]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
io_uring: fix short read retries for non-reg files
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned cq_last_tm_flush;
358 unsigned long cq_check_overflow;
359 struct wait_queue_head cq_wait;
360 struct fasync_struct *cq_fasync;
361 struct eventfd_ctx *cq_ev_fd;
362 } ____cacheline_aligned_in_smp;
363
364 struct {
365 struct mutex uring_lock;
366 wait_queue_head_t wait;
367 } ____cacheline_aligned_in_smp;
368
369 struct {
370 spinlock_t completion_lock;
371
372 /*
373 * ->iopoll_list is protected by the ctx->uring_lock for
374 * io_uring instances that don't use IORING_SETUP_SQPOLL.
375 * For SQPOLL, only the single threaded io_sq_thread() will
376 * manipulate the list, hence no extra locking is needed there.
377 */
378 struct list_head iopoll_list;
379 struct hlist_head *cancel_hash;
380 unsigned cancel_hash_bits;
381 bool poll_multi_file;
382
383 spinlock_t inflight_lock;
384 struct list_head inflight_list;
385 } ____cacheline_aligned_in_smp;
386
387 struct delayed_work file_put_work;
388 struct llist_head file_put_llist;
389
390 struct work_struct exit_work;
391 struct io_restriction restrictions;
392 };
393
394 /*
395 * First field must be the file pointer in all the
396 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 */
398 struct io_poll_iocb {
399 struct file *file;
400 struct wait_queue_head *head;
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_poll_remove {
408 struct file *file;
409 u64 addr;
410 };
411
412 struct io_close {
413 struct file *file;
414 struct file *put_file;
415 int fd;
416 };
417
418 struct io_timeout_data {
419 struct io_kiocb *req;
420 struct hrtimer timer;
421 struct timespec64 ts;
422 enum hrtimer_mode mode;
423 };
424
425 struct io_accept {
426 struct file *file;
427 struct sockaddr __user *addr;
428 int __user *addr_len;
429 int flags;
430 unsigned long nofile;
431 };
432
433 struct io_sync {
434 struct file *file;
435 loff_t len;
436 loff_t off;
437 int flags;
438 int mode;
439 };
440
441 struct io_cancel {
442 struct file *file;
443 u64 addr;
444 };
445
446 struct io_timeout {
447 struct file *file;
448 u32 off;
449 u32 target_seq;
450 struct list_head list;
451 /* head of the link, used by linked timeouts only */
452 struct io_kiocb *head;
453 };
454
455 struct io_timeout_rem {
456 struct file *file;
457 u64 addr;
458
459 /* timeout update */
460 struct timespec64 ts;
461 u32 flags;
462 };
463
464 struct io_rw {
465 /* NOTE: kiocb has the file as the first member, so don't do it here */
466 struct kiocb kiocb;
467 u64 addr;
468 u64 len;
469 };
470
471 struct io_connect {
472 struct file *file;
473 struct sockaddr __user *addr;
474 int addr_len;
475 };
476
477 struct io_sr_msg {
478 struct file *file;
479 union {
480 struct user_msghdr __user *umsg;
481 void __user *buf;
482 };
483 int msg_flags;
484 int bgid;
485 size_t len;
486 struct io_buffer *kbuf;
487 };
488
489 struct io_open {
490 struct file *file;
491 int dfd;
492 bool ignore_nonblock;
493 struct filename *filename;
494 struct open_how how;
495 unsigned long nofile;
496 };
497
498 struct io_files_update {
499 struct file *file;
500 u64 arg;
501 u32 nr_args;
502 u32 offset;
503 };
504
505 struct io_fadvise {
506 struct file *file;
507 u64 offset;
508 u32 len;
509 u32 advice;
510 };
511
512 struct io_madvise {
513 struct file *file;
514 u64 addr;
515 u32 len;
516 u32 advice;
517 };
518
519 struct io_epoll {
520 struct file *file;
521 int epfd;
522 int op;
523 int fd;
524 struct epoll_event event;
525 };
526
527 struct io_splice {
528 struct file *file_out;
529 struct file *file_in;
530 loff_t off_out;
531 loff_t off_in;
532 u64 len;
533 unsigned int flags;
534 };
535
536 struct io_provide_buf {
537 struct file *file;
538 __u64 addr;
539 __s32 len;
540 __u32 bgid;
541 __u16 nbufs;
542 __u16 bid;
543 };
544
545 struct io_statx {
546 struct file *file;
547 int dfd;
