctx->submit_state;
2669
2670 io_req_complete_state(req, res, cflags);
2671 state->compl_reqs[state->compl_nr++] = req;
2672 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2673 io_submit_flush_completions(ctx);
2674 } else {
2675 io_req_complete_post(req, res, cflags);
2676 }
2677 }
2678
2679 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2680 unsigned int issue_flags)
2681 {
2682 if (__io_complete_rw_common(req, res))
2683 return;
2684 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2685 }
2686
2687 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2688 {
2689 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2690
2691 if (__io_complete_rw_common(req, res))
2692 return;
2693 req->result = res;
2694 req->io_task_work.func = io_req_task_complete;
2695 io_req_task_work_add(req);
2696 }
2697
2698 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2699 {
2700 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2701
2702 if (kiocb->ki_flags & IOCB_WRITE)
2703 kiocb_end_write(req);
2704 if (unlikely(res != req->result)) {
2705 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2706 req->flags |= REQ_F_REISSUE;
2707 return;
2708 }
2709 }
2710
2711 WRITE_ONCE(req->result, res);
2712 /* order with io_iopoll_complete() checking ->result */
2713 smp_wmb();
2714 WRITE_ONCE(req->iopoll_completed, 1);
2715 }
2716
2717 /*
2718 * After the iocb has been issued, it's safe to be found on the poll list.
2719 * Adding the kiocb to the list AFTER submission ensures that we don't
2720 * find it from a io_do_iopoll() thread before the issuer is done
2721 * accessing the kiocb cookie.
2722 */
2723 static void io_iopoll_req_issued(struct io_kiocb *req)
2724 {
2725 struct io_ring_ctx *ctx = req->ctx;
2726 const bool in_async = io_wq_current_is_worker();
2727
2728 /* workqueue context doesn't hold uring_lock, grab it now */
2729 if (unlikely(in_async))
2730 mutex_lock(&ctx->uring_lock);
2731
2732 /*
2733 * Track whether we have multiple files in our lists. This will impact
2734 * how we do polling eventually, not spinning if we're on potentially
2735 * different devices.
2736 */
2737 if (list_empty(&ctx->iopoll_list)) {
2738 ctx->poll_multi_queue = false;
2739 } else if (!ctx->poll_multi_queue) {
2740 struct io_kiocb *list_req;
2741 unsigned int queue_num0, queue_num1;
2742
2743 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2744 inflight_entry);
2745
2746 if (list_req->file != req->file) {
2747 ctx->poll_multi_queue = true;
2748 } else {
2749 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2750 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2751 if (queue_num0 != queue_num1)
2752 ctx->poll_multi_queue = true;
2753 }
2754 }
2755
2756 /*
2757 * For fast devices, IO may have already completed. If it has, add
2758 * it to the front so we find it first.
2759 */
2760 if (READ_ONCE(req->iopoll_completed))
2761 list_add(&req->inflight_entry, &ctx->iopoll_list);
2762 else
2763 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2764
2765 if (unlikely(in_async)) {
2766 /*
2767 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2768 * in sq thread task context or in io worker task context. If
2769 * current task context is sq thread, we don't need to check
2770 * whether should wake up sq thread.
2771 */
2772 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2773 wq_has_sleeper(&ctx->sq_data->wait))
2774 wake_up(&ctx->sq_data->wait);
2775
2776 mutex_unlock(&ctx->uring_lock);
2777 }
2778 }
2779
2780 static bool io_bdev_nowait(struct block_device *bdev)
2781 {
2782 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2783 }
2784
2785 /*
2786 * If we tracked the file through the SCM inflight mechanism, we could support
2787 * any file. For now, just ensure that anything potentially problematic is done
2788 * inline.
2789 */
2790 static bool __io_file_supports_nowait(struct file *file, int rw)
2791 {
2792 umode_t mode = file_inode(file)->i_mode;
2793
2794 if (S_ISBLK(mode)) {
2795 if (IS_ENABLED(CONFIG_BLOCK) &&
2796 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2797 return true;
2798 return false;
2799 }
2800 if (S_ISSOCK(mode))
2801 return true;
2802 if (S_ISREG(mode)) {
2803 if (IS_ENABLED(CONFIG_BLOCK) &&
2804 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2805 file->f_op != &io_uring_fops)
2806 return true;
2807 return false;
2808 }
2809
2810 /* any ->read/write should understand O_NONBLOCK */
2811 if (file->f_flags & O_NONBLOCK)
2812 return true;
2813
2814 if (!(file->f_mode & FMODE_NOWAIT))
2815 return false;
2816
2817 if (rw == READ)
2818 return file->f_op->read_iter != NULL;
2819
2820 return file->f_op->write_iter != NULL;
2821 }
2822
2823 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2824 {
2825 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2826 return true;
2827 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2828 return true;
2829
2830 return __io_file_supports_nowait(req->file, rw);
2831 }
2832
2833 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2834 int rw)
2835 {
2836 struct io_ring_ctx *ctx = req->ctx;
2837 struct kiocb *kiocb = &req->rw.kiocb;
2838 struct file *file = req->file;
2839 unsigned ioprio;
2840 int ret;
2841
2842 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2843 req->flags |= REQ_F_ISREG;
2844
2845 kiocb->ki_pos = READ_ONCE(sqe->off);
2846 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2847 req->flags |= REQ_F_CUR_POS;
2848 kiocb->ki_pos = file->f_pos;
2849 }
2850 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2851 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2852 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2853 if (unlikely(ret))
2854 return ret;
2855
2856 /*
2857 * If the file is marked O_NONBLOCK, still allow retry for it if it
2858 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2859 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2860 */
2861 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2862 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2863 req->flags |= REQ_F_NOWAIT;
2864
2865 ioprio = READ_ONCE(sqe->ioprio);
2866 if (ioprio) {
2867 ret = ioprio_check_cap(ioprio);
2868 if (ret)
2869 return ret;
2870
2871 kiocb->ki_ioprio = ioprio;
2872 } else
2873 kiocb->ki_ioprio = get_current_ioprio();
2874
2875 if (ctx->flags & IORING_SETUP_IOPOLL) {
2876 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2877 !kiocb->ki_filp->f_op->iopoll)
2878 return -EOPNOTSUPP;
2879
2880 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2881 kiocb->ki_complete = io_complete_rw_iopoll;
2882 req->iopoll_completed = 0;
2883 } else {
2884 if (kiocb->ki_flags & IOCB_HIPRI)
2885 return -EINVAL;
2886 kiocb->ki_complete = io_complete_rw;
2887 }
2888
2889 if (req->opcode == IORING_OP_READ_FIXED ||
2890 req->opcode == IORING_OP_WRITE_FIXED) {
2891 req->imu = NULL;
2892 io_req_set_rsrc_node(req);
2893 }
2894
2895 req->rw.addr = READ_ONCE(sqe->addr);
2896 req->rw.len = READ_ONCE(sqe->len);
2897 req->buf_index = READ_ONCE(sqe->buf_index);
2898 return 0;
2899 }
2900
2901 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2902 {
2903 switch (ret) {
2904 case -EIOCBQUEUED:
2905 break;
2906 case -ERESTARTSYS:
2907 case -ERESTARTNOINTR:
2908 case -ERESTARTNOHAND:
2909 case -ERESTART_RESTARTBLOCK:
2910 /*
2911 * We can't just restart the syscall, since previously
2912 * submitted sqes may already be in progress. Just fail this
2913 * IO with EINTR.
2914 */
2915 ret = -EINTR;
2916 fallthrough;
2917 default:
2918 kiocb->ki_complete(kiocb, ret, 0);
2919 }
2920 }
2921
2922 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2923 unsigned int issue_flags)
2924 {
2925 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2926 struct io_async_rw *io = req->async_data;
2927
2928 /* add previously done IO, if any */
2929 if (io && io->bytes_done > 0) {
2930 if (ret < 0)
2931 ret = io->bytes_done;
2932 else
2933 ret += io->bytes_done;
2934 }
2935
2936 if (req->flags & REQ_F_CUR_POS)
2937 req->file->f_pos = kiocb->ki_pos;
2938 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2939 __io_complete_rw(req, ret, 0, issue_flags);
2940 else
2941 io_rw_done(kiocb, ret);
2942
2943 if (req->flags & REQ_F_REISSUE) {
2944 req->flags &= ~REQ_F_REISSUE;
2945 if (io_resubmit_prep(req)) {
2946 io_req_task_queue_reissue(req);
2947 } else {
2948 unsigned int cflags = io_put_rw_kbuf(req);
2949 struct io_ring_ctx *ctx = req->ctx;
2950
2951 req_set_fail(req);
2952 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
2953 mutex_lock(&ctx->uring_lock);
2954 __io_req_complete(req, issue_flags, ret, cflags);
2955 mutex_unlock(&ctx->uring_lock);
2956 } else {
2957 __io_req_complete(req, issue_flags, ret, cflags);
2958 }
2959 }
2960 }
2961 }
2962
2963 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2964 struct io_mapped_ubuf *imu)
2965 {
2966 size_t len = req->rw.len;
2967 u64 buf_end, buf_addr = req->rw.addr;
2968 size_t offset;
2969
2970 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2971 return -EFAULT;
2972 /* not inside the mapped region */
2973 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2974 return -EFAULT;
2975
2976 /*
2977 * May not be a start of buffer, set size appropriately
2978 * and advance us to the beginning.
2979 */
2980 offset = buf_addr - imu->ubuf;
2981 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2982
2983 if (offset) {
2984 /*
2985 * Don't use iov_iter_advance() here, as it's really slow for
2986 * using the latter parts of a big fixed buffer - it iterates
2987 * over each segment manually. We can cheat a bit here, because
2988 * we know that:
2989 *
2990 * 1) it's a BVEC iter, we set it up
2991 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2992 * first and last bvec
2993 *
2994 * So just find our index, and adjust the iterator afterwards.
2995 * If the offset is within the first bvec (or the whole first
2996 * bvec, just use iov_iter_advance(). This makes it easier
2997 * since we can just skip the first segment, which may not
2998 * be PAGE_SIZE aligned.
2999 */
3000 const struct bio_vec *bvec = imu->bvec;
3001
3002 if (offset <= bvec->bv_len) {
3003 iov_iter_advance(iter, offset);
3004 } else {
3005 unsigned long seg_skip;
3006
3007 /* skip first vec */
3008 offset -= bvec->bv_len;
3009 seg_skip = 1 + (offset >> PAGE_SHIFT);
3010
3011 iter->bvec = bvec + seg_skip;
3012 iter->nr_segs -= seg_skip;
3013 iter->count -= bvec->bv_len + offset;
3014 iter->iov_offset = offset & ~PAGE_MASK;
3015 }
3016 }
3017
3018 return 0;
3019 }
3020
3021 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3022 {
3023 struct io_ring_ctx *ctx = req->ctx;
3024 struct io_mapped_ubuf *imu = req->imu;
3025 u16 index, buf_index = req->buf_index;
3026
3027 if (likely(!imu)) {
3028 if (unlikely(buf_index >= ctx->nr_user_bufs))
3029 return -EFAULT;
3030 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3031 imu = READ_ONCE(ctx->user_bufs[index]);
3032 req->imu = imu;
3033 }
3034 return __io_import_fixed(req, rw, iter, imu);
3035 }
3036
3037 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3038 {
3039 if (needs_lock)
3040 mutex_unlock(&ctx->uring_lock);
3041 }
3042
3043 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3044 {
3045 /*
3046 * "Normal" inline submissions always hold the uring_lock, since we
3047 * grab it from the system call. Same is true for the SQPOLL offload.
3048 * The only exception is when we've detached the request and issue it
3049 * from an async worker thread, grab the lock for that case.
3050 */
3051 if (needs_lock)
3052 mutex_lock(&ctx->uring_lock);
3053 }
3054
3055 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3056 int bgid, struct io_buffer *kbuf,
3057 bool needs_lock)
3058 {
3059 struct io_buffer *head;
3060
3061 if (req->flags & REQ_F_BUFFER_SELECTED)
3062 return kbuf;
3063
3064 io_ring_submit_lock(req->ctx, needs_lock);
3065
3066 lockdep_assert_held(&req->ctx->uring_lock);
3067
3068 head = xa_load(&req->ctx->io_buffers, bgid);
3069 if (head) {
3070 if (!list_empty(&head->list)) {
3071 kbuf = list_last_entry(&head->list, struct io_buffer,
3072 list);
3073 list_del(&kbuf->list);
3074 } else {
3075 kbuf = head;
3076 xa_erase(&req->ctx->io_buffers, bgid);
3077 }
3078 if (*len > kbuf->len)
3079 *len = kbuf->len;
3080 } else {
3081 kbuf = ERR_PTR(-ENOBUFS);
3082 }
3083
3084 io_ring_submit_unlock(req->ctx, needs_lock);
3085
3086 return kbuf;
3087 }
3088
3089 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3090 bool needs_lock)
3091 {
3092 struct io_buffer *kbuf;
3093 u16 bgid;
3094
3095 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3096 bgid = req->buf_index;
3097 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3098 if (IS_ERR(kbuf))
3099 return kbuf;
3100 req->rw.addr = (u64) (unsigned long) kbuf;
3101 req->flags |= REQ_F_BUFFER_SELECTED;
3102 return u64_to_user_ptr(kbuf->addr);
3103 }
3104
3105 #ifdef CONFIG_COMPAT
3106 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3107 bool needs_lock)
3108 {
3109 struct compat_iovec __user *uiov;
3110 compat_ssize_t clen;
3111 void __user *buf;
3112 ssize_t len;
3113
3114 uiov = u64_to_user_ptr(req->rw.addr);
3115 if (!access_ok(uiov, sizeof(*uiov)))
3116 return -EFAULT;
3117 if (__get_user(clen, &uiov->iov_len))
3118 return -EFAULT;
3119 if (clen < 0)
3120 return -EINVAL;
3121
3122 len = clen;
3123 buf = io_rw_buffer_select(req, &len, needs_lock);
3124 if (IS_ERR(buf))
3125 return PTR_ERR(buf);
3126 iov[0].iov_base = buf;
3127 iov[0].iov_len = (compat_size_t) len;
3128 return 0;
3129 }
3130 #endif
3131
3132 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3133 bool needs_lock)
3134 {
3135 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3136 void __user *buf;
3137 ssize_t len;
3138
3139 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3140 return -EFAULT;
3141
3142 len = iov[0].iov_len;
3143 if (len < 0)
3144 return -EINVAL;
3145 buf = io_rw_buffer_select(req, &len, needs_lock);
3146 if (IS_ERR(buf))
3147 return PTR_ERR(buf);
3148 iov[0].iov_base = buf;
3149 iov[0].iov_len = len;
3150 return 0;
3151 }
3152
3153 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3154 bool needs_lock)
3155 {
3156 if (req->flags & REQ_F_BUFFER_SELECTED) {
3157 struct io_buffer *kbuf;
3158
3159 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3160 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3161 iov[0].iov_len = kbuf->len;
3162 return 0;
3163 }
3164 if (req->rw.len != 1)
3165 return -EINVAL;
3166
3167 #ifdef CONFIG_COMPAT
3168 if (req->ctx->compat)
3169 return io_compat_import(req, iov, needs_lock);
3170 #endif
3171
3172 return __io_iov_buffer_select(req, iov, needs_lock);
3173 }
3174
3175 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3176 struct iov_iter *iter, bool needs_lock)
3177 {
3178 void __user *buf = u64_to_user_ptr(req->rw.addr);
3179 size_t sqe_len = req->rw.len;
3180 u8 opcode = req->opcode;
3181 ssize_t ret;
3182
3183 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3184 *iovec = NULL;
3185 return io_import_fixed(req, rw, iter);
3186 }
3187
3188 /* buffer index only valid with fixed read/write, or buffer select */
3189 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3190 return -EINVAL;
3191
3192 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3193 if (req->flags & REQ_F_BUFFER_SELECT) {
3194 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3195 if (IS_ERR(buf))
3196 return PTR_ERR(buf);
3197 req->rw.len = sqe_len;
3198 }
3199
3200 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3201 *iovec = NULL;
3202 return ret;
3203 }
3204
3205 if (req->flags & REQ_F_BUFFER_SELECT) {
3206 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3207 if (!ret)
3208 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3209 *iovec = NULL;
3210 return ret;
3211 }
3212
3213 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3214 req->ctx->compat);
3215 }
3216
3217 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3218 {
3219 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3220 }
3221
3222 /*
3223 * For files that don't have ->read_iter() and ->write_iter(), handle them
3224 * by looping over ->read() or ->write() manually.
3225 */
3226 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3227 {
3228 struct kiocb *kiocb = &req->rw.kiocb;
3229 struct file *file = req->file;
3230 ssize_t ret = 0;
3231
3232 /*
3233 * Don't support polled IO through this interface, and we can't
3234 * support non-blocking either. For the latter, this just causes
3235 * the kiocb to be handled from an async context.
3236 */
3237 if (kiocb->ki_flags & IOCB_HIPRI)
3238 return -EOPNOTSUPP;
3239 if (kiocb->ki_flags & IOCB_NOWAIT)
3240 return -EAGAIN;
3241
3242 while (iov_iter_count(iter)) {
3243 struct iovec iovec;
3244 ssize_t nr;
3245
3246 if (!iov_iter_is_bvec(iter)) {
3247 iovec = iov_iter_iovec(iter);
3248 } else {
3249 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3250 iovec.iov_len = req->rw.len;
3251 }
3252
3253 if (rw == READ) {
3254 nr = file->f_op->read(file, iovec.iov_base,
3255 iovec.iov_len, io_kiocb_ppos(kiocb));
3256 } else {
3257 nr = file->f_op->write(file, iovec.iov_base,
3258 iovec.iov_len, io_kiocb_ppos(kiocb));
3259 }
3260
3261 if (nr < 0) {
3262 if (!ret)
3263 ret = nr;
3264 break;
3265 }
3266 if (!iov_iter_is_bvec(iter)) {
3267 iov_iter_advance(iter, nr);
3268 } else {
3269 req->rw.len -= nr;
3270 req->rw.addr += nr;
3271 }
3272 ret += nr;
3273 if (nr != iovec.iov_len)
3274 break;
3275 }
3276
3277 return ret;
3278 }
3279
3280 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3281 const struct iovec *fast_iov, struct iov_iter *iter)
3282 {
3283 struct io_async_rw *rw = req->async_data;
3284
3285 memcpy(&rw->iter, iter, sizeof(*iter));
3286 rw->free_iovec = iovec;
3287 rw->bytes_done = 0;
3288 /* can only be fixed buffers, no need to do anything */
3289 if (iov_iter_is_bvec(iter))
3290 return;
3291 if (!iovec) {
3292 unsigned iov_off = 0;
3293
3294 rw->iter.iov = rw->fast_iov;
3295 if (iter->iov != fast_iov) {
3296 iov_off = iter->iov - fast_iov;
3297 rw->iter.iov += iov_off;
3298 }
3299 if (rw->fast_iov != fast_iov)
3300 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3301 sizeof(struct iovec) * iter->nr_segs);
3302 } else {
3303 req->flags |= REQ_F_NEED_CLEANUP;
3304 }
3305 }
3306
3307 static inline int io_alloc_async_data(struct io_kiocb *req)
3308 {
3309 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3310 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3311 return req->async_data == NULL;
3312 }
3313
3314 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3315 const struct iovec *fast_iov,
3316 struct iov_iter *iter, bool force)
3317 {
3318 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3319 return 0;
3320 if (!req->async_data) {
3321 struct io_async_rw *iorw;
3322
3323 if (io_alloc_async_data(req)) {
3324 kfree(iovec);
3325 return -ENOMEM;
3326 }
3327
3328 io_req_map_rw(req, iovec, fast_iov, iter);
3329 iorw = req->async_data;
3330 /* we've copied and mapped the iter, ensure state is saved */
3331 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3332 }
3333 return 0;
3334 }
3335
3336 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3337 {
3338 struct io_async_rw *iorw = req->async_data;
3339 struct iovec *iov = iorw->fast_iov;
3340 int ret;
3341
3342 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3343 if (unlikely(ret < 0))
3344 return ret;
3345
3346 iorw->bytes_done = 0;
3347 iorw->free_iovec = iov;
3348 if (iov)
3349 req->flags |= REQ_F_NEED_CLEANUP;
3350 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3351 return 0;
3352 }
3353
3354 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3355 {
3356 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3357 return -EBADF;
3358 return io_prep_rw(req, sqe, READ);
3359 }
3360
3361 /*
3362 * This is our waitqueue callback handler, registered through lock_page_async()
3363 * when we initially tried to do the IO with the iocb armed our waitqueue.
3364 * This gets called when the page is unlocked, and we generally expect that to
3365 * happen when the page IO is completed and the page is now uptodate. This will
3366 * queue a task_work based retry of the operation, attempting to copy the data
3367 * again. If the latter fails because the page was NOT uptodate, then we will
3368 * do a thread based blocking retry of the operation. That's the unexpected
3369 * slow path.
3370 */
3371 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3372 int sync, void *arg)
3373 {
3374 struct wait_page_queue *wpq;
3375 struct io_kiocb *req = wait->private;
3376 struct wait_page_key *key = arg;
3377
3378 wpq = container_of(wait, struct wait_page_queue, wait);
3379
3380 if (!wake_page_match(wpq, key))
3381 return 0;
3382
3383 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3384 list_del_init(&wait->entry);
3385 io_req_task_queue(req);
3386 return 1;
3387 }
3388
3389 /*
3390 * This controls whether a given IO request should be armed for async page
3391 * based retry. If we return false here, the request is handed to the async
3392 * worker threads for retry. If we're doing buffered reads on a regular file,
3393 * we prepare a private wait_page_queue entry and retry the operation. This
3394 * will either succeed because the page is now uptodate and unlocked, or it
3395 * will register a callback when the page is unlocked at IO completion. Through
3396 * that callback, io_uring uses task_work to setup a retry of the operation.
3397 * That retry will attempt the buffered read again. The retry will generally
3398 * succeed, or in rare cases where it fails, we then fall back to using the
3399 * async worker threads for a blocking retry.
3400 */
3401 static bool io_rw_should_retry(struct io_kiocb *req)
3402 {
3403 struct io_async_rw *rw = req->async_data;
3404 struct wait_page_queue *wait = &rw->wpq;
3405 struct kiocb *kiocb = &req->rw.kiocb;
3406
3407 /* never retry for NOWAIT, we just complete with -EAGAIN */
3408 if (req->flags & REQ_F_NOWAIT)
3409 return false;
3410
3411 /* Only for buffered IO */
3412 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3413 return false;
3414
3415 /*
3416 * just use poll if we can, and don't attempt if the fs doesn't
3417 * support callback based unlocks
3418 */
3419 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3420 return false;
3421
3422 wait->wait.func = io_async_buf_func;
3423 wait->wait.private = req;
3424 wait->wait.flags = 0;
3425 INIT_LIST_HEAD(&wait->wait.entry);
3426 kiocb->ki_flags |= IOCB_WAITQ;
3427 kiocb->ki_flags &= ~IOCB_NOWAIT;
3428 kiocb->ki_waitq = wait;
3429 return true;
3430 }
3431
3432 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3433 {
3434 if (req->file->f_op->read_iter)
3435 return call_read_iter(req->file, &req->rw.kiocb, iter);
3436 else if (req->file->f_op->read)
3437 return loop_rw_iter(READ, req, iter);
3438 else
3439 return -EINVAL;
3440 }
3441
3442 static bool need_read_all(struct io_kiocb *req)
3443 {
3444 return req->flags & REQ_F_ISREG ||
3445 S_ISBLK(file_inode(req->file)->i_mode);
3446 }
3447
3448 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3449 {
3450 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3451 struct kiocb *kiocb = &req->rw.kiocb;
3452 struct iov_iter __iter, *iter = &__iter;
3453 struct io_async_rw *rw = req->async_data;
3454 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3455 struct iov_iter_state __state, *state;
3456 ssize_t ret, ret2;
3457
3458 if (rw) {
3459 iter = &rw->iter;
3460 state = &rw->iter_state;
3461 /*
3462 * We come here from an earlier attempt, restore our state to
3463 * match in case it doesn't. It's cheap enough that we don't
3464 * need to make this conditional.
3465 */
3466 iov_iter_restore(iter, state);
3467 iovec = NULL;
3468 } else {
3469 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3470 if (ret < 0)
3471 return ret;
3472 state = &__state;
3473 iov_iter_save_state(iter, state);
3474 }
3475 req->result = iov_iter_count(iter);
3476
3477 /* Ensure we clear previously set non-block flag */
3478 if (!force_nonblock)
3479 kiocb->ki_flags &= ~IOCB_NOWAIT;
3480 else
3481 kiocb->ki_flags |= IOCB_NOWAIT;
3482
3483 /* If the file doesn't support async, just async punt */
3484 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3485 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3486 return ret ?: -EAGAIN;
3487 }
3488
3489 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3490 if (unlikely(ret)) {
3491 kfree(iovec);
3492 return ret;
3493 }
3494
3495 ret = io_iter_do_read(req, iter);
3496
3497 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3498 req->flags &= ~REQ_F_REISSUE;
3499 /* IOPOLL retry should happen for io-wq threads */
3500 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3501 goto done;
3502 /* no retry on NONBLOCK nor RWF_NOWAIT */
3503 if (req->flags & REQ_F_NOWAIT)
3504 goto done;
3505 ret = 0;
3506 } else if (ret == -EIOCBQUEUED) {
3507 goto out_free;
3508 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3509 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3510 /* read all, failed, already did sync or don't want to retry */
3511 goto done;
3512 }
3513
3514 /*
3515 * Don't depend on the iter state matching what was consumed, or being
3516 * untouched in case of error. Restore it and we'll advance it
3517 * manually if we need to.
3518 */
3519 iov_iter_restore(iter, state);
3520
3521 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3522 if (ret2)
3523 return ret2;
3524
3525 iovec = NULL;
3526 rw = req->async_data;
3527 /*
3528 * Now use our persistent iterator and state, if we aren't already.
3529 * We've restored and mapped the iter to match.
3530 */
3531 if (iter != &rw->iter) {
3532 iter = &rw->iter;
3533 state = &rw->iter_state;
3534 }
3535
3536 do {
3537 /*
3538 * We end up here because of a partial read, either from
3539 * above or inside this loop. Advance the iter by the bytes
3540 * that were consumed.
3541 */
3542 iov_iter_advance(iter, ret);
3543 if (!iov_iter_count(iter))
3544 break;
3545 rw->bytes_done += ret;
3546 iov_iter_save_state(iter, state);
3547
3548 /* if we can retry, do so with the callbacks armed */
3549 if (!io_rw_should_retry(req)) {
3550 kiocb->ki_flags &= ~IOCB_WAITQ;
3551 return -EAGAIN;
3552 }
3553
3554 /*
3555 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3556 * we get -EIOCBQUEUED, then we'll get a notification when the
3557 * desired page gets unlocked. We can also get a partial read
3558 * here, and if we do, then just retry at the new offset.
3559 */
3560 ret = io_iter_do_read(req, iter);
3561 if (ret == -EIOCBQUEUED)
3562 return 0;
3563 /* we got some bytes, but not all. retry. */
3564 kiocb->ki_flags &= ~IOCB_WAITQ;
3565 iov_iter_restore(iter, state);
3566 } while (ret > 0);
3567 done:
3568 kiocb_done(kiocb, ret, issue_flags);
3569 out_free:
3570 /* it's faster to check here then delegate to kfree */
3571 if (iovec)
3572 kfree(iovec);
3573 return 0;
3574 }
3575
3576 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3577 {
3578 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3579 return -EBADF;
3580 return io_prep_rw(req, sqe, WRITE);
3581 }
3582
3583 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3584 {
3585 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3586 struct kiocb *kiocb = &req->rw.kiocb;
3587 struct iov_iter __iter, *iter = &__iter;
3588 struct io_async_rw *rw = req->async_data;
3589 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3590 struct iov_iter_state __state, *state;
3591 ssize_t ret, ret2;
3592
3593 if (rw) {
3594 iter = &rw->iter;
3595 state = &rw->iter_state;
3596 iov_iter_restore(iter, state);
3597 iovec = NULL;
3598 } else {
3599 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3600 if (ret < 0)
3601 return ret;
3602 state = &__state;
3603 iov_iter_save_state(iter, state);
3604 }
3605 req->result = iov_iter_count(iter);
3606
3607 /* Ensure we clear previously set non-block flag */
3608 if (!force_nonblock)
3609 kiocb->ki_flags &= ~IOCB_NOWAIT;
3610 else
3611 kiocb->ki_flags |= IOCB_NOWAIT;
3612
3613 /* If the file doesn't support async, just async punt */
3614 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3615 goto copy_iov;
3616
3617 /* file path doesn't support NOWAIT for non-direct_IO */
3618 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3619 (req->flags & REQ_F_ISREG))
3620 goto copy_iov;
3621
3622 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3623 if (unlikely(ret))
3624 goto out_free;
3625
3626 /*
3627 * Open-code file_start_write here to grab freeze protection,
3628 * which will be released by another thread in
3629 * io_complete_rw(). Fool lockdep by telling it the lock got
3630 * released so that it doesn't complain about the held lock when
3631 * we return to userspace.
3632 */
3633 if (req->flags & REQ_F_ISREG) {
3634 sb_start_write(file_inode(req->file)->i_sb);
3635 __sb_writers_release(file_inode(req->file)->i_sb,
3636 SB_FREEZE_WRITE);
3637 }
3638 kiocb->ki_flags |= IOCB_WRITE;
3639
3640 if (req->file->f_op->write_iter)
3641 ret2 = call_write_iter(req->file, kiocb, iter);
3642 else if (req->file->f_op->write)
3643 ret2 = loop_rw_iter(WRITE, req, iter);
3644 else
3645 ret2 = -EINVAL;
3646
3647 if (req->flags & REQ_F_REISSUE) {
3648 req->flags &= ~REQ_F_REISSUE;
3649 ret2 = -EAGAIN;
3650 }
3651
3652 /*
3653 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3654 * retry them without IOCB_NOWAIT.
