]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
Merge tag 'platform-drivers-x86-v5.11-2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned cq_last_tm_flush;
358 unsigned long cq_check_overflow;
359 struct wait_queue_head cq_wait;
360 struct fasync_struct *cq_fasync;
361 struct eventfd_ctx *cq_ev_fd;
362 } ____cacheline_aligned_in_smp;
363
364 struct {
365 struct mutex uring_lock;
366 wait_queue_head_t wait;
367 } ____cacheline_aligned_in_smp;
368
369 struct {
370 spinlock_t completion_lock;
371
372 /*
373 * ->iopoll_list is protected by the ctx->uring_lock for
374 * io_uring instances that don't use IORING_SETUP_SQPOLL.
375 * For SQPOLL, only the single threaded io_sq_thread() will
376 * manipulate the list, hence no extra locking is needed there.
377 */
378 struct list_head iopoll_list;
379 struct hlist_head *cancel_hash;
380 unsigned cancel_hash_bits;
381 bool poll_multi_file;
382
383 spinlock_t inflight_lock;
384 struct list_head inflight_list;
385 } ____cacheline_aligned_in_smp;
386
387 struct delayed_work file_put_work;
388 struct llist_head file_put_llist;
389
390 struct work_struct exit_work;
391 struct io_restriction restrictions;
392 };
393
394 /*
395 * First field must be the file pointer in all the
396 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 */
398 struct io_poll_iocb {
399 struct file *file;
400 struct wait_queue_head *head;
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_poll_remove {
408 struct file *file;
409 u64 addr;
410 };
411
412 struct io_close {
413 struct file *file;
414 struct file *put_file;
415 int fd;
416 };
417
418 struct io_timeout_data {
419 struct io_kiocb *req;
420 struct hrtimer timer;
421 struct timespec64 ts;
422 enum hrtimer_mode mode;
423 };
424
425 struct io_accept {
426 struct file *file;
427 struct sockaddr __user *addr;
428 int __user *addr_len;
429 int flags;
430 unsigned long nofile;
431 };
432
433 struct io_sync {
434 struct file *file;
435 loff_t len;
436 loff_t off;
437 int flags;
438 int mode;
439 };
440
441 struct io_cancel {
442 struct file *file;
443 u64 addr;
444 };
445
446 struct io_timeout {
447 struct file *file;
448 u32 off;
449 u32 target_seq;
450 struct list_head list;
451 /* head of the link, used by linked timeouts only */
452 struct io_kiocb *head;
453 };
454
455 struct io_timeout_rem {
456 struct file *file;
457 u64 addr;
458
459 /* timeout update */
460 struct timespec64 ts;
461 u32 flags;
462 };
463
464 struct io_rw {
465 /* NOTE: kiocb has the file as the first member, so don't do it here */
466 struct kiocb kiocb;
467 u64 addr;
468 u64 len;
469 };
470
471 struct io_connect {
472 struct file *file;
473 struct sockaddr __user *addr;
474 int addr_len;
475 };
476
477 struct io_sr_msg {
478 struct file *file;
479 union {
480 struct user_msghdr __user *umsg;
481 void __user *buf;
482 };
483 int msg_flags;
484 int bgid;
485 size_t len;
486 struct io_buffer *kbuf;
487 };
488
489 struct io_open {
490 struct file *file;
491 int dfd;
492 bool ignore_nonblock;
493 struct filename *filename;
494 struct open_how how;
495 unsigned long nofile;
496 };
497
498 struct io_files_update {
499 struct file *file;
500 u64 arg;
501 u32 nr_args;
502 u32 offset;
503 };
504
505 struct io_fadvise {
506 struct file *file;
507 u64 offset;
508 u32 len;
509 u32 advice;
510 };
511
512 struct io_madvise {
513 struct file *file;
514 u64 addr;
515 u32 len;
516 u32 advice;
517 };
518
519 struct io_epoll {
520 struct file *file;
521 int epfd;
522 int op;
523 int fd;
524 struct epoll_event event;
525 };
526
527 struct io_splice {
528 struct file *file_out;
529 struct file *file_in;
530 loff_t off_out;
531 loff_t off_in;
532 u64 len;
533 unsigned int flags;
534 };
535
536 struct io_provide_buf {
537 struct file *file;
538 __u64 addr;
539 __s32 len;
540 __u32 bgid;
541 __u16 nbufs;
542 __u16 bid;
543 };
544
545 struct io_statx {
546 struct file *file;
547 int dfd;
548 unsigned int mask;
549 unsigned int flags;
550 const char __user *filename;
551 struct statx __user *buffer;
552 };
553
554 struct io_shutdown {
555 struct file *file;
556 int how;
557 };
558
559 struct io_rename {
560 struct file *file;
561 int old_dfd;
562 int new_dfd;
563 struct filename *oldpath;
564 struct filename *newpath;
565 int flags;
566 };
567
568 struct io_unlink {
569 struct file *file;
570 int dfd;
571 int flags;
572 struct filename *filename;
573 };
574
575 struct io_completion {
576 struct file *file;
577 struct list_head list;
578 int cflags;
579 };
580
581 struct io_async_connect {
582 struct sockaddr_storage address;
583 };
584
585 struct io_async_msghdr {
586 struct iovec fast_iov[UIO_FASTIOV];
587 struct iovec *iov;
588 struct sockaddr __user *uaddr;
589 struct msghdr msg;
590 struct sockaddr_storage addr;
591 };
592
593 struct io_async_rw {
594 struct iovec fast_iov[UIO_FASTIOV];
595 const struct iovec *free_iovec;
596 struct iov_iter iter;
597 size_t bytes_done;
598 struct wait_page_queue wpq;
599 };
600
601 enum {
602 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
603 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
604 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
605 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
606 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
607 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
608
609 REQ_F_FAIL_LINK_BIT,
610 REQ_F_INFLIGHT_BIT,
611 REQ_F_CUR_POS_BIT,
612 REQ_F_NOWAIT_BIT,
613 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_ISREG_BIT,
615 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_POLLED_BIT,
617 REQ_F_BUFFER_SELECTED_BIT,
618 REQ_F_NO_FILE_TABLE_BIT,
619 REQ_F_WORK_INITIALIZED_BIT,
620 REQ_F_LTIMEOUT_ACTIVE_BIT,
621
622 /* not a real bit, just to check we're not overflowing the space */
623 __REQ_F_LAST_BIT,
624 };
625
626 enum {
627 /* ctx owns file */
628 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
629 /* drain existing IO first */
630 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 /* linked sqes */
632 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
633 /* doesn't sever on completion < 0 */
634 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 /* IOSQE_ASYNC */
636 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
637 /* IOSQE_BUFFER_SELECT */
638 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639
640 /* fail rest of links */
641 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
642 /* on inflight list */
643 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
644 /* read/write uses file position */
645 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
646 /* must not punt to workers */
647 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
648 /* has or had linked timeout */
649 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 /* regular file */
651 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 /* needs cleanup */
653 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
654 /* already went through poll handler */
655 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
656 /* buffer already selected */
657 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
658 /* doesn't need file table for this request */
659 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
660 /* io_wq_work is initialized */
661 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
662 /* linked timeout is active, i.e. prepared by link's head */
663 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
664 };
665
666 struct async_poll {
667 struct io_poll_iocb poll;
668 struct io_poll_iocb *double_poll;
669 };
670
671 /*
672 * NOTE! Each of the iocb union members has the file pointer
673 * as the first entry in their struct definition. So you can
674 * access the file pointer through any of the sub-structs,
675 * or directly as just 'ki_filp' in this struct.
676 */
677 struct io_kiocb {
678 union {
679 struct file *file;
680 struct io_rw rw;
681 struct io_poll_iocb poll;
682 struct io_poll_remove poll_remove;
683 struct io_accept accept;
684 struct io_sync sync;
685 struct io_cancel cancel;
686 struct io_timeout timeout;
687 struct io_timeout_rem timeout_rem;
688 struct io_connect connect;
689 struct io_sr_msg sr_msg;
690 struct io_open open;
691 struct io_close close;
692 struct io_files_update files_update;
693 struct io_fadvise fadvise;
694 struct io_madvise madvise;
695 struct io_epoll epoll;
696 struct io_splice splice;
697 struct io_provide_buf pbuf;
698 struct io_statx statx;
699 struct io_shutdown shutdown;
700 struct io_rename rename;
701 struct io_unlink unlink;
702 /* use only after cleaning per-op data, see io_clean_op() */
703 struct io_completion compl;
704 };
705
706 /* opcode allocated if it needs to store data for async defer */
707 void *async_data;
708 u8 opcode;
709 /* polled IO has completed */
710 u8 iopoll_completed;
711
712 u16 buf_index;
713 u32 result;
714
715 struct io_ring_ctx *ctx;
716 unsigned int flags;
717 refcount_t refs;
718 struct task_struct *task;
719 u64 user_data;
720
721 struct io_kiocb *link;
722 struct percpu_ref *fixed_file_refs;
723
724 /*
725 * 1. used with ctx->iopoll_list with reads/writes
726 * 2. to track reqs with ->files (see io_op_def::file_table)
727 */
728 struct list_head inflight_entry;
729 struct callback_head task_work;
730 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
731 struct hlist_node hash_node;
732 struct async_poll *apoll;
733 struct io_wq_work work;
734 };
735
736 struct io_defer_entry {
737 struct list_head list;
738 struct io_kiocb *req;
739 u32 seq;
740 };
741
742 #define IO_IOPOLL_BATCH 8
743
744 struct io_comp_state {
745 unsigned int nr;
746 struct list_head list;
747 struct io_ring_ctx *ctx;
748 };
749
750 struct io_submit_state {
751 struct blk_plug plug;
752
753 /*
754 * io_kiocb alloc cache
755 */
756 void *reqs[IO_IOPOLL_BATCH];
757 unsigned int free_reqs;
758
759 bool plug_started;
760
761 /*
762 * Batch completion logic
763 */
764 struct io_comp_state comp;
765
766 /*
767 * File reference cache
768 */
769 struct file *file;
770 unsigned int fd;
771 unsigned int file_refs;
772 unsigned int ios_left;
773 };
774
775 struct io_op_def {
776 /* needs req->file assigned */
777 unsigned needs_file : 1;
778 /* don't fail if file grab fails */
779 unsigned needs_file_no_error : 1;
780 /* hash wq insertion if file is a regular file */
781 unsigned hash_reg_file : 1;
782 /* unbound wq insertion if file is a non-regular file */
783 unsigned unbound_nonreg_file : 1;
784 /* opcode is not supported by this kernel */
785 unsigned not_supported : 1;
786 /* set if opcode supports polled "wait" */
787 unsigned pollin : 1;
788 unsigned pollout : 1;
789 /* op supports buffer selection */
790 unsigned buffer_select : 1;
791 /* must always have async data allocated */
792 unsigned needs_async_data : 1;
793 /* should block plug */
794 unsigned plug : 1;
795 /* size of async data needed, if any */
796 unsigned short async_size;
797 unsigned work_flags;
798 };
799
800 static const struct io_op_def io_op_defs[] = {
801 [IORING_OP_NOP] = {},
802 [IORING_OP_READV] = {
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 .needs_async_data = 1,
808 .plug = 1,
809 .async_size = sizeof(struct io_async_rw),
810 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_WRITEV] = {
813 .needs_file = 1,
814 .hash_reg_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .plug = 1,
819 .async_size = sizeof(struct io_async_rw),
820 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 IO_WQ_WORK_FSIZE,
822 },
823 [IORING_OP_FSYNC] = {
824 .needs_file = 1,
825 .work_flags = IO_WQ_WORK_BLKCG,
826 },
827 [IORING_OP_READ_FIXED] = {
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .plug = 1,
832 .async_size = sizeof(struct io_async_rw),
833 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 },
835 [IORING_OP_WRITE_FIXED] = {
836 .needs_file = 1,
837 .hash_reg_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 .plug = 1,
841 .async_size = sizeof(struct io_async_rw),
842 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 IO_WQ_WORK_MM,
844 },
845 [IORING_OP_POLL_ADD] = {
846 .needs_file = 1,
847 .unbound_nonreg_file = 1,
848 },
849 [IORING_OP_POLL_REMOVE] = {},
850 [IORING_OP_SYNC_FILE_RANGE] = {
851 .needs_file = 1,
852 .work_flags = IO_WQ_WORK_BLKCG,
853 },
854 [IORING_OP_SENDMSG] = {
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollout = 1,
858 .needs_async_data = 1,
859 .async_size = sizeof(struct io_async_msghdr),
860 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
861 },
862 [IORING_OP_RECVMSG] = {
863 .needs_file = 1,
864 .unbound_nonreg_file = 1,
865 .pollin = 1,
866 .buffer_select = 1,
867 .needs_async_data = 1,
868 .async_size = sizeof(struct io_async_msghdr),
869 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
870 },
871 [IORING_OP_TIMEOUT] = {
872 .needs_async_data = 1,
873 .async_size = sizeof(struct io_timeout_data),
874 .work_flags = IO_WQ_WORK_MM,
875 },
876 [IORING_OP_TIMEOUT_REMOVE] = {
877 /* used by timeout updates' prep() */
878 .work_flags = IO_WQ_WORK_MM,
879 },
880 [IORING_OP_ACCEPT] = {
881 .needs_file = 1,
882 .unbound_nonreg_file = 1,
883 .pollin = 1,
884 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
885 },
886 [IORING_OP_ASYNC_CANCEL] = {},
887 [IORING_OP_LINK_TIMEOUT] = {
888 .needs_async_data = 1,
889 .async_size = sizeof(struct io_timeout_data),
890 .work_flags = IO_WQ_WORK_MM,
891 },
892 [IORING_OP_CONNECT] = {
893 .needs_file = 1,
894 .unbound_nonreg_file = 1,
895 .pollout = 1,
896 .needs_async_data = 1,
897 .async_size = sizeof(struct io_async_connect),
898 .work_flags = IO_WQ_WORK_MM,
899 },
900 [IORING_OP_FALLOCATE] = {
901 .needs_file = 1,
902 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
903 },
904 [IORING_OP_OPENAT] = {
905 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
906 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
907 },
908 [IORING_OP_CLOSE] = {
909 .needs_file = 1,
910 .needs_file_no_error = 1,
911 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
912 },
913 [IORING_OP_FILES_UPDATE] = {
914 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
915 },
916 [IORING_OP_STATX] = {
917 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
918 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
919 },
920 [IORING_OP_READ] = {
921 .needs_file = 1,
922 .unbound_nonreg_file = 1,
923 .pollin = 1,
924 .buffer_select = 1,
925 .plug = 1,
926 .async_size = sizeof(struct io_async_rw),
927 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
928 },
929 [IORING_OP_WRITE] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .plug = 1,
934 .async_size = sizeof(struct io_async_rw),
935 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 IO_WQ_WORK_FSIZE,
937 },
938 [IORING_OP_FADVISE] = {
939 .needs_file = 1,
940 .work_flags = IO_WQ_WORK_BLKCG,
941 },
942 [IORING_OP_MADVISE] = {
943 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
944 },
945 [IORING_OP_SEND] = {
946 .needs_file = 1,
947 .unbound_nonreg_file = 1,
948 .pollout = 1,
949 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
950 },
951 [IORING_OP_RECV] = {
952 .needs_file = 1,
953 .unbound_nonreg_file = 1,
954 .pollin = 1,
955 .buffer_select = 1,
956 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
957 },
958 [IORING_OP_OPENAT2] = {
959 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
960 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
961 },
962 [IORING_OP_EPOLL_CTL] = {
963 .unbound_nonreg_file = 1,
964 .work_flags = IO_WQ_WORK_FILES,
965 },
966 [IORING_OP_SPLICE] = {
967 .needs_file = 1,
968 .hash_reg_file = 1,
969 .unbound_nonreg_file = 1,
970 .work_flags = IO_WQ_WORK_BLKCG,
971 },
972 [IORING_OP_PROVIDE_BUFFERS] = {},
973 [IORING_OP_REMOVE_BUFFERS] = {},
974 [IORING_OP_TEE] = {
975 .needs_file = 1,
976 .hash_reg_file = 1,
977 .unbound_nonreg_file = 1,
978 },
979 [IORING_OP_SHUTDOWN] = {
980 .needs_file = 1,
981 },
982 [IORING_OP_RENAMEAT] = {
983 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
984 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_UNLINKAT] = {
987 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
988 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
989 },
990 };
991
992 enum io_mem_account {
993 ACCT_LOCKED,
994 ACCT_PINNED,
995 };
996
997 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
998 struct task_struct *task);
999
1000 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1001 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1002 struct io_ring_ctx *ctx);
1003
1004 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1005 struct io_comp_state *cs);
1006 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1007 static void io_put_req(struct io_kiocb *req);
1008 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1009 static void io_double_put_req(struct io_kiocb *req);
1010 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1011 static void __io_queue_linked_timeout(struct io_kiocb *req);
1012 static void io_queue_linked_timeout(struct io_kiocb *req);
1013 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1014 struct io_uring_files_update *ip,
1015 unsigned nr_args);
1016 static void __io_clean_op(struct io_kiocb *req);
1017 static struct file *io_file_get(struct io_submit_state *state,
1018 struct io_kiocb *req, int fd, bool fixed);
1019 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1020 static void io_file_put_work(struct work_struct *work);
1021
1022 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1023 struct iovec **iovec, struct iov_iter *iter,
1024 bool needs_lock);
1025 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1026 const struct iovec *fast_iov,
1027 struct iov_iter *iter, bool force);
1028
1029 static struct kmem_cache *req_cachep;
1030
1031 static const struct file_operations io_uring_fops;
1032
1033 struct sock *io_uring_get_socket(struct file *file)
1034 {
1035 #if defined(CONFIG_UNIX)
1036 if (file->f_op == &io_uring_fops) {
1037 struct io_ring_ctx *ctx = file->private_data;
1038
1039 return ctx->ring_sock->sk;
1040 }
1041 #endif
1042 return NULL;
1043 }
1044 EXPORT_SYMBOL(io_uring_get_socket);
1045
1046 #define io_for_each_link(pos, head) \
1047 for (pos = (head); pos; pos = pos->link)
1048
1049 static inline void io_clean_op(struct io_kiocb *req)
1050 {
1051 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1052 REQ_F_INFLIGHT))
1053 __io_clean_op(req);
1054 }
1055
1056 static inline void io_set_resource_node(struct io_kiocb *req)
1057 {
1058 struct io_ring_ctx *ctx = req->ctx;
1059
1060 if (!req->fixed_file_refs) {
1061 req->fixed_file_refs = &ctx->file_data->node->refs;
1062 percpu_ref_get(req->fixed_file_refs);
1063 }
1064 }
1065
1066 static bool io_match_task(struct io_kiocb *head,
1067 struct task_struct *task,
1068 struct files_struct *files)
1069 {
1070 struct io_kiocb *req;
1071
1072 if (task && head->task != task)
1073 return false;
1074 if (!files)
1075 return true;
1076
1077 io_for_each_link(req, head) {
1078 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1079 (req->work.flags & IO_WQ_WORK_FILES) &&
1080 req->work.identity->files == files)
1081 return true;
1082 }
1083 return false;
1084 }
1085
1086 static void io_sq_thread_drop_mm_files(void)
1087 {
1088 struct files_struct *files = current->files;
1089 struct mm_struct *mm = current->mm;
1090
1091 if (mm) {
1092 kthread_unuse_mm(mm);
1093 mmput(mm);
1094 current->mm = NULL;
1095 }
1096 if (files) {
1097 struct nsproxy *nsproxy = current->nsproxy;
1098
1099 task_lock(current);
1100 current->files = NULL;
1101 current->nsproxy = NULL;
1102 task_unlock(current);
1103 put_files_struct(files);
1104 put_nsproxy(nsproxy);
1105 }
1106 }
1107
1108 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1109 {
1110 if (current->flags & PF_EXITING)
1111 return -EFAULT;
1112
1113 if (!current->files) {
1114 struct files_struct *files;
1115 struct nsproxy *nsproxy;
1116
1117 task_lock(ctx->sqo_task);
1118 files = ctx->sqo_task->files;
1119 if (!files) {
1120 task_unlock(ctx->sqo_task);
1121 return -EOWNERDEAD;
1122 }
1123 atomic_inc(&files->count);
1124 get_nsproxy(ctx->sqo_task->nsproxy);
1125 nsproxy = ctx->sqo_task->nsproxy;
1126 task_unlock(ctx->sqo_task);
1127
1128 task_lock(current);
1129 current->files = files;
1130 current->nsproxy = nsproxy;
1131 task_unlock(current);
1132 }
1133 return 0;
1134 }
1135
1136 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1137 {
1138 struct mm_struct *mm;
1139
1140 if (current->flags & PF_EXITING)
1141 return -EFAULT;
1142 if (current->mm)
1143 return 0;
1144
1145 /* Should never happen */
1146 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1147 return -EFAULT;
1148
1149 task_lock(ctx->sqo_task);
1150 mm = ctx->sqo_task->mm;
1151 if (unlikely(!mm || !mmget_not_zero(mm)))
1152 mm = NULL;
1153 task_unlock(ctx->sqo_task);
1154
1155 if (mm) {
1156 kthread_use_mm(mm);
1157 return 0;
1158 }
1159
1160 return -EFAULT;
1161 }
1162
1163 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1164 struct io_kiocb *req)
1165 {
1166 const struct io_op_def *def = &io_op_defs[req->opcode];
1167 int ret;
1168
1169 if (def->work_flags & IO_WQ_WORK_MM) {
1170 ret = __io_sq_thread_acquire_mm(ctx);
1171 if (unlikely(ret))
1172 return ret;
1173 }
1174
1175 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1176 ret = __io_sq_thread_acquire_files(ctx);
1177 if (unlikely(ret))
1178 return ret;
1179 }
1180
1181 return 0;
1182 }
1183
1184 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1185 struct cgroup_subsys_state **cur_css)
1186
1187 {
1188 #ifdef CONFIG_BLK_CGROUP
1189 /* puts the old one when swapping */
1190 if (*cur_css != ctx->sqo_blkcg_css) {
1191 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1192 *cur_css = ctx->sqo_blkcg_css;
1193 }
1194 #endif
1195 }
1196
1197 static void io_sq_thread_unassociate_blkcg(void)
1198 {
1199 #ifdef CONFIG_BLK_CGROUP
1200 kthread_associate_blkcg(NULL);
1201 #endif
1202 }
1203
1204 static inline void req_set_fail_links(struct io_kiocb *req)
1205 {
1206 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1207 req->flags |= REQ_F_FAIL_LINK;
1208 }
1209
1210 /*
1211 * None of these are dereferenced, they are simply used to check if any of
1212 * them have changed. If we're under current and check they are still the
1213 * same, we're fine to grab references to them for actual out-of-line use.
1214 */
1215 static void io_init_identity(struct io_identity *id)
1216 {
1217 id->files = current->files;
1218 id->mm = current->mm;
1219 #ifdef CONFIG_BLK_CGROUP
1220 rcu_read_lock();
1221 id->blkcg_css = blkcg_css();
1222 rcu_read_unlock();
1223 #endif
1224 id->creds = current_cred();
1225 id->nsproxy = current->nsproxy;
1226 id->fs = current->fs;
1227 id->fsize = rlimit(RLIMIT_FSIZE);
1228 #ifdef CONFIG_AUDIT
1229 id->loginuid = current->loginuid;
1230 id->sessionid = current->sessionid;
1231 #endif
1232 refcount_set(&id->count, 1);
1233 }
1234
1235 static inline void __io_req_init_async(struct io_kiocb *req)
1236 {
1237 memset(&req->work, 0, sizeof(req->work));
1238 req->flags |= REQ_F_WORK_INITIALIZED;
1239 }
1240
1241 /*
1242 * Note: must call io_req_init_async() for the first time you
1243 * touch any members of io_wq_work.
1244 */
1245 static inline void io_req_init_async(struct io_kiocb *req)
1246 {
1247 struct io_uring_task *tctx = current->io_uring;
1248
1249 if (req->flags & REQ_F_WORK_INITIALIZED)
1250 return;
1251
1252 __io_req_init_async(req);
1253
1254 /* Grab a ref if this isn't our static identity */
1255 req->work.identity = tctx->identity;
1256 if (tctx->identity != &tctx->__identity)
1257 refcount_inc(&req->work.identity->count);
1258 }
1259
1260 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1261 {
1262 return ctx->flags & IORING_SETUP_SQPOLL;
1263 }
1264
1265 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1266 {
1267 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1268
1269 complete(&ctx->ref_comp);
1270 }
1271
1272 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1273 {
1274 return !req->timeout.off;
1275 }
1276
1277 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1278 {
1279 struct io_ring_ctx *ctx;
1280 int hash_bits;
1281
1282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1283 if (!ctx)
1284 return NULL;
1285
1286 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1287 if (!ctx->fallback_req)
1288 goto err;
1289
1290 /*
1291 * Use 5 bits less than the max cq entries, that should give us around
1292 * 32 entries per hash list if totally full and uniformly spread.
1293 */
1294 hash_bits = ilog2(p->cq_entries);
1295 hash_bits -= 5;
1296 if (hash_bits <= 0)
1297 hash_bits = 1;
1298 ctx->cancel_hash_bits = hash_bits;
1299 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1300 GFP_KERNEL);
1301 if (!ctx->cancel_hash)
1302 goto err;
1303 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1304
1305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1306 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1307 goto err;
1308
1309 ctx->flags = p->flags;
1310 init_waitqueue_head(&ctx->sqo_sq_wait);
1311 INIT_LIST_HEAD(&ctx->sqd_list);
1312 init_waitqueue_head(&ctx->cq_wait);
1313 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1314 init_completion(&ctx->ref_comp);
1315 init_completion(&ctx->sq_thread_comp);
1316 idr_init(&ctx->io_buffer_idr);
1317 idr_init(&ctx->personality_idr);
1318 mutex_init(&ctx->uring_lock);
1319 init_waitqueue_head(&ctx->wait);
1320 spin_lock_init(&ctx->completion_lock);
1321 INIT_LIST_HEAD(&ctx->iopoll_list);
1322 INIT_LIST_HEAD(&ctx->defer_list);
1323 INIT_LIST_HEAD(&ctx->timeout_list);
1324 spin_lock_init(&ctx->inflight_lock);
1325 INIT_LIST_HEAD(&ctx->inflight_list);
1326 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1327 init_llist_head(&ctx->file_put_llist);
1328 return ctx;
1329 err:
1330 if (ctx->fallback_req)
1331 kmem_cache_free(req_cachep, ctx->fallback_req);
1332 kfree(ctx->cancel_hash);
1333 kfree(ctx);
1334 return NULL;
1335 }
1336
1337 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1338 {
1339 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1340 struct io_ring_ctx *ctx = req->ctx;
1341
1342 return seq != ctx->cached_cq_tail
1343 + READ_ONCE(ctx->cached_cq_overflow);
1344 }
1345
1346 return false;
1347 }
1348
1349 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1350 {
1351 struct io_rings *rings = ctx->rings;
1352
1353 /* order cqe stores with ring update */
1354 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1355 }
1356
1357 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1358 {
1359 if (req->work.identity == &tctx->__identity)
1360 return;
1361 if (refcount_dec_and_test(&req->work.identity->count))
1362 kfree(req->work.identity);
1363 }
1364
1365 static void io_req_clean_work(struct io_kiocb *req)
1366 {
1367 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1368 return;
1369
1370 req->flags &= ~REQ_F_WORK_INITIALIZED;
1371
1372 if (req->work.flags & IO_WQ_WORK_MM) {
1373 mmdrop(req->work.identity->mm);
1374 req->work.flags &= ~IO_WQ_WORK_MM;
1375 }
1376 #ifdef CONFIG_BLK_CGROUP
1377 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1378 css_put(req->work.identity->blkcg_css);
1379 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1380 }
1381 #endif
1382 if (req->work.flags & IO_WQ_WORK_CREDS) {
1383 put_cred(req->work.identity->creds);
1384 req->work.flags &= ~IO_WQ_WORK_CREDS;
1385 }
1386 if (req->work.flags & IO_WQ_WORK_FS) {
1387 struct fs_struct *fs = req->work.identity->fs;
1388
1389 spin_lock(&req->work.identity->fs->lock);
1390 if (--fs->users)
1391 fs = NULL;
1392 spin_unlock(&req->work.identity->fs->lock);
1393 if (fs)
1394 free_fs_struct(fs);
1395 req->work.flags &= ~IO_WQ_WORK_FS;
1396 }
1397
1398 io_put_identity(req->task->io_uring, req);
1399 }
1400
1401 /*
1402 * Create a private copy of io_identity, since some fields don't match
1403 * the current context.
1404 */
1405 static bool io_identity_cow(struct io_kiocb *req)
1406 {
1407 struct io_uring_task *tctx = current->io_uring;
1408 const struct cred *creds = NULL;
1409 struct io_identity *id;
1410
1411 if (req->work.flags & IO_WQ_WORK_CREDS)
1412 creds = req->work.identity->creds;
1413
1414 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1415 if (unlikely(!id)) {
1416 req->work.flags |= IO_WQ_WORK_CANCEL;
1417 return false;
1418 }
1419
1420 /*
1421 * We can safely just re-init the creds we copied Either the field
1422 * matches the current one, or we haven't grabbed it yet. The only
1423 * exception is ->creds, through registered personalities, so handle
1424 * that one separately.
1425 */
1426 io_init_identity(id);
1427 if (creds)
1428 id->creds = creds;
1429
1430 /* add one for this request */
1431 refcount_inc(&id->count);
1432
1433 /* drop tctx and req identity references, if needed */
1434 if (tctx->identity != &tctx->__identity &&
1435 refcount_dec_and_test(&tctx->identity->count))
1436 kfree(tctx->identity);
1437 if (req->work.identity != &tctx->__identity &&
1438 refcount_dec_and_test(&req->work.identity->count))
1439 kfree(req->work.identity);
1440
1441 req->work.identity = id;
1442 tctx->identity = id;
1443 return true;
1444 }
1445
1446 static bool io_grab_identity(struct io_kiocb *req)
1447 {
1448 const struct io_op_def *def = &io_op_defs[req->opcode];
1449 struct io_identity *id = req->work.identity;
1450 struct io_ring_ctx *ctx = req->ctx;
1451
1452 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1453 if (id->fsize != rlimit(RLIMIT_FSIZE))
1454 return false;
1455 req->work.flags |= IO_WQ_WORK_FSIZE;
1456 }
1457 #ifdef CONFIG_BLK_CGROUP
1458 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1459 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1460 rcu_read_lock();
1461 if (id->blkcg_css != blkcg_css()) {
1462 rcu_read_unlock();
1463 return false;
1464 }
1465 /*
1466 * This should be rare, either the cgroup is dying or the task
1467 * is moving cgroups. Just punt to root for the handful of ios.
1468 */
1469 if (css_tryget_online(id->blkcg_css))
1470 req->work.flags |= IO_WQ_WORK_BLKCG;
1471 rcu_read_unlock();
1472 }
1473 #endif
1474 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1475 if (id->creds != current_cred())
1476 return false;
1477 get_cred(id->creds);
1478 req->work.flags |= IO_WQ_WORK_CREDS;
1479 }
1480 #ifdef CONFIG_AUDIT
1481 if (!uid_eq(current->loginuid, id->loginuid) ||
1482 current->sessionid != id->sessionid)
1483 return false;
1484 #endif
1485 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1486 (def->work_flags & IO_WQ_WORK_FS)) {
1487 if (current->fs != id->fs)
1488 return false;
1489 spin_lock(&id->fs->lock);
1490 if (!id->fs->in_exec) {
1491 id->fs->users++;
1492 req->work.flags |= IO_WQ_WORK_FS;
1493 } else {
1494 req->work.flags |= IO_WQ_WORK_CANCEL;
1495 }
1496 spin_unlock(&current->fs->lock);
1497 }
1498 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1499 (def->work_flags & IO_WQ_WORK_FILES) &&
1500 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1501 if (id->files != current->files ||
1502 id->nsproxy != current->nsproxy)
1503 return false;
1504 atomic_inc(&id->files->count);
1505 get_nsproxy(id->nsproxy);
1506 req->flags |= REQ_F_INFLIGHT;
1507
1508 spin_lock_irq(&ctx->inflight_lock);
1509 list_add(&req->inflight_entry, &ctx->inflight_list);
1510 spin_unlock_irq(&ctx->inflight_lock);
1511 req->work.flags |= IO_WQ_WORK_FILES;
1512 }
1513 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1514 (def->work_flags & IO_WQ_WORK_MM)) {
1515 if (id->mm != current->mm)
1516 return false;
1517 mmgrab(id->mm);
1518 req->work.flags |= IO_WQ_WORK_MM;
1519 }
1520
1521 return true;
1522 }
1523
1524 static void io_prep_async_work(struct io_kiocb *req)
1525 {
1526 const struct io_op_def *def = &io_op_defs[req->opcode];
1527 struct io_ring_ctx *ctx = req->ctx;
1528
1529 io_req_init_async(req);
1530
1531 if (req->flags & REQ_F_FORCE_ASYNC)
1532 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1533
1534 if (req->flags & REQ_F_ISREG) {
1535 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1536 io_wq_hash_work(&req->work, file_inode(req->file));
1537 } else {
1538 if (def->unbound_nonreg_file)
1539 req->work.flags |= IO_WQ_WORK_UNBOUND;
1540 }
1541
1542 /* if we fail grabbing identity, we must COW, regrab, and retry */
1543 if (io_grab_identity(req))
1544 return;
1545
1546 if (!io_identity_cow(req))
1547 return;
1548
1549 /* can't fail at this point */
1550 if (!io_grab_identity(req))
1551 WARN_ON(1);
1552 }
1553
1554 static void io_prep_async_link(struct io_kiocb *req)
1555 {
1556 struct io_kiocb *cur;
1557
1558 io_for_each_link(cur, req)
1559 io_prep_async_work(cur);
1560 }
1561
1562 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1563 {
1564 struct io_ring_ctx *ctx = req->ctx;
1565 struct io_kiocb *link = io_prep_linked_timeout(req);
1566
1567 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1568 &req->work, req->flags);
1569 io_wq_enqueue(ctx->io_wq, &req->work);
1570 return link;
1571 }
1572
1573 static void io_queue_async_work(struct io_kiocb *req)
1574 {
1575 struct io_kiocb *link;
1576
1577 /* init ->work of the whole link before punting */
1578 io_prep_async_link(req);
1579 link = __io_queue_async_work(req);
1580
1581 if (link)
1582 io_queue_linked_timeout(link);
1583 }
1584
1585 static void io_kill_timeout(struct io_kiocb *req)
1586 {
1587 struct io_timeout_data *io = req->async_data;
1588 int ret;
1589
1590 ret = hrtimer_try_to_cancel(&io->timer);
1591 if (ret != -1) {
1592 atomic_set(&req->ctx->cq_timeouts,
1593 atomic_read(&req->ctx->cq_timeouts) + 1);
1594 list_del_init(&req->timeout.list);
1595 io_cqring_fill_event(req, 0);
1596 io_put_req_deferred(req, 1);
1597 }
1598 }
1599
1600 /*
1601 * Returns true if we found and killed one or more timeouts
1602 */
1603 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1604 struct files_struct *files)
1605 {
1606 struct io_kiocb *req, *tmp;
1607 int canceled = 0;
1608
1609 spin_lock_irq(&ctx->completion_lock);
1610 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1611 if (io_match_task(req, tsk, files)) {
1612 io_kill_timeout(req);
1613 canceled++;
1614 }
1615 }
1616 spin_unlock_irq(&ctx->completion_lock);
1617 return canceled != 0;
1618 }
1619
1620 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1621 {
1622 do {
1623 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1624 struct io_defer_entry, list);
1625 struct io_kiocb *link;
1626
1627 if (req_need_defer(de->req, de->seq))
1628 break;
1629 list_del_init(&de->list);
1630 /* punt-init is done before queueing for defer */
1631 link = __io_queue_async_work(de->req);
1632 if (link) {
1633 __io_queue_linked_timeout(link);
1634 /* drop submission reference */
1635 io_put_req_deferred(link, 1);
1636 }
1637 kfree(de);
1638 } while (!list_empty(&ctx->defer_list));
1639 }
1640
1641 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1642 {
1643 u32 seq;
1644
1645 if (list_empty(&ctx->timeout_list))
1646 return;
1647
1648 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1649
1650 do {
1651 u32 events_needed, events_got;
1652 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1653 struct io_kiocb, timeout.list);
1654
1655 if (io_is_timeout_noseq(req))
1656 break;
1657
1658 /*
1659 * Since seq can easily wrap around over time, subtract
1660 * the last seq at which timeouts were flushed before comparing.