548 unsigned int mask;
549 unsigned int flags;
550 const char __user *filename;
551 struct statx __user *buffer;
552 };
553
554 struct io_shutdown {
555 struct file *file;
556 int how;
557 };
558
559 struct io_rename {
560 struct file *file;
561 int old_dfd;
562 int new_dfd;
563 struct filename *oldpath;
564 struct filename *newpath;
565 int flags;
566 };
567
568 struct io_unlink {
569 struct file *file;
570 int dfd;
571 int flags;
572 struct filename *filename;
573 };
574
575 struct io_completion {
576 struct file *file;
577 struct list_head list;
578 int cflags;
579 };
580
581 struct io_async_connect {
582 struct sockaddr_storage address;
583 };
584
585 struct io_async_msghdr {
586 struct iovec fast_iov[UIO_FASTIOV];
587 struct iovec *iov;
588 struct sockaddr __user *uaddr;
589 struct msghdr msg;
590 struct sockaddr_storage addr;
591 };
592
593 struct io_async_rw {
594 struct iovec fast_iov[UIO_FASTIOV];
595 const struct iovec *free_iovec;
596 struct iov_iter iter;
597 size_t bytes_done;
598 struct wait_page_queue wpq;
599 };
600
601 enum {
602 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
603 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
604 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
605 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
606 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
607 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
608
609 REQ_F_FAIL_LINK_BIT,
610 REQ_F_INFLIGHT_BIT,
611 REQ_F_CUR_POS_BIT,
612 REQ_F_NOWAIT_BIT,
613 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_ISREG_BIT,
615 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_POLLED_BIT,
617 REQ_F_BUFFER_SELECTED_BIT,
618 REQ_F_NO_FILE_TABLE_BIT,
619 REQ_F_WORK_INITIALIZED_BIT,
620 REQ_F_LTIMEOUT_ACTIVE_BIT,
621
622 /* not a real bit, just to check we're not overflowing the space */
623 __REQ_F_LAST_BIT,
624 };
625
626 enum {
627 /* ctx owns file */
628 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
629 /* drain existing IO first */
630 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 /* linked sqes */
632 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
633 /* doesn't sever on completion < 0 */
634 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 /* IOSQE_ASYNC */
636 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
637 /* IOSQE_BUFFER_SELECT */
638 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639
640 /* fail rest of links */
641 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
642 /* on inflight list */
643 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
644 /* read/write uses file position */
645 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
646 /* must not punt to workers */
647 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
648 /* has or had linked timeout */
649 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 /* regular file */
651 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 /* needs cleanup */
653 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
654 /* already went through poll handler */
655 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
656 /* buffer already selected */
657 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
658 /* doesn't need file table for this request */
659 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
660 /* io_wq_work is initialized */
661 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
662 /* linked timeout is active, i.e. prepared by link's head */
663 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
664 };
665
666 struct async_poll {
667 struct io_poll_iocb poll;
668 struct io_poll_iocb *double_poll;
669 };
670
671 /*
672 * NOTE! Each of the iocb union members has the file pointer
673 * as the first entry in their struct definition. So you can
674 * access the file pointer through any of the sub-structs,
675 * or directly as just 'ki_filp' in this struct.