3655 */
3656 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3657 ret2 = -EAGAIN;
3658 /* no retry on NONBLOCK nor RWF_NOWAIT */
3659 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3660 goto done;
3661 if (!force_nonblock || ret2 != -EAGAIN) {
3662 /* IOPOLL retry should happen for io-wq threads */
3663 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3664 goto copy_iov;
3665 done:
3666 kiocb_done(kiocb, ret2, issue_flags);
3667 } else {
3668 copy_iov:
3669 iov_iter_restore(iter, state);
3670 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3671 return ret ?: -EAGAIN;
3672 }
3673 out_free:
3674 /* it's reportedly faster than delegating the null check to kfree() */
3675 if (iovec)
3676 kfree(iovec);
3677 return ret;
3678 }
3679
3680 static int io_renameat_prep(struct io_kiocb *req,
3681 const struct io_uring_sqe *sqe)
3682 {
3683 struct io_rename *ren = &req->rename;
3684 const char __user *oldf, *newf;
3685
3686 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3687 return -EINVAL;
3688 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3689 return -EINVAL;
3690 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3691 return -EBADF;
3692
3693 ren->old_dfd = READ_ONCE(sqe->fd);
3694 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3695 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3696 ren->new_dfd = READ_ONCE(sqe->len);
3697 ren->flags = READ_ONCE(sqe->rename_flags);
3698
3699 ren->oldpath = getname(oldf);
3700 if (IS_ERR(ren->oldpath))
3701 return PTR_ERR(ren->oldpath);
3702
3703 ren->newpath = getname(newf);
3704 if (IS_ERR(ren->newpath)) {
3705 putname(ren->oldpath);
3706 return PTR_ERR(ren->newpath);
3707 }
3708
3709 req->flags |= REQ_F_NEED_CLEANUP;
3710 return 0;
3711 }
3712
3713 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3714 {
3715 struct io_rename *ren = &req->rename;
3716 int ret;
3717
3718 if (issue_flags & IO_URING_F_NONBLOCK)
3719 return -EAGAIN;
3720
3721 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3722 ren->newpath, ren->flags);
3723
3724 req->flags &= ~REQ_F_NEED_CLEANUP;
3725 if (ret < 0)
3726 req_set_fail(req);
3727 io_req_complete(req, ret);
3728 return 0;
3729 }
3730
3731 static int io_unlinkat_prep(struct io_kiocb *req,
3732 const struct io_uring_sqe *sqe)
3733 {
3734 struct io_unlink *un = &req->unlink;
3735 const char __user *fname;
3736
3737 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3738 return -EINVAL;
3739 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3740 sqe->splice_fd_in)
3741 return -EINVAL;
3742 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3743 return -EBADF;
3744
3745 un->dfd = READ_ONCE(sqe->fd);
3746
3747 un->flags = READ_ONCE(sqe->unlink_flags);
3748 if (un->flags & ~AT_REMOVEDIR)
3749 return -EINVAL;
3750
3751 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3752 un->filename = getname(fname);
3753 if (IS_ERR(un->filename))
3754 return PTR_ERR(un->filename);
3755
3756 req->flags |= REQ_F_NEED_CLEANUP;
3757 return 0;
3758 }
3759
3760 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3761 {
3762 struct io_unlink *un = &req->unlink;
3763 int ret;
3764
3765 if (issue_flags & IO_URING_F_NONBLOCK)
3766 return -EAGAIN;
3767
3768 if (un->flags & AT_REMOVEDIR)
3769 ret = do_rmdir(un->dfd, un->filename);
3770 else
3771 ret = do_unlinkat(un->dfd, un->filename);
3772
3773 req->flags &= ~REQ_F_NEED_CLEANUP;
3774 if (ret < 0)
3775 req_set_fail(req);
3776 io_req_complete(req, ret);
3777 return 0;
3778 }
3779
3780 static int io_mkdirat_prep(struct io_kiocb *req,
3781 const struct io_uring_sqe *sqe)
3782 {
3783 struct io_mkdir *mkd = &req->mkdir;
3784 const char __user *fname;
3785
3786 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3787 return -EINVAL;
3788 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3789 sqe->splice_fd_in)
3790 return -EINVAL;
3791 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3792 return -EBADF;
3793
3794 mkd->dfd = READ_ONCE(sqe->fd);
3795 mkd->mode = READ_ONCE(sqe->len);
3796
3797 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3798 mkd->filename = getname(fname);
3799 if (IS_ERR(mkd->filename))
3800 return PTR_ERR(mkd->filename);
3801
3802 req->flags |= REQ_F_NEED_CLEANUP;
3803 return 0;
3804 }
3805
3806 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3807 {
3808 struct io_mkdir *mkd = &req->mkdir;
3809 int ret;
3810
3811 if (issue_flags & IO_URING_F_NONBLOCK)
3812 return -EAGAIN;
3813
3814 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3815
3816 req->flags &= ~REQ_F_NEED_CLEANUP;
3817 if (ret < 0)
3818 req_set_fail(req);
3819 io_req_complete(req, ret);
3820 return 0;
3821 }
3822
3823 static int io_symlinkat_prep(struct io_kiocb *req,
3824 const struct io_uring_sqe *sqe)
3825 {
3826 struct io_symlink *sl = &req->symlink;
3827 const char __user *oldpath, *newpath;
3828
3829 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3830 return -EINVAL;
3831 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3832 sqe->splice_fd_in)
3833 return -EINVAL;
3834 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3835 return -EBADF;
3836
3837 sl->new_dfd = READ_ONCE(sqe->fd);
3838 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3839 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3840
3841 sl->oldpath = getname(oldpath);
3842 if (IS_ERR(sl->oldpath))
3843 return PTR_ERR(sl->oldpath);
3844
3845 sl->newpath = getname(newpath);
3846 if (IS_ERR(sl->newpath)) {
3847 putname(sl->oldpath);
3848 return PTR_ERR(sl->newpath);
3849 }
3850
3851 req->flags |= REQ_F_NEED_CLEANUP;
3852 return 0;
3853 }
3854
3855 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3856 {
3857 struct io_symlink *sl = &req->symlink;
3858 int ret;
3859
3860 if (issue_flags & IO_URING_F_NONBLOCK)
3861 return -EAGAIN;
3862
3863 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3864
3865 req->flags &= ~REQ_F_NEED_CLEANUP;
3866 if (ret < 0)
3867 req_set_fail(req);
3868 io_req_complete(req, ret);
3869 return 0;
3870 }
3871
3872 static int io_linkat_prep(struct io_kiocb *req,
3873 const struct io_uring_sqe *sqe)
3874 {
3875 struct io_hardlink *lnk = &req->hardlink;
3876 const char __user *oldf, *newf;
3877
3878 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3879 return -EINVAL;
3880 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3881 return -EINVAL;
3882 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3883 return -EBADF;
3884
3885 lnk->old_dfd = READ_ONCE(sqe->fd);
3886 lnk->new_dfd = READ_ONCE(sqe->len);
3887 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3888 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3889 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3890
3891 lnk->oldpath = getname(oldf);
3892 if (IS_ERR(lnk->oldpath))
3893 return PTR_ERR(lnk->oldpath);
3894
3895 lnk->newpath = getname(newf);
3896 if (IS_ERR(lnk->newpath)) {
3897 putname(lnk->oldpath);
3898 return PTR_ERR(lnk->newpath);
3899 }
3900
3901 req->flags |= REQ_F_NEED_CLEANUP;
3902 return 0;
3903 }
3904
3905 static int io_linkat(struct io_kiocb *req, int issue_flags)
3906 {
3907 struct io_hardlink *lnk = &req->hardlink;
3908 int ret;
3909
3910 if (issue_flags & IO_URING_F_NONBLOCK)
3911 return -EAGAIN;
3912
3913 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3914 lnk->newpath, lnk->flags);
3915
3916 req->flags &= ~REQ_F_NEED_CLEANUP;
3917 if (ret < 0)
3918 req_set_fail(req);
3919 io_req_complete(req, ret);
3920 return 0;
3921 }
3922
3923 static int io_shutdown_prep(struct io_kiocb *req,
3924 const struct io_uring_sqe *sqe)
3925 {
3926 #if defined(CONFIG_NET)
3927 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3928 return -EINVAL;
3929 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3930 sqe->buf_index || sqe->splice_fd_in))
3931 return -EINVAL;
3932
3933 req->shutdown.how = READ_ONCE(sqe->len);
3934 return 0;
3935 #else
3936 return -EOPNOTSUPP;
3937 #endif
3938 }
3939
3940 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3941 {
3942 #if defined(CONFIG_NET)
3943 struct socket *sock;
3944 int ret;
3945
3946 if (issue_flags & IO_URING_F_NONBLOCK)
3947 return -EAGAIN;
3948
3949 sock = sock_from_file(req->file);
3950 if (unlikely(!sock))
3951 return -ENOTSOCK;
3952
3953 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3954 if (ret < 0)
3955 req_set_fail(req);
3956 io_req_complete(req, ret);
3957 return 0;
3958 #else
3959 return -EOPNOTSUPP;
3960 #endif
3961 }
3962
3963 static int __io_splice_prep(struct io_kiocb *req,
3964 const struct io_uring_sqe *sqe)
3965 {
3966 struct io_splice *sp = &req->splice;
3967 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3968
3969 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3970 return -EINVAL;
3971
3972 sp->file_in = NULL;
3973 sp->len = READ_ONCE(sqe->len);
3974 sp->flags = READ_ONCE(sqe->splice_flags);
3975
3976 if (unlikely(sp->flags & ~valid_flags))
3977 return -EINVAL;
3978
3979 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
3980 (sp->flags & SPLICE_F_FD_IN_FIXED));
3981 if (!sp->file_in)
3982 return -EBADF;
3983 req->flags |= REQ_F_NEED_CLEANUP;
3984 return 0;
3985 }
3986
3987 static int io_tee_prep(struct io_kiocb *req,
3988 const struct io_uring_sqe *sqe)
3989 {
3990 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3991 return -EINVAL;
3992 return __io_splice_prep(req, sqe);
3993 }
3994
3995 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3996 {
3997 struct io_splice *sp = &req->splice;
3998 struct file *in = sp->file_in;
3999 struct file *out = sp->file_out;
4000 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4001 long ret = 0;
4002
4003 if (issue_flags & IO_URING_F_NONBLOCK)
4004 return -EAGAIN;
4005 if (sp->len)
4006 ret = do_tee(in, out, sp->len, flags);
4007
4008 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4009 io_put_file(in);
4010 req->flags &= ~REQ_F_NEED_CLEANUP;
4011
4012 if (ret != sp->len)
4013 req_set_fail(req);
4014 io_req_complete(req, ret);
4015 return 0;
4016 }
4017
4018 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4019 {
4020 struct io_splice *sp = &req->splice;
4021
4022 sp->off_in = READ_ONCE(sqe->splice_off_in);
4023 sp->off_out = READ_ONCE(sqe->off);
4024 return __io_splice_prep(req, sqe);
4025 }
4026
4027 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4028 {
4029 struct io_splice *sp = &req->splice;
4030 struct file *in = sp->file_in;
4031 struct file *out = sp->file_out;
4032 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4033 loff_t *poff_in, *poff_out;
4034 long ret = 0;
4035
4036 if (issue_flags & IO_URING_F_NONBLOCK)
4037 return -EAGAIN;
4038
4039 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4040 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4041
4042 if (sp->len)
4043 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4044
4045 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4046 io_put_file(in);
4047 req->flags &= ~REQ_F_NEED_CLEANUP;
4048
4049 if (ret != sp->len)
4050 req_set_fail(req);
4051 io_req_complete(req, ret);
4052 return 0;
4053 }
4054
4055 /*
4056 * IORING_OP_NOP just posts a completion event, nothing else.
4057 */
4058 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4059 {
4060 struct io_ring_ctx *ctx = req->ctx;
4061
4062 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4063 return -EINVAL;
4064
4065 __io_req_complete(req, issue_flags, 0, 0);
4066 return 0;
4067 }
4068
4069 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4070 {
4071 struct io_ring_ctx *ctx = req->ctx;
4072
4073 if (!req->file)
4074 return -EBADF;
4075
4076 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4077 return -EINVAL;
4078 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4079 sqe->splice_fd_in))
4080 return -EINVAL;
4081
4082 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4083 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4084 return -EINVAL;
4085
4086 req->sync.off = READ_ONCE(sqe->off);
4087 req->sync.len = READ_ONCE(sqe->len);
4088 return 0;
4089 }
4090
4091 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4092 {
4093 loff_t end = req->sync.off + req->sync.len;
4094 int ret;
4095
4096 /* fsync always requires a blocking context */
4097 if (issue_flags & IO_URING_F_NONBLOCK)
4098 return -EAGAIN;
4099
4100 ret = vfs_fsync_range(req->file, req->sync.off,
4101 end > 0 ? end : LLONG_MAX,
4102 req->sync.flags & IORING_FSYNC_DATASYNC);
4103 if (ret < 0)
4104 req_set_fail(req);
4105 io_req_complete(req, ret);
4106 return 0;
4107 }
4108
4109 static int io_fallocate_prep(struct io_kiocb *req,
4110 const struct io_uring_sqe *sqe)
4111 {
4112 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4113 sqe->splice_fd_in)
4114 return -EINVAL;
4115 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4116 return -EINVAL;
4117
4118 req->sync.off = READ_ONCE(sqe->off);
4119 req->sync.len = READ_ONCE(sqe->addr);
4120 req->sync.mode = READ_ONCE(sqe->len);
4121 return 0;
4122 }
4123
4124 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4125 {
4126 int ret;
4127
4128 /* fallocate always requiring blocking context */
4129 if (issue_flags & IO_URING_F_NONBLOCK)
4130 return -EAGAIN;
4131 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4132 req->sync.len);
4133 if (ret < 0)
4134 req_set_fail(req);
4135 io_req_complete(req, ret);
4136 return 0;
4137 }
4138
4139 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4140 {
4141 const char __user *fname;
4142 int ret;
4143
4144 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4145 return -EINVAL;
4146 if (unlikely(sqe->ioprio || sqe->buf_index))
4147 return -EINVAL;
4148 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4149 return -EBADF;
4150
4151 /* open.how should be already initialised */
4152 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4153 req->open.how.flags |= O_LARGEFILE;
4154
4155 req->open.dfd = READ_ONCE(sqe->fd);
4156 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4157 req->open.filename = getname(fname);
4158 if (IS_ERR(req->open.filename)) {
4159 ret = PTR_ERR(req->open.filename);
4160 req->open.filename = NULL;
4161 return ret;
4162 }
4163
4164 req->open.file_slot = READ_ONCE(sqe->file_index);
4165 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4166 return -EINVAL;
4167
4168 req->open.nofile = rlimit(RLIMIT_NOFILE);
4169 req->flags |= REQ_F_NEED_CLEANUP;
4170 return 0;
4171 }
4172
4173 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4174 {
4175 u64 mode = READ_ONCE(sqe->len);
4176 u64 flags = READ_ONCE(sqe->open_flags);
4177
4178 req->open.how = build_open_how(flags, mode);
4179 return __io_openat_prep(req, sqe);
4180 }
4181
4182 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4183 {
4184 struct open_how __user *how;
4185 size_t len;
4186 int ret;
4187
4188 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4189 len = READ_ONCE(sqe->len);
4190 if (len < OPEN_HOW_SIZE_VER0)
4191 return -EINVAL;
4192
4193 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4194 len);
4195 if (ret)
4196 return ret;
4197
4198 return __io_openat_prep(req, sqe);
4199 }
4200
4201 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4202 {
4203 struct open_flags op;
4204 struct file *file;
4205 bool resolve_nonblock, nonblock_set;
4206 bool fixed = !!req->open.file_slot;
4207 int ret;
4208
4209 ret = build_open_flags(&req->open.how, &op);
4210 if (ret)
4211 goto err;
4212 nonblock_set = op.open_flag & O_NONBLOCK;
4213 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4214 if (issue_flags & IO_URING_F_NONBLOCK) {
4215 /*
4216 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4217 * it'll always -EAGAIN
4218 */
4219 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4220 return -EAGAIN;
4221 op.lookup_flags |= LOOKUP_CACHED;
4222 op.open_flag |= O_NONBLOCK;
4223 }
4224
4225 if (!fixed) {
4226 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4227 if (ret < 0)
4228 goto err;
4229 }
4230
4231 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4232 if (IS_ERR(file)) {
4233 /*
4234 * We could hang on to this 'fd' on retrying, but seems like
4235 * marginal gain for something that is now known to be a slower
4236 * path. So just put it, and we'll get a new one when we retry.
4237 */
4238 if (!fixed)
4239 put_unused_fd(ret);
4240
4241 ret = PTR_ERR(file);
4242 /* only retry if RESOLVE_CACHED wasn't already set by application */
4243 if (ret == -EAGAIN &&
4244 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4245 return -EAGAIN;
4246 goto err;
4247 }
4248
4249 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4250 file->f_flags &= ~O_NONBLOCK;
4251 fsnotify_open(file);
4252
4253 if (!fixed)
4254 fd_install(ret, file);
4255 else
4256 ret = io_install_fixed_file(req, file, issue_flags,
4257 req->open.file_slot - 1);
4258 err:
4259 putname(req->open.filename);
4260 req->flags &= ~REQ_F_NEED_CLEANUP;
4261 if (ret < 0)
4262 req_set_fail(req);
4263 __io_req_complete(req, issue_flags, ret, 0);
4264 return 0;
4265 }
4266
4267 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4268 {
4269 return io_openat2(req, issue_flags);
4270 }
4271
4272 static int io_remove_buffers_prep(struct io_kiocb *req,
4273 const struct io_uring_sqe *sqe)
4274 {
4275 struct io_provide_buf *p = &req->pbuf;
4276 u64 tmp;
4277
4278 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4279 sqe->splice_fd_in)
4280 return -EINVAL;
4281
4282 tmp = READ_ONCE(sqe->fd);
4283 if (!tmp || tmp > USHRT_MAX)
4284 return -EINVAL;
4285
4286 memset(p, 0, sizeof(*p));
4287 p->nbufs = tmp;
4288 p->bgid = READ_ONCE(sqe->buf_group);
4289 return 0;
4290 }
4291
4292 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4293 int bgid, unsigned nbufs)
4294 {
4295 unsigned i = 0;
4296
4297 /* shouldn't happen */
4298 if (!nbufs)
4299 return 0;
4300
4301 /* the head kbuf is the list itself */
4302 while (!list_empty(&buf->list)) {
4303 struct io_buffer *nxt;
4304
4305 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4306 list_del(&nxt->list);
4307 kfree(nxt);
4308 if (++i == nbufs)
4309 return i;
4310 }
4311 i++;
4312 kfree(buf);
4313 xa_erase(&ctx->io_buffers, bgid);
4314
4315 return i;
4316 }
4317
4318 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4319 {
4320 struct io_provide_buf *p = &req->pbuf;
4321 struct io_ring_ctx *ctx = req->ctx;
4322 struct io_buffer *head;
4323 int ret = 0;
4324 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4325
4326 io_ring_submit_lock(ctx, !force_nonblock);
4327
4328 lockdep_assert_held(&ctx->uring_lock);
4329
4330 ret = -ENOENT;
4331 head = xa_load(&ctx->io_buffers, p->bgid);
4332 if (head)
4333 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4334 if (ret < 0)
4335 req_set_fail(req);
4336
4337 /* complete before unlock, IOPOLL may need the lock */
4338 __io_req_complete(req, issue_flags, ret, 0);
4339 io_ring_submit_unlock(ctx, !force_nonblock);
4340 return 0;
4341 }
4342
4343 static int io_provide_buffers_prep(struct io_kiocb *req,
4344 const struct io_uring_sqe *sqe)
4345 {
4346 unsigned long size, tmp_check;
4347 struct io_provide_buf *p = &req->pbuf;
4348 u64 tmp;
4349
4350 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4351 return -EINVAL;
4352
4353 tmp = READ_ONCE(sqe->fd);
4354 if (!tmp || tmp > USHRT_MAX)
4355 return -E2BIG;
4356 p->nbufs = tmp;
4357 p->addr = READ_ONCE(sqe->addr);
4358 p->len = READ_ONCE(sqe->len);
4359
4360 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4361 &size))
4362 return -EOVERFLOW;
4363 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4364 return -EOVERFLOW;
4365
4366 size = (unsigned long)p->len * p->nbufs;
4367 if (!access_ok(u64_to_user_ptr(p->addr), size))
4368 return -EFAULT;
4369
4370 p->bgid = READ_ONCE(sqe->buf_group);
4371 tmp = READ_ONCE(sqe->off);
4372 if (tmp > USHRT_MAX)
4373 return -E2BIG;
4374 p->bid = tmp;
4375 return 0;
4376 }
4377
4378 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4379 {
4380 struct io_buffer *buf;
4381 u64 addr = pbuf->addr;
4382 int i, bid = pbuf->bid;
4383
4384 for (i = 0; i < pbuf->nbufs; i++) {
4385 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4386 if (!buf)
4387 break;
4388
4389 buf->addr = addr;
4390 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4391 buf->bid = bid;
4392 addr += pbuf->len;
4393 bid++;
4394 if (!*head) {
4395 INIT_LIST_HEAD(&buf->list);
4396 *head = buf;
4397 } else {
4398 list_add_tail(&buf->list, &(*head)->list);
4399 }
4400 }
4401
4402 return i ? i : -ENOMEM;
4403 }
4404
4405 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4406 {
4407 struct io_provide_buf *p = &req->pbuf;
4408 struct io_ring_ctx *ctx = req->ctx;
4409 struct io_buffer *head, *list;
4410 int ret = 0;
4411 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4412
4413 io_ring_submit_lock(ctx, !force_nonblock);
4414
4415 lockdep_assert_held(&ctx->uring_lock);
4416
4417 list = head = xa_load(&ctx->io_buffers, p->bgid);
4418
4419 ret = io_add_buffers(p, &head);
4420 if (ret >= 0 && !list) {
4421 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4422 if (ret < 0)
4423 __io_remove_buffers(ctx, head, p->bgid, -1U);
4424 }
4425 if (ret < 0)
4426 req_set_fail(req);
4427 /* complete before unlock, IOPOLL may need the lock */
4428 __io_req_complete(req, issue_flags, ret, 0);
4429 io_ring_submit_unlock(ctx, !force_nonblock);
4430 return 0;
4431 }
4432
4433 static int io_epoll_ctl_prep(struct io_kiocb *req,
4434 const struct io_uring_sqe *sqe)
4435 {
4436 #if defined(CONFIG_EPOLL)
4437 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4438 return -EINVAL;
4439 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4440 return -EINVAL;
4441
4442 req->epoll.epfd = READ_ONCE(sqe->fd);
4443 req->epoll.op = READ_ONCE(sqe->len);
4444 req->epoll.fd = READ_ONCE(sqe->off);
4445
4446 if (ep_op_has_event(req->epoll.op)) {
4447 struct epoll_event __user *ev;
4448
4449 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4450 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4451 return -EFAULT;
4452 }
4453
4454 return 0;
4455 #else
4456 return -EOPNOTSUPP;
4457 #endif
4458 }
4459
4460 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4461 {
4462 #if defined(CONFIG_EPOLL)
4463 struct io_epoll *ie = &req->epoll;
4464 int ret;
4465 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4466
4467 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4468 if (force_nonblock && ret == -EAGAIN)
4469 return -EAGAIN;
4470
4471 if (ret < 0)
4472 req_set_fail(req);
4473 __io_req_complete(req, issue_flags, ret, 0);
4474 return 0;
4475 #else
4476 return -EOPNOTSUPP;
4477 #endif
4478 }
4479
4480 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4481 {
4482 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4483 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4484 return -EINVAL;
4485 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4486 return -EINVAL;
4487
4488 req->madvise.addr = READ_ONCE(sqe->addr);
4489 req->madvise.len = READ_ONCE(sqe->len);
4490 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4491 return 0;
4492 #else
4493 return -EOPNOTSUPP;
4494 #endif
4495 }
4496
4497 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4498 {
4499 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4500 struct io_madvise *ma = &req->madvise;
4501 int ret;
4502
4503 if (issue_flags & IO_URING_F_NONBLOCK)
4504 return -EAGAIN;
4505
4506 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4507 if (ret < 0)
4508 req_set_fail(req);
4509 io_req_complete(req, ret);
4510 return 0;
4511 #else
4512 return -EOPNOTSUPP;
4513 #endif
4514 }
4515
4516 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4517 {
4518 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4519 return -EINVAL;
4520 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4521 return -EINVAL;
4522
4523 req->fadvise.offset = READ_ONCE(sqe->off);
4524 req->fadvise.len = READ_ONCE(sqe->len);
4525 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4526 return 0;
4527 }
4528
4529 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4530 {
4531 struct io_fadvise *fa = &req->fadvise;
4532 int ret;
4533
4534 if (issue_flags & IO_URING_F_NONBLOCK) {
4535 switch (fa->advice) {
4536 case POSIX_FADV_NORMAL:
4537 case POSIX_FADV_RANDOM:
4538 case POSIX_FADV_SEQUENTIAL:
4539 break;
4540 default:
4541 return -EAGAIN;
4542 }
4543 }
4544
4545 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4546 if (ret < 0)
4547 req_set_fail(req);
4548 __io_req_complete(req, issue_flags, ret, 0);
4549 return 0;
4550 }
4551
4552 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4553 {
4554 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4555 return -EINVAL;
4556 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4557 return -EINVAL;
4558 if (req->flags & REQ_F_FIXED_FILE)
4559 return -EBADF;
4560
4561 req->statx.dfd = READ_ONCE(sqe->fd);
4562 req->statx.mask = READ_ONCE(sqe->len);
4563 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4564 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4565 req->statx.flags = READ_ONCE(sqe->statx_flags);
4566
4567 return 0;
4568 }
4569
4570 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4571 {
4572 struct io_statx *ctx = &req->statx;
4573 int ret;
4574
4575 if (issue_flags & IO_URING_F_NONBLOCK)
4576 return -EAGAIN;
4577
4578 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4579 ctx->buffer);
4580
4581 if (ret < 0)
4582 req_set_fail(req);
4583 io_req_complete(req, ret);
4584 return 0;
4585 }
4586
4587 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4588 {
4589 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4590 return -EINVAL;
4591 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4592 sqe->rw_flags || sqe->buf_index)
4593 return -EINVAL;
4594 if (req->flags & REQ_F_FIXED_FILE)
4595 return -EBADF;
4596
4597 req->close.fd = READ_ONCE(sqe->fd);
4598 req->close.file_slot = READ_ONCE(sqe->file_index);
4599 if (req->close.file_slot && req->close.fd)
4600 return -EINVAL;
4601
4602 return 0;
4603 }
4604
4605 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4606 {
4607 struct files_struct *files = current->files;
4608 struct io_close *close = &req->close;
4609 struct fdtable *fdt;
4610 struct file *file = NULL;
4611 int ret = -EBADF;
4612
4613 if (req->close.file_slot) {
4614 ret = io_close_fixed(req, issue_flags);
4615 goto err;
4616 }
4617
4618 spin_lock(&files->file_lock);
4619 fdt = files_fdtable(files);
4620 if (close->fd >= fdt->max_fds) {
4621 spin_unlock(&files->file_lock);
4622 goto err;
4623 }
4624 file = fdt->fd[close->fd];
4625 if (!file || file->f_op == &io_uring_fops) {
4626 spin_unlock(&files->file_lock);
4627 file = NULL;
4628 goto err;
4629 }
4630
4631 /* if the file has a flush method, be safe and punt to async */
4632 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4633 spin_unlock(&files->file_lock);
4634 return -EAGAIN;
4635 }
4636
4637 ret = __close_fd_get_file(close->fd, &file);
4638 spin_unlock(&files->file_lock);
4639 if (ret < 0) {
4640 if (ret == -ENOENT)
4641 ret = -EBADF;
4642 goto err;
4643 }
4644
4645 /* No ->flush() or already async, safely close from here */
4646 ret = filp_close(file, current->files);
4647 err:
4648 if (ret < 0)
4649 req_set_fail(req);
4650 if (file)
4651 fput(file);
4652 __io_req_complete(req, issue_flags, ret, 0);
4653 return 0;
4654 }
4655
4656 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4657 {
4658 struct io_ring_ctx *ctx = req->ctx;
4659
4660 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4661 return -EINVAL;
4662 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4663 sqe->splice_fd_in))
4664 return -EINVAL;
4665
4666 req->sync.off = READ_ONCE(sqe->off);
4667 req->sync.len = READ_ONCE(sqe->len);
4668 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4669 return 0;
4670 }
4671
4672 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4673 {
4674 int ret;
4675
4676 /* sync_file_range always requires a blocking context */
4677 if (issue_flags & IO_URING_F_NONBLOCK)
4678 return -EAGAIN;
4679
4680 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4681 req->sync.flags);
4682 if (ret < 0)
4683 req_set_fail(req);
4684 io_req_complete(req, ret);
4685 return 0;
4686 }
4687
4688 #if defined(CONFIG_NET)
4689 static int io_setup_async_msg(struct io_kiocb *req,
4690 struct io_async_msghdr *kmsg)
4691 {
4692 struct io_async_msghdr *async_msg = req->async_data;
4693
4694 if (async_msg)
4695 return -EAGAIN;
4696 if (io_alloc_async_data(req)) {
4697 kfree(kmsg->free_iov);
4698 return -ENOMEM;
4699 }
4700 async_msg = req->async_data;
4701 req->flags |= REQ_F_NEED_CLEANUP;
4702 memcpy(async_msg, kmsg, sizeof(*kmsg));
4703 async_msg->msg.msg_name = &async_msg->addr;
4704 /* if were using fast_iov, set it to the new one */
4705 if (!async_msg->free_iov)
4706 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4707
4708 return -EAGAIN;
4709 }
4710
4711 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4712 struct io_async_msghdr *iomsg)
4713 {
4714 iomsg->msg.msg_name = &iomsg->addr;
4715 iomsg->free_iov = iomsg->fast_iov;
4716 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4717 req->sr_msg.msg_flags, &iomsg->free_iov);
4718 }
4719
4720 static int io_sendmsg_prep_async(struct io_kiocb *req)
4721 {
4722 int ret;
4723
4724 ret = io_sendmsg_copy_hdr(req, req->async_data);
4725 if (!ret)
4726 req->flags |= REQ_F_NEED_CLEANUP;
4727 return ret;
4728 }
4729
4730 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4731 {
4732 struct io_sr_msg *sr = &req->sr_msg;
4733
4734 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4735 return -EINVAL;
4736
4737 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4738 sr->len = READ_ONCE(sqe->len);
4739 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4740 if (sr->msg_flags & MSG_DONTWAIT)
4741 req->flags |= REQ_F_NOWAIT;
4742
4743 #ifdef CONFIG_COMPAT
4744 if (req->ctx->compat)
4745 sr->msg_flags |= MSG_CMSG_COMPAT;
4746 #endif
4747 return 0;
4748 }
4749
4750 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4751 {
4752 struct io_async_msghdr iomsg, *kmsg;
4753 struct socket *sock;
4754 unsigned flags;
4755 int min_ret = 0;
4756 int ret;
4757
4758 sock = sock_from_file(req->file);
4759 if (unlikely(!sock))
4760 return -ENOTSOCK;
4761
4762 kmsg = req->async_data;
4763 if (!kmsg) {
4764 ret = io_sendmsg_copy_hdr(req, &iomsg);
4765 if (ret)
4766 return ret;
4767 kmsg = &iomsg;
4768 }
4769
4770 flags = req->sr_msg.msg_flags;
4771 if (issue_flags & IO_URING_F_NONBLOCK)
4772 flags |= MSG_DONTWAIT;
4773 if (flags & MSG_WAITALL)
4774 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4775
4776 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4777 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4778 return io_setup_async_msg(req, kmsg);