1661 * Assuming not more than 2^31-1 events have happened since,
1662 * these subtractions won't have wrapped, so we can check if
1663 * target is in [last_seq, current_seq] by comparing the two.
1664 */
1665 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1666 events_got = seq - ctx->cq_last_tm_flush;
1667 if (events_got < events_needed)
1668 break;
1669
1670 list_del_init(&req->timeout.list);
1671 io_kill_timeout(req);
1672 } while (!list_empty(&ctx->timeout_list));
1673
1674 ctx->cq_last_tm_flush = seq;
1675 }
1676
1677 static void io_commit_cqring(struct io_ring_ctx *ctx)
1678 {
1679 io_flush_timeouts(ctx);
1680 __io_commit_cqring(ctx);
1681
1682 if (unlikely(!list_empty(&ctx->defer_list)))
1683 __io_queue_deferred(ctx);
1684 }
1685
1686 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1687 {
1688 struct io_rings *r = ctx->rings;
1689
1690 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1691 }
1692
1693 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1694 {
1695 struct io_rings *rings = ctx->rings;
1696 unsigned tail;
1697
1698 tail = ctx->cached_cq_tail;
1699 /*
1700 * writes to the cq entry need to come after reading head; the
1701 * control dependency is enough as we're using WRITE_ONCE to
1702 * fill the cq entry
1703 */
1704 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1705 return NULL;
1706
1707 ctx->cached_cq_tail++;
1708 return &rings->cqes[tail & ctx->cq_mask];
1709 }
1710
1711 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1712 {
1713 if (!ctx->cq_ev_fd)
1714 return false;
1715 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1716 return false;
1717 if (!ctx->eventfd_async)
1718 return true;
1719 return io_wq_current_is_worker();
1720 }
1721
1722 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1723 {
1724 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1725 }
1726
1727 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1728 {
1729 /* see waitqueue_active() comment */
1730 smp_mb();
1731
1732 if (waitqueue_active(&ctx->wait))
1733 wake_up(&ctx->wait);
1734 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1735 wake_up(&ctx->sq_data->wait);
1736 if (io_should_trigger_evfd(ctx))
1737 eventfd_signal(ctx->cq_ev_fd, 1);
1738 if (waitqueue_active(&ctx->cq_wait)) {
1739 wake_up_interruptible(&ctx->cq_wait);
1740 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1741 }
1742 }
1743
1744 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1745 {
1746 /* see waitqueue_active() comment */
1747 smp_mb();
1748
1749 if (ctx->flags & IORING_SETUP_SQPOLL) {
1750 if (waitqueue_active(&ctx->wait))
1751 wake_up(&ctx->wait);
1752 }
1753 if (io_should_trigger_evfd(ctx))
1754 eventfd_signal(ctx->cq_ev_fd, 1);
1755 if (waitqueue_active(&ctx->cq_wait)) {
1756 wake_up_interruptible(&ctx->cq_wait);
1757 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1758 }
1759 }
1760
1761 /* Returns true if there are no backlogged entries after the flush */
1762 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1763 struct task_struct *tsk,
1764 struct files_struct *files)
1765 {
1766 struct io_rings *rings = ctx->rings;
1767 struct io_kiocb *req, *tmp;
1768 struct io_uring_cqe *cqe;
1769 unsigned long flags;
1770 bool all_flushed;
1771 LIST_HEAD(list);
1772
1773 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1774 return false;
1775
1776 spin_lock_irqsave(&ctx->completion_lock, flags);
1777 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1778 if (!io_match_task(req, tsk, files))
1779 continue;
1780
1781 cqe = io_get_cqring(ctx);
1782 if (!cqe && !force)
1783 break;
1784
1785 list_move(&req->compl.list, &list);
1786 if (cqe) {
1787 WRITE_ONCE(cqe->user_data, req->user_data);
1788 WRITE_ONCE(cqe->res, req->result);
1789 WRITE_ONCE(cqe->flags, req->compl.cflags);
1790 } else {
1791 ctx->cached_cq_overflow++;
1792 WRITE_ONCE(ctx->rings->cq_overflow,
1793 ctx->cached_cq_overflow);
1794 }
1795 }
1796
1797 all_flushed = list_empty(&ctx->cq_overflow_list);
1798 if (all_flushed) {
1799 clear_bit(0, &ctx->sq_check_overflow);
1800 clear_bit(0, &ctx->cq_check_overflow);
1801 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1802 }
1803
1804 io_commit_cqring(ctx);
1805 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1806 io_cqring_ev_posted(ctx);
1807
1808 while (!list_empty(&list)) {
1809 req = list_first_entry(&list, struct io_kiocb, compl.list);
1810 list_del(&req->compl.list);
1811 io_put_req(req);
1812 }
1813
1814 return all_flushed;
1815 }
1816
1817 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1818 struct task_struct *tsk,
1819 struct files_struct *files)
1820 {
1821 if (test_bit(0, &ctx->cq_check_overflow)) {
1822 /* iopoll syncs against uring_lock, not completion_lock */
1823 if (ctx->flags & IORING_SETUP_IOPOLL)
1824 mutex_lock(&ctx->uring_lock);
1825 __io_cqring_overflow_flush(ctx, force, tsk, files);
1826 if (ctx->flags & IORING_SETUP_IOPOLL)
1827 mutex_unlock(&ctx->uring_lock);
1828 }
1829 }
1830
1831 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1832 {
1833 struct io_ring_ctx *ctx = req->ctx;
1834 struct io_uring_cqe *cqe;
1835
1836 trace_io_uring_complete(ctx, req->user_data, res);
1837
1838 /*
1839 * If we can't get a cq entry, userspace overflowed the
1840 * submission (by quite a lot). Increment the overflow count in
1841 * the ring.
1842 */
1843 cqe = io_get_cqring(ctx);
1844 if (likely(cqe)) {
1845 WRITE_ONCE(cqe->user_data, req->user_data);
1846 WRITE_ONCE(cqe->res, res);
1847 WRITE_ONCE(cqe->flags, cflags);
1848 } else if (ctx->cq_overflow_flushed ||
1849 atomic_read(&req->task->io_uring->in_idle)) {
1850 /*
1851 * If we're in ring overflow flush mode, or in task cancel mode,
1852 * then we cannot store the request for later flushing, we need
1853 * to drop it on the floor.
1854 */
1855 ctx->cached_cq_overflow++;
1856 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1857 } else {
1858 if (list_empty(&ctx->cq_overflow_list)) {
1859 set_bit(0, &ctx->sq_check_overflow);
1860 set_bit(0, &ctx->cq_check_overflow);
1861 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1862 }
1863 io_clean_op(req);
1864 req->result = res;
1865 req->compl.cflags = cflags;
1866 refcount_inc(&req->refs);
1867 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1868 }
1869 }
1870
1871 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1872 {
1873 __io_cqring_fill_event(req, res, 0);
1874 }
1875
1876 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1877 {
1878 struct io_ring_ctx *ctx = req->ctx;
1879 unsigned long flags;
1880
1881 spin_lock_irqsave(&ctx->completion_lock, flags);
1882 __io_cqring_fill_event(req, res, cflags);
1883 io_commit_cqring(ctx);
1884 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1885
1886 io_cqring_ev_posted(ctx);
1887 }
1888
1889 static void io_submit_flush_completions(struct io_comp_state *cs)
1890 {
1891 struct io_ring_ctx *ctx = cs->ctx;
1892
1893 spin_lock_irq(&ctx->completion_lock);
1894 while (!list_empty(&cs->list)) {
1895 struct io_kiocb *req;
1896
1897 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1898 list_del(&req->compl.list);
1899 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1900
1901 /*
1902 * io_free_req() doesn't care about completion_lock unless one
1903 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1904 * because of a potential deadlock with req->work.fs->lock
1905 */
1906 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1907 |REQ_F_WORK_INITIALIZED)) {
1908 spin_unlock_irq(&ctx->completion_lock);
1909 io_put_req(req);
1910 spin_lock_irq(&ctx->completion_lock);
1911 } else {
1912 io_put_req(req);
1913 }
1914 }
1915 io_commit_cqring(ctx);
1916 spin_unlock_irq(&ctx->completion_lock);
1917
1918 io_cqring_ev_posted(ctx);
1919 cs->nr = 0;
1920 }
1921
1922 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1923 struct io_comp_state *cs)
1924 {
1925 if (!cs) {
1926 io_cqring_add_event(req, res, cflags);
1927 io_put_req(req);
1928 } else {
1929 io_clean_op(req);
1930 req->result = res;
1931 req->compl.cflags = cflags;
1932 list_add_tail(&req->compl.list, &cs->list);
1933 if (++cs->nr >= 32)
1934 io_submit_flush_completions(cs);
1935 }
1936 }
1937
1938 static void io_req_complete(struct io_kiocb *req, long res)
1939 {
1940 __io_req_complete(req, res, 0, NULL);
1941 }
1942
1943 static inline bool io_is_fallback_req(struct io_kiocb *req)
1944 {
1945 return req == (struct io_kiocb *)
1946 ((unsigned long) req->ctx->fallback_req & ~1UL);
1947 }
1948
1949 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1950 {
1951 struct io_kiocb *req;
1952
1953 req = ctx->fallback_req;
1954 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1955 return req;
1956
1957 return NULL;
1958 }
1959
1960 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1961 struct io_submit_state *state)
1962 {
1963 if (!state->free_reqs) {
1964 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1965 size_t sz;
1966 int ret;
1967
1968 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1969 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1970
1971 /*
1972 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1973 * retry single alloc to be on the safe side.
1974 */
1975 if (unlikely(ret <= 0)) {
1976 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1977 if (!state->reqs[0])
1978 goto fallback;
1979 ret = 1;
1980 }
1981 state->free_reqs = ret;
1982 }
1983
1984 state->free_reqs--;
1985 return state->reqs[state->free_reqs];
1986 fallback:
1987 return io_get_fallback_req(ctx);
1988 }
1989
1990 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1991 bool fixed)
1992 {
1993 if (!fixed)
1994 fput(file);
1995 }
1996
1997 static void io_dismantle_req(struct io_kiocb *req)
1998 {
1999 io_clean_op(req);
2000
2001 if (req->async_data)
2002 kfree(req->async_data);
2003 if (req->file)
2004 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2005 if (req->fixed_file_refs)
2006 percpu_ref_put(req->fixed_file_refs);
2007 io_req_clean_work(req);
2008 }
2009
2010 static void __io_free_req(struct io_kiocb *req)
2011 {
2012 struct io_uring_task *tctx = req->task->io_uring;
2013 struct io_ring_ctx *ctx = req->ctx;
2014
2015 io_dismantle_req(req);
2016
2017 percpu_counter_dec(&tctx->inflight);
2018 if (atomic_read(&tctx->in_idle))
2019 wake_up(&tctx->wait);
2020 put_task_struct(req->task);
2021
2022 if (likely(!io_is_fallback_req(req)))
2023 kmem_cache_free(req_cachep, req);
2024 else
2025 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2026 percpu_ref_put(&ctx->refs);
2027 }
2028
2029 static inline void io_remove_next_linked(struct io_kiocb *req)
2030 {
2031 struct io_kiocb *nxt = req->link;
2032
2033 req->link = nxt->link;
2034 nxt->link = NULL;
2035 }
2036
2037 static void io_kill_linked_timeout(struct io_kiocb *req)
2038 {
2039 struct io_ring_ctx *ctx = req->ctx;
2040 struct io_kiocb *link;
2041 bool cancelled = false;
2042 unsigned long flags;
2043
2044 spin_lock_irqsave(&ctx->completion_lock, flags);
2045 link = req->link;
2046
2047 /*
2048 * Can happen if a linked timeout fired and link had been like
2049 * req -> link t-out -> link t-out [-> ...]
2050 */
2051 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2052 struct io_timeout_data *io = link->async_data;
2053 int ret;
2054
2055 io_remove_next_linked(req);
2056 link->timeout.head = NULL;
2057 ret = hrtimer_try_to_cancel(&io->timer);
2058 if (ret != -1) {
2059 io_cqring_fill_event(link, -ECANCELED);
2060 io_commit_cqring(ctx);
2061 cancelled = true;
2062 }
2063 }
2064 req->flags &= ~REQ_F_LINK_TIMEOUT;
2065 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2066
2067 if (cancelled) {
2068 io_cqring_ev_posted(ctx);
2069 io_put_req(link);
2070 }
2071 }
2072
2073
2074 static void io_fail_links(struct io_kiocb *req)
2075 {
2076 struct io_kiocb *link, *nxt;
2077 struct io_ring_ctx *ctx = req->ctx;
2078 unsigned long flags;
2079
2080 spin_lock_irqsave(&ctx->completion_lock, flags);
2081 link = req->link;
2082 req->link = NULL;
2083
2084 while (link) {
2085 nxt = link->link;
2086 link->link = NULL;
2087
2088 trace_io_uring_fail_link(req, link);
2089 io_cqring_fill_event(link, -ECANCELED);
2090
2091 /*
2092 * It's ok to free under spinlock as they're not linked anymore,
2093 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2094 * work.fs->lock.
2095 */
2096 if (link->flags & REQ_F_WORK_INITIALIZED)
2097 io_put_req_deferred(link, 2);
2098 else
2099 io_double_put_req(link);
2100 link = nxt;
2101 }
2102 io_commit_cqring(ctx);
2103 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2104
2105 io_cqring_ev_posted(ctx);
2106 }
2107
2108 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2109 {
2110 if (req->flags & REQ_F_LINK_TIMEOUT)
2111 io_kill_linked_timeout(req);
2112
2113 /*
2114 * If LINK is set, we have dependent requests in this chain. If we
2115 * didn't fail this request, queue the first one up, moving any other
2116 * dependencies to the next request. In case of failure, fail the rest
2117 * of the chain.
2118 */
2119 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2120 struct io_kiocb *nxt = req->link;
2121
2122 req->link = NULL;
2123 return nxt;
2124 }
2125 io_fail_links(req);
2126 return NULL;
2127 }
2128
2129 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2130 {
2131 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2132 return NULL;
2133 return __io_req_find_next(req);
2134 }
2135
2136 static int io_req_task_work_add(struct io_kiocb *req)
2137 {
2138 struct task_struct *tsk = req->task;
2139 struct io_ring_ctx *ctx = req->ctx;
2140 enum task_work_notify_mode notify;
2141 int ret;
2142
2143 if (tsk->flags & PF_EXITING)
2144 return -ESRCH;
2145
2146 /*
2147 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2148 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2149 * processing task_work. There's no reliable way to tell if TWA_RESUME
2150 * will do the job.
2151 */
2152 notify = TWA_NONE;
2153 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2154 notify = TWA_SIGNAL;
2155
2156 ret = task_work_add(tsk, &req->task_work, notify);
2157 if (!ret)
2158 wake_up_process(tsk);
2159
2160 return ret;
2161 }
2162
2163 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2164 {
2165 struct io_ring_ctx *ctx = req->ctx;
2166
2167 spin_lock_irq(&ctx->completion_lock);
2168 io_cqring_fill_event(req, error);
2169 io_commit_cqring(ctx);
2170 spin_unlock_irq(&ctx->completion_lock);
2171
2172 io_cqring_ev_posted(ctx);
2173 req_set_fail_links(req);
2174 io_double_put_req(req);
2175 }
2176
2177 static void io_req_task_cancel(struct callback_head *cb)
2178 {
2179 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2180 struct io_ring_ctx *ctx = req->ctx;
2181
2182 __io_req_task_cancel(req, -ECANCELED);
2183 percpu_ref_put(&ctx->refs);
2184 }
2185
2186 static void __io_req_task_submit(struct io_kiocb *req)
2187 {
2188 struct io_ring_ctx *ctx = req->ctx;
2189
2190 mutex_lock(&ctx->uring_lock);
2191 if (!ctx->sqo_dead &&
2192 !__io_sq_thread_acquire_mm(ctx) &&
2193 !__io_sq_thread_acquire_files(ctx))
2194 __io_queue_sqe(req, NULL);
2195 else
2196 __io_req_task_cancel(req, -EFAULT);
2197 mutex_unlock(&ctx->uring_lock);
2198 }
2199
2200 static void io_req_task_submit(struct callback_head *cb)
2201 {
2202 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2203 struct io_ring_ctx *ctx = req->ctx;
2204
2205 __io_req_task_submit(req);
2206 percpu_ref_put(&ctx->refs);
2207 }
2208
2209 static void io_req_task_queue(struct io_kiocb *req)
2210 {
2211 int ret;
2212
2213 init_task_work(&req->task_work, io_req_task_submit);
2214 percpu_ref_get(&req->ctx->refs);
2215
2216 ret = io_req_task_work_add(req);
2217 if (unlikely(ret)) {
2218 struct task_struct *tsk;
2219
2220 init_task_work(&req->task_work, io_req_task_cancel);
2221 tsk = io_wq_get_task(req->ctx->io_wq);
2222 task_work_add(tsk, &req->task_work, TWA_NONE);
2223 wake_up_process(tsk);
2224 }
2225 }
2226
2227 static inline void io_queue_next(struct io_kiocb *req)
2228 {
2229 struct io_kiocb *nxt = io_req_find_next(req);
2230
2231 if (nxt)
2232 io_req_task_queue(nxt);
2233 }
2234
2235 static void io_free_req(struct io_kiocb *req)
2236 {
2237 io_queue_next(req);
2238 __io_free_req(req);
2239 }
2240
2241 struct req_batch {
2242 void *reqs[IO_IOPOLL_BATCH];
2243 int to_free;
2244
2245 struct task_struct *task;
2246 int task_refs;
2247 };
2248
2249 static inline void io_init_req_batch(struct req_batch *rb)
2250 {
2251 rb->to_free = 0;
2252 rb->task_refs = 0;
2253 rb->task = NULL;
2254 }
2255
2256 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2257 struct req_batch *rb)
2258 {
2259 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2260 percpu_ref_put_many(&ctx->refs, rb->to_free);
2261 rb->to_free = 0;
2262 }
2263
2264 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2265 struct req_batch *rb)
2266 {
2267 if (rb->to_free)
2268 __io_req_free_batch_flush(ctx, rb);
2269 if (rb->task) {
2270 struct io_uring_task *tctx = rb->task->io_uring;
2271
2272 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2273 put_task_struct_many(rb->task, rb->task_refs);
2274 rb->task = NULL;
2275 }
2276 }
2277
2278 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2279 {
2280 if (unlikely(io_is_fallback_req(req))) {
2281 io_free_req(req);
2282 return;
2283 }
2284 io_queue_next(req);
2285
2286 if (req->task != rb->task) {
2287 if (rb->task) {
2288 struct io_uring_task *tctx = rb->task->io_uring;
2289
2290 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2291 put_task_struct_many(rb->task, rb->task_refs);
2292 }
2293 rb->task = req->task;
2294 rb->task_refs = 0;
2295 }
2296 rb->task_refs++;
2297
2298 io_dismantle_req(req);
2299 rb->reqs[rb->to_free++] = req;
2300 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2301 __io_req_free_batch_flush(req->ctx, rb);
2302 }
2303
2304 /*
2305 * Drop reference to request, return next in chain (if there is one) if this
2306 * was the last reference to this request.
2307 */
2308 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2309 {
2310 struct io_kiocb *nxt = NULL;
2311
2312 if (refcount_dec_and_test(&req->refs)) {
2313 nxt = io_req_find_next(req);
2314 __io_free_req(req);
2315 }
2316 return nxt;
2317 }
2318
2319 static void io_put_req(struct io_kiocb *req)
2320 {
2321 if (refcount_dec_and_test(&req->refs))
2322 io_free_req(req);
2323 }
2324
2325 static void io_put_req_deferred_cb(struct callback_head *cb)
2326 {
2327 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2328
2329 io_free_req(req);
2330 }
2331
2332 static void io_free_req_deferred(struct io_kiocb *req)
2333 {
2334 int ret;
2335
2336 init_task_work(&req->task_work, io_put_req_deferred_cb);
2337 ret = io_req_task_work_add(req);
2338 if (unlikely(ret)) {
2339 struct task_struct *tsk;
2340
2341 tsk = io_wq_get_task(req->ctx->io_wq);
2342 task_work_add(tsk, &req->task_work, TWA_NONE);
2343 wake_up_process(tsk);
2344 }
2345 }
2346
2347 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2348 {
2349 if (refcount_sub_and_test(refs, &req->refs))
2350 io_free_req_deferred(req);
2351 }
2352
2353 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2354 {
2355 struct io_kiocb *nxt;
2356
2357 /*
2358 * A ref is owned by io-wq in which context we're. So, if that's the
2359 * last one, it's safe to steal next work. False negatives are Ok,
2360 * it just will be re-punted async in io_put_work()
2361 */
2362 if (refcount_read(&req->refs) != 1)
2363 return NULL;
2364
2365 nxt = io_req_find_next(req);
2366 return nxt ? &nxt->work : NULL;
2367 }
2368
2369 static void io_double_put_req(struct io_kiocb *req)
2370 {
2371 /* drop both submit and complete references */
2372 if (refcount_sub_and_test(2, &req->refs))
2373 io_free_req(req);
2374 }
2375
2376 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2377 {
2378 /* See comment at the top of this file */
2379 smp_rmb();
2380 return __io_cqring_events(ctx);
2381 }
2382
2383 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2384 {
2385 struct io_rings *rings = ctx->rings;
2386
2387 /* make sure SQ entry isn't read before tail */
2388 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2389 }
2390
2391 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2392 {
2393 unsigned int cflags;
2394
2395 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2396 cflags |= IORING_CQE_F_BUFFER;
2397 req->flags &= ~REQ_F_BUFFER_SELECTED;
2398 kfree(kbuf);
2399 return cflags;
2400 }
2401
2402 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2403 {
2404 struct io_buffer *kbuf;
2405
2406 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2407 return io_put_kbuf(req, kbuf);
2408 }
2409
2410 static inline bool io_run_task_work(void)
2411 {
2412 /*
2413 * Not safe to run on exiting task, and the task_work handling will
2414 * not add work to such a task.
2415 */
2416 if (unlikely(current->flags & PF_EXITING))
2417 return false;
2418 if (current->task_works) {
2419 __set_current_state(TASK_RUNNING);
2420 task_work_run();
2421 return true;
2422 }
2423
2424 return false;
2425 }
2426
2427 static void io_iopoll_queue(struct list_head *again)
2428 {
2429 struct io_kiocb *req;
2430
2431 do {
2432 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2433 list_del(&req->inflight_entry);
2434 __io_complete_rw(req, -EAGAIN, 0, NULL);
2435 } while (!list_empty(again));
2436 }
2437
2438 /*
2439 * Find and free completed poll iocbs
2440 */
2441 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2442 struct list_head *done)
2443 {
2444 struct req_batch rb;
2445 struct io_kiocb *req;
2446 LIST_HEAD(again);
2447
2448 /* order with ->result store in io_complete_rw_iopoll() */
2449 smp_rmb();
2450
2451 io_init_req_batch(&rb);
2452 while (!list_empty(done)) {
2453 int cflags = 0;
2454
2455 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2456 if (READ_ONCE(req->result) == -EAGAIN) {
2457 req->result = 0;
2458 req->iopoll_completed = 0;
2459 list_move_tail(&req->inflight_entry, &again);
2460 continue;
2461 }
2462 list_del(&req->inflight_entry);
2463
2464 if (req->flags & REQ_F_BUFFER_SELECTED)
2465 cflags = io_put_rw_kbuf(req);
2466
2467 __io_cqring_fill_event(req, req->result, cflags);
2468 (*nr_events)++;
2469
2470 if (refcount_dec_and_test(&req->refs))
2471 io_req_free_batch(&rb, req);
2472 }
2473
2474 io_commit_cqring(ctx);
2475 io_cqring_ev_posted_iopoll(ctx);
2476 io_req_free_batch_finish(ctx, &rb);
2477
2478 if (!list_empty(&again))
2479 io_iopoll_queue(&again);
2480 }
2481
2482 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2483 long min)
2484 {
2485 struct io_kiocb *req, *tmp;
2486 LIST_HEAD(done);
2487 bool spin;
2488 int ret;
2489
2490 /*
2491 * Only spin for completions if we don't have multiple devices hanging
2492 * off our complete list, and we're under the requested amount.
2493 */
2494 spin = !ctx->poll_multi_file && *nr_events < min;
2495
2496 ret = 0;
2497 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2498 struct kiocb *kiocb = &req->rw.kiocb;
2499
2500 /*
2501 * Move completed and retryable entries to our local lists.
2502 * If we find a request that requires polling, break out
2503 * and complete those lists first, if we have entries there.
2504 */
2505 if (READ_ONCE(req->iopoll_completed)) {
2506 list_move_tail(&req->inflight_entry, &done);
2507 continue;
2508 }
2509 if (!list_empty(&done))
2510 break;
2511
2512 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2513 if (ret < 0)
2514 break;
2515
2516 /* iopoll may have completed current req */
2517 if (READ_ONCE(req->iopoll_completed))
2518 list_move_tail(&req->inflight_entry, &done);
2519
2520 if (ret && spin)
2521 spin = false;
2522 ret = 0;
2523 }
2524
2525 if (!list_empty(&done))
2526 io_iopoll_complete(ctx, nr_events, &done);
2527
2528 return ret;
2529 }
2530
2531 /*
2532 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2533 * non-spinning poll check - we'll still enter the driver poll loop, but only
2534 * as a non-spinning completion check.
2535 */
2536 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2537 long min)
2538 {
2539 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2540 int ret;
2541
2542 ret = io_do_iopoll(ctx, nr_events, min);
2543 if (ret < 0)
2544 return ret;
2545 if (*nr_events >= min)
2546 return 0;
2547 }
2548
2549 return 1;
2550 }
2551
2552 /*
2553 * We can't just wait for polled events to come to us, we have to actively
2554 * find and complete them.
2555 */
2556 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2557 {
2558 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2559 return;
2560
2561 mutex_lock(&ctx->uring_lock);
2562 while (!list_empty(&ctx->iopoll_list)) {
2563 unsigned int nr_events = 0;
2564
2565 io_do_iopoll(ctx, &nr_events, 0);
2566
2567 /* let it sleep and repeat later if can't complete a request */
2568 if (nr_events == 0)
2569 break;
2570 /*
2571 * Ensure we allow local-to-the-cpu processing to take place,
2572 * in this case we need to ensure that we reap all events.
2573 * Also let task_work, etc. to progress by releasing the mutex
2574 */
2575 if (need_resched()) {
2576 mutex_unlock(&ctx->uring_lock);
2577 cond_resched();
2578 mutex_lock(&ctx->uring_lock);
2579 }
2580 }
2581 mutex_unlock(&ctx->uring_lock);
2582 }
2583
2584 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2585 {
2586 unsigned int nr_events = 0;
2587 int iters = 0, ret = 0;
2588
2589 /*
2590 * We disallow the app entering submit/complete with polling, but we
2591 * still need to lock the ring to prevent racing with polled issue
2592 * that got punted to a workqueue.
2593 */
2594 mutex_lock(&ctx->uring_lock);
2595 do {
2596 /*
2597 * Don't enter poll loop if we already have events pending.
2598 * If we do, we can potentially be spinning for commands that
2599 * already triggered a CQE (eg in error).
2600 */
2601 if (test_bit(0, &ctx->cq_check_overflow))
2602 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2603 if (io_cqring_events(ctx))
2604 break;
2605
2606 /*
2607 * If a submit got punted to a workqueue, we can have the
2608 * application entering polling for a command before it gets
2609 * issued. That app will hold the uring_lock for the duration
2610 * of the poll right here, so we need to take a breather every
2611 * now and then to ensure that the issue has a chance to add
2612 * the poll to the issued list. Otherwise we can spin here
2613 * forever, while the workqueue is stuck trying to acquire the
2614 * very same mutex.
2615 */
2616 if (!(++iters & 7)) {
2617 mutex_unlock(&ctx->uring_lock);
2618 io_run_task_work();
2619 mutex_lock(&ctx->uring_lock);
2620 }
2621
2622 ret = io_iopoll_getevents(ctx, &nr_events, min);
2623 if (ret <= 0)
2624 break;
2625 ret = 0;
2626 } while (min && !nr_events && !need_resched());
2627
2628 mutex_unlock(&ctx->uring_lock);
2629 return ret;
2630 }
2631
2632 static void kiocb_end_write(struct io_kiocb *req)
2633 {
2634 /*
2635 * Tell lockdep we inherited freeze protection from submission
2636 * thread.
2637 */
2638 if (req->flags & REQ_F_ISREG) {
2639 struct inode *inode = file_inode(req->file);
2640
2641 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2642 }
2643 file_end_write(req->file);
2644 }
2645
2646 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2647 struct io_comp_state *cs)
2648 {
2649 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2650 int cflags = 0;
2651
2652 if (kiocb->ki_flags & IOCB_WRITE)
2653 kiocb_end_write(req);
2654
2655 if (res != req->result)
2656 req_set_fail_links(req);
2657 if (req->flags & REQ_F_BUFFER_SELECTED)
2658 cflags = io_put_rw_kbuf(req);
2659 __io_req_complete(req, res, cflags, cs);
2660 }
2661
2662 #ifdef CONFIG_BLOCK
2663 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2664 {
2665 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2666 ssize_t ret = -ECANCELED;
2667 struct iov_iter iter;
2668 int rw;
2669
2670 if (error) {
2671 ret = error;
2672 goto end_req;
2673 }
2674
2675 switch (req->opcode) {
2676 case IORING_OP_READV:
2677 case IORING_OP_READ_FIXED:
2678 case IORING_OP_READ:
2679 rw = READ;
2680 break;
2681 case IORING_OP_WRITEV:
2682 case IORING_OP_WRITE_FIXED:
2683 case IORING_OP_WRITE:
2684 rw = WRITE;
2685 break;
2686 default:
2687 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2688 req->opcode);
2689 goto end_req;
2690 }
2691
2692 if (!req->async_data) {
2693 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2694 if (ret < 0)
2695 goto end_req;
2696 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2697 if (!ret)
2698 return true;
2699 kfree(iovec);
2700 } else {
2701 return true;
2702 }
2703 end_req:
2704 req_set_fail_links(req);
2705 return false;
2706 }
2707 #endif
2708
2709 static bool io_rw_reissue(struct io_kiocb *req, long res)
2710 {
2711 #ifdef CONFIG_BLOCK
2712 umode_t mode = file_inode(req->file)->i_mode;
2713 int ret;
2714
2715 if (!S_ISBLK(mode) && !S_ISREG(mode))
2716 return false;
2717 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2718 return false;
2719
2720 lockdep_assert_held(&req->ctx->uring_lock);
2721
2722 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2723
2724 if (io_resubmit_prep(req, ret)) {
2725 refcount_inc(&req->refs);
2726 io_queue_async_work(req);
2727 return true;
2728 }
2729
2730 #endif
2731 return false;
2732 }
2733
2734 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2735 struct io_comp_state *cs)
2736 {
2737 if (!io_rw_reissue(req, res))
2738 io_complete_rw_common(&req->rw.kiocb, res, cs);
2739 }
2740
2741 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2742 {
2743 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2744
2745 __io_complete_rw(req, res, res2, NULL);
2746 }
2747
2748 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2749 {
2750 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2751
2752 if (kiocb->ki_flags & IOCB_WRITE)
2753 kiocb_end_write(req);
2754
2755 if (res != -EAGAIN && res != req->result)
2756 req_set_fail_links(req);
2757
2758 WRITE_ONCE(req->result, res);
2759 /* order with io_poll_complete() checking ->result */
2760 smp_wmb();
2761 WRITE_ONCE(req->iopoll_completed, 1);
2762 }
2763
2764 /*
2765 * After the iocb has been issued, it's safe to be found on the poll list.
2766 * Adding the kiocb to the list AFTER submission ensures that we don't
2767 * find it from a io_iopoll_getevents() thread before the issuer is done
2768 * accessing the kiocb cookie.
2769 */
2770 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2771 {
2772 struct io_ring_ctx *ctx = req->ctx;
2773
2774 /*
2775 * Track whether we have multiple files in our lists. This will impact
2776 * how we do polling eventually, not spinning if we're on potentially
2777 * different devices.
2778 */
2779 if (list_empty(&ctx->iopoll_list)) {
2780 ctx->poll_multi_file = false;
2781 } else if (!ctx->poll_multi_file) {
2782 struct io_kiocb *list_req;
2783
2784 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2785 inflight_entry);
2786 if (list_req->file != req->file)
2787 ctx->poll_multi_file = true;
2788 }
2789
2790 /*
2791 * For fast devices, IO may have already completed. If it has, add
2792 * it to the front so we find it first.
2793 */
2794 if (READ_ONCE(req->iopoll_completed))
2795 list_add(&req->inflight_entry, &ctx->iopoll_list);
2796 else
2797 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2798
2799 /*
2800 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2801 * task context or in io worker task context. If current task context is
2802 * sq thread, we don't need to check whether should wake up sq thread.
2803 */
2804 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2805 wq_has_sleeper(&ctx->sq_data->wait))
2806 wake_up(&ctx->sq_data->wait);
2807 }
2808
2809 static inline void __io_state_file_put(struct io_submit_state *state)
2810 {
2811 fput_many(state->file, state->file_refs);
2812 state->file_refs = 0;
2813 }
2814
2815 static inline void io_state_file_put(struct io_submit_state *state)
2816 {
2817 if (state->file_refs)
2818 __io_state_file_put(state);
2819 }
2820
2821 /*
2822 * Get as many references to a file as we have IOs left in this submission,
2823 * assuming most submissions are for one file, or at least that each file
2824 * has more than one submission.
2825 */
2826 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2827 {
2828 if (!state)
2829 return fget(fd);
2830
2831 if (state->file_refs) {
2832 if (state->fd == fd) {
2833 state->file_refs--;
2834 return state->file;
2835 }
2836 __io_state_file_put(state);
2837 }
2838 state->file = fget_many(fd, state->ios_left);
2839 if (unlikely(!state->file))
2840 return NULL;
2841
2842 state->fd = fd;
2843 state->file_refs = state->ios_left - 1;
2844 return state->file;
2845 }
2846
2847 static bool io_bdev_nowait(struct block_device *bdev)
2848 {
2849 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2850 }
2851
2852 /*
2853 * If we tracked the file through the SCM inflight mechanism, we could support
2854 * any file. For now, just ensure that anything potentially problematic is done
2855 * inline.