676 */
677 struct io_kiocb {
678 union {
679 struct file *file;
680 struct io_rw rw;
681 struct io_poll_iocb poll;
682 struct io_poll_remove poll_remove;
683 struct io_accept accept;
684 struct io_sync sync;
685 struct io_cancel cancel;
686 struct io_timeout timeout;
687 struct io_timeout_rem timeout_rem;
688 struct io_connect connect;
689 struct io_sr_msg sr_msg;
690 struct io_open open;
691 struct io_close close;
692 struct io_files_update files_update;
693 struct io_fadvise fadvise;
694 struct io_madvise madvise;
695 struct io_epoll epoll;
696 struct io_splice splice;
697 struct io_provide_buf pbuf;
698 struct io_statx statx;
699 struct io_shutdown shutdown;
700 struct io_rename rename;
701 struct io_unlink unlink;
702 /* use only after cleaning per-op data, see io_clean_op() */
703 struct io_completion compl;
704 };
705
706 /* opcode allocated if it needs to store data for async defer */
707 void *async_data;
708 u8 opcode;
709 /* polled IO has completed */
710 u8 iopoll_completed;
711
712 u16 buf_index;
713 u32 result;
714
715 struct io_ring_ctx *ctx;
716 unsigned int flags;
717 refcount_t refs;
718 struct task_struct *task;
719 u64 user_data;
720
721 struct io_kiocb *link;
722 struct percpu_ref *fixed_file_refs;
723
724 /*
725 * 1. used with ctx->iopoll_list with reads/writes
726 * 2. to track reqs with ->files (see io_op_def::file_table)
727 */
728 struct list_head inflight_entry;
729 struct callback_head task_work;
730 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
731 struct hlist_node hash_node;
732 struct async_poll *apoll;
733 struct io_wq_work work;
734 };
735
736 struct io_defer_entry {
737 struct list_head list;
738 struct io_kiocb *req;
739 u32 seq;
740 };
741
742 #define IO_IOPOLL_BATCH 8
743
744 struct io_comp_state {
745 unsigned int nr;
746 struct list_head list;
747 struct io_ring_ctx *ctx;
748 };
749
750 struct io_submit_state {
751 struct blk_plug plug;
752
753 /*
754 * io_kiocb alloc cache
755 */
756 void *reqs[IO_IOPOLL_BATCH];
757 unsigned int free_reqs;
758
759 bool plug_started;
760
761 /*
762 * Batch completion logic
763 */
764 struct io_comp_state comp;
765
766 /*
767 * File reference cache
768 */
769 struct file *file;
770 unsigned int fd;
771 unsigned int file_refs;
772 unsigned int ios_left;
773 };
774
775 struct io_op_def {
776 /* needs req->file assigned */
777 unsigned needs_file : 1;
778 /* don't fail if file grab fails */
779 unsigned needs_file_no_error : 1;
780 /* hash wq insertion if file is a regular file */
781 unsigned hash_reg_file : 1;
782 /* unbound wq insertion if file is a non-regular file */
783 unsigned unbound_nonreg_file : 1;
784 /* opcode is not supported by this kernel */
785 unsigned not_supported : 1;
786 /* set if opcode supports polled "wait" */
787 unsigned pollin : 1;
788 unsigned pollout : 1;
789 /* op supports buffer selection */
790 unsigned buffer_select : 1;
791 /* must always have async data allocated */
792 unsigned needs_async_data : 1;
793 /* should block plug */
794 unsigned plug : 1;
795 /* size of async data needed, if any */
796 unsigned short async_size;
797 unsigned work_flags;
798 };
799
800 static const struct io_op_def io_op_defs[] = {
801 [IORING_OP_NOP] = {},
802 [IORING_OP_READV] = {
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 .needs_async_data = 1,
808 .plug = 1,
809 .async_size = sizeof(struct io_async_rw),
810 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_WRITEV] = {
813 .needs_file = 1,
814 .hash_reg_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .plug = 1,
819 .async_size = sizeof(struct io_async_rw),
820 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 IO_WQ_WORK_FSIZE,
822 },
823 [IORING_OP_FSYNC] = {
824 .needs_file = 1,
825 .work_flags = IO_WQ_WORK_BLKCG,
826 },
