]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'drm-misc-fixes-2019-06-13' of git://anongit.freedesktop.org/drm/drm-misc...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73
74 #include <uapi/linux/io_uring.h>
75
76 #include "internal.h"
77
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
80
81 struct io_uring {
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
84 };
85
86 /*
87 * This data is shared with the application through the mmap at offset
88 * IORING_OFF_SQ_RING.
89 *
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
92 */
93 struct io_sq_ring {
94 /*
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
97 *
98 * The kernel controls head and the application controls tail.
99 */
100 struct io_uring r;
101 /*
102 * Bitmask to apply to head and tail offsets (constant, equals
103 * ring_entries - 1)
104 */
105 u32 ring_mask;
106 /* Ring size (constant, power of 2) */
107 u32 ring_entries;
108 /*
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
111 *
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
114 * cached value).
115 *
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
119 */
120 u32 dropped;
121 /*
122 * Runtime flags
123 *
124 * Written by the kernel, shouldn't be modified by the
125 * application.
126 *
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
129 */
130 u32 flags;
131 /*
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
134 *
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
138 *
139 * The kernel modifies neither the indices array nor the entries
140 * array.
141 */
142 u32 array[];
143 };
144
145 /*
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
148 *
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
151 */
152 struct io_cq_ring {
153 /*
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
156 *
157 * The application controls head and the kernel tail.
158 */
159 struct io_uring r;
160 /*
161 * Bitmask to apply to head and tail offsets (constant, equals
162 * ring_entries - 1)
163 */
164 u32 ring_mask;
165 /* Ring size (constant, power of 2) */
166 u32 ring_entries;
167 /*
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
172 *
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
175 * cached value).
176 *
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
179 */
180 u32 overflow;
181 /*
182 * Ring buffer of completion events.
183 *
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
186 * entries.
187 */
188 struct io_uring_cqe cqes[];
189 };
190
191 struct io_mapped_ubuf {
192 u64 ubuf;
193 size_t len;
194 struct bio_vec *bvec;
195 unsigned int nr_bvecs;
196 };
197
198 struct async_list {
199 spinlock_t lock;
200 atomic_t cnt;
201 struct list_head list;
202
203 struct file *file;
204 off_t io_end;
205 size_t io_pages;
206 };
207
208 struct io_ring_ctx {
209 struct {
210 struct percpu_ref refs;
211 } ____cacheline_aligned_in_smp;
212
213 struct {
214 unsigned int flags;
215 bool compat;
216 bool account_mem;
217
218 /* SQ ring */
219 struct io_sq_ring *sq_ring;
220 unsigned cached_sq_head;
221 unsigned sq_entries;
222 unsigned sq_mask;
223 unsigned sq_thread_idle;
224 struct io_uring_sqe *sq_sqes;
225
226 struct list_head defer_list;
227 } ____cacheline_aligned_in_smp;
228
229 /* IO offload */
230 struct workqueue_struct *sqo_wq;
231 struct task_struct *sqo_thread; /* if using sq thread polling */
232 struct mm_struct *sqo_mm;
233 wait_queue_head_t sqo_wait;
234
235 struct {
236 /* CQ ring */
237 struct io_cq_ring *cq_ring;
238 unsigned cached_cq_tail;
239 unsigned cq_entries;
240 unsigned cq_mask;
241 struct wait_queue_head cq_wait;
242 struct fasync_struct *cq_fasync;
243 struct eventfd_ctx *cq_ev_fd;
244 } ____cacheline_aligned_in_smp;
245
246 /*
247 * If used, fixed file set. Writers must ensure that ->refs is dead,
248 * readers must ensure that ->refs is alive as long as the file* is
249 * used. Only updated through io_uring_register(2).
250 */
251 struct file **user_files;
252 unsigned nr_user_files;
253
254 /* if used, fixed mapped user buffers */
255 unsigned nr_user_bufs;
256 struct io_mapped_ubuf *user_bufs;
257
258 struct user_struct *user;
259
260 struct completion ctx_done;
261
262 struct {
263 struct mutex uring_lock;
264 wait_queue_head_t wait;
265 } ____cacheline_aligned_in_smp;
266
267 struct {
268 spinlock_t completion_lock;
269 bool poll_multi_file;
270 /*
271 * ->poll_list is protected by the ctx->uring_lock for
272 * io_uring instances that don't use IORING_SETUP_SQPOLL.
273 * For SQPOLL, only the single threaded io_sq_thread() will
274 * manipulate the list, hence no extra locking is needed there.
275 */
276 struct list_head poll_list;
277 struct list_head cancel_list;
278 } ____cacheline_aligned_in_smp;
279
280 struct async_list pending_async[2];
281
282 #if defined(CONFIG_UNIX)
283 struct socket *ring_sock;
284 #endif
285 };
286
287 struct sqe_submit {
288 const struct io_uring_sqe *sqe;
289 unsigned short index;
290 bool has_user;
291 bool needs_lock;
292 bool needs_fixed_file;
293 };
294
295 /*
296 * First field must be the file pointer in all the
297 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
298 */
299 struct io_poll_iocb {
300 struct file *file;
301 struct wait_queue_head *head;
302 __poll_t events;
303 bool done;
304 bool canceled;
305 struct wait_queue_entry wait;
306 };
307
308 /*
309 * NOTE! Each of the iocb union members has the file pointer
310 * as the first entry in their struct definition. So you can
311 * access the file pointer through any of the sub-structs,
312 * or directly as just 'ki_filp' in this struct.
313 */
314 struct io_kiocb {
315 union {
316 struct file *file;
317 struct kiocb rw;
318 struct io_poll_iocb poll;
319 };
320
321 struct sqe_submit submit;
322
323 struct io_ring_ctx *ctx;
324 struct list_head list;
325 unsigned int flags;
326 refcount_t refs;
327 #define REQ_F_NOWAIT 1 /* must not punt to workers */
328 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
329 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
330 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
331 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
332 #define REQ_F_IO_DRAINED 32 /* drain done */
333 u64 user_data;
334 u32 error; /* iopoll result from callback */
335 u32 sequence;
336
337 struct work_struct work;
338 };
339
340 #define IO_PLUG_THRESHOLD 2
341 #define IO_IOPOLL_BATCH 8
342
343 struct io_submit_state {
344 struct blk_plug plug;
345
346 /*
347 * io_kiocb alloc cache
348 */
349 void *reqs[IO_IOPOLL_BATCH];
350 unsigned int free_reqs;
351 unsigned int cur_req;
352
353 /*
354 * File reference cache
355 */
356 struct file *file;
357 unsigned int fd;
358 unsigned int has_refs;
359 unsigned int used_refs;
360 unsigned int ios_left;
361 };
362
363 static void io_sq_wq_submit_work(struct work_struct *work);
364
365 static struct kmem_cache *req_cachep;
366
367 static const struct file_operations io_uring_fops;
368
369 struct sock *io_uring_get_socket(struct file *file)
370 {
371 #if defined(CONFIG_UNIX)
372 if (file->f_op == &io_uring_fops) {
373 struct io_ring_ctx *ctx = file->private_data;
374
375 return ctx->ring_sock->sk;
376 }
377 #endif
378 return NULL;
379 }
380 EXPORT_SYMBOL(io_uring_get_socket);
381
382 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
383 {
384 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
385
386 complete(&ctx->ctx_done);
387 }
388
389 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
390 {
391 struct io_ring_ctx *ctx;
392 int i;
393
394 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
395 if (!ctx)
396 return NULL;
397
398 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
399 kfree(ctx);
400 return NULL;
401 }
402
403 ctx->flags = p->flags;
404 init_waitqueue_head(&ctx->cq_wait);
405 init_completion(&ctx->ctx_done);
406 mutex_init(&ctx->uring_lock);
407 init_waitqueue_head(&ctx->wait);
408 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
409 spin_lock_init(&ctx->pending_async[i].lock);
410 INIT_LIST_HEAD(&ctx->pending_async[i].list);
411 atomic_set(&ctx->pending_async[i].cnt, 0);
412 }
413 spin_lock_init(&ctx->completion_lock);
414 INIT_LIST_HEAD(&ctx->poll_list);
415 INIT_LIST_HEAD(&ctx->cancel_list);
416 INIT_LIST_HEAD(&ctx->defer_list);
417 return ctx;
418 }
419
420 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
421 struct io_kiocb *req)
422 {
423 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
424 return false;
425
426 return req->sequence > ctx->cached_cq_tail + ctx->sq_ring->dropped;
427 }
428
429 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
430 {
431 struct io_kiocb *req;
432
433 if (list_empty(&ctx->defer_list))
434 return NULL;
435
436 req = list_first_entry(&ctx->defer_list, struct io_kiocb, list);
437 if (!io_sequence_defer(ctx, req)) {
438 list_del_init(&req->list);
439 return req;
440 }
441
442 return NULL;
443 }
444
445 static void __io_commit_cqring(struct io_ring_ctx *ctx)
446 {
447 struct io_cq_ring *ring = ctx->cq_ring;
448
449 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
450 /* order cqe stores with ring update */
451 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
452
453 if (wq_has_sleeper(&ctx->cq_wait)) {
454 wake_up_interruptible(&ctx->cq_wait);
455 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
456 }
457 }
458 }
459
460 static void io_commit_cqring(struct io_ring_ctx *ctx)
461 {
462 struct io_kiocb *req;
463
464 __io_commit_cqring(ctx);
465
466 while ((req = io_get_deferred_req(ctx)) != NULL) {
467 req->flags |= REQ_F_IO_DRAINED;
468 queue_work(ctx->sqo_wq, &req->work);
469 }
470 }
471
472 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
473 {
474 struct io_cq_ring *ring = ctx->cq_ring;
475 unsigned tail;
476
477 tail = ctx->cached_cq_tail;
478 /*
479 * writes to the cq entry need to come after reading head; the
480 * control dependency is enough as we're using WRITE_ONCE to
481 * fill the cq entry
482 */
483 if (tail - READ_ONCE(ring->r.head) == ring->ring_entries)
484 return NULL;
485
486 ctx->cached_cq_tail++;
487 return &ring->cqes[tail & ctx->cq_mask];
488 }
489
490 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
491 long res)
492 {
493 struct io_uring_cqe *cqe;
494
495 /*
496 * If we can't get a cq entry, userspace overflowed the
497 * submission (by quite a lot). Increment the overflow count in
498 * the ring.
499 */
500 cqe = io_get_cqring(ctx);
501 if (cqe) {
502 WRITE_ONCE(cqe->user_data, ki_user_data);
503 WRITE_ONCE(cqe->res, res);
504 WRITE_ONCE(cqe->flags, 0);
505 } else {
506 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
507
508 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
509 }
510 }
511
512 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
513 {
514 if (waitqueue_active(&ctx->wait))
515 wake_up(&ctx->wait);
516 if (waitqueue_active(&ctx->sqo_wait))
517 wake_up(&ctx->sqo_wait);
518 if (ctx->cq_ev_fd)
519 eventfd_signal(ctx->cq_ev_fd, 1);
520 }
521
522 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
523 long res)
524 {
525 unsigned long flags;
526
527 spin_lock_irqsave(&ctx->completion_lock, flags);
528 io_cqring_fill_event(ctx, user_data, res);
529 io_commit_cqring(ctx);
530 spin_unlock_irqrestore(&ctx->completion_lock, flags);
531
532 io_cqring_ev_posted(ctx);
533 }
534
535 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
536 {
537 percpu_ref_put_many(&ctx->refs, refs);
538
539 if (waitqueue_active(&ctx->wait))
540 wake_up(&ctx->wait);
541 }
542
543 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
544 struct io_submit_state *state)
545 {
546 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
547 struct io_kiocb *req;
548
549 if (!percpu_ref_tryget(&ctx->refs))
550 return NULL;
551
552 if (!state) {
553 req = kmem_cache_alloc(req_cachep, gfp);
554 if (unlikely(!req))
555 goto out;
556 } else if (!state->free_reqs) {
557 size_t sz;
558 int ret;
559
560 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
561 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
562
563 /*
564 * Bulk alloc is all-or-nothing. If we fail to get a batch,
565 * retry single alloc to be on the safe side.