2856 */
2857 static bool io_file_supports_async(struct file *file, int rw)
2858 {
2859 umode_t mode = file_inode(file)->i_mode;
2860
2861 if (S_ISBLK(mode)) {
2862 if (IS_ENABLED(CONFIG_BLOCK) &&
2863 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2864 return true;
2865 return false;
2866 }
2867 if (S_ISCHR(mode) || S_ISSOCK(mode))
2868 return true;
2869 if (S_ISREG(mode)) {
2870 if (IS_ENABLED(CONFIG_BLOCK) &&
2871 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2872 file->f_op != &io_uring_fops)
2873 return true;
2874 return false;
2875 }
2876
2877 /* any ->read/write should understand O_NONBLOCK */
2878 if (file->f_flags & O_NONBLOCK)
2879 return true;
2880
2881 if (!(file->f_mode & FMODE_NOWAIT))
2882 return false;
2883
2884 if (rw == READ)
2885 return file->f_op->read_iter != NULL;
2886
2887 return file->f_op->write_iter != NULL;
2888 }
2889
2890 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2891 {
2892 struct io_ring_ctx *ctx = req->ctx;
2893 struct kiocb *kiocb = &req->rw.kiocb;
2894 unsigned ioprio;
2895 int ret;
2896
2897 if (S_ISREG(file_inode(req->file)->i_mode))
2898 req->flags |= REQ_F_ISREG;
2899
2900 kiocb->ki_pos = READ_ONCE(sqe->off);
2901 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2902 req->flags |= REQ_F_CUR_POS;
2903 kiocb->ki_pos = req->file->f_pos;
2904 }
2905 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2906 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2907 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2908 if (unlikely(ret))
2909 return ret;
2910
2911 ioprio = READ_ONCE(sqe->ioprio);
2912 if (ioprio) {
2913 ret = ioprio_check_cap(ioprio);
2914 if (ret)
2915 return ret;
2916
2917 kiocb->ki_ioprio = ioprio;
2918 } else
2919 kiocb->ki_ioprio = get_current_ioprio();
2920
2921 /* don't allow async punt if RWF_NOWAIT was requested */
2922 if (kiocb->ki_flags & IOCB_NOWAIT)
2923 req->flags |= REQ_F_NOWAIT;
2924
2925 if (ctx->flags & IORING_SETUP_IOPOLL) {
2926 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2927 !kiocb->ki_filp->f_op->iopoll)
2928 return -EOPNOTSUPP;
2929
2930 kiocb->ki_flags |= IOCB_HIPRI;
2931 kiocb->ki_complete = io_complete_rw_iopoll;
2932 req->iopoll_completed = 0;
2933 } else {
2934 if (kiocb->ki_flags & IOCB_HIPRI)
2935 return -EINVAL;
2936 kiocb->ki_complete = io_complete_rw;
2937 }
2938
2939 req->rw.addr = READ_ONCE(sqe->addr);
2940 req->rw.len = READ_ONCE(sqe->len);
2941 req->buf_index = READ_ONCE(sqe->buf_index);
2942 return 0;
2943 }
2944
2945 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2946 {
2947 switch (ret) {
2948 case -EIOCBQUEUED:
2949 break;
2950 case -ERESTARTSYS:
2951 case -ERESTARTNOINTR:
2952 case -ERESTARTNOHAND:
2953 case -ERESTART_RESTARTBLOCK:
2954 /*
2955 * We can't just restart the syscall, since previously
2956 * submitted sqes may already be in progress. Just fail this
2957 * IO with EINTR.
2958 */
2959 ret = -EINTR;
2960 fallthrough;
2961 default:
2962 kiocb->ki_complete(kiocb, ret, 0);
2963 }
2964 }
2965
2966 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2967 struct io_comp_state *cs)
2968 {
2969 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2970 struct io_async_rw *io = req->async_data;
2971
2972 /* add previously done IO, if any */
2973 if (io && io->bytes_done > 0) {
2974 if (ret < 0)
2975 ret = io->bytes_done;
2976 else
2977 ret += io->bytes_done;
2978 }
2979
2980 if (req->flags & REQ_F_CUR_POS)
2981 req->file->f_pos = kiocb->ki_pos;
2982 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2983 __io_complete_rw(req, ret, 0, cs);
2984 else
2985 io_rw_done(kiocb, ret);
2986 }
2987
2988 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2989 struct iov_iter *iter)
2990 {
2991 struct io_ring_ctx *ctx = req->ctx;
2992 size_t len = req->rw.len;
2993 struct io_mapped_ubuf *imu;
2994 u16 index, buf_index = req->buf_index;
2995 size_t offset;
2996 u64 buf_addr;
2997
2998 if (unlikely(buf_index >= ctx->nr_user_bufs))
2999 return -EFAULT;
3000 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3001 imu = &ctx->user_bufs[index];
3002 buf_addr = req->rw.addr;
3003
3004 /* overflow */
3005 if (buf_addr + len < buf_addr)
3006 return -EFAULT;
3007 /* not inside the mapped region */
3008 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3009 return -EFAULT;
3010
3011 /*
3012 * May not be a start of buffer, set size appropriately
3013 * and advance us to the beginning.
3014 */
3015 offset = buf_addr - imu->ubuf;
3016 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3017
3018 if (offset) {
3019 /*
3020 * Don't use iov_iter_advance() here, as it's really slow for
3021 * using the latter parts of a big fixed buffer - it iterates
3022 * over each segment manually. We can cheat a bit here, because
3023 * we know that:
3024 *
3025 * 1) it's a BVEC iter, we set it up
3026 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3027 * first and last bvec
3028 *
3029 * So just find our index, and adjust the iterator afterwards.
3030 * If the offset is within the first bvec (or the whole first
3031 * bvec, just use iov_iter_advance(). This makes it easier
3032 * since we can just skip the first segment, which may not
3033 * be PAGE_SIZE aligned.
3034 */
3035 const struct bio_vec *bvec = imu->bvec;
3036
3037 if (offset <= bvec->bv_len) {
3038 iov_iter_advance(iter, offset);
3039 } else {
3040 unsigned long seg_skip;
3041
3042 /* skip first vec */
3043 offset -= bvec->bv_len;
3044 seg_skip = 1 + (offset >> PAGE_SHIFT);
3045
3046 iter->bvec = bvec + seg_skip;
3047 iter->nr_segs -= seg_skip;
3048 iter->count -= bvec->bv_len + offset;
3049 iter->iov_offset = offset & ~PAGE_MASK;
3050 }
3051 }
3052
3053 return len;
3054 }
3055
3056 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3057 {
3058 if (needs_lock)
3059 mutex_unlock(&ctx->uring_lock);
3060 }
3061
3062 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3063 {
3064 /*
3065 * "Normal" inline submissions always hold the uring_lock, since we
3066 * grab it from the system call. Same is true for the SQPOLL offload.
3067 * The only exception is when we've detached the request and issue it
3068 * from an async worker thread, grab the lock for that case.
3069 */
3070 if (needs_lock)
3071 mutex_lock(&ctx->uring_lock);
3072 }
3073
3074 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3075 int bgid, struct io_buffer *kbuf,
3076 bool needs_lock)
3077 {
3078 struct io_buffer *head;
3079
3080 if (req->flags & REQ_F_BUFFER_SELECTED)
3081 return kbuf;
3082
3083 io_ring_submit_lock(req->ctx, needs_lock);
3084
3085 lockdep_assert_held(&req->ctx->uring_lock);
3086
3087 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3088 if (head) {
3089 if (!list_empty(&head->list)) {
3090 kbuf = list_last_entry(&head->list, struct io_buffer,
3091 list);
3092 list_del(&kbuf->list);
3093 } else {
3094 kbuf = head;
3095 idr_remove(&req->ctx->io_buffer_idr, bgid);
3096 }
3097 if (*len > kbuf->len)
3098 *len = kbuf->len;
3099 } else {
3100 kbuf = ERR_PTR(-ENOBUFS);
3101 }
3102
3103 io_ring_submit_unlock(req->ctx, needs_lock);
3104
3105 return kbuf;
3106 }
3107
3108 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3109 bool needs_lock)
3110 {
3111 struct io_buffer *kbuf;
3112 u16 bgid;
3113
3114 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3115 bgid = req->buf_index;
3116 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3117 if (IS_ERR(kbuf))
3118 return kbuf;
3119 req->rw.addr = (u64) (unsigned long) kbuf;
3120 req->flags |= REQ_F_BUFFER_SELECTED;
3121 return u64_to_user_ptr(kbuf->addr);
3122 }
3123
3124 #ifdef CONFIG_COMPAT
3125 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3126 bool needs_lock)
3127 {
3128 struct compat_iovec __user *uiov;
3129 compat_ssize_t clen;
3130 void __user *buf;
3131 ssize_t len;
3132
3133 uiov = u64_to_user_ptr(req->rw.addr);
3134 if (!access_ok(uiov, sizeof(*uiov)))
3135 return -EFAULT;
3136 if (__get_user(clen, &uiov->iov_len))
3137 return -EFAULT;
3138 if (clen < 0)
3139 return -EINVAL;
3140
3141 len = clen;
3142 buf = io_rw_buffer_select(req, &len, needs_lock);
3143 if (IS_ERR(buf))
3144 return PTR_ERR(buf);
3145 iov[0].iov_base = buf;
3146 iov[0].iov_len = (compat_size_t) len;
3147 return 0;
3148 }
3149 #endif
3150
3151 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3152 bool needs_lock)
3153 {
3154 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3155 void __user *buf;
3156 ssize_t len;
3157
3158 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3159 return -EFAULT;
3160
3161 len = iov[0].iov_len;
3162 if (len < 0)
3163 return -EINVAL;
3164 buf = io_rw_buffer_select(req, &len, needs_lock);
3165 if (IS_ERR(buf))
3166 return PTR_ERR(buf);
3167 iov[0].iov_base = buf;
3168 iov[0].iov_len = len;
3169 return 0;
3170 }
3171
3172 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3173 bool needs_lock)
3174 {
3175 if (req->flags & REQ_F_BUFFER_SELECTED) {
3176 struct io_buffer *kbuf;
3177
3178 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3179 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3180 iov[0].iov_len = kbuf->len;
3181 return 0;
3182 }
3183 if (req->rw.len != 1)
3184 return -EINVAL;
3185
3186 #ifdef CONFIG_COMPAT
3187 if (req->ctx->compat)
3188 return io_compat_import(req, iov, needs_lock);
3189 #endif
3190
3191 return __io_iov_buffer_select(req, iov, needs_lock);
3192 }
3193
3194 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3195 struct iovec **iovec, struct iov_iter *iter,
3196 bool needs_lock)
3197 {
3198 void __user *buf = u64_to_user_ptr(req->rw.addr);
3199 size_t sqe_len = req->rw.len;
3200 ssize_t ret;
3201 u8 opcode;
3202
3203 opcode = req->opcode;
3204 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3205 *iovec = NULL;
3206 return io_import_fixed(req, rw, iter);
3207 }
3208
3209 /* buffer index only valid with fixed read/write, or buffer select */
3210 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3211 return -EINVAL;
3212
3213 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3214 if (req->flags & REQ_F_BUFFER_SELECT) {
3215 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3216 if (IS_ERR(buf))
3217 return PTR_ERR(buf);
3218 req->rw.len = sqe_len;
3219 }
3220
3221 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3222 *iovec = NULL;
3223 return ret;
3224 }
3225
3226 if (req->flags & REQ_F_BUFFER_SELECT) {
3227 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3228 if (!ret) {
3229 ret = (*iovec)->iov_len;
3230 iov_iter_init(iter, rw, *iovec, 1, ret);
3231 }
3232 *iovec = NULL;
3233 return ret;
3234 }
3235
3236 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3237 req->ctx->compat);
3238 }
3239
3240 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3241 {
3242 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3243 }
3244
3245 /*
3246 * For files that don't have ->read_iter() and ->write_iter(), handle them
3247 * by looping over ->read() or ->write() manually.
3248 */
3249 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3250 {
3251 struct kiocb *kiocb = &req->rw.kiocb;
3252 struct file *file = req->file;
3253 ssize_t ret = 0;
3254
3255 /*
3256 * Don't support polled IO through this interface, and we can't
3257 * support non-blocking either. For the latter, this just causes
3258 * the kiocb to be handled from an async context.
3259 */
3260 if (kiocb->ki_flags & IOCB_HIPRI)
3261 return -EOPNOTSUPP;
3262 if (kiocb->ki_flags & IOCB_NOWAIT)
3263 return -EAGAIN;
3264
3265 while (iov_iter_count(iter)) {
3266 struct iovec iovec;
3267 ssize_t nr;
3268
3269 if (!iov_iter_is_bvec(iter)) {
3270 iovec = iov_iter_iovec(iter);
3271 } else {
3272 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3273 iovec.iov_len = req->rw.len;
3274 }
3275
3276 if (rw == READ) {
3277 nr = file->f_op->read(file, iovec.iov_base,
3278 iovec.iov_len, io_kiocb_ppos(kiocb));
3279 } else {
3280 nr = file->f_op->write(file, iovec.iov_base,
3281 iovec.iov_len, io_kiocb_ppos(kiocb));
3282 }
3283
3284 if (nr < 0) {
3285 if (!ret)
3286 ret = nr;
3287 break;
3288 }
3289 ret += nr;
3290 if (nr != iovec.iov_len)
3291 break;
3292 req->rw.len -= nr;
3293 req->rw.addr += nr;
3294 iov_iter_advance(iter, nr);
3295 }
3296
3297 return ret;
3298 }
3299
3300 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3301 const struct iovec *fast_iov, struct iov_iter *iter)
3302 {
3303 struct io_async_rw *rw = req->async_data;
3304
3305 memcpy(&rw->iter, iter, sizeof(*iter));
3306 rw->free_iovec = iovec;
3307 rw->bytes_done = 0;
3308 /* can only be fixed buffers, no need to do anything */
3309 if (iov_iter_is_bvec(iter))
3310 return;
3311 if (!iovec) {
3312 unsigned iov_off = 0;
3313
3314 rw->iter.iov = rw->fast_iov;
3315 if (iter->iov != fast_iov) {
3316 iov_off = iter->iov - fast_iov;
3317 rw->iter.iov += iov_off;
3318 }
3319 if (rw->fast_iov != fast_iov)
3320 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3321 sizeof(struct iovec) * iter->nr_segs);
3322 } else {
3323 req->flags |= REQ_F_NEED_CLEANUP;
3324 }
3325 }
3326
3327 static inline int __io_alloc_async_data(struct io_kiocb *req)
3328 {
3329 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3330 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3331 return req->async_data == NULL;
3332 }
3333
3334 static int io_alloc_async_data(struct io_kiocb *req)
3335 {
3336 if (!io_op_defs[req->opcode].needs_async_data)
3337 return 0;
3338
3339 return __io_alloc_async_data(req);
3340 }
3341
3342 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3343 const struct iovec *fast_iov,
3344 struct iov_iter *iter, bool force)
3345 {
3346 if (!force && !io_op_defs[req->opcode].needs_async_data)
3347 return 0;
3348 if (!req->async_data) {
3349 if (__io_alloc_async_data(req))
3350 return -ENOMEM;
3351
3352 io_req_map_rw(req, iovec, fast_iov, iter);
3353 }
3354 return 0;
3355 }
3356
3357 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3358 {
3359 struct io_async_rw *iorw = req->async_data;
3360 struct iovec *iov = iorw->fast_iov;
3361 ssize_t ret;
3362
3363 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3364 if (unlikely(ret < 0))
3365 return ret;
3366
3367 iorw->bytes_done = 0;
3368 iorw->free_iovec = iov;
3369 if (iov)
3370 req->flags |= REQ_F_NEED_CLEANUP;
3371 return 0;
3372 }
3373
3374 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3375 {
3376 ssize_t ret;
3377
3378 ret = io_prep_rw(req, sqe);
3379 if (ret)
3380 return ret;
3381
3382 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3383 return -EBADF;
3384
3385 /* either don't need iovec imported or already have it */
3386 if (!req->async_data)
3387 return 0;
3388 return io_rw_prep_async(req, READ);
3389 }
3390
3391 /*
3392 * This is our waitqueue callback handler, registered through lock_page_async()
3393 * when we initially tried to do the IO with the iocb armed our waitqueue.
3394 * This gets called when the page is unlocked, and we generally expect that to
3395 * happen when the page IO is completed and the page is now uptodate. This will
3396 * queue a task_work based retry of the operation, attempting to copy the data
3397 * again. If the latter fails because the page was NOT uptodate, then we will
3398 * do a thread based blocking retry of the operation. That's the unexpected
3399 * slow path.
3400 */
3401 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3402 int sync, void *arg)
3403 {
3404 struct wait_page_queue *wpq;
3405 struct io_kiocb *req = wait->private;
3406 struct wait_page_key *key = arg;
3407 int ret;
3408
3409 wpq = container_of(wait, struct wait_page_queue, wait);
3410
3411 if (!wake_page_match(wpq, key))
3412 return 0;
3413
3414 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3415 list_del_init(&wait->entry);
3416
3417 init_task_work(&req->task_work, io_req_task_submit);
3418 percpu_ref_get(&req->ctx->refs);
3419
3420 /* submit ref gets dropped, acquire a new one */
3421 refcount_inc(&req->refs);
3422 ret = io_req_task_work_add(req);
3423 if (unlikely(ret)) {
3424 struct task_struct *tsk;
3425
3426 /* queue just for cancelation */
3427 init_task_work(&req->task_work, io_req_task_cancel);
3428 tsk = io_wq_get_task(req->ctx->io_wq);
3429 task_work_add(tsk, &req->task_work, TWA_NONE);
3430 wake_up_process(tsk);
3431 }
3432 return 1;
3433 }
3434
3435 /*
3436 * This controls whether a given IO request should be armed for async page
3437 * based retry. If we return false here, the request is handed to the async
3438 * worker threads for retry. If we're doing buffered reads on a regular file,
3439 * we prepare a private wait_page_queue entry and retry the operation. This
3440 * will either succeed because the page is now uptodate and unlocked, or it
3441 * will register a callback when the page is unlocked at IO completion. Through
3442 * that callback, io_uring uses task_work to setup a retry of the operation.
3443 * That retry will attempt the buffered read again. The retry will generally
3444 * succeed, or in rare cases where it fails, we then fall back to using the
3445 * async worker threads for a blocking retry.
3446 */
3447 static bool io_rw_should_retry(struct io_kiocb *req)
3448 {
3449 struct io_async_rw *rw = req->async_data;
3450 struct wait_page_queue *wait = &rw->wpq;
3451 struct kiocb *kiocb = &req->rw.kiocb;
3452
3453 /* never retry for NOWAIT, we just complete with -EAGAIN */
3454 if (req->flags & REQ_F_NOWAIT)
3455 return false;
3456
3457 /* Only for buffered IO */
3458 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3459 return false;
3460
3461 /*
3462 * just use poll if we can, and don't attempt if the fs doesn't
3463 * support callback based unlocks
3464 */
3465 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3466 return false;
3467
3468 wait->wait.func = io_async_buf_func;
3469 wait->wait.private = req;
3470 wait->wait.flags = 0;
3471 INIT_LIST_HEAD(&wait->wait.entry);
3472 kiocb->ki_flags |= IOCB_WAITQ;
3473 kiocb->ki_flags &= ~IOCB_NOWAIT;
3474 kiocb->ki_waitq = wait;
3475 return true;
3476 }
3477
3478 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3479 {
3480 if (req->file->f_op->read_iter)
3481 return call_read_iter(req->file, &req->rw.kiocb, iter);
3482 else if (req->file->f_op->read)
3483 return loop_rw_iter(READ, req, iter);
3484 else
3485 return -EINVAL;
3486 }
3487
3488 static int io_read(struct io_kiocb *req, bool force_nonblock,
3489 struct io_comp_state *cs)
3490 {
3491 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3492 struct kiocb *kiocb = &req->rw.kiocb;
3493 struct iov_iter __iter, *iter = &__iter;
3494 struct io_async_rw *rw = req->async_data;
3495 ssize_t io_size, ret, ret2;
3496 bool no_async;
3497
3498 if (rw) {
3499 iter = &rw->iter;
3500 iovec = NULL;
3501 } else {
3502 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3503 if (ret < 0)
3504 return ret;
3505 }
3506 io_size = iov_iter_count(iter);
3507 req->result = io_size;
3508 ret = 0;
3509
3510 /* Ensure we clear previously set non-block flag */
3511 if (!force_nonblock)
3512 kiocb->ki_flags &= ~IOCB_NOWAIT;
3513 else
3514 kiocb->ki_flags |= IOCB_NOWAIT;
3515
3516
3517 /* If the file doesn't support async, just async punt */
3518 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3519 if (no_async)
3520 goto copy_iov;
3521
3522 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3523 if (unlikely(ret))
3524 goto out_free;
3525
3526 ret = io_iter_do_read(req, iter);
3527
3528 if (!ret) {
3529 goto done;
3530 } else if (ret == -EIOCBQUEUED) {
3531 ret = 0;
3532 goto out_free;
3533 } else if (ret == -EAGAIN) {
3534 /* IOPOLL retry should happen for io-wq threads */
3535 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3536 goto done;
3537 /* no retry on NONBLOCK marked file */
3538 if (req->file->f_flags & O_NONBLOCK)
3539 goto done;
3540 /* some cases will consume bytes even on error returns */
3541 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3542 ret = 0;
3543 goto copy_iov;
3544 } else if (ret < 0) {
3545 /* make sure -ERESTARTSYS -> -EINTR is done */
3546 goto done;
3547 }
3548
3549 /* read it all, or we did blocking attempt. no retry. */
3550 if (!iov_iter_count(iter) || !force_nonblock ||
3551 (req->file->f_flags & O_NONBLOCK))
3552 goto done;
3553
3554 io_size -= ret;
3555 copy_iov:
3556 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3557 if (ret2) {
3558 ret = ret2;
3559 goto out_free;
3560 }
3561 if (no_async)
3562 return -EAGAIN;
3563 rw = req->async_data;
3564 /* it's copied and will be cleaned with ->io */
3565 iovec = NULL;
3566 /* now use our persistent iterator, if we aren't already */
3567 iter = &rw->iter;
3568 retry:
3569 rw->bytes_done += ret;
3570 /* if we can retry, do so with the callbacks armed */
3571 if (!io_rw_should_retry(req)) {
3572 kiocb->ki_flags &= ~IOCB_WAITQ;
3573 return -EAGAIN;
3574 }
3575
3576 /*
3577 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3578 * get -EIOCBQUEUED, then we'll get a notification when the desired
3579 * page gets unlocked. We can also get a partial read here, and if we
3580 * do, then just retry at the new offset.
3581 */
3582 ret = io_iter_do_read(req, iter);
3583 if (ret == -EIOCBQUEUED) {
3584 ret = 0;
3585 goto out_free;
3586 } else if (ret > 0 && ret < io_size) {
3587 /* we got some bytes, but not all. retry. */
3588 goto retry;
3589 }
3590 done:
3591 kiocb_done(kiocb, ret, cs);
3592 ret = 0;
3593 out_free:
3594 /* it's reportedly faster than delegating the null check to kfree() */
3595 if (iovec)
3596 kfree(iovec);
3597 return ret;
3598 }
3599
3600 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3601 {
3602 ssize_t ret;
3603
3604 ret = io_prep_rw(req, sqe);
3605 if (ret)
3606 return ret;
3607
3608 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3609 return -EBADF;
3610
3611 /* either don't need iovec imported or already have it */
3612 if (!req->async_data)
3613 return 0;
3614 return io_rw_prep_async(req, WRITE);
3615 }
3616
3617 static int io_write(struct io_kiocb *req, bool force_nonblock,
3618 struct io_comp_state *cs)
3619 {
3620 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3621 struct kiocb *kiocb = &req->rw.kiocb;
3622 struct iov_iter __iter, *iter = &__iter;
3623 struct io_async_rw *rw = req->async_data;
3624 ssize_t ret, ret2, io_size;
3625
3626 if (rw) {
3627 iter = &rw->iter;
3628 iovec = NULL;
3629 } else {
3630 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3631 if (ret < 0)
3632 return ret;
3633 }
3634 io_size = iov_iter_count(iter);
3635 req->result = io_size;
3636
3637 /* Ensure we clear previously set non-block flag */
3638 if (!force_nonblock)
3639 kiocb->ki_flags &= ~IOCB_NOWAIT;
3640 else
3641 kiocb->ki_flags |= IOCB_NOWAIT;
3642
3643 /* If the file doesn't support async, just async punt */
3644 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3645 goto copy_iov;
3646
3647 /* file path doesn't support NOWAIT for non-direct_IO */
3648 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3649 (req->flags & REQ_F_ISREG))
3650 goto copy_iov;
3651
3652 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3653 if (unlikely(ret))
3654 goto out_free;
3655
3656 /*
3657 * Open-code file_start_write here to grab freeze protection,
3658 * which will be released by another thread in
3659 * io_complete_rw(). Fool lockdep by telling it the lock got
3660 * released so that it doesn't complain about the held lock when
3661 * we return to userspace.
3662 */
3663 if (req->flags & REQ_F_ISREG) {
3664 sb_start_write(file_inode(req->file)->i_sb);
3665 __sb_writers_release(file_inode(req->file)->i_sb,
3666 SB_FREEZE_WRITE);
3667 }
3668 kiocb->ki_flags |= IOCB_WRITE;
3669
3670 if (req->file->f_op->write_iter)
3671 ret2 = call_write_iter(req->file, kiocb, iter);
3672 else if (req->file->f_op->write)
3673 ret2 = loop_rw_iter(WRITE, req, iter);
3674 else
3675 ret2 = -EINVAL;
3676
3677 /*
3678 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3679 * retry them without IOCB_NOWAIT.
3680 */
3681 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3682 ret2 = -EAGAIN;
3683 /* no retry on NONBLOCK marked file */
3684 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3685 goto done;
3686 if (!force_nonblock || ret2 != -EAGAIN) {
3687 /* IOPOLL retry should happen for io-wq threads */
3688 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3689 goto copy_iov;
3690 done:
3691 kiocb_done(kiocb, ret2, cs);
3692 } else {
3693 copy_iov:
3694 /* some cases will consume bytes even on error returns */
3695 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3696 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3697 if (!ret)
3698 return -EAGAIN;
3699 }
3700 out_free:
3701 /* it's reportedly faster than delegating the null check to kfree() */
3702 if (iovec)
3703 kfree(iovec);
3704 return ret;
3705 }
3706
3707 static int io_renameat_prep(struct io_kiocb *req,
3708 const struct io_uring_sqe *sqe)
3709 {
3710 struct io_rename *ren = &req->rename;
3711 const char __user *oldf, *newf;
3712
3713 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3714 return -EBADF;
3715
3716 ren->old_dfd = READ_ONCE(sqe->fd);
3717 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3718 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3719 ren->new_dfd = READ_ONCE(sqe->len);
3720 ren->flags = READ_ONCE(sqe->rename_flags);
3721
3722 ren->oldpath = getname(oldf);
3723 if (IS_ERR(ren->oldpath))
3724 return PTR_ERR(ren->oldpath);
3725
3726 ren->newpath = getname(newf);
3727 if (IS_ERR(ren->newpath)) {
3728 putname(ren->oldpath);
3729 return PTR_ERR(ren->newpath);
3730 }
3731
3732 req->flags |= REQ_F_NEED_CLEANUP;
3733 return 0;
3734 }
3735
3736 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3737 {
3738 struct io_rename *ren = &req->rename;
3739 int ret;
3740
3741 if (force_nonblock)
3742 return -EAGAIN;
3743
3744 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3745 ren->newpath, ren->flags);
3746
3747 req->flags &= ~REQ_F_NEED_CLEANUP;
3748 if (ret < 0)
3749 req_set_fail_links(req);
3750 io_req_complete(req, ret);
3751 return 0;
3752 }
3753
3754 static int io_unlinkat_prep(struct io_kiocb *req,
3755 const struct io_uring_sqe *sqe)
3756 {
3757 struct io_unlink *un = &req->unlink;
3758 const char __user *fname;
3759
3760 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3761 return -EBADF;
3762
3763 un->dfd = READ_ONCE(sqe->fd);
3764
3765 un->flags = READ_ONCE(sqe->unlink_flags);
3766 if (un->flags & ~AT_REMOVEDIR)
3767 return -EINVAL;
3768
3769 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3770 un->filename = getname(fname);
3771 if (IS_ERR(un->filename))
3772 return PTR_ERR(un->filename);
3773
3774 req->flags |= REQ_F_NEED_CLEANUP;
3775 return 0;
3776 }
3777
3778 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3779 {
3780 struct io_unlink *un = &req->unlink;
3781 int ret;
3782
3783 if (force_nonblock)
3784 return -EAGAIN;
3785
3786 if (un->flags & AT_REMOVEDIR)
3787 ret = do_rmdir(un->dfd, un->filename);
3788 else
3789 ret = do_unlinkat(un->dfd, un->filename);
3790
3791 req->flags &= ~REQ_F_NEED_CLEANUP;
3792 if (ret < 0)
3793 req_set_fail_links(req);
3794 io_req_complete(req, ret);
3795 return 0;
3796 }
3797
3798 static int io_shutdown_prep(struct io_kiocb *req,
3799 const struct io_uring_sqe *sqe)
3800 {
3801 #if defined(CONFIG_NET)
3802 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3803 return -EINVAL;
3804 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3805 sqe->buf_index)
3806 return -EINVAL;
3807
3808 req->shutdown.how = READ_ONCE(sqe->len);
3809 return 0;
3810 #else
3811 return -EOPNOTSUPP;
3812 #endif
3813 }
3814
3815 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3816 {
3817 #if defined(CONFIG_NET)
3818 struct socket *sock;
3819 int ret;
3820
3821 if (force_nonblock)
3822 return -EAGAIN;
3823
3824 sock = sock_from_file(req->file);
3825 if (unlikely(!sock))
3826 return -ENOTSOCK;
3827
3828 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3829 if (ret < 0)
3830 req_set_fail_links(req);
3831 io_req_complete(req, ret);
3832 return 0;
3833 #else
3834 return -EOPNOTSUPP;
3835 #endif
3836 }
3837
3838 static int __io_splice_prep(struct io_kiocb *req,
3839 const struct io_uring_sqe *sqe)
3840 {
3841 struct io_splice* sp = &req->splice;
3842 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3843
3844 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3845 return -EINVAL;
3846
3847 sp->file_in = NULL;
3848 sp->len = READ_ONCE(sqe->len);
3849 sp->flags = READ_ONCE(sqe->splice_flags);
3850
3851 if (unlikely(sp->flags & ~valid_flags))
3852 return -EINVAL;
3853
3854 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3855 (sp->flags & SPLICE_F_FD_IN_FIXED));
3856 if (!sp->file_in)
3857 return -EBADF;
3858 req->flags |= REQ_F_NEED_CLEANUP;
3859
3860 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3861 /*
3862 * Splice operation will be punted aync, and here need to
3863 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3864 */
3865 io_req_init_async(req);
3866 req->work.flags |= IO_WQ_WORK_UNBOUND;
3867 }
3868
3869 return 0;
3870 }
3871
3872 static int io_tee_prep(struct io_kiocb *req,
3873 const struct io_uring_sqe *sqe)
3874 {
3875 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3876 return -EINVAL;
3877 return __io_splice_prep(req, sqe);
3878 }
3879
3880 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3881 {
3882 struct io_splice *sp = &req->splice;
3883 struct file *in = sp->file_in;
3884 struct file *out = sp->file_out;
3885 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3886 long ret = 0;
3887
3888 if (force_nonblock)
3889 return -EAGAIN;
3890 if (sp->len)
3891 ret = do_tee(in, out, sp->len, flags);
3892
3893 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3894 req->flags &= ~REQ_F_NEED_CLEANUP;
3895
3896 if (ret != sp->len)
3897 req_set_fail_links(req);
3898 io_req_complete(req, ret);
3899 return 0;
3900 }
3901
3902 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3903 {
3904 struct io_splice* sp = &req->splice;
3905
3906 sp->off_in = READ_ONCE(sqe->splice_off_in);
3907 sp->off_out = READ_ONCE(sqe->off);
3908 return __io_splice_prep(req, sqe);
3909 }
3910
3911 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3912 {
3913 struct io_splice *sp = &req->splice;
3914 struct file *in = sp->file_in;
3915 struct file *out = sp->file_out;
3916 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3917 loff_t *poff_in, *poff_out;
3918 long ret = 0;
3919
3920 if (force_nonblock)
3921 return -EAGAIN;
3922
3923 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3924 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3925
3926 if (sp->len)
3927 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3928
3929 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3930 req->flags &= ~REQ_F_NEED_CLEANUP;
3931
3932 if (ret != sp->len)
3933 req_set_fail_links(req);
3934 io_req_complete(req, ret);
3935 return 0;
3936 }
3937
3938 /*
3939 * IORING_OP_NOP just posts a completion event, nothing else.
3940 */
3941 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3942 {
3943 struct io_ring_ctx *ctx = req->ctx;
3944
3945 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3946 return -EINVAL;
3947
3948 __io_req_complete(req, 0, 0, cs);
3949 return 0;
3950 }
3951
3952 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3953 {
3954 struct io_ring_ctx *ctx = req->ctx;
3955
3956 if (!req->file)
3957 return -EBADF;
3958
3959 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3960 return -EINVAL;
3961 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3962 return -EINVAL;
3963
3964 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3965 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3966 return -EINVAL;
3967
3968 req->sync.off = READ_ONCE(sqe->off);
3969 req->sync.len = READ_ONCE(sqe->len);
3970 return 0;
3971 }
3972
3973 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3974 {
3975 loff_t end = req->sync.off + req->sync.len;
3976 int ret;
3977
3978 /* fsync always requires a blocking context */
3979 if (force_nonblock)
3980 return -EAGAIN;
3981
3982 ret = vfs_fsync_range(req->file, req->sync.off,
3983 end > 0 ? end : LLONG_MAX,
3984 req->sync.flags & IORING_FSYNC_DATASYNC);
3985 if (ret < 0)
3986 req_set_fail_links(req);
3987 io_req_complete(req, ret);
3988 return 0;
3989 }
3990
3991 static int io_fallocate_prep(struct io_kiocb *req,
3992 const struct io_uring_sqe *sqe)
3993 {
3994 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3995 return -EINVAL;
3996 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3997 return -EINVAL;
3998
3999 req->sync.off = READ_ONCE(sqe->off);
4000 req->sync.len = READ_ONCE(sqe->addr);
4001 req->sync.mode = READ_ONCE(sqe->len);
4002 return 0;
4003 }
4004
4005 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4006 {
4007 int ret;
4008
4009 /* fallocate always requiring blocking context */
4010 if (force_nonblock)
4011 return -EAGAIN;
4012 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4013 req->sync.len);
4014 if (ret < 0)
4015 req_set_fail_links(req);
4016 io_req_complete(req, ret);
4017 return 0;
4018 }
4019
4020 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4021 {
4022 const char __user *fname;
4023 int ret;
4024
4025 if (unlikely(sqe->ioprio || sqe->buf_index))
4026 return -EINVAL;
4027 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4028 return -EBADF;
4029
4030 /* open.how should be already initialised */
4031 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4032 req->open.how.flags |= O_LARGEFILE;
4033
4034 req->open.dfd = READ_ONCE(sqe->fd);
4035 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4036 req->open.filename = getname(fname);
4037 if (IS_ERR(req->open.filename)) {
4038 ret = PTR_ERR(req->open.filename);
4039 req->open.filename = NULL;
4040 return ret;
4041 }
4042 req->open.nofile = rlimit(RLIMIT_NOFILE);
4043 req->open.ignore_nonblock = false;
4044 req->flags |= REQ_F_NEED_CLEANUP;
4045 return 0;
4046 }
4047
4048 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4049 {
4050 u64 flags, mode;
4051
4052 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4053 return -EINVAL;
4054 mode = READ_ONCE(sqe->len);
4055 flags = READ_ONCE(sqe->open_flags);
4056 req->open.how = build_open_how(flags, mode);
4057 return __io_openat_prep(req, sqe);
4058 }
4059
4060 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4061 {
4062 struct open_how __user *how;
4063 size_t len;
4064 int ret;
4065
4066 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4067 return -EINVAL;
4068 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4069 len = READ_ONCE(sqe->len);
4070 if (len < OPEN_HOW_SIZE_VER0)
4071 return -EINVAL;
4072
4073 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4074 len);
4075 if (ret)
4076 return ret;
4077
4078 return __io_openat_prep(req, sqe);
4079 }
4080
4081 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4082 {
4083 struct open_flags op;
4084 struct file *file;
4085 int ret;
4086
4087 if (force_nonblock && !req->open.ignore_nonblock)
4088 return -EAGAIN;
4089
4090 ret = build_open_flags(&req->open.how, &op);
4091 if (ret)
4092 goto err;
4093
4094 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4095 if (ret < 0)
4096 goto err;
4097
4098 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4099 if (IS_ERR(file)) {
4100 put_unused_fd(ret);
4101 ret = PTR_ERR(file);
4102 /*
4103 * A work-around to ensure that /proc/self works that way
4104 * that it should - if we get -EOPNOTSUPP back, then assume
4105 * that proc_self_get_link() failed us because we're in async
4106 * context. We should be safe to retry this from the task
4107 * itself with force_nonblock == false set, as it should not
4108 * block on lookup. Would be nice to know this upfront and
4109 * avoid the async dance, but doesn't seem feasible.