4779 if (ret == -ERESTARTSYS)
4780 ret = -EINTR;
4781
4782 /* fast path, check for non-NULL to avoid function call */
4783 if (kmsg->free_iov)
4784 kfree(kmsg->free_iov);
4785 req->flags &= ~REQ_F_NEED_CLEANUP;
4786 if (ret < min_ret)
4787 req_set_fail(req);
4788 __io_req_complete(req, issue_flags, ret, 0);
4789 return 0;
4790 }
4791
4792 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4793 {
4794 struct io_sr_msg *sr = &req->sr_msg;
4795 struct msghdr msg;
4796 struct iovec iov;
4797 struct socket *sock;
4798 unsigned flags;
4799 int min_ret = 0;
4800 int ret;
4801
4802 sock = sock_from_file(req->file);
4803 if (unlikely(!sock))
4804 return -ENOTSOCK;
4805
4806 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4807 if (unlikely(ret))
4808 return ret;
4809
4810 msg.msg_name = NULL;
4811 msg.msg_control = NULL;
4812 msg.msg_controllen = 0;
4813 msg.msg_namelen = 0;
4814
4815 flags = req->sr_msg.msg_flags;
4816 if (issue_flags & IO_URING_F_NONBLOCK)
4817 flags |= MSG_DONTWAIT;
4818 if (flags & MSG_WAITALL)
4819 min_ret = iov_iter_count(&msg.msg_iter);
4820
4821 msg.msg_flags = flags;
4822 ret = sock_sendmsg(sock, &msg);
4823 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4824 return -EAGAIN;
4825 if (ret == -ERESTARTSYS)
4826 ret = -EINTR;
4827
4828 if (ret < min_ret)
4829 req_set_fail(req);
4830 __io_req_complete(req, issue_flags, ret, 0);
4831 return 0;
4832 }
4833
4834 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4835 struct io_async_msghdr *iomsg)
4836 {
4837 struct io_sr_msg *sr = &req->sr_msg;
4838 struct iovec __user *uiov;
4839 size_t iov_len;
4840 int ret;
4841
4842 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4843 &iomsg->uaddr, &uiov, &iov_len);
4844 if (ret)
4845 return ret;
4846
4847 if (req->flags & REQ_F_BUFFER_SELECT) {
4848 if (iov_len > 1)
4849 return -EINVAL;
4850 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4851 return -EFAULT;
4852 sr->len = iomsg->fast_iov[0].iov_len;
4853 iomsg->free_iov = NULL;
4854 } else {
4855 iomsg->free_iov = iomsg->fast_iov;
4856 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4857 &iomsg->free_iov, &iomsg->msg.msg_iter,
4858 false);
4859 if (ret > 0)
4860 ret = 0;
4861 }
4862
4863 return ret;
4864 }
4865
4866 #ifdef CONFIG_COMPAT
4867 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4868 struct io_async_msghdr *iomsg)
4869 {
4870 struct io_sr_msg *sr = &req->sr_msg;
4871 struct compat_iovec __user *uiov;
4872 compat_uptr_t ptr;
4873 compat_size_t len;
4874 int ret;
4875
4876 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4877 &ptr, &len);
4878 if (ret)
4879 return ret;
4880
4881 uiov = compat_ptr(ptr);
4882 if (req->flags & REQ_F_BUFFER_SELECT) {
4883 compat_ssize_t clen;
4884
4885 if (len > 1)
4886 return -EINVAL;
4887 if (!access_ok(uiov, sizeof(*uiov)))
4888 return -EFAULT;
4889 if (__get_user(clen, &uiov->iov_len))
4890 return -EFAULT;
4891 if (clen < 0)
4892 return -EINVAL;
4893 sr->len = clen;
4894 iomsg->free_iov = NULL;
4895 } else {
4896 iomsg->free_iov = iomsg->fast_iov;
4897 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4898 UIO_FASTIOV, &iomsg->free_iov,
4899 &iomsg->msg.msg_iter, true);
4900 if (ret < 0)
4901 return ret;
4902 }
4903
4904 return 0;
4905 }
4906 #endif
4907
4908 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4909 struct io_async_msghdr *iomsg)
4910 {
4911 iomsg->msg.msg_name = &iomsg->addr;
4912
4913 #ifdef CONFIG_COMPAT
4914 if (req->ctx->compat)
4915 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4916 #endif
4917
4918 return __io_recvmsg_copy_hdr(req, iomsg);
4919 }
4920
4921 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4922 bool needs_lock)
4923 {
4924 struct io_sr_msg *sr = &req->sr_msg;
4925 struct io_buffer *kbuf;
4926
4927 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4928 if (IS_ERR(kbuf))
4929 return kbuf;
4930
4931 sr->kbuf = kbuf;
4932 req->flags |= REQ_F_BUFFER_SELECTED;
4933 return kbuf;
4934 }
4935
4936 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4937 {
4938 return io_put_kbuf(req, req->sr_msg.kbuf);
4939 }
4940
4941 static int io_recvmsg_prep_async(struct io_kiocb *req)
4942 {
4943 int ret;
4944
4945 ret = io_recvmsg_copy_hdr(req, req->async_data);
4946 if (!ret)
4947 req->flags |= REQ_F_NEED_CLEANUP;
4948 return ret;
4949 }
4950
4951 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4952 {
4953 struct io_sr_msg *sr = &req->sr_msg;
4954
4955 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4956 return -EINVAL;
4957
4958 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4959 sr->len = READ_ONCE(sqe->len);
4960 sr->bgid = READ_ONCE(sqe->buf_group);
4961 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4962 if (sr->msg_flags & MSG_DONTWAIT)
4963 req->flags |= REQ_F_NOWAIT;
4964
4965 #ifdef CONFIG_COMPAT
4966 if (req->ctx->compat)
4967 sr->msg_flags |= MSG_CMSG_COMPAT;
4968 #endif
4969 return 0;
4970 }
4971
4972 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4973 {
4974 struct io_async_msghdr iomsg, *kmsg;
4975 struct socket *sock;
4976 struct io_buffer *kbuf;
4977 unsigned flags;
4978 int min_ret = 0;
4979 int ret, cflags = 0;
4980 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4981
4982 sock = sock_from_file(req->file);
4983 if (unlikely(!sock))
4984 return -ENOTSOCK;
4985
4986 kmsg = req->async_data;
4987 if (!kmsg) {
4988 ret = io_recvmsg_copy_hdr(req, &iomsg);
4989 if (ret)
4990 return ret;
4991 kmsg = &iomsg;
4992 }
4993
4994 if (req->flags & REQ_F_BUFFER_SELECT) {
4995 kbuf = io_recv_buffer_select(req, !force_nonblock);
4996 if (IS_ERR(kbuf))
4997 return PTR_ERR(kbuf);
4998 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4999 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5000 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5001 1, req->sr_msg.len);
5002 }
5003
5004 flags = req->sr_msg.msg_flags;
5005 if (force_nonblock)
5006 flags |= MSG_DONTWAIT;
5007 if (flags & MSG_WAITALL)
5008 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5009
5010 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5011 kmsg->uaddr, flags);
5012 if (force_nonblock && ret == -EAGAIN)
5013 return io_setup_async_msg(req, kmsg);
5014 if (ret == -ERESTARTSYS)
5015 ret = -EINTR;
5016
5017 if (req->flags & REQ_F_BUFFER_SELECTED)
5018 cflags = io_put_recv_kbuf(req);
5019 /* fast path, check for non-NULL to avoid function call */
5020 if (kmsg->free_iov)
5021 kfree(kmsg->free_iov);
5022 req->flags &= ~REQ_F_NEED_CLEANUP;
5023 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5024 req_set_fail(req);
5025 __io_req_complete(req, issue_flags, ret, cflags);
5026 return 0;
5027 }
5028
5029 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5030 {
5031 struct io_buffer *kbuf;
5032 struct io_sr_msg *sr = &req->sr_msg;
5033 struct msghdr msg;
5034 void __user *buf = sr->buf;
5035 struct socket *sock;
5036 struct iovec iov;
5037 unsigned flags;
5038 int min_ret = 0;
5039 int ret, cflags = 0;
5040 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5041
5042 sock = sock_from_file(req->file);
5043 if (unlikely(!sock))
5044 return -ENOTSOCK;
5045
5046 if (req->flags & REQ_F_BUFFER_SELECT) {
5047 kbuf = io_recv_buffer_select(req, !force_nonblock);
5048 if (IS_ERR(kbuf))
5049 return PTR_ERR(kbuf);
5050 buf = u64_to_user_ptr(kbuf->addr);
5051 }
5052
5053 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5054 if (unlikely(ret))
5055 goto out_free;
5056
5057 msg.msg_name = NULL;
5058 msg.msg_control = NULL;
5059 msg.msg_controllen = 0;
5060 msg.msg_namelen = 0;
5061 msg.msg_iocb = NULL;
5062 msg.msg_flags = 0;
5063
5064 flags = req->sr_msg.msg_flags;
5065 if (force_nonblock)
5066 flags |= MSG_DONTWAIT;
5067 if (flags & MSG_WAITALL)
5068 min_ret = iov_iter_count(&msg.msg_iter);
5069
5070 ret = sock_recvmsg(sock, &msg, flags);
5071 if (force_nonblock && ret == -EAGAIN)
5072 return -EAGAIN;
5073 if (ret == -ERESTARTSYS)
5074 ret = -EINTR;
5075 out_free:
5076 if (req->flags & REQ_F_BUFFER_SELECTED)
5077 cflags = io_put_recv_kbuf(req);
5078 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5079 req_set_fail(req);
5080 __io_req_complete(req, issue_flags, ret, cflags);
5081 return 0;
5082 }
5083
5084 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5085 {
5086 struct io_accept *accept = &req->accept;
5087
5088 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5089 return -EINVAL;
5090 if (sqe->ioprio || sqe->len || sqe->buf_index)
5091 return -EINVAL;
5092
5093 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5094 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5095 accept->flags = READ_ONCE(sqe->accept_flags);
5096 accept->nofile = rlimit(RLIMIT_NOFILE);
5097
5098 accept->file_slot = READ_ONCE(sqe->file_index);
5099 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5100 (accept->flags & SOCK_CLOEXEC)))
5101 return -EINVAL;
5102 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5103 return -EINVAL;
5104 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5105 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5106 return 0;
5107 }
5108
5109 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5110 {
5111 struct io_accept *accept = &req->accept;
5112 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5113 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5114 bool fixed = !!accept->file_slot;
5115 struct file *file;
5116 int ret, fd;
5117
5118 if (req->file->f_flags & O_NONBLOCK)
5119 req->flags |= REQ_F_NOWAIT;
5120
5121 if (!fixed) {
5122 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5123 if (unlikely(fd < 0))
5124 return fd;
5125 }
5126 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5127 accept->flags);
5128 if (IS_ERR(file)) {
5129 if (!fixed)
5130 put_unused_fd(fd);
5131 ret = PTR_ERR(file);
5132 if (ret == -EAGAIN && force_nonblock)
5133 return -EAGAIN;
5134 if (ret == -ERESTARTSYS)
5135 ret = -EINTR;
5136 req_set_fail(req);
5137 } else if (!fixed) {
5138 fd_install(fd, file);
5139 ret = fd;
5140 } else {
5141 ret = io_install_fixed_file(req, file, issue_flags,
5142 accept->file_slot - 1);
5143 }
5144 __io_req_complete(req, issue_flags, ret, 0);
5145 return 0;
5146 }
5147
5148 static int io_connect_prep_async(struct io_kiocb *req)
5149 {
5150 struct io_async_connect *io = req->async_data;
5151 struct io_connect *conn = &req->connect;
5152
5153 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5154 }
5155
5156 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5157 {
5158 struct io_connect *conn = &req->connect;
5159
5160 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5161 return -EINVAL;
5162 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5163 sqe->splice_fd_in)
5164 return -EINVAL;
5165
5166 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5167 conn->addr_len = READ_ONCE(sqe->addr2);
5168 return 0;
5169 }
5170
5171 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5172 {
5173 struct io_async_connect __io, *io;
5174 unsigned file_flags;
5175 int ret;
5176 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5177
5178 if (req->async_data) {
5179 io = req->async_data;
5180 } else {
5181 ret = move_addr_to_kernel(req->connect.addr,
5182 req->connect.addr_len,
5183 &__io.address);
5184 if (ret)
5185 goto out;
5186 io = &__io;
5187 }
5188
5189 file_flags = force_nonblock ? O_NONBLOCK : 0;
5190
5191 ret = __sys_connect_file(req->file, &io->address,
5192 req->connect.addr_len, file_flags);
5193 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5194 if (req->async_data)
5195 return -EAGAIN;
5196 if (io_alloc_async_data(req)) {
5197 ret = -ENOMEM;
5198 goto out;
5199 }
5200 memcpy(req->async_data, &__io, sizeof(__io));
5201 return -EAGAIN;
5202 }
5203 if (ret == -ERESTARTSYS)
5204 ret = -EINTR;
5205 out:
5206 if (ret < 0)
5207 req_set_fail(req);
5208 __io_req_complete(req, issue_flags, ret, 0);
5209 return 0;
5210 }
5211 #else /* !CONFIG_NET */
5212 #define IO_NETOP_FN(op) \
5213 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5214 { \
5215 return -EOPNOTSUPP; \
5216 }
5217
5218 #define IO_NETOP_PREP(op) \
5219 IO_NETOP_FN(op) \
5220 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5221 { \
5222 return -EOPNOTSUPP; \
5223 } \
5224
5225 #define IO_NETOP_PREP_ASYNC(op) \
5226 IO_NETOP_PREP(op) \
5227 static int io_##op##_prep_async(struct io_kiocb *req) \
5228 { \
5229 return -EOPNOTSUPP; \
5230 }
5231
5232 IO_NETOP_PREP_ASYNC(sendmsg);
5233 IO_NETOP_PREP_ASYNC(recvmsg);
5234 IO_NETOP_PREP_ASYNC(connect);
5235 IO_NETOP_PREP(accept);
5236 IO_NETOP_FN(send);
5237 IO_NETOP_FN(recv);
5238 #endif /* CONFIG_NET */
5239
5240 struct io_poll_table {
5241 struct poll_table_struct pt;
5242 struct io_kiocb *req;
5243 int nr_entries;
5244 int error;
5245 };
5246
5247 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5248 __poll_t mask, io_req_tw_func_t func)
5249 {
5250 /* for instances that support it check for an event match first: */
5251 if (mask && !(mask & poll->events))
5252 return 0;
5253
5254 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5255
5256 list_del_init(&poll->wait.entry);
5257
5258 req->result = mask;
5259 req->io_task_work.func = func;
5260
5261 /*
5262 * If this fails, then the task is exiting. When a task exits, the
5263 * work gets canceled, so just cancel this request as well instead
5264 * of executing it. We can't safely execute it anyway, as we may not
5265 * have the needed state needed for it anyway.
5266 */
5267 io_req_task_work_add(req);
5268 return 1;
5269 }
5270
5271 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5272 __acquires(&req->ctx->completion_lock)
5273 {
5274 struct io_ring_ctx *ctx = req->ctx;
5275
5276 /* req->task == current here, checking PF_EXITING is safe */
5277 if (unlikely(req->task->flags & PF_EXITING))
5278 WRITE_ONCE(poll->canceled, true);
5279
5280 if (!req->result && !READ_ONCE(poll->canceled)) {
5281 struct poll_table_struct pt = { ._key = poll->events };
5282
5283 req->result = vfs_poll(req->file, &pt) & poll->events;
5284 }
5285
5286 spin_lock(&ctx->completion_lock);
5287 if (!req->result && !READ_ONCE(poll->canceled)) {
5288 add_wait_queue(poll->head, &poll->wait);
5289 return true;
5290 }
5291
5292 return false;
5293 }
5294
5295 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5296 {
5297 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5298 if (req->opcode == IORING_OP_POLL_ADD)
5299 return req->async_data;
5300 return req->apoll->double_poll;
5301 }
5302
5303 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5304 {
5305 if (req->opcode == IORING_OP_POLL_ADD)
5306 return &req->poll;
5307 return &req->apoll->poll;
5308 }
5309
5310 static void io_poll_remove_double(struct io_kiocb *req)
5311 __must_hold(&req->ctx->completion_lock)
5312 {
5313 struct io_poll_iocb *poll = io_poll_get_double(req);
5314
5315 lockdep_assert_held(&req->ctx->completion_lock);
5316
5317 if (poll && poll->head) {
5318 struct wait_queue_head *head = poll->head;
5319
5320 spin_lock_irq(&head->lock);
5321 list_del_init(&poll->wait.entry);
5322 if (poll->wait.private)
5323 req_ref_put(req);
5324 poll->head = NULL;
5325 spin_unlock_irq(&head->lock);
5326 }
5327 }
5328
5329 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5330 __must_hold(&req->ctx->completion_lock)
5331 {
5332 struct io_ring_ctx *ctx = req->ctx;
5333 unsigned flags = IORING_CQE_F_MORE;
5334 int error;
5335
5336 if (READ_ONCE(req->poll.canceled)) {
5337 error = -ECANCELED;
5338 req->poll.events |= EPOLLONESHOT;
5339 } else {
5340 error = mangle_poll(mask);
5341 }
5342 if (req->poll.events & EPOLLONESHOT)
5343 flags = 0;
5344 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5345 req->poll.events |= EPOLLONESHOT;
5346 flags = 0;
5347 }
5348 if (flags & IORING_CQE_F_MORE)
5349 ctx->cq_extra++;
5350
5351 return !(flags & IORING_CQE_F_MORE);
5352 }
5353
5354 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5355 __must_hold(&req->ctx->completion_lock)
5356 {
5357 bool done;
5358
5359 done = __io_poll_complete(req, mask);
5360 io_commit_cqring(req->ctx);
5361 return done;
5362 }
5363
5364 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5365 {
5366 struct io_ring_ctx *ctx = req->ctx;
5367 struct io_kiocb *nxt;
5368
5369 if (io_poll_rewait(req, &req->poll)) {
5370 spin_unlock(&ctx->completion_lock);
5371 } else {
5372 bool done;
5373
5374 if (req->poll.done) {
5375 spin_unlock(&ctx->completion_lock);
5376 return;
5377 }
5378 done = __io_poll_complete(req, req->result);
5379 if (done) {
5380 io_poll_remove_double(req);
5381 hash_del(&req->hash_node);
5382 req->poll.done = true;
5383 } else {
5384 req->result = 0;
5385 add_wait_queue(req->poll.head, &req->poll.wait);
5386 }
5387 io_commit_cqring(ctx);
5388 spin_unlock(&ctx->completion_lock);
5389 io_cqring_ev_posted(ctx);
5390
5391 if (done) {
5392 nxt = io_put_req_find_next(req);
5393 if (nxt)
5394 io_req_task_submit(nxt, locked);
5395 }
5396 }
5397 }
5398
5399 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5400 int sync, void *key)
5401 {
5402 struct io_kiocb *req = wait->private;
5403 struct io_poll_iocb *poll = io_poll_get_single(req);
5404 __poll_t mask = key_to_poll(key);
5405 unsigned long flags;
5406
5407 /* for instances that support it check for an event match first: */
5408 if (mask && !(mask & poll->events))
5409 return 0;
5410 if (!(poll->events & EPOLLONESHOT))
5411 return poll->wait.func(&poll->wait, mode, sync, key);
5412
5413 list_del_init(&wait->entry);
5414
5415 if (poll->head) {
5416 bool done;
5417
5418 spin_lock_irqsave(&poll->head->lock, flags);
5419 done = list_empty(&poll->wait.entry);
5420 if (!done)
5421 list_del_init(&poll->wait.entry);
5422 /* make sure double remove sees this as being gone */
5423 wait->private = NULL;
5424 spin_unlock_irqrestore(&poll->head->lock, flags);
5425 if (!done) {
5426 /* use wait func handler, so it matches the rq type */
5427 poll->wait.func(&poll->wait, mode, sync, key);
5428 }
5429 }
5430 req_ref_put(req);
5431 return 1;
5432 }
5433
5434 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5435 wait_queue_func_t wake_func)
5436 {
5437 poll->head = NULL;
5438 poll->done = false;
5439 poll->canceled = false;
5440 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5441 /* mask in events that we always want/need */
5442 poll->events = events | IO_POLL_UNMASK;
5443 INIT_LIST_HEAD(&poll->wait.entry);
5444 init_waitqueue_func_entry(&poll->wait, wake_func);
5445 }
5446
5447 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5448 struct wait_queue_head *head,
5449 struct io_poll_iocb **poll_ptr)
5450 {
5451 struct io_kiocb *req = pt->req;
5452
5453 /*
5454 * The file being polled uses multiple waitqueues for poll handling
5455 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5456 * if this happens.
5457 */
5458 if (unlikely(pt->nr_entries)) {
5459 struct io_poll_iocb *poll_one = poll;
5460
5461 /* double add on the same waitqueue head, ignore */
5462 if (poll_one->head == head)
5463 return;
5464 /* already have a 2nd entry, fail a third attempt */
5465 if (*poll_ptr) {
5466 if ((*poll_ptr)->head == head)
5467 return;
5468 pt->error = -EINVAL;
5469 return;
5470 }
5471 /*
5472 * Can't handle multishot for double wait for now, turn it
5473 * into one-shot mode.
5474 */
5475 if (!(poll_one->events & EPOLLONESHOT))
5476 poll_one->events |= EPOLLONESHOT;
5477 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5478 if (!poll) {
5479 pt->error = -ENOMEM;
5480 return;
5481 }
5482 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5483 req_ref_get(req);
5484 poll->wait.private = req;
5485 *poll_ptr = poll;
5486 }
5487
5488 pt->nr_entries++;
5489 poll->head = head;
5490
5491 if (poll->events & EPOLLEXCLUSIVE)
5492 add_wait_queue_exclusive(head, &poll->wait);
5493 else
5494 add_wait_queue(head, &poll->wait);
5495 }
5496
5497 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5498 struct poll_table_struct *p)
5499 {
5500 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5501 struct async_poll *apoll = pt->req->apoll;
5502
5503 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5504 }
5505
5506 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5507 {
5508 struct async_poll *apoll = req->apoll;
5509 struct io_ring_ctx *ctx = req->ctx;
5510
5511 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5512
5513 if (io_poll_rewait(req, &apoll->poll)) {
5514 spin_unlock(&ctx->completion_lock);
5515 return;
5516 }
5517
5518 hash_del(&req->hash_node);
5519 io_poll_remove_double(req);
5520 apoll->poll.done = true;
5521 spin_unlock(&ctx->completion_lock);
5522
5523 if (!READ_ONCE(apoll->poll.canceled))
5524 io_req_task_submit(req, locked);
5525 else
5526 io_req_complete_failed(req, -ECANCELED);
5527 }
5528
5529 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5530 void *key)
5531 {
5532 struct io_kiocb *req = wait->private;
5533 struct io_poll_iocb *poll = &req->apoll->poll;
5534
5535 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5536 key_to_poll(key));
5537
5538 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5539 }
5540
5541 static void io_poll_req_insert(struct io_kiocb *req)
5542 {
5543 struct io_ring_ctx *ctx = req->ctx;
5544 struct hlist_head *list;
5545
5546 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5547 hlist_add_head(&req->hash_node, list);
5548 }
5549
5550 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5551 struct io_poll_iocb *poll,
5552 struct io_poll_table *ipt, __poll_t mask,
5553 wait_queue_func_t wake_func)
5554 __acquires(&ctx->completion_lock)
5555 {
5556 struct io_ring_ctx *ctx = req->ctx;
5557 bool cancel = false;
5558
5559 INIT_HLIST_NODE(&req->hash_node);
5560 io_init_poll_iocb(poll, mask, wake_func);
5561 poll->file = req->file;
5562 poll->wait.private = req;
5563
5564 ipt->pt._key = mask;
5565 ipt->req = req;
5566 ipt->error = 0;
5567 ipt->nr_entries = 0;
5568
5569 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5570 if (unlikely(!ipt->nr_entries) && !ipt->error)
5571 ipt->error = -EINVAL;
5572
5573 spin_lock(&ctx->completion_lock);
5574 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5575 io_poll_remove_double(req);
5576 if (likely(poll->head)) {
5577 spin_lock_irq(&poll->head->lock);
5578 if (unlikely(list_empty(&poll->wait.entry))) {
5579 if (ipt->error)
5580 cancel = true;
5581 ipt->error = 0;
5582 mask = 0;
5583 }
5584 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5585 list_del_init(&poll->wait.entry);
5586 else if (cancel)
5587 WRITE_ONCE(poll->canceled, true);
5588 else if (!poll->done) /* actually waiting for an event */
5589 io_poll_req_insert(req);
5590 spin_unlock_irq(&poll->head->lock);
5591 }
5592
5593 return mask;
5594 }
5595
5596 enum {
5597 IO_APOLL_OK,
5598 IO_APOLL_ABORTED,
5599 IO_APOLL_READY
5600 };
5601
5602 static int io_arm_poll_handler(struct io_kiocb *req)
5603 {
5604 const struct io_op_def *def = &io_op_defs[req->opcode];
5605 struct io_ring_ctx *ctx = req->ctx;
5606 struct async_poll *apoll;
5607 struct io_poll_table ipt;
5608 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5609 int rw;
5610
5611 if (!req->file || !file_can_poll(req->file))
5612 return IO_APOLL_ABORTED;
5613 if (req->flags & REQ_F_POLLED)
5614 return IO_APOLL_ABORTED;
5615 if (!def->pollin && !def->pollout)
5616 return IO_APOLL_ABORTED;
5617
5618 if (def->pollin) {
5619 rw = READ;
5620 mask |= POLLIN | POLLRDNORM;
5621
5622 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5623 if ((req->opcode == IORING_OP_RECVMSG) &&
5624 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5625 mask &= ~POLLIN;
5626 } else {
5627 rw = WRITE;
5628 mask |= POLLOUT | POLLWRNORM;
5629 }
5630
5631 /* if we can't nonblock try, then no point in arming a poll handler */
5632 if (!io_file_supports_nowait(req, rw))
5633 return IO_APOLL_ABORTED;
5634
5635 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5636 if (unlikely(!apoll))
5637 return IO_APOLL_ABORTED;
5638 apoll->double_poll = NULL;
5639 req->apoll = apoll;
5640 req->flags |= REQ_F_POLLED;
5641 ipt.pt._qproc = io_async_queue_proc;
5642 io_req_set_refcount(req);
5643
5644 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5645 io_async_wake);
5646 spin_unlock(&ctx->completion_lock);
5647 if (ret || ipt.error)
5648 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5649
5650 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5651 mask, apoll->poll.events);
5652 return IO_APOLL_OK;
5653 }
5654
5655 static bool __io_poll_remove_one(struct io_kiocb *req,
5656 struct io_poll_iocb *poll, bool do_cancel)
5657 __must_hold(&req->ctx->completion_lock)
5658 {
5659 bool do_complete = false;
5660
5661 if (!poll->head)
5662 return false;
5663 spin_lock_irq(&poll->head->lock);
5664 if (do_cancel)
5665 WRITE_ONCE(poll->canceled, true);
5666 if (!list_empty(&poll->wait.entry)) {
5667 list_del_init(&poll->wait.entry);
5668 do_complete = true;
5669 }
5670 spin_unlock_irq(&poll->head->lock);
5671 hash_del(&req->hash_node);
5672 return do_complete;
5673 }
5674
5675 static bool io_poll_remove_one(struct io_kiocb *req)
5676 __must_hold(&req->ctx->completion_lock)
5677 {
5678 bool do_complete;
5679
5680 io_poll_remove_double(req);
5681 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5682
5683 if (do_complete) {
5684 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5685 io_commit_cqring(req->ctx);
5686 req_set_fail(req);
5687 io_put_req_deferred(req);
5688 }
5689 return do_complete;
5690 }
5691
5692 /*
5693 * Returns true if we found and killed one or more poll requests
5694 */
5695 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5696 bool cancel_all)
5697 {
5698 struct hlist_node *tmp;
5699 struct io_kiocb *req;
5700 int posted = 0, i;
5701
5702 spin_lock(&ctx->completion_lock);
5703 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5704 struct hlist_head *list;
5705
5706 list = &ctx->cancel_hash[i];
5707 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5708 if (io_match_task(req, tsk, cancel_all))
5709 posted += io_poll_remove_one(req);
5710 }
5711 }
5712 spin_unlock(&ctx->completion_lock);
5713
5714 if (posted)
5715 io_cqring_ev_posted(ctx);
5716
5717 return posted != 0;
5718 }
5719
5720 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5721 bool poll_only)
5722 __must_hold(&ctx->completion_lock)
5723 {
5724 struct hlist_head *list;
5725 struct io_kiocb *req;
5726
5727 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5728 hlist_for_each_entry(req, list, hash_node) {
5729 if (sqe_addr != req->user_data)
5730 continue;
5731 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5732 continue;
5733 return req;
5734 }
5735 return NULL;
5736 }
5737
5738 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5739 bool poll_only)
5740 __must_hold(&ctx->completion_lock)
5741 {
5742 struct io_kiocb *req;
5743
5744 req = io_poll_find(ctx, sqe_addr, poll_only);
5745 if (!req)
5746 return -ENOENT;
5747 if (io_poll_remove_one(req))
5748 return 0;
5749
5750 return -EALREADY;
5751 }
5752
5753 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5754 unsigned int flags)
5755 {
5756 u32 events;
5757
5758 events = READ_ONCE(sqe->poll32_events);
5759 #ifdef __BIG_ENDIAN
5760 events = swahw32(events);
5761 #endif
5762 if (!(flags & IORING_POLL_ADD_MULTI))
5763 events |= EPOLLONESHOT;
5764 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5765 }
5766
5767 static int io_poll_update_prep(struct io_kiocb *req,
5768 const struct io_uring_sqe *sqe)
5769 {
5770 struct io_poll_update *upd = &req->poll_update;
5771 u32 flags;
5772
5773 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5774 return -EINVAL;
5775 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5776 return -EINVAL;
5777 flags = READ_ONCE(sqe->len);
5778 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5779 IORING_POLL_ADD_MULTI))
5780 return -EINVAL;
5781 /* meaningless without update */
5782 if (flags == IORING_POLL_ADD_MULTI)
5783 return -EINVAL;
5784
5785 upd->old_user_data = READ_ONCE(sqe->addr);
5786 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5787 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5788
5789 upd->new_user_data = READ_ONCE(sqe->off);
5790 if (!upd->update_user_data && upd->new_user_data)
5791 return -EINVAL;
5792 if (upd->update_events)
5793 upd->events = io_poll_parse_events(sqe, flags);
5794 else if (sqe->poll32_events)
5795 return -EINVAL;
5796
5797 return 0;
5798 }
5799
5800 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5801 void *key)
5802 {
5803 struct io_kiocb *req = wait->private;
5804 struct io_poll_iocb *poll = &req->poll;
5805
5806 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5807 }
5808
5809 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5810 struct poll_table_struct *p)
5811 {
5812 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5813
5814 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5815 }
5816
5817 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5818 {
5819 struct io_poll_iocb *poll = &req->poll;
5820 u32 flags;
5821
5822 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5823 return -EINVAL;
5824 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5825 return -EINVAL;
5826 flags = READ_ONCE(sqe->len);
5827 if (flags & ~IORING_POLL_ADD_MULTI)
5828 return -EINVAL;
5829
5830 io_req_set_refcount(req);
5831 poll->events = io_poll_parse_events(sqe, flags);
5832 return 0;
5833 }
5834
5835 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5836 {
5837 struct io_poll_iocb *poll = &req->poll;
5838 struct io_ring_ctx *ctx = req->ctx;
5839 struct io_poll_table ipt;
5840 __poll_t mask;
5841 bool done;
5842
5843 ipt.pt._qproc = io_poll_queue_proc;
5844
5845 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5846 io_poll_wake);
5847
5848 if (mask) { /* no async, we'd stolen it */
5849 ipt.error = 0;
5850 done = io_poll_complete(req, mask);
5851 }
5852 spin_unlock(&ctx->completion_lock);
5853
5854 if (mask) {
5855 io_cqring_ev_posted(ctx);
5856 if (done)
5857 io_put_req(req);
5858 }
5859 return ipt.error;
5860 }
5861
5862 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5863 {
5864 struct io_ring_ctx *ctx = req->ctx;
5865 struct io_kiocb *preq;
5866 bool completing;
5867 int ret;
5868
5869 spin_lock(&ctx->completion_lock);
5870 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5871 if (!preq) {
5872 ret = -ENOENT;
5873 goto err;
5874 }
5875
5876 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5877 completing = true;
5878 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5879 goto err;
5880 }
5881
5882 /*
5883 * Don't allow racy completion with singleshot, as we cannot safely
5884 * update those. For multishot, if we're racing with completion, just
5885 * let completion re-add it.