566 */
567 if (unlikely(ret <= 0)) {
568 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
569 if (!state->reqs[0])
570 goto out;
571 ret = 1;
572 }
573 state->free_reqs = ret - 1;
574 state->cur_req = 1;
575 req = state->reqs[0];
576 } else {
577 req = state->reqs[state->cur_req];
578 state->free_reqs--;
579 state->cur_req++;
580 }
581
582 req->ctx = ctx;
583 req->flags = 0;
584 /* one is dropped after submission, the other at completion */
585 refcount_set(&req->refs, 2);
586 return req;
587 out:
588 io_ring_drop_ctx_refs(ctx, 1);
589 return NULL;
590 }
591
592 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
593 {
594 if (*nr) {
595 kmem_cache_free_bulk(req_cachep, *nr, reqs);
596 io_ring_drop_ctx_refs(ctx, *nr);
597 *nr = 0;
598 }
599 }
600
601 static void io_free_req(struct io_kiocb *req)
602 {
603 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
604 fput(req->file);
605 io_ring_drop_ctx_refs(req->ctx, 1);
606 kmem_cache_free(req_cachep, req);
607 }
608
609 static void io_put_req(struct io_kiocb *req)
610 {
611 if (refcount_dec_and_test(&req->refs))
612 io_free_req(req);
613 }
614
615 /*
616 * Find and free completed poll iocbs
617 */
618 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
619 struct list_head *done)
620 {
621 void *reqs[IO_IOPOLL_BATCH];
622 struct io_kiocb *req;
623 int to_free;
624
625 to_free = 0;
626 while (!list_empty(done)) {
627 req = list_first_entry(done, struct io_kiocb, list);
628 list_del(&req->list);
629
630 io_cqring_fill_event(ctx, req->user_data, req->error);
631 (*nr_events)++;
632
633 if (refcount_dec_and_test(&req->refs)) {
634 /* If we're not using fixed files, we have to pair the
635 * completion part with the file put. Use regular
636 * completions for those, only batch free for fixed
637 * file.
638 */
639 if (req->flags & REQ_F_FIXED_FILE) {
640 reqs[to_free++] = req;
641 if (to_free == ARRAY_SIZE(reqs))
642 io_free_req_many(ctx, reqs, &to_free);
643 } else {
644 io_free_req(req);
645 }
646 }
647 }
648
649 io_commit_cqring(ctx);
650 io_free_req_many(ctx, reqs, &to_free);
651 }
652
653 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
654 long min)
655 {
656 struct io_kiocb *req, *tmp;
657 LIST_HEAD(done);
658 bool spin;
659 int ret;
660
661 /*
662 * Only spin for completions if we don't have multiple devices hanging
663 * off our complete list, and we're under the requested amount.
664 */
665 spin = !ctx->poll_multi_file && *nr_events < min;
666
667 ret = 0;
668 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
669 struct kiocb *kiocb = &req->rw;
670
671 /*
672 * Move completed entries to our local list. If we find a
673 * request that requires polling, break out and complete
674 * the done list first, if we have entries there.
675 */
676 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
677 list_move_tail(&req->list, &done);
678 continue;
679 }
680 if (!list_empty(&done))
681 break;
682
683 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
684 if (ret < 0)
685 break;
686
687 if (ret && spin)
688 spin = false;
689 ret = 0;
690 }
691
692 if (!list_empty(&done))
693 io_iopoll_complete(ctx, nr_events, &done);
694
695 return ret;
696 }
697
698 /*
699 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
700 * non-spinning poll check - we'll still enter the driver poll loop, but only
701 * as a non-spinning completion check.
702 */
703 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
704 long min)
705 {
706 while (!list_empty(&ctx->poll_list)) {
707 int ret;
708
709 ret = io_do_iopoll(ctx, nr_events, min);
710 if (ret < 0)
711 return ret;
712 if (!min || *nr_events >= min)
713 return 0;
714 }
715
716 return 1;
717 }
718
719 /*
720 * We can't just wait for polled events to come to us, we have to actively
721 * find and complete them.
722 */
723 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
724 {
725 if (!(ctx->flags & IORING_SETUP_IOPOLL))
726 return;
727
728 mutex_lock(&ctx->uring_lock);
729 while (!list_empty(&ctx->poll_list)) {
730 unsigned int nr_events = 0;
731
732 io_iopoll_getevents(ctx, &nr_events, 1);
733 }
734 mutex_unlock(&ctx->uring_lock);
735 }
736
737 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
738 long min)
739 {
740 int ret = 0;
741
742 do {
743 int tmin = 0;
744
745 if (*nr_events < min)
746 tmin = min - *nr_events;
747
748 ret = io_iopoll_getevents(ctx, nr_events, tmin);
749 if (ret <= 0)
750 break;
751 ret = 0;
752 } while (min && !*nr_events && !need_resched());
753
754 return ret;
755 }
756
757 static void kiocb_end_write(struct kiocb *kiocb)
758 {
759 if (kiocb->ki_flags & IOCB_WRITE) {
760 struct inode *inode = file_inode(kiocb->ki_filp);
761
762 /*
763 * Tell lockdep we inherited freeze protection from submission
764 * thread.
765 */
766 if (S_ISREG(inode->i_mode))
767 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
768 file_end_write(kiocb->ki_filp);
769 }
770 }
771
772 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
773 {
774 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
775
776 kiocb_end_write(kiocb);
777
778 io_cqring_add_event(req->ctx, req->user_data, res);
779 io_put_req(req);
780 }
781
782 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
783 {
784 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
785
786 kiocb_end_write(kiocb);
787
788 req->error = res;
789 if (res != -EAGAIN)
790 req->flags |= REQ_F_IOPOLL_COMPLETED;
791 }
792
793 /*
794 * After the iocb has been issued, it's safe to be found on the poll list.
795 * Adding the kiocb to the list AFTER submission ensures that we don't
796 * find it from a io_iopoll_getevents() thread before the issuer is done
797 * accessing the kiocb cookie.
798 */
799 static void io_iopoll_req_issued(struct io_kiocb *req)
800 {
801 struct io_ring_ctx *ctx = req->ctx;
802
803 /*
804 * Track whether we have multiple files in our lists. This will impact
805 * how we do polling eventually, not spinning if we're on potentially
806 * different devices.
807 */
808 if (list_empty(&ctx->poll_list)) {
809 ctx->poll_multi_file = false;
810 } else if (!ctx->poll_multi_file) {
811 struct io_kiocb *list_req;
812
813 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
814 list);
815 if (list_req->rw.ki_filp != req->rw.ki_filp)
816 ctx->poll_multi_file = true;
817 }
818
819 /*
820 * For fast devices, IO may have already completed. If it has, add
821 * it to the front so we find it first.
822 */
823 if (req->flags & REQ_F_IOPOLL_COMPLETED)
824 list_add(&req->list, &ctx->poll_list);
825 else
826 list_add_tail(&req->list, &ctx->poll_list);
827 }
828
829 static void io_file_put(struct io_submit_state *state)
830 {
831 if (state->file) {
832 int diff = state->has_refs - state->used_refs;
833
834 if (diff)
835 fput_many(state->file, diff);
836 state->file = NULL;
837 }
838 }
839
840 /*
841 * Get as many references to a file as we have IOs left in this submission,
842 * assuming most submissions are for one file, or at least that each file
843 * has more than one submission.
844 */
845 static struct file *io_file_get(struct io_submit_state *state, int fd)
846 {
847 if (!state)
848 return fget(fd);
849
850 if (state->file) {
851 if (state->fd == fd) {
852 state->used_refs++;
853 state->ios_left--;
854 return state->file;
855 }
856 io_file_put(state);
857 }
858 state->file = fget_many(fd, state->ios_left);
859 if (!state->file)
860 return NULL;
861
862 state->fd = fd;
863 state->has_refs = state->ios_left;
864 state->used_refs = 1;
865 state->ios_left--;
866 return state->file;
867 }
868
869 /*
870 * If we tracked the file through the SCM inflight mechanism, we could support
871 * any file. For now, just ensure that anything potentially problematic is done
872 * inline.
873 */
874 static bool io_file_supports_async(struct file *file)
875 {
876 umode_t mode = file_inode(file)->i_mode;
877
878 if (S_ISBLK(mode) || S_ISCHR(mode))
879 return true;
880 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
881 return true;
882
883 return false;
884 }
885
886 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
887 bool force_nonblock)
888 {
889 const struct io_uring_sqe *sqe = s->sqe;
890 struct io_ring_ctx *ctx = req->ctx;
891 struct kiocb *kiocb = &req->rw;
892 unsigned ioprio;
893 int ret;
894
895 if (!req->file)
896 return -EBADF;
897
898 if (force_nonblock && !io_file_supports_async(req->file))
899 force_nonblock = false;
900
901 kiocb->ki_pos = READ_ONCE(sqe->off);
902 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
903 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
904
905 ioprio = READ_ONCE(sqe->ioprio);
906 if (ioprio) {
907 ret = ioprio_check_cap(ioprio);
908 if (ret)
909 return ret;
910
911 kiocb->ki_ioprio = ioprio;
912 } else
913 kiocb->ki_ioprio = get_current_ioprio();
914
915 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
916 if (unlikely(ret))
917 return ret;
918
919 /* don't allow async punt if RWF_NOWAIT was requested */
920 if (kiocb->ki_flags & IOCB_NOWAIT)
921 req->flags |= REQ_F_NOWAIT;
922
923 if (force_nonblock)
924 kiocb->ki_flags |= IOCB_NOWAIT;
925
926 if (ctx->flags & IORING_SETUP_IOPOLL) {
927 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
928 !kiocb->ki_filp->f_op->iopoll)
929 return -EOPNOTSUPP;
930
931 req->error = 0;
932 kiocb->ki_flags |= IOCB_HIPRI;
933 kiocb->ki_complete = io_complete_rw_iopoll;
934 } else {
935 if (kiocb->ki_flags & IOCB_HIPRI)
936 return -EINVAL;
937 kiocb->ki_complete = io_complete_rw;
938 }
939 return 0;
940 }
941
942 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
943 {
944 switch (ret) {
945 case -EIOCBQUEUED:
946 break;
947 case -ERESTARTSYS:
948 case -ERESTARTNOINTR:
949 case -ERESTARTNOHAND:
950 case -ERESTART_RESTARTBLOCK:
951 /*
952 * We can't just restart the syscall, since previously
953 * submitted sqes may already be in progress. Just fail this
954 * IO with EINTR.