4110 */
4111 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4112 req->open.ignore_nonblock = true;
4113 refcount_inc(&req->refs);
4114 io_req_task_queue(req);
4115 return 0;
4116 }
4117 } else {
4118 fsnotify_open(file);
4119 fd_install(ret, file);
4120 }
4121 err:
4122 putname(req->open.filename);
4123 req->flags &= ~REQ_F_NEED_CLEANUP;
4124 if (ret < 0)
4125 req_set_fail_links(req);
4126 io_req_complete(req, ret);
4127 return 0;
4128 }
4129
4130 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4131 {
4132 return io_openat2(req, force_nonblock);
4133 }
4134
4135 static int io_remove_buffers_prep(struct io_kiocb *req,
4136 const struct io_uring_sqe *sqe)
4137 {
4138 struct io_provide_buf *p = &req->pbuf;
4139 u64 tmp;
4140
4141 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4142 return -EINVAL;
4143
4144 tmp = READ_ONCE(sqe->fd);
4145 if (!tmp || tmp > USHRT_MAX)
4146 return -EINVAL;
4147
4148 memset(p, 0, sizeof(*p));
4149 p->nbufs = tmp;
4150 p->bgid = READ_ONCE(sqe->buf_group);
4151 return 0;
4152 }
4153
4154 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4155 int bgid, unsigned nbufs)
4156 {
4157 unsigned i = 0;
4158
4159 /* shouldn't happen */
4160 if (!nbufs)
4161 return 0;
4162
4163 /* the head kbuf is the list itself */
4164 while (!list_empty(&buf->list)) {
4165 struct io_buffer *nxt;
4166
4167 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4168 list_del(&nxt->list);
4169 kfree(nxt);
4170 if (++i == nbufs)
4171 return i;
4172 }
4173 i++;
4174 kfree(buf);
4175 idr_remove(&ctx->io_buffer_idr, bgid);
4176
4177 return i;
4178 }
4179
4180 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4181 struct io_comp_state *cs)
4182 {
4183 struct io_provide_buf *p = &req->pbuf;
4184 struct io_ring_ctx *ctx = req->ctx;
4185 struct io_buffer *head;
4186 int ret = 0;
4187
4188 io_ring_submit_lock(ctx, !force_nonblock);
4189
4190 lockdep_assert_held(&ctx->uring_lock);
4191
4192 ret = -ENOENT;
4193 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4194 if (head)
4195 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4196 if (ret < 0)
4197 req_set_fail_links(req);
4198
4199 /* need to hold the lock to complete IOPOLL requests */
4200 if (ctx->flags & IORING_SETUP_IOPOLL) {
4201 __io_req_complete(req, ret, 0, cs);
4202 io_ring_submit_unlock(ctx, !force_nonblock);
4203 } else {
4204 io_ring_submit_unlock(ctx, !force_nonblock);
4205 __io_req_complete(req, ret, 0, cs);
4206 }
4207 return 0;
4208 }
4209
4210 static int io_provide_buffers_prep(struct io_kiocb *req,
4211 const struct io_uring_sqe *sqe)
4212 {
4213 struct io_provide_buf *p = &req->pbuf;
4214 u64 tmp;
4215
4216 if (sqe->ioprio || sqe->rw_flags)
4217 return -EINVAL;
4218
4219 tmp = READ_ONCE(sqe->fd);
4220 if (!tmp || tmp > USHRT_MAX)
4221 return -E2BIG;
4222 p->nbufs = tmp;
4223 p->addr = READ_ONCE(sqe->addr);
4224 p->len = READ_ONCE(sqe->len);
4225
4226 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4227 return -EFAULT;
4228
4229 p->bgid = READ_ONCE(sqe->buf_group);
4230 tmp = READ_ONCE(sqe->off);
4231 if (tmp > USHRT_MAX)
4232 return -E2BIG;
4233 p->bid = tmp;
4234 return 0;
4235 }
4236
4237 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4238 {
4239 struct io_buffer *buf;
4240 u64 addr = pbuf->addr;
4241 int i, bid = pbuf->bid;
4242
4243 for (i = 0; i < pbuf->nbufs; i++) {
4244 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4245 if (!buf)
4246 break;
4247
4248 buf->addr = addr;
4249 buf->len = pbuf->len;
4250 buf->bid = bid;
4251 addr += pbuf->len;
4252 bid++;
4253 if (!*head) {
4254 INIT_LIST_HEAD(&buf->list);
4255 *head = buf;
4256 } else {
4257 list_add_tail(&buf->list, &(*head)->list);
4258 }
4259 }
4260
4261 return i ? i : -ENOMEM;
4262 }
4263
4264 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4265 struct io_comp_state *cs)
4266 {
4267 struct io_provide_buf *p = &req->pbuf;
4268 struct io_ring_ctx *ctx = req->ctx;
4269 struct io_buffer *head, *list;
4270 int ret = 0;
4271
4272 io_ring_submit_lock(ctx, !force_nonblock);
4273
4274 lockdep_assert_held(&ctx->uring_lock);
4275
4276 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4277
4278 ret = io_add_buffers(p, &head);
4279 if (ret < 0)
4280 goto out;
4281
4282 if (!list) {
4283 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4284 GFP_KERNEL);
4285 if (ret < 0) {
4286 __io_remove_buffers(ctx, head, p->bgid, -1U);
4287 goto out;
4288 }
4289 }
4290 out:
4291 if (ret < 0)
4292 req_set_fail_links(req);
4293
4294 /* need to hold the lock to complete IOPOLL requests */
4295 if (ctx->flags & IORING_SETUP_IOPOLL) {
4296 __io_req_complete(req, ret, 0, cs);
4297 io_ring_submit_unlock(ctx, !force_nonblock);
4298 } else {
4299 io_ring_submit_unlock(ctx, !force_nonblock);
4300 __io_req_complete(req, ret, 0, cs);
4301 }
4302 return 0;
4303 }
4304
4305 static int io_epoll_ctl_prep(struct io_kiocb *req,
4306 const struct io_uring_sqe *sqe)
4307 {
4308 #if defined(CONFIG_EPOLL)
4309 if (sqe->ioprio || sqe->buf_index)
4310 return -EINVAL;
4311 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4312 return -EINVAL;
4313
4314 req->epoll.epfd = READ_ONCE(sqe->fd);
4315 req->epoll.op = READ_ONCE(sqe->len);
4316 req->epoll.fd = READ_ONCE(sqe->off);
4317
4318 if (ep_op_has_event(req->epoll.op)) {
4319 struct epoll_event __user *ev;
4320
4321 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4322 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4323 return -EFAULT;
4324 }
4325
4326 return 0;
4327 #else
4328 return -EOPNOTSUPP;
4329 #endif
4330 }
4331
4332 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4333 struct io_comp_state *cs)
4334 {
4335 #if defined(CONFIG_EPOLL)
4336 struct io_epoll *ie = &req->epoll;
4337 int ret;
4338
4339 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4340 if (force_nonblock && ret == -EAGAIN)
4341 return -EAGAIN;
4342
4343 if (ret < 0)
4344 req_set_fail_links(req);
4345 __io_req_complete(req, ret, 0, cs);
4346 return 0;
4347 #else
4348 return -EOPNOTSUPP;
4349 #endif
4350 }
4351
4352 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4353 {
4354 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4355 if (sqe->ioprio || sqe->buf_index || sqe->off)
4356 return -EINVAL;
4357 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4358 return -EINVAL;
4359
4360 req->madvise.addr = READ_ONCE(sqe->addr);
4361 req->madvise.len = READ_ONCE(sqe->len);
4362 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4363 return 0;
4364 #else
4365 return -EOPNOTSUPP;
4366 #endif
4367 }
4368
4369 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4370 {
4371 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4372 struct io_madvise *ma = &req->madvise;
4373 int ret;
4374
4375 if (force_nonblock)
4376 return -EAGAIN;
4377
4378 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4379 if (ret < 0)
4380 req_set_fail_links(req);
4381 io_req_complete(req, ret);
4382 return 0;
4383 #else
4384 return -EOPNOTSUPP;
4385 #endif
4386 }
4387
4388 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4389 {
4390 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4391 return -EINVAL;
4392 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4393 return -EINVAL;
4394
4395 req->fadvise.offset = READ_ONCE(sqe->off);
4396 req->fadvise.len = READ_ONCE(sqe->len);
4397 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4398 return 0;
4399 }
4400
4401 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4402 {
4403 struct io_fadvise *fa = &req->fadvise;
4404 int ret;
4405
4406 if (force_nonblock) {
4407 switch (fa->advice) {
4408 case POSIX_FADV_NORMAL:
4409 case POSIX_FADV_RANDOM:
4410 case POSIX_FADV_SEQUENTIAL:
4411 break;
4412 default:
4413 return -EAGAIN;
4414 }
4415 }
4416
4417 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4418 if (ret < 0)
4419 req_set_fail_links(req);
4420 io_req_complete(req, ret);
4421 return 0;
4422 }
4423
4424 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4425 {
4426 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4427 return -EINVAL;
4428 if (sqe->ioprio || sqe->buf_index)
4429 return -EINVAL;
4430 if (req->flags & REQ_F_FIXED_FILE)
4431 return -EBADF;
4432
4433 req->statx.dfd = READ_ONCE(sqe->fd);
4434 req->statx.mask = READ_ONCE(sqe->len);
4435 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4436 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4437 req->statx.flags = READ_ONCE(sqe->statx_flags);
4438
4439 return 0;
4440 }
4441
4442 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4443 {
4444 struct io_statx *ctx = &req->statx;
4445 int ret;
4446
4447 if (force_nonblock) {
4448 /* only need file table for an actual valid fd */
4449 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4450 req->flags |= REQ_F_NO_FILE_TABLE;
4451 return -EAGAIN;
4452 }
4453
4454 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4455 ctx->buffer);
4456
4457 if (ret < 0)
4458 req_set_fail_links(req);
4459 io_req_complete(req, ret);
4460 return 0;
4461 }
4462
4463 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4464 {
4465 /*
4466 * If we queue this for async, it must not be cancellable. That would
4467 * leave the 'file' in an undeterminate state, and here need to modify
4468 * io_wq_work.flags, so initialize io_wq_work firstly.
4469 */
4470 io_req_init_async(req);
4471 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4472
4473 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4474 return -EINVAL;
4475 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4476 sqe->rw_flags || sqe->buf_index)
4477 return -EINVAL;
4478 if (req->flags & REQ_F_FIXED_FILE)
4479 return -EBADF;
4480
4481 req->close.fd = READ_ONCE(sqe->fd);
4482 if ((req->file && req->file->f_op == &io_uring_fops))
4483 return -EBADF;
4484
4485 req->close.put_file = NULL;
4486 return 0;
4487 }
4488
4489 static int io_close(struct io_kiocb *req, bool force_nonblock,
4490 struct io_comp_state *cs)
4491 {
4492 struct io_close *close = &req->close;
4493 int ret;
4494
4495 /* might be already done during nonblock submission */
4496 if (!close->put_file) {
4497 ret = close_fd_get_file(close->fd, &close->put_file);
4498 if (ret < 0)
4499 return (ret == -ENOENT) ? -EBADF : ret;
4500 }
4501
4502 /* if the file has a flush method, be safe and punt to async */
4503 if (close->put_file->f_op->flush && force_nonblock) {
4504 /* was never set, but play safe */
4505 req->flags &= ~REQ_F_NOWAIT;
4506 /* avoid grabbing files - we don't need the files */
4507 req->flags |= REQ_F_NO_FILE_TABLE;
4508 return -EAGAIN;
4509 }
4510
4511 /* No ->flush() or already async, safely close from here */
4512 ret = filp_close(close->put_file, req->work.identity->files);
4513 if (ret < 0)
4514 req_set_fail_links(req);
4515 fput(close->put_file);
4516 close->put_file = NULL;
4517 __io_req_complete(req, ret, 0, cs);
4518 return 0;
4519 }
4520
4521 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4522 {
4523 struct io_ring_ctx *ctx = req->ctx;
4524
4525 if (!req->file)
4526 return -EBADF;
4527
4528 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4529 return -EINVAL;
4530 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4531 return -EINVAL;
4532
4533 req->sync.off = READ_ONCE(sqe->off);
4534 req->sync.len = READ_ONCE(sqe->len);
4535 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4536 return 0;
4537 }
4538
4539 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4540 {
4541 int ret;
4542
4543 /* sync_file_range always requires a blocking context */
4544 if (force_nonblock)
4545 return -EAGAIN;
4546
4547 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4548 req->sync.flags);
4549 if (ret < 0)
4550 req_set_fail_links(req);
4551 io_req_complete(req, ret);
4552 return 0;
4553 }
4554
4555 #if defined(CONFIG_NET)
4556 static int io_setup_async_msg(struct io_kiocb *req,
4557 struct io_async_msghdr *kmsg)
4558 {
4559 struct io_async_msghdr *async_msg = req->async_data;
4560
4561 if (async_msg)
4562 return -EAGAIN;
4563 if (io_alloc_async_data(req)) {
4564 if (kmsg->iov != kmsg->fast_iov)
4565 kfree(kmsg->iov);
4566 return -ENOMEM;
4567 }
4568 async_msg = req->async_data;
4569 req->flags |= REQ_F_NEED_CLEANUP;
4570 memcpy(async_msg, kmsg, sizeof(*kmsg));
4571 return -EAGAIN;
4572 }
4573
4574 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4575 struct io_async_msghdr *iomsg)
4576 {
4577 iomsg->iov = iomsg->fast_iov;
4578 iomsg->msg.msg_name = &iomsg->addr;
4579 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4580 req->sr_msg.msg_flags, &iomsg->iov);
4581 }
4582
4583 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4584 {
4585 struct io_async_msghdr *async_msg = req->async_data;
4586 struct io_sr_msg *sr = &req->sr_msg;
4587 int ret;
4588
4589 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4590 return -EINVAL;
4591
4592 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4593 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4594 sr->len = READ_ONCE(sqe->len);
4595
4596 #ifdef CONFIG_COMPAT
4597 if (req->ctx->compat)
4598 sr->msg_flags |= MSG_CMSG_COMPAT;
4599 #endif
4600
4601 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4602 return 0;
4603 ret = io_sendmsg_copy_hdr(req, async_msg);
4604 if (!ret)
4605 req->flags |= REQ_F_NEED_CLEANUP;
4606 return ret;
4607 }
4608
4609 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4610 struct io_comp_state *cs)
4611 {
4612 struct io_async_msghdr iomsg, *kmsg;
4613 struct socket *sock;
4614 unsigned flags;
4615 int ret;
4616
4617 sock = sock_from_file(req->file);
4618 if (unlikely(!sock))
4619 return -ENOTSOCK;
4620
4621 if (req->async_data) {
4622 kmsg = req->async_data;
4623 kmsg->msg.msg_name = &kmsg->addr;
4624 /* if iov is set, it's allocated already */
4625 if (!kmsg->iov)
4626 kmsg->iov = kmsg->fast_iov;
4627 kmsg->msg.msg_iter.iov = kmsg->iov;
4628 } else {
4629 ret = io_sendmsg_copy_hdr(req, &iomsg);
4630 if (ret)
4631 return ret;
4632 kmsg = &iomsg;
4633 }
4634
4635 flags = req->sr_msg.msg_flags;
4636 if (flags & MSG_DONTWAIT)
4637 req->flags |= REQ_F_NOWAIT;
4638 else if (force_nonblock)
4639 flags |= MSG_DONTWAIT;
4640
4641 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4642 if (force_nonblock && ret == -EAGAIN)
4643 return io_setup_async_msg(req, kmsg);
4644 if (ret == -ERESTARTSYS)
4645 ret = -EINTR;
4646
4647 if (kmsg->iov != kmsg->fast_iov)
4648 kfree(kmsg->iov);
4649 req->flags &= ~REQ_F_NEED_CLEANUP;
4650 if (ret < 0)
4651 req_set_fail_links(req);
4652 __io_req_complete(req, ret, 0, cs);
4653 return 0;
4654 }
4655
4656 static int io_send(struct io_kiocb *req, bool force_nonblock,
4657 struct io_comp_state *cs)
4658 {
4659 struct io_sr_msg *sr = &req->sr_msg;
4660 struct msghdr msg;
4661 struct iovec iov;
4662 struct socket *sock;
4663 unsigned flags;
4664 int ret;
4665
4666 sock = sock_from_file(req->file);
4667 if (unlikely(!sock))
4668 return -ENOTSOCK;
4669
4670 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4671 if (unlikely(ret))
4672 return ret;
4673
4674 msg.msg_name = NULL;
4675 msg.msg_control = NULL;
4676 msg.msg_controllen = 0;
4677 msg.msg_namelen = 0;
4678
4679 flags = req->sr_msg.msg_flags;
4680 if (flags & MSG_DONTWAIT)
4681 req->flags |= REQ_F_NOWAIT;
4682 else if (force_nonblock)
4683 flags |= MSG_DONTWAIT;
4684
4685 msg.msg_flags = flags;
4686 ret = sock_sendmsg(sock, &msg);
4687 if (force_nonblock && ret == -EAGAIN)
4688 return -EAGAIN;
4689 if (ret == -ERESTARTSYS)
4690 ret = -EINTR;
4691
4692 if (ret < 0)
4693 req_set_fail_links(req);
4694 __io_req_complete(req, ret, 0, cs);
4695 return 0;
4696 }
4697
4698 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4699 struct io_async_msghdr *iomsg)
4700 {
4701 struct io_sr_msg *sr = &req->sr_msg;
4702 struct iovec __user *uiov;
4703 size_t iov_len;
4704 int ret;
4705
4706 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4707 &iomsg->uaddr, &uiov, &iov_len);
4708 if (ret)
4709 return ret;
4710
4711 if (req->flags & REQ_F_BUFFER_SELECT) {
4712 if (iov_len > 1)
4713 return -EINVAL;
4714 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4715 return -EFAULT;
4716 sr->len = iomsg->iov[0].iov_len;
4717 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4718 sr->len);
4719 iomsg->iov = NULL;
4720 } else {
4721 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4722 &iomsg->iov, &iomsg->msg.msg_iter,
4723 false);
4724 if (ret > 0)
4725 ret = 0;
4726 }
4727
4728 return ret;
4729 }
4730
4731 #ifdef CONFIG_COMPAT
4732 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4733 struct io_async_msghdr *iomsg)
4734 {
4735 struct compat_msghdr __user *msg_compat;
4736 struct io_sr_msg *sr = &req->sr_msg;
4737 struct compat_iovec __user *uiov;
4738 compat_uptr_t ptr;
4739 compat_size_t len;
4740 int ret;
4741
4742 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4743 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4744 &ptr, &len);
4745 if (ret)
4746 return ret;
4747
4748 uiov = compat_ptr(ptr);
4749 if (req->flags & REQ_F_BUFFER_SELECT) {
4750 compat_ssize_t clen;
4751
4752 if (len > 1)
4753 return -EINVAL;
4754 if (!access_ok(uiov, sizeof(*uiov)))
4755 return -EFAULT;
4756 if (__get_user(clen, &uiov->iov_len))
4757 return -EFAULT;
4758 if (clen < 0)
4759 return -EINVAL;
4760 sr->len = clen;
4761 iomsg->iov[0].iov_len = clen;
4762 iomsg->iov = NULL;
4763 } else {
4764 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4765 UIO_FASTIOV, &iomsg->iov,
4766 &iomsg->msg.msg_iter, true);
4767 if (ret < 0)
4768 return ret;
4769 }
4770
4771 return 0;
4772 }
4773 #endif
4774
4775 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4776 struct io_async_msghdr *iomsg)
4777 {
4778 iomsg->msg.msg_name = &iomsg->addr;
4779 iomsg->iov = iomsg->fast_iov;
4780
4781 #ifdef CONFIG_COMPAT
4782 if (req->ctx->compat)
4783 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4784 #endif
4785
4786 return __io_recvmsg_copy_hdr(req, iomsg);
4787 }
4788
4789 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4790 bool needs_lock)
4791 {
4792 struct io_sr_msg *sr = &req->sr_msg;
4793 struct io_buffer *kbuf;
4794
4795 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4796 if (IS_ERR(kbuf))
4797 return kbuf;
4798
4799 sr->kbuf = kbuf;
4800 req->flags |= REQ_F_BUFFER_SELECTED;
4801 return kbuf;
4802 }
4803
4804 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4805 {
4806 return io_put_kbuf(req, req->sr_msg.kbuf);
4807 }
4808
4809 static int io_recvmsg_prep(struct io_kiocb *req,
4810 const struct io_uring_sqe *sqe)
4811 {
4812 struct io_async_msghdr *async_msg = req->async_data;
4813 struct io_sr_msg *sr = &req->sr_msg;
4814 int ret;
4815
4816 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4817 return -EINVAL;
4818
4819 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4820 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4821 sr->len = READ_ONCE(sqe->len);
4822 sr->bgid = READ_ONCE(sqe->buf_group);
4823
4824 #ifdef CONFIG_COMPAT
4825 if (req->ctx->compat)
4826 sr->msg_flags |= MSG_CMSG_COMPAT;
4827 #endif
4828
4829 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4830 return 0;
4831 ret = io_recvmsg_copy_hdr(req, async_msg);
4832 if (!ret)
4833 req->flags |= REQ_F_NEED_CLEANUP;
4834 return ret;
4835 }
4836
4837 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4838 struct io_comp_state *cs)
4839 {
4840 struct io_async_msghdr iomsg, *kmsg;
4841 struct socket *sock;
4842 struct io_buffer *kbuf;
4843 unsigned flags;
4844 int ret, cflags = 0;
4845
4846 sock = sock_from_file(req->file);
4847 if (unlikely(!sock))
4848 return -ENOTSOCK;
4849
4850 if (req->async_data) {
4851 kmsg = req->async_data;
4852 kmsg->msg.msg_name = &kmsg->addr;
4853 /* if iov is set, it's allocated already */
4854 if (!kmsg->iov)
4855 kmsg->iov = kmsg->fast_iov;
4856 kmsg->msg.msg_iter.iov = kmsg->iov;
4857 } else {
4858 ret = io_recvmsg_copy_hdr(req, &iomsg);
4859 if (ret)
4860 return ret;
4861 kmsg = &iomsg;
4862 }
4863
4864 if (req->flags & REQ_F_BUFFER_SELECT) {
4865 kbuf = io_recv_buffer_select(req, !force_nonblock);
4866 if (IS_ERR(kbuf))
4867 return PTR_ERR(kbuf);
4868 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4869 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4870 1, req->sr_msg.len);
4871 }
4872
4873 flags = req->sr_msg.msg_flags;
4874 if (flags & MSG_DONTWAIT)
4875 req->flags |= REQ_F_NOWAIT;
4876 else if (force_nonblock)
4877 flags |= MSG_DONTWAIT;
4878
4879 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4880 kmsg->uaddr, flags);
4881 if (force_nonblock && ret == -EAGAIN)
4882 return io_setup_async_msg(req, kmsg);
4883 if (ret == -ERESTARTSYS)
4884 ret = -EINTR;
4885
4886 if (req->flags & REQ_F_BUFFER_SELECTED)
4887 cflags = io_put_recv_kbuf(req);
4888 if (kmsg->iov != kmsg->fast_iov)
4889 kfree(kmsg->iov);
4890 req->flags &= ~REQ_F_NEED_CLEANUP;
4891 if (ret < 0)
4892 req_set_fail_links(req);
4893 __io_req_complete(req, ret, cflags, cs);
4894 return 0;
4895 }
4896
4897 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4898 struct io_comp_state *cs)
4899 {
4900 struct io_buffer *kbuf;
4901 struct io_sr_msg *sr = &req->sr_msg;
4902 struct msghdr msg;
4903 void __user *buf = sr->buf;
4904 struct socket *sock;
4905 struct iovec iov;
4906 unsigned flags;
4907 int ret, cflags = 0;
4908
4909 sock = sock_from_file(req->file);
4910 if (unlikely(!sock))
4911 return -ENOTSOCK;
4912
4913 if (req->flags & REQ_F_BUFFER_SELECT) {
4914 kbuf = io_recv_buffer_select(req, !force_nonblock);
4915 if (IS_ERR(kbuf))
4916 return PTR_ERR(kbuf);
4917 buf = u64_to_user_ptr(kbuf->addr);
4918 }
4919
4920 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4921 if (unlikely(ret))
4922 goto out_free;
4923
4924 msg.msg_name = NULL;
4925 msg.msg_control = NULL;
4926 msg.msg_controllen = 0;
4927 msg.msg_namelen = 0;
4928 msg.msg_iocb = NULL;
4929 msg.msg_flags = 0;
4930
4931 flags = req->sr_msg.msg_flags;
4932 if (flags & MSG_DONTWAIT)
4933 req->flags |= REQ_F_NOWAIT;
4934 else if (force_nonblock)
4935 flags |= MSG_DONTWAIT;
4936
4937 ret = sock_recvmsg(sock, &msg, flags);
4938 if (force_nonblock && ret == -EAGAIN)
4939 return -EAGAIN;
4940 if (ret == -ERESTARTSYS)
4941 ret = -EINTR;
4942 out_free:
4943 if (req->flags & REQ_F_BUFFER_SELECTED)
4944 cflags = io_put_recv_kbuf(req);
4945 if (ret < 0)
4946 req_set_fail_links(req);
4947 __io_req_complete(req, ret, cflags, cs);
4948 return 0;
4949 }
4950
4951 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4952 {
4953 struct io_accept *accept = &req->accept;
4954
4955 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4956 return -EINVAL;
4957 if (sqe->ioprio || sqe->len || sqe->buf_index)
4958 return -EINVAL;
4959
4960 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4961 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4962 accept->flags = READ_ONCE(sqe->accept_flags);
4963 accept->nofile = rlimit(RLIMIT_NOFILE);
4964 return 0;
4965 }
4966
4967 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4968 struct io_comp_state *cs)
4969 {
4970 struct io_accept *accept = &req->accept;
4971 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4972 int ret;
4973
4974 if (req->file->f_flags & O_NONBLOCK)
4975 req->flags |= REQ_F_NOWAIT;
4976
4977 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4978 accept->addr_len, accept->flags,
4979 accept->nofile);
4980 if (ret == -EAGAIN && force_nonblock)
4981 return -EAGAIN;
4982 if (ret < 0) {
4983 if (ret == -ERESTARTSYS)
4984 ret = -EINTR;
4985 req_set_fail_links(req);
4986 }
4987 __io_req_complete(req, ret, 0, cs);
4988 return 0;
4989 }
4990
4991 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4992 {
4993 struct io_connect *conn = &req->connect;
4994 struct io_async_connect *io = req->async_data;
4995
4996 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4997 return -EINVAL;
4998 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4999 return -EINVAL;
5000
5001 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5002 conn->addr_len = READ_ONCE(sqe->addr2);
5003
5004 if (!io)
5005 return 0;
5006
5007 return move_addr_to_kernel(conn->addr, conn->addr_len,
5008 &io->address);
5009 }
5010
5011 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5012 struct io_comp_state *cs)
5013 {
5014 struct io_async_connect __io, *io;
5015 unsigned file_flags;
5016 int ret;
5017
5018 if (req->async_data) {
5019 io = req->async_data;
5020 } else {
5021 ret = move_addr_to_kernel(req->connect.addr,
5022 req->connect.addr_len,
5023 &__io.address);
5024 if (ret)
5025 goto out;
5026 io = &__io;
5027 }
5028
5029 file_flags = force_nonblock ? O_NONBLOCK : 0;
5030
5031 ret = __sys_connect_file(req->file, &io->address,
5032 req->connect.addr_len, file_flags);
5033 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5034 if (req->async_data)
5035 return -EAGAIN;
5036 if (io_alloc_async_data(req)) {
5037 ret = -ENOMEM;
5038 goto out;
5039 }
5040 io = req->async_data;
5041 memcpy(req->async_data, &__io, sizeof(__io));
5042 return -EAGAIN;
5043 }
5044 if (ret == -ERESTARTSYS)
5045 ret = -EINTR;
5046 out:
5047 if (ret < 0)
5048 req_set_fail_links(req);
5049 __io_req_complete(req, ret, 0, cs);
5050 return 0;
5051 }
5052 #else /* !CONFIG_NET */
5053 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5054 {
5055 return -EOPNOTSUPP;
5056 }
5057
5058 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5059 struct io_comp_state *cs)
5060 {
5061 return -EOPNOTSUPP;
5062 }
5063
5064 static int io_send(struct io_kiocb *req, bool force_nonblock,
5065 struct io_comp_state *cs)
5066 {
5067 return -EOPNOTSUPP;
5068 }
5069
5070 static int io_recvmsg_prep(struct io_kiocb *req,
5071 const struct io_uring_sqe *sqe)
5072 {
5073 return -EOPNOTSUPP;
5074 }
5075
5076 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5077 struct io_comp_state *cs)
5078 {
5079 return -EOPNOTSUPP;
5080 }
5081
5082 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5083 struct io_comp_state *cs)
5084 {
5085 return -EOPNOTSUPP;
5086 }
5087
5088 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5089 {
5090 return -EOPNOTSUPP;
5091 }
5092
5093 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5094 struct io_comp_state *cs)
5095 {
5096 return -EOPNOTSUPP;
5097 }
5098
5099 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5100 {
5101 return -EOPNOTSUPP;
5102 }
5103
5104 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5105 struct io_comp_state *cs)
5106 {
5107 return -EOPNOTSUPP;
5108 }
5109 #endif /* CONFIG_NET */
5110
5111 struct io_poll_table {
5112 struct poll_table_struct pt;
5113 struct io_kiocb *req;
5114 int error;
5115 };
5116
5117 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5118 __poll_t mask, task_work_func_t func)
5119 {
5120 int ret;
5121
5122 /* for instances that support it check for an event match first: */
5123 if (mask && !(mask & poll->events))
5124 return 0;
5125
5126 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5127
5128 list_del_init(&poll->wait.entry);
5129
5130 req->result = mask;
5131 init_task_work(&req->task_work, func);
5132 percpu_ref_get(&req->ctx->refs);
5133
5134 /*
5135 * If this fails, then the task is exiting. When a task exits, the
5136 * work gets canceled, so just cancel this request as well instead
5137 * of executing it. We can't safely execute it anyway, as we may not
5138 * have the needed state needed for it anyway.
5139 */
5140 ret = io_req_task_work_add(req);
5141 if (unlikely(ret)) {
5142 struct task_struct *tsk;
5143
5144 WRITE_ONCE(poll->canceled, true);
5145 tsk = io_wq_get_task(req->ctx->io_wq);
5146 task_work_add(tsk, &req->task_work, TWA_NONE);
5147 wake_up_process(tsk);
5148 }
5149 return 1;
5150 }
5151
5152 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5153 __acquires(&req->ctx->completion_lock)
5154 {
5155 struct io_ring_ctx *ctx = req->ctx;
5156
5157 if (!req->result && !READ_ONCE(poll->canceled)) {
5158 struct poll_table_struct pt = { ._key = poll->events };
5159
5160 req->result = vfs_poll(req->file, &pt) & poll->events;
5161 }
5162
5163 spin_lock_irq(&ctx->completion_lock);
5164 if (!req->result && !READ_ONCE(poll->canceled)) {
5165 add_wait_queue(poll->head, &poll->wait);
5166 return true;
5167 }
5168
5169 return false;
5170 }
5171
5172 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5173 {
5174 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5175 if (req->opcode == IORING_OP_POLL_ADD)
5176 return req->async_data;
5177 return req->apoll->double_poll;
5178 }
5179
5180 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5181 {
5182 if (req->opcode == IORING_OP_POLL_ADD)
5183 return &req->poll;
5184 return &req->apoll->poll;
5185 }
5186
5187 static void io_poll_remove_double(struct io_kiocb *req)
5188 {
5189 struct io_poll_iocb *poll = io_poll_get_double(req);
5190
5191 lockdep_assert_held(&req->ctx->completion_lock);
5192
5193 if (poll && poll->head) {
5194 struct wait_queue_head *head = poll->head;
5195
5196 spin_lock(&head->lock);
5197 list_del_init(&poll->wait.entry);
5198 if (poll->wait.private)
5199 refcount_dec(&req->refs);
5200 poll->head = NULL;
5201 spin_unlock(&head->lock);
5202 }
5203 }
5204
5205 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5206 {
5207 struct io_ring_ctx *ctx = req->ctx;
5208
5209 io_poll_remove_double(req);
5210 req->poll.done = true;
5211 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5212 io_commit_cqring(ctx);
5213 }
5214
5215 static void io_poll_task_func(struct callback_head *cb)
5216 {
5217 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5218 struct io_ring_ctx *ctx = req->ctx;
5219 struct io_kiocb *nxt;
5220
5221 if (io_poll_rewait(req, &req->poll)) {
5222 spin_unlock_irq(&ctx->completion_lock);
5223 } else {
5224 hash_del(&req->hash_node);
5225 io_poll_complete(req, req->result, 0);
5226 spin_unlock_irq(&ctx->completion_lock);
5227
5228 nxt = io_put_req_find_next(req);
5229 io_cqring_ev_posted(ctx);
5230 if (nxt)
5231 __io_req_task_submit(nxt);
5232 }
5233
5234 percpu_ref_put(&ctx->refs);
5235 }
5236
5237 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5238 int sync, void *key)
5239 {
5240 struct io_kiocb *req = wait->private;
5241 struct io_poll_iocb *poll = io_poll_get_single(req);
5242 __poll_t mask = key_to_poll(key);
5243
5244 /* for instances that support it check for an event match first: */
5245 if (mask && !(mask & poll->events))
5246 return 0;
5247
5248 list_del_init(&wait->entry);
5249
5250 if (poll && poll->head) {
5251 bool done;
5252
5253 spin_lock(&poll->head->lock);
5254 done = list_empty(&poll->wait.entry);
5255 if (!done)
5256 list_del_init(&poll->wait.entry);
5257 /* make sure double remove sees this as being gone */
5258 wait->private = NULL;
5259 spin_unlock(&poll->head->lock);
5260 if (!done) {
5261 /* use wait func handler, so it matches the rq type */
5262 poll->wait.func(&poll->wait, mode, sync, key);
5263 }
5264 }
5265 refcount_dec(&req->refs);
5266 return 1;
5267 }
5268
5269 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5270 wait_queue_func_t wake_func)
5271 {
5272 poll->head = NULL;
5273 poll->done = false;
5274 poll->canceled = false;
5275 poll->events = events;
5276 INIT_LIST_HEAD(&poll->wait.entry);
5277 init_waitqueue_func_entry(&poll->wait, wake_func);
5278 }
5279
5280 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5281 struct wait_queue_head *head,
5282 struct io_poll_iocb **poll_ptr)
5283 {
5284 struct io_kiocb *req = pt->req;
5285
5286 /*
5287 * If poll->head is already set, it's because the file being polled
5288 * uses multiple waitqueues for poll handling (eg one for read, one
5289 * for write). Setup a separate io_poll_iocb if this happens.