5886 */
5887 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5888 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5889 ret = -EALREADY;
5890 goto err;
5891 }
5892 /* we now have a detached poll request. reissue. */
5893 ret = 0;
5894 err:
5895 if (ret < 0) {
5896 spin_unlock(&ctx->completion_lock);
5897 req_set_fail(req);
5898 io_req_complete(req, ret);
5899 return 0;
5900 }
5901 /* only mask one event flags, keep behavior flags */
5902 if (req->poll_update.update_events) {
5903 preq->poll.events &= ~0xffff;
5904 preq->poll.events |= req->poll_update.events & 0xffff;
5905 preq->poll.events |= IO_POLL_UNMASK;
5906 }
5907 if (req->poll_update.update_user_data)
5908 preq->user_data = req->poll_update.new_user_data;
5909 spin_unlock(&ctx->completion_lock);
5910
5911 /* complete update request, we're done with it */
5912 io_req_complete(req, ret);
5913
5914 if (!completing) {
5915 ret = io_poll_add(preq, issue_flags);
5916 if (ret < 0) {
5917 req_set_fail(preq);
5918 io_req_complete(preq, ret);
5919 }
5920 }
5921 return 0;
5922 }
5923
5924 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5925 {
5926 req_set_fail(req);
5927 io_req_complete_post(req, -ETIME, 0);
5928 }
5929
5930 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5931 {
5932 struct io_timeout_data *data = container_of(timer,
5933 struct io_timeout_data, timer);
5934 struct io_kiocb *req = data->req;
5935 struct io_ring_ctx *ctx = req->ctx;
5936 unsigned long flags;
5937
5938 spin_lock_irqsave(&ctx->timeout_lock, flags);
5939 list_del_init(&req->timeout.list);
5940 atomic_set(&req->ctx->cq_timeouts,
5941 atomic_read(&req->ctx->cq_timeouts) + 1);
5942 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5943
5944 req->io_task_work.func = io_req_task_timeout;
5945 io_req_task_work_add(req);
5946 return HRTIMER_NORESTART;
5947 }
5948
5949 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5950 __u64 user_data)
5951 __must_hold(&ctx->timeout_lock)
5952 {
5953 struct io_timeout_data *io;
5954 struct io_kiocb *req;
5955 bool found = false;
5956
5957 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5958 found = user_data == req->user_data;
5959 if (found)
5960 break;
5961 }
5962 if (!found)
5963 return ERR_PTR(-ENOENT);
5964
5965 io = req->async_data;
5966 if (hrtimer_try_to_cancel(&io->timer) == -1)
5967 return ERR_PTR(-EALREADY);
5968 list_del_init(&req->timeout.list);
5969 return req;
5970 }
5971
5972 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5973 __must_hold(&ctx->completion_lock)
5974 __must_hold(&ctx->timeout_lock)
5975 {
5976 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5977
5978 if (IS_ERR(req))
5979 return PTR_ERR(req);
5980
5981 req_set_fail(req);
5982 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5983 io_put_req_deferred(req);
5984 return 0;
5985 }
5986
5987 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5988 {
5989 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5990 case IORING_TIMEOUT_BOOTTIME:
5991 return CLOCK_BOOTTIME;
5992 case IORING_TIMEOUT_REALTIME:
5993 return CLOCK_REALTIME;
5994 default:
5995 /* can't happen, vetted at prep time */
5996 WARN_ON_ONCE(1);
5997 fallthrough;
5998 case 0:
5999 return CLOCK_MONOTONIC;
6000 }
6001 }
6002
6003 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6004 struct timespec64 *ts, enum hrtimer_mode mode)
6005 __must_hold(&ctx->timeout_lock)
6006 {
6007 struct io_timeout_data *io;
6008 struct io_kiocb *req;
6009 bool found = false;
6010
6011 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6012 found = user_data == req->user_data;
6013 if (found)
6014 break;
6015 }
6016 if (!found)
6017 return -ENOENT;
6018
6019 io = req->async_data;
6020 if (hrtimer_try_to_cancel(&io->timer) == -1)
6021 return -EALREADY;
6022 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6023 io->timer.function = io_link_timeout_fn;
6024 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6025 return 0;
6026 }
6027
6028 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6029 struct timespec64 *ts, enum hrtimer_mode mode)
6030 __must_hold(&ctx->timeout_lock)
6031 {
6032 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6033 struct io_timeout_data *data;
6034
6035 if (IS_ERR(req))
6036 return PTR_ERR(req);
6037
6038 req->timeout.off = 0; /* noseq */
6039 data = req->async_data;
6040 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6041 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6042 data->timer.function = io_timeout_fn;
6043 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6044 return 0;
6045 }
6046
6047 static int io_timeout_remove_prep(struct io_kiocb *req,
6048 const struct io_uring_sqe *sqe)
6049 {
6050 struct io_timeout_rem *tr = &req->timeout_rem;
6051
6052 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6053 return -EINVAL;
6054 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6055 return -EINVAL;
6056 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6057 return -EINVAL;
6058
6059 tr->ltimeout = false;
6060 tr->addr = READ_ONCE(sqe->addr);
6061 tr->flags = READ_ONCE(sqe->timeout_flags);
6062 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6063 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6064 return -EINVAL;
6065 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6066 tr->ltimeout = true;
6067 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6068 return -EINVAL;
6069 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6070 return -EFAULT;
6071 } else if (tr->flags) {
6072 /* timeout removal doesn't support flags */
6073 return -EINVAL;
6074 }
6075
6076 return 0;
6077 }
6078
6079 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6080 {
6081 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6082 : HRTIMER_MODE_REL;
6083 }
6084
6085 /*
6086 * Remove or update an existing timeout command
6087 */
6088 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6089 {
6090 struct io_timeout_rem *tr = &req->timeout_rem;
6091 struct io_ring_ctx *ctx = req->ctx;
6092 int ret;
6093
6094 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6095 spin_lock(&ctx->completion_lock);
6096 spin_lock_irq(&ctx->timeout_lock);
6097 ret = io_timeout_cancel(ctx, tr->addr);
6098 spin_unlock_irq(&ctx->timeout_lock);
6099 spin_unlock(&ctx->completion_lock);
6100 } else {
6101 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6102
6103 spin_lock_irq(&ctx->timeout_lock);
6104 if (tr->ltimeout)
6105 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6106 else
6107 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6108 spin_unlock_irq(&ctx->timeout_lock);
6109 }
6110
6111 if (ret < 0)
6112 req_set_fail(req);
6113 io_req_complete_post(req, ret, 0);
6114 return 0;
6115 }
6116
6117 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6118 bool is_timeout_link)
6119 {
6120 struct io_timeout_data *data;
6121 unsigned flags;
6122 u32 off = READ_ONCE(sqe->off);
6123
6124 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6125 return -EINVAL;
6126 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6127 sqe->splice_fd_in)
6128 return -EINVAL;
6129 if (off && is_timeout_link)
6130 return -EINVAL;
6131 flags = READ_ONCE(sqe->timeout_flags);
6132 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6133 return -EINVAL;
6134 /* more than one clock specified is invalid, obviously */
6135 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6136 return -EINVAL;
6137
6138 INIT_LIST_HEAD(&req->timeout.list);
6139 req->timeout.off = off;
6140 if (unlikely(off && !req->ctx->off_timeout_used))
6141 req->ctx->off_timeout_used = true;
6142
6143 if (!req->async_data && io_alloc_async_data(req))
6144 return -ENOMEM;
6145
6146 data = req->async_data;
6147 data->req = req;
6148 data->flags = flags;
6149
6150 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6151 return -EFAULT;
6152
6153 data->mode = io_translate_timeout_mode(flags);
6154 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6155
6156 if (is_timeout_link) {
6157 struct io_submit_link *link = &req->ctx->submit_state.link;
6158
6159 if (!link->head)
6160 return -EINVAL;
6161 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6162 return -EINVAL;
6163 req->timeout.head = link->last;
6164 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6165 }
6166 return 0;
6167 }
6168
6169 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6170 {
6171 struct io_ring_ctx *ctx = req->ctx;
6172 struct io_timeout_data *data = req->async_data;
6173 struct list_head *entry;
6174 u32 tail, off = req->timeout.off;
6175
6176 spin_lock_irq(&ctx->timeout_lock);
6177
6178 /*
6179 * sqe->off holds how many events that need to occur for this
6180 * timeout event to be satisfied. If it isn't set, then this is
6181 * a pure timeout request, sequence isn't used.
6182 */
6183 if (io_is_timeout_noseq(req)) {
6184 entry = ctx->timeout_list.prev;
6185 goto add;
6186 }
6187
6188 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6189 req->timeout.target_seq = tail + off;
6190
6191 /* Update the last seq here in case io_flush_timeouts() hasn't.
6192 * This is safe because ->completion_lock is held, and submissions
6193 * and completions are never mixed in the same ->completion_lock section.
6194 */
6195 ctx->cq_last_tm_flush = tail;
6196
6197 /*
6198 * Insertion sort, ensuring the first entry in the list is always
6199 * the one we need first.
6200 */
6201 list_for_each_prev(entry, &ctx->timeout_list) {
6202 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6203 timeout.list);
6204
6205 if (io_is_timeout_noseq(nxt))
6206 continue;
6207 /* nxt.seq is behind @tail, otherwise would've been completed */
6208 if (off >= nxt->timeout.target_seq - tail)
6209 break;
6210 }
6211 add:
6212 list_add(&req->timeout.list, entry);
6213 data->timer.function = io_timeout_fn;
6214 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6215 spin_unlock_irq(&ctx->timeout_lock);
6216 return 0;
6217 }
6218
6219 struct io_cancel_data {
6220 struct io_ring_ctx *ctx;
6221 u64 user_data;
6222 };
6223
6224 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6225 {
6226 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6227 struct io_cancel_data *cd = data;
6228
6229 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6230 }
6231
6232 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6233 struct io_ring_ctx *ctx)
6234 {
6235 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6236 enum io_wq_cancel cancel_ret;
6237 int ret = 0;
6238
6239 if (!tctx || !tctx->io_wq)
6240 return -ENOENT;
6241
6242 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6243 switch (cancel_ret) {
6244 case IO_WQ_CANCEL_OK:
6245 ret = 0;
6246 break;
6247 case IO_WQ_CANCEL_RUNNING:
6248 ret = -EALREADY;
6249 break;
6250 case IO_WQ_CANCEL_NOTFOUND:
6251 ret = -ENOENT;
6252 break;
6253 }
6254
6255 return ret;
6256 }
6257
6258 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6259 {
6260 struct io_ring_ctx *ctx = req->ctx;
6261 int ret;
6262
6263 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6264
6265 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6266 if (ret != -ENOENT)
6267 return ret;
6268
6269 spin_lock(&ctx->completion_lock);
6270 spin_lock_irq(&ctx->timeout_lock);
6271 ret = io_timeout_cancel(ctx, sqe_addr);
6272 spin_unlock_irq(&ctx->timeout_lock);
6273 if (ret != -ENOENT)
6274 goto out;
6275 ret = io_poll_cancel(ctx, sqe_addr, false);
6276 out:
6277 spin_unlock(&ctx->completion_lock);
6278 return ret;
6279 }
6280
6281 static int io_async_cancel_prep(struct io_kiocb *req,
6282 const struct io_uring_sqe *sqe)
6283 {
6284 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6285 return -EINVAL;
6286 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6287 return -EINVAL;
6288 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6289 sqe->splice_fd_in)
6290 return -EINVAL;
6291
6292 req->cancel.addr = READ_ONCE(sqe->addr);
6293 return 0;
6294 }
6295
6296 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6297 {
6298 struct io_ring_ctx *ctx = req->ctx;
6299 u64 sqe_addr = req->cancel.addr;
6300 struct io_tctx_node *node;
6301 int ret;
6302
6303 ret = io_try_cancel_userdata(req, sqe_addr);
6304 if (ret != -ENOENT)
6305 goto done;
6306
6307 /* slow path, try all io-wq's */
6308 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6309 ret = -ENOENT;
6310 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6311 struct io_uring_task *tctx = node->task->io_uring;
6312
6313 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6314 if (ret != -ENOENT)
6315 break;
6316 }
6317 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6318 done:
6319 if (ret < 0)
6320 req_set_fail(req);
6321 io_req_complete_post(req, ret, 0);
6322 return 0;
6323 }
6324
6325 static int io_rsrc_update_prep(struct io_kiocb *req,
6326 const struct io_uring_sqe *sqe)
6327 {
6328 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6329 return -EINVAL;
6330 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6331 return -EINVAL;
6332
6333 req->rsrc_update.offset = READ_ONCE(sqe->off);
6334 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6335 if (!req->rsrc_update.nr_args)
6336 return -EINVAL;
6337 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6338 return 0;
6339 }
6340
6341 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6342 {
6343 struct io_ring_ctx *ctx = req->ctx;
6344 struct io_uring_rsrc_update2 up;
6345 int ret;
6346
6347 up.offset = req->rsrc_update.offset;
6348 up.data = req->rsrc_update.arg;
6349 up.nr = 0;
6350 up.tags = 0;
6351 up.resv = 0;
6352
6353 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6354 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6355 &up, req->rsrc_update.nr_args);
6356 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6357
6358 if (ret < 0)
6359 req_set_fail(req);
6360 __io_req_complete(req, issue_flags, ret, 0);
6361 return 0;
6362 }
6363
6364 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6365 {
6366 switch (req->opcode) {
6367 case IORING_OP_NOP:
6368 return 0;
6369 case IORING_OP_READV:
6370 case IORING_OP_READ_FIXED:
6371 case IORING_OP_READ:
6372 return io_read_prep(req, sqe);
6373 case IORING_OP_WRITEV:
6374 case IORING_OP_WRITE_FIXED:
6375 case IORING_OP_WRITE:
6376 return io_write_prep(req, sqe);
6377 case IORING_OP_POLL_ADD:
6378 return io_poll_add_prep(req, sqe);
6379 case IORING_OP_POLL_REMOVE:
6380 return io_poll_update_prep(req, sqe);
6381 case IORING_OP_FSYNC:
6382 return io_fsync_prep(req, sqe);
6383 case IORING_OP_SYNC_FILE_RANGE:
6384 return io_sfr_prep(req, sqe);
6385 case IORING_OP_SENDMSG:
6386 case IORING_OP_SEND:
6387 return io_sendmsg_prep(req, sqe);
6388 case IORING_OP_RECVMSG:
6389 case IORING_OP_RECV:
6390 return io_recvmsg_prep(req, sqe);
6391 case IORING_OP_CONNECT:
6392 return io_connect_prep(req, sqe);
6393 case IORING_OP_TIMEOUT:
6394 return io_timeout_prep(req, sqe, false);
6395 case IORING_OP_TIMEOUT_REMOVE:
6396 return io_timeout_remove_prep(req, sqe);
6397 case IORING_OP_ASYNC_CANCEL:
6398 return io_async_cancel_prep(req, sqe);
6399 case IORING_OP_LINK_TIMEOUT:
6400 return io_timeout_prep(req, sqe, true);
6401 case IORING_OP_ACCEPT:
6402 return io_accept_prep(req, sqe);
6403 case IORING_OP_FALLOCATE:
6404 return io_fallocate_prep(req, sqe);
6405 case IORING_OP_OPENAT:
6406 return io_openat_prep(req, sqe);
6407 case IORING_OP_CLOSE:
6408 return io_close_prep(req, sqe);
6409 case IORING_OP_FILES_UPDATE:
6410 return io_rsrc_update_prep(req, sqe);
6411 case IORING_OP_STATX:
6412 return io_statx_prep(req, sqe);
6413 case IORING_OP_FADVISE:
6414 return io_fadvise_prep(req, sqe);
6415 case IORING_OP_MADVISE:
6416 return io_madvise_prep(req, sqe);
6417 case IORING_OP_OPENAT2:
6418 return io_openat2_prep(req, sqe);
6419 case IORING_OP_EPOLL_CTL:
6420 return io_epoll_ctl_prep(req, sqe);
6421 case IORING_OP_SPLICE:
6422 return io_splice_prep(req, sqe);
6423 case IORING_OP_PROVIDE_BUFFERS:
6424 return io_provide_buffers_prep(req, sqe);
6425 case IORING_OP_REMOVE_BUFFERS:
6426 return io_remove_buffers_prep(req, sqe);
6427 case IORING_OP_TEE:
6428 return io_tee_prep(req, sqe);
6429 case IORING_OP_SHUTDOWN:
6430 return io_shutdown_prep(req, sqe);
6431 case IORING_OP_RENAMEAT:
6432 return io_renameat_prep(req, sqe);
6433 case IORING_OP_UNLINKAT:
6434 return io_unlinkat_prep(req, sqe);
6435 case IORING_OP_MKDIRAT:
6436 return io_mkdirat_prep(req, sqe);
6437 case IORING_OP_SYMLINKAT:
6438 return io_symlinkat_prep(req, sqe);
6439 case IORING_OP_LINKAT:
6440 return io_linkat_prep(req, sqe);
6441 }
6442
6443 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6444 req->opcode);
6445 return -EINVAL;
6446 }
6447
6448 static int io_req_prep_async(struct io_kiocb *req)
6449 {
6450 if (!io_op_defs[req->opcode].needs_async_setup)
6451 return 0;
6452 if (WARN_ON_ONCE(req->async_data))
6453 return -EFAULT;
6454 if (io_alloc_async_data(req))
6455 return -EAGAIN;
6456
6457 switch (req->opcode) {
6458 case IORING_OP_READV:
6459 return io_rw_prep_async(req, READ);
6460 case IORING_OP_WRITEV:
6461 return io_rw_prep_async(req, WRITE);
6462 case IORING_OP_SENDMSG:
6463 return io_sendmsg_prep_async(req);
6464 case IORING_OP_RECVMSG:
6465 return io_recvmsg_prep_async(req);
6466 case IORING_OP_CONNECT:
6467 return io_connect_prep_async(req);
6468 }
6469 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6470 req->opcode);
6471 return -EFAULT;
6472 }
6473
6474 static u32 io_get_sequence(struct io_kiocb *req)
6475 {
6476 u32 seq = req->ctx->cached_sq_head;
6477
6478 /* need original cached_sq_head, but it was increased for each req */
6479 io_for_each_link(req, req)
6480 seq--;
6481 return seq;
6482 }
6483
6484 static bool io_drain_req(struct io_kiocb *req)
6485 {
6486 struct io_kiocb *pos;
6487 struct io_ring_ctx *ctx = req->ctx;
6488 struct io_defer_entry *de;
6489 int ret;
6490 u32 seq;
6491
6492 if (req->flags & REQ_F_FAIL) {
6493 io_req_complete_fail_submit(req);
6494 return true;
6495 }
6496
6497 /*
6498 * If we need to drain a request in the middle of a link, drain the
6499 * head request and the next request/link after the current link.
6500 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6501 * maintained for every request of our link.
6502 */
6503 if (ctx->drain_next) {
6504 req->flags |= REQ_F_IO_DRAIN;
6505 ctx->drain_next = false;
6506 }
6507 /* not interested in head, start from the first linked */
6508 io_for_each_link(pos, req->link) {
6509 if (pos->flags & REQ_F_IO_DRAIN) {
6510 ctx->drain_next = true;
6511 req->flags |= REQ_F_IO_DRAIN;
6512 break;
6513 }
6514 }
6515
6516 /* Still need defer if there is pending req in defer list. */
6517 if (likely(list_empty_careful(&ctx->defer_list) &&
6518 !(req->flags & REQ_F_IO_DRAIN))) {
6519 ctx->drain_active = false;
6520 return false;
6521 }
6522
6523 seq = io_get_sequence(req);
6524 /* Still a chance to pass the sequence check */
6525 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6526 return false;
6527
6528 ret = io_req_prep_async(req);
6529 if (ret)
6530 goto fail;
6531 io_prep_async_link(req);
6532 de = kmalloc(sizeof(*de), GFP_KERNEL);
6533 if (!de) {
6534 ret = -ENOMEM;
6535 fail:
6536 io_req_complete_failed(req, ret);
6537 return true;
6538 }
6539
6540 spin_lock(&ctx->completion_lock);
6541 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6542 spin_unlock(&ctx->completion_lock);
6543 kfree(de);
6544 io_queue_async_work(req, NULL);
6545 return true;
6546 }
6547
6548 trace_io_uring_defer(ctx, req, req->user_data);
6549 de->req = req;
6550 de->seq = seq;
6551 list_add_tail(&de->list, &ctx->defer_list);
6552 spin_unlock(&ctx->completion_lock);
6553 return true;
6554 }
6555
6556 static void io_clean_op(struct io_kiocb *req)
6557 {
6558 if (req->flags & REQ_F_BUFFER_SELECTED) {
6559 switch (req->opcode) {
6560 case IORING_OP_READV:
6561 case IORING_OP_READ_FIXED:
6562 case IORING_OP_READ:
6563 kfree((void *)(unsigned long)req->rw.addr);
6564 break;
6565 case IORING_OP_RECVMSG:
6566 case IORING_OP_RECV:
6567 kfree(req->sr_msg.kbuf);
6568 break;
6569 }
6570 }
6571
6572 if (req->flags & REQ_F_NEED_CLEANUP) {
6573 switch (req->opcode) {
6574 case IORING_OP_READV:
6575 case IORING_OP_READ_FIXED:
6576 case IORING_OP_READ:
6577 case IORING_OP_WRITEV:
6578 case IORING_OP_WRITE_FIXED:
6579 case IORING_OP_WRITE: {
6580 struct io_async_rw *io = req->async_data;
6581
6582 kfree(io->free_iovec);
6583 break;
6584 }
6585 case IORING_OP_RECVMSG:
6586 case IORING_OP_SENDMSG: {
6587 struct io_async_msghdr *io = req->async_data;
6588
6589 kfree(io->free_iov);
6590 break;
6591 }
6592 case IORING_OP_SPLICE:
6593 case IORING_OP_TEE:
6594 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6595 io_put_file(req->splice.file_in);
6596 break;
6597 case IORING_OP_OPENAT:
6598 case IORING_OP_OPENAT2:
6599 if (req->open.filename)
6600 putname(req->open.filename);
6601 break;
6602 case IORING_OP_RENAMEAT:
6603 putname(req->rename.oldpath);
6604 putname(req->rename.newpath);
6605 break;
6606 case IORING_OP_UNLINKAT:
6607 putname(req->unlink.filename);
6608 break;
6609 case IORING_OP_MKDIRAT:
6610 putname(req->mkdir.filename);
6611 break;
6612 case IORING_OP_SYMLINKAT:
6613 putname(req->symlink.oldpath);
6614 putname(req->symlink.newpath);
6615 break;
6616 case IORING_OP_LINKAT:
6617 putname(req->hardlink.oldpath);
6618 putname(req->hardlink.newpath);
6619 break;
6620 }
6621 }
6622 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6623 kfree(req->apoll->double_poll);
6624 kfree(req->apoll);
6625 req->apoll = NULL;
6626 }
6627 if (req->flags & REQ_F_INFLIGHT) {
6628 struct io_uring_task *tctx = req->task->io_uring;
6629
6630 atomic_dec(&tctx->inflight_tracked);
6631 }
6632 if (req->flags & REQ_F_CREDS)
6633 put_cred(req->creds);
6634
6635 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6636 }
6637
6638 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6639 {
6640 struct io_ring_ctx *ctx = req->ctx;
6641 const struct cred *creds = NULL;
6642 int ret;
6643
6644 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6645 creds = override_creds(req->creds);
6646
6647 switch (req->opcode) {
6648 case IORING_OP_NOP:
6649 ret = io_nop(req, issue_flags);
6650 break;
6651 case IORING_OP_READV:
6652 case IORING_OP_READ_FIXED:
6653 case IORING_OP_READ:
6654 ret = io_read(req, issue_flags);
6655 break;
6656 case IORING_OP_WRITEV:
6657 case IORING_OP_WRITE_FIXED:
6658 case IORING_OP_WRITE:
6659 ret = io_write(req, issue_flags);
6660 break;
6661 case IORING_OP_FSYNC:
6662 ret = io_fsync(req, issue_flags);
6663 break;
6664 case IORING_OP_POLL_ADD:
6665 ret = io_poll_add(req, issue_flags);
6666 break;
6667 case IORING_OP_POLL_REMOVE:
6668 ret = io_poll_update(req, issue_flags);
6669 break;
6670 case IORING_OP_SYNC_FILE_RANGE:
6671 ret = io_sync_file_range(req, issue_flags);
6672 break;
6673 case IORING_OP_SENDMSG:
6674 ret = io_sendmsg(req, issue_flags);
6675 break;
6676 case IORING_OP_SEND:
6677 ret = io_send(req, issue_flags);
6678 break;
6679 case IORING_OP_RECVMSG:
6680 ret = io_recvmsg(req, issue_flags);
6681 break;
6682 case IORING_OP_RECV:
6683 ret = io_recv(req, issue_flags);
6684 break;
6685 case IORING_OP_TIMEOUT:
6686 ret = io_timeout(req, issue_flags);
6687 break;
6688 case IORING_OP_TIMEOUT_REMOVE:
6689 ret = io_timeout_remove(req, issue_flags);
6690 break;
6691 case IORING_OP_ACCEPT:
6692 ret = io_accept(req, issue_flags);
6693 break;
6694 case IORING_OP_CONNECT:
6695 ret = io_connect(req, issue_flags);
6696 break;
6697 case IORING_OP_ASYNC_CANCEL:
6698 ret = io_async_cancel(req, issue_flags);
6699 break;
6700 case IORING_OP_FALLOCATE:
6701 ret = io_fallocate(req, issue_flags);
6702 break;
6703 case IORING_OP_OPENAT:
6704 ret = io_openat(req, issue_flags);
6705 break;
6706 case IORING_OP_CLOSE:
6707 ret = io_close(req, issue_flags);
6708 break;
6709 case IORING_OP_FILES_UPDATE:
6710 ret = io_files_update(req, issue_flags);
6711 break;
6712 case IORING_OP_STATX:
6713 ret = io_statx(req, issue_flags);
6714 break;
6715 case IORING_OP_FADVISE:
6716 ret = io_fadvise(req, issue_flags);
6717 break;
6718 case IORING_OP_MADVISE:
6719 ret = io_madvise(req, issue_flags);
6720 break;
6721 case IORING_OP_OPENAT2:
6722 ret = io_openat2(req, issue_flags);
6723 break;
6724 case IORING_OP_EPOLL_CTL:
6725 ret = io_epoll_ctl(req, issue_flags);
6726 break;
6727 case IORING_OP_SPLICE:
6728 ret = io_splice(req, issue_flags);
6729 break;
6730 case IORING_OP_PROVIDE_BUFFERS:
6731 ret = io_provide_buffers(req, issue_flags);
6732 break;
6733 case IORING_OP_REMOVE_BUFFERS:
6734 ret = io_remove_buffers(req, issue_flags);
6735 break;
6736 case IORING_OP_TEE:
6737 ret = io_tee(req, issue_flags);
6738 break;
6739 case IORING_OP_SHUTDOWN:
6740 ret = io_shutdown(req, issue_flags);
6741 break;
6742 case IORING_OP_RENAMEAT:
6743 ret = io_renameat(req, issue_flags);
6744 break;
6745 case IORING_OP_UNLINKAT:
6746 ret = io_unlinkat(req, issue_flags);
6747 break;
6748 case IORING_OP_MKDIRAT:
6749 ret = io_mkdirat(req, issue_flags);
6750 break;
6751 case IORING_OP_SYMLINKAT:
6752 ret = io_symlinkat(req, issue_flags);
6753 break;
6754 case IORING_OP_LINKAT:
6755 ret = io_linkat(req, issue_flags);
6756 break;
6757 default:
6758 ret = -EINVAL;
6759 break;
6760 }
6761
6762 if (creds)
6763 revert_creds(creds);
6764 if (ret)
6765 return ret;
6766 /* If the op doesn't have a file, we're not polling for it */
6767 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6768 io_iopoll_req_issued(req);
6769
6770 return 0;
6771 }
6772
6773 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6774 {
6775 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6776
6777 req = io_put_req_find_next(req);
6778 return req ? &req->work : NULL;
6779 }
6780
6781 static void io_wq_submit_work(struct io_wq_work *work)
6782 {
6783 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6784 struct io_kiocb *timeout;
6785 int ret = 0;
6786
6787 /* one will be dropped by ->io_free_work() after returning to io-wq */
6788 if (!(req->flags & REQ_F_REFCOUNT))
6789 __io_req_set_refcount(req, 2);
6790 else
6791 req_ref_get(req);
6792
6793 timeout = io_prep_linked_timeout(req);
6794 if (timeout)
6795 io_queue_linked_timeout(timeout);
6796
6797 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6798 if (work->flags & IO_WQ_WORK_CANCEL)
6799 ret = -ECANCELED;
6800
6801 if (!ret) {
6802 do {
6803 ret = io_issue_sqe(req, 0);
6804 /*
6805 * We can get EAGAIN for polled IO even though we're
6806 * forcing a sync submission from here, since we can't
6807 * wait for request slots on the block side.