955 */
956 ret = -EINTR;
957 /* fall through */
958 default:
959 kiocb->ki_complete(kiocb, ret, 0);
960 }
961 }
962
963 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
964 const struct io_uring_sqe *sqe,
965 struct iov_iter *iter)
966 {
967 size_t len = READ_ONCE(sqe->len);
968 struct io_mapped_ubuf *imu;
969 unsigned index, buf_index;
970 size_t offset;
971 u64 buf_addr;
972
973 /* attempt to use fixed buffers without having provided iovecs */
974 if (unlikely(!ctx->user_bufs))
975 return -EFAULT;
976
977 buf_index = READ_ONCE(sqe->buf_index);
978 if (unlikely(buf_index >= ctx->nr_user_bufs))
979 return -EFAULT;
980
981 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
982 imu = &ctx->user_bufs[index];
983 buf_addr = READ_ONCE(sqe->addr);
984
985 /* overflow */
986 if (buf_addr + len < buf_addr)
987 return -EFAULT;
988 /* not inside the mapped region */
989 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
990 return -EFAULT;
991
992 /*
993 * May not be a start of buffer, set size appropriately
994 * and advance us to the beginning.
995 */
996 offset = buf_addr - imu->ubuf;
997 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
998 if (offset)
999 iov_iter_advance(iter, offset);
1000
1001 /* don't drop a reference to these pages */
1002 iter->type |= ITER_BVEC_FLAG_NO_REF;
1003 return 0;
1004 }
1005
1006 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
1007 const struct sqe_submit *s, struct iovec **iovec,
1008 struct iov_iter *iter)
1009 {
1010 const struct io_uring_sqe *sqe = s->sqe;
1011 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1012 size_t sqe_len = READ_ONCE(sqe->len);
1013 u8 opcode;
1014
1015 /*
1016 * We're reading ->opcode for the second time, but the first read
1017 * doesn't care whether it's _FIXED or not, so it doesn't matter
1018 * whether ->opcode changes concurrently. The first read does care
1019 * about whether it is a READ or a WRITE, so we don't trust this read
1020 * for that purpose and instead let the caller pass in the read/write
1021 * flag.
1022 */
1023 opcode = READ_ONCE(sqe->opcode);
1024 if (opcode == IORING_OP_READ_FIXED ||
1025 opcode == IORING_OP_WRITE_FIXED) {
1026 int ret = io_import_fixed(ctx, rw, sqe, iter);
1027 *iovec = NULL;
1028 return ret;
1029 }
1030
1031 if (!s->has_user)
1032 return -EFAULT;
1033
1034 #ifdef CONFIG_COMPAT
1035 if (ctx->compat)
1036 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1037 iovec, iter);
1038 #endif
1039
1040 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1041 }
1042
1043 /*
1044 * Make a note of the last file/offset/direction we punted to async
1045 * context. We'll use this information to see if we can piggy back a
1046 * sequential request onto the previous one, if it's still hasn't been
1047 * completed by the async worker.
1048 */
1049 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1050 {
1051 struct async_list *async_list = &req->ctx->pending_async[rw];
1052 struct kiocb *kiocb = &req->rw;
1053 struct file *filp = kiocb->ki_filp;
1054 off_t io_end = kiocb->ki_pos + len;
1055
1056 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
1057 unsigned long max_pages;
1058
1059 /* Use 8x RA size as a decent limiter for both reads/writes */
1060 max_pages = filp->f_ra.ra_pages;
1061 if (!max_pages)
1062 max_pages = VM_READAHEAD_PAGES;
1063 max_pages *= 8;
1064
1065 /* If max pages are exceeded, reset the state */
1066 len >>= PAGE_SHIFT;
1067 if (async_list->io_pages + len <= max_pages) {
1068 req->flags |= REQ_F_SEQ_PREV;
1069 async_list->io_pages += len;
1070 } else {
1071 io_end = 0;
1072 async_list->io_pages = 0;
1073 }
1074 }
1075
1076 /* New file? Reset state. */
1077 if (async_list->file != filp) {
1078 async_list->io_pages = 0;
1079 async_list->file = filp;
1080 }
1081 async_list->io_end = io_end;
1082 }
1083
1084 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1085 bool force_nonblock)
1086 {
1087 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1088 struct kiocb *kiocb = &req->rw;
1089 struct iov_iter iter;
1090 struct file *file;
1091 size_t iov_count;
1092 int ret;
1093
1094 ret = io_prep_rw(req, s, force_nonblock);
1095 if (ret)
1096 return ret;
1097 file = kiocb->ki_filp;
1098
1099 if (unlikely(!(file->f_mode & FMODE_READ)))
1100 return -EBADF;
1101 if (unlikely(!file->f_op->read_iter))
1102 return -EINVAL;
1103
1104 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1105 if (ret)
1106 return ret;
1107
1108 iov_count = iov_iter_count(&iter);
1109 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1110 if (!ret) {
1111 ssize_t ret2;
1112
1113 /* Catch -EAGAIN return for forced non-blocking submission */
1114 ret2 = call_read_iter(file, kiocb, &iter);
1115 if (!force_nonblock || ret2 != -EAGAIN) {
1116 io_rw_done(kiocb, ret2);
1117 } else {
1118 /*
1119 * If ->needs_lock is true, we're already in async
1120 * context.
1121 */
1122 if (!s->needs_lock)
1123 io_async_list_note(READ, req, iov_count);
1124 ret = -EAGAIN;
1125 }
1126 }
1127 kfree(iovec);
1128 return ret;
1129 }
1130
1131 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1132 bool force_nonblock)
1133 {
1134 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1135 struct kiocb *kiocb = &req->rw;
1136 struct iov_iter iter;
1137 struct file *file;
1138 size_t iov_count;
1139 int ret;
1140
1141 ret = io_prep_rw(req, s, force_nonblock);
1142 if (ret)
1143 return ret;
1144
1145 file = kiocb->ki_filp;
1146 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1147 return -EBADF;
1148 if (unlikely(!file->f_op->write_iter))
1149 return -EINVAL;
1150
1151 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1152 if (ret)
1153 return ret;
1154
1155 iov_count = iov_iter_count(&iter);
1156
1157 ret = -EAGAIN;
1158 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1159 /* If ->needs_lock is true, we're already in async context. */
1160 if (!s->needs_lock)
1161 io_async_list_note(WRITE, req, iov_count);
1162 goto out_free;
1163 }
1164
1165 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1166 if (!ret) {
1167 ssize_t ret2;
1168
1169 /*
1170 * Open-code file_start_write here to grab freeze protection,
1171 * which will be released by another thread in
1172 * io_complete_rw(). Fool lockdep by telling it the lock got
1173 * released so that it doesn't complain about the held lock when
1174 * we return to userspace.
1175 */
1176 if (S_ISREG(file_inode(file)->i_mode)) {
1177 __sb_start_write(file_inode(file)->i_sb,
1178 SB_FREEZE_WRITE, true);
1179 __sb_writers_release(file_inode(file)->i_sb,
1180 SB_FREEZE_WRITE);
1181 }
1182 kiocb->ki_flags |= IOCB_WRITE;
1183
1184 ret2 = call_write_iter(file, kiocb, &iter);
1185 if (!force_nonblock || ret2 != -EAGAIN) {
1186 io_rw_done(kiocb, ret2);
1187 } else {
1188 /*
1189 * If ->needs_lock is true, we're already in async
1190 * context.
1191 */
1192 if (!s->needs_lock)
1193 io_async_list_note(WRITE, req, iov_count);
1194 ret = -EAGAIN;
1195 }
1196 }
1197 out_free:
1198 kfree(iovec);
1199 return ret;
1200 }
1201
1202 /*
1203 * IORING_OP_NOP just posts a completion event, nothing else.
1204 */
1205 static int io_nop(struct io_kiocb *req, u64 user_data)
1206 {
1207 struct io_ring_ctx *ctx = req->ctx;
1208 long err = 0;
1209
1210 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1211 return -EINVAL;
1212
1213 io_cqring_add_event(ctx, user_data, err);
1214 io_put_req(req);
1215 return 0;
1216 }
1217
1218 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1219 {
1220 struct io_ring_ctx *ctx = req->ctx;
1221
1222 if (!req->file)
1223 return -EBADF;
1224
1225 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1226 return -EINVAL;
1227 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1228 return -EINVAL;
1229
1230 return 0;
1231 }
1232
1233 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1234 bool force_nonblock)
1235 {
1236 loff_t sqe_off = READ_ONCE(sqe->off);
1237 loff_t sqe_len = READ_ONCE(sqe->len);
1238 loff_t end = sqe_off + sqe_len;
1239 unsigned fsync_flags;
1240 int ret;
1241
1242 fsync_flags = READ_ONCE(sqe->fsync_flags);
1243 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1244 return -EINVAL;
1245
1246 ret = io_prep_fsync(req, sqe);
1247 if (ret)
1248 return ret;
1249
1250 /* fsync always requires a blocking context */
1251 if (force_nonblock)
1252 return -EAGAIN;
1253
1254 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1255 end > 0 ? end : LLONG_MAX,
1256 fsync_flags & IORING_FSYNC_DATASYNC);
1257
1258 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1259 io_put_req(req);
1260 return 0;
1261 }
1262
1263 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1264 {
1265 struct io_ring_ctx *ctx = req->ctx;
1266 int ret = 0;
1267
1268 if (!req->file)
1269 return -EBADF;
1270
1271 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1272 return -EINVAL;
1273 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1274 return -EINVAL;
1275
1276 return ret;
1277 }
1278
1279 static int io_sync_file_range(struct io_kiocb *req,
1280 const struct io_uring_sqe *sqe,
1281 bool force_nonblock)
1282 {
1283 loff_t sqe_off;
1284 loff_t sqe_len;
1285 unsigned flags;
1286 int ret;
1287
1288 ret = io_prep_sfr(req, sqe);
1289 if (ret)
1290 return ret;
1291
1292 /* sync_file_range always requires a blocking context */
1293 if (force_nonblock)
1294 return -EAGAIN;
1295
1296 sqe_off = READ_ONCE(sqe->off);
1297 sqe_len = READ_ONCE(sqe->len);
1298 flags = READ_ONCE(sqe->sync_range_flags);
1299
1300 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1301
1302 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1303 io_put_req(req);
1304 return 0;
1305 }
1306
1307 static void io_poll_remove_one(struct io_kiocb *req)
1308 {
1309 struct io_poll_iocb *poll = &req->poll;
1310
1311 spin_lock(&poll->head->lock);
1312 WRITE_ONCE(poll->canceled, true);
1313 if (!list_empty(&poll->wait.entry)) {
1314 list_del_init(&poll->wait.entry);
1315 queue_work(req->ctx->sqo_wq, &req->work);
1316 }
1317 spin_unlock(&poll->head->lock);
1318
1319 list_del_init(&req->list);
1320 }
1321
1322 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1323 {
1324 struct io_kiocb *req;
1325
1326 spin_lock_irq(&ctx->completion_lock);
1327 while (!list_empty(&ctx->cancel_list)) {
1328 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1329 io_poll_remove_one(req);
1330 }
1331 spin_unlock_irq(&ctx->completion_lock);
1332 }
1333
1334 /*
1335 * Find a running poll command that matches one specified in sqe->addr,
1336 * and remove it if found.