5290 */
5291 if (unlikely(poll->head)) {
5292 struct io_poll_iocb *poll_one = poll;
5293
5294 /* already have a 2nd entry, fail a third attempt */
5295 if (*poll_ptr) {
5296 pt->error = -EINVAL;
5297 return;
5298 }
5299 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5300 if (!poll) {
5301 pt->error = -ENOMEM;
5302 return;
5303 }
5304 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5305 refcount_inc(&req->refs);
5306 poll->wait.private = req;
5307 *poll_ptr = poll;
5308 }
5309
5310 pt->error = 0;
5311 poll->head = head;
5312
5313 if (poll->events & EPOLLEXCLUSIVE)
5314 add_wait_queue_exclusive(head, &poll->wait);
5315 else
5316 add_wait_queue(head, &poll->wait);
5317 }
5318
5319 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5320 struct poll_table_struct *p)
5321 {
5322 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5323 struct async_poll *apoll = pt->req->apoll;
5324
5325 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5326 }
5327
5328 static void io_async_task_func(struct callback_head *cb)
5329 {
5330 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5331 struct async_poll *apoll = req->apoll;
5332 struct io_ring_ctx *ctx = req->ctx;
5333
5334 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5335
5336 if (io_poll_rewait(req, &apoll->poll)) {
5337 spin_unlock_irq(&ctx->completion_lock);
5338 percpu_ref_put(&ctx->refs);
5339 return;
5340 }
5341
5342 /* If req is still hashed, it cannot have been canceled. Don't check. */
5343 if (hash_hashed(&req->hash_node))
5344 hash_del(&req->hash_node);
5345
5346 io_poll_remove_double(req);
5347 spin_unlock_irq(&ctx->completion_lock);
5348
5349 if (!READ_ONCE(apoll->poll.canceled))
5350 __io_req_task_submit(req);
5351 else
5352 __io_req_task_cancel(req, -ECANCELED);
5353
5354 percpu_ref_put(&ctx->refs);
5355 kfree(apoll->double_poll);
5356 kfree(apoll);
5357 }
5358
5359 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5360 void *key)
5361 {
5362 struct io_kiocb *req = wait->private;
5363 struct io_poll_iocb *poll = &req->apoll->poll;
5364
5365 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5366 key_to_poll(key));
5367
5368 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5369 }
5370
5371 static void io_poll_req_insert(struct io_kiocb *req)
5372 {
5373 struct io_ring_ctx *ctx = req->ctx;
5374 struct hlist_head *list;
5375
5376 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5377 hlist_add_head(&req->hash_node, list);
5378 }
5379
5380 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5381 struct io_poll_iocb *poll,
5382 struct io_poll_table *ipt, __poll_t mask,
5383 wait_queue_func_t wake_func)
5384 __acquires(&ctx->completion_lock)
5385 {
5386 struct io_ring_ctx *ctx = req->ctx;
5387 bool cancel = false;
5388
5389 INIT_HLIST_NODE(&req->hash_node);
5390 io_init_poll_iocb(poll, mask, wake_func);
5391 poll->file = req->file;
5392 poll->wait.private = req;
5393
5394 ipt->pt._key = mask;
5395 ipt->req = req;
5396 ipt->error = -EINVAL;
5397
5398 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5399
5400 spin_lock_irq(&ctx->completion_lock);
5401 if (likely(poll->head)) {
5402 spin_lock(&poll->head->lock);
5403 if (unlikely(list_empty(&poll->wait.entry))) {
5404 if (ipt->error)
5405 cancel = true;
5406 ipt->error = 0;
5407 mask = 0;
5408 }
5409 if (mask || ipt->error)
5410 list_del_init(&poll->wait.entry);
5411 else if (cancel)
5412 WRITE_ONCE(poll->canceled, true);
5413 else if (!poll->done) /* actually waiting for an event */
5414 io_poll_req_insert(req);
5415 spin_unlock(&poll->head->lock);
5416 }
5417
5418 return mask;
5419 }
5420
5421 static bool io_arm_poll_handler(struct io_kiocb *req)
5422 {
5423 const struct io_op_def *def = &io_op_defs[req->opcode];
5424 struct io_ring_ctx *ctx = req->ctx;
5425 struct async_poll *apoll;
5426 struct io_poll_table ipt;
5427 __poll_t mask, ret;
5428 int rw;
5429
5430 if (!req->file || !file_can_poll(req->file))
5431 return false;
5432 if (req->flags & REQ_F_POLLED)
5433 return false;
5434 if (def->pollin)
5435 rw = READ;
5436 else if (def->pollout)
5437 rw = WRITE;
5438 else
5439 return false;
5440 /* if we can't nonblock try, then no point in arming a poll handler */
5441 if (!io_file_supports_async(req->file, rw))
5442 return false;
5443
5444 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5445 if (unlikely(!apoll))
5446 return false;
5447 apoll->double_poll = NULL;
5448
5449 req->flags |= REQ_F_POLLED;
5450 req->apoll = apoll;
5451
5452 mask = 0;
5453 if (def->pollin)
5454 mask |= POLLIN | POLLRDNORM;
5455 if (def->pollout)
5456 mask |= POLLOUT | POLLWRNORM;
5457
5458 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5459 if ((req->opcode == IORING_OP_RECVMSG) &&
5460 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5461 mask &= ~POLLIN;
5462
5463 mask |= POLLERR | POLLPRI;
5464
5465 ipt.pt._qproc = io_async_queue_proc;
5466
5467 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5468 io_async_wake);
5469 if (ret || ipt.error) {
5470 io_poll_remove_double(req);
5471 spin_unlock_irq(&ctx->completion_lock);
5472 kfree(apoll->double_poll);
5473 kfree(apoll);
5474 return false;
5475 }
5476 spin_unlock_irq(&ctx->completion_lock);
5477 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5478 apoll->poll.events);
5479 return true;
5480 }
5481
5482 static bool __io_poll_remove_one(struct io_kiocb *req,
5483 struct io_poll_iocb *poll)
5484 {
5485 bool do_complete = false;
5486
5487 spin_lock(&poll->head->lock);
5488 WRITE_ONCE(poll->canceled, true);
5489 if (!list_empty(&poll->wait.entry)) {
5490 list_del_init(&poll->wait.entry);
5491 do_complete = true;
5492 }
5493 spin_unlock(&poll->head->lock);
5494 hash_del(&req->hash_node);
5495 return do_complete;
5496 }
5497
5498 static bool io_poll_remove_one(struct io_kiocb *req)
5499 {
5500 bool do_complete;
5501
5502 io_poll_remove_double(req);
5503
5504 if (req->opcode == IORING_OP_POLL_ADD) {
5505 do_complete = __io_poll_remove_one(req, &req->poll);
5506 } else {
5507 struct async_poll *apoll = req->apoll;
5508
5509 /* non-poll requests have submit ref still */
5510 do_complete = __io_poll_remove_one(req, &apoll->poll);
5511 if (do_complete) {
5512 io_put_req(req);
5513 kfree(apoll->double_poll);
5514 kfree(apoll);
5515 }
5516 }
5517
5518 if (do_complete) {
5519 io_cqring_fill_event(req, -ECANCELED);
5520 io_commit_cqring(req->ctx);
5521 req_set_fail_links(req);
5522 io_put_req_deferred(req, 1);
5523 }
5524
5525 return do_complete;
5526 }
5527
5528 /*
5529 * Returns true if we found and killed one or more poll requests
5530 */
5531 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5532 struct files_struct *files)
5533 {
5534 struct hlist_node *tmp;
5535 struct io_kiocb *req;
5536 int posted = 0, i;
5537
5538 spin_lock_irq(&ctx->completion_lock);
5539 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5540 struct hlist_head *list;
5541
5542 list = &ctx->cancel_hash[i];
5543 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5544 if (io_match_task(req, tsk, files))
5545 posted += io_poll_remove_one(req);
5546 }
5547 }
5548 spin_unlock_irq(&ctx->completion_lock);
5549
5550 if (posted)
5551 io_cqring_ev_posted(ctx);
5552
5553 return posted != 0;
5554 }
5555
5556 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5557 {
5558 struct hlist_head *list;
5559 struct io_kiocb *req;
5560
5561 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5562 hlist_for_each_entry(req, list, hash_node) {
5563 if (sqe_addr != req->user_data)
5564 continue;
5565 if (io_poll_remove_one(req))
5566 return 0;
5567 return -EALREADY;
5568 }
5569
5570 return -ENOENT;
5571 }
5572
5573 static int io_poll_remove_prep(struct io_kiocb *req,
5574 const struct io_uring_sqe *sqe)
5575 {
5576 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5577 return -EINVAL;
5578 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5579 sqe->poll_events)
5580 return -EINVAL;
5581
5582 req->poll_remove.addr = READ_ONCE(sqe->addr);
5583 return 0;
5584 }
5585
5586 /*
5587 * Find a running poll command that matches one specified in sqe->addr,
5588 * and remove it if found.
5589 */
5590 static int io_poll_remove(struct io_kiocb *req)
5591 {
5592 struct io_ring_ctx *ctx = req->ctx;
5593 int ret;
5594
5595 spin_lock_irq(&ctx->completion_lock);
5596 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5597 spin_unlock_irq(&ctx->completion_lock);
5598
5599 if (ret < 0)
5600 req_set_fail_links(req);
5601 io_req_complete(req, ret);
5602 return 0;
5603 }
5604
5605 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5606 void *key)
5607 {
5608 struct io_kiocb *req = wait->private;
5609 struct io_poll_iocb *poll = &req->poll;
5610
5611 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5612 }
5613
5614 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5615 struct poll_table_struct *p)
5616 {
5617 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5618
5619 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5620 }
5621
5622 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5623 {
5624 struct io_poll_iocb *poll = &req->poll;
5625 u32 events;
5626
5627 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5628 return -EINVAL;
5629 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5630 return -EINVAL;
5631
5632 events = READ_ONCE(sqe->poll32_events);
5633 #ifdef __BIG_ENDIAN
5634 events = swahw32(events);
5635 #endif
5636 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5637 (events & EPOLLEXCLUSIVE);
5638 return 0;
5639 }
5640
5641 static int io_poll_add(struct io_kiocb *req)
5642 {
5643 struct io_poll_iocb *poll = &req->poll;
5644 struct io_ring_ctx *ctx = req->ctx;
5645 struct io_poll_table ipt;
5646 __poll_t mask;
5647
5648 ipt.pt._qproc = io_poll_queue_proc;
5649
5650 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5651 io_poll_wake);
5652
5653 if (mask) { /* no async, we'd stolen it */
5654 ipt.error = 0;
5655 io_poll_complete(req, mask, 0);
5656 }
5657 spin_unlock_irq(&ctx->completion_lock);
5658
5659 if (mask) {
5660 io_cqring_ev_posted(ctx);
5661 io_put_req(req);
5662 }
5663 return ipt.error;
5664 }
5665
5666 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5667 {
5668 struct io_timeout_data *data = container_of(timer,
5669 struct io_timeout_data, timer);
5670 struct io_kiocb *req = data->req;
5671 struct io_ring_ctx *ctx = req->ctx;
5672 unsigned long flags;
5673
5674 spin_lock_irqsave(&ctx->completion_lock, flags);
5675 list_del_init(&req->timeout.list);
5676 atomic_set(&req->ctx->cq_timeouts,
5677 atomic_read(&req->ctx->cq_timeouts) + 1);
5678
5679 io_cqring_fill_event(req, -ETIME);
5680 io_commit_cqring(ctx);
5681 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5682
5683 io_cqring_ev_posted(ctx);
5684 req_set_fail_links(req);
5685 io_put_req(req);
5686 return HRTIMER_NORESTART;
5687 }
5688
5689 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5690 __u64 user_data)
5691 {
5692 struct io_timeout_data *io;
5693 struct io_kiocb *req;
5694 int ret = -ENOENT;
5695
5696 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5697 if (user_data == req->user_data) {
5698 ret = 0;
5699 break;
5700 }
5701 }
5702
5703 if (ret == -ENOENT)
5704 return ERR_PTR(ret);
5705
5706 io = req->async_data;
5707 ret = hrtimer_try_to_cancel(&io->timer);
5708 if (ret == -1)
5709 return ERR_PTR(-EALREADY);
5710 list_del_init(&req->timeout.list);
5711 return req;
5712 }
5713
5714 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5715 {
5716 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5717
5718 if (IS_ERR(req))
5719 return PTR_ERR(req);
5720
5721 req_set_fail_links(req);
5722 io_cqring_fill_event(req, -ECANCELED);
5723 io_put_req_deferred(req, 1);
5724 return 0;
5725 }
5726
5727 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5728 struct timespec64 *ts, enum hrtimer_mode mode)
5729 {
5730 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5731 struct io_timeout_data *data;
5732
5733 if (IS_ERR(req))
5734 return PTR_ERR(req);
5735
5736 req->timeout.off = 0; /* noseq */
5737 data = req->async_data;
5738 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5739 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5740 data->timer.function = io_timeout_fn;
5741 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5742 return 0;
5743 }
5744
5745 static int io_timeout_remove_prep(struct io_kiocb *req,
5746 const struct io_uring_sqe *sqe)
5747 {
5748 struct io_timeout_rem *tr = &req->timeout_rem;
5749
5750 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5751 return -EINVAL;
5752 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5753 return -EINVAL;
5754 if (sqe->ioprio || sqe->buf_index || sqe->len)
5755 return -EINVAL;
5756
5757 tr->addr = READ_ONCE(sqe->addr);
5758 tr->flags = READ_ONCE(sqe->timeout_flags);
5759 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5760 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5761 return -EINVAL;
5762 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5763 return -EFAULT;
5764 } else if (tr->flags) {
5765 /* timeout removal doesn't support flags */
5766 return -EINVAL;
5767 }
5768
5769 return 0;
5770 }
5771
5772 /*
5773 * Remove or update an existing timeout command
5774 */
5775 static int io_timeout_remove(struct io_kiocb *req)
5776 {
5777 struct io_timeout_rem *tr = &req->timeout_rem;
5778 struct io_ring_ctx *ctx = req->ctx;
5779 int ret;
5780
5781 spin_lock_irq(&ctx->completion_lock);
5782 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5783 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5784 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5785
5786 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5787 } else {
5788 ret = io_timeout_cancel(ctx, tr->addr);
5789 }
5790
5791 io_cqring_fill_event(req, ret);
5792 io_commit_cqring(ctx);
5793 spin_unlock_irq(&ctx->completion_lock);
5794 io_cqring_ev_posted(ctx);
5795 if (ret < 0)
5796 req_set_fail_links(req);
5797 io_put_req(req);
5798 return 0;
5799 }
5800
5801 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5802 bool is_timeout_link)
5803 {
5804 struct io_timeout_data *data;
5805 unsigned flags;
5806 u32 off = READ_ONCE(sqe->off);
5807
5808 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5809 return -EINVAL;
5810 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5811 return -EINVAL;
5812 if (off && is_timeout_link)
5813 return -EINVAL;
5814 flags = READ_ONCE(sqe->timeout_flags);
5815 if (flags & ~IORING_TIMEOUT_ABS)
5816 return -EINVAL;
5817
5818 req->timeout.off = off;
5819
5820 if (!req->async_data && io_alloc_async_data(req))
5821 return -ENOMEM;
5822
5823 data = req->async_data;
5824 data->req = req;
5825
5826 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5827 return -EFAULT;
5828
5829 if (flags & IORING_TIMEOUT_ABS)
5830 data->mode = HRTIMER_MODE_ABS;
5831 else
5832 data->mode = HRTIMER_MODE_REL;
5833
5834 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5835 return 0;
5836 }
5837
5838 static int io_timeout(struct io_kiocb *req)
5839 {
5840 struct io_ring_ctx *ctx = req->ctx;
5841 struct io_timeout_data *data = req->async_data;
5842 struct list_head *entry;
5843 u32 tail, off = req->timeout.off;
5844
5845 spin_lock_irq(&ctx->completion_lock);
5846
5847 /*
5848 * sqe->off holds how many events that need to occur for this
5849 * timeout event to be satisfied. If it isn't set, then this is
5850 * a pure timeout request, sequence isn't used.
5851 */
5852 if (io_is_timeout_noseq(req)) {
5853 entry = ctx->timeout_list.prev;
5854 goto add;
5855 }
5856
5857 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5858 req->timeout.target_seq = tail + off;
5859
5860 /* Update the last seq here in case io_flush_timeouts() hasn't.
5861 * This is safe because ->completion_lock is held, and submissions
5862 * and completions are never mixed in the same ->completion_lock section.
5863 */
5864 ctx->cq_last_tm_flush = tail;
5865
5866 /*
5867 * Insertion sort, ensuring the first entry in the list is always
5868 * the one we need first.
5869 */
5870 list_for_each_prev(entry, &ctx->timeout_list) {
5871 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5872 timeout.list);
5873
5874 if (io_is_timeout_noseq(nxt))
5875 continue;
5876 /* nxt.seq is behind @tail, otherwise would've been completed */
5877 if (off >= nxt->timeout.target_seq - tail)
5878 break;
5879 }
5880 add:
5881 list_add(&req->timeout.list, entry);
5882 data->timer.function = io_timeout_fn;
5883 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5884 spin_unlock_irq(&ctx->completion_lock);
5885 return 0;
5886 }
5887
5888 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5889 {
5890 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5891
5892 return req->user_data == (unsigned long) data;
5893 }
5894
5895 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5896 {
5897 enum io_wq_cancel cancel_ret;
5898 int ret = 0;
5899
5900 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5901 switch (cancel_ret) {
5902 case IO_WQ_CANCEL_OK:
5903 ret = 0;
5904 break;
5905 case IO_WQ_CANCEL_RUNNING:
5906 ret = -EALREADY;
5907 break;
5908 case IO_WQ_CANCEL_NOTFOUND:
5909 ret = -ENOENT;
5910 break;
5911 }
5912
5913 return ret;
5914 }
5915
5916 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5917 struct io_kiocb *req, __u64 sqe_addr,
5918 int success_ret)
5919 {
5920 unsigned long flags;
5921 int ret;
5922
5923 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5924 if (ret != -ENOENT) {
5925 spin_lock_irqsave(&ctx->completion_lock, flags);
5926 goto done;
5927 }
5928
5929 spin_lock_irqsave(&ctx->completion_lock, flags);
5930 ret = io_timeout_cancel(ctx, sqe_addr);
5931 if (ret != -ENOENT)
5932 goto done;
5933 ret = io_poll_cancel(ctx, sqe_addr);
5934 done:
5935 if (!ret)
5936 ret = success_ret;
5937 io_cqring_fill_event(req, ret);
5938 io_commit_cqring(ctx);
5939 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5940 io_cqring_ev_posted(ctx);
5941
5942 if (ret < 0)
5943 req_set_fail_links(req);
5944 io_put_req(req);
5945 }
5946
5947 static int io_async_cancel_prep(struct io_kiocb *req,
5948 const struct io_uring_sqe *sqe)
5949 {
5950 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5951 return -EINVAL;
5952 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5953 return -EINVAL;
5954 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5955 return -EINVAL;
5956
5957 req->cancel.addr = READ_ONCE(sqe->addr);
5958 return 0;
5959 }
5960
5961 static int io_async_cancel(struct io_kiocb *req)
5962 {
5963 struct io_ring_ctx *ctx = req->ctx;
5964
5965 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5966 return 0;
5967 }
5968
5969 static int io_files_update_prep(struct io_kiocb *req,
5970 const struct io_uring_sqe *sqe)
5971 {
5972 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5973 return -EINVAL;
5974 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5975 return -EINVAL;
5976 if (sqe->ioprio || sqe->rw_flags)
5977 return -EINVAL;
5978
5979 req->files_update.offset = READ_ONCE(sqe->off);
5980 req->files_update.nr_args = READ_ONCE(sqe->len);
5981 if (!req->files_update.nr_args)
5982 return -EINVAL;
5983 req->files_update.arg = READ_ONCE(sqe->addr);
5984 return 0;
5985 }
5986
5987 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5988 struct io_comp_state *cs)
5989 {
5990 struct io_ring_ctx *ctx = req->ctx;
5991 struct io_uring_files_update up;
5992 int ret;
5993
5994 if (force_nonblock)
5995 return -EAGAIN;
5996
5997 up.offset = req->files_update.offset;
5998 up.fds = req->files_update.arg;
5999
6000 mutex_lock(&ctx->uring_lock);
6001 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6002 mutex_unlock(&ctx->uring_lock);
6003
6004 if (ret < 0)
6005 req_set_fail_links(req);
6006 __io_req_complete(req, ret, 0, cs);
6007 return 0;
6008 }
6009
6010 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6011 {
6012 switch (req->opcode) {
6013 case IORING_OP_NOP:
6014 return 0;
6015 case IORING_OP_READV:
6016 case IORING_OP_READ_FIXED:
6017 case IORING_OP_READ:
6018 return io_read_prep(req, sqe);
6019 case IORING_OP_WRITEV:
6020 case IORING_OP_WRITE_FIXED:
6021 case IORING_OP_WRITE:
6022 return io_write_prep(req, sqe);
6023 case IORING_OP_POLL_ADD:
6024 return io_poll_add_prep(req, sqe);
6025 case IORING_OP_POLL_REMOVE:
6026 return io_poll_remove_prep(req, sqe);
6027 case IORING_OP_FSYNC:
6028 return io_prep_fsync(req, sqe);
6029 case IORING_OP_SYNC_FILE_RANGE:
6030 return io_prep_sfr(req, sqe);
6031 case IORING_OP_SENDMSG:
6032 case IORING_OP_SEND:
6033 return io_sendmsg_prep(req, sqe);
6034 case IORING_OP_RECVMSG:
6035 case IORING_OP_RECV:
6036 return io_recvmsg_prep(req, sqe);
6037 case IORING_OP_CONNECT:
6038 return io_connect_prep(req, sqe);
6039 case IORING_OP_TIMEOUT:
6040 return io_timeout_prep(req, sqe, false);
6041 case IORING_OP_TIMEOUT_REMOVE:
6042 return io_timeout_remove_prep(req, sqe);
6043 case IORING_OP_ASYNC_CANCEL:
6044 return io_async_cancel_prep(req, sqe);
6045 case IORING_OP_LINK_TIMEOUT:
6046 return io_timeout_prep(req, sqe, true);
6047 case IORING_OP_ACCEPT:
6048 return io_accept_prep(req, sqe);
6049 case IORING_OP_FALLOCATE:
6050 return io_fallocate_prep(req, sqe);
6051 case IORING_OP_OPENAT:
6052 return io_openat_prep(req, sqe);
6053 case IORING_OP_CLOSE:
6054 return io_close_prep(req, sqe);
6055 case IORING_OP_FILES_UPDATE:
6056 return io_files_update_prep(req, sqe);
6057 case IORING_OP_STATX:
6058 return io_statx_prep(req, sqe);
6059 case IORING_OP_FADVISE:
6060 return io_fadvise_prep(req, sqe);
6061 case IORING_OP_MADVISE:
6062 return io_madvise_prep(req, sqe);
6063 case IORING_OP_OPENAT2:
6064 return io_openat2_prep(req, sqe);
6065 case IORING_OP_EPOLL_CTL:
6066 return io_epoll_ctl_prep(req, sqe);
6067 case IORING_OP_SPLICE:
6068 return io_splice_prep(req, sqe);
6069 case IORING_OP_PROVIDE_BUFFERS:
6070 return io_provide_buffers_prep(req, sqe);
6071 case IORING_OP_REMOVE_BUFFERS:
6072 return io_remove_buffers_prep(req, sqe);
6073 case IORING_OP_TEE:
6074 return io_tee_prep(req, sqe);
6075 case IORING_OP_SHUTDOWN:
6076 return io_shutdown_prep(req, sqe);
6077 case IORING_OP_RENAMEAT:
6078 return io_renameat_prep(req, sqe);
6079 case IORING_OP_UNLINKAT:
6080 return io_unlinkat_prep(req, sqe);
6081 }
6082
6083 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6084 req->opcode);
6085 return-EINVAL;
6086 }
6087
6088 static int io_req_defer_prep(struct io_kiocb *req,
6089 const struct io_uring_sqe *sqe)
6090 {
6091 if (!sqe)
6092 return 0;
6093 if (io_alloc_async_data(req))
6094 return -EAGAIN;
6095 return io_req_prep(req, sqe);
6096 }
6097
6098 static u32 io_get_sequence(struct io_kiocb *req)
6099 {
6100 struct io_kiocb *pos;
6101 struct io_ring_ctx *ctx = req->ctx;
6102 u32 total_submitted, nr_reqs = 0;
6103
6104 io_for_each_link(pos, req)
6105 nr_reqs++;
6106
6107 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6108 return total_submitted - nr_reqs;
6109 }
6110
6111 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6112 {
6113 struct io_ring_ctx *ctx = req->ctx;
6114 struct io_defer_entry *de;
6115 int ret;
6116 u32 seq;
6117
6118 /* Still need defer if there is pending req in defer list. */
6119 if (likely(list_empty_careful(&ctx->defer_list) &&
6120 !(req->flags & REQ_F_IO_DRAIN)))
6121 return 0;
6122
6123 seq = io_get_sequence(req);
6124 /* Still a chance to pass the sequence check */
6125 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6126 return 0;
6127
6128 if (!req->async_data) {
6129 ret = io_req_defer_prep(req, sqe);
6130 if (ret)
6131 return ret;
6132 }
6133 io_prep_async_link(req);
6134 de = kmalloc(sizeof(*de), GFP_KERNEL);
6135 if (!de)
6136 return -ENOMEM;
6137
6138 spin_lock_irq(&ctx->completion_lock);
6139 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6140 spin_unlock_irq(&ctx->completion_lock);
6141 kfree(de);
6142 io_queue_async_work(req);
6143 return -EIOCBQUEUED;
6144 }
6145
6146 trace_io_uring_defer(ctx, req, req->user_data);
6147 de->req = req;
6148 de->seq = seq;
6149 list_add_tail(&de->list, &ctx->defer_list);
6150 spin_unlock_irq(&ctx->completion_lock);
6151 return -EIOCBQUEUED;
6152 }
6153
6154 static void io_req_drop_files(struct io_kiocb *req)
6155 {
6156 struct io_ring_ctx *ctx = req->ctx;
6157 struct io_uring_task *tctx = req->task->io_uring;
6158 unsigned long flags;
6159
6160 put_files_struct(req->work.identity->files);
6161 put_nsproxy(req->work.identity->nsproxy);
6162 spin_lock_irqsave(&ctx->inflight_lock, flags);
6163 list_del(&req->inflight_entry);
6164 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6165 req->flags &= ~REQ_F_INFLIGHT;
6166 req->work.flags &= ~IO_WQ_WORK_FILES;
6167 if (atomic_read(&tctx->in_idle))
6168 wake_up(&tctx->wait);
6169 }
6170
6171 static void __io_clean_op(struct io_kiocb *req)
6172 {
6173 if (req->flags & REQ_F_BUFFER_SELECTED) {
6174 switch (req->opcode) {
6175 case IORING_OP_READV:
6176 case IORING_OP_READ_FIXED:
6177 case IORING_OP_READ:
6178 kfree((void *)(unsigned long)req->rw.addr);
6179 break;
6180 case IORING_OP_RECVMSG:
6181 case IORING_OP_RECV:
6182 kfree(req->sr_msg.kbuf);
6183 break;
6184 }
6185 req->flags &= ~REQ_F_BUFFER_SELECTED;
6186 }
6187
6188 if (req->flags & REQ_F_NEED_CLEANUP) {
6189 switch (req->opcode) {
6190 case IORING_OP_READV:
6191 case IORING_OP_READ_FIXED:
6192 case IORING_OP_READ:
6193 case IORING_OP_WRITEV:
6194 case IORING_OP_WRITE_FIXED:
6195 case IORING_OP_WRITE: {
6196 struct io_async_rw *io = req->async_data;
6197 if (io->free_iovec)
6198 kfree(io->free_iovec);
6199 break;
6200 }
6201 case IORING_OP_RECVMSG:
6202 case IORING_OP_SENDMSG: {
6203 struct io_async_msghdr *io = req->async_data;
6204 if (io->iov != io->fast_iov)
6205 kfree(io->iov);
6206 break;
6207 }
6208 case IORING_OP_SPLICE:
6209 case IORING_OP_TEE:
6210 io_put_file(req, req->splice.file_in,
6211 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6212 break;
6213 case IORING_OP_OPENAT:
6214 case IORING_OP_OPENAT2:
6215 if (req->open.filename)
6216 putname(req->open.filename);
6217 break;
6218 case IORING_OP_RENAMEAT:
6219 putname(req->rename.oldpath);
6220 putname(req->rename.newpath);
6221 break;
6222 case IORING_OP_UNLINKAT:
6223 putname(req->unlink.filename);
6224 break;
6225 }
6226 req->flags &= ~REQ_F_NEED_CLEANUP;
6227 }
6228
6229 if (req->flags & REQ_F_INFLIGHT)
6230 io_req_drop_files(req);
6231 }
6232
6233 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6234 struct io_comp_state *cs)
6235 {
6236 struct io_ring_ctx *ctx = req->ctx;
6237 int ret;
6238
6239 switch (req->opcode) {
6240 case IORING_OP_NOP:
6241 ret = io_nop(req, cs);
6242 break;
6243 case IORING_OP_READV:
6244 case IORING_OP_READ_FIXED:
6245 case IORING_OP_READ:
6246 ret = io_read(req, force_nonblock, cs);
6247 break;
6248 case IORING_OP_WRITEV:
6249 case IORING_OP_WRITE_FIXED:
6250 case IORING_OP_WRITE:
6251 ret = io_write(req, force_nonblock, cs);
6252 break;
6253 case IORING_OP_FSYNC:
6254 ret = io_fsync(req, force_nonblock);
6255 break;
6256 case IORING_OP_POLL_ADD:
6257 ret = io_poll_add(req);
6258 break;
6259 case IORING_OP_POLL_REMOVE:
6260 ret = io_poll_remove(req);
6261 break;
6262 case IORING_OP_SYNC_FILE_RANGE:
6263 ret = io_sync_file_range(req, force_nonblock);
6264 break;
6265 case IORING_OP_SENDMSG:
6266 ret = io_sendmsg(req, force_nonblock, cs);
6267 break;
6268 case IORING_OP_SEND:
6269 ret = io_send(req, force_nonblock, cs);
6270 break;
6271 case IORING_OP_RECVMSG:
6272 ret = io_recvmsg(req, force_nonblock, cs);
6273 break;
6274 case IORING_OP_RECV:
6275 ret = io_recv(req, force_nonblock, cs);
6276 break;
6277 case IORING_OP_TIMEOUT:
6278 ret = io_timeout(req);
6279 break;
6280 case IORING_OP_TIMEOUT_REMOVE:
6281 ret = io_timeout_remove(req);
6282 break;
6283 case IORING_OP_ACCEPT:
6284 ret = io_accept(req, force_nonblock, cs);
6285 break;
6286 case IORING_OP_CONNECT:
6287 ret = io_connect(req, force_nonblock, cs);
6288 break;
6289 case IORING_OP_ASYNC_CANCEL:
6290 ret = io_async_cancel(req);
6291 break;
6292 case IORING_OP_FALLOCATE:
6293 ret = io_fallocate(req, force_nonblock);
6294 break;
6295 case IORING_OP_OPENAT:
6296 ret = io_openat(req, force_nonblock);
6297 break;
6298 case IORING_OP_CLOSE:
6299 ret = io_close(req, force_nonblock, cs);
6300 break;
6301 case IORING_OP_FILES_UPDATE:
6302 ret = io_files_update(req, force_nonblock, cs);
6303 break;
6304 case IORING_OP_STATX:
6305 ret = io_statx(req, force_nonblock);
6306 break;
6307 case IORING_OP_FADVISE:
6308 ret = io_fadvise(req, force_nonblock);
6309 break;
6310 case IORING_OP_MADVISE:
6311 ret = io_madvise(req, force_nonblock);
6312 break;
6313 case IORING_OP_OPENAT2:
6314 ret = io_openat2(req, force_nonblock);
6315 break;
6316 case IORING_OP_EPOLL_CTL:
6317 ret = io_epoll_ctl(req, force_nonblock, cs);
6318 break;
6319 case IORING_OP_SPLICE:
6320 ret = io_splice(req, force_nonblock);
6321 break;
6322 case IORING_OP_PROVIDE_BUFFERS:
6323 ret = io_provide_buffers(req, force_nonblock, cs);
6324 break;
6325 case IORING_OP_REMOVE_BUFFERS:
6326 ret = io_remove_buffers(req, force_nonblock, cs);
6327 break;
6328 case IORING_OP_TEE:
6329 ret = io_tee(req, force_nonblock);
6330 break;
6331 case IORING_OP_SHUTDOWN:
6332 ret = io_shutdown(req, force_nonblock);
6333 break;
6334 case IORING_OP_RENAMEAT:
6335 ret = io_renameat(req, force_nonblock);
6336 break;
6337 case IORING_OP_UNLINKAT:
6338 ret = io_unlinkat(req, force_nonblock);
6339 break;
6340 default:
6341 ret = -EINVAL;
6342 break;
6343 }
6344
6345 if (ret)
6346 return ret;
6347
6348 /* If the op doesn't have a file, we're not polling for it */
6349 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6350 const bool in_async = io_wq_current_is_worker();
6351
6352 /* workqueue context doesn't hold uring_lock, grab it now */
6353 if (in_async)
6354 mutex_lock(&ctx->uring_lock);
6355
6356 io_iopoll_req_issued(req, in_async);
6357
6358 if (in_async)
6359 mutex_unlock(&ctx->uring_lock);
6360 }
6361
6362 return 0;
6363 }
6364
6365 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6366 {
6367 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6368 struct io_kiocb *timeout;
6369 int ret = 0;
6370
6371 timeout = io_prep_linked_timeout(req);
6372 if (timeout)
6373 io_queue_linked_timeout(timeout);
6374
6375 /* if NO_CANCEL is set, we must still run the work */
6376 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6377 IO_WQ_WORK_CANCEL) {
6378 ret = -ECANCELED;
6379 }
6380
6381 if (!ret) {
6382 do {
6383 ret = io_issue_sqe(req, false, NULL);
6384 /*
6385 * We can get EAGAIN for polled IO even though we're
6386 * forcing a sync submission from here, since we can't
6387 * wait for request slots on the block side.
6388 */
6389 if (ret != -EAGAIN)
6390 break;
6391 cond_resched();
6392 } while (1);
6393 }
6394
6395 if (ret) {
6396 struct io_ring_ctx *lock_ctx = NULL;
6397
6398 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6399 lock_ctx = req->ctx;
6400
6401 /*
6402 * io_iopoll_complete() does not hold completion_lock to
6403 * complete polled io, so here for polled io, we can not call
6404 * io_req_complete() directly, otherwise there maybe concurrent
6405 * access to cqring, defer_list, etc, which is not safe. Given
6406 * that io_iopoll_complete() is always called under uring_lock,
6407 * so here for polled io, we also get uring_lock to complete
6408 * it.