6808 */
6809 if (ret != -EAGAIN)
6810 break;
6811 cond_resched();
6812 } while (1);
6813 }
6814
6815 /* avoid locking problems by failing it from a clean context */
6816 if (ret)
6817 io_req_task_queue_fail(req, ret);
6818 }
6819
6820 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6821 unsigned i)
6822 {
6823 return &table->files[i];
6824 }
6825
6826 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6827 int index)
6828 {
6829 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6830
6831 return (struct file *) (slot->file_ptr & FFS_MASK);
6832 }
6833
6834 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6835 {
6836 unsigned long file_ptr = (unsigned long) file;
6837
6838 if (__io_file_supports_nowait(file, READ))
6839 file_ptr |= FFS_ASYNC_READ;
6840 if (__io_file_supports_nowait(file, WRITE))
6841 file_ptr |= FFS_ASYNC_WRITE;
6842 if (S_ISREG(file_inode(file)->i_mode))
6843 file_ptr |= FFS_ISREG;
6844 file_slot->file_ptr = file_ptr;
6845 }
6846
6847 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6848 struct io_kiocb *req, int fd)
6849 {
6850 struct file *file;
6851 unsigned long file_ptr;
6852
6853 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6854 return NULL;
6855 fd = array_index_nospec(fd, ctx->nr_user_files);
6856 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6857 file = (struct file *) (file_ptr & FFS_MASK);
6858 file_ptr &= ~FFS_MASK;
6859 /* mask in overlapping REQ_F and FFS bits */
6860 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6861 io_req_set_rsrc_node(req);
6862 return file;
6863 }
6864
6865 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6866 struct io_kiocb *req, int fd)
6867 {
6868 struct file *file = fget(fd);
6869
6870 trace_io_uring_file_get(ctx, fd);
6871
6872 /* we don't allow fixed io_uring files */
6873 if (file && unlikely(file->f_op == &io_uring_fops))
6874 io_req_track_inflight(req);
6875 return file;
6876 }
6877
6878 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6879 struct io_kiocb *req, int fd, bool fixed)
6880 {
6881 if (fixed)
6882 return io_file_get_fixed(ctx, req, fd);
6883 else
6884 return io_file_get_normal(ctx, req, fd);
6885 }
6886
6887 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6888 {
6889 struct io_kiocb *prev = req->timeout.prev;
6890 int ret;
6891
6892 if (prev) {
6893 ret = io_try_cancel_userdata(req, prev->user_data);
6894 io_req_complete_post(req, ret ?: -ETIME, 0);
6895 io_put_req(prev);
6896 } else {
6897 io_req_complete_post(req, -ETIME, 0);
6898 }
6899 }
6900
6901 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6902 {
6903 struct io_timeout_data *data = container_of(timer,
6904 struct io_timeout_data, timer);
6905 struct io_kiocb *prev, *req = data->req;
6906 struct io_ring_ctx *ctx = req->ctx;
6907 unsigned long flags;
6908
6909 spin_lock_irqsave(&ctx->timeout_lock, flags);
6910 prev = req->timeout.head;
6911 req->timeout.head = NULL;
6912
6913 /*
6914 * We don't expect the list to be empty, that will only happen if we
6915 * race with the completion of the linked work.
6916 */
6917 if (prev) {
6918 io_remove_next_linked(prev);
6919 if (!req_ref_inc_not_zero(prev))
6920 prev = NULL;
6921 }
6922 list_del(&req->timeout.list);
6923 req->timeout.prev = prev;
6924 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6925
6926 req->io_task_work.func = io_req_task_link_timeout;
6927 io_req_task_work_add(req);
6928 return HRTIMER_NORESTART;
6929 }
6930
6931 static void io_queue_linked_timeout(struct io_kiocb *req)
6932 {
6933 struct io_ring_ctx *ctx = req->ctx;
6934
6935 spin_lock_irq(&ctx->timeout_lock);
6936 /*
6937 * If the back reference is NULL, then our linked request finished
6938 * before we got a chance to setup the timer
6939 */
6940 if (req->timeout.head) {
6941 struct io_timeout_data *data = req->async_data;
6942
6943 data->timer.function = io_link_timeout_fn;
6944 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6945 data->mode);
6946 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6947 }
6948 spin_unlock_irq(&ctx->timeout_lock);
6949 /* drop submission reference */
6950 io_put_req(req);
6951 }
6952
6953 static void __io_queue_sqe(struct io_kiocb *req)
6954 __must_hold(&req->ctx->uring_lock)
6955 {
6956 struct io_kiocb *linked_timeout;
6957 int ret;
6958
6959 issue_sqe:
6960 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6961
6962 /*
6963 * We async punt it if the file wasn't marked NOWAIT, or if the file
6964 * doesn't support non-blocking read/write attempts
6965 */
6966 if (likely(!ret)) {
6967 if (req->flags & REQ_F_COMPLETE_INLINE) {
6968 struct io_ring_ctx *ctx = req->ctx;
6969 struct io_submit_state *state = &ctx->submit_state;
6970
6971 state->compl_reqs[state->compl_nr++] = req;
6972 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6973 io_submit_flush_completions(ctx);
6974 return;
6975 }
6976
6977 linked_timeout = io_prep_linked_timeout(req);
6978 if (linked_timeout)
6979 io_queue_linked_timeout(linked_timeout);
6980 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6981 linked_timeout = io_prep_linked_timeout(req);
6982
6983 switch (io_arm_poll_handler(req)) {
6984 case IO_APOLL_READY:
6985 if (linked_timeout)
6986 io_unprep_linked_timeout(req);
6987 goto issue_sqe;
6988 case IO_APOLL_ABORTED:
6989 /*
6990 * Queued up for async execution, worker will release
6991 * submit reference when the iocb is actually submitted.
6992 */
6993 io_queue_async_work(req, NULL);
6994 break;
6995 }
6996
6997 if (linked_timeout)
6998 io_queue_linked_timeout(linked_timeout);
6999 } else {
7000 io_req_complete_failed(req, ret);
7001 }
7002 }
7003
7004 static inline void io_queue_sqe(struct io_kiocb *req)
7005 __must_hold(&req->ctx->uring_lock)
7006 {
7007 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7008 return;
7009
7010 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7011 __io_queue_sqe(req);
7012 } else if (req->flags & REQ_F_FAIL) {
7013 io_req_complete_fail_submit(req);
7014 } else {
7015 int ret = io_req_prep_async(req);
7016
7017 if (unlikely(ret))
7018 io_req_complete_failed(req, ret);
7019 else
7020 io_queue_async_work(req, NULL);
7021 }
7022 }
7023
7024 /*
7025 * Check SQE restrictions (opcode and flags).
7026 *
7027 * Returns 'true' if SQE is allowed, 'false' otherwise.
7028 */
7029 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7030 struct io_kiocb *req,
7031 unsigned int sqe_flags)
7032 {
7033 if (likely(!ctx->restricted))
7034 return true;
7035
7036 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7037 return false;
7038
7039 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7040 ctx->restrictions.sqe_flags_required)
7041 return false;
7042
7043 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7044 ctx->restrictions.sqe_flags_required))
7045 return false;
7046
7047 return true;
7048 }
7049
7050 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7051 const struct io_uring_sqe *sqe)
7052 __must_hold(&ctx->uring_lock)
7053 {
7054 struct io_submit_state *state;
7055 unsigned int sqe_flags;
7056 int personality, ret = 0;
7057
7058 /* req is partially pre-initialised, see io_preinit_req() */
7059 req->opcode = READ_ONCE(sqe->opcode);
7060 /* same numerical values with corresponding REQ_F_*, safe to copy */
7061 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7062 req->user_data = READ_ONCE(sqe->user_data);
7063 req->file = NULL;
7064 req->fixed_rsrc_refs = NULL;
7065 req->task = current;
7066
7067 /* enforce forwards compatibility on users */
7068 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7069 return -EINVAL;
7070 if (unlikely(req->opcode >= IORING_OP_LAST))
7071 return -EINVAL;
7072 if (!io_check_restriction(ctx, req, sqe_flags))
7073 return -EACCES;
7074
7075 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7076 !io_op_defs[req->opcode].buffer_select)
7077 return -EOPNOTSUPP;
7078 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7079 ctx->drain_active = true;
7080
7081 personality = READ_ONCE(sqe->personality);
7082 if (personality) {
7083 req->creds = xa_load(&ctx->personalities, personality);
7084 if (!req->creds)
7085 return -EINVAL;
7086 get_cred(req->creds);
7087 req->flags |= REQ_F_CREDS;
7088 }
7089 state = &ctx->submit_state;
7090
7091 /*
7092 * Plug now if we have more than 1 IO left after this, and the target
7093 * is potentially a read/write to block based storage.
7094 */
7095 if (!state->plug_started && state->ios_left > 1 &&
7096 io_op_defs[req->opcode].plug) {
7097 blk_start_plug(&state->plug);
7098 state->plug_started = true;
7099 }
7100
7101 if (io_op_defs[req->opcode].needs_file) {
7102 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7103 (sqe_flags & IOSQE_FIXED_FILE));
7104 if (unlikely(!req->file))
7105 ret = -EBADF;
7106 }
7107
7108 state->ios_left--;
7109 return ret;
7110 }
7111
7112 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7113 const struct io_uring_sqe *sqe)
7114 __must_hold(&ctx->uring_lock)
7115 {
7116 struct io_submit_link *link = &ctx->submit_state.link;
7117 int ret;
7118
7119 ret = io_init_req(ctx, req, sqe);
7120 if (unlikely(ret)) {
7121 fail_req:
7122 /* fail even hard links since we don't submit */
7123 if (link->head) {
7124 /*
7125 * we can judge a link req is failed or cancelled by if
7126 * REQ_F_FAIL is set, but the head is an exception since
7127 * it may be set REQ_F_FAIL because of other req's failure
7128 * so let's leverage req->result to distinguish if a head
7129 * is set REQ_F_FAIL because of its failure or other req's
7130 * failure so that we can set the correct ret code for it.
7131 * init result here to avoid affecting the normal path.
7132 */
7133 if (!(link->head->flags & REQ_F_FAIL))
7134 req_fail_link_node(link->head, -ECANCELED);
7135 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7136 /*
7137 * the current req is a normal req, we should return
7138 * error and thus break the submittion loop.
7139 */
7140 io_req_complete_failed(req, ret);
7141 return ret;
7142 }
7143 req_fail_link_node(req, ret);
7144 } else {
7145 ret = io_req_prep(req, sqe);
7146 if (unlikely(ret))
7147 goto fail_req;
7148 }
7149
7150 /* don't need @sqe from now on */
7151 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7152 req->flags, true,
7153 ctx->flags & IORING_SETUP_SQPOLL);
7154
7155 /*
7156 * If we already have a head request, queue this one for async
7157 * submittal once the head completes. If we don't have a head but
7158 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7159 * submitted sync once the chain is complete. If none of those
7160 * conditions are true (normal request), then just queue it.
7161 */
7162 if (link->head) {
7163 struct io_kiocb *head = link->head;
7164
7165 if (!(req->flags & REQ_F_FAIL)) {
7166 ret = io_req_prep_async(req);
7167 if (unlikely(ret)) {
7168 req_fail_link_node(req, ret);
7169 if (!(head->flags & REQ_F_FAIL))
7170 req_fail_link_node(head, -ECANCELED);
7171 }
7172 }
7173 trace_io_uring_link(ctx, req, head);
7174 link->last->link = req;
7175 link->last = req;
7176
7177 /* last request of a link, enqueue the link */
7178 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7179 link->head = NULL;
7180 io_queue_sqe(head);
7181 }
7182 } else {
7183 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7184 link->head = req;
7185 link->last = req;
7186 } else {
7187 io_queue_sqe(req);
7188 }
7189 }
7190
7191 return 0;
7192 }
7193
7194 /*
7195 * Batched submission is done, ensure local IO is flushed out.
7196 */
7197 static void io_submit_state_end(struct io_submit_state *state,
7198 struct io_ring_ctx *ctx)
7199 {
7200 if (state->link.head)
7201 io_queue_sqe(state->link.head);
7202 if (state->compl_nr)
7203 io_submit_flush_completions(ctx);
7204 if (state->plug_started)
7205 blk_finish_plug(&state->plug);
7206 }
7207
7208 /*
7209 * Start submission side cache.
7210 */
7211 static void io_submit_state_start(struct io_submit_state *state,
7212 unsigned int max_ios)
7213 {
7214 state->plug_started = false;
7215 state->ios_left = max_ios;
7216 /* set only head, no need to init link_last in advance */
7217 state->link.head = NULL;
7218 }
7219
7220 static void io_commit_sqring(struct io_ring_ctx *ctx)
7221 {
7222 struct io_rings *rings = ctx->rings;
7223
7224 /*
7225 * Ensure any loads from the SQEs are done at this point,
7226 * since once we write the new head, the application could
7227 * write new data to them.
7228 */
7229 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7230 }
7231
7232 /*
7233 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7234 * that is mapped by userspace. This means that care needs to be taken to
7235 * ensure that reads are stable, as we cannot rely on userspace always
7236 * being a good citizen. If members of the sqe are validated and then later
7237 * used, it's important that those reads are done through READ_ONCE() to
7238 * prevent a re-load down the line.
7239 */
7240 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7241 {
7242 unsigned head, mask = ctx->sq_entries - 1;
7243 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7244
7245 /*
7246 * The cached sq head (or cq tail) serves two purposes:
7247 *
7248 * 1) allows us to batch the cost of updating the user visible
7249 * head updates.
7250 * 2) allows the kernel side to track the head on its own, even
7251 * though the application is the one updating it.
7252 */
7253 head = READ_ONCE(ctx->sq_array[sq_idx]);
7254 if (likely(head < ctx->sq_entries))
7255 return &ctx->sq_sqes[head];
7256
7257 /* drop invalid entries */
7258 ctx->cq_extra--;
7259 WRITE_ONCE(ctx->rings->sq_dropped,
7260 READ_ONCE(ctx->rings->sq_dropped) + 1);
7261 return NULL;
7262 }
7263
7264 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7265 __must_hold(&ctx->uring_lock)
7266 {
7267 int submitted = 0;
7268
7269 /* make sure SQ entry isn't read before tail */
7270 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7271 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7272 return -EAGAIN;
7273 io_get_task_refs(nr);
7274
7275 io_submit_state_start(&ctx->submit_state, nr);
7276 while (submitted < nr) {
7277 const struct io_uring_sqe *sqe;
7278 struct io_kiocb *req;
7279
7280 req = io_alloc_req(ctx);
7281 if (unlikely(!req)) {
7282 if (!submitted)
7283 submitted = -EAGAIN;
7284 break;
7285 }
7286 sqe = io_get_sqe(ctx);
7287 if (unlikely(!sqe)) {
7288 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7289 break;
7290 }
7291 /* will complete beyond this point, count as submitted */
7292 submitted++;
7293 if (io_submit_sqe(ctx, req, sqe))
7294 break;
7295 }
7296
7297 if (unlikely(submitted != nr)) {
7298 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7299 int unused = nr - ref_used;
7300
7301 current->io_uring->cached_refs += unused;
7302 percpu_ref_put_many(&ctx->refs, unused);
7303 }
7304
7305 io_submit_state_end(&ctx->submit_state, ctx);
7306 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7307 io_commit_sqring(ctx);
7308
7309 return submitted;
7310 }
7311
7312 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7313 {
7314 return READ_ONCE(sqd->state);
7315 }
7316
7317 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7318 {
7319 /* Tell userspace we may need a wakeup call */
7320 spin_lock(&ctx->completion_lock);
7321 WRITE_ONCE(ctx->rings->sq_flags,
7322 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7323 spin_unlock(&ctx->completion_lock);
7324 }
7325
7326 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7327 {
7328 spin_lock(&ctx->completion_lock);
7329 WRITE_ONCE(ctx->rings->sq_flags,
7330 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7331 spin_unlock(&ctx->completion_lock);
7332 }
7333
7334 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7335 {
7336 unsigned int to_submit;
7337 int ret = 0;
7338
7339 to_submit = io_sqring_entries(ctx);
7340 /* if we're handling multiple rings, cap submit size for fairness */
7341 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7342 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7343
7344 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7345 unsigned nr_events = 0;
7346 const struct cred *creds = NULL;
7347
7348 if (ctx->sq_creds != current_cred())
7349 creds = override_creds(ctx->sq_creds);
7350
7351 mutex_lock(&ctx->uring_lock);
7352 if (!list_empty(&ctx->iopoll_list))
7353 io_do_iopoll(ctx, &nr_events, 0);
7354
7355 /*
7356 * Don't submit if refs are dying, good for io_uring_register(),
7357 * but also it is relied upon by io_ring_exit_work()
7358 */
7359 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7360 !(ctx->flags & IORING_SETUP_R_DISABLED))
7361 ret = io_submit_sqes(ctx, to_submit);
7362 mutex_unlock(&ctx->uring_lock);
7363
7364 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7365 wake_up(&ctx->sqo_sq_wait);
7366 if (creds)
7367 revert_creds(creds);
7368 }
7369
7370 return ret;
7371 }
7372
7373 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7374 {
7375 struct io_ring_ctx *ctx;
7376 unsigned sq_thread_idle = 0;
7377
7378 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7379 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7380 sqd->sq_thread_idle = sq_thread_idle;
7381 }
7382
7383 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7384 {
7385 bool did_sig = false;
7386 struct ksignal ksig;
7387
7388 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7389 signal_pending(current)) {
7390 mutex_unlock(&sqd->lock);
7391 if (signal_pending(current))
7392 did_sig = get_signal(&ksig);
7393 cond_resched();
7394 mutex_lock(&sqd->lock);
7395 }
7396 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7397 }
7398
7399 static int io_sq_thread(void *data)
7400 {
7401 struct io_sq_data *sqd = data;
7402 struct io_ring_ctx *ctx;
7403 unsigned long timeout = 0;
7404 char buf[TASK_COMM_LEN];
7405 DEFINE_WAIT(wait);
7406
7407 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7408 set_task_comm(current, buf);
7409
7410 if (sqd->sq_cpu != -1)
7411 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7412 else
7413 set_cpus_allowed_ptr(current, cpu_online_mask);
7414 current->flags |= PF_NO_SETAFFINITY;
7415
7416 mutex_lock(&sqd->lock);
7417 while (1) {
7418 bool cap_entries, sqt_spin = false;
7419
7420 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7421 if (io_sqd_handle_event(sqd))
7422 break;
7423 timeout = jiffies + sqd->sq_thread_idle;
7424 }
7425
7426 cap_entries = !list_is_singular(&sqd->ctx_list);
7427 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7428 int ret = __io_sq_thread(ctx, cap_entries);
7429
7430 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7431 sqt_spin = true;
7432 }
7433 if (io_run_task_work())
7434 sqt_spin = true;
7435
7436 if (sqt_spin || !time_after(jiffies, timeout)) {
7437 cond_resched();
7438 if (sqt_spin)
7439 timeout = jiffies + sqd->sq_thread_idle;
7440 continue;
7441 }
7442
7443 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7444 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7445 bool needs_sched = true;
7446
7447 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7448 io_ring_set_wakeup_flag(ctx);
7449
7450 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7451 !list_empty_careful(&ctx->iopoll_list)) {
7452 needs_sched = false;
7453 break;
7454 }
7455 if (io_sqring_entries(ctx)) {
7456 needs_sched = false;
7457 break;
7458 }
7459 }
7460
7461 if (needs_sched) {
7462 mutex_unlock(&sqd->lock);
7463 schedule();
7464 mutex_lock(&sqd->lock);
7465 }
7466 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7467 io_ring_clear_wakeup_flag(ctx);
7468 }
7469
7470 finish_wait(&sqd->wait, &wait);
7471 timeout = jiffies + sqd->sq_thread_idle;
7472 }
7473
7474 io_uring_cancel_generic(true, sqd);
7475 sqd->thread = NULL;
7476 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7477 io_ring_set_wakeup_flag(ctx);
7478 io_run_task_work();
7479 mutex_unlock(&sqd->lock);
7480
7481 complete(&sqd->exited);
7482 do_exit(0);
7483 }
7484
7485 struct io_wait_queue {
7486 struct wait_queue_entry wq;
7487 struct io_ring_ctx *ctx;
7488 unsigned cq_tail;
7489 unsigned nr_timeouts;
7490 };
7491
7492 static inline bool io_should_wake(struct io_wait_queue *iowq)
7493 {
7494 struct io_ring_ctx *ctx = iowq->ctx;
7495 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7496
7497 /*
7498 * Wake up if we have enough events, or if a timeout occurred since we
7499 * started waiting. For timeouts, we always want to return to userspace,
7500 * regardless of event count.
7501 */
7502 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7503 }
7504
7505 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7506 int wake_flags, void *key)
7507 {
7508 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7509 wq);
7510
7511 /*
7512 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7513 * the task, and the next invocation will do it.
7514 */
7515 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7516 return autoremove_wake_function(curr, mode, wake_flags, key);
7517 return -1;
7518 }
7519
7520 static int io_run_task_work_sig(void)
7521 {
7522 if (io_run_task_work())
7523 return 1;
7524 if (!signal_pending(current))
7525 return 0;
7526 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7527 return -ERESTARTSYS;
7528 return -EINTR;
7529 }
7530
7531 /* when returns >0, the caller should retry */
7532 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7533 struct io_wait_queue *iowq,
7534 signed long *timeout)
7535 {
7536 int ret;
7537
7538 /* make sure we run task_work before checking for signals */
7539 ret = io_run_task_work_sig();
7540 if (ret || io_should_wake(iowq))
7541 return ret;
7542 /* let the caller flush overflows, retry */
7543 if (test_bit(0, &ctx->check_cq_overflow))
7544 return 1;
7545
7546 *timeout = schedule_timeout(*timeout);
7547 return !*timeout ? -ETIME : 1;
7548 }
7549
7550 /*
7551 * Wait until events become available, if we don't already have some. The
7552 * application must reap them itself, as they reside on the shared cq ring.
7553 */
7554 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7555 const sigset_t __user *sig, size_t sigsz,
7556 struct __kernel_timespec __user *uts)
7557 {
7558 struct io_wait_queue iowq;
7559 struct io_rings *rings = ctx->rings;
7560 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7561 int ret;
7562
7563 do {
7564 io_cqring_overflow_flush(ctx);
7565 if (io_cqring_events(ctx) >= min_events)
7566 return 0;
7567 if (!io_run_task_work())
7568 break;
7569 } while (1);
7570
7571 if (uts) {
7572 struct timespec64 ts;
7573
7574 if (get_timespec64(&ts, uts))
7575 return -EFAULT;
7576 timeout = timespec64_to_jiffies(&ts);
7577 }
7578
7579 if (sig) {
7580 #ifdef CONFIG_COMPAT
7581 if (in_compat_syscall())
7582 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7583 sigsz);
7584 else
7585 #endif
7586 ret = set_user_sigmask(sig, sigsz);
7587
7588 if (ret)
7589 return ret;
7590 }
7591
7592 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7593 iowq.wq.private = current;
7594 INIT_LIST_HEAD(&iowq.wq.entry);
7595 iowq.ctx = ctx;
7596 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7597 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7598
7599 trace_io_uring_cqring_wait(ctx, min_events);
7600 do {
7601 /* if we can't even flush overflow, don't wait for more */
7602 if (!io_cqring_overflow_flush(ctx)) {
7603 ret = -EBUSY;
7604 break;
7605 }
7606 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7607 TASK_INTERRUPTIBLE);
7608 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7609 finish_wait(&ctx->cq_wait, &iowq.wq);
7610 cond_resched();
7611 } while (ret > 0);
7612
7613 restore_saved_sigmask_unless(ret == -EINTR);
7614
7615 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7616 }
7617
7618 static void io_free_page_table(void **table, size_t size)
7619 {
7620 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7621
7622 for (i = 0; i < nr_tables; i++)
7623 kfree(table[i]);
7624 kfree(table);
7625 }
7626
7627 static void **io_alloc_page_table(size_t size)
7628 {
7629 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7630 size_t init_size = size;
7631 void **table;
7632
7633 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7634 if (!table)
7635 return NULL;
7636
7637 for (i = 0; i < nr_tables; i++) {
7638 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7639
7640 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7641 if (!table[i]) {
7642 io_free_page_table(table, init_size);
7643 return NULL;
7644 }
7645 size -= this_size;
7646 }
7647 return table;
7648 }
7649
7650 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7651 {
7652 percpu_ref_exit(&ref_node->refs);
7653 kfree(ref_node);
7654 }
7655
7656 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7657 {
7658 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7659 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7660 unsigned long flags;
7661 bool first_add = false;
7662
7663 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7664 node->done = true;
7665
7666 while (!list_empty(&ctx->rsrc_ref_list)) {
7667 node = list_first_entry(&ctx->rsrc_ref_list,
7668 struct io_rsrc_node, node);
7669 /* recycle ref nodes in order */
7670 if (!node->done)
7671 break;
7672 list_del(&node->node);
7673 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7674 }
7675 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7676
7677 if (first_add)
7678 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7679 }
7680
7681 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7682 {
7683 struct io_rsrc_node *ref_node;
7684
7685 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7686 if (!ref_node)
7687 return NULL;
7688
7689 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7690 0, GFP_KERNEL)) {
7691 kfree(ref_node);
7692 return NULL;
7693 }
7694 INIT_LIST_HEAD(&ref_node->node);
7695 INIT_LIST_HEAD(&ref_node->rsrc_list);
7696 ref_node->done = false;
7697 return ref_node;
7698 }
7699
7700 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7701 struct io_rsrc_data *data_to_kill)
7702 {
7703 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7704 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7705
7706 if (data_to_kill) {
7707 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7708
7709 rsrc_node->rsrc_data = data_to_kill;
7710 spin_lock_irq(&ctx->rsrc_ref_lock);
7711 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7712 spin_unlock_irq(&ctx->rsrc_ref_lock);
7713
7714 atomic_inc(&data_to_kill->refs);
7715 percpu_ref_kill(&rsrc_node->refs);
7716 ctx->rsrc_node = NULL;
7717 }
7718
7719 if (!ctx->rsrc_node) {
7720 ctx->rsrc_node = ctx->rsrc_backup_node;
7721 ctx->rsrc_backup_node = NULL;
7722 }
7723 }
7724
7725 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7726 {
7727 if (ctx->rsrc_backup_node)
7728 return 0;
7729 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7730 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7731 }
7732
7733 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7734 {
7735 int ret;
7736
7737 /* As we may drop ->uring_lock, other task may have started quiesce */
7738 if (data->quiesce)
7739 return -ENXIO;
7740
7741 data->quiesce = true;
7742 do {
7743 ret = io_rsrc_node_switch_start(ctx);
7744 if (ret)
7745 break;
7746 io_rsrc_node_switch(ctx, data);
7747
7748 /* kill initial ref, already quiesced if zero */
7749 if (atomic_dec_and_test(&data->refs))
7750 break;
7751 mutex_unlock(&ctx->uring_lock);
7752 flush_delayed_work(&ctx->rsrc_put_work);
7753 ret = wait_for_completion_interruptible(&data->done);
7754 if (!ret) {
7755 mutex_lock(&ctx->uring_lock);
7756 break;
7757 }
7758
7759 atomic_inc(&data->refs);
7760 /* wait for all works potentially completing data->done */
7761 flush_delayed_work(&ctx->rsrc_put_work);
7762 reinit_completion(&data->done);
7763
7764 ret = io_run_task_work_sig();
7765 mutex_lock(&ctx->uring_lock);
7766 } while (ret >= 0);
7767 data->quiesce = false;
7768
7769 return ret;
7770 }
7771
7772 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7773 {
7774 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7775 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7776
7777 return &data->tags[table_idx][off];
7778 }
7779
7780 static void io_rsrc_data_free(struct io_rsrc_data *data)
7781 {
7782 size_t size = data->nr * sizeof(data->tags[0][0]);
7783
7784 if (data->tags)
7785 io_free_page_table((void **)data->tags, size);
7786 kfree(data);
7787 }
7788
7789 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7790 u64 __user *utags, unsigned nr,
7791 struct io_rsrc_data **pdata)
7792 {
7793 struct io_rsrc_data *data;
7794 int ret = -ENOMEM;
7795 unsigned i;
7796
7797 data = kzalloc(sizeof(*data), GFP_KERNEL);
7798 if (!data)
7799 return -ENOMEM;
7800 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7801 if (!data->tags) {
7802 kfree(data);
7803 return -ENOMEM;
7804 }
7805
7806 data->nr = nr;
7807 data->ctx = ctx;
7808 data->do_put = do_put;
7809 if (utags) {
7810 ret = -EFAULT;
7811 for (i = 0; i < nr; i++) {
7812 u64 *tag_slot = io_get_tag_slot(data, i);
7813
7814 if (copy_from_user(tag_slot, &utags[i],
7815 sizeof(*tag_slot)))
7816 goto fail;
7817 }
7818 }
7819
7820 atomic_set(&data->refs, 1);
7821 init_completion(&data->done);
7822 *pdata = data;
7823 return 0;
7824 fail:
7825 io_rsrc_data_free(data);
7826 return ret;
7827 }
7828
7829 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7830 {
7831 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7832 GFP_KERNEL_ACCOUNT);
7833 return !!table->files;
7834 }
7835
7836 static void io_free_file_tables(struct io_file_table *table)
7837 {
7838 kvfree(table->files);
7839 table->files = NULL;
7840 }
7841
7842 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7843 {
7844 #if defined(CONFIG_UNIX)
7845 if (ctx->ring_sock) {
7846 struct sock *sock = ctx->ring_sock->sk;
7847 struct sk_buff *skb;
7848
7849 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7850 kfree_skb(skb);
7851 }
7852 #else
7853 int i;
7854
7855 for (i = 0; i < ctx->nr_user_files; i++) {
7856 struct file *file;
7857
7858 file = io_file_from_index(ctx, i);
7859 if (file)
7860 fput(file);
7861 }
7862 #endif
7863 io_free_file_tables(&ctx->file_table);
7864 io_rsrc_data_free(ctx->file_data);
7865 ctx->file_data = NULL;
7866 ctx->nr_user_files = 0;
7867 }
7868
7869 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7870 {
7871 int ret;
7872
7873 if (!ctx->file_data)
7874 return -ENXIO;
7875 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7876 if (!ret)
7877 __io_sqe_files_unregister(ctx);
7878 return ret;
7879 }
7880
7881 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7882 __releases(&sqd->lock)
7883 {
7884 WARN_ON_ONCE(sqd->thread == current);
7885
7886 /*
7887 * Do the dance but not conditional clear_bit() because it'd race with
7888 * other threads incrementing park_pending and setting the bit.