1337 */
1338 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1339 {
1340 struct io_ring_ctx *ctx = req->ctx;
1341 struct io_kiocb *poll_req, *next;
1342 int ret = -ENOENT;
1343
1344 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1345 return -EINVAL;
1346 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1347 sqe->poll_events)
1348 return -EINVAL;
1349
1350 spin_lock_irq(&ctx->completion_lock);
1351 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1352 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1353 io_poll_remove_one(poll_req);
1354 ret = 0;
1355 break;
1356 }
1357 }
1358 spin_unlock_irq(&ctx->completion_lock);
1359
1360 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1361 io_put_req(req);
1362 return 0;
1363 }
1364
1365 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1366 __poll_t mask)
1367 {
1368 req->poll.done = true;
1369 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1370 io_commit_cqring(ctx);
1371 }
1372
1373 static void io_poll_complete_work(struct work_struct *work)
1374 {
1375 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1376 struct io_poll_iocb *poll = &req->poll;
1377 struct poll_table_struct pt = { ._key = poll->events };
1378 struct io_ring_ctx *ctx = req->ctx;
1379 __poll_t mask = 0;
1380
1381 if (!READ_ONCE(poll->canceled))
1382 mask = vfs_poll(poll->file, &pt) & poll->events;
1383
1384 /*
1385 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1386 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1387 * synchronize with them. In the cancellation case the list_del_init
1388 * itself is not actually needed, but harmless so we keep it in to
1389 * avoid further branches in the fast path.
1390 */
1391 spin_lock_irq(&ctx->completion_lock);
1392 if (!mask && !READ_ONCE(poll->canceled)) {
1393 add_wait_queue(poll->head, &poll->wait);
1394 spin_unlock_irq(&ctx->completion_lock);
1395 return;
1396 }
1397 list_del_init(&req->list);
1398 io_poll_complete(ctx, req, mask);
1399 spin_unlock_irq(&ctx->completion_lock);
1400
1401 io_cqring_ev_posted(ctx);
1402 io_put_req(req);
1403 }
1404
1405 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1406 void *key)
1407 {
1408 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1409 wait);
1410 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1411 struct io_ring_ctx *ctx = req->ctx;
1412 __poll_t mask = key_to_poll(key);
1413 unsigned long flags;
1414
1415 /* for instances that support it check for an event match first: */
1416 if (mask && !(mask & poll->events))
1417 return 0;
1418
1419 list_del_init(&poll->wait.entry);
1420
1421 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1422 list_del(&req->list);
1423 io_poll_complete(ctx, req, mask);
1424 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1425
1426 io_cqring_ev_posted(ctx);
1427 io_put_req(req);
1428 } else {
1429 queue_work(ctx->sqo_wq, &req->work);
1430 }
1431
1432 return 1;
1433 }
1434
1435 struct io_poll_table {
1436 struct poll_table_struct pt;
1437 struct io_kiocb *req;
1438 int error;
1439 };
1440
1441 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1442 struct poll_table_struct *p)
1443 {
1444 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1445
1446 if (unlikely(pt->req->poll.head)) {
1447 pt->error = -EINVAL;
1448 return;
1449 }
1450
1451 pt->error = 0;
1452 pt->req->poll.head = head;
1453 add_wait_queue(head, &pt->req->poll.wait);
1454 }
1455
1456 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1457 {
1458 struct io_poll_iocb *poll = &req->poll;
1459 struct io_ring_ctx *ctx = req->ctx;
1460 struct io_poll_table ipt;
1461 bool cancel = false;
1462 __poll_t mask;
1463 u16 events;
1464
1465 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1466 return -EINVAL;
1467 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1468 return -EINVAL;
1469 if (!poll->file)
1470 return -EBADF;
1471
1472 INIT_WORK(&req->work, io_poll_complete_work);
1473 events = READ_ONCE(sqe->poll_events);
1474 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1475
1476 poll->head = NULL;
1477 poll->done = false;
1478 poll->canceled = false;
1479
1480 ipt.pt._qproc = io_poll_queue_proc;
1481 ipt.pt._key = poll->events;
1482 ipt.req = req;
1483 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1484
1485 /* initialized the list so that we can do list_empty checks */
1486 INIT_LIST_HEAD(&poll->wait.entry);
1487 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1488
1489 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1490
1491 spin_lock_irq(&ctx->completion_lock);
1492 if (likely(poll->head)) {
1493 spin_lock(&poll->head->lock);
1494 if (unlikely(list_empty(&poll->wait.entry))) {
1495 if (ipt.error)
1496 cancel = true;
1497 ipt.error = 0;
1498 mask = 0;
1499 }
1500 if (mask || ipt.error)
1501 list_del_init(&poll->wait.entry);
1502 else if (cancel)
1503 WRITE_ONCE(poll->canceled, true);
1504 else if (!poll->done) /* actually waiting for an event */
1505 list_add_tail(&req->list, &ctx->cancel_list);
1506 spin_unlock(&poll->head->lock);
1507 }
1508 if (mask) { /* no async, we'd stolen it */
1509 ipt.error = 0;
1510 io_poll_complete(ctx, req, mask);
1511 }
1512 spin_unlock_irq(&ctx->completion_lock);
1513
1514 if (mask) {
1515 io_cqring_ev_posted(ctx);
1516 io_put_req(req);
1517 }
1518 return ipt.error;
1519 }
1520
1521 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
1522 const struct io_uring_sqe *sqe)
1523 {
1524 struct io_uring_sqe *sqe_copy;
1525
1526 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
1527 return 0;
1528
1529 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1530 if (!sqe_copy)
1531 return -EAGAIN;
1532
1533 spin_lock_irq(&ctx->completion_lock);
1534 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
1535 spin_unlock_irq(&ctx->completion_lock);
1536 kfree(sqe_copy);
1537 return 0;
1538 }
1539
1540 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
1541 req->submit.sqe = sqe_copy;
1542
1543 INIT_WORK(&req->work, io_sq_wq_submit_work);
1544 list_add_tail(&req->list, &ctx->defer_list);
1545 spin_unlock_irq(&ctx->completion_lock);
1546 return -EIOCBQUEUED;
1547 }
1548
1549 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1550 const struct sqe_submit *s, bool force_nonblock)
1551 {
1552 int ret, opcode;
1553
1554 if (unlikely(s->index >= ctx->sq_entries))
1555 return -EINVAL;
1556 req->user_data = READ_ONCE(s->sqe->user_data);
1557
1558 opcode = READ_ONCE(s->sqe->opcode);
1559 switch (opcode) {
1560 case IORING_OP_NOP:
1561 ret = io_nop(req, req->user_data);
1562 break;
1563 case IORING_OP_READV:
1564 if (unlikely(s->sqe->buf_index))
1565 return -EINVAL;
1566 ret = io_read(req, s, force_nonblock);
1567 break;
1568 case IORING_OP_WRITEV:
1569 if (unlikely(s->sqe->buf_index))
1570 return -EINVAL;
1571 ret = io_write(req, s, force_nonblock);
1572 break;
1573 case IORING_OP_READ_FIXED:
1574 ret = io_read(req, s, force_nonblock);
1575 break;
1576 case IORING_OP_WRITE_FIXED:
1577 ret = io_write(req, s, force_nonblock);
1578 break;
1579 case IORING_OP_FSYNC:
1580 ret = io_fsync(req, s->sqe, force_nonblock);
1581 break;
1582 case IORING_OP_POLL_ADD:
1583 ret = io_poll_add(req, s->sqe);
1584 break;
1585 case IORING_OP_POLL_REMOVE:
1586 ret = io_poll_remove(req, s->sqe);
1587 break;
1588 case IORING_OP_SYNC_FILE_RANGE:
1589 ret = io_sync_file_range(req, s->sqe, force_nonblock);
1590 break;
1591 default:
1592 ret = -EINVAL;
1593 break;
1594 }
1595
1596 if (ret)
1597 return ret;
1598
1599 if (ctx->flags & IORING_SETUP_IOPOLL) {
1600 if (req->error == -EAGAIN)
1601 return -EAGAIN;
1602
1603 /* workqueue context doesn't hold uring_lock, grab it now */
1604 if (s->needs_lock)
1605 mutex_lock(&ctx->uring_lock);
1606 io_iopoll_req_issued(req);
1607 if (s->needs_lock)
1608 mutex_unlock(&ctx->uring_lock);
1609 }
1610
1611 return 0;
1612 }
1613
1614 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1615 const struct io_uring_sqe *sqe)
1616 {
1617 switch (sqe->opcode) {
1618 case IORING_OP_READV:
1619 case IORING_OP_READ_FIXED:
1620 return &ctx->pending_async[READ];
1621 case IORING_OP_WRITEV:
1622 case IORING_OP_WRITE_FIXED:
1623 return &ctx->pending_async[WRITE];
1624 default:
1625 return NULL;
1626 }
1627 }
1628
1629 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1630 {
1631 u8 opcode = READ_ONCE(sqe->opcode);
1632
1633 return !(opcode == IORING_OP_READ_FIXED ||
1634 opcode == IORING_OP_WRITE_FIXED);
1635 }
1636
1637 static void io_sq_wq_submit_work(struct work_struct *work)
1638 {
1639 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1640 struct io_ring_ctx *ctx = req->ctx;
1641 struct mm_struct *cur_mm = NULL;
1642 struct async_list *async_list;
1643 LIST_HEAD(req_list);
1644 mm_segment_t old_fs;
1645 int ret;
1646
1647 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1648 restart:
1649 do {
1650 struct sqe_submit *s = &req->submit;
1651 const struct io_uring_sqe *sqe = s->sqe;
1652
1653 /* Ensure we clear previously set non-block flag */
1654 req->rw.ki_flags &= ~IOCB_NOWAIT;
1655
1656 ret = 0;
1657 if (io_sqe_needs_user(sqe) && !cur_mm) {
1658 if (!mmget_not_zero(ctx->sqo_mm)) {
1659 ret = -EFAULT;
1660 } else {
1661 cur_mm = ctx->sqo_mm;
1662 use_mm(cur_mm);
1663 old_fs = get_fs();
1664 set_fs(USER_DS);
1665 }
1666 }
1667
1668 if (!ret) {
1669 s->has_user = cur_mm != NULL;
1670 s->needs_lock = true;
1671 do {
1672 ret = __io_submit_sqe(ctx, req, s, false);
1673 /*
1674 * We can get EAGAIN for polled IO even though
1675 * we're forcing a sync submission from here,
1676 * since we can't wait for request slots on the
1677 * block side.
1678 */
1679 if (ret != -EAGAIN)
1680 break;
1681 cond_resched();
1682 } while (1);
1683 }
1684
1685 /* drop submission reference */
1686 io_put_req(req);
1687
1688 if (ret) {
1689 io_cqring_add_event(ctx, sqe->user_data, ret);
1690 io_put_req(req);
1691 }
1692
1693 /* async context always use a copy of the sqe */
1694 kfree(sqe);
1695
1696 if (!async_list)
1697 break;
1698 if (!list_empty(&req_list)) {
1699 req = list_first_entry(&req_list, struct io_kiocb,
1700 list);
1701 list_del(&req->list);
1702 continue;
1703 }
1704 if (list_empty(&async_list->list))
1705 break;
1706
1707 req = NULL;
1708 spin_lock(&async_list->lock);
1709 if (list_empty(&async_list->list)) {
1710 spin_unlock(&async_list->lock);
1711 break;
1712 }
1713 list_splice_init(&async_list->list, &req_list);
1714 spin_unlock(&async_list->lock);
1715
1716 req = list_first_entry(&req_list, struct io_kiocb, list);
1717 list_del(&req->list);
1718 } while (req);
1719
1720 /*
1721 * Rare case of racing with a submitter. If we find the count has
1722 * dropped to zero AND we have pending work items, then restart
1723 * the processing. This is a tiny race window.