6409 */
6410 if (lock_ctx)
6411 mutex_lock(&lock_ctx->uring_lock);
6412
6413 req_set_fail_links(req);
6414 io_req_complete(req, ret);
6415
6416 if (lock_ctx)
6417 mutex_unlock(&lock_ctx->uring_lock);
6418 }
6419
6420 return io_steal_work(req);
6421 }
6422
6423 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6424 int index)
6425 {
6426 struct fixed_file_table *table;
6427
6428 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6429 return table->files[index & IORING_FILE_TABLE_MASK];
6430 }
6431
6432 static struct file *io_file_get(struct io_submit_state *state,
6433 struct io_kiocb *req, int fd, bool fixed)
6434 {
6435 struct io_ring_ctx *ctx = req->ctx;
6436 struct file *file;
6437
6438 if (fixed) {
6439 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6440 return NULL;
6441 fd = array_index_nospec(fd, ctx->nr_user_files);
6442 file = io_file_from_index(ctx, fd);
6443 io_set_resource_node(req);
6444 } else {
6445 trace_io_uring_file_get(ctx, fd);
6446 file = __io_file_get(state, fd);
6447 }
6448
6449 return file;
6450 }
6451
6452 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6453 {
6454 struct io_timeout_data *data = container_of(timer,
6455 struct io_timeout_data, timer);
6456 struct io_kiocb *prev, *req = data->req;
6457 struct io_ring_ctx *ctx = req->ctx;
6458 unsigned long flags;
6459
6460 spin_lock_irqsave(&ctx->completion_lock, flags);
6461 prev = req->timeout.head;
6462 req->timeout.head = NULL;
6463
6464 /*
6465 * We don't expect the list to be empty, that will only happen if we
6466 * race with the completion of the linked work.
6467 */
6468 if (prev && refcount_inc_not_zero(&prev->refs))
6469 io_remove_next_linked(prev);
6470 else
6471 prev = NULL;
6472 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6473
6474 if (prev) {
6475 req_set_fail_links(prev);
6476 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6477 io_put_req(prev);
6478 } else {
6479 io_req_complete(req, -ETIME);
6480 }
6481 return HRTIMER_NORESTART;
6482 }
6483
6484 static void __io_queue_linked_timeout(struct io_kiocb *req)
6485 {
6486 /*
6487 * If the back reference is NULL, then our linked request finished
6488 * before we got a chance to setup the timer
6489 */
6490 if (req->timeout.head) {
6491 struct io_timeout_data *data = req->async_data;
6492
6493 data->timer.function = io_link_timeout_fn;
6494 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6495 data->mode);
6496 }
6497 }
6498
6499 static void io_queue_linked_timeout(struct io_kiocb *req)
6500 {
6501 struct io_ring_ctx *ctx = req->ctx;
6502
6503 spin_lock_irq(&ctx->completion_lock);
6504 __io_queue_linked_timeout(req);
6505 spin_unlock_irq(&ctx->completion_lock);
6506
6507 /* drop submission reference */
6508 io_put_req(req);
6509 }
6510
6511 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6512 {
6513 struct io_kiocb *nxt = req->link;
6514
6515 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6516 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6517 return NULL;
6518
6519 nxt->timeout.head = req;
6520 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6521 req->flags |= REQ_F_LINK_TIMEOUT;
6522 return nxt;
6523 }
6524
6525 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6526 {
6527 struct io_kiocb *linked_timeout;
6528 const struct cred *old_creds = NULL;
6529 int ret;
6530
6531 again:
6532 linked_timeout = io_prep_linked_timeout(req);
6533
6534 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6535 (req->work.flags & IO_WQ_WORK_CREDS) &&
6536 req->work.identity->creds != current_cred()) {
6537 if (old_creds)
6538 revert_creds(old_creds);
6539 if (old_creds == req->work.identity->creds)
6540 old_creds = NULL; /* restored original creds */
6541 else
6542 old_creds = override_creds(req->work.identity->creds);
6543 }
6544
6545 ret = io_issue_sqe(req, true, cs);
6546
6547 /*
6548 * We async punt it if the file wasn't marked NOWAIT, or if the file
6549 * doesn't support non-blocking read/write attempts
6550 */
6551 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6552 if (!io_arm_poll_handler(req)) {
6553 /*
6554 * Queued up for async execution, worker will release
6555 * submit reference when the iocb is actually submitted.
6556 */
6557 io_queue_async_work(req);
6558 }
6559
6560 if (linked_timeout)
6561 io_queue_linked_timeout(linked_timeout);
6562 } else if (likely(!ret)) {
6563 /* drop submission reference */
6564 req = io_put_req_find_next(req);
6565 if (linked_timeout)
6566 io_queue_linked_timeout(linked_timeout);
6567
6568 if (req) {
6569 if (!(req->flags & REQ_F_FORCE_ASYNC))
6570 goto again;
6571 io_queue_async_work(req);
6572 }
6573 } else {
6574 /* un-prep timeout, so it'll be killed as any other linked */
6575 req->flags &= ~REQ_F_LINK_TIMEOUT;
6576 req_set_fail_links(req);
6577 io_put_req(req);
6578 io_req_complete(req, ret);
6579 }
6580
6581 if (old_creds)
6582 revert_creds(old_creds);
6583 }
6584
6585 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6586 struct io_comp_state *cs)
6587 {
6588 int ret;
6589
6590 ret = io_req_defer(req, sqe);
6591 if (ret) {
6592 if (ret != -EIOCBQUEUED) {
6593 fail_req:
6594 req_set_fail_links(req);
6595 io_put_req(req);
6596 io_req_complete(req, ret);
6597 }
6598 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6599 if (!req->async_data) {
6600 ret = io_req_defer_prep(req, sqe);
6601 if (unlikely(ret))
6602 goto fail_req;
6603 }
6604 io_queue_async_work(req);
6605 } else {
6606 if (sqe) {
6607 ret = io_req_prep(req, sqe);
6608 if (unlikely(ret))
6609 goto fail_req;
6610 }
6611 __io_queue_sqe(req, cs);
6612 }
6613 }
6614
6615 static inline void io_queue_link_head(struct io_kiocb *req,
6616 struct io_comp_state *cs)
6617 {
6618 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6619 io_put_req(req);
6620 io_req_complete(req, -ECANCELED);
6621 } else
6622 io_queue_sqe(req, NULL, cs);
6623 }
6624
6625 struct io_submit_link {
6626 struct io_kiocb *head;
6627 struct io_kiocb *last;
6628 };
6629
6630 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6631 struct io_submit_link *link, struct io_comp_state *cs)
6632 {
6633 struct io_ring_ctx *ctx = req->ctx;
6634 int ret;
6635
6636 /*
6637 * If we already have a head request, queue this one for async
6638 * submittal once the head completes. If we don't have a head but
6639 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6640 * submitted sync once the chain is complete. If none of those
6641 * conditions are true (normal request), then just queue it.
6642 */
6643 if (link->head) {
6644 struct io_kiocb *head = link->head;
6645
6646 /*
6647 * Taking sequential execution of a link, draining both sides
6648 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6649 * requests in the link. So, it drains the head and the
6650 * next after the link request. The last one is done via
6651 * drain_next flag to persist the effect across calls.
6652 */
6653 if (req->flags & REQ_F_IO_DRAIN) {
6654 head->flags |= REQ_F_IO_DRAIN;
6655 ctx->drain_next = 1;
6656 }
6657 ret = io_req_defer_prep(req, sqe);
6658 if (unlikely(ret)) {
6659 /* fail even hard links since we don't submit */
6660 head->flags |= REQ_F_FAIL_LINK;
6661 return ret;
6662 }
6663 trace_io_uring_link(ctx, req, head);
6664 link->last->link = req;
6665 link->last = req;
6666
6667 /* last request of a link, enqueue the link */
6668 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6669 io_queue_link_head(head, cs);
6670 link->head = NULL;
6671 }
6672 } else {
6673 if (unlikely(ctx->drain_next)) {
6674 req->flags |= REQ_F_IO_DRAIN;
6675 ctx->drain_next = 0;
6676 }
6677 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6678 ret = io_req_defer_prep(req, sqe);
6679 if (unlikely(ret))
6680 req->flags |= REQ_F_FAIL_LINK;
6681 link->head = req;
6682 link->last = req;
6683 } else {
6684 io_queue_sqe(req, sqe, cs);
6685 }
6686 }
6687
6688 return 0;
6689 }
6690
6691 /*
6692 * Batched submission is done, ensure local IO is flushed out.
6693 */
6694 static void io_submit_state_end(struct io_submit_state *state)
6695 {
6696 if (!list_empty(&state->comp.list))
6697 io_submit_flush_completions(&state->comp);
6698 if (state->plug_started)
6699 blk_finish_plug(&state->plug);
6700 io_state_file_put(state);
6701 if (state->free_reqs)
6702 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6703 }
6704
6705 /*
6706 * Start submission side cache.
6707 */
6708 static void io_submit_state_start(struct io_submit_state *state,
6709 struct io_ring_ctx *ctx, unsigned int max_ios)
6710 {
6711 state->plug_started = false;
6712 state->comp.nr = 0;
6713 INIT_LIST_HEAD(&state->comp.list);
6714 state->comp.ctx = ctx;
6715 state->free_reqs = 0;
6716 state->file_refs = 0;
6717 state->ios_left = max_ios;
6718 }
6719
6720 static void io_commit_sqring(struct io_ring_ctx *ctx)
6721 {
6722 struct io_rings *rings = ctx->rings;
6723
6724 /*
6725 * Ensure any loads from the SQEs are done at this point,
6726 * since once we write the new head, the application could
6727 * write new data to them.
6728 */
6729 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6730 }
6731
6732 /*
6733 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6734 * that is mapped by userspace. This means that care needs to be taken to
6735 * ensure that reads are stable, as we cannot rely on userspace always
6736 * being a good citizen. If members of the sqe are validated and then later
6737 * used, it's important that those reads are done through READ_ONCE() to
6738 * prevent a re-load down the line.
6739 */
6740 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6741 {
6742 u32 *sq_array = ctx->sq_array;
6743 unsigned head;
6744
6745 /*
6746 * The cached sq head (or cq tail) serves two purposes:
6747 *
6748 * 1) allows us to batch the cost of updating the user visible
6749 * head updates.
6750 * 2) allows the kernel side to track the head on its own, even
6751 * though the application is the one updating it.
6752 */
6753 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6754 if (likely(head < ctx->sq_entries))
6755 return &ctx->sq_sqes[head];
6756
6757 /* drop invalid entries */
6758 ctx->cached_sq_dropped++;
6759 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6760 return NULL;
6761 }
6762
6763 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6764 {
6765 ctx->cached_sq_head++;
6766 }
6767
6768 /*
6769 * Check SQE restrictions (opcode and flags).
6770 *
6771 * Returns 'true' if SQE is allowed, 'false' otherwise.
6772 */
6773 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6774 struct io_kiocb *req,
6775 unsigned int sqe_flags)
6776 {
6777 if (!ctx->restricted)
6778 return true;
6779
6780 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6781 return false;
6782
6783 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6784 ctx->restrictions.sqe_flags_required)
6785 return false;
6786
6787 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6788 ctx->restrictions.sqe_flags_required))
6789 return false;
6790
6791 return true;
6792 }
6793
6794 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6795 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6796 IOSQE_BUFFER_SELECT)
6797
6798 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6799 const struct io_uring_sqe *sqe,
6800 struct io_submit_state *state)
6801 {
6802 unsigned int sqe_flags;
6803 int id, ret;
6804
6805 req->opcode = READ_ONCE(sqe->opcode);
6806 req->user_data = READ_ONCE(sqe->user_data);
6807 req->async_data = NULL;
6808 req->file = NULL;
6809 req->ctx = ctx;
6810 req->flags = 0;
6811 req->link = NULL;
6812 req->fixed_file_refs = NULL;
6813 /* one is dropped after submission, the other at completion */
6814 refcount_set(&req->refs, 2);
6815 req->task = current;
6816 req->result = 0;
6817
6818 if (unlikely(req->opcode >= IORING_OP_LAST))
6819 return -EINVAL;
6820
6821 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6822 return -EFAULT;
6823
6824 sqe_flags = READ_ONCE(sqe->flags);
6825 /* enforce forwards compatibility on users */
6826 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6827 return -EINVAL;
6828
6829 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6830 return -EACCES;
6831
6832 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6833 !io_op_defs[req->opcode].buffer_select)
6834 return -EOPNOTSUPP;
6835
6836 id = READ_ONCE(sqe->personality);
6837 if (id) {
6838 struct io_identity *iod;
6839
6840 iod = idr_find(&ctx->personality_idr, id);
6841 if (unlikely(!iod))
6842 return -EINVAL;
6843 refcount_inc(&iod->count);
6844
6845 __io_req_init_async(req);
6846 get_cred(iod->creds);
6847 req->work.identity = iod;
6848 req->work.flags |= IO_WQ_WORK_CREDS;
6849 }
6850
6851 /* same numerical values with corresponding REQ_F_*, safe to copy */
6852 req->flags |= sqe_flags;
6853
6854 /*
6855 * Plug now if we have more than 1 IO left after this, and the target
6856 * is potentially a read/write to block based storage.
6857 */
6858 if (!state->plug_started && state->ios_left > 1 &&
6859 io_op_defs[req->opcode].plug) {
6860 blk_start_plug(&state->plug);
6861 state->plug_started = true;
6862 }
6863
6864 ret = 0;
6865 if (io_op_defs[req->opcode].needs_file) {
6866 bool fixed = req->flags & REQ_F_FIXED_FILE;
6867
6868 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6869 if (unlikely(!req->file &&
6870 !io_op_defs[req->opcode].needs_file_no_error))
6871 ret = -EBADF;
6872 }
6873
6874 state->ios_left--;
6875 return ret;
6876 }
6877
6878 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6879 {
6880 struct io_submit_state state;
6881 struct io_submit_link link;
6882 int i, submitted = 0;
6883
6884 /* if we have a backlog and couldn't flush it all, return BUSY */
6885 if (test_bit(0, &ctx->sq_check_overflow)) {
6886 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6887 return -EBUSY;
6888 }
6889
6890 /* make sure SQ entry isn't read before tail */
6891 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6892
6893 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6894 return -EAGAIN;
6895
6896 percpu_counter_add(&current->io_uring->inflight, nr);
6897 refcount_add(nr, &current->usage);
6898
6899 io_submit_state_start(&state, ctx, nr);
6900 link.head = NULL;
6901
6902 for (i = 0; i < nr; i++) {
6903 const struct io_uring_sqe *sqe;
6904 struct io_kiocb *req;
6905 int err;
6906
6907 sqe = io_get_sqe(ctx);
6908 if (unlikely(!sqe)) {
6909 io_consume_sqe(ctx);
6910 break;
6911 }
6912 req = io_alloc_req(ctx, &state);
6913 if (unlikely(!req)) {
6914 if (!submitted)
6915 submitted = -EAGAIN;
6916 break;
6917 }
6918 io_consume_sqe(ctx);
6919 /* will complete beyond this point, count as submitted */
6920 submitted++;
6921
6922 err = io_init_req(ctx, req, sqe, &state);
6923 if (unlikely(err)) {
6924 fail_req:
6925 io_put_req(req);
6926 io_req_complete(req, err);
6927 break;
6928 }
6929
6930 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6931 true, io_async_submit(ctx));
6932 err = io_submit_sqe(req, sqe, &link, &state.comp);
6933 if (err)
6934 goto fail_req;
6935 }
6936
6937 if (unlikely(submitted != nr)) {
6938 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6939 struct io_uring_task *tctx = current->io_uring;
6940 int unused = nr - ref_used;
6941
6942 percpu_ref_put_many(&ctx->refs, unused);
6943 percpu_counter_sub(&tctx->inflight, unused);
6944 put_task_struct_many(current, unused);
6945 }
6946 if (link.head)
6947 io_queue_link_head(link.head, &state.comp);
6948 io_submit_state_end(&state);
6949
6950 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6951 io_commit_sqring(ctx);
6952
6953 return submitted;
6954 }
6955
6956 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6957 {
6958 /* Tell userspace we may need a wakeup call */
6959 spin_lock_irq(&ctx->completion_lock);
6960 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6961 spin_unlock_irq(&ctx->completion_lock);
6962 }
6963
6964 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6965 {
6966 spin_lock_irq(&ctx->completion_lock);
6967 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6968 spin_unlock_irq(&ctx->completion_lock);
6969 }
6970
6971 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6972 {
6973 unsigned int to_submit;
6974 int ret = 0;
6975
6976 to_submit = io_sqring_entries(ctx);
6977 /* if we're handling multiple rings, cap submit size for fairness */
6978 if (cap_entries && to_submit > 8)
6979 to_submit = 8;
6980
6981 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6982 unsigned nr_events = 0;
6983
6984 mutex_lock(&ctx->uring_lock);
6985 if (!list_empty(&ctx->iopoll_list))
6986 io_do_iopoll(ctx, &nr_events, 0);
6987
6988 if (to_submit && !ctx->sqo_dead &&
6989 likely(!percpu_ref_is_dying(&ctx->refs)))
6990 ret = io_submit_sqes(ctx, to_submit);
6991 mutex_unlock(&ctx->uring_lock);
6992 }
6993
6994 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6995 wake_up(&ctx->sqo_sq_wait);
6996
6997 return ret;
6998 }
6999
7000 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7001 {
7002 struct io_ring_ctx *ctx;
7003 unsigned sq_thread_idle = 0;
7004
7005 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7006 if (sq_thread_idle < ctx->sq_thread_idle)
7007 sq_thread_idle = ctx->sq_thread_idle;
7008 }
7009
7010 sqd->sq_thread_idle = sq_thread_idle;
7011 }
7012
7013 static void io_sqd_init_new(struct io_sq_data *sqd)
7014 {
7015 struct io_ring_ctx *ctx;
7016
7017 while (!list_empty(&sqd->ctx_new_list)) {
7018 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7019 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7020 complete(&ctx->sq_thread_comp);
7021 }
7022
7023 io_sqd_update_thread_idle(sqd);
7024 }
7025
7026 static int io_sq_thread(void *data)
7027 {
7028 struct cgroup_subsys_state *cur_css = NULL;
7029 struct files_struct *old_files = current->files;
7030 struct nsproxy *old_nsproxy = current->nsproxy;
7031 const struct cred *old_cred = NULL;
7032 struct io_sq_data *sqd = data;
7033 struct io_ring_ctx *ctx;
7034 unsigned long timeout = 0;
7035 DEFINE_WAIT(wait);
7036
7037 task_lock(current);
7038 current->files = NULL;
7039 current->nsproxy = NULL;
7040 task_unlock(current);
7041
7042 while (!kthread_should_stop()) {
7043 int ret;
7044 bool cap_entries, sqt_spin, needs_sched;
7045
7046 /*
7047 * Any changes to the sqd lists are synchronized through the
7048 * kthread parking. This synchronizes the thread vs users,
7049 * the users are synchronized on the sqd->ctx_lock.
7050 */
7051 if (kthread_should_park()) {
7052 kthread_parkme();
7053 /*
7054 * When sq thread is unparked, in case the previous park operation
7055 * comes from io_put_sq_data(), which means that sq thread is going
7056 * to be stopped, so here needs to have a check.
7057 */
7058 if (kthread_should_stop())
7059 break;
7060 }
7061
7062 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7063 io_sqd_init_new(sqd);
7064 timeout = jiffies + sqd->sq_thread_idle;
7065 }
7066
7067 sqt_spin = false;
7068 cap_entries = !list_is_singular(&sqd->ctx_list);
7069 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7070 if (current->cred != ctx->creds) {
7071 if (old_cred)
7072 revert_creds(old_cred);
7073 old_cred = override_creds(ctx->creds);
7074 }
7075 io_sq_thread_associate_blkcg(ctx, &cur_css);
7076 #ifdef CONFIG_AUDIT
7077 current->loginuid = ctx->loginuid;
7078 current->sessionid = ctx->sessionid;
7079 #endif
7080
7081 ret = __io_sq_thread(ctx, cap_entries);
7082 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7083 sqt_spin = true;
7084
7085 io_sq_thread_drop_mm_files();
7086 }
7087
7088 if (sqt_spin || !time_after(jiffies, timeout)) {
7089 io_run_task_work();
7090 io_sq_thread_drop_mm_files();
7091 cond_resched();
7092 if (sqt_spin)
7093 timeout = jiffies + sqd->sq_thread_idle;
7094 continue;
7095 }
7096
7097 if (kthread_should_park())
7098 continue;
7099
7100 needs_sched = true;
7101 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7102 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7103 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7104 !list_empty_careful(&ctx->iopoll_list)) {
7105 needs_sched = false;
7106 break;
7107 }
7108 if (io_sqring_entries(ctx)) {
7109 needs_sched = false;
7110 break;
7111 }
7112 }
7113
7114 if (needs_sched) {
7115 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7116 io_ring_set_wakeup_flag(ctx);
7117
7118 schedule();
7119 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7120 io_ring_clear_wakeup_flag(ctx);
7121 }
7122
7123 finish_wait(&sqd->wait, &wait);
7124 timeout = jiffies + sqd->sq_thread_idle;
7125 }
7126
7127 io_run_task_work();
7128 io_sq_thread_drop_mm_files();
7129
7130 if (cur_css)
7131 io_sq_thread_unassociate_blkcg();
7132 if (old_cred)
7133 revert_creds(old_cred);
7134
7135 task_lock(current);
7136 current->files = old_files;
7137 current->nsproxy = old_nsproxy;
7138 task_unlock(current);
7139
7140 kthread_parkme();
7141
7142 return 0;
7143 }
7144
7145 struct io_wait_queue {
7146 struct wait_queue_entry wq;
7147 struct io_ring_ctx *ctx;
7148 unsigned to_wait;
7149 unsigned nr_timeouts;
7150 };
7151
7152 static inline bool io_should_wake(struct io_wait_queue *iowq)
7153 {
7154 struct io_ring_ctx *ctx = iowq->ctx;
7155
7156 /*
7157 * Wake up if we have enough events, or if a timeout occurred since we
7158 * started waiting. For timeouts, we always want to return to userspace,
7159 * regardless of event count.
7160 */
7161 return io_cqring_events(ctx) >= iowq->to_wait ||
7162 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7163 }
7164
7165 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7166 int wake_flags, void *key)
7167 {
7168 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7169 wq);
7170
7171 /*
7172 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7173 * the task, and the next invocation will do it.
7174 */
7175 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7176 return autoremove_wake_function(curr, mode, wake_flags, key);
7177 return -1;
7178 }
7179
7180 static int io_run_task_work_sig(void)
7181 {
7182 if (io_run_task_work())
7183 return 1;
7184 if (!signal_pending(current))
7185 return 0;
7186 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7187 return -ERESTARTSYS;
7188 return -EINTR;
7189 }
7190
7191 /*
7192 * Wait until events become available, if we don't already have some. The
7193 * application must reap them itself, as they reside on the shared cq ring.
7194 */
7195 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7196 const sigset_t __user *sig, size_t sigsz,
7197 struct __kernel_timespec __user *uts)
7198 {
7199 struct io_wait_queue iowq = {
7200 .wq = {
7201 .private = current,
7202 .func = io_wake_function,
7203 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7204 },
7205 .ctx = ctx,
7206 .to_wait = min_events,
7207 };
7208 struct io_rings *rings = ctx->rings;
7209 struct timespec64 ts;
7210 signed long timeout = 0;
7211 int ret = 0;
7212
7213 do {
7214 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7215 if (io_cqring_events(ctx) >= min_events)
7216 return 0;
7217 if (!io_run_task_work())
7218 break;
7219 } while (1);
7220
7221 if (sig) {
7222 #ifdef CONFIG_COMPAT
7223 if (in_compat_syscall())
7224 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7225 sigsz);
7226 else
7227 #endif
7228 ret = set_user_sigmask(sig, sigsz);
7229
7230 if (ret)
7231 return ret;
7232 }
7233
7234 if (uts) {
7235 if (get_timespec64(&ts, uts))
7236 return -EFAULT;
7237 timeout = timespec64_to_jiffies(&ts);
7238 }
7239
7240 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7241 trace_io_uring_cqring_wait(ctx, min_events);
7242 do {
7243 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7244 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7245 TASK_INTERRUPTIBLE);
7246 /* make sure we run task_work before checking for signals */
7247 ret = io_run_task_work_sig();
7248 if (ret > 0)
7249 continue;
7250 else if (ret < 0)
7251 break;
7252 if (io_should_wake(&iowq))
7253 break;
7254 if (test_bit(0, &ctx->cq_check_overflow))
7255 continue;
7256 if (uts) {
7257 timeout = schedule_timeout(timeout);
7258 if (timeout == 0) {
7259 ret = -ETIME;
7260 break;
7261 }
7262 } else {
7263 schedule();
7264 }
7265 } while (1);
7266 finish_wait(&ctx->wait, &iowq.wq);
7267
7268 restore_saved_sigmask_unless(ret == -EINTR);
7269
7270 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7271 }
7272
7273 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7274 {
7275 #if defined(CONFIG_UNIX)
7276 if (ctx->ring_sock) {
7277 struct sock *sock = ctx->ring_sock->sk;
7278 struct sk_buff *skb;
7279
7280 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7281 kfree_skb(skb);
7282 }
7283 #else
7284 int i;
7285
7286 for (i = 0; i < ctx->nr_user_files; i++) {
7287 struct file *file;
7288
7289 file = io_file_from_index(ctx, i);
7290 if (file)
7291 fput(file);
7292 }
7293 #endif
7294 }
7295
7296 static void io_file_ref_kill(struct percpu_ref *ref)
7297 {
7298 struct fixed_file_data *data;
7299
7300 data = container_of(ref, struct fixed_file_data, refs);
7301 complete(&data->done);
7302 }
7303
7304 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7305 struct fixed_file_ref_node *ref_node)
7306 {
7307 spin_lock_bh(&file_data->lock);
7308 file_data->node = ref_node;
7309 list_add_tail(&ref_node->node, &file_data->ref_list);
7310 spin_unlock_bh(&file_data->lock);
7311 percpu_ref_get(&file_data->refs);
7312 }
7313
7314 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7315 {
7316 struct fixed_file_data *data = ctx->file_data;
7317 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7318 unsigned nr_tables, i;
7319 int ret;
7320
7321 if (!data)
7322 return -ENXIO;
7323 backup_node = alloc_fixed_file_ref_node(ctx);
7324 if (!backup_node)
7325 return -ENOMEM;
7326
7327 spin_lock_bh(&data->lock);
7328 ref_node = data->node;
7329 spin_unlock_bh(&data->lock);
7330 if (ref_node)
7331 percpu_ref_kill(&ref_node->refs);
7332
7333 percpu_ref_kill(&data->refs);
7334
7335 /* wait for all refs nodes to complete */
7336 flush_delayed_work(&ctx->file_put_work);
7337 do {
7338 ret = wait_for_completion_interruptible(&data->done);
7339 if (!ret)
7340 break;
7341 ret = io_run_task_work_sig();
7342 if (ret < 0) {
7343 percpu_ref_resurrect(&data->refs);
7344 reinit_completion(&data->done);
7345 io_sqe_files_set_node(data, backup_node);
7346 return ret;
7347 }
7348 } while (1);
7349
7350 __io_sqe_files_unregister(ctx);
7351 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7352 for (i = 0; i < nr_tables; i++)
7353 kfree(data->table[i].files);
7354 kfree(data->table);
7355 percpu_ref_exit(&data->refs);
7356 kfree(data);
7357 ctx->file_data = NULL;
7358 ctx->nr_user_files = 0;
7359 destroy_fixed_file_ref_node(backup_node);
7360 return 0;
7361 }
7362
7363 static void io_put_sq_data(struct io_sq_data *sqd)
7364 {
7365 if (refcount_dec_and_test(&sqd->refs)) {
7366 /*
7367 * The park is a bit of a work-around, without it we get
7368 * warning spews on shutdown with SQPOLL set and affinity
7369 * set to a single CPU.
7370 */
7371 if (sqd->thread) {
7372 kthread_park(sqd->thread);
7373 kthread_stop(sqd->thread);
7374 }
7375
7376 kfree(sqd);
7377 }
7378 }
7379
7380 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7381 {
7382 struct io_ring_ctx *ctx_attach;
7383 struct io_sq_data *sqd;
7384 struct fd f;
7385
7386 f = fdget(p->wq_fd);
7387 if (!f.file)
7388 return ERR_PTR(-ENXIO);
7389 if (f.file->f_op != &io_uring_fops) {
7390 fdput(f);
7391 return ERR_PTR(-EINVAL);
7392 }
7393
7394 ctx_attach = f.file->private_data;
7395 sqd = ctx_attach->sq_data;
7396 if (!sqd) {
7397 fdput(f);
7398 return ERR_PTR(-EINVAL);
7399 }
7400
7401 refcount_inc(&sqd->refs);
7402 fdput(f);
7403 return sqd;
7404 }
7405
7406 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7407 {
7408 struct io_sq_data *sqd;
7409
7410 if (p->flags & IORING_SETUP_ATTACH_WQ)
7411 return io_attach_sq_data(p);
7412
7413 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7414 if (!sqd)
7415 return ERR_PTR(-ENOMEM);
7416
7417 refcount_set(&sqd->refs, 1);
7418 INIT_LIST_HEAD(&sqd->ctx_list);
7419 INIT_LIST_HEAD(&sqd->ctx_new_list);
7420 mutex_init(&sqd->ctx_lock);
7421 mutex_init(&sqd->lock);
7422 init_waitqueue_head(&sqd->wait);
7423 return sqd;
7424 }
7425
7426 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7427 __releases(&sqd->lock)
7428 {
7429 if (!sqd->thread)
7430 return;
7431 kthread_unpark(sqd->thread);
7432 mutex_unlock(&sqd->lock);
7433 }
7434
7435 static void io_sq_thread_park(struct io_sq_data *sqd)
7436 __acquires(&sqd->lock)
7437 {
7438 if (!sqd->thread)
7439 return;
7440 mutex_lock(&sqd->lock);
7441 kthread_park(sqd->thread);
7442 }
7443
7444 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7445 {
7446 struct io_sq_data *sqd = ctx->sq_data;
7447
7448 if (sqd) {
7449 if (sqd->thread) {
7450 /*
7451 * We may arrive here from the error branch in
7452 * io_sq_offload_create() where the kthread is created
7453 * without being waked up, thus wake it up now to make
7454 * sure the wait will complete.
7455 */
7456 wake_up_process(sqd->thread);
7457 wait_for_completion(&ctx->sq_thread_comp);
7458
7459 io_sq_thread_park(sqd);
7460 }
7461
7462 mutex_lock(&sqd->ctx_lock);
7463 list_del(&ctx->sqd_list);
7464 io_sqd_update_thread_idle(sqd);
7465 mutex_unlock(&sqd->ctx_lock);
7466
7467 if (sqd->thread)
7468 io_sq_thread_unpark(sqd);
7469
7470 io_put_sq_data(sqd);
7471 ctx->sq_data = NULL;
7472 }
7473 }
7474
7475 static void io_finish_async(struct io_ring_ctx *ctx)
7476 {
7477 io_sq_thread_stop(ctx);
7478
7479 if (ctx->io_wq) {
7480 io_wq_destroy(ctx->io_wq);
7481 ctx->io_wq = NULL;
7482 }
7483 }
7484
7485 #if defined(CONFIG_UNIX)
7486 /*
7487 * Ensure the UNIX gc is aware of our file set, so we are certain that
7488 * the io_uring can be safely unregistered on process exit, even if we have
7489 * loops in the file referencing.
7490 */
7491 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7492 {
7493 struct sock *sk = ctx->ring_sock->sk;
7494 struct scm_fp_list *fpl;
7495 struct sk_buff *skb;
7496 int i, nr_files;
7497
7498 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7499 if (!fpl)
7500 return -ENOMEM;
7501
7502 skb = alloc_skb(0, GFP_KERNEL);
7503 if (!skb) {
7504 kfree(fpl);
7505 return -ENOMEM;
7506 }
7507
7508 skb->sk = sk;
7509
7510 nr_files = 0;
7511 fpl->user = get_uid(ctx->user);
7512 for (i = 0; i < nr; i++) {
7513 struct file *file = io_file_from_index(ctx, i + offset);
7514
7515 if (!file)
7516 continue;
7517 fpl->fp[nr_files] = get_file(file);
7518 unix_inflight(fpl->user, fpl->fp[nr_files]);
7519 nr_files++;
7520 }
7521
7522 if (nr_files) {
7523 fpl->max = SCM_MAX_FD;
7524 fpl->count = nr_files;
7525 UNIXCB(skb).fp = fpl;
7526 skb->destructor = unix_destruct_scm;
7527 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7528 skb_queue_head(&sk->sk_receive_queue, skb);
7529
7530 for (i = 0; i < nr_files; i++)
7531 fput(fpl->fp[i]);
7532 } else {
7533 kfree_skb(skb);
7534 kfree(fpl);
7535 }
7536
7537 return 0;
7538 }
7539
7540 /*
7541 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7542 * causes regular reference counting to break down. We rely on the UNIX
7543 * garbage collection to take care of this problem for us.
7544 */
7545 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7546 {
7547 unsigned left, total;
7548 int ret = 0;
7549
7550 total = 0;
7551 left = ctx->nr_user_files;
7552 while (left) {
7553 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7554
7555 ret = __io_sqe_files_scm(ctx, this_files, total);
7556 if (ret)
7557 break;
7558 left -= this_files;
7559 total += this_files;
7560 }
7561
7562 if (!ret)
7563 return 0;
7564
7565 while (total < ctx->nr_user_files) {
7566 struct file *file = io_file_from_index(ctx, total);
7567
7568 if (file)
7569 fput(file);
7570 total++;
7571 }
7572
7573 return ret;
7574 }
7575 #else
7576 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7577 {
7578 return 0;
7579 }
7580 #endif
7581
7582 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7583 unsigned nr_tables, unsigned nr_files)
7584 {
7585 int i;
7586
7587 for (i = 0; i < nr_tables; i++) {
7588 struct fixed_file_table *table = &file_data->table[i];
7589 unsigned this_files;
7590
7591 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7592 table->files = kcalloc(this_files, sizeof(struct file *),
7593 GFP_KERNEL);
7594 if (!table->files)
7595 break;
7596 nr_files -= this_files;
7597 }
7598
7599 if (i == nr_tables)
7600 return 0;
7601
7602 for (i = 0; i < nr_tables; i++) {
7603 struct fixed_file_table *table = &file_data->table[i];
7604 kfree(table->files);
7605 }
7606 return 1;
7607 }
7608
7609 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7610 {
7611 #if defined(CONFIG_UNIX)
7612 struct sock *sock = ctx->ring_sock->sk;
7613 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7614 struct sk_buff *skb;
7615 int i;
7616
7617 __skb_queue_head_init(&list);
7618
7619 /*
7620 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7621 * remove this entry and rearrange the file array.