7889 */
7890 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7891 if (atomic_dec_return(&sqd->park_pending))
7892 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7893 mutex_unlock(&sqd->lock);
7894 }
7895
7896 static void io_sq_thread_park(struct io_sq_data *sqd)
7897 __acquires(&sqd->lock)
7898 {
7899 WARN_ON_ONCE(sqd->thread == current);
7900
7901 atomic_inc(&sqd->park_pending);
7902 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7903 mutex_lock(&sqd->lock);
7904 if (sqd->thread)
7905 wake_up_process(sqd->thread);
7906 }
7907
7908 static void io_sq_thread_stop(struct io_sq_data *sqd)
7909 {
7910 WARN_ON_ONCE(sqd->thread == current);
7911 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7912
7913 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7914 mutex_lock(&sqd->lock);
7915 if (sqd->thread)
7916 wake_up_process(sqd->thread);
7917 mutex_unlock(&sqd->lock);
7918 wait_for_completion(&sqd->exited);
7919 }
7920
7921 static void io_put_sq_data(struct io_sq_data *sqd)
7922 {
7923 if (refcount_dec_and_test(&sqd->refs)) {
7924 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7925
7926 io_sq_thread_stop(sqd);
7927 kfree(sqd);
7928 }
7929 }
7930
7931 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7932 {
7933 struct io_sq_data *sqd = ctx->sq_data;
7934
7935 if (sqd) {
7936 io_sq_thread_park(sqd);
7937 list_del_init(&ctx->sqd_list);
7938 io_sqd_update_thread_idle(sqd);
7939 io_sq_thread_unpark(sqd);
7940
7941 io_put_sq_data(sqd);
7942 ctx->sq_data = NULL;
7943 }
7944 }
7945
7946 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7947 {
7948 struct io_ring_ctx *ctx_attach;
7949 struct io_sq_data *sqd;
7950 struct fd f;
7951
7952 f = fdget(p->wq_fd);
7953 if (!f.file)
7954 return ERR_PTR(-ENXIO);
7955 if (f.file->f_op != &io_uring_fops) {
7956 fdput(f);
7957 return ERR_PTR(-EINVAL);
7958 }
7959
7960 ctx_attach = f.file->private_data;
7961 sqd = ctx_attach->sq_data;
7962 if (!sqd) {
7963 fdput(f);
7964 return ERR_PTR(-EINVAL);
7965 }
7966 if (sqd->task_tgid != current->tgid) {
7967 fdput(f);
7968 return ERR_PTR(-EPERM);
7969 }
7970
7971 refcount_inc(&sqd->refs);
7972 fdput(f);
7973 return sqd;
7974 }
7975
7976 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7977 bool *attached)
7978 {
7979 struct io_sq_data *sqd;
7980
7981 *attached = false;
7982 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7983 sqd = io_attach_sq_data(p);
7984 if (!IS_ERR(sqd)) {
7985 *attached = true;
7986 return sqd;
7987 }
7988 /* fall through for EPERM case, setup new sqd/task */
7989 if (PTR_ERR(sqd) != -EPERM)
7990 return sqd;
7991 }
7992
7993 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7994 if (!sqd)
7995 return ERR_PTR(-ENOMEM);
7996
7997 atomic_set(&sqd->park_pending, 0);
7998 refcount_set(&sqd->refs, 1);
7999 INIT_LIST_HEAD(&sqd->ctx_list);
8000 mutex_init(&sqd->lock);
8001 init_waitqueue_head(&sqd->wait);
8002 init_completion(&sqd->exited);
8003 return sqd;
8004 }
8005
8006 #if defined(CONFIG_UNIX)
8007 /*
8008 * Ensure the UNIX gc is aware of our file set, so we are certain that
8009 * the io_uring can be safely unregistered on process exit, even if we have
8010 * loops in the file referencing.
8011 */
8012 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8013 {
8014 struct sock *sk = ctx->ring_sock->sk;
8015 struct scm_fp_list *fpl;
8016 struct sk_buff *skb;
8017 int i, nr_files;
8018
8019 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8020 if (!fpl)
8021 return -ENOMEM;
8022
8023 skb = alloc_skb(0, GFP_KERNEL);
8024 if (!skb) {
8025 kfree(fpl);
8026 return -ENOMEM;
8027 }
8028
8029 skb->sk = sk;
8030
8031 nr_files = 0;
8032 fpl->user = get_uid(current_user());
8033 for (i = 0; i < nr; i++) {
8034 struct file *file = io_file_from_index(ctx, i + offset);
8035
8036 if (!file)
8037 continue;
8038 fpl->fp[nr_files] = get_file(file);
8039 unix_inflight(fpl->user, fpl->fp[nr_files]);
8040 nr_files++;
8041 }
8042
8043 if (nr_files) {
8044 fpl->max = SCM_MAX_FD;
8045 fpl->count = nr_files;
8046 UNIXCB(skb).fp = fpl;
8047 skb->destructor = unix_destruct_scm;
8048 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8049 skb_queue_head(&sk->sk_receive_queue, skb);
8050
8051 for (i = 0; i < nr_files; i++)
8052 fput(fpl->fp[i]);
8053 } else {
8054 kfree_skb(skb);
8055 kfree(fpl);
8056 }
8057
8058 return 0;
8059 }
8060
8061 /*
8062 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8063 * causes regular reference counting to break down. We rely on the UNIX
8064 * garbage collection to take care of this problem for us.
8065 */
8066 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8067 {
8068 unsigned left, total;
8069 int ret = 0;
8070
8071 total = 0;
8072 left = ctx->nr_user_files;
8073 while (left) {
8074 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8075
8076 ret = __io_sqe_files_scm(ctx, this_files, total);
8077 if (ret)
8078 break;
8079 left -= this_files;
8080 total += this_files;
8081 }
8082
8083 if (!ret)
8084 return 0;
8085
8086 while (total < ctx->nr_user_files) {
8087 struct file *file = io_file_from_index(ctx, total);
8088
8089 if (file)
8090 fput(file);
8091 total++;
8092 }
8093
8094 return ret;
8095 }
8096 #else
8097 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8098 {
8099 return 0;
8100 }
8101 #endif
8102
8103 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8104 {
8105 struct file *file = prsrc->file;
8106 #if defined(CONFIG_UNIX)
8107 struct sock *sock = ctx->ring_sock->sk;
8108 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8109 struct sk_buff *skb;
8110 int i;
8111
8112 __skb_queue_head_init(&list);
8113
8114 /*
8115 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8116 * remove this entry and rearrange the file array.
8117 */
8118 skb = skb_dequeue(head);
8119 while (skb) {
8120 struct scm_fp_list *fp;
8121
8122 fp = UNIXCB(skb).fp;
8123 for (i = 0; i < fp->count; i++) {
8124 int left;
8125
8126 if (fp->fp[i] != file)
8127 continue;
8128
8129 unix_notinflight(fp->user, fp->fp[i]);
8130 left = fp->count - 1 - i;
8131 if (left) {
8132 memmove(&fp->fp[i], &fp->fp[i + 1],
8133 left * sizeof(struct file *));
8134 }
8135 fp->count--;
8136 if (!fp->count) {
8137 kfree_skb(skb);
8138 skb = NULL;
8139 } else {
8140 __skb_queue_tail(&list, skb);
8141 }
8142 fput(file);
8143 file = NULL;
8144 break;
8145 }
8146
8147 if (!file)
8148 break;
8149
8150 __skb_queue_tail(&list, skb);
8151
8152 skb = skb_dequeue(head);
8153 }
8154
8155 if (skb_peek(&list)) {
8156 spin_lock_irq(&head->lock);
8157 while ((skb = __skb_dequeue(&list)) != NULL)
8158 __skb_queue_tail(head, skb);
8159 spin_unlock_irq(&head->lock);
8160 }
8161 #else
8162 fput(file);
8163 #endif
8164 }
8165
8166 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8167 {
8168 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8169 struct io_ring_ctx *ctx = rsrc_data->ctx;
8170 struct io_rsrc_put *prsrc, *tmp;
8171
8172 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8173 list_del(&prsrc->list);
8174
8175 if (prsrc->tag) {
8176 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8177
8178 io_ring_submit_lock(ctx, lock_ring);
8179 spin_lock(&ctx->completion_lock);
8180 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8181 ctx->cq_extra++;
8182 io_commit_cqring(ctx);
8183 spin_unlock(&ctx->completion_lock);
8184 io_cqring_ev_posted(ctx);
8185 io_ring_submit_unlock(ctx, lock_ring);
8186 }
8187
8188 rsrc_data->do_put(ctx, prsrc);
8189 kfree(prsrc);
8190 }
8191
8192 io_rsrc_node_destroy(ref_node);
8193 if (atomic_dec_and_test(&rsrc_data->refs))
8194 complete(&rsrc_data->done);
8195 }
8196
8197 static void io_rsrc_put_work(struct work_struct *work)
8198 {
8199 struct io_ring_ctx *ctx;
8200 struct llist_node *node;
8201
8202 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8203 node = llist_del_all(&ctx->rsrc_put_llist);
8204
8205 while (node) {
8206 struct io_rsrc_node *ref_node;
8207 struct llist_node *next = node->next;
8208
8209 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8210 __io_rsrc_put_work(ref_node);
8211 node = next;
8212 }
8213 }
8214
8215 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8216 unsigned nr_args, u64 __user *tags)
8217 {
8218 __s32 __user *fds = (__s32 __user *) arg;
8219 struct file *file;
8220 int fd, ret;
8221 unsigned i;
8222
8223 if (ctx->file_data)
8224 return -EBUSY;
8225 if (!nr_args)
8226 return -EINVAL;
8227 if (nr_args > IORING_MAX_FIXED_FILES)
8228 return -EMFILE;
8229 if (nr_args > rlimit(RLIMIT_NOFILE))
8230 return -EMFILE;
8231 ret = io_rsrc_node_switch_start(ctx);
8232 if (ret)
8233 return ret;
8234 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8235 &ctx->file_data);
8236 if (ret)
8237 return ret;
8238
8239 ret = -ENOMEM;
8240 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8241 goto out_free;
8242
8243 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8244 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8245 ret = -EFAULT;
8246 goto out_fput;
8247 }
8248 /* allow sparse sets */
8249 if (fd == -1) {
8250 ret = -EINVAL;
8251 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8252 goto out_fput;
8253 continue;
8254 }
8255
8256 file = fget(fd);
8257 ret = -EBADF;
8258 if (unlikely(!file))
8259 goto out_fput;
8260
8261 /*
8262 * Don't allow io_uring instances to be registered. If UNIX
8263 * isn't enabled, then this causes a reference cycle and this
8264 * instance can never get freed. If UNIX is enabled we'll
8265 * handle it just fine, but there's still no point in allowing
8266 * a ring fd as it doesn't support regular read/write anyway.
8267 */
8268 if (file->f_op == &io_uring_fops) {
8269 fput(file);
8270 goto out_fput;
8271 }
8272 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8273 }
8274
8275 ret = io_sqe_files_scm(ctx);
8276 if (ret) {
8277 __io_sqe_files_unregister(ctx);
8278 return ret;
8279 }
8280
8281 io_rsrc_node_switch(ctx, NULL);
8282 return ret;
8283 out_fput:
8284 for (i = 0; i < ctx->nr_user_files; i++) {
8285 file = io_file_from_index(ctx, i);
8286 if (file)
8287 fput(file);
8288 }
8289 io_free_file_tables(&ctx->file_table);
8290 ctx->nr_user_files = 0;
8291 out_free:
8292 io_rsrc_data_free(ctx->file_data);
8293 ctx->file_data = NULL;
8294 return ret;
8295 }
8296
8297 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8298 int index)
8299 {
8300 #if defined(CONFIG_UNIX)
8301 struct sock *sock = ctx->ring_sock->sk;
8302 struct sk_buff_head *head = &sock->sk_receive_queue;
8303 struct sk_buff *skb;
8304
8305 /*
8306 * See if we can merge this file into an existing skb SCM_RIGHTS
8307 * file set. If there's no room, fall back to allocating a new skb
8308 * and filling it in.
8309 */
8310 spin_lock_irq(&head->lock);
8311 skb = skb_peek(head);
8312 if (skb) {
8313 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8314
8315 if (fpl->count < SCM_MAX_FD) {
8316 __skb_unlink(skb, head);
8317 spin_unlock_irq(&head->lock);
8318 fpl->fp[fpl->count] = get_file(file);
8319 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8320 fpl->count++;
8321 spin_lock_irq(&head->lock);
8322 __skb_queue_head(head, skb);
8323 } else {
8324 skb = NULL;
8325 }
8326 }
8327 spin_unlock_irq(&head->lock);
8328
8329 if (skb) {
8330 fput(file);
8331 return 0;
8332 }
8333
8334 return __io_sqe_files_scm(ctx, 1, index);
8335 #else
8336 return 0;
8337 #endif
8338 }
8339
8340 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8341 struct io_rsrc_node *node, void *rsrc)
8342 {
8343 struct io_rsrc_put *prsrc;
8344
8345 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8346 if (!prsrc)
8347 return -ENOMEM;
8348
8349 prsrc->tag = *io_get_tag_slot(data, idx);
8350 prsrc->rsrc = rsrc;
8351 list_add(&prsrc->list, &node->rsrc_list);
8352 return 0;
8353 }
8354
8355 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8356 unsigned int issue_flags, u32 slot_index)
8357 {
8358 struct io_ring_ctx *ctx = req->ctx;
8359 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8360 bool needs_switch = false;
8361 struct io_fixed_file *file_slot;
8362 int ret = -EBADF;
8363
8364 io_ring_submit_lock(ctx, !force_nonblock);
8365 if (file->f_op == &io_uring_fops)
8366 goto err;
8367 ret = -ENXIO;
8368 if (!ctx->file_data)
8369 goto err;
8370 ret = -EINVAL;
8371 if (slot_index >= ctx->nr_user_files)
8372 goto err;
8373
8374 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8375 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8376
8377 if (file_slot->file_ptr) {
8378 struct file *old_file;
8379
8380 ret = io_rsrc_node_switch_start(ctx);
8381 if (ret)
8382 goto err;
8383
8384 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8385 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8386 ctx->rsrc_node, old_file);
8387 if (ret)
8388 goto err;
8389 file_slot->file_ptr = 0;
8390 needs_switch = true;
8391 }
8392
8393 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8394 io_fixed_file_set(file_slot, file);
8395 ret = io_sqe_file_register(ctx, file, slot_index);
8396 if (ret) {
8397 file_slot->file_ptr = 0;
8398 goto err;
8399 }
8400
8401 ret = 0;
8402 err:
8403 if (needs_switch)
8404 io_rsrc_node_switch(ctx, ctx->file_data);
8405 io_ring_submit_unlock(ctx, !force_nonblock);
8406 if (ret)
8407 fput(file);
8408 return ret;
8409 }
8410
8411 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8412 {
8413 unsigned int offset = req->close.file_slot - 1;
8414 struct io_ring_ctx *ctx = req->ctx;
8415 struct io_fixed_file *file_slot;
8416 struct file *file;
8417 int ret, i;
8418
8419 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8420 ret = -ENXIO;
8421 if (unlikely(!ctx->file_data))
8422 goto out;
8423 ret = -EINVAL;
8424 if (offset >= ctx->nr_user_files)
8425 goto out;
8426 ret = io_rsrc_node_switch_start(ctx);
8427 if (ret)
8428 goto out;
8429
8430 i = array_index_nospec(offset, ctx->nr_user_files);
8431 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8432 ret = -EBADF;
8433 if (!file_slot->file_ptr)
8434 goto out;
8435
8436 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8437 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8438 if (ret)
8439 goto out;
8440
8441 file_slot->file_ptr = 0;
8442 io_rsrc_node_switch(ctx, ctx->file_data);
8443 ret = 0;
8444 out:
8445 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8446 return ret;
8447 }
8448
8449 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8450 struct io_uring_rsrc_update2 *up,
8451 unsigned nr_args)
8452 {
8453 u64 __user *tags = u64_to_user_ptr(up->tags);
8454 __s32 __user *fds = u64_to_user_ptr(up->data);
8455 struct io_rsrc_data *data = ctx->file_data;
8456 struct io_fixed_file *file_slot;
8457 struct file *file;
8458 int fd, i, err = 0;
8459 unsigned int done;
8460 bool needs_switch = false;
8461
8462 if (!ctx->file_data)
8463 return -ENXIO;
8464 if (up->offset + nr_args > ctx->nr_user_files)
8465 return -EINVAL;
8466
8467 for (done = 0; done < nr_args; done++) {
8468 u64 tag = 0;
8469
8470 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8471 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8472 err = -EFAULT;
8473 break;
8474 }
8475 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8476 err = -EINVAL;
8477 break;
8478 }
8479 if (fd == IORING_REGISTER_FILES_SKIP)
8480 continue;
8481
8482 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8483 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8484
8485 if (file_slot->file_ptr) {
8486 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8487 err = io_queue_rsrc_removal(data, up->offset + done,
8488 ctx->rsrc_node, file);
8489 if (err)
8490 break;
8491 file_slot->file_ptr = 0;
8492 needs_switch = true;
8493 }
8494 if (fd != -1) {
8495 file = fget(fd);
8496 if (!file) {
8497 err = -EBADF;
8498 break;
8499 }
8500 /*
8501 * Don't allow io_uring instances to be registered. If
8502 * UNIX isn't enabled, then this causes a reference
8503 * cycle and this instance can never get freed. If UNIX
8504 * is enabled we'll handle it just fine, but there's
8505 * still no point in allowing a ring fd as it doesn't
8506 * support regular read/write anyway.
8507 */
8508 if (file->f_op == &io_uring_fops) {
8509 fput(file);
8510 err = -EBADF;
8511 break;
8512 }
8513 *io_get_tag_slot(data, up->offset + done) = tag;
8514 io_fixed_file_set(file_slot, file);
8515 err = io_sqe_file_register(ctx, file, i);
8516 if (err) {
8517 file_slot->file_ptr = 0;
8518 fput(file);
8519 break;
8520 }
8521 }
8522 }
8523
8524 if (needs_switch)
8525 io_rsrc_node_switch(ctx, data);
8526 return done ? done : err;
8527 }
8528
8529 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8530 struct task_struct *task)
8531 {
8532 struct io_wq_hash *hash;
8533 struct io_wq_data data;
8534 unsigned int concurrency;
8535
8536 mutex_lock(&ctx->uring_lock);
8537 hash = ctx->hash_map;
8538 if (!hash) {
8539 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8540 if (!hash) {
8541 mutex_unlock(&ctx->uring_lock);
8542 return ERR_PTR(-ENOMEM);
8543 }
8544 refcount_set(&hash->refs, 1);
8545 init_waitqueue_head(&hash->wait);
8546 ctx->hash_map = hash;
8547 }
8548 mutex_unlock(&ctx->uring_lock);
8549
8550 data.hash = hash;
8551 data.task = task;
8552 data.free_work = io_wq_free_work;
8553 data.do_work = io_wq_submit_work;
8554
8555 /* Do QD, or 4 * CPUS, whatever is smallest */
8556 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8557
8558 return io_wq_create(concurrency, &data);
8559 }
8560
8561 static int io_uring_alloc_task_context(struct task_struct *task,
8562 struct io_ring_ctx *ctx)
8563 {
8564 struct io_uring_task *tctx;
8565 int ret;
8566
8567 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8568 if (unlikely(!tctx))
8569 return -ENOMEM;
8570
8571 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8572 if (unlikely(ret)) {
8573 kfree(tctx);
8574 return ret;
8575 }
8576
8577 tctx->io_wq = io_init_wq_offload(ctx, task);
8578 if (IS_ERR(tctx->io_wq)) {
8579 ret = PTR_ERR(tctx->io_wq);
8580 percpu_counter_destroy(&tctx->inflight);
8581 kfree(tctx);
8582 return ret;
8583 }
8584
8585 xa_init(&tctx->xa);
8586 init_waitqueue_head(&tctx->wait);
8587 atomic_set(&tctx->in_idle, 0);
8588 atomic_set(&tctx->inflight_tracked, 0);
8589 task->io_uring = tctx;
8590 spin_lock_init(&tctx->task_lock);
8591 INIT_WQ_LIST(&tctx->task_list);
8592 init_task_work(&tctx->task_work, tctx_task_work);
8593 return 0;
8594 }
8595
8596 void __io_uring_free(struct task_struct *tsk)
8597 {
8598 struct io_uring_task *tctx = tsk->io_uring;
8599
8600 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8601 WARN_ON_ONCE(tctx->io_wq);
8602 WARN_ON_ONCE(tctx->cached_refs);
8603
8604 percpu_counter_destroy(&tctx->inflight);
8605 kfree(tctx);
8606 tsk->io_uring = NULL;
8607 }
8608
8609 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8610 struct io_uring_params *p)
8611 {
8612 int ret;
8613
8614 /* Retain compatibility with failing for an invalid attach attempt */
8615 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8616 IORING_SETUP_ATTACH_WQ) {
8617 struct fd f;
8618
8619 f = fdget(p->wq_fd);
8620 if (!f.file)
8621 return -ENXIO;
8622 if (f.file->f_op != &io_uring_fops) {
8623 fdput(f);
8624 return -EINVAL;
8625 }
8626 fdput(f);
8627 }
8628 if (ctx->flags & IORING_SETUP_SQPOLL) {
8629 struct task_struct *tsk;
8630 struct io_sq_data *sqd;
8631 bool attached;
8632
8633 sqd = io_get_sq_data(p, &attached);
8634 if (IS_ERR(sqd)) {
8635 ret = PTR_ERR(sqd);
8636 goto err;
8637 }
8638
8639 ctx->sq_creds = get_current_cred();
8640 ctx->sq_data = sqd;
8641 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8642 if (!ctx->sq_thread_idle)
8643 ctx->sq_thread_idle = HZ;
8644
8645 io_sq_thread_park(sqd);
8646 list_add(&ctx->sqd_list, &sqd->ctx_list);
8647 io_sqd_update_thread_idle(sqd);
8648 /* don't attach to a dying SQPOLL thread, would be racy */
8649 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8650 io_sq_thread_unpark(sqd);
8651
8652 if (ret < 0)
8653 goto err;
8654 if (attached)
8655 return 0;
8656
8657 if (p->flags & IORING_SETUP_SQ_AFF) {
8658 int cpu = p->sq_thread_cpu;
8659
8660 ret = -EINVAL;
8661 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8662 goto err_sqpoll;
8663 sqd->sq_cpu = cpu;
8664 } else {
8665 sqd->sq_cpu = -1;
8666 }
8667
8668 sqd->task_pid = current->pid;
8669 sqd->task_tgid = current->tgid;
8670 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8671 if (IS_ERR(tsk)) {
8672 ret = PTR_ERR(tsk);
8673 goto err_sqpoll;
8674 }
8675
8676 sqd->thread = tsk;
8677 ret = io_uring_alloc_task_context(tsk, ctx);
8678 wake_up_new_task(tsk);
8679 if (ret)
8680 goto err;
8681 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8682 /* Can't have SQ_AFF without SQPOLL */
8683 ret = -EINVAL;
8684 goto err;
8685 }
8686
8687 return 0;
8688 err_sqpoll:
8689 complete(&ctx->sq_data->exited);
8690 err:
8691 io_sq_thread_finish(ctx);
8692 return ret;
8693 }
8694
8695 static inline void __io_unaccount_mem(struct user_struct *user,
8696 unsigned long nr_pages)
8697 {
8698 atomic_long_sub(nr_pages, &user->locked_vm);
8699 }
8700
8701 static inline int __io_account_mem(struct user_struct *user,
8702 unsigned long nr_pages)
8703 {
8704 unsigned long page_limit, cur_pages, new_pages;
8705
8706 /* Don't allow more pages than we can safely lock */
8707 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8708
8709 do {
8710 cur_pages = atomic_long_read(&user->locked_vm);
8711 new_pages = cur_pages + nr_pages;
8712 if (new_pages > page_limit)
8713 return -ENOMEM;
8714 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8715 new_pages) != cur_pages);
8716
8717 return 0;
8718 }
8719
8720 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8721 {
8722 if (ctx->user)
8723 __io_unaccount_mem(ctx->user, nr_pages);
8724
8725 if (ctx->mm_account)
8726 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8727 }
8728
8729 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8730 {
8731 int ret;
8732
8733 if (ctx->user) {
8734 ret = __io_account_mem(ctx->user, nr_pages);
8735 if (ret)
8736 return ret;
8737 }
8738
8739 if (ctx->mm_account)
8740 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8741
8742 return 0;
8743 }
8744
8745 static void io_mem_free(void *ptr)
8746 {
8747 struct page *page;
8748
8749 if (!ptr)
8750 return;
8751
8752 page = virt_to_head_page(ptr);
8753 if (put_page_testzero(page))
8754 free_compound_page(page);
8755 }
8756
8757 static void *io_mem_alloc(size_t size)
8758 {
8759 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8760 __GFP_NORETRY | __GFP_ACCOUNT;
8761
8762 return (void *) __get_free_pages(gfp_flags, get_order(size));
8763 }
8764
8765 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8766 size_t *sq_offset)
8767 {
8768 struct io_rings *rings;
8769 size_t off, sq_array_size;
8770
8771 off = struct_size(rings, cqes, cq_entries);
8772 if (off == SIZE_MAX)
8773 return SIZE_MAX;
8774
8775 #ifdef CONFIG_SMP
8776 off = ALIGN(off, SMP_CACHE_BYTES);
8777 if (off == 0)
8778 return SIZE_MAX;
8779 #endif
8780
8781 if (sq_offset)
8782 *sq_offset = off;
8783
8784 sq_array_size = array_size(sizeof(u32), sq_entries);
8785 if (sq_array_size == SIZE_MAX)
8786 return SIZE_MAX;
8787
8788 if (check_add_overflow(off, sq_array_size, &off))
8789 return SIZE_MAX;
8790
8791 return off;
8792 }
8793
8794 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8795 {
8796 struct io_mapped_ubuf *imu = *slot;
8797 unsigned int i;
8798
8799 if (imu != ctx->dummy_ubuf) {
8800 for (i = 0; i < imu->nr_bvecs; i++)
8801 unpin_user_page(imu->bvec[i].bv_page);
8802 if (imu->acct_pages)
8803 io_unaccount_mem(ctx, imu->acct_pages);
8804 kvfree(imu);
8805 }
8806 *slot = NULL;
8807 }
8808
8809 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8810 {
8811 io_buffer_unmap(ctx, &prsrc->buf);
8812 prsrc->buf = NULL;
8813 }
8814
8815 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8816 {
8817 unsigned int i;
8818
8819 for (i = 0; i < ctx->nr_user_bufs; i++)
8820 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8821 kfree(ctx->user_bufs);
8822 io_rsrc_data_free(ctx->buf_data);
8823 ctx->user_bufs = NULL;
8824 ctx->buf_data = NULL;
8825 ctx->nr_user_bufs = 0;
8826 }
8827
8828 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8829 {
8830 int ret;
8831
8832 if (!ctx->buf_data)
8833 return -ENXIO;
8834
8835 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8836 if (!ret)
8837 __io_sqe_buffers_unregister(ctx);
8838 return ret;
8839 }
8840
8841 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8842 void __user *arg, unsigned index)
8843 {
8844 struct iovec __user *src;
8845
8846 #ifdef CONFIG_COMPAT
8847 if (ctx->compat) {
8848 struct compat_iovec __user *ciovs;
8849 struct compat_iovec ciov;
8850
8851 ciovs = (struct compat_iovec __user *) arg;
8852 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8853 return -EFAULT;
8854
8855 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8856 dst->iov_len = ciov.iov_len;
8857 return 0;
8858 }
8859 #endif
8860 src = (struct iovec __user *) arg;
8861 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8862 return -EFAULT;
8863 return 0;
8864 }
8865
8866 /*
8867 * Not super efficient, but this is just a registration time. And we do cache
8868 * the last compound head, so generally we'll only do a full search if we don't
8869 * match that one.