1724 */
1725 if (async_list) {
1726 ret = atomic_dec_return(&async_list->cnt);
1727 while (!ret && !list_empty(&async_list->list)) {
1728 spin_lock(&async_list->lock);
1729 atomic_inc(&async_list->cnt);
1730 list_splice_init(&async_list->list, &req_list);
1731 spin_unlock(&async_list->lock);
1732
1733 if (!list_empty(&req_list)) {
1734 req = list_first_entry(&req_list,
1735 struct io_kiocb, list);
1736 list_del(&req->list);
1737 goto restart;
1738 }
1739 ret = atomic_dec_return(&async_list->cnt);
1740 }
1741 }
1742
1743 if (cur_mm) {
1744 set_fs(old_fs);
1745 unuse_mm(cur_mm);
1746 mmput(cur_mm);
1747 }
1748 }
1749
1750 /*
1751 * See if we can piggy back onto previously submitted work, that is still
1752 * running. We currently only allow this if the new request is sequential
1753 * to the previous one we punted.
1754 */
1755 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1756 {
1757 bool ret = false;
1758
1759 if (!list)
1760 return false;
1761 if (!(req->flags & REQ_F_SEQ_PREV))
1762 return false;
1763 if (!atomic_read(&list->cnt))
1764 return false;
1765
1766 ret = true;
1767 spin_lock(&list->lock);
1768 list_add_tail(&req->list, &list->list);
1769 if (!atomic_read(&list->cnt)) {
1770 list_del_init(&req->list);
1771 ret = false;
1772 }
1773 spin_unlock(&list->lock);
1774 return ret;
1775 }
1776
1777 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
1778 {
1779 int op = READ_ONCE(sqe->opcode);
1780
1781 switch (op) {
1782 case IORING_OP_NOP:
1783 case IORING_OP_POLL_REMOVE:
1784 return false;
1785 default:
1786 return true;
1787 }
1788 }
1789
1790 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
1791 struct io_submit_state *state, struct io_kiocb *req)
1792 {
1793 unsigned flags;
1794 int fd;
1795
1796 flags = READ_ONCE(s->sqe->flags);
1797 fd = READ_ONCE(s->sqe->fd);
1798
1799 if (flags & IOSQE_IO_DRAIN) {
1800 req->flags |= REQ_F_IO_DRAIN;
1801 req->sequence = ctx->cached_sq_head - 1;
1802 }
1803
1804 if (!io_op_needs_file(s->sqe)) {
1805 req->file = NULL;
1806 return 0;
1807 }
1808
1809 if (flags & IOSQE_FIXED_FILE) {
1810 if (unlikely(!ctx->user_files ||
1811 (unsigned) fd >= ctx->nr_user_files))
1812 return -EBADF;
1813 req->file = ctx->user_files[fd];
1814 req->flags |= REQ_F_FIXED_FILE;
1815 } else {
1816 if (s->needs_fixed_file)
1817 return -EBADF;
1818 req->file = io_file_get(state, fd);
1819 if (unlikely(!req->file))
1820 return -EBADF;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1827 struct io_submit_state *state)
1828 {
1829 struct io_kiocb *req;
1830 int ret;
1831
1832 /* enforce forwards compatibility on users */
1833 if (unlikely(s->sqe->flags & ~(IOSQE_FIXED_FILE | IOSQE_IO_DRAIN)))
1834 return -EINVAL;
1835
1836 req = io_get_req(ctx, state);
1837 if (unlikely(!req))
1838 return -EAGAIN;
1839
1840 ret = io_req_set_file(ctx, s, state, req);
1841 if (unlikely(ret))
1842 goto out;
1843
1844 ret = io_req_defer(ctx, req, s->sqe);
1845 if (ret) {
1846 if (ret == -EIOCBQUEUED)
1847 ret = 0;
1848 return ret;
1849 }
1850
1851 ret = __io_submit_sqe(ctx, req, s, true);
1852 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
1853 struct io_uring_sqe *sqe_copy;
1854
1855 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1856 if (sqe_copy) {
1857 struct async_list *list;
1858
1859 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1860 s->sqe = sqe_copy;
1861
1862 memcpy(&req->submit, s, sizeof(*s));
1863 list = io_async_list_from_sqe(ctx, s->sqe);
1864 if (!io_add_to_prev_work(list, req)) {
1865 if (list)
1866 atomic_inc(&list->cnt);
1867 INIT_WORK(&req->work, io_sq_wq_submit_work);
1868 queue_work(ctx->sqo_wq, &req->work);
1869 }
1870
1871 /*
1872 * Queued up for async execution, worker will release
1873 * submit reference when the iocb is actually
1874 * submitted.
1875 */
1876 return 0;
1877 }
1878 }
1879
1880 out:
1881 /* drop submission reference */
1882 io_put_req(req);
1883
1884 /* and drop final reference, if we failed */
1885 if (ret)
1886 io_put_req(req);
1887
1888 return ret;
1889 }
1890
1891 /*
1892 * Batched submission is done, ensure local IO is flushed out.
1893 */
1894 static void io_submit_state_end(struct io_submit_state *state)
1895 {
1896 blk_finish_plug(&state->plug);
1897 io_file_put(state);
1898 if (state->free_reqs)
1899 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1900 &state->reqs[state->cur_req]);
1901 }
1902
1903 /*
1904 * Start submission side cache.
1905 */
1906 static void io_submit_state_start(struct io_submit_state *state,
1907 struct io_ring_ctx *ctx, unsigned max_ios)
1908 {
1909 blk_start_plug(&state->plug);
1910 state->free_reqs = 0;
1911 state->file = NULL;
1912 state->ios_left = max_ios;
1913 }
1914
1915 static void io_commit_sqring(struct io_ring_ctx *ctx)
1916 {
1917 struct io_sq_ring *ring = ctx->sq_ring;
1918
1919 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1920 /*
1921 * Ensure any loads from the SQEs are done at this point,
1922 * since once we write the new head, the application could
1923 * write new data to them.
1924 */
1925 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1926 }
1927 }
1928
1929 /*
1930 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1931 * that is mapped by userspace. This means that care needs to be taken to
1932 * ensure that reads are stable, as we cannot rely on userspace always
1933 * being a good citizen. If members of the sqe are validated and then later
1934 * used, it's important that those reads are done through READ_ONCE() to
1935 * prevent a re-load down the line.
1936 */
1937 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1938 {
1939 struct io_sq_ring *ring = ctx->sq_ring;
1940 unsigned head;
1941
1942 /*
1943 * The cached sq head (or cq tail) serves two purposes:
1944 *
1945 * 1) allows us to batch the cost of updating the user visible
1946 * head updates.
1947 * 2) allows the kernel side to track the head on its own, even
1948 * though the application is the one updating it.
1949 */
1950 head = ctx->cached_sq_head;
1951 /* make sure SQ entry isn't read before tail */
1952 if (head == smp_load_acquire(&ring->r.tail))
1953 return false;
1954
1955 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1956 if (head < ctx->sq_entries) {
1957 s->index = head;
1958 s->sqe = &ctx->sq_sqes[head];
1959 ctx->cached_sq_head++;
1960 return true;
1961 }
1962
1963 /* drop invalid entries */
1964 ctx->cached_sq_head++;
1965 ring->dropped++;
1966 return false;
1967 }
1968
1969 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1970 unsigned int nr, bool has_user, bool mm_fault)
1971 {
1972 struct io_submit_state state, *statep = NULL;
1973 int ret, i, submitted = 0;
1974
1975 if (nr > IO_PLUG_THRESHOLD) {
1976 io_submit_state_start(&state, ctx, nr);
1977 statep = &state;
1978 }
1979
1980 for (i = 0; i < nr; i++) {
1981 if (unlikely(mm_fault)) {
1982 ret = -EFAULT;
1983 } else {
1984 sqes[i].has_user = has_user;
1985 sqes[i].needs_lock = true;
1986 sqes[i].needs_fixed_file = true;
1987 ret = io_submit_sqe(ctx, &sqes[i], statep);
1988 }
1989 if (!ret) {
1990 submitted++;
1991 continue;
1992 }
1993
1994 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret);
1995 }
1996
1997 if (statep)
1998 io_submit_state_end(&state);
1999
2000 return submitted;
2001 }
2002
2003 static int io_sq_thread(void *data)
2004 {
2005 struct sqe_submit sqes[IO_IOPOLL_BATCH];
2006 struct io_ring_ctx *ctx = data;
2007 struct mm_struct *cur_mm = NULL;
2008 mm_segment_t old_fs;
2009 DEFINE_WAIT(wait);
2010 unsigned inflight;
2011 unsigned long timeout;
2012
2013 old_fs = get_fs();
2014 set_fs(USER_DS);
2015
2016 timeout = inflight = 0;
2017 while (!kthread_should_park()) {
2018 bool all_fixed, mm_fault = false;
2019 int i;
2020
2021 if (inflight) {
2022 unsigned nr_events = 0;
2023
2024 if (ctx->flags & IORING_SETUP_IOPOLL) {
2025 /*
2026 * We disallow the app entering submit/complete
2027 * with polling, but we still need to lock the
2028 * ring to prevent racing with polled issue
2029 * that got punted to a workqueue.
2030 */
2031 mutex_lock(&ctx->uring_lock);
2032 io_iopoll_check(ctx, &nr_events, 0);
2033 mutex_unlock(&ctx->uring_lock);
2034 } else {
2035 /*
2036 * Normal IO, just pretend everything completed.
2037 * We don't have to poll completions for that.
2038 */
2039 nr_events = inflight;
2040 }
2041
2042 inflight -= nr_events;
2043 if (!inflight)
2044 timeout = jiffies + ctx->sq_thread_idle;
2045 }
2046
2047 if (!io_get_sqring(ctx, &sqes[0])) {
2048 /*
2049 * We're polling. If we're within the defined idle
2050 * period, then let us spin without work before going
2051 * to sleep.
2052 */
2053 if (inflight || !time_after(jiffies, timeout)) {
2054 cpu_relax();
2055 continue;
2056 }
2057
2058 /*
2059 * Drop cur_mm before scheduling, we can't hold it for
2060 * long periods (or over schedule()). Do this before
2061 * adding ourselves to the waitqueue, as the unuse/drop
2062 * may sleep.