827 [IORING_OP_READ_FIXED] = {
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .plug = 1,
832 .async_size = sizeof(struct io_async_rw),
833 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 },
835 [IORING_OP_WRITE_FIXED] = {
836 .needs_file = 1,
837 .hash_reg_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 .plug = 1,
841 .async_size = sizeof(struct io_async_rw),
842 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 IO_WQ_WORK_MM,
844 },
845 [IORING_OP_POLL_ADD] = {
846 .needs_file = 1,
847 .unbound_nonreg_file = 1,
848 },
849 [IORING_OP_POLL_REMOVE] = {},
850 [IORING_OP_SYNC_FILE_RANGE] = {
851 .needs_file = 1,
852 .work_flags = IO_WQ_WORK_BLKCG,
853 },
854 [IORING_OP_SENDMSG] = {
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollout = 1,
858 .needs_async_data = 1,
859 .async_size = sizeof(struct io_async_msghdr),
860 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
861 },
862 [IORING_OP_RECVMSG] = {
863 .needs_file = 1,
864 .unbound_nonreg_file = 1,
865 .pollin = 1,
866 .buffer_select = 1,
867 .needs_async_data = 1,
868 .async_size = sizeof(struct io_async_msghdr),
869 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
870 },
871 [IORING_OP_TIMEOUT] = {
872 .needs_async_data = 1,
873 .async_size = sizeof(struct io_timeout_data),
874 .work_flags = IO_WQ_WORK_MM,
875 },
876 [IORING_OP_TIMEOUT_REMOVE] = {
877 /* used by timeout updates' prep() */
878 .work_flags = IO_WQ_WORK_MM,
879 },
880 [IORING_OP_ACCEPT] = {
881 .needs_file = 1,
882 .unbound_nonreg_file = 1,
883 .pollin = 1,
884 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
885 },
886 [IORING_OP_ASYNC_CANCEL] = {},
887 [IORING_OP_LINK_TIMEOUT] = {
888 .needs_async_data = 1,
889 .async_size = sizeof(struct io_timeout_data),
890 .work_flags = IO_WQ_WORK_MM,
891 },
892 [IORING_OP_CONNECT] = {
893 .needs_file = 1,
894 .unbound_nonreg_file = 1,
895 .pollout = 1,
896 .needs_async_data = 1,
897 .async_size = sizeof(struct io_async_connect),
898 .work_flags = IO_WQ_WORK_MM,
899 },
900 [IORING_OP_FALLOCATE] = {
901 .needs_file = 1,
902 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
903 },
904 [IORING_OP_OPENAT] = {
905 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
906 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
907 },
908 [IORING_OP_CLOSE] = {
909 .needs_file = 1,
910 .needs_file_no_error = 1,
911 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
912 },
913 [IORING_OP_FILES_UPDATE] = {
914 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
915 },
916 [IORING_OP_STATX] = {
917 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
918 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
919 },
920 [IORING_OP_READ] = {
921 .needs_file = 1,
922 .unbound_nonreg_file = 1,
923 .pollin = 1,
924 .buffer_select = 1,
925 .plug = 1,
926 .async_size = sizeof(struct io_async_rw),
927 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
928 },
929 [IORING_OP_WRITE] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .plug = 1,
934 .async_size = sizeof(struct io_async_rw),
935 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 IO_WQ_WORK_FSIZE,
937 },
938 [IORING_OP_FADVISE] = {
939 .needs_file = 1,
940 .work_flags = IO_WQ_WORK_BLKCG,
941 },
942 [IORING_OP_MADVISE] = {
943 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
944 },
945 [IORING_OP_SEND] = {
946 .needs_file = 1,
947 .unbound_nonreg_file = 1,
948 .pollout = 1,
949 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
950 },
951 [IORING_OP_RECV] = {
952 .needs_file = 1,
953 .unbound_nonreg_file = 1,
954 .pollin = 1,
955 .buffer_select = 1,
956 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
957 },
958 [IORING_OP_OPENAT2] = {
959 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
960 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