7622 */
7623 skb = skb_dequeue(head);
7624 while (skb) {
7625 struct scm_fp_list *fp;
7626
7627 fp = UNIXCB(skb).fp;
7628 for (i = 0; i < fp->count; i++) {
7629 int left;
7630
7631 if (fp->fp[i] != file)
7632 continue;
7633
7634 unix_notinflight(fp->user, fp->fp[i]);
7635 left = fp->count - 1 - i;
7636 if (left) {
7637 memmove(&fp->fp[i], &fp->fp[i + 1],
7638 left * sizeof(struct file *));
7639 }
7640 fp->count--;
7641 if (!fp->count) {
7642 kfree_skb(skb);
7643 skb = NULL;
7644 } else {
7645 __skb_queue_tail(&list, skb);
7646 }
7647 fput(file);
7648 file = NULL;
7649 break;
7650 }
7651
7652 if (!file)
7653 break;
7654
7655 __skb_queue_tail(&list, skb);
7656
7657 skb = skb_dequeue(head);
7658 }
7659
7660 if (skb_peek(&list)) {
7661 spin_lock_irq(&head->lock);
7662 while ((skb = __skb_dequeue(&list)) != NULL)
7663 __skb_queue_tail(head, skb);
7664 spin_unlock_irq(&head->lock);
7665 }
7666 #else
7667 fput(file);
7668 #endif
7669 }
7670
7671 struct io_file_put {
7672 struct list_head list;
7673 struct file *file;
7674 };
7675
7676 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7677 {
7678 struct fixed_file_data *file_data = ref_node->file_data;
7679 struct io_ring_ctx *ctx = file_data->ctx;
7680 struct io_file_put *pfile, *tmp;
7681
7682 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7683 list_del(&pfile->list);
7684 io_ring_file_put(ctx, pfile->file);
7685 kfree(pfile);
7686 }
7687
7688 percpu_ref_exit(&ref_node->refs);
7689 kfree(ref_node);
7690 percpu_ref_put(&file_data->refs);
7691 }
7692
7693 static void io_file_put_work(struct work_struct *work)
7694 {
7695 struct io_ring_ctx *ctx;
7696 struct llist_node *node;
7697
7698 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7699 node = llist_del_all(&ctx->file_put_llist);
7700
7701 while (node) {
7702 struct fixed_file_ref_node *ref_node;
7703 struct llist_node *next = node->next;
7704
7705 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7706 __io_file_put_work(ref_node);
7707 node = next;
7708 }
7709 }
7710
7711 static void io_file_data_ref_zero(struct percpu_ref *ref)
7712 {
7713 struct fixed_file_ref_node *ref_node;
7714 struct fixed_file_data *data;
7715 struct io_ring_ctx *ctx;
7716 bool first_add = false;
7717 int delay = HZ;
7718
7719 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7720 data = ref_node->file_data;
7721 ctx = data->ctx;
7722
7723 spin_lock_bh(&data->lock);
7724 ref_node->done = true;
7725
7726 while (!list_empty(&data->ref_list)) {
7727 ref_node = list_first_entry(&data->ref_list,
7728 struct fixed_file_ref_node, node);
7729 /* recycle ref nodes in order */
7730 if (!ref_node->done)
7731 break;
7732 list_del(&ref_node->node);
7733 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7734 }
7735 spin_unlock_bh(&data->lock);
7736
7737 if (percpu_ref_is_dying(&data->refs))
7738 delay = 0;
7739
7740 if (!delay)
7741 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7742 else if (first_add)
7743 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7744 }
7745
7746 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7747 struct io_ring_ctx *ctx)
7748 {
7749 struct fixed_file_ref_node *ref_node;
7750
7751 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7752 if (!ref_node)
7753 return NULL;
7754
7755 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7756 0, GFP_KERNEL)) {
7757 kfree(ref_node);
7758 return NULL;
7759 }
7760 INIT_LIST_HEAD(&ref_node->node);
7761 INIT_LIST_HEAD(&ref_node->file_list);
7762 ref_node->file_data = ctx->file_data;
7763 ref_node->done = false;
7764 return ref_node;
7765 }
7766
7767 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7768 {
7769 percpu_ref_exit(&ref_node->refs);
7770 kfree(ref_node);
7771 }
7772
7773 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7774 unsigned nr_args)
7775 {
7776 __s32 __user *fds = (__s32 __user *) arg;
7777 unsigned nr_tables, i;
7778 struct file *file;
7779 int fd, ret = -ENOMEM;
7780 struct fixed_file_ref_node *ref_node;
7781 struct fixed_file_data *file_data;
7782
7783 if (ctx->file_data)
7784 return -EBUSY;
7785 if (!nr_args)
7786 return -EINVAL;
7787 if (nr_args > IORING_MAX_FIXED_FILES)
7788 return -EMFILE;
7789
7790 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7791 if (!file_data)
7792 return -ENOMEM;
7793 file_data->ctx = ctx;
7794 init_completion(&file_data->done);
7795 INIT_LIST_HEAD(&file_data->ref_list);
7796 spin_lock_init(&file_data->lock);
7797
7798 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7799 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7800 GFP_KERNEL);
7801 if (!file_data->table)
7802 goto out_free;
7803
7804 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7805 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7806 goto out_free;
7807
7808 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7809 goto out_ref;
7810 ctx->file_data = file_data;
7811
7812 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7813 struct fixed_file_table *table;
7814 unsigned index;
7815
7816 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7817 ret = -EFAULT;
7818 goto out_fput;
7819 }
7820 /* allow sparse sets */
7821 if (fd == -1)
7822 continue;
7823
7824 file = fget(fd);
7825 ret = -EBADF;
7826 if (!file)
7827 goto out_fput;
7828
7829 /*
7830 * Don't allow io_uring instances to be registered. If UNIX
7831 * isn't enabled, then this causes a reference cycle and this
7832 * instance can never get freed. If UNIX is enabled we'll
7833 * handle it just fine, but there's still no point in allowing
7834 * a ring fd as it doesn't support regular read/write anyway.
7835 */
7836 if (file->f_op == &io_uring_fops) {
7837 fput(file);
7838 goto out_fput;
7839 }
7840 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7841 index = i & IORING_FILE_TABLE_MASK;
7842 table->files[index] = file;
7843 }
7844
7845 ret = io_sqe_files_scm(ctx);
7846 if (ret) {
7847 io_sqe_files_unregister(ctx);
7848 return ret;
7849 }
7850
7851 ref_node = alloc_fixed_file_ref_node(ctx);
7852 if (!ref_node) {
7853 io_sqe_files_unregister(ctx);
7854 return -ENOMEM;
7855 }
7856
7857 io_sqe_files_set_node(file_data, ref_node);
7858 return ret;
7859 out_fput:
7860 for (i = 0; i < ctx->nr_user_files; i++) {
7861 file = io_file_from_index(ctx, i);
7862 if (file)
7863 fput(file);
7864 }
7865 for (i = 0; i < nr_tables; i++)
7866 kfree(file_data->table[i].files);
7867 ctx->nr_user_files = 0;
7868 out_ref:
7869 percpu_ref_exit(&file_data->refs);
7870 out_free:
7871 kfree(file_data->table);
7872 kfree(file_data);
7873 ctx->file_data = NULL;
7874 return ret;
7875 }
7876
7877 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7878 int index)
7879 {
7880 #if defined(CONFIG_UNIX)
7881 struct sock *sock = ctx->ring_sock->sk;
7882 struct sk_buff_head *head = &sock->sk_receive_queue;
7883 struct sk_buff *skb;
7884
7885 /*
7886 * See if we can merge this file into an existing skb SCM_RIGHTS
7887 * file set. If there's no room, fall back to allocating a new skb
7888 * and filling it in.
7889 */
7890 spin_lock_irq(&head->lock);
7891 skb = skb_peek(head);
7892 if (skb) {
7893 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7894
7895 if (fpl->count < SCM_MAX_FD) {
7896 __skb_unlink(skb, head);
7897 spin_unlock_irq(&head->lock);
7898 fpl->fp[fpl->count] = get_file(file);
7899 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7900 fpl->count++;
7901 spin_lock_irq(&head->lock);
7902 __skb_queue_head(head, skb);
7903 } else {
7904 skb = NULL;
7905 }
7906 }
7907 spin_unlock_irq(&head->lock);
7908
7909 if (skb) {
7910 fput(file);
7911 return 0;
7912 }
7913
7914 return __io_sqe_files_scm(ctx, 1, index);
7915 #else
7916 return 0;
7917 #endif
7918 }
7919
7920 static int io_queue_file_removal(struct fixed_file_data *data,
7921 struct file *file)
7922 {
7923 struct io_file_put *pfile;
7924 struct fixed_file_ref_node *ref_node = data->node;
7925
7926 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7927 if (!pfile)
7928 return -ENOMEM;
7929
7930 pfile->file = file;
7931 list_add(&pfile->list, &ref_node->file_list);
7932
7933 return 0;
7934 }
7935
7936 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7937 struct io_uring_files_update *up,
7938 unsigned nr_args)
7939 {
7940 struct fixed_file_data *data = ctx->file_data;
7941 struct fixed_file_ref_node *ref_node;
7942 struct file *file;
7943 __s32 __user *fds;
7944 int fd, i, err;
7945 __u32 done;
7946 bool needs_switch = false;
7947
7948 if (check_add_overflow(up->offset, nr_args, &done))
7949 return -EOVERFLOW;
7950 if (done > ctx->nr_user_files)
7951 return -EINVAL;
7952
7953 ref_node = alloc_fixed_file_ref_node(ctx);
7954 if (!ref_node)
7955 return -ENOMEM;
7956
7957 done = 0;
7958 fds = u64_to_user_ptr(up->fds);
7959 while (nr_args) {
7960 struct fixed_file_table *table;
7961 unsigned index;
7962
7963 err = 0;
7964 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7965 err = -EFAULT;
7966 break;
7967 }
7968 i = array_index_nospec(up->offset, ctx->nr_user_files);
7969 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7970 index = i & IORING_FILE_TABLE_MASK;
7971 if (table->files[index]) {
7972 file = table->files[index];
7973 err = io_queue_file_removal(data, file);
7974 if (err)
7975 break;
7976 table->files[index] = NULL;
7977 needs_switch = true;
7978 }
7979 if (fd != -1) {
7980 file = fget(fd);
7981 if (!file) {
7982 err = -EBADF;
7983 break;
7984 }
7985 /*
7986 * Don't allow io_uring instances to be registered. If
7987 * UNIX isn't enabled, then this causes a reference
7988 * cycle and this instance can never get freed. If UNIX
7989 * is enabled we'll handle it just fine, but there's
7990 * still no point in allowing a ring fd as it doesn't
7991 * support regular read/write anyway.
7992 */
7993 if (file->f_op == &io_uring_fops) {
7994 fput(file);
7995 err = -EBADF;
7996 break;
7997 }
7998 table->files[index] = file;
7999 err = io_sqe_file_register(ctx, file, i);
8000 if (err) {
8001 table->files[index] = NULL;
8002 fput(file);
8003 break;
8004 }
8005 }
8006 nr_args--;
8007 done++;
8008 up->offset++;
8009 }
8010
8011 if (needs_switch) {
8012 percpu_ref_kill(&data->node->refs);
8013 io_sqe_files_set_node(data, ref_node);
8014 } else
8015 destroy_fixed_file_ref_node(ref_node);
8016
8017 return done ? done : err;
8018 }
8019
8020 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8021 unsigned nr_args)
8022 {
8023 struct io_uring_files_update up;
8024
8025 if (!ctx->file_data)
8026 return -ENXIO;
8027 if (!nr_args)
8028 return -EINVAL;
8029 if (copy_from_user(&up, arg, sizeof(up)))
8030 return -EFAULT;
8031 if (up.resv)
8032 return -EINVAL;
8033
8034 return __io_sqe_files_update(ctx, &up, nr_args);
8035 }
8036
8037 static void io_free_work(struct io_wq_work *work)
8038 {
8039 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8040
8041 /* Consider that io_steal_work() relies on this ref */
8042 io_put_req(req);
8043 }
8044
8045 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8046 struct io_uring_params *p)
8047 {
8048 struct io_wq_data data;
8049 struct fd f;
8050 struct io_ring_ctx *ctx_attach;
8051 unsigned int concurrency;
8052 int ret = 0;
8053
8054 data.user = ctx->user;
8055 data.free_work = io_free_work;
8056 data.do_work = io_wq_submit_work;
8057
8058 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8059 /* Do QD, or 4 * CPUS, whatever is smallest */
8060 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8061
8062 ctx->io_wq = io_wq_create(concurrency, &data);
8063 if (IS_ERR(ctx->io_wq)) {
8064 ret = PTR_ERR(ctx->io_wq);
8065 ctx->io_wq = NULL;
8066 }
8067 return ret;
8068 }
8069
8070 f = fdget(p->wq_fd);
8071 if (!f.file)
8072 return -EBADF;
8073
8074 if (f.file->f_op != &io_uring_fops) {
8075 ret = -EINVAL;
8076 goto out_fput;
8077 }
8078
8079 ctx_attach = f.file->private_data;
8080 /* @io_wq is protected by holding the fd */
8081 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8082 ret = -EINVAL;
8083 goto out_fput;
8084 }
8085
8086 ctx->io_wq = ctx_attach->io_wq;
8087 out_fput:
8088 fdput(f);
8089 return ret;
8090 }
8091
8092 static int io_uring_alloc_task_context(struct task_struct *task)
8093 {
8094 struct io_uring_task *tctx;
8095 int ret;
8096
8097 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8098 if (unlikely(!tctx))
8099 return -ENOMEM;
8100
8101 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8102 if (unlikely(ret)) {
8103 kfree(tctx);
8104 return ret;
8105 }
8106
8107 xa_init(&tctx->xa);
8108 init_waitqueue_head(&tctx->wait);
8109 tctx->last = NULL;
8110 atomic_set(&tctx->in_idle, 0);
8111 tctx->sqpoll = false;
8112 io_init_identity(&tctx->__identity);
8113 tctx->identity = &tctx->__identity;
8114 task->io_uring = tctx;
8115 return 0;
8116 }
8117
8118 void __io_uring_free(struct task_struct *tsk)
8119 {
8120 struct io_uring_task *tctx = tsk->io_uring;
8121
8122 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8123 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8124 if (tctx->identity != &tctx->__identity)
8125 kfree(tctx->identity);
8126 percpu_counter_destroy(&tctx->inflight);
8127 kfree(tctx);
8128 tsk->io_uring = NULL;
8129 }
8130
8131 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8132 struct io_uring_params *p)
8133 {
8134 int ret;
8135
8136 if (ctx->flags & IORING_SETUP_SQPOLL) {
8137 struct io_sq_data *sqd;
8138
8139 ret = -EPERM;
8140 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8141 goto err;
8142
8143 sqd = io_get_sq_data(p);
8144 if (IS_ERR(sqd)) {
8145 ret = PTR_ERR(sqd);
8146 goto err;
8147 }
8148
8149 ctx->sq_data = sqd;
8150 io_sq_thread_park(sqd);
8151 mutex_lock(&sqd->ctx_lock);
8152 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8153 mutex_unlock(&sqd->ctx_lock);
8154 io_sq_thread_unpark(sqd);
8155
8156 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8157 if (!ctx->sq_thread_idle)
8158 ctx->sq_thread_idle = HZ;
8159
8160 if (sqd->thread)
8161 goto done;
8162
8163 if (p->flags & IORING_SETUP_SQ_AFF) {
8164 int cpu = p->sq_thread_cpu;
8165
8166 ret = -EINVAL;
8167 if (cpu >= nr_cpu_ids)
8168 goto err;
8169 if (!cpu_online(cpu))
8170 goto err;
8171
8172 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8173 cpu, "io_uring-sq");
8174 } else {
8175 sqd->thread = kthread_create(io_sq_thread, sqd,
8176 "io_uring-sq");
8177 }
8178 if (IS_ERR(sqd->thread)) {
8179 ret = PTR_ERR(sqd->thread);
8180 sqd->thread = NULL;
8181 goto err;
8182 }
8183 ret = io_uring_alloc_task_context(sqd->thread);
8184 if (ret)
8185 goto err;
8186 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8187 /* Can't have SQ_AFF without SQPOLL */
8188 ret = -EINVAL;
8189 goto err;
8190 }
8191
8192 done:
8193 ret = io_init_wq_offload(ctx, p);
8194 if (ret)
8195 goto err;
8196
8197 return 0;
8198 err:
8199 io_finish_async(ctx);
8200 return ret;
8201 }
8202
8203 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8204 {
8205 struct io_sq_data *sqd = ctx->sq_data;
8206
8207 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8208 wake_up_process(sqd->thread);
8209 }
8210
8211 static inline void __io_unaccount_mem(struct user_struct *user,
8212 unsigned long nr_pages)
8213 {
8214 atomic_long_sub(nr_pages, &user->locked_vm);
8215 }
8216
8217 static inline int __io_account_mem(struct user_struct *user,
8218 unsigned long nr_pages)
8219 {
8220 unsigned long page_limit, cur_pages, new_pages;
8221
8222 /* Don't allow more pages than we can safely lock */
8223 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8224
8225 do {
8226 cur_pages = atomic_long_read(&user->locked_vm);
8227 new_pages = cur_pages + nr_pages;
8228 if (new_pages > page_limit)
8229 return -ENOMEM;
8230 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8231 new_pages) != cur_pages);
8232
8233 return 0;
8234 }
8235
8236 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8237 enum io_mem_account acct)
8238 {
8239 if (ctx->limit_mem)
8240 __io_unaccount_mem(ctx->user, nr_pages);
8241
8242 if (ctx->mm_account) {
8243 if (acct == ACCT_LOCKED) {
8244 mmap_write_lock(ctx->mm_account);
8245 ctx->mm_account->locked_vm -= nr_pages;
8246 mmap_write_unlock(ctx->mm_account);
8247 }else if (acct == ACCT_PINNED) {
8248 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8249 }
8250 }
8251 }
8252
8253 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8254 enum io_mem_account acct)
8255 {
8256 int ret;
8257
8258 if (ctx->limit_mem) {
8259 ret = __io_account_mem(ctx->user, nr_pages);
8260 if (ret)
8261 return ret;
8262 }
8263
8264 if (ctx->mm_account) {
8265 if (acct == ACCT_LOCKED) {
8266 mmap_write_lock(ctx->mm_account);
8267 ctx->mm_account->locked_vm += nr_pages;
8268 mmap_write_unlock(ctx->mm_account);
8269 } else if (acct == ACCT_PINNED) {
8270 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8271 }
8272 }
8273
8274 return 0;
8275 }
8276
8277 static void io_mem_free(void *ptr)
8278 {
8279 struct page *page;
8280
8281 if (!ptr)
8282 return;
8283
8284 page = virt_to_head_page(ptr);
8285 if (put_page_testzero(page))
8286 free_compound_page(page);
8287 }
8288
8289 static void *io_mem_alloc(size_t size)
8290 {
8291 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8292 __GFP_NORETRY;
8293
8294 return (void *) __get_free_pages(gfp_flags, get_order(size));
8295 }
8296
8297 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8298 size_t *sq_offset)
8299 {
8300 struct io_rings *rings;
8301 size_t off, sq_array_size;
8302
8303 off = struct_size(rings, cqes, cq_entries);
8304 if (off == SIZE_MAX)
8305 return SIZE_MAX;
8306
8307 #ifdef CONFIG_SMP
8308 off = ALIGN(off, SMP_CACHE_BYTES);
8309 if (off == 0)
8310 return SIZE_MAX;
8311 #endif
8312
8313 if (sq_offset)
8314 *sq_offset = off;
8315
8316 sq_array_size = array_size(sizeof(u32), sq_entries);
8317 if (sq_array_size == SIZE_MAX)
8318 return SIZE_MAX;
8319
8320 if (check_add_overflow(off, sq_array_size, &off))
8321 return SIZE_MAX;
8322
8323 return off;
8324 }
8325
8326 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8327 {
8328 size_t pages;
8329
8330 pages = (size_t)1 << get_order(
8331 rings_size(sq_entries, cq_entries, NULL));
8332 pages += (size_t)1 << get_order(
8333 array_size(sizeof(struct io_uring_sqe), sq_entries));
8334
8335 return pages;
8336 }
8337
8338 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8339 {
8340 int i, j;
8341
8342 if (!ctx->user_bufs)
8343 return -ENXIO;
8344
8345 for (i = 0; i < ctx->nr_user_bufs; i++) {
8346 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8347
8348 for (j = 0; j < imu->nr_bvecs; j++)
8349 unpin_user_page(imu->bvec[j].bv_page);
8350
8351 if (imu->acct_pages)
8352 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8353 kvfree(imu->bvec);
8354 imu->nr_bvecs = 0;
8355 }
8356
8357 kfree(ctx->user_bufs);
8358 ctx->user_bufs = NULL;
8359 ctx->nr_user_bufs = 0;
8360 return 0;
8361 }
8362
8363 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8364 void __user *arg, unsigned index)
8365 {
8366 struct iovec __user *src;
8367
8368 #ifdef CONFIG_COMPAT
8369 if (ctx->compat) {
8370 struct compat_iovec __user *ciovs;
8371 struct compat_iovec ciov;
8372
8373 ciovs = (struct compat_iovec __user *) arg;
8374 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8375 return -EFAULT;
8376
8377 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8378 dst->iov_len = ciov.iov_len;
8379 return 0;
8380 }
8381 #endif
8382 src = (struct iovec __user *) arg;
8383 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8384 return -EFAULT;
8385 return 0;
8386 }
8387
8388 /*
8389 * Not super efficient, but this is just a registration time. And we do cache
8390 * the last compound head, so generally we'll only do a full search if we don't
8391 * match that one.
8392 *
8393 * We check if the given compound head page has already been accounted, to
8394 * avoid double accounting it. This allows us to account the full size of the
8395 * page, not just the constituent pages of a huge page.
8396 */
8397 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8398 int nr_pages, struct page *hpage)
8399 {
8400 int i, j;
8401
8402 /* check current page array */
8403 for (i = 0; i < nr_pages; i++) {
8404 if (!PageCompound(pages[i]))
8405 continue;
8406 if (compound_head(pages[i]) == hpage)
8407 return true;
8408 }
8409
8410 /* check previously registered pages */
8411 for (i = 0; i < ctx->nr_user_bufs; i++) {
8412 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8413
8414 for (j = 0; j < imu->nr_bvecs; j++) {
8415 if (!PageCompound(imu->bvec[j].bv_page))
8416 continue;
8417 if (compound_head(imu->bvec[j].bv_page) == hpage)
8418 return true;
8419 }
8420 }
8421
8422 return false;
8423 }
8424
8425 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8426 int nr_pages, struct io_mapped_ubuf *imu,
8427 struct page **last_hpage)
8428 {
8429 int i, ret;
8430
8431 for (i = 0; i < nr_pages; i++) {
8432 if (!PageCompound(pages[i])) {
8433 imu->acct_pages++;
8434 } else {
8435 struct page *hpage;
8436
8437 hpage = compound_head(pages[i]);
8438 if (hpage == *last_hpage)
8439 continue;
8440 *last_hpage = hpage;
8441 if (headpage_already_acct(ctx, pages, i, hpage))
8442 continue;
8443 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8444 }
8445 }
8446
8447 if (!imu->acct_pages)
8448 return 0;
8449
8450 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8451 if (ret)
8452 imu->acct_pages = 0;
8453 return ret;
8454 }
8455
8456 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8457 unsigned nr_args)
8458 {
8459 struct vm_area_struct **vmas = NULL;
8460 struct page **pages = NULL;
8461 struct page *last_hpage = NULL;
8462 int i, j, got_pages = 0;
8463 int ret = -EINVAL;
8464
8465 if (ctx->user_bufs)
8466 return -EBUSY;
8467 if (!nr_args || nr_args > UIO_MAXIOV)
8468 return -EINVAL;
8469
8470 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8471 GFP_KERNEL);
8472 if (!ctx->user_bufs)
8473 return -ENOMEM;
8474
8475 for (i = 0; i < nr_args; i++) {
8476 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8477 unsigned long off, start, end, ubuf;
8478 int pret, nr_pages;
8479 struct iovec iov;
8480 size_t size;
8481
8482 ret = io_copy_iov(ctx, &iov, arg, i);
8483 if (ret)
8484 goto err;
8485
8486 /*
8487 * Don't impose further limits on the size and buffer
8488 * constraints here, we'll -EINVAL later when IO is
8489 * submitted if they are wrong.
8490 */
8491 ret = -EFAULT;
8492 if (!iov.iov_base || !iov.iov_len)
8493 goto err;
8494
8495 /* arbitrary limit, but we need something */
8496 if (iov.iov_len > SZ_1G)
8497 goto err;
8498
8499 ubuf = (unsigned long) iov.iov_base;
8500 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8501 start = ubuf >> PAGE_SHIFT;
8502 nr_pages = end - start;
8503
8504 ret = 0;
8505 if (!pages || nr_pages > got_pages) {
8506 kvfree(vmas);
8507 kvfree(pages);
8508 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8509 GFP_KERNEL);
8510 vmas = kvmalloc_array(nr_pages,
8511 sizeof(struct vm_area_struct *),
8512 GFP_KERNEL);
8513 if (!pages || !vmas) {
8514 ret = -ENOMEM;
8515 goto err;
8516 }
8517 got_pages = nr_pages;
8518 }
8519
8520 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8521 GFP_KERNEL);
8522 ret = -ENOMEM;
8523 if (!imu->bvec)
8524 goto err;
8525
8526 ret = 0;
8527 mmap_read_lock(current->mm);
8528 pret = pin_user_pages(ubuf, nr_pages,
8529 FOLL_WRITE | FOLL_LONGTERM,
8530 pages, vmas);
8531 if (pret == nr_pages) {
8532 /* don't support file backed memory */
8533 for (j = 0; j < nr_pages; j++) {
8534 struct vm_area_struct *vma = vmas[j];
8535
8536 if (vma->vm_file &&
8537 !is_file_hugepages(vma->vm_file)) {
8538 ret = -EOPNOTSUPP;
8539 break;
8540 }
8541 }
8542 } else {
8543 ret = pret < 0 ? pret : -EFAULT;
8544 }
8545 mmap_read_unlock(current->mm);
8546 if (ret) {
8547 /*
8548 * if we did partial map, or found file backed vmas,
8549 * release any pages we did get
8550 */
8551 if (pret > 0)
8552 unpin_user_pages(pages, pret);
8553 kvfree(imu->bvec);
8554 goto err;
8555 }
8556
8557 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8558 if (ret) {
8559 unpin_user_pages(pages, pret);
8560 kvfree(imu->bvec);
8561 goto err;
8562 }
8563
8564 off = ubuf & ~PAGE_MASK;
8565 size = iov.iov_len;
8566 for (j = 0; j < nr_pages; j++) {
8567 size_t vec_len;
8568
8569 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8570 imu->bvec[j].bv_page = pages[j];
8571 imu->bvec[j].bv_len = vec_len;
8572 imu->bvec[j].bv_offset = off;
8573 off = 0;
8574 size -= vec_len;
8575 }
8576 /* store original address for later verification */
8577 imu->ubuf = ubuf;
8578 imu->len = iov.iov_len;
8579 imu->nr_bvecs = nr_pages;
8580
8581 ctx->nr_user_bufs++;
8582 }
8583 kvfree(pages);
8584 kvfree(vmas);
8585 return 0;
8586 err:
8587 kvfree(pages);
8588 kvfree(vmas);
8589 io_sqe_buffer_unregister(ctx);
8590 return ret;
8591 }
8592
8593 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8594 {
8595 __s32 __user *fds = arg;
8596 int fd;
8597
8598 if (ctx->cq_ev_fd)
8599 return -EBUSY;
8600
8601 if (copy_from_user(&fd, fds, sizeof(*fds)))
8602 return -EFAULT;
8603
8604 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8605 if (IS_ERR(ctx->cq_ev_fd)) {
8606 int ret = PTR_ERR(ctx->cq_ev_fd);
8607 ctx->cq_ev_fd = NULL;
8608 return ret;
8609 }
8610
8611 return 0;
8612 }
8613
8614 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8615 {
8616 if (ctx->cq_ev_fd) {
8617 eventfd_ctx_put(ctx->cq_ev_fd);
8618 ctx->cq_ev_fd = NULL;
8619 return 0;
8620 }
8621
8622 return -ENXIO;
8623 }
8624
8625 static int __io_destroy_buffers(int id, void *p, void *data)
8626 {
8627 struct io_ring_ctx *ctx = data;
8628 struct io_buffer *buf = p;
8629
8630 __io_remove_buffers(ctx, buf, id, -1U);
8631 return 0;
8632 }
8633
8634 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8635 {
8636 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8637 idr_destroy(&ctx->io_buffer_idr);
8638 }
8639
8640 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8641 {
8642 io_finish_async(ctx);
8643 io_sqe_buffer_unregister(ctx);
8644
8645 if (ctx->sqo_task) {
8646 put_task_struct(ctx->sqo_task);
8647 ctx->sqo_task = NULL;
8648 mmdrop(ctx->mm_account);
8649 ctx->mm_account = NULL;
8650 }
8651
8652 #ifdef CONFIG_BLK_CGROUP
8653 if (ctx->sqo_blkcg_css)
8654 css_put(ctx->sqo_blkcg_css);
8655 #endif
8656
8657 io_sqe_files_unregister(ctx);
8658 io_eventfd_unregister(ctx);
8659 io_destroy_buffers(ctx);
8660 idr_destroy(&ctx->personality_idr);
8661
8662 #if defined(CONFIG_UNIX)
8663 if (ctx->ring_sock) {
8664 ctx->ring_sock->file = NULL; /* so that iput() is called */
8665 sock_release(ctx->ring_sock);
8666 }
8667 #endif
8668
8669 io_mem_free(ctx->rings);
8670 io_mem_free(ctx->sq_sqes);
8671
8672 percpu_ref_exit(&ctx->refs);
8673 free_uid(ctx->user);
8674 put_cred(ctx->creds);
8675 kfree(ctx->cancel_hash);
8676 kmem_cache_free(req_cachep, ctx->fallback_req);
8677 kfree(ctx);
8678 }
8679
8680 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8681 {
8682 struct io_ring_ctx *ctx = file->private_data;
8683 __poll_t mask = 0;
8684
8685 poll_wait(file, &ctx->cq_wait, wait);
8686 /*
8687 * synchronizes with barrier from wq_has_sleeper call in
8688 * io_commit_cqring
8689 */
8690 smp_rmb();
8691 if (!io_sqring_full(ctx))
8692 mask |= EPOLLOUT | EPOLLWRNORM;
8693 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8694 if (io_cqring_events(ctx))
8695 mask |= EPOLLIN | EPOLLRDNORM;
8696
8697 return mask;
8698 }
8699
8700 static int io_uring_fasync(int fd, struct file *file, int on)
8701 {
8702 struct io_ring_ctx *ctx = file->private_data;
8703
8704 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8705 }
8706
8707 static int io_remove_personalities(int id, void *p, void *data)
8708 {
8709 struct io_ring_ctx *ctx = data;
8710 struct io_identity *iod;
8711
8712 iod = idr_remove(&ctx->personality_idr, id);
8713 if (iod) {
8714 put_cred(iod->creds);
8715 if (refcount_dec_and_test(&iod->count))
8716 kfree(iod);
8717 }
8718 return 0;
8719 }
8720
8721 static void io_ring_exit_work(struct work_struct *work)
8722 {
8723 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8724 exit_work);
8725
8726 /*
8727 * If we're doing polled IO and end up having requests being
8728 * submitted async (out-of-line), then completions can come in while
8729 * we're waiting for refs to drop. We need to reap these manually,
8730 * as nobody else will be looking for them.
8731 */
8732 do {
8733 __io_uring_cancel_task_requests(ctx, NULL);
8734 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8735 io_ring_ctx_free(ctx);
8736 }
8737
8738 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8739 {
8740 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8741
8742 return req->ctx == data;
8743 }
8744
8745 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8746 {
8747 mutex_lock(&ctx->uring_lock);
8748 percpu_ref_kill(&ctx->refs);
8749
8750 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8751 ctx->sqo_dead = 1;
8752
8753 /* if force is set, the ring is going away. always drop after that */
8754 ctx->cq_overflow_flushed = 1;
8755 if (ctx->rings)
8756 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8757 mutex_unlock(&ctx->uring_lock);
8758
8759 io_kill_timeouts(ctx, NULL, NULL);
8760 io_poll_remove_all(ctx, NULL, NULL);
8761
8762 if (ctx->io_wq)
8763 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8764
8765 /* if we failed setting up the ctx, we might not have any rings */
8766 io_iopoll_try_reap_events(ctx);
8767 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8768
8769 /*
8770 * Do this upfront, so we won't have a grace period where the ring
8771 * is closed but resources aren't reaped yet. This can cause
8772 * spurious failure in setting up a new ring.
8773 */
8774 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8775 ACCT_LOCKED);
8776
8777 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8778 /*
8779 * Use system_unbound_wq to avoid spawning tons of event kworkers
8780 * if we're exiting a ton of rings at the same time. It just adds
8781 * noise and overhead, there's no discernable change in runtime
8782 * over using system_wq.
8783 */
8784 queue_work(system_unbound_wq, &ctx->exit_work);
8785 }
8786
8787 static int io_uring_release(struct inode *inode, struct file *file)
8788 {
8789 struct io_ring_ctx *ctx = file->private_data;
8790
8791 file->private_data = NULL;
8792 io_ring_ctx_wait_and_kill(ctx);
8793 return 0;
8794 }
8795
8796 struct io_task_cancel {
8797 struct task_struct *task;
8798 struct files_struct *files;
8799 };
8800
8801 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8802 {
8803 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8804 struct io_task_cancel *cancel = data;
8805 bool ret;
8806
8807 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8808 unsigned long flags;
8809 struct io_ring_ctx *ctx = req->ctx;
8810
8811 /* protect against races with linked timeouts */
8812 spin_lock_irqsave(&ctx->completion_lock, flags);
8813 ret = io_match_task(req, cancel->task, cancel->files);
8814 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8815 } else {
8816 ret = io_match_task(req, cancel->task, cancel->files);
8817 }
8818 return ret;
8819 }
8820
8821 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8822 struct task_struct *task,
8823 struct files_struct *files)
8824 {
8825 struct io_defer_entry *de = NULL;
8826 LIST_HEAD(list);
8827
8828 spin_lock_irq(&ctx->completion_lock);
8829 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8830 if (io_match_task(de->req, task, files)) {
8831 list_cut_position(&list, &ctx->defer_list, &de->list);
8832 break;
8833 }
8834 }
8835 spin_unlock_irq(&ctx->completion_lock);
8836
8837 while (!list_empty(&list)) {
8838 de = list_first_entry(&list, struct io_defer_entry, list);
8839 list_del_init(&de->list);
8840 req_set_fail_links(de->req);
8841 io_put_req(de->req);
8842 io_req_complete(de->req, -ECANCELED);
8843 kfree(de);
8844 }
8845 }
8846
8847 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8848 struct task_struct *task,
8849 struct files_struct *files)
8850 {
8851 while (!list_empty_careful(&ctx->inflight_list)) {
8852 struct io_task_cancel cancel = { .task = task, .files = files };
8853 struct io_kiocb *req;
8854 DEFINE_WAIT(wait);
8855 bool found = false;
8856
8857 spin_lock_irq(&ctx->inflight_lock);
8858 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8859 if (req->task != task ||
8860 req->work.identity->files != files)
8861 continue;
8862 found = true;
8863 break;
8864 }
8865 if (found)
8866 prepare_to_wait(&task->io_uring->wait, &wait,
8867 TASK_UNINTERRUPTIBLE);
8868 spin_unlock_irq(&ctx->inflight_lock);
8869
8870 /* We need to keep going until we don't find a matching req */
8871 if (!found)
8872 break;
8873
8874 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8875 io_poll_remove_all(ctx, task, files);
8876 io_kill_timeouts(ctx, task, files);
8877 /* cancellations _may_ trigger task work */
8878 io_run_task_work();
8879 schedule();
8880 finish_wait(&task->io_uring->wait, &wait);
8881 }
8882 }
8883
8884 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8885 struct task_struct *task)
8886 {
8887 while (1) {
8888 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8889 enum io_wq_cancel cret;
8890 bool ret = false;
8891
8892 if (ctx->io_wq) {
8893 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8894 &cancel, true);
8895 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8896 }
8897
8898 /* SQPOLL thread does its own polling */
8899 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8900 while (!list_empty_careful(&ctx->iopoll_list)) {
8901 io_iopoll_try_reap_events(ctx);
8902 ret = true;
8903 }
8904 }
8905
8906 ret |= io_poll_remove_all(ctx, task, NULL);
8907 ret |= io_kill_timeouts(ctx, task, NULL);
8908 ret |= io_run_task_work();
8909 if (!ret)
8910 break;
8911 cond_resched();
8912 }
8913 }
8914
8915 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8916 {
8917 WARN_ON_ONCE(ctx->sqo_task != current);
8918
8919 mutex_lock(&ctx->uring_lock);
8920 ctx->sqo_dead = 1;
8921 mutex_unlock(&ctx->uring_lock);
8922
8923 /* make sure callers enter the ring to get error */
8924 if (ctx->rings)
8925 io_ring_set_wakeup_flag(ctx);
8926 }
8927
8928 /*
8929 * We need to iteratively cancel requests, in case a request has dependent
8930 * hard links. These persist even for failure of cancelations, hence keep
8931 * looping until none are found.