2063 */
2064 if (cur_mm) {
2065 unuse_mm(cur_mm);
2066 mmput(cur_mm);
2067 cur_mm = NULL;
2068 }
2069
2070 prepare_to_wait(&ctx->sqo_wait, &wait,
2071 TASK_INTERRUPTIBLE);
2072
2073 /* Tell userspace we may need a wakeup call */
2074 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
2075 /* make sure to read SQ tail after writing flags */
2076 smp_mb();
2077
2078 if (!io_get_sqring(ctx, &sqes[0])) {
2079 if (kthread_should_park()) {
2080 finish_wait(&ctx->sqo_wait, &wait);
2081 break;
2082 }
2083 if (signal_pending(current))
2084 flush_signals(current);
2085 schedule();
2086 finish_wait(&ctx->sqo_wait, &wait);
2087
2088 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2089 continue;
2090 }
2091 finish_wait(&ctx->sqo_wait, &wait);
2092
2093 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
2094 }
2095
2096 i = 0;
2097 all_fixed = true;
2098 do {
2099 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
2100 all_fixed = false;
2101
2102 i++;
2103 if (i == ARRAY_SIZE(sqes))
2104 break;
2105 } while (io_get_sqring(ctx, &sqes[i]));
2106
2107 /* Unless all new commands are FIXED regions, grab mm */
2108 if (!all_fixed && !cur_mm) {
2109 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2110 if (!mm_fault) {
2111 use_mm(ctx->sqo_mm);
2112 cur_mm = ctx->sqo_mm;
2113 }
2114 }
2115
2116 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
2117 mm_fault);
2118
2119 /* Commit SQ ring head once we've consumed all SQEs */
2120 io_commit_sqring(ctx);
2121 }
2122
2123 set_fs(old_fs);
2124 if (cur_mm) {
2125 unuse_mm(cur_mm);
2126 mmput(cur_mm);
2127 }
2128
2129 kthread_parkme();
2130
2131 return 0;
2132 }
2133
2134 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2135 {
2136 struct io_submit_state state, *statep = NULL;
2137 int i, submit = 0;
2138
2139 if (to_submit > IO_PLUG_THRESHOLD) {
2140 io_submit_state_start(&state, ctx, to_submit);
2141 statep = &state;
2142 }
2143
2144 for (i = 0; i < to_submit; i++) {
2145 struct sqe_submit s;
2146 int ret;
2147
2148 if (!io_get_sqring(ctx, &s))
2149 break;
2150
2151 s.has_user = true;
2152 s.needs_lock = false;
2153 s.needs_fixed_file = false;
2154 submit++;
2155
2156 ret = io_submit_sqe(ctx, &s, statep);
2157 if (ret)
2158 io_cqring_add_event(ctx, s.sqe->user_data, ret);
2159 }
2160 io_commit_sqring(ctx);
2161
2162 if (statep)
2163 io_submit_state_end(statep);
2164
2165 return submit;
2166 }
2167
2168 static unsigned io_cqring_events(struct io_cq_ring *ring)
2169 {
2170 /* See comment at the top of this file */
2171 smp_rmb();
2172 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
2173 }
2174
2175 /*
2176 * Wait until events become available, if we don't already have some. The
2177 * application must reap them itself, as they reside on the shared cq ring.
2178 */
2179 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2180 const sigset_t __user *sig, size_t sigsz)
2181 {
2182 struct io_cq_ring *ring = ctx->cq_ring;
2183 sigset_t ksigmask, sigsaved;
2184 int ret;
2185
2186 if (io_cqring_events(ring) >= min_events)
2187 return 0;
2188
2189 if (sig) {
2190 #ifdef CONFIG_COMPAT
2191 if (in_compat_syscall())
2192 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2193 &ksigmask, &sigsaved, sigsz);
2194 else
2195 #endif
2196 ret = set_user_sigmask(sig, &ksigmask,
2197 &sigsaved, sigsz);
2198
2199 if (ret)
2200 return ret;
2201 }
2202
2203 ret = wait_event_interruptible(ctx->wait, io_cqring_events(ring) >= min_events);
2204 if (ret == -ERESTARTSYS)
2205 ret = -EINTR;
2206
2207 if (sig)
2208 restore_user_sigmask(sig, &sigsaved);
2209
2210 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2211 }
2212
2213 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2214 {
2215 #if defined(CONFIG_UNIX)
2216 if (ctx->ring_sock) {
2217 struct sock *sock = ctx->ring_sock->sk;
2218 struct sk_buff *skb;
2219
2220 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2221 kfree_skb(skb);
2222 }
2223 #else
2224 int i;
2225
2226 for (i = 0; i < ctx->nr_user_files; i++)
2227 fput(ctx->user_files[i]);
2228 #endif
2229 }
2230
2231 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2232 {
2233 if (!ctx->user_files)
2234 return -ENXIO;
2235
2236 __io_sqe_files_unregister(ctx);
2237 kfree(ctx->user_files);
2238 ctx->user_files = NULL;
2239 ctx->nr_user_files = 0;
2240 return 0;
2241 }
2242
2243 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2244 {
2245 if (ctx->sqo_thread) {
2246 /*
2247 * The park is a bit of a work-around, without it we get
2248 * warning spews on shutdown with SQPOLL set and affinity
2249 * set to a single CPU.
2250 */
2251 kthread_park(ctx->sqo_thread);
2252 kthread_stop(ctx->sqo_thread);
2253 ctx->sqo_thread = NULL;
2254 }
2255 }
2256
2257 static void io_finish_async(struct io_ring_ctx *ctx)
2258 {
2259 io_sq_thread_stop(ctx);
2260
2261 if (ctx->sqo_wq) {
2262 destroy_workqueue(ctx->sqo_wq);
2263 ctx->sqo_wq = NULL;
2264 }
2265 }
2266
2267 #if defined(CONFIG_UNIX)
2268 static void io_destruct_skb(struct sk_buff *skb)
2269 {
2270 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2271
2272 io_finish_async(ctx);
2273 unix_destruct_scm(skb);
2274 }
2275
2276 /*
2277 * Ensure the UNIX gc is aware of our file set, so we are certain that
2278 * the io_uring can be safely unregistered on process exit, even if we have
2279 * loops in the file referencing.
2280 */
2281 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2282 {
2283 struct sock *sk = ctx->ring_sock->sk;
2284 struct scm_fp_list *fpl;
2285 struct sk_buff *skb;
2286 int i;
2287
2288 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2289 unsigned long inflight = ctx->user->unix_inflight + nr;
2290
2291 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2292 return -EMFILE;
2293 }
2294
2295 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2296 if (!fpl)
2297 return -ENOMEM;
2298
2299 skb = alloc_skb(0, GFP_KERNEL);
2300 if (!skb) {
2301 kfree(fpl);
2302 return -ENOMEM;
2303 }
2304
2305 skb->sk = sk;
2306 skb->destructor = io_destruct_skb;
2307
2308 fpl->user = get_uid(ctx->user);
2309 for (i = 0; i < nr; i++) {
2310 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2311 unix_inflight(fpl->user, fpl->fp[i]);
2312 }
2313
2314 fpl->max = fpl->count = nr;
2315 UNIXCB(skb).fp = fpl;
2316 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2317 skb_queue_head(&sk->sk_receive_queue, skb);
2318
2319 for (i = 0; i < nr; i++)
2320 fput(fpl->fp[i]);
2321
2322 return 0;
2323 }
2324
2325 /*
2326 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2327 * causes regular reference counting to break down. We rely on the UNIX
2328 * garbage collection to take care of this problem for us.
2329 */
2330 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2331 {
2332 unsigned left, total;
2333 int ret = 0;
2334
2335 total = 0;
2336 left = ctx->nr_user_files;
2337 while (left) {
2338 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2339
2340 ret = __io_sqe_files_scm(ctx, this_files, total);
2341 if (ret)
2342 break;
2343 left -= this_files;
2344 total += this_files;
2345 }
2346
2347 if (!ret)
2348 return 0;
2349
2350 while (total < ctx->nr_user_files) {
2351 fput(ctx->user_files[total]);
2352 total++;
2353 }
2354
2355 return ret;
2356 }
2357 #else
2358 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2359 {
2360 return 0;
2361 }
2362 #endif
2363
2364 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2365 unsigned nr_args)
2366 {
2367 __s32 __user *fds = (__s32 __user *) arg;
2368 int fd, ret = 0;
2369 unsigned i;
2370
2371 if (ctx->user_files)
2372 return -EBUSY;
2373 if (!nr_args)
2374 return -EINVAL;
2375 if (nr_args > IORING_MAX_FIXED_FILES)
2376 return -EMFILE;
2377
2378 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2379 if (!ctx->user_files)
2380 return -ENOMEM;
2381
2382 for (i = 0; i < nr_args; i++) {
2383 ret = -EFAULT;
2384 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2385 break;
2386
2387 ctx->user_files[i] = fget(fd);
2388
2389 ret = -EBADF;
2390 if (!ctx->user_files[i])
2391 break;
2392 /*
2393 * Don't allow io_uring instances to be registered. If UNIX
2394 * isn't enabled, then this causes a reference cycle and this
2395 * instance can never get freed. If UNIX is enabled we'll
2396 * handle it just fine, but there's still no point in allowing
2397 * a ring fd as it doesn't support regular read/write anyway.