8870 *
8871 * We check if the given compound head page has already been accounted, to
8872 * avoid double accounting it. This allows us to account the full size of the
8873 * page, not just the constituent pages of a huge page.
8874 */
8875 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8876 int nr_pages, struct page *hpage)
8877 {
8878 int i, j;
8879
8880 /* check current page array */
8881 for (i = 0; i < nr_pages; i++) {
8882 if (!PageCompound(pages[i]))
8883 continue;
8884 if (compound_head(pages[i]) == hpage)
8885 return true;
8886 }
8887
8888 /* check previously registered pages */
8889 for (i = 0; i < ctx->nr_user_bufs; i++) {
8890 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8891
8892 for (j = 0; j < imu->nr_bvecs; j++) {
8893 if (!PageCompound(imu->bvec[j].bv_page))
8894 continue;
8895 if (compound_head(imu->bvec[j].bv_page) == hpage)
8896 return true;
8897 }
8898 }
8899
8900 return false;
8901 }
8902
8903 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8904 int nr_pages, struct io_mapped_ubuf *imu,
8905 struct page **last_hpage)
8906 {
8907 int i, ret;
8908
8909 imu->acct_pages = 0;
8910 for (i = 0; i < nr_pages; i++) {
8911 if (!PageCompound(pages[i])) {
8912 imu->acct_pages++;
8913 } else {
8914 struct page *hpage;
8915
8916 hpage = compound_head(pages[i]);
8917 if (hpage == *last_hpage)
8918 continue;
8919 *last_hpage = hpage;
8920 if (headpage_already_acct(ctx, pages, i, hpage))
8921 continue;
8922 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8923 }
8924 }
8925
8926 if (!imu->acct_pages)
8927 return 0;
8928
8929 ret = io_account_mem(ctx, imu->acct_pages);
8930 if (ret)
8931 imu->acct_pages = 0;
8932 return ret;
8933 }
8934
8935 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8936 struct io_mapped_ubuf **pimu,
8937 struct page **last_hpage)
8938 {
8939 struct io_mapped_ubuf *imu = NULL;
8940 struct vm_area_struct **vmas = NULL;
8941 struct page **pages = NULL;
8942 unsigned long off, start, end, ubuf;
8943 size_t size;
8944 int ret, pret, nr_pages, i;
8945
8946 if (!iov->iov_base) {
8947 *pimu = ctx->dummy_ubuf;
8948 return 0;
8949 }
8950
8951 ubuf = (unsigned long) iov->iov_base;
8952 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8953 start = ubuf >> PAGE_SHIFT;
8954 nr_pages = end - start;
8955
8956 *pimu = NULL;
8957 ret = -ENOMEM;
8958
8959 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8960 if (!pages)
8961 goto done;
8962
8963 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8964 GFP_KERNEL);
8965 if (!vmas)
8966 goto done;
8967
8968 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8969 if (!imu)
8970 goto done;
8971
8972 ret = 0;
8973 mmap_read_lock(current->mm);
8974 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8975 pages, vmas);
8976 if (pret == nr_pages) {
8977 /* don't support file backed memory */
8978 for (i = 0; i < nr_pages; i++) {
8979 struct vm_area_struct *vma = vmas[i];
8980
8981 if (vma_is_shmem(vma))
8982 continue;
8983 if (vma->vm_file &&
8984 !is_file_hugepages(vma->vm_file)) {
8985 ret = -EOPNOTSUPP;
8986 break;
8987 }
8988 }
8989 } else {
8990 ret = pret < 0 ? pret : -EFAULT;
8991 }
8992 mmap_read_unlock(current->mm);
8993 if (ret) {
8994 /*
8995 * if we did partial map, or found file backed vmas,
8996 * release any pages we did get
8997 */
8998 if (pret > 0)
8999 unpin_user_pages(pages, pret);
9000 goto done;
9001 }
9002
9003 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9004 if (ret) {
9005 unpin_user_pages(pages, pret);
9006 goto done;
9007 }
9008
9009 off = ubuf & ~PAGE_MASK;
9010 size = iov->iov_len;
9011 for (i = 0; i < nr_pages; i++) {
9012 size_t vec_len;
9013
9014 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9015 imu->bvec[i].bv_page = pages[i];
9016 imu->bvec[i].bv_len = vec_len;
9017 imu->bvec[i].bv_offset = off;
9018 off = 0;
9019 size -= vec_len;
9020 }
9021 /* store original address for later verification */
9022 imu->ubuf = ubuf;
9023 imu->ubuf_end = ubuf + iov->iov_len;
9024 imu->nr_bvecs = nr_pages;
9025 *pimu = imu;
9026 ret = 0;
9027 done:
9028 if (ret)
9029 kvfree(imu);
9030 kvfree(pages);
9031 kvfree(vmas);
9032 return ret;
9033 }
9034
9035 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9036 {
9037 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9038 return ctx->user_bufs ? 0 : -ENOMEM;
9039 }
9040
9041 static int io_buffer_validate(struct iovec *iov)
9042 {
9043 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9044
9045 /*
9046 * Don't impose further limits on the size and buffer
9047 * constraints here, we'll -EINVAL later when IO is
9048 * submitted if they are wrong.
9049 */
9050 if (!iov->iov_base)
9051 return iov->iov_len ? -EFAULT : 0;
9052 if (!iov->iov_len)
9053 return -EFAULT;
9054
9055 /* arbitrary limit, but we need something */
9056 if (iov->iov_len > SZ_1G)
9057 return -EFAULT;
9058
9059 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9060 return -EOVERFLOW;
9061
9062 return 0;
9063 }
9064
9065 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9066 unsigned int nr_args, u64 __user *tags)
9067 {
9068 struct page *last_hpage = NULL;
9069 struct io_rsrc_data *data;
9070 int i, ret;
9071 struct iovec iov;
9072
9073 if (ctx->user_bufs)
9074 return -EBUSY;
9075 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9076 return -EINVAL;
9077 ret = io_rsrc_node_switch_start(ctx);
9078 if (ret)
9079 return ret;
9080 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9081 if (ret)
9082 return ret;
9083 ret = io_buffers_map_alloc(ctx, nr_args);
9084 if (ret) {
9085 io_rsrc_data_free(data);
9086 return ret;
9087 }
9088
9089 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9090 ret = io_copy_iov(ctx, &iov, arg, i);
9091 if (ret)
9092 break;
9093 ret = io_buffer_validate(&iov);
9094 if (ret)
9095 break;
9096 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9097 ret = -EINVAL;
9098 break;
9099 }
9100
9101 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9102 &last_hpage);
9103 if (ret)
9104 break;
9105 }
9106
9107 WARN_ON_ONCE(ctx->buf_data);
9108
9109 ctx->buf_data = data;
9110 if (ret)
9111 __io_sqe_buffers_unregister(ctx);
9112 else
9113 io_rsrc_node_switch(ctx, NULL);
9114 return ret;
9115 }
9116
9117 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9118 struct io_uring_rsrc_update2 *up,
9119 unsigned int nr_args)
9120 {
9121 u64 __user *tags = u64_to_user_ptr(up->tags);
9122 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9123 struct page *last_hpage = NULL;
9124 bool needs_switch = false;
9125 __u32 done;
9126 int i, err;
9127
9128 if (!ctx->buf_data)
9129 return -ENXIO;
9130 if (up->offset + nr_args > ctx->nr_user_bufs)
9131 return -EINVAL;
9132
9133 for (done = 0; done < nr_args; done++) {
9134 struct io_mapped_ubuf *imu;
9135 int offset = up->offset + done;
9136 u64 tag = 0;
9137
9138 err = io_copy_iov(ctx, &iov, iovs, done);
9139 if (err)
9140 break;
9141 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9142 err = -EFAULT;
9143 break;
9144 }
9145 err = io_buffer_validate(&iov);
9146 if (err)
9147 break;
9148 if (!iov.iov_base && tag) {
9149 err = -EINVAL;
9150 break;
9151 }
9152 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9153 if (err)
9154 break;
9155
9156 i = array_index_nospec(offset, ctx->nr_user_bufs);
9157 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9158 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9159 ctx->rsrc_node, ctx->user_bufs[i]);
9160 if (unlikely(err)) {
9161 io_buffer_unmap(ctx, &imu);
9162 break;
9163 }
9164 ctx->user_bufs[i] = NULL;
9165 needs_switch = true;
9166 }
9167
9168 ctx->user_bufs[i] = imu;
9169 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9170 }
9171
9172 if (needs_switch)
9173 io_rsrc_node_switch(ctx, ctx->buf_data);
9174 return done ? done : err;
9175 }
9176
9177 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9178 {
9179 __s32 __user *fds = arg;
9180 int fd;
9181
9182 if (ctx->cq_ev_fd)
9183 return -EBUSY;
9184
9185 if (copy_from_user(&fd, fds, sizeof(*fds)))
9186 return -EFAULT;
9187
9188 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9189 if (IS_ERR(ctx->cq_ev_fd)) {
9190 int ret = PTR_ERR(ctx->cq_ev_fd);
9191
9192 ctx->cq_ev_fd = NULL;
9193 return ret;
9194 }
9195
9196 return 0;
9197 }
9198
9199 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9200 {
9201 if (ctx->cq_ev_fd) {
9202 eventfd_ctx_put(ctx->cq_ev_fd);
9203 ctx->cq_ev_fd = NULL;
9204 return 0;
9205 }
9206
9207 return -ENXIO;
9208 }
9209
9210 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9211 {
9212 struct io_buffer *buf;
9213 unsigned long index;
9214
9215 xa_for_each(&ctx->io_buffers, index, buf) {
9216 __io_remove_buffers(ctx, buf, index, -1U);
9217 cond_resched();
9218 }
9219 }
9220
9221 static void io_req_cache_free(struct list_head *list)
9222 {
9223 struct io_kiocb *req, *nxt;
9224
9225 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9226 list_del(&req->inflight_entry);
9227 kmem_cache_free(req_cachep, req);
9228 }
9229 }
9230
9231 static void io_req_caches_free(struct io_ring_ctx *ctx)
9232 {
9233 struct io_submit_state *state = &ctx->submit_state;
9234
9235 mutex_lock(&ctx->uring_lock);
9236
9237 if (state->free_reqs) {
9238 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9239 state->free_reqs = 0;
9240 }
9241
9242 io_flush_cached_locked_reqs(ctx, state);
9243 io_req_cache_free(&state->free_list);
9244 mutex_unlock(&ctx->uring_lock);
9245 }
9246
9247 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9248 {
9249 if (data && !atomic_dec_and_test(&data->refs))
9250 wait_for_completion(&data->done);
9251 }
9252
9253 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9254 {
9255 io_sq_thread_finish(ctx);
9256
9257 if (ctx->mm_account) {
9258 mmdrop(ctx->mm_account);
9259 ctx->mm_account = NULL;
9260 }
9261
9262 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9263 io_wait_rsrc_data(ctx->buf_data);
9264 io_wait_rsrc_data(ctx->file_data);
9265
9266 mutex_lock(&ctx->uring_lock);
9267 if (ctx->buf_data)
9268 __io_sqe_buffers_unregister(ctx);
9269 if (ctx->file_data)
9270 __io_sqe_files_unregister(ctx);
9271 if (ctx->rings)
9272 __io_cqring_overflow_flush(ctx, true);
9273 mutex_unlock(&ctx->uring_lock);
9274 io_eventfd_unregister(ctx);
9275 io_destroy_buffers(ctx);
9276 if (ctx->sq_creds)
9277 put_cred(ctx->sq_creds);
9278
9279 /* there are no registered resources left, nobody uses it */
9280 if (ctx->rsrc_node)
9281 io_rsrc_node_destroy(ctx->rsrc_node);
9282 if (ctx->rsrc_backup_node)
9283 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9284 flush_delayed_work(&ctx->rsrc_put_work);
9285
9286 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9287 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9288
9289 #if defined(CONFIG_UNIX)
9290 if (ctx->ring_sock) {
9291 ctx->ring_sock->file = NULL; /* so that iput() is called */
9292 sock_release(ctx->ring_sock);
9293 }
9294 #endif
9295 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9296
9297 io_mem_free(ctx->rings);
9298 io_mem_free(ctx->sq_sqes);
9299
9300 percpu_ref_exit(&ctx->refs);
9301 free_uid(ctx->user);
9302 io_req_caches_free(ctx);
9303 if (ctx->hash_map)
9304 io_wq_put_hash(ctx->hash_map);
9305 kfree(ctx->cancel_hash);
9306 kfree(ctx->dummy_ubuf);
9307 kfree(ctx);
9308 }
9309
9310 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9311 {
9312 struct io_ring_ctx *ctx = file->private_data;
9313 __poll_t mask = 0;
9314
9315 poll_wait(file, &ctx->poll_wait, wait);
9316 /*
9317 * synchronizes with barrier from wq_has_sleeper call in
9318 * io_commit_cqring
9319 */
9320 smp_rmb();
9321 if (!io_sqring_full(ctx))
9322 mask |= EPOLLOUT | EPOLLWRNORM;
9323
9324 /*
9325 * Don't flush cqring overflow list here, just do a simple check.
9326 * Otherwise there could possible be ABBA deadlock:
9327 * CPU0 CPU1
9328 * ---- ----
9329 * lock(&ctx->uring_lock);
9330 * lock(&ep->mtx);
9331 * lock(&ctx->uring_lock);
9332 * lock(&ep->mtx);
9333 *
9334 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9335 * pushs them to do the flush.
9336 */
9337 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9338 mask |= EPOLLIN | EPOLLRDNORM;
9339
9340 return mask;
9341 }
9342
9343 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9344 {
9345 const struct cred *creds;
9346
9347 creds = xa_erase(&ctx->personalities, id);
9348 if (creds) {
9349 put_cred(creds);
9350 return 0;
9351 }
9352
9353 return -EINVAL;
9354 }
9355
9356 struct io_tctx_exit {
9357 struct callback_head task_work;
9358 struct completion completion;
9359 struct io_ring_ctx *ctx;
9360 };
9361
9362 static void io_tctx_exit_cb(struct callback_head *cb)
9363 {
9364 struct io_uring_task *tctx = current->io_uring;
9365 struct io_tctx_exit *work;
9366
9367 work = container_of(cb, struct io_tctx_exit, task_work);
9368 /*
9369 * When @in_idle, we're in cancellation and it's racy to remove the
9370 * node. It'll be removed by the end of cancellation, just ignore it.
9371 */
9372 if (!atomic_read(&tctx->in_idle))
9373 io_uring_del_tctx_node((unsigned long)work->ctx);
9374 complete(&work->completion);
9375 }
9376
9377 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9378 {
9379 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9380
9381 return req->ctx == data;
9382 }
9383
9384 static void io_ring_exit_work(struct work_struct *work)
9385 {
9386 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9387 unsigned long timeout = jiffies + HZ * 60 * 5;
9388 unsigned long interval = HZ / 20;
9389 struct io_tctx_exit exit;
9390 struct io_tctx_node *node;
9391 int ret;
9392
9393 /*
9394 * If we're doing polled IO and end up having requests being
9395 * submitted async (out-of-line), then completions can come in while
9396 * we're waiting for refs to drop. We need to reap these manually,
9397 * as nobody else will be looking for them.
9398 */
9399 do {
9400 io_uring_try_cancel_requests(ctx, NULL, true);
9401 if (ctx->sq_data) {
9402 struct io_sq_data *sqd = ctx->sq_data;
9403 struct task_struct *tsk;
9404
9405 io_sq_thread_park(sqd);
9406 tsk = sqd->thread;
9407 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9408 io_wq_cancel_cb(tsk->io_uring->io_wq,
9409 io_cancel_ctx_cb, ctx, true);
9410 io_sq_thread_unpark(sqd);
9411 }
9412
9413 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9414 /* there is little hope left, don't run it too often */
9415 interval = HZ * 60;
9416 }
9417 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9418
9419 init_completion(&exit.completion);
9420 init_task_work(&exit.task_work, io_tctx_exit_cb);
9421 exit.ctx = ctx;
9422 /*
9423 * Some may use context even when all refs and requests have been put,
9424 * and they are free to do so while still holding uring_lock or
9425 * completion_lock, see io_req_task_submit(). Apart from other work,
9426 * this lock/unlock section also waits them to finish.
9427 */
9428 mutex_lock(&ctx->uring_lock);
9429 while (!list_empty(&ctx->tctx_list)) {
9430 WARN_ON_ONCE(time_after(jiffies, timeout));
9431
9432 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9433 ctx_node);
9434 /* don't spin on a single task if cancellation failed */
9435 list_rotate_left(&ctx->tctx_list);
9436 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9437 if (WARN_ON_ONCE(ret))
9438 continue;
9439 wake_up_process(node->task);
9440
9441 mutex_unlock(&ctx->uring_lock);
9442 wait_for_completion(&exit.completion);
9443 mutex_lock(&ctx->uring_lock);
9444 }
9445 mutex_unlock(&ctx->uring_lock);
9446 spin_lock(&ctx->completion_lock);
9447 spin_unlock(&ctx->completion_lock);
9448
9449 io_ring_ctx_free(ctx);
9450 }
9451
9452 /* Returns true if we found and killed one or more timeouts */
9453 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9454 bool cancel_all)
9455 {
9456 struct io_kiocb *req, *tmp;
9457 int canceled = 0;
9458
9459 spin_lock(&ctx->completion_lock);
9460 spin_lock_irq(&ctx->timeout_lock);
9461 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9462 if (io_match_task(req, tsk, cancel_all)) {
9463 io_kill_timeout(req, -ECANCELED);
9464 canceled++;
9465 }
9466 }
9467 spin_unlock_irq(&ctx->timeout_lock);
9468 if (canceled != 0)
9469 io_commit_cqring(ctx);
9470 spin_unlock(&ctx->completion_lock);
9471 if (canceled != 0)
9472 io_cqring_ev_posted(ctx);
9473 return canceled != 0;
9474 }
9475
9476 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9477 {
9478 unsigned long index;
9479 struct creds *creds;
9480
9481 mutex_lock(&ctx->uring_lock);
9482 percpu_ref_kill(&ctx->refs);
9483 if (ctx->rings)
9484 __io_cqring_overflow_flush(ctx, true);
9485 xa_for_each(&ctx->personalities, index, creds)
9486 io_unregister_personality(ctx, index);
9487 mutex_unlock(&ctx->uring_lock);
9488
9489 io_kill_timeouts(ctx, NULL, true);
9490 io_poll_remove_all(ctx, NULL, true);
9491
9492 /* if we failed setting up the ctx, we might not have any rings */
9493 io_iopoll_try_reap_events(ctx);
9494
9495 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9496 /*
9497 * Use system_unbound_wq to avoid spawning tons of event kworkers
9498 * if we're exiting a ton of rings at the same time. It just adds
9499 * noise and overhead, there's no discernable change in runtime
9500 * over using system_wq.
9501 */
9502 queue_work(system_unbound_wq, &ctx->exit_work);
9503 }
9504
9505 static int io_uring_release(struct inode *inode, struct file *file)
9506 {
9507 struct io_ring_ctx *ctx = file->private_data;
9508
9509 file->private_data = NULL;
9510 io_ring_ctx_wait_and_kill(ctx);
9511 return 0;
9512 }
9513
9514 struct io_task_cancel {
9515 struct task_struct *task;
9516 bool all;
9517 };
9518
9519 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9520 {
9521 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9522 struct io_task_cancel *cancel = data;
9523 bool ret;
9524
9525 if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
9526 struct io_ring_ctx *ctx = req->ctx;
9527
9528 /* protect against races with linked timeouts */
9529 spin_lock(&ctx->completion_lock);
9530 ret = io_match_task(req, cancel->task, cancel->all);
9531 spin_unlock(&ctx->completion_lock);
9532 } else {
9533 ret = io_match_task(req, cancel->task, cancel->all);
9534 }
9535 return ret;
9536 }
9537
9538 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9539 struct task_struct *task, bool cancel_all)
9540 {
9541 struct io_defer_entry *de;
9542 LIST_HEAD(list);
9543
9544 spin_lock(&ctx->completion_lock);
9545 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9546 if (io_match_task(de->req, task, cancel_all)) {
9547 list_cut_position(&list, &ctx->defer_list, &de->list);
9548 break;
9549 }
9550 }
9551 spin_unlock(&ctx->completion_lock);
9552 if (list_empty(&list))
9553 return false;
9554
9555 while (!list_empty(&list)) {
9556 de = list_first_entry(&list, struct io_defer_entry, list);
9557 list_del_init(&de->list);
9558 io_req_complete_failed(de->req, -ECANCELED);
9559 kfree(de);
9560 }
9561 return true;
9562 }
9563
9564 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9565 {
9566 struct io_tctx_node *node;
9567 enum io_wq_cancel cret;
9568 bool ret = false;
9569
9570 mutex_lock(&ctx->uring_lock);
9571 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9572 struct io_uring_task *tctx = node->task->io_uring;
9573
9574 /*
9575 * io_wq will stay alive while we hold uring_lock, because it's
9576 * killed after ctx nodes, which requires to take the lock.
9577 */
9578 if (!tctx || !tctx->io_wq)
9579 continue;
9580 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9581 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9582 }
9583 mutex_unlock(&ctx->uring_lock);
9584
9585 return ret;
9586 }
9587
9588 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9589 struct task_struct *task,
9590 bool cancel_all)
9591 {
9592 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9593 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9594
9595 while (1) {
9596 enum io_wq_cancel cret;
9597 bool ret = false;
9598
9599 if (!task) {
9600 ret |= io_uring_try_cancel_iowq(ctx);
9601 } else if (tctx && tctx->io_wq) {
9602 /*
9603 * Cancels requests of all rings, not only @ctx, but
9604 * it's fine as the task is in exit/exec.
9605 */
9606 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9607 &cancel, true);
9608 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9609 }
9610
9611 /* SQPOLL thread does its own polling */
9612 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9613 (ctx->sq_data && ctx->sq_data->thread == current)) {
9614 while (!list_empty_careful(&ctx->iopoll_list)) {
9615 io_iopoll_try_reap_events(ctx);
9616 ret = true;
9617 }
9618 }
9619
9620 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9621 ret |= io_poll_remove_all(ctx, task, cancel_all);
9622 ret |= io_kill_timeouts(ctx, task, cancel_all);
9623 if (task)
9624 ret |= io_run_task_work();
9625 if (!ret)
9626 break;
9627 cond_resched();
9628 }
9629 }
9630
9631 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9632 {
9633 struct io_uring_task *tctx = current->io_uring;
9634 struct io_tctx_node *node;
9635 int ret;
9636
9637 if (unlikely(!tctx)) {
9638 ret = io_uring_alloc_task_context(current, ctx);
9639 if (unlikely(ret))
9640 return ret;
9641 tctx = current->io_uring;
9642 }
9643 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9644 node = kmalloc(sizeof(*node), GFP_KERNEL);
9645 if (!node)
9646 return -ENOMEM;
9647 node->ctx = ctx;
9648 node->task = current;
9649
9650 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9651 node, GFP_KERNEL));
9652 if (ret) {
9653 kfree(node);
9654 return ret;
9655 }
9656
9657 mutex_lock(&ctx->uring_lock);
9658 list_add(&node->ctx_node, &ctx->tctx_list);
9659 mutex_unlock(&ctx->uring_lock);
9660 }
9661 tctx->last = ctx;
9662 return 0;
9663 }
9664
9665 /*
9666 * Note that this task has used io_uring. We use it for cancelation purposes.
9667 */
9668 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9669 {
9670 struct io_uring_task *tctx = current->io_uring;
9671
9672 if (likely(tctx && tctx->last == ctx))
9673 return 0;
9674 return __io_uring_add_tctx_node(ctx);
9675 }
9676
9677 /*
9678 * Remove this io_uring_file -> task mapping.
9679 */
9680 static void io_uring_del_tctx_node(unsigned long index)
9681 {
9682 struct io_uring_task *tctx = current->io_uring;
9683 struct io_tctx_node *node;
9684
9685 if (!tctx)
9686 return;
9687 node = xa_erase(&tctx->xa, index);
9688 if (!node)
9689 return;
9690
9691 WARN_ON_ONCE(current != node->task);
9692 WARN_ON_ONCE(list_empty(&node->ctx_node));
9693
9694 mutex_lock(&node->ctx->uring_lock);
9695 list_del(&node->ctx_node);
9696 mutex_unlock(&node->ctx->uring_lock);
9697
9698 if (tctx->last == node->ctx)
9699 tctx->last = NULL;
9700 kfree(node);
9701 }
9702
9703 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9704 {
9705 struct io_wq *wq = tctx->io_wq;
9706 struct io_tctx_node *node;
9707 unsigned long index;
9708
9709 xa_for_each(&tctx->xa, index, node) {
9710 io_uring_del_tctx_node(index);
9711 cond_resched();
9712 }
9713 if (wq) {
9714 /*
9715 * Must be after io_uring_del_task_file() (removes nodes under
9716 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9717 */
9718 io_wq_put_and_exit(wq);
9719 tctx->io_wq = NULL;
9720 }
9721 }
9722
9723 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9724 {
9725 if (tracked)
9726 return atomic_read(&tctx->inflight_tracked);
9727 return percpu_counter_sum(&tctx->inflight);
9728 }
9729
9730 static void io_uring_drop_tctx_refs(struct task_struct *task)
9731 {
9732 struct io_uring_task *tctx = task->io_uring;
9733 unsigned int refs = tctx->cached_refs;
9734
9735 if (refs) {
9736 tctx->cached_refs = 0;
9737 percpu_counter_sub(&tctx->inflight, refs);
9738 put_task_struct_many(task, refs);
9739 }
9740 }
9741
9742 /*
9743 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9744 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9745 */
9746 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9747 {
9748 struct io_uring_task *tctx = current->io_uring;
9749 struct io_ring_ctx *ctx;
9750 s64 inflight;
9751 DEFINE_WAIT(wait);
9752
9753 WARN_ON_ONCE(sqd && sqd->thread != current);
9754
9755 if (!current->io_uring)
9756 return;
9757 if (tctx->io_wq)
9758 io_wq_exit_start(tctx->io_wq);
9759
9760 atomic_inc(&tctx->in_idle);
9761 do {
9762 io_uring_drop_tctx_refs(current);
9763 /* read completions before cancelations */
9764 inflight = tctx_inflight(tctx, !cancel_all);
9765 if (!inflight)
9766 break;
9767
9768 if (!sqd) {
9769 struct io_tctx_node *node;
9770 unsigned long index;
9771
9772 xa_for_each(&tctx->xa, index, node) {
9773 /* sqpoll task will cancel all its requests */
9774 if (node->ctx->sq_data)
9775 continue;
9776 io_uring_try_cancel_requests(node->ctx, current,
9777 cancel_all);
9778 }
9779 } else {
9780 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9781 io_uring_try_cancel_requests(ctx, current,
9782 cancel_all);
9783 }
9784
9785 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9786 io_uring_drop_tctx_refs(current);
9787 /*
9788 * If we've seen completions, retry without waiting. This
9789 * avoids a race where a completion comes in before we did
9790 * prepare_to_wait().
9791 */
9792 if (inflight == tctx_inflight(tctx, !cancel_all))
9793 schedule();
9794 finish_wait(&tctx->wait, &wait);
9795 } while (1);
9796 atomic_dec(&tctx->in_idle);
9797
9798 io_uring_clean_tctx(tctx);
9799 if (cancel_all) {
9800 /* for exec all current's requests should be gone, kill tctx */
9801 __io_uring_free(current);
9802 }
9803 }
9804
9805 void __io_uring_cancel(bool cancel_all)
9806 {
9807 io_uring_cancel_generic(cancel_all, NULL);
9808 }
9809
9810 static void *io_uring_validate_mmap_request(struct file *file,
9811 loff_t pgoff, size_t sz)
9812 {
9813 struct io_ring_ctx *ctx = file->private_data;
9814 loff_t offset = pgoff << PAGE_SHIFT;
9815 struct page *page;
9816 void *ptr;
9817
9818 switch (offset) {
9819 case IORING_OFF_SQ_RING:
9820 case IORING_OFF_CQ_RING:
9821 ptr = ctx->rings;
9822 break;
9823 case IORING_OFF_SQES:
9824 ptr = ctx->sq_sqes;
9825 break;
9826 default:
9827 return ERR_PTR(-EINVAL);
9828 }
9829
9830 page = virt_to_head_page(ptr);
9831 if (sz > page_size(page))
9832 return ERR_PTR(-EINVAL);
9833
9834 return ptr;
9835 }
9836
9837 #ifdef CONFIG_MMU
9838
9839 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9840 {
9841 size_t sz = vma->vm_end - vma->vm_start;
9842 unsigned long pfn;
9843 void *ptr;
9844
9845 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9846 if (IS_ERR(ptr))
9847 return PTR_ERR(ptr);
9848
9849 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9850 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9851 }
9852
9853 #else /* !CONFIG_MMU */
9854
9855 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9856 {
9857 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9858 }
9859
9860 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9861 {
9862 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9863 }
9864
9865 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9866 unsigned long addr, unsigned long len,
9867 unsigned long pgoff, unsigned long flags)
9868 {
9869 void *ptr;
9870
9871 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9872 if (IS_ERR(ptr))
9873 return PTR_ERR(ptr);
9874
9875 return (unsigned long) ptr;
9876 }
9877
9878 #endif /* !CONFIG_MMU */
9879
9880 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9881 {
9882 DEFINE_WAIT(wait);
9883
9884 do {
9885 if (!io_sqring_full(ctx))
9886 break;
9887 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9888
9889 if (!io_sqring_full(ctx))
9890 break;
9891 schedule();
9892 } while (!signal_pending(current));
9893
9894 finish_wait(&ctx->sqo_sq_wait, &wait);
9895 return 0;
9896 }
9897
9898 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9899 struct __kernel_timespec __user **ts,
9900 const sigset_t __user **sig)
9901 {
9902 struct io_uring_getevents_arg arg;
9903
9904 /*
9905 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9906 * is just a pointer to the sigset_t.