8932 */
8933 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8934 struct files_struct *files)
8935 {
8936 struct task_struct *task = current;
8937
8938 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8939 /* for SQPOLL only sqo_task has task notes */
8940 io_disable_sqo_submit(ctx);
8941 task = ctx->sq_data->thread;
8942 atomic_inc(&task->io_uring->in_idle);
8943 io_sq_thread_park(ctx->sq_data);
8944 }
8945
8946 io_cancel_defer_files(ctx, task, files);
8947 io_cqring_overflow_flush(ctx, true, task, files);
8948
8949 if (!files)
8950 __io_uring_cancel_task_requests(ctx, task);
8951 else
8952 io_uring_cancel_files(ctx, task, files);
8953
8954 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8955 atomic_dec(&task->io_uring->in_idle);
8956 /*
8957 * If the files that are going away are the ones in the thread
8958 * identity, clear them out.
8959 */
8960 if (task->io_uring->identity->files == files)
8961 task->io_uring->identity->files = NULL;
8962 io_sq_thread_unpark(ctx->sq_data);
8963 }
8964 }
8965
8966 /*
8967 * Note that this task has used io_uring. We use it for cancelation purposes.
8968 */
8969 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8970 {
8971 struct io_uring_task *tctx = current->io_uring;
8972 int ret;
8973
8974 if (unlikely(!tctx)) {
8975 ret = io_uring_alloc_task_context(current);
8976 if (unlikely(ret))
8977 return ret;
8978 tctx = current->io_uring;
8979 }
8980 if (tctx->last != file) {
8981 void *old = xa_load(&tctx->xa, (unsigned long)file);
8982
8983 if (!old) {
8984 get_file(file);
8985 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8986 file, GFP_KERNEL));
8987 if (ret) {
8988 fput(file);
8989 return ret;
8990 }
8991 }
8992 tctx->last = file;
8993 }
8994
8995 /*
8996 * This is race safe in that the task itself is doing this, hence it
8997 * cannot be going through the exit/cancel paths at the same time.
8998 * This cannot be modified while exit/cancel is running.
8999 */
9000 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9001 tctx->sqpoll = true;
9002
9003 return 0;
9004 }
9005
9006 /*
9007 * Remove this io_uring_file -> task mapping.
9008 */
9009 static void io_uring_del_task_file(struct file *file)
9010 {
9011 struct io_uring_task *tctx = current->io_uring;
9012
9013 if (tctx->last == file)
9014 tctx->last = NULL;
9015 file = xa_erase(&tctx->xa, (unsigned long)file);
9016 if (file)
9017 fput(file);
9018 }
9019
9020 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9021 {
9022 struct file *file;
9023 unsigned long index;
9024
9025 xa_for_each(&tctx->xa, index, file)
9026 io_uring_del_task_file(file);
9027 }
9028
9029 void __io_uring_files_cancel(struct files_struct *files)
9030 {
9031 struct io_uring_task *tctx = current->io_uring;
9032 struct file *file;
9033 unsigned long index;
9034
9035 /* make sure overflow events are dropped */
9036 atomic_inc(&tctx->in_idle);
9037 xa_for_each(&tctx->xa, index, file)
9038 io_uring_cancel_task_requests(file->private_data, files);
9039 atomic_dec(&tctx->in_idle);
9040
9041 if (files)
9042 io_uring_remove_task_files(tctx);
9043 }
9044
9045 static s64 tctx_inflight(struct io_uring_task *tctx)
9046 {
9047 unsigned long index;
9048 struct file *file;
9049 s64 inflight;
9050
9051 inflight = percpu_counter_sum(&tctx->inflight);
9052 if (!tctx->sqpoll)
9053 return inflight;
9054
9055 /*
9056 * If we have SQPOLL rings, then we need to iterate and find them, and
9057 * add the pending count for those.
9058 */
9059 xa_for_each(&tctx->xa, index, file) {
9060 struct io_ring_ctx *ctx = file->private_data;
9061
9062 if (ctx->flags & IORING_SETUP_SQPOLL) {
9063 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9064
9065 inflight += percpu_counter_sum(&__tctx->inflight);
9066 }
9067 }
9068
9069 return inflight;
9070 }
9071
9072 /*
9073 * Find any io_uring fd that this task has registered or done IO on, and cancel
9074 * requests.
9075 */
9076 void __io_uring_task_cancel(void)
9077 {
9078 struct io_uring_task *tctx = current->io_uring;
9079 DEFINE_WAIT(wait);
9080 s64 inflight;
9081
9082 /* make sure overflow events are dropped */
9083 atomic_inc(&tctx->in_idle);
9084
9085 do {
9086 /* read completions before cancelations */
9087 inflight = tctx_inflight(tctx);
9088 if (!inflight)
9089 break;
9090 __io_uring_files_cancel(NULL);
9091
9092 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9093
9094 /*
9095 * If we've seen completions, retry. This avoids a race where
9096 * a completion comes in before we did prepare_to_wait().
9097 */
9098 if (inflight != tctx_inflight(tctx))
9099 continue;
9100 schedule();
9101 finish_wait(&tctx->wait, &wait);
9102 } while (1);
9103
9104 finish_wait(&tctx->wait, &wait);
9105 atomic_dec(&tctx->in_idle);
9106
9107 io_uring_remove_task_files(tctx);
9108 }
9109
9110 static int io_uring_flush(struct file *file, void *data)
9111 {
9112 struct io_uring_task *tctx = current->io_uring;
9113 struct io_ring_ctx *ctx = file->private_data;
9114
9115 if (!tctx)
9116 return 0;
9117
9118 /* we should have cancelled and erased it before PF_EXITING */
9119 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9120 xa_load(&tctx->xa, (unsigned long)file));
9121
9122 /*
9123 * fput() is pending, will be 2 if the only other ref is our potential
9124 * task file note. If the task is exiting, drop regardless of count.
9125 */
9126 if (atomic_long_read(&file->f_count) != 2)
9127 return 0;
9128
9129 if (ctx->flags & IORING_SETUP_SQPOLL) {
9130 /* there is only one file note, which is owned by sqo_task */
9131 WARN_ON_ONCE((ctx->sqo_task == current) ==
9132 !xa_load(&tctx->xa, (unsigned long)file));
9133
9134 io_disable_sqo_submit(ctx);
9135 }
9136
9137 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9138 io_uring_del_task_file(file);
9139 return 0;
9140 }
9141
9142 static void *io_uring_validate_mmap_request(struct file *file,
9143 loff_t pgoff, size_t sz)
9144 {
9145 struct io_ring_ctx *ctx = file->private_data;
9146 loff_t offset = pgoff << PAGE_SHIFT;
9147 struct page *page;
9148 void *ptr;
9149
9150 switch (offset) {
9151 case IORING_OFF_SQ_RING:
9152 case IORING_OFF_CQ_RING:
9153 ptr = ctx->rings;
9154 break;
9155 case IORING_OFF_SQES:
9156 ptr = ctx->sq_sqes;
9157 break;
9158 default:
9159 return ERR_PTR(-EINVAL);
9160 }
9161
9162 page = virt_to_head_page(ptr);
9163 if (sz > page_size(page))
9164 return ERR_PTR(-EINVAL);
9165
9166 return ptr;
9167 }
9168
9169 #ifdef CONFIG_MMU
9170
9171 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9172 {
9173 size_t sz = vma->vm_end - vma->vm_start;
9174 unsigned long pfn;
9175 void *ptr;
9176
9177 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9178 if (IS_ERR(ptr))
9179 return PTR_ERR(ptr);
9180
9181 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9182 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9183 }
9184
9185 #else /* !CONFIG_MMU */
9186
9187 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9188 {
9189 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9190 }
9191
9192 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9193 {
9194 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9195 }
9196
9197 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9198 unsigned long addr, unsigned long len,
9199 unsigned long pgoff, unsigned long flags)
9200 {
9201 void *ptr;
9202
9203 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9204 if (IS_ERR(ptr))
9205 return PTR_ERR(ptr);
9206
9207 return (unsigned long) ptr;
9208 }
9209
9210 #endif /* !CONFIG_MMU */
9211
9212 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9213 {
9214 int ret = 0;
9215 DEFINE_WAIT(wait);
9216
9217 do {
9218 if (!io_sqring_full(ctx))
9219 break;
9220
9221 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9222
9223 if (unlikely(ctx->sqo_dead)) {
9224 ret = -EOWNERDEAD;
9225 goto out;
9226 }
9227
9228 if (!io_sqring_full(ctx))
9229 break;
9230
9231 schedule();
9232 } while (!signal_pending(current));
9233
9234 finish_wait(&ctx->sqo_sq_wait, &wait);
9235 out:
9236 return ret;
9237 }
9238
9239 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9240 struct __kernel_timespec __user **ts,
9241 const sigset_t __user **sig)
9242 {
9243 struct io_uring_getevents_arg arg;
9244
9245 /*
9246 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9247 * is just a pointer to the sigset_t.
9248 */
9249 if (!(flags & IORING_ENTER_EXT_ARG)) {
9250 *sig = (const sigset_t __user *) argp;
9251 *ts = NULL;
9252 return 0;
9253 }
9254
9255 /*
9256 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9257 * timespec and sigset_t pointers if good.
9258 */
9259 if (*argsz != sizeof(arg))
9260 return -EINVAL;
9261 if (copy_from_user(&arg, argp, sizeof(arg)))
9262 return -EFAULT;
9263 *sig = u64_to_user_ptr(arg.sigmask);
9264 *argsz = arg.sigmask_sz;
9265 *ts = u64_to_user_ptr(arg.ts);
9266 return 0;
9267 }
9268
9269 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9270 u32, min_complete, u32, flags, const void __user *, argp,
9271 size_t, argsz)
9272 {
9273 struct io_ring_ctx *ctx;
9274 long ret = -EBADF;
9275 int submitted = 0;
9276 struct fd f;
9277
9278 io_run_task_work();
9279
9280 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9281 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9282 return -EINVAL;
9283
9284 f = fdget(fd);
9285 if (!f.file)
9286 return -EBADF;
9287
9288 ret = -EOPNOTSUPP;
9289 if (f.file->f_op != &io_uring_fops)
9290 goto out_fput;
9291
9292 ret = -ENXIO;
9293 ctx = f.file->private_data;
9294 if (!percpu_ref_tryget(&ctx->refs))
9295 goto out_fput;
9296
9297 ret = -EBADFD;
9298 if (ctx->flags & IORING_SETUP_R_DISABLED)
9299 goto out;
9300
9301 /*
9302 * For SQ polling, the thread will do all submissions and completions.
9303 * Just return the requested submit count, and wake the thread if
9304 * we were asked to.
9305 */
9306 ret = 0;
9307 if (ctx->flags & IORING_SETUP_SQPOLL) {
9308 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9309
9310 ret = -EOWNERDEAD;
9311 if (unlikely(ctx->sqo_dead))
9312 goto out;
9313 if (flags & IORING_ENTER_SQ_WAKEUP)
9314 wake_up(&ctx->sq_data->wait);
9315 if (flags & IORING_ENTER_SQ_WAIT) {
9316 ret = io_sqpoll_wait_sq(ctx);
9317 if (ret)
9318 goto out;
9319 }
9320 submitted = to_submit;
9321 } else if (to_submit) {
9322 ret = io_uring_add_task_file(ctx, f.file);
9323 if (unlikely(ret))
9324 goto out;
9325 mutex_lock(&ctx->uring_lock);
9326 submitted = io_submit_sqes(ctx, to_submit);
9327 mutex_unlock(&ctx->uring_lock);
9328
9329 if (submitted != to_submit)
9330 goto out;
9331 }
9332 if (flags & IORING_ENTER_GETEVENTS) {
9333 const sigset_t __user *sig;
9334 struct __kernel_timespec __user *ts;
9335
9336 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9337 if (unlikely(ret))
9338 goto out;
9339
9340 min_complete = min(min_complete, ctx->cq_entries);
9341
9342 /*
9343 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9344 * space applications don't need to do io completion events
9345 * polling again, they can rely on io_sq_thread to do polling
9346 * work, which can reduce cpu usage and uring_lock contention.
9347 */
9348 if (ctx->flags & IORING_SETUP_IOPOLL &&
9349 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9350 ret = io_iopoll_check(ctx, min_complete);
9351 } else {
9352 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9353 }
9354 }
9355
9356 out:
9357 percpu_ref_put(&ctx->refs);
9358 out_fput:
9359 fdput(f);
9360 return submitted ? submitted : ret;
9361 }
9362
9363 #ifdef CONFIG_PROC_FS
9364 static int io_uring_show_cred(int id, void *p, void *data)
9365 {
9366 struct io_identity *iod = p;
9367 const struct cred *cred = iod->creds;
9368 struct seq_file *m = data;
9369 struct user_namespace *uns = seq_user_ns(m);
9370 struct group_info *gi;
9371 kernel_cap_t cap;
9372 unsigned __capi;
9373 int g;
9374
9375 seq_printf(m, "%5d\n", id);
9376 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9377 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9378 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9379 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9380 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9381 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9382 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9383 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9384 seq_puts(m, "\n\tGroups:\t");
9385 gi = cred->group_info;
9386 for (g = 0; g < gi->ngroups; g++) {
9387 seq_put_decimal_ull(m, g ? " " : "",
9388 from_kgid_munged(uns, gi->gid[g]));
9389 }
9390 seq_puts(m, "\n\tCapEff:\t");
9391 cap = cred->cap_effective;
9392 CAP_FOR_EACH_U32(__capi)
9393 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9394 seq_putc(m, '\n');
9395 return 0;
9396 }
9397
9398 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9399 {
9400 struct io_sq_data *sq = NULL;
9401 bool has_lock;
9402 int i;
9403
9404 /*
9405 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9406 * since fdinfo case grabs it in the opposite direction of normal use
9407 * cases. If we fail to get the lock, we just don't iterate any
9408 * structures that could be going away outside the io_uring mutex.
9409 */
9410 has_lock = mutex_trylock(&ctx->uring_lock);
9411
9412 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9413 sq = ctx->sq_data;
9414
9415 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9416 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9417 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9418 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9419 struct fixed_file_table *table;
9420 struct file *f;
9421
9422 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9423 f = table->files[i & IORING_FILE_TABLE_MASK];
9424 if (f)
9425 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9426 else
9427 seq_printf(m, "%5u: <none>\n", i);
9428 }
9429 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9430 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9431 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9432
9433 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9434 (unsigned int) buf->len);
9435 }
9436 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9437 seq_printf(m, "Personalities:\n");
9438 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9439 }
9440 seq_printf(m, "PollList:\n");
9441 spin_lock_irq(&ctx->completion_lock);
9442 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9443 struct hlist_head *list = &ctx->cancel_hash[i];
9444 struct io_kiocb *req;
9445
9446 hlist_for_each_entry(req, list, hash_node)
9447 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9448 req->task->task_works != NULL);
9449 }
9450 spin_unlock_irq(&ctx->completion_lock);
9451 if (has_lock)
9452 mutex_unlock(&ctx->uring_lock);
9453 }
9454
9455 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9456 {
9457 struct io_ring_ctx *ctx = f->private_data;
9458
9459 if (percpu_ref_tryget(&ctx->refs)) {
9460 __io_uring_show_fdinfo(ctx, m);
9461 percpu_ref_put(&ctx->refs);
9462 }
9463 }
9464 #endif
9465
9466 static const struct file_operations io_uring_fops = {
9467 .release = io_uring_release,
9468 .flush = io_uring_flush,
9469 .mmap = io_uring_mmap,
9470 #ifndef CONFIG_MMU
9471 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9472 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9473 #endif
9474 .poll = io_uring_poll,
9475 .fasync = io_uring_fasync,
9476 #ifdef CONFIG_PROC_FS
9477 .show_fdinfo = io_uring_show_fdinfo,
9478 #endif
9479 };
9480
9481 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9482 struct io_uring_params *p)
9483 {
9484 struct io_rings *rings;
9485 size_t size, sq_array_offset;
9486
9487 /* make sure these are sane, as we already accounted them */
9488 ctx->sq_entries = p->sq_entries;
9489 ctx->cq_entries = p->cq_entries;
9490
9491 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9492 if (size == SIZE_MAX)
9493 return -EOVERFLOW;
9494
9495 rings = io_mem_alloc(size);
9496 if (!rings)
9497 return -ENOMEM;
9498
9499 ctx->rings = rings;
9500 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9501 rings->sq_ring_mask = p->sq_entries - 1;
9502 rings->cq_ring_mask = p->cq_entries - 1;
9503 rings->sq_ring_entries = p->sq_entries;
9504 rings->cq_ring_entries = p->cq_entries;
9505 ctx->sq_mask = rings->sq_ring_mask;
9506 ctx->cq_mask = rings->cq_ring_mask;
9507
9508 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9509 if (size == SIZE_MAX) {
9510 io_mem_free(ctx->rings);
9511 ctx->rings = NULL;
9512 return -EOVERFLOW;
9513 }
9514
9515 ctx->sq_sqes = io_mem_alloc(size);
9516 if (!ctx->sq_sqes) {
9517 io_mem_free(ctx->rings);
9518 ctx->rings = NULL;
9519 return -ENOMEM;
9520 }
9521
9522 return 0;
9523 }
9524
9525 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9526 {
9527 int ret, fd;
9528
9529 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9530 if (fd < 0)
9531 return fd;
9532
9533 ret = io_uring_add_task_file(ctx, file);
9534 if (ret) {
9535 put_unused_fd(fd);
9536 return ret;
9537 }
9538 fd_install(fd, file);
9539 return fd;
9540 }
9541
9542 /*
9543 * Allocate an anonymous fd, this is what constitutes the application
9544 * visible backing of an io_uring instance. The application mmaps this
9545 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9546 * we have to tie this fd to a socket for file garbage collection purposes.
9547 */
9548 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9549 {
9550 struct file *file;
9551 #if defined(CONFIG_UNIX)
9552 int ret;
9553
9554 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9555 &ctx->ring_sock);
9556 if (ret)
9557 return ERR_PTR(ret);
9558 #endif
9559
9560 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9561 O_RDWR | O_CLOEXEC);
9562 #if defined(CONFIG_UNIX)
9563 if (IS_ERR(file)) {
9564 sock_release(ctx->ring_sock);
9565 ctx->ring_sock = NULL;
9566 } else {
9567 ctx->ring_sock->file = file;
9568 }
9569 #endif
9570 return file;
9571 }
9572
9573 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9574 struct io_uring_params __user *params)
9575 {
9576 struct user_struct *user = NULL;
9577 struct io_ring_ctx *ctx;
9578 struct file *file;
9579 bool limit_mem;
9580 int ret;
9581
9582 if (!entries)
9583 return -EINVAL;
9584 if (entries > IORING_MAX_ENTRIES) {
9585 if (!(p->flags & IORING_SETUP_CLAMP))
9586 return -EINVAL;
9587 entries = IORING_MAX_ENTRIES;
9588 }
9589
9590 /*
9591 * Use twice as many entries for the CQ ring. It's possible for the
9592 * application to drive a higher depth than the size of the SQ ring,
9593 * since the sqes are only used at submission time. This allows for
9594 * some flexibility in overcommitting a bit. If the application has
9595 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9596 * of CQ ring entries manually.
9597 */
9598 p->sq_entries = roundup_pow_of_two(entries);
9599 if (p->flags & IORING_SETUP_CQSIZE) {
9600 /*
9601 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9602 * to a power-of-two, if it isn't already. We do NOT impose
9603 * any cq vs sq ring sizing.
9604 */
9605 if (!p->cq_entries)
9606 return -EINVAL;
9607 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9608 if (!(p->flags & IORING_SETUP_CLAMP))
9609 return -EINVAL;
9610 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9611 }
9612 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9613 if (p->cq_entries < p->sq_entries)
9614 return -EINVAL;
9615 } else {
9616 p->cq_entries = 2 * p->sq_entries;
9617 }
9618
9619 user = get_uid(current_user());
9620 limit_mem = !capable(CAP_IPC_LOCK);
9621
9622 if (limit_mem) {
9623 ret = __io_account_mem(user,
9624 ring_pages(p->sq_entries, p->cq_entries));
9625 if (ret) {
9626 free_uid(user);
9627 return ret;
9628 }
9629 }
9630
9631 ctx = io_ring_ctx_alloc(p);
9632 if (!ctx) {
9633 if (limit_mem)
9634 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9635 p->cq_entries));
9636 free_uid(user);
9637 return -ENOMEM;
9638 }
9639 ctx->compat = in_compat_syscall();
9640 ctx->user = user;
9641 ctx->creds = get_current_cred();
9642 #ifdef CONFIG_AUDIT
9643 ctx->loginuid = current->loginuid;
9644 ctx->sessionid = current->sessionid;
9645 #endif
9646 ctx->sqo_task = get_task_struct(current);
9647
9648 /*
9649 * This is just grabbed for accounting purposes. When a process exits,
9650 * the mm is exited and dropped before the files, hence we need to hang
9651 * on to this mm purely for the purposes of being able to unaccount
9652 * memory (locked/pinned vm). It's not used for anything else.
9653 */
9654 mmgrab(current->mm);
9655 ctx->mm_account = current->mm;
9656
9657 #ifdef CONFIG_BLK_CGROUP
9658 /*
9659 * The sq thread will belong to the original cgroup it was inited in.
9660 * If the cgroup goes offline (e.g. disabling the io controller), then
9661 * issued bios will be associated with the closest cgroup later in the
9662 * block layer.
9663 */
9664 rcu_read_lock();
9665 ctx->sqo_blkcg_css = blkcg_css();
9666 ret = css_tryget_online(ctx->sqo_blkcg_css);
9667 rcu_read_unlock();
9668 if (!ret) {
9669 /* don't init against a dying cgroup, have the user try again */
9670 ctx->sqo_blkcg_css = NULL;
9671 ret = -ENODEV;
9672 goto err;
9673 }
9674 #endif
9675
9676 /*
9677 * Account memory _before_ installing the file descriptor. Once
9678 * the descriptor is installed, it can get closed at any time. Also
9679 * do this before hitting the general error path, as ring freeing
9680 * will un-account as well.
9681 */
9682 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9683 ACCT_LOCKED);
9684 ctx->limit_mem = limit_mem;
9685
9686 ret = io_allocate_scq_urings(ctx, p);
9687 if (ret)
9688 goto err;
9689
9690 ret = io_sq_offload_create(ctx, p);
9691 if (ret)
9692 goto err;
9693
9694 if (!(p->flags & IORING_SETUP_R_DISABLED))
9695 io_sq_offload_start(ctx);
9696
9697 memset(&p->sq_off, 0, sizeof(p->sq_off));
9698 p->sq_off.head = offsetof(struct io_rings, sq.head);
9699 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9700 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9701 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9702 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9703 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9704 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9705
9706 memset(&p->cq_off, 0, sizeof(p->cq_off));
9707 p->cq_off.head = offsetof(struct io_rings, cq.head);
9708 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9709 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9710 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9711 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9712 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9713 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9714
9715 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9716 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9717 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9718 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9719 IORING_FEAT_EXT_ARG;
9720
9721 if (copy_to_user(params, p, sizeof(*p))) {
9722 ret = -EFAULT;
9723 goto err;
9724 }
9725
9726 file = io_uring_get_file(ctx);
9727 if (IS_ERR(file)) {
9728 ret = PTR_ERR(file);
9729 goto err;
9730 }
9731
9732 /*
9733 * Install ring fd as the very last thing, so we don't risk someone
9734 * having closed it before we finish setup
9735 */
9736 ret = io_uring_install_fd(ctx, file);
9737 if (ret < 0) {
9738 io_disable_sqo_submit(ctx);
9739 /* fput will clean it up */
9740 fput(file);
9741 return ret;
9742 }
9743
9744 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9745 return ret;
9746 err:
9747 io_disable_sqo_submit(ctx);
9748 io_ring_ctx_wait_and_kill(ctx);
9749 return ret;
9750 }
9751
9752 /*
9753 * Sets up an aio uring context, and returns the fd. Applications asks for a
9754 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9755 * params structure passed in.
9756 */
9757 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9758 {
9759 struct io_uring_params p;
9760 int i;
9761
9762 if (copy_from_user(&p, params, sizeof(p)))
9763 return -EFAULT;
9764 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9765 if (p.resv[i])
9766 return -EINVAL;
9767 }
9768
9769 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9770 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9771 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9772 IORING_SETUP_R_DISABLED))
9773 return -EINVAL;
9774
9775 return io_uring_create(entries, &p, params);
9776 }
9777
9778 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9779 struct io_uring_params __user *, params)
9780 {
9781 return io_uring_setup(entries, params);
9782 }
9783
9784 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9785 {
9786 struct io_uring_probe *p;
9787 size_t size;
9788 int i, ret;
9789
9790 size = struct_size(p, ops, nr_args);
9791 if (size == SIZE_MAX)
9792 return -EOVERFLOW;
9793 p = kzalloc(size, GFP_KERNEL);
9794 if (!p)
9795 return -ENOMEM;
9796
9797 ret = -EFAULT;
9798 if (copy_from_user(p, arg, size))
9799 goto out;
9800 ret = -EINVAL;
9801 if (memchr_inv(p, 0, size))
9802 goto out;
9803
9804 p->last_op = IORING_OP_LAST - 1;
9805 if (nr_args > IORING_OP_LAST)
9806 nr_args = IORING_OP_LAST;
9807
9808 for (i = 0; i < nr_args; i++) {
9809 p->ops[i].op = i;
9810 if (!io_op_defs[i].not_supported)
9811 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9812 }
9813 p->ops_len = i;
9814
9815 ret = 0;
9816 if (copy_to_user(arg, p, size))
9817 ret = -EFAULT;
9818 out:
9819 kfree(p);
9820 return ret;
9821 }
9822
9823 static int io_register_personality(struct io_ring_ctx *ctx)
9824 {
9825 struct io_identity *id;
9826 int ret;
9827
9828 id = kmalloc(sizeof(*id), GFP_KERNEL);
9829 if (unlikely(!id))
9830 return -ENOMEM;
9831
9832 io_init_identity(id);
9833 id->creds = get_current_cred();
9834
9835 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9836 if (ret < 0) {
9837 put_cred(id->creds);
9838 kfree(id);
9839 }
9840 return ret;
9841 }
9842
9843 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9844 {
9845 struct io_identity *iod;
9846
9847 iod = idr_remove(&ctx->personality_idr, id);
9848 if (iod) {
9849 put_cred(iod->creds);
9850 if (refcount_dec_and_test(&iod->count))
9851 kfree(iod);
9852 return 0;
9853 }
9854
9855 return -EINVAL;
9856 }
9857
9858 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9859 unsigned int nr_args)
9860 {
9861 struct io_uring_restriction *res;
9862 size_t size;
9863 int i, ret;
9864
9865 /* Restrictions allowed only if rings started disabled */
9866 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9867 return -EBADFD;
9868
9869 /* We allow only a single restrictions registration */
9870 if (ctx->restrictions.registered)
9871 return -EBUSY;
9872
9873 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9874 return -EINVAL;
9875
9876 size = array_size(nr_args, sizeof(*res));
9877 if (size == SIZE_MAX)
9878 return -EOVERFLOW;
9879
9880 res = memdup_user(arg, size);
9881 if (IS_ERR(res))
9882 return PTR_ERR(res);
9883
9884 ret = 0;
9885
9886 for (i = 0; i < nr_args; i++) {
9887 switch (res[i].opcode) {
9888 case IORING_RESTRICTION_REGISTER_OP:
9889 if (res[i].register_op >= IORING_REGISTER_LAST) {
9890 ret = -EINVAL;
9891 goto out;
9892 }
9893
9894 __set_bit(res[i].register_op,
9895 ctx->restrictions.register_op);
9896 break;
9897 case IORING_RESTRICTION_SQE_OP:
9898 if (res[i].sqe_op >= IORING_OP_LAST) {
9899 ret = -EINVAL;
9900 goto out;
9901 }
9902
9903 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9904 break;
9905 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9906 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9907 break;
9908 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9909 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9910 break;
9911 default:
9912 ret = -EINVAL;
9913 goto out;
9914 }
9915 }
9916
9917 out:
9918 /* Reset all restrictions if an error happened */
9919 if (ret != 0)
9920 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9921 else
9922 ctx->restrictions.registered = true;
9923
9924 kfree(res);
9925 return ret;
9926 }
9927
9928 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9929 {
9930 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9931 return -EBADFD;
9932
9933 if (ctx->restrictions.registered)
9934 ctx->restricted = 1;
9935
9936 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9937
9938 io_sq_offload_start(ctx);
9939
9940 return 0;
9941 }
9942
9943 static bool io_register_op_must_quiesce(int op)
9944 {
9945 switch (op) {
9946 case IORING_UNREGISTER_FILES:
9947 case IORING_REGISTER_FILES_UPDATE:
9948 case IORING_REGISTER_PROBE:
9949 case IORING_REGISTER_PERSONALITY:
9950 case IORING_UNREGISTER_PERSONALITY:
9951 return false;
9952 default:
9953 return true;
9954 }
9955 }
9956
9957 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9958 void __user *arg, unsigned nr_args)
9959 __releases(ctx->uring_lock)
9960 __acquires(ctx->uring_lock)
9961 {
9962 int ret;
9963
9964 /*
9965 * We're inside the ring mutex, if the ref is already dying, then
9966 * someone else killed the ctx or is already going through
9967 * io_uring_register().
9968 */
9969 if (percpu_ref_is_dying(&ctx->refs))
9970 return -ENXIO;
9971
9972 if (io_register_op_must_quiesce(opcode)) {
9973 percpu_ref_kill(&ctx->refs);
9974
9975 /*
9976 * Drop uring mutex before waiting for references to exit. If
9977 * another thread is currently inside io_uring_enter() it might
9978 * need to grab the uring_lock to make progress. If we hold it
9979 * here across the drain wait, then we can deadlock. It's safe
9980 * to drop the mutex here, since no new references will come in
9981 * after we've killed the percpu ref.
9982 */
9983 mutex_unlock(&ctx->uring_lock);
9984 do {
9985 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9986 if (!ret)
9987 break;
9988 ret = io_run_task_work_sig();
9989 if (ret < 0)
9990 break;
9991 } while (1);
9992
9993 mutex_lock(&ctx->uring_lock);
9994
9995 if (ret) {
9996 percpu_ref_resurrect(&ctx->refs);
9997 goto out_quiesce;
9998 }
9999 }
10000
10001 if (ctx->restricted) {
10002 if (opcode >= IORING_REGISTER_LAST) {
10003 ret = -EINVAL;
10004 goto out;
10005 }
10006
10007 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10008 ret = -EACCES;
10009 goto out;
10010 }
10011 }
10012
10013 switch (opcode) {
10014 case IORING_REGISTER_BUFFERS:
10015 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10016 break;
10017 case IORING_UNREGISTER_BUFFERS:
10018 ret = -EINVAL;
10019 if (arg || nr_args)
10020 break;
10021 ret = io_sqe_buffer_unregister(ctx);
10022 break;
10023 case IORING_REGISTER_FILES:
10024 ret = io_sqe_files_register(ctx, arg, nr_args);
10025 break;
10026 case IORING_UNREGISTER_FILES:
10027 ret = -EINVAL;
10028 if (arg || nr_args)
10029 break;
10030 ret = io_sqe_files_unregister(ctx);
10031 break;
10032 case IORING_REGISTER_FILES_UPDATE:
10033 ret = io_sqe_files_update(ctx, arg, nr_args);
10034 break;
10035 case IORING_REGISTER_EVENTFD:
10036 case IORING_REGISTER_EVENTFD_ASYNC:
10037 ret = -EINVAL;
10038 if (nr_args != 1)
10039 break;
10040 ret = io_eventfd_register(ctx, arg);
10041 if (ret)
10042 break;
10043 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10044 ctx->eventfd_async = 1;
10045 else
10046 ctx->eventfd_async = 0;
10047 break;
10048 case IORING_UNREGISTER_EVENTFD:
10049 ret = -EINVAL;
10050 if (arg || nr_args)
10051 break;
10052 ret = io_eventfd_unregister(ctx);
10053 break;
10054 case IORING_REGISTER_PROBE:
10055 ret = -EINVAL;
10056 if (!arg || nr_args > 256)
10057 break;
10058 ret = io_probe(ctx, arg, nr_args);
10059 break;
10060 case IORING_REGISTER_PERSONALITY:
10061 ret = -EINVAL;
10062 if (arg || nr_args)
10063 break;
10064 ret = io_register_personality(ctx);
10065 break;
10066 case IORING_UNREGISTER_PERSONALITY:
10067 ret = -EINVAL;
10068 if (arg)
10069 break;
10070 ret = io_unregister_personality(ctx, nr_args);
10071 break;
10072 case IORING_REGISTER_ENABLE_RINGS:
10073 ret = -EINVAL;
10074 if (arg || nr_args)
10075 break;
10076 ret = io_register_enable_rings(ctx);
10077 break;
10078 case IORING_REGISTER_RESTRICTIONS:
10079 ret = io_register_restrictions(ctx, arg, nr_args);
10080 break;
10081 default:
10082 ret = -EINVAL;
10083 break;
10084 }
10085
10086 out:
10087 if (io_register_op_must_quiesce(opcode)) {
10088 /* bring the ctx back to life */
10089 percpu_ref_reinit(&ctx->refs);
10090 out_quiesce:
10091 reinit_completion(&ctx->ref_comp);
10092 }
10093 return ret;
10094 }
10095
10096 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10097 void __user *, arg, unsigned int, nr_args)
10098 {
10099 struct io_ring_ctx *ctx;
10100 long ret = -EBADF;
10101 struct fd f;
10102
10103 f = fdget(fd);
10104 if (!f.file)
10105 return -EBADF;
10106
10107 ret = -EOPNOTSUPP;
10108 if (f.file->f_op != &io_uring_fops)
10109 goto out_fput;
10110
10111 ctx = f.file->private_data;
10112
10113 mutex_lock(&ctx->uring_lock);
10114 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10115 mutex_unlock(&ctx->uring_lock);
10116 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10117 ctx->cq_ev_fd != NULL, ret);
10118 out_fput:
10119 fdput(f);
10120 return ret;
10121 }
10122
10123 static int __init io_uring_init(void)
10124 {
10125 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10126 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10127 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10128 } while (0)
10129
10130 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10131 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10132 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10133 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10134 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10135 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10136 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10137 BUILD_BUG_SQE_ELEM(8, __u64, off);
10138 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10139 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10140 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10141 BUILD_BUG_SQE_ELEM(24, __u32, len);
10142 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10143 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10144 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10145 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10146 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10147 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10148 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10149 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10150 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10151 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10152 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10153 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10154 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10155 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10156 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10157 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10158 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10159 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10160 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10161
10162 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10163 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10164 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10165 return 0;
10166 };
10167 __initcall(io_uring_init);