2398 */
2399 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2400 fput(ctx->user_files[i]);
2401 break;
2402 }
2403 ctx->nr_user_files++;
2404 ret = 0;
2405 }
2406
2407 if (ret) {
2408 for (i = 0; i < ctx->nr_user_files; i++)
2409 fput(ctx->user_files[i]);
2410
2411 kfree(ctx->user_files);
2412 ctx->user_files = NULL;
2413 ctx->nr_user_files = 0;
2414 return ret;
2415 }
2416
2417 ret = io_sqe_files_scm(ctx);
2418 if (ret)
2419 io_sqe_files_unregister(ctx);
2420
2421 return ret;
2422 }
2423
2424 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2425 struct io_uring_params *p)
2426 {
2427 int ret;
2428
2429 init_waitqueue_head(&ctx->sqo_wait);
2430 mmgrab(current->mm);
2431 ctx->sqo_mm = current->mm;
2432
2433 if (ctx->flags & IORING_SETUP_SQPOLL) {
2434 ret = -EPERM;
2435 if (!capable(CAP_SYS_ADMIN))
2436 goto err;
2437
2438 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2439 if (!ctx->sq_thread_idle)
2440 ctx->sq_thread_idle = HZ;
2441
2442 if (p->flags & IORING_SETUP_SQ_AFF) {
2443 int cpu = p->sq_thread_cpu;
2444
2445 ret = -EINVAL;
2446 if (cpu >= nr_cpu_ids)
2447 goto err;
2448 if (!cpu_online(cpu))
2449 goto err;
2450
2451 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2452 ctx, cpu,
2453 "io_uring-sq");
2454 } else {
2455 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2456 "io_uring-sq");
2457 }
2458 if (IS_ERR(ctx->sqo_thread)) {
2459 ret = PTR_ERR(ctx->sqo_thread);
2460 ctx->sqo_thread = NULL;
2461 goto err;
2462 }
2463 wake_up_process(ctx->sqo_thread);
2464 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2465 /* Can't have SQ_AFF without SQPOLL */
2466 ret = -EINVAL;
2467 goto err;
2468 }
2469
2470 /* Do QD, or 2 * CPUS, whatever is smallest */
2471 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2472 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2473 if (!ctx->sqo_wq) {
2474 ret = -ENOMEM;
2475 goto err;
2476 }
2477
2478 return 0;
2479 err:
2480 io_sq_thread_stop(ctx);
2481 mmdrop(ctx->sqo_mm);
2482 ctx->sqo_mm = NULL;
2483 return ret;
2484 }
2485
2486 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2487 {
2488 atomic_long_sub(nr_pages, &user->locked_vm);
2489 }
2490
2491 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2492 {
2493 unsigned long page_limit, cur_pages, new_pages;
2494
2495 /* Don't allow more pages than we can safely lock */
2496 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2497
2498 do {
2499 cur_pages = atomic_long_read(&user->locked_vm);
2500 new_pages = cur_pages + nr_pages;
2501 if (new_pages > page_limit)
2502 return -ENOMEM;
2503 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2504 new_pages) != cur_pages);
2505
2506 return 0;
2507 }
2508
2509 static void io_mem_free(void *ptr)
2510 {
2511 struct page *page;
2512
2513 if (!ptr)
2514 return;
2515
2516 page = virt_to_head_page(ptr);
2517 if (put_page_testzero(page))
2518 free_compound_page(page);
2519 }
2520
2521 static void *io_mem_alloc(size_t size)
2522 {
2523 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2524 __GFP_NORETRY;
2525
2526 return (void *) __get_free_pages(gfp_flags, get_order(size));
2527 }
2528
2529 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2530 {
2531 struct io_sq_ring *sq_ring;
2532 struct io_cq_ring *cq_ring;
2533 size_t bytes;
2534
2535 bytes = struct_size(sq_ring, array, sq_entries);
2536 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2537 bytes += struct_size(cq_ring, cqes, cq_entries);
2538
2539 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2540 }
2541
2542 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2543 {
2544 int i, j;
2545
2546 if (!ctx->user_bufs)
2547 return -ENXIO;
2548
2549 for (i = 0; i < ctx->nr_user_bufs; i++) {
2550 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2551
2552 for (j = 0; j < imu->nr_bvecs; j++)
2553 put_page(imu->bvec[j].bv_page);
2554
2555 if (ctx->account_mem)
2556 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2557 kvfree(imu->bvec);
2558 imu->nr_bvecs = 0;
2559 }
2560
2561 kfree(ctx->user_bufs);
2562 ctx->user_bufs = NULL;
2563 ctx->nr_user_bufs = 0;
2564 return 0;
2565 }
2566
2567 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2568 void __user *arg, unsigned index)
2569 {
2570 struct iovec __user *src;
2571
2572 #ifdef CONFIG_COMPAT
2573 if (ctx->compat) {
2574 struct compat_iovec __user *ciovs;
2575 struct compat_iovec ciov;
2576
2577 ciovs = (struct compat_iovec __user *) arg;
2578 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2579 return -EFAULT;
2580
2581 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2582 dst->iov_len = ciov.iov_len;
2583 return 0;
2584 }
2585 #endif
2586 src = (struct iovec __user *) arg;
2587 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2588 return -EFAULT;
2589 return 0;
2590 }
2591
2592 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2593 unsigned nr_args)
2594 {
2595 struct vm_area_struct **vmas = NULL;
2596 struct page **pages = NULL;
2597 int i, j, got_pages = 0;
2598 int ret = -EINVAL;
2599
2600 if (ctx->user_bufs)
2601 return -EBUSY;
2602 if (!nr_args || nr_args > UIO_MAXIOV)
2603 return -EINVAL;
2604
2605 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2606 GFP_KERNEL);
2607 if (!ctx->user_bufs)
2608 return -ENOMEM;
2609
2610 for (i = 0; i < nr_args; i++) {
2611 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2612 unsigned long off, start, end, ubuf;
2613 int pret, nr_pages;
2614 struct iovec iov;
2615 size_t size;
2616
2617 ret = io_copy_iov(ctx, &iov, arg, i);
2618 if (ret)
2619 goto err;
2620
2621 /*
2622 * Don't impose further limits on the size and buffer
2623 * constraints here, we'll -EINVAL later when IO is
2624 * submitted if they are wrong.
2625 */
2626 ret = -EFAULT;
2627 if (!iov.iov_base || !iov.iov_len)
2628 goto err;
2629
2630 /* arbitrary limit, but we need something */
2631 if (iov.iov_len > SZ_1G)
2632 goto err;
2633
2634 ubuf = (unsigned long) iov.iov_base;
2635 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2636 start = ubuf >> PAGE_SHIFT;
2637 nr_pages = end - start;
2638
2639 if (ctx->account_mem) {
2640 ret = io_account_mem(ctx->user, nr_pages);
2641 if (ret)
2642 goto err;
2643 }
2644
2645 ret = 0;
2646 if (!pages || nr_pages > got_pages) {
2647 kfree(vmas);
2648 kfree(pages);
2649 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
2650 GFP_KERNEL);
2651 vmas = kvmalloc_array(nr_pages,
2652 sizeof(struct vm_area_struct *),
2653 GFP_KERNEL);
2654 if (!pages || !vmas) {
2655 ret = -ENOMEM;
2656 if (ctx->account_mem)
2657 io_unaccount_mem(ctx->user, nr_pages);
2658 goto err;
2659 }
2660 got_pages = nr_pages;
2661 }
2662
2663 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
2664 GFP_KERNEL);
2665 ret = -ENOMEM;
2666 if (!imu->bvec) {
2667 if (ctx->account_mem)
2668 io_unaccount_mem(ctx->user, nr_pages);
2669 goto err;
2670 }
2671
2672 ret = 0;
2673 down_read(&current->mm->mmap_sem);
2674 pret = get_user_pages(ubuf, nr_pages,
2675 FOLL_WRITE | FOLL_LONGTERM,
2676 pages, vmas);
2677 if (pret == nr_pages) {
2678 /* don't support file backed memory */
2679 for (j = 0; j < nr_pages; j++) {
2680 struct vm_area_struct *vma = vmas[j];
2681
2682 if (vma->vm_file &&
2683 !is_file_hugepages(vma->vm_file)) {
2684 ret = -EOPNOTSUPP;
2685 break;
2686 }
2687 }
2688 } else {
2689 ret = pret < 0 ? pret : -EFAULT;
2690 }
2691 up_read(&current->mm->mmap_sem);
2692 if (ret) {
2693 /*
2694 * if we did partial map, or found file backed vmas,
2695 * release any pages we did get
2696 */
2697 if (pret > 0) {
2698 for (j = 0; j < pret; j++)
2699 put_page(pages[j]);
2700 }
2701 if (ctx->account_mem)
2702 io_unaccount_mem(ctx->user, nr_pages);
2703 kvfree(imu->bvec);
2704 goto err;
2705 }
2706
2707 off = ubuf & ~PAGE_MASK;
2708 size = iov.iov_len;
2709 for (j = 0; j < nr_pages; j++) {
2710 size_t vec_len;
2711
2712 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2713 imu->bvec[j].bv_page = pages[j];
2714 imu->bvec[j].bv_len = vec_len;
2715 imu->bvec[j].bv_offset = off;
2716 off = 0;
2717 size -= vec_len;
2718 }
2719 /* store original address for later verification */
2720 imu->ubuf = ubuf;
2721 imu->len = iov.iov_len;
2722 imu->nr_bvecs = nr_pages;
2723
2724 ctx->nr_user_bufs++;
2725 }
2726 kvfree(pages);
2727 kvfree(vmas);
2728 return 0;
2729 err:
2730 kvfree(pages);
2731 kvfree(vmas);
2732 io_sqe_buffer_unregister(ctx);
2733 return ret;
2734 }
2735
2736 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
2737 {
2738 __s32 __user *fds = arg;
2739 int fd;
2740
2741 if (ctx->cq_ev_fd)
2742 return -EBUSY;
2743
2744 if (copy_from_user(&fd, fds, sizeof(*fds)))
2745 return -EFAULT;
2746
2747 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
2748 if (IS_ERR(ctx->cq_ev_fd)) {
2749 int ret = PTR_ERR(ctx->cq_ev_fd);
2750 ctx->cq_ev_fd = NULL;
2751 return ret;
2752 }
2753
2754 return 0;
2755 }
2756
2757 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2758 {
2759 if (ctx->cq_ev_fd) {
2760 eventfd_ctx_put(ctx->cq_ev_fd);
2761 ctx->cq_ev_fd = NULL;
2762 return 0;
2763 }
2764
2765 return -ENXIO;
2766 }
2767
2768 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2769 {
2770 io_finish_async(ctx);
2771 if (ctx->sqo_mm)
2772 mmdrop(ctx->sqo_mm);
2773
2774 io_iopoll_reap_events(ctx);
2775 io_sqe_buffer_unregister(ctx);
2776 io_sqe_files_unregister(ctx);
2777 io_eventfd_unregister(ctx);
2778
2779 #if defined(CONFIG_UNIX)
2780 if (ctx->ring_sock)
2781 sock_release(ctx->ring_sock);
2782 #endif
2783
2784 io_mem_free(ctx->sq_ring);
2785 io_mem_free(ctx->sq_sqes);
2786 io_mem_free(ctx->cq_ring);
2787
2788 percpu_ref_exit(&ctx->refs);
2789 if (ctx->account_mem)
2790 io_unaccount_mem(ctx->user,
2791 ring_pages(ctx->sq_entries, ctx->cq_entries));
2792 free_uid(ctx->user);
2793 kfree(ctx);
2794 }
2795
2796 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2797 {
2798 struct io_ring_ctx *ctx = file->private_data;
2799 __poll_t mask = 0;
2800
2801 poll_wait(file, &ctx->cq_wait, wait);
2802 /*
2803 * synchronizes with barrier from wq_has_sleeper call in
2804 * io_commit_cqring
2805 */
2806 smp_rmb();
2807 if (READ_ONCE(ctx->sq_ring->r.tail) - ctx->cached_sq_head !=
2808 ctx->sq_ring->ring_entries)
2809 mask |= EPOLLOUT | EPOLLWRNORM;
2810 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2811 mask |= EPOLLIN | EPOLLRDNORM;
2812
2813 return mask;
2814 }
2815
2816 static int io_uring_fasync(int fd, struct file *file, int on)
2817 {
2818 struct io_ring_ctx *ctx = file->private_data;
2819
2820 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2821 }
2822
2823 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2824 {
2825 mutex_lock(&ctx->uring_lock);
2826 percpu_ref_kill(&ctx->refs);
2827 mutex_unlock(&ctx->uring_lock);
2828
2829 io_poll_remove_all(ctx);
2830 io_iopoll_reap_events(ctx);
2831 wait_for_completion(&ctx->ctx_done);
2832 io_ring_ctx_free(ctx);
2833 }
2834
2835 static int io_uring_release(struct inode *inode, struct file *file)
2836 {
2837 struct io_ring_ctx *ctx = file->private_data;
2838
2839 file->private_data = NULL;
2840 io_ring_ctx_wait_and_kill(ctx);
2841 return 0;
2842 }
2843
2844 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2845 {
2846 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2847 unsigned long sz = vma->vm_end - vma->vm_start;
2848 struct io_ring_ctx *ctx = file->private_data;
2849 unsigned long pfn;
2850 struct page *page;
2851 void *ptr;
2852
2853 switch (offset) {
2854 case IORING_OFF_SQ_RING:
2855 ptr = ctx->sq_ring;
2856 break;
2857 case IORING_OFF_SQES:
2858 ptr = ctx->sq_sqes;
2859 break;
2860 case IORING_OFF_CQ_RING:
2861 ptr = ctx->cq_ring;
2862 break;
2863 default:
2864 return -EINVAL;
2865 }
2866
2867 page = virt_to_head_page(ptr);
2868 if (sz > (PAGE_SIZE << compound_order(page)))
2869 return -EINVAL;
2870
2871 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2872 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2873 }
2874
2875 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2876 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2877 size_t, sigsz)
2878 {
2879 struct io_ring_ctx *ctx;
2880 long ret = -EBADF;
2881 int submitted = 0;
2882 struct fd f;
2883
2884 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2885 return -EINVAL;
2886
2887 f = fdget(fd);
2888 if (!f.file)
2889 return -EBADF;
2890
2891 ret = -EOPNOTSUPP;
2892 if (f.file->f_op != &io_uring_fops)
2893 goto out_fput;
2894
2895 ret = -ENXIO;
2896 ctx = f.file->private_data;
2897 if (!percpu_ref_tryget(&ctx->refs))
2898 goto out_fput;
2899
2900 /*
2901 * For SQ polling, the thread will do all submissions and completions.