9907 */
9908 if (!(flags & IORING_ENTER_EXT_ARG)) {
9909 *sig = (const sigset_t __user *) argp;
9910 *ts = NULL;
9911 return 0;
9912 }
9913
9914 /*
9915 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9916 * timespec and sigset_t pointers if good.
9917 */
9918 if (*argsz != sizeof(arg))
9919 return -EINVAL;
9920 if (copy_from_user(&arg, argp, sizeof(arg)))
9921 return -EFAULT;
9922 *sig = u64_to_user_ptr(arg.sigmask);
9923 *argsz = arg.sigmask_sz;
9924 *ts = u64_to_user_ptr(arg.ts);
9925 return 0;
9926 }
9927
9928 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9929 u32, min_complete, u32, flags, const void __user *, argp,
9930 size_t, argsz)
9931 {
9932 struct io_ring_ctx *ctx;
9933 int submitted = 0;
9934 struct fd f;
9935 long ret;
9936
9937 io_run_task_work();
9938
9939 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9940 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9941 return -EINVAL;
9942
9943 f = fdget(fd);
9944 if (unlikely(!f.file))
9945 return -EBADF;
9946
9947 ret = -EOPNOTSUPP;
9948 if (unlikely(f.file->f_op != &io_uring_fops))
9949 goto out_fput;
9950
9951 ret = -ENXIO;
9952 ctx = f.file->private_data;
9953 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9954 goto out_fput;
9955
9956 ret = -EBADFD;
9957 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9958 goto out;
9959
9960 /*
9961 * For SQ polling, the thread will do all submissions and completions.
9962 * Just return the requested submit count, and wake the thread if
9963 * we were asked to.
9964 */
9965 ret = 0;
9966 if (ctx->flags & IORING_SETUP_SQPOLL) {
9967 io_cqring_overflow_flush(ctx);
9968
9969 if (unlikely(ctx->sq_data->thread == NULL)) {
9970 ret = -EOWNERDEAD;
9971 goto out;
9972 }
9973 if (flags & IORING_ENTER_SQ_WAKEUP)
9974 wake_up(&ctx->sq_data->wait);
9975 if (flags & IORING_ENTER_SQ_WAIT) {
9976 ret = io_sqpoll_wait_sq(ctx);
9977 if (ret)
9978 goto out;
9979 }
9980 submitted = to_submit;
9981 } else if (to_submit) {
9982 ret = io_uring_add_tctx_node(ctx);
9983 if (unlikely(ret))
9984 goto out;
9985 mutex_lock(&ctx->uring_lock);
9986 submitted = io_submit_sqes(ctx, to_submit);
9987 mutex_unlock(&ctx->uring_lock);
9988
9989 if (submitted != to_submit)
9990 goto out;
9991 }
9992 if (flags & IORING_ENTER_GETEVENTS) {
9993 const sigset_t __user *sig;
9994 struct __kernel_timespec __user *ts;
9995
9996 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9997 if (unlikely(ret))
9998 goto out;
9999
10000 min_complete = min(min_complete, ctx->cq_entries);
10001
10002 /*
10003 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10004 * space applications don't need to do io completion events
10005 * polling again, they can rely on io_sq_thread to do polling
10006 * work, which can reduce cpu usage and uring_lock contention.
10007 */
10008 if (ctx->flags & IORING_SETUP_IOPOLL &&
10009 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10010 ret = io_iopoll_check(ctx, min_complete);
10011 } else {
10012 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10013 }
10014 }
10015
10016 out:
10017 percpu_ref_put(&ctx->refs);
10018 out_fput:
10019 fdput(f);
10020 return submitted ? submitted : ret;
10021 }
10022
10023 #ifdef CONFIG_PROC_FS
10024 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10025 const struct cred *cred)
10026 {
10027 struct user_namespace *uns = seq_user_ns(m);
10028 struct group_info *gi;
10029 kernel_cap_t cap;
10030 unsigned __capi;
10031 int g;
10032
10033 seq_printf(m, "%5d\n", id);
10034 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10035 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10036 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10037 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10038 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10039 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10040 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10041 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10042 seq_puts(m, "\n\tGroups:\t");
10043 gi = cred->group_info;
10044 for (g = 0; g < gi->ngroups; g++) {
10045 seq_put_decimal_ull(m, g ? " " : "",
10046 from_kgid_munged(uns, gi->gid[g]));
10047 }
10048 seq_puts(m, "\n\tCapEff:\t");
10049 cap = cred->cap_effective;
10050 CAP_FOR_EACH_U32(__capi)
10051 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10052 seq_putc(m, '\n');
10053 return 0;
10054 }
10055
10056 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10057 {
10058 struct io_sq_data *sq = NULL;
10059 bool has_lock;
10060 int i;
10061
10062 /*
10063 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10064 * since fdinfo case grabs it in the opposite direction of normal use
10065 * cases. If we fail to get the lock, we just don't iterate any
10066 * structures that could be going away outside the io_uring mutex.
10067 */
10068 has_lock = mutex_trylock(&ctx->uring_lock);
10069
10070 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10071 sq = ctx->sq_data;
10072 if (!sq->thread)
10073 sq = NULL;
10074 }
10075
10076 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10077 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10078 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10079 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10080 struct file *f = io_file_from_index(ctx, i);
10081
10082 if (f)
10083 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10084 else
10085 seq_printf(m, "%5u: <none>\n", i);
10086 }
10087 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10088 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10089 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10090 unsigned int len = buf->ubuf_end - buf->ubuf;
10091
10092 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10093 }
10094 if (has_lock && !xa_empty(&ctx->personalities)) {
10095 unsigned long index;
10096 const struct cred *cred;
10097
10098 seq_printf(m, "Personalities:\n");
10099 xa_for_each(&ctx->personalities, index, cred)
10100 io_uring_show_cred(m, index, cred);
10101 }
10102 seq_printf(m, "PollList:\n");
10103 spin_lock(&ctx->completion_lock);
10104 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10105 struct hlist_head *list = &ctx->cancel_hash[i];
10106 struct io_kiocb *req;
10107
10108 hlist_for_each_entry(req, list, hash_node)
10109 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10110 req->task->task_works != NULL);
10111 }
10112 spin_unlock(&ctx->completion_lock);
10113 if (has_lock)
10114 mutex_unlock(&ctx->uring_lock);
10115 }
10116
10117 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10118 {
10119 struct io_ring_ctx *ctx = f->private_data;
10120
10121 if (percpu_ref_tryget(&ctx->refs)) {
10122 __io_uring_show_fdinfo(ctx, m);
10123 percpu_ref_put(&ctx->refs);
10124 }
10125 }
10126 #endif
10127
10128 static const struct file_operations io_uring_fops = {
10129 .release = io_uring_release,
10130 .mmap = io_uring_mmap,
10131 #ifndef CONFIG_MMU
10132 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10133 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10134 #endif
10135 .poll = io_uring_poll,
10136 #ifdef CONFIG_PROC_FS
10137 .show_fdinfo = io_uring_show_fdinfo,
10138 #endif
10139 };
10140
10141 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10142 struct io_uring_params *p)
10143 {
10144 struct io_rings *rings;
10145 size_t size, sq_array_offset;
10146
10147 /* make sure these are sane, as we already accounted them */
10148 ctx->sq_entries = p->sq_entries;
10149 ctx->cq_entries = p->cq_entries;
10150
10151 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10152 if (size == SIZE_MAX)
10153 return -EOVERFLOW;
10154
10155 rings = io_mem_alloc(size);
10156 if (!rings)
10157 return -ENOMEM;
10158
10159 ctx->rings = rings;
10160 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10161 rings->sq_ring_mask = p->sq_entries - 1;
10162 rings->cq_ring_mask = p->cq_entries - 1;
10163 rings->sq_ring_entries = p->sq_entries;
10164 rings->cq_ring_entries = p->cq_entries;
10165
10166 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10167 if (size == SIZE_MAX) {
10168 io_mem_free(ctx->rings);
10169 ctx->rings = NULL;
10170 return -EOVERFLOW;
10171 }
10172
10173 ctx->sq_sqes = io_mem_alloc(size);
10174 if (!ctx->sq_sqes) {
10175 io_mem_free(ctx->rings);
10176 ctx->rings = NULL;
10177 return -ENOMEM;
10178 }
10179
10180 return 0;
10181 }
10182
10183 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10184 {
10185 int ret, fd;
10186
10187 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10188 if (fd < 0)
10189 return fd;
10190
10191 ret = io_uring_add_tctx_node(ctx);
10192 if (ret) {
10193 put_unused_fd(fd);
10194 return ret;
10195 }
10196 fd_install(fd, file);
10197 return fd;
10198 }
10199
10200 /*
10201 * Allocate an anonymous fd, this is what constitutes the application
10202 * visible backing of an io_uring instance. The application mmaps this
10203 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10204 * we have to tie this fd to a socket for file garbage collection purposes.
10205 */
10206 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10207 {
10208 struct file *file;
10209 #if defined(CONFIG_UNIX)
10210 int ret;
10211
10212 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10213 &ctx->ring_sock);
10214 if (ret)
10215 return ERR_PTR(ret);
10216 #endif
10217
10218 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10219 O_RDWR | O_CLOEXEC);
10220 #if defined(CONFIG_UNIX)
10221 if (IS_ERR(file)) {
10222 sock_release(ctx->ring_sock);
10223 ctx->ring_sock = NULL;
10224 } else {
10225 ctx->ring_sock->file = file;
10226 }
10227 #endif
10228 return file;
10229 }
10230
10231 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10232 struct io_uring_params __user *params)
10233 {
10234 struct io_ring_ctx *ctx;
10235 struct file *file;
10236 int ret;
10237
10238 if (!entries)
10239 return -EINVAL;
10240 if (entries > IORING_MAX_ENTRIES) {
10241 if (!(p->flags & IORING_SETUP_CLAMP))
10242 return -EINVAL;
10243 entries = IORING_MAX_ENTRIES;
10244 }
10245
10246 /*
10247 * Use twice as many entries for the CQ ring. It's possible for the
10248 * application to drive a higher depth than the size of the SQ ring,
10249 * since the sqes are only used at submission time. This allows for
10250 * some flexibility in overcommitting a bit. If the application has
10251 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10252 * of CQ ring entries manually.
10253 */
10254 p->sq_entries = roundup_pow_of_two(entries);
10255 if (p->flags & IORING_SETUP_CQSIZE) {
10256 /*
10257 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10258 * to a power-of-two, if it isn't already. We do NOT impose
10259 * any cq vs sq ring sizing.
10260 */
10261 if (!p->cq_entries)
10262 return -EINVAL;
10263 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10264 if (!(p->flags & IORING_SETUP_CLAMP))
10265 return -EINVAL;
10266 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10267 }
10268 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10269 if (p->cq_entries < p->sq_entries)
10270 return -EINVAL;
10271 } else {
10272 p->cq_entries = 2 * p->sq_entries;
10273 }
10274
10275 ctx = io_ring_ctx_alloc(p);
10276 if (!ctx)
10277 return -ENOMEM;
10278 ctx->compat = in_compat_syscall();
10279 if (!capable(CAP_IPC_LOCK))
10280 ctx->user = get_uid(current_user());
10281
10282 /*
10283 * This is just grabbed for accounting purposes. When a process exits,
10284 * the mm is exited and dropped before the files, hence we need to hang
10285 * on to this mm purely for the purposes of being able to unaccount
10286 * memory (locked/pinned vm). It's not used for anything else.
10287 */
10288 mmgrab(current->mm);
10289 ctx->mm_account = current->mm;
10290
10291 ret = io_allocate_scq_urings(ctx, p);
10292 if (ret)
10293 goto err;
10294
10295 ret = io_sq_offload_create(ctx, p);
10296 if (ret)
10297 goto err;
10298 /* always set a rsrc node */
10299 ret = io_rsrc_node_switch_start(ctx);
10300 if (ret)
10301 goto err;
10302 io_rsrc_node_switch(ctx, NULL);
10303
10304 memset(&p->sq_off, 0, sizeof(p->sq_off));
10305 p->sq_off.head = offsetof(struct io_rings, sq.head);
10306 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10307 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10308 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10309 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10310 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10311 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10312
10313 memset(&p->cq_off, 0, sizeof(p->cq_off));
10314 p->cq_off.head = offsetof(struct io_rings, cq.head);
10315 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10316 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10317 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10318 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10319 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10320 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10321
10322 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10323 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10324 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10325 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10326 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10327 IORING_FEAT_RSRC_TAGS;
10328
10329 if (copy_to_user(params, p, sizeof(*p))) {
10330 ret = -EFAULT;
10331 goto err;
10332 }
10333
10334 file = io_uring_get_file(ctx);
10335 if (IS_ERR(file)) {
10336 ret = PTR_ERR(file);
10337 goto err;
10338 }
10339
10340 /*
10341 * Install ring fd as the very last thing, so we don't risk someone
10342 * having closed it before we finish setup
10343 */
10344 ret = io_uring_install_fd(ctx, file);
10345 if (ret < 0) {
10346 /* fput will clean it up */
10347 fput(file);
10348 return ret;
10349 }
10350
10351 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10352 return ret;
10353 err:
10354 io_ring_ctx_wait_and_kill(ctx);
10355 return ret;
10356 }
10357
10358 /*
10359 * Sets up an aio uring context, and returns the fd. Applications asks for a
10360 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10361 * params structure passed in.
10362 */
10363 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10364 {
10365 struct io_uring_params p;
10366 int i;
10367
10368 if (copy_from_user(&p, params, sizeof(p)))
10369 return -EFAULT;
10370 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10371 if (p.resv[i])
10372 return -EINVAL;
10373 }
10374
10375 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10376 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10377 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10378 IORING_SETUP_R_DISABLED))
10379 return -EINVAL;
10380
10381 return io_uring_create(entries, &p, params);
10382 }
10383
10384 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10385 struct io_uring_params __user *, params)
10386 {
10387 return io_uring_setup(entries, params);
10388 }
10389
10390 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10391 {
10392 struct io_uring_probe *p;
10393 size_t size;
10394 int i, ret;
10395
10396 size = struct_size(p, ops, nr_args);
10397 if (size == SIZE_MAX)
10398 return -EOVERFLOW;
10399 p = kzalloc(size, GFP_KERNEL);
10400 if (!p)
10401 return -ENOMEM;
10402
10403 ret = -EFAULT;
10404 if (copy_from_user(p, arg, size))
10405 goto out;
10406 ret = -EINVAL;
10407 if (memchr_inv(p, 0, size))
10408 goto out;
10409
10410 p->last_op = IORING_OP_LAST - 1;
10411 if (nr_args > IORING_OP_LAST)
10412 nr_args = IORING_OP_LAST;
10413
10414 for (i = 0; i < nr_args; i++) {
10415 p->ops[i].op = i;
10416 if (!io_op_defs[i].not_supported)
10417 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10418 }
10419 p->ops_len = i;
10420
10421 ret = 0;
10422 if (copy_to_user(arg, p, size))
10423 ret = -EFAULT;
10424 out:
10425 kfree(p);
10426 return ret;
10427 }
10428
10429 static int io_register_personality(struct io_ring_ctx *ctx)
10430 {
10431 const struct cred *creds;
10432 u32 id;
10433 int ret;
10434
10435 creds = get_current_cred();
10436
10437 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10438 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10439 if (ret < 0) {
10440 put_cred(creds);
10441 return ret;
10442 }
10443 return id;
10444 }
10445
10446 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10447 unsigned int nr_args)
10448 {
10449 struct io_uring_restriction *res;
10450 size_t size;
10451 int i, ret;
10452
10453 /* Restrictions allowed only if rings started disabled */
10454 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10455 return -EBADFD;
10456
10457 /* We allow only a single restrictions registration */
10458 if (ctx->restrictions.registered)
10459 return -EBUSY;
10460
10461 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10462 return -EINVAL;
10463
10464 size = array_size(nr_args, sizeof(*res));
10465 if (size == SIZE_MAX)
10466 return -EOVERFLOW;
10467
10468 res = memdup_user(arg, size);
10469 if (IS_ERR(res))
10470 return PTR_ERR(res);
10471
10472 ret = 0;
10473
10474 for (i = 0; i < nr_args; i++) {
10475 switch (res[i].opcode) {
10476 case IORING_RESTRICTION_REGISTER_OP:
10477 if (res[i].register_op >= IORING_REGISTER_LAST) {
10478 ret = -EINVAL;
10479 goto out;
10480 }
10481
10482 __set_bit(res[i].register_op,
10483 ctx->restrictions.register_op);
10484 break;
10485 case IORING_RESTRICTION_SQE_OP:
10486 if (res[i].sqe_op >= IORING_OP_LAST) {
10487 ret = -EINVAL;
10488 goto out;
10489 }
10490
10491 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10492 break;
10493 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10494 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10495 break;
10496 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10497 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10498 break;
10499 default:
10500 ret = -EINVAL;
10501 goto out;
10502 }
10503 }
10504
10505 out:
10506 /* Reset all restrictions if an error happened */
10507 if (ret != 0)
10508 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10509 else
10510 ctx->restrictions.registered = true;
10511
10512 kfree(res);
10513 return ret;
10514 }
10515
10516 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10517 {
10518 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10519 return -EBADFD;
10520
10521 if (ctx->restrictions.registered)
10522 ctx->restricted = 1;
10523
10524 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10525 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10526 wake_up(&ctx->sq_data->wait);
10527 return 0;
10528 }
10529
10530 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10531 struct io_uring_rsrc_update2 *up,
10532 unsigned nr_args)
10533 {
10534 __u32 tmp;
10535 int err;
10536
10537 if (up->resv)
10538 return -EINVAL;
10539 if (check_add_overflow(up->offset, nr_args, &tmp))
10540 return -EOVERFLOW;
10541 err = io_rsrc_node_switch_start(ctx);
10542 if (err)
10543 return err;
10544
10545 switch (type) {
10546 case IORING_RSRC_FILE:
10547 return __io_sqe_files_update(ctx, up, nr_args);
10548 case IORING_RSRC_BUFFER:
10549 return __io_sqe_buffers_update(ctx, up, nr_args);
10550 }
10551 return -EINVAL;
10552 }
10553
10554 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10555 unsigned nr_args)
10556 {
10557 struct io_uring_rsrc_update2 up;
10558
10559 if (!nr_args)
10560 return -EINVAL;
10561 memset(&up, 0, sizeof(up));
10562 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10563 return -EFAULT;
10564 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10565 }
10566
10567 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10568 unsigned size, unsigned type)
10569 {
10570 struct io_uring_rsrc_update2 up;
10571
10572 if (size != sizeof(up))
10573 return -EINVAL;
10574 if (copy_from_user(&up, arg, sizeof(up)))
10575 return -EFAULT;
10576 if (!up.nr || up.resv)
10577 return -EINVAL;
10578 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10579 }
10580
10581 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10582 unsigned int size, unsigned int type)
10583 {
10584 struct io_uring_rsrc_register rr;
10585
10586 /* keep it extendible */
10587 if (size != sizeof(rr))
10588 return -EINVAL;
10589
10590 memset(&rr, 0, sizeof(rr));
10591 if (copy_from_user(&rr, arg, size))
10592 return -EFAULT;
10593 if (!rr.nr || rr.resv || rr.resv2)
10594 return -EINVAL;
10595
10596 switch (type) {
10597 case IORING_RSRC_FILE:
10598 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10599 rr.nr, u64_to_user_ptr(rr.tags));
10600 case IORING_RSRC_BUFFER:
10601 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10602 rr.nr, u64_to_user_ptr(rr.tags));
10603 }
10604 return -EINVAL;
10605 }
10606
10607 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10608 unsigned len)
10609 {
10610 struct io_uring_task *tctx = current->io_uring;
10611 cpumask_var_t new_mask;
10612 int ret;
10613
10614 if (!tctx || !tctx->io_wq)
10615 return -EINVAL;
10616
10617 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10618 return -ENOMEM;
10619
10620 cpumask_clear(new_mask);
10621 if (len > cpumask_size())
10622 len = cpumask_size();
10623
10624 if (copy_from_user(new_mask, arg, len)) {
10625 free_cpumask_var(new_mask);
10626 return -EFAULT;
10627 }
10628
10629 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10630 free_cpumask_var(new_mask);
10631 return ret;
10632 }
10633
10634 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10635 {
10636 struct io_uring_task *tctx = current->io_uring;
10637
10638 if (!tctx || !tctx->io_wq)
10639 return -EINVAL;
10640
10641 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10642 }
10643
10644 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10645 void __user *arg)
10646 {
10647 struct io_uring_task *tctx = NULL;
10648 struct io_sq_data *sqd = NULL;
10649 __u32 new_count[2];
10650 int i, ret;
10651
10652 if (copy_from_user(new_count, arg, sizeof(new_count)))
10653 return -EFAULT;
10654 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10655 if (new_count[i] > INT_MAX)
10656 return -EINVAL;
10657
10658 if (ctx->flags & IORING_SETUP_SQPOLL) {
10659 sqd = ctx->sq_data;
10660 if (sqd) {
10661 /*
10662 * Observe the correct sqd->lock -> ctx->uring_lock
10663 * ordering. Fine to drop uring_lock here, we hold
10664 * a ref to the ctx.
10665 */
10666 refcount_inc(&sqd->refs);
10667 mutex_unlock(&ctx->uring_lock);
10668 mutex_lock(&sqd->lock);
10669 mutex_lock(&ctx->uring_lock);
10670 if (sqd->thread)
10671 tctx = sqd->thread->io_uring;
10672 }
10673 } else {
10674 tctx = current->io_uring;
10675 }
10676
10677 ret = -EINVAL;
10678 if (!tctx || !tctx->io_wq)
10679 goto err;
10680
10681 ret = io_wq_max_workers(tctx->io_wq, new_count);
10682 if (ret)
10683 goto err;
10684
10685 if (sqd) {
10686 mutex_unlock(&sqd->lock);
10687 io_put_sq_data(sqd);
10688 }
10689
10690 if (copy_to_user(arg, new_count, sizeof(new_count)))
10691 return -EFAULT;
10692
10693 return 0;
10694 err:
10695 if (sqd) {
10696 mutex_unlock(&sqd->lock);
10697 io_put_sq_data(sqd);
10698 }
10699 return ret;
10700 }
10701
10702 static bool io_register_op_must_quiesce(int op)
10703 {
10704 switch (op) {
10705 case IORING_REGISTER_BUFFERS:
10706 case IORING_UNREGISTER_BUFFERS:
10707 case IORING_REGISTER_FILES:
10708 case IORING_UNREGISTER_FILES:
10709 case IORING_REGISTER_FILES_UPDATE:
10710 case IORING_REGISTER_PROBE:
10711 case IORING_REGISTER_PERSONALITY:
10712 case IORING_UNREGISTER_PERSONALITY:
10713 case IORING_REGISTER_FILES2:
10714 case IORING_REGISTER_FILES_UPDATE2:
10715 case IORING_REGISTER_BUFFERS2:
10716 case IORING_REGISTER_BUFFERS_UPDATE:
10717 case IORING_REGISTER_IOWQ_AFF:
10718 case IORING_UNREGISTER_IOWQ_AFF:
10719 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10720 return false;
10721 default:
10722 return true;
10723 }
10724 }
10725
10726 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10727 {
10728 long ret;
10729
10730 percpu_ref_kill(&ctx->refs);
10731
10732 /*
10733 * Drop uring mutex before waiting for references to exit. If another
10734 * thread is currently inside io_uring_enter() it might need to grab the
10735 * uring_lock to make progress. If we hold it here across the drain
10736 * wait, then we can deadlock. It's safe to drop the mutex here, since
10737 * no new references will come in after we've killed the percpu ref.
10738 */
10739 mutex_unlock(&ctx->uring_lock);
10740 do {
10741 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10742 if (!ret)
10743 break;
10744 ret = io_run_task_work_sig();
10745 } while (ret >= 0);
10746 mutex_lock(&ctx->uring_lock);
10747
10748 if (ret)
10749 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10750 return ret;
10751 }
10752
10753 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10754 void __user *arg, unsigned nr_args)
10755 __releases(ctx->uring_lock)
10756 __acquires(ctx->uring_lock)
10757 {
10758 int ret;
10759
10760 /*
10761 * We're inside the ring mutex, if the ref is already dying, then
10762 * someone else killed the ctx or is already going through
10763 * io_uring_register().
10764 */
10765 if (percpu_ref_is_dying(&ctx->refs))
10766 return -ENXIO;
10767
10768 if (ctx->restricted) {
10769 if (opcode >= IORING_REGISTER_LAST)
10770 return -EINVAL;
10771 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10772 if (!test_bit(opcode, ctx->restrictions.register_op))
10773 return -EACCES;
10774 }
10775
10776 if (io_register_op_must_quiesce(opcode)) {
10777 ret = io_ctx_quiesce(ctx);
10778 if (ret)
10779 return ret;
10780 }
10781
10782 switch (opcode) {
10783 case IORING_REGISTER_BUFFERS:
10784 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10785 break;
10786 case IORING_UNREGISTER_BUFFERS:
10787 ret = -EINVAL;
10788 if (arg || nr_args)
10789 break;
10790 ret = io_sqe_buffers_unregister(ctx);
10791 break;
10792 case IORING_REGISTER_FILES:
10793 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10794 break;
10795 case IORING_UNREGISTER_FILES:
10796 ret = -EINVAL;
10797 if (arg || nr_args)
10798 break;
10799 ret = io_sqe_files_unregister(ctx);
10800 break;
10801 case IORING_REGISTER_FILES_UPDATE:
10802 ret = io_register_files_update(ctx, arg, nr_args);
10803 break;
10804 case IORING_REGISTER_EVENTFD:
10805 case IORING_REGISTER_EVENTFD_ASYNC:
10806 ret = -EINVAL;
10807 if (nr_args != 1)
10808 break;
10809 ret = io_eventfd_register(ctx, arg);
10810 if (ret)
10811 break;
10812 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10813 ctx->eventfd_async = 1;
10814 else
10815 ctx->eventfd_async = 0;
10816 break;
10817 case IORING_UNREGISTER_EVENTFD:
10818 ret = -EINVAL;
10819 if (arg || nr_args)
10820 break;
10821 ret = io_eventfd_unregister(ctx);
10822 break;
10823 case IORING_REGISTER_PROBE:
10824 ret = -EINVAL;
10825 if (!arg || nr_args > 256)
10826 break;
10827 ret = io_probe(ctx, arg, nr_args);
10828 break;
10829 case IORING_REGISTER_PERSONALITY:
10830 ret = -EINVAL;
10831 if (arg || nr_args)
10832 break;
10833 ret = io_register_personality(ctx);
10834 break;
10835 case IORING_UNREGISTER_PERSONALITY:
10836 ret = -EINVAL;
10837 if (arg)
10838 break;
10839 ret = io_unregister_personality(ctx, nr_args);
10840 break;
10841 case IORING_REGISTER_ENABLE_RINGS:
10842 ret = -EINVAL;
10843 if (arg || nr_args)
10844 break;
10845 ret = io_register_enable_rings(ctx);
10846 break;
10847 case IORING_REGISTER_RESTRICTIONS:
10848 ret = io_register_restrictions(ctx, arg, nr_args);
10849 break;
10850 case IORING_REGISTER_FILES2:
10851 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10852 break;
10853 case IORING_REGISTER_FILES_UPDATE2:
10854 ret = io_register_rsrc_update(ctx, arg, nr_args,
10855 IORING_RSRC_FILE);
10856 break;
10857 case IORING_REGISTER_BUFFERS2:
10858 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10859 break;
10860 case IORING_REGISTER_BUFFERS_UPDATE:
10861 ret = io_register_rsrc_update(ctx, arg, nr_args,
10862 IORING_RSRC_BUFFER);
10863 break;
10864 case IORING_REGISTER_IOWQ_AFF:
10865 ret = -EINVAL;
10866 if (!arg || !nr_args)
10867 break;
10868 ret = io_register_iowq_aff(ctx, arg, nr_args);
10869 break;
10870 case IORING_UNREGISTER_IOWQ_AFF:
10871 ret = -EINVAL;
10872 if (arg || nr_args)
10873 break;
10874 ret = io_unregister_iowq_aff(ctx);
10875 break;
10876 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10877 ret = -EINVAL;
10878 if (!arg || nr_args != 2)
10879 break;
10880 ret = io_register_iowq_max_workers(ctx, arg);
10881 break;
10882 default:
10883 ret = -EINVAL;
10884 break;
10885 }
10886
10887 if (io_register_op_must_quiesce(opcode)) {
10888 /* bring the ctx back to life */
10889 percpu_ref_reinit(&ctx->refs);
10890 reinit_completion(&ctx->ref_comp);
10891 }
10892 return ret;
10893 }
10894
10895 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10896 void __user *, arg, unsigned int, nr_args)
10897 {
10898 struct io_ring_ctx *ctx;
10899 long ret = -EBADF;
10900 struct fd f;
10901
10902 f = fdget(fd);
10903 if (!f.file)
10904 return -EBADF;
10905
10906 ret = -EOPNOTSUPP;
10907 if (f.file->f_op != &io_uring_fops)
10908 goto out_fput;
10909
10910 ctx = f.file->private_data;
10911
10912 io_run_task_work();
10913
10914 mutex_lock(&ctx->uring_lock);
10915 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10916 mutex_unlock(&ctx->uring_lock);
10917 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10918 ctx->cq_ev_fd != NULL, ret);
10919 out_fput:
10920 fdput(f);
10921 return ret;
10922 }
10923
10924 static int __init io_uring_init(void)
10925 {
10926 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10927 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10928 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10929 } while (0)
10930
10931 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10932 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10933 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10934 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10935 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10936 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10937 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10938 BUILD_BUG_SQE_ELEM(8, __u64, off);
10939 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10940 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10941 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10942 BUILD_BUG_SQE_ELEM(24, __u32, len);
10943 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10944 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10945 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10946 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10947 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10948 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10949 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10950 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10951 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10952 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10953 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10954 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10955 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10956 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10957 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10958 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10959 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10960 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10961 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10962 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10963 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
10964
10965 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10966 sizeof(struct io_uring_rsrc_update));
10967 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10968 sizeof(struct io_uring_rsrc_update2));
10969
10970 /* ->buf_index is u16 */
10971 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
10972
10973 /* should fit into one byte */
10974 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10975
10976 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10977 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
10978
10979 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10980 SLAB_ACCOUNT);
10981 return 0;
10982 };
10983 __initcall(io_uring_init);