2902 * Just return the requested submit count, and wake the thread if
2903 * we were asked to.
2904 */
2905 if (ctx->flags & IORING_SETUP_SQPOLL) {
2906 if (flags & IORING_ENTER_SQ_WAKEUP)
2907 wake_up(&ctx->sqo_wait);
2908 submitted = to_submit;
2909 goto out_ctx;
2910 }
2911
2912 ret = 0;
2913 if (to_submit) {
2914 to_submit = min(to_submit, ctx->sq_entries);
2915
2916 mutex_lock(&ctx->uring_lock);
2917 submitted = io_ring_submit(ctx, to_submit);
2918 mutex_unlock(&ctx->uring_lock);
2919 }
2920 if (flags & IORING_ENTER_GETEVENTS) {
2921 unsigned nr_events = 0;
2922
2923 min_complete = min(min_complete, ctx->cq_entries);
2924
2925 if (ctx->flags & IORING_SETUP_IOPOLL) {
2926 mutex_lock(&ctx->uring_lock);
2927 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2928 mutex_unlock(&ctx->uring_lock);
2929 } else {
2930 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2931 }
2932 }
2933
2934 out_ctx:
2935 io_ring_drop_ctx_refs(ctx, 1);
2936 out_fput:
2937 fdput(f);
2938 return submitted ? submitted : ret;
2939 }
2940
2941 static const struct file_operations io_uring_fops = {
2942 .release = io_uring_release,
2943 .mmap = io_uring_mmap,
2944 .poll = io_uring_poll,
2945 .fasync = io_uring_fasync,
2946 };
2947
2948 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2949 struct io_uring_params *p)
2950 {
2951 struct io_sq_ring *sq_ring;
2952 struct io_cq_ring *cq_ring;
2953 size_t size;
2954
2955 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2956 if (!sq_ring)
2957 return -ENOMEM;
2958
2959 ctx->sq_ring = sq_ring;
2960 sq_ring->ring_mask = p->sq_entries - 1;
2961 sq_ring->ring_entries = p->sq_entries;
2962 ctx->sq_mask = sq_ring->ring_mask;
2963 ctx->sq_entries = sq_ring->ring_entries;
2964
2965 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2966 if (size == SIZE_MAX)
2967 return -EOVERFLOW;
2968
2969 ctx->sq_sqes = io_mem_alloc(size);
2970 if (!ctx->sq_sqes)
2971 return -ENOMEM;
2972
2973 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2974 if (!cq_ring)
2975 return -ENOMEM;
2976
2977 ctx->cq_ring = cq_ring;
2978 cq_ring->ring_mask = p->cq_entries - 1;
2979 cq_ring->ring_entries = p->cq_entries;
2980 ctx->cq_mask = cq_ring->ring_mask;
2981 ctx->cq_entries = cq_ring->ring_entries;
2982 return 0;
2983 }
2984
2985 /*
2986 * Allocate an anonymous fd, this is what constitutes the application
2987 * visible backing of an io_uring instance. The application mmaps this
2988 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2989 * we have to tie this fd to a socket for file garbage collection purposes.
2990 */
2991 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2992 {
2993 struct file *file;
2994 int ret;
2995
2996 #if defined(CONFIG_UNIX)
2997 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
2998 &ctx->ring_sock);
2999 if (ret)
3000 return ret;
3001 #endif
3002
3003 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3004 if (ret < 0)
3005 goto err;
3006
3007 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3008 O_RDWR | O_CLOEXEC);
3009 if (IS_ERR(file)) {
3010 put_unused_fd(ret);
3011 ret = PTR_ERR(file);
3012 goto err;
3013 }
3014
3015 #if defined(CONFIG_UNIX)
3016 ctx->ring_sock->file = file;
3017 ctx->ring_sock->sk->sk_user_data = ctx;
3018 #endif
3019 fd_install(ret, file);
3020 return ret;
3021 err:
3022 #if defined(CONFIG_UNIX)
3023 sock_release(ctx->ring_sock);
3024 ctx->ring_sock = NULL;
3025 #endif
3026 return ret;
3027 }
3028
3029 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3030 {
3031 struct user_struct *user = NULL;
3032 struct io_ring_ctx *ctx;
3033 bool account_mem;
3034 int ret;
3035
3036 if (!entries || entries > IORING_MAX_ENTRIES)
3037 return -EINVAL;
3038
3039 /*
3040 * Use twice as many entries for the CQ ring. It's possible for the
3041 * application to drive a higher depth than the size of the SQ ring,
3042 * since the sqes are only used at submission time. This allows for
3043 * some flexibility in overcommitting a bit.
3044 */
3045 p->sq_entries = roundup_pow_of_two(entries);
3046 p->cq_entries = 2 * p->sq_entries;
3047
3048 user = get_uid(current_user());
3049 account_mem = !capable(CAP_IPC_LOCK);
3050
3051 if (account_mem) {
3052 ret = io_account_mem(user,
3053 ring_pages(p->sq_entries, p->cq_entries));
3054 if (ret) {
3055 free_uid(user);
3056 return ret;
3057 }
3058 }
3059
3060 ctx = io_ring_ctx_alloc(p);
3061 if (!ctx) {
3062 if (account_mem)
3063 io_unaccount_mem(user, ring_pages(p->sq_entries,
3064 p->cq_entries));
3065 free_uid(user);
3066 return -ENOMEM;
3067 }
3068 ctx->compat = in_compat_syscall();
3069 ctx->account_mem = account_mem;
3070 ctx->user = user;
3071
3072 ret = io_allocate_scq_urings(ctx, p);
3073 if (ret)
3074 goto err;
3075
3076 ret = io_sq_offload_start(ctx, p);
3077 if (ret)
3078 goto err;
3079
3080 ret = io_uring_get_fd(ctx);
3081 if (ret < 0)
3082 goto err;
3083
3084 memset(&p->sq_off, 0, sizeof(p->sq_off));
3085 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
3086 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
3087 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
3088 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
3089 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
3090 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
3091 p->sq_off.array = offsetof(struct io_sq_ring, array);
3092
3093 memset(&p->cq_off, 0, sizeof(p->cq_off));
3094 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
3095 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
3096 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
3097 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
3098 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
3099 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
3100 return ret;
3101 err:
3102 io_ring_ctx_wait_and_kill(ctx);
3103 return ret;
3104 }
3105
3106 /*
3107 * Sets up an aio uring context, and returns the fd. Applications asks for a
3108 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3109 * params structure passed in.
3110 */
3111 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3112 {
3113 struct io_uring_params p;
3114 long ret;
3115 int i;
3116
3117 if (copy_from_user(&p, params, sizeof(p)))
3118 return -EFAULT;
3119 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3120 if (p.resv[i])
3121 return -EINVAL;
3122 }
3123
3124 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3125 IORING_SETUP_SQ_AFF))
3126 return -EINVAL;
3127
3128 ret = io_uring_create(entries, &p);
3129 if (ret < 0)
3130 return ret;
3131
3132 if (copy_to_user(params, &p, sizeof(p)))
3133 return -EFAULT;
3134
3135 return ret;
3136 }
3137
3138 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3139 struct io_uring_params __user *, params)
3140 {
3141 return io_uring_setup(entries, params);
3142 }
3143
3144 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3145 void __user *arg, unsigned nr_args)
3146 __releases(ctx->uring_lock)
3147 __acquires(ctx->uring_lock)
3148 {
3149 int ret;
3150
3151 /*
3152 * We're inside the ring mutex, if the ref is already dying, then
3153 * someone else killed the ctx or is already going through
3154 * io_uring_register().
3155 */
3156 if (percpu_ref_is_dying(&ctx->refs))
3157 return -ENXIO;
3158
3159 percpu_ref_kill(&ctx->refs);
3160
3161 /*
3162 * Drop uring mutex before waiting for references to exit. If another
3163 * thread is currently inside io_uring_enter() it might need to grab
3164 * the uring_lock to make progress. If we hold it here across the drain
3165 * wait, then we can deadlock. It's safe to drop the mutex here, since
3166 * no new references will come in after we've killed the percpu ref.
3167 */
3168 mutex_unlock(&ctx->uring_lock);
3169 wait_for_completion(&ctx->ctx_done);
3170 mutex_lock(&ctx->uring_lock);
3171
3172 switch (opcode) {
3173 case IORING_REGISTER_BUFFERS:
3174 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3175 break;
3176 case IORING_UNREGISTER_BUFFERS:
3177 ret = -EINVAL;
3178 if (arg || nr_args)
3179 break;
3180 ret = io_sqe_buffer_unregister(ctx);
3181 break;
3182 case IORING_REGISTER_FILES:
3183 ret = io_sqe_files_register(ctx, arg, nr_args);
3184 break;
3185 case IORING_UNREGISTER_FILES:
3186 ret = -EINVAL;
3187 if (arg || nr_args)
3188 break;
3189 ret = io_sqe_files_unregister(ctx);
3190 break;
3191 case IORING_REGISTER_EVENTFD:
3192 ret = -EINVAL;
3193 if (nr_args != 1)
3194 break;
3195 ret = io_eventfd_register(ctx, arg);
3196 break;
3197 case IORING_UNREGISTER_EVENTFD:
3198 ret = -EINVAL;
3199 if (arg || nr_args)
3200 break;
3201 ret = io_eventfd_unregister(ctx);
3202 break;
3203 default:
3204 ret = -EINVAL;
3205 break;
3206 }
3207
3208 /* bring the ctx back to life */
3209 reinit_completion(&ctx->ctx_done);
3210 percpu_ref_reinit(&ctx->refs);
3211 return ret;
3212 }
3213
3214 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3215 void __user *, arg, unsigned int, nr_args)
3216 {
3217 struct io_ring_ctx *ctx;
3218 long ret = -EBADF;
3219 struct fd f;
3220
3221 f = fdget(fd);
3222 if (!f.file)
3223 return -EBADF;
3224
3225 ret = -EOPNOTSUPP;
3226 if (f.file->f_op != &io_uring_fops)
3227 goto out_fput;
3228
3229 ctx = f.file->private_data;
3230
3231 mutex_lock(&ctx->uring_lock);
3232 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3233 mutex_unlock(&ctx->uring_lock);
3234 out_fput:
3235 fdput(f);
3236 return ret;
3237 }
3238
3239 static int __init io_uring_init(void)
3240 {
3241 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3242 return 0;
3243 };
3244 __initcall(io_uring_init);