961 },
962 [IORING_OP_EPOLL_CTL] = {
963 .unbound_nonreg_file = 1,
964 .work_flags = IO_WQ_WORK_FILES,
965 },
966 [IORING_OP_SPLICE] = {
967 .needs_file = 1,
968 .hash_reg_file = 1,
969 .unbound_nonreg_file = 1,
970 .work_flags = IO_WQ_WORK_BLKCG,
971 },
972 [IORING_OP_PROVIDE_BUFFERS] = {},
973 [IORING_OP_REMOVE_BUFFERS] = {},
974 [IORING_OP_TEE] = {
975 .needs_file = 1,
976 .hash_reg_file = 1,
977 .unbound_nonreg_file = 1,
978 },
979 [IORING_OP_SHUTDOWN] = {
980 .needs_file = 1,
981 },
982 [IORING_OP_RENAMEAT] = {
983 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
984 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_UNLINKAT] = {
987 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
988 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
989 },
990 };
991
992 enum io_mem_account {
993 ACCT_LOCKED,
994 ACCT_PINNED,
995 };
996
997 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
998 struct task_struct *task);
999
1000 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1001 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1002 struct io_ring_ctx *ctx);
1003
1004 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1005 struct io_comp_state *cs);
1006 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1007 static void io_put_req(struct io_kiocb *req);
1008 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1009 static void io_double_put_req(struct io_kiocb *req);
1010 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1011 static void __io_queue_linked_timeout(struct io_kiocb *req);
1012 static void io_queue_linked_timeout(struct io_kiocb *req);
1013 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1014 struct io_uring_files_update *ip,
1015 unsigned nr_args);
1016 static void __io_clean_op(struct io_kiocb *req);
1017 static struct file *io_file_get(struct io_submit_state *state,
1018 struct io_kiocb *req, int fd, bool fixed);
1019 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1020 static void io_file_put_work(struct work_struct *work);
1021
1022 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1023 struct iovec **iovec, struct iov_iter *iter,
1024 bool needs_lock);
1025 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1026 const struct iovec *fast_iov,
1027 struct iov_iter *iter, bool force);
1028
1029 static struct kmem_cache *req_cachep;
1030
1031 static const struct file_operations io_uring_fops;
1032
1033 struct sock *io_uring_get_socket(struct file *file)
1034 {
1035 #if defined(CONFIG_UNIX)
1036 if (file->f_op == &io_uring_fops) {
1037 struct io_ring_ctx *ctx = file->private_data;
1038
1039 return ctx->ring_sock->sk;
1040 }
1041 #endif
1042 return NULL;
1043 }
1044 EXPORT_SYMBOL(io_uring_get_socket);
1045
1046 #define io_for_each_link(pos, head) \
1047 for (pos = (head); pos; pos = pos->link)
1048
1049 static inline void io_clean_op(struct io_kiocb *req)
1050 {
1051 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1052 REQ_F_INFLIGHT))
1053 __io_clean_op(req);
1054 }
1055
1056 static inline void io_set_resource_node(struct io_kiocb *req)
1057 {
1058 struct io_ring_ctx *ctx = req->ctx;
1059
1060 if (!req->fixed_file_refs) {
1061 req->fixed_file_refs = &ctx->file_data->node->refs;
1062 percpu_ref_get(req->fixed_file_refs);
1063 }
1064 }
1065
1066 static bool io_match_task(struct io_kiocb *head,
1067 struct task_struct *task,
1068 struct files_struct *files)
1069 {
1070 struct io_kiocb *req;
1071
1072 if (task && head->task != task)
1073 return false;
1074 if (!files)
1075 return true;
1076
1077 io_for_each_link(req, head) {
1078 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1079 (req->work.flags & IO_WQ_WORK_FILES) &&
1080 req->work.identity->files == files)
1081 return true;
1082 }
1083 return false;
1084 }
1085
1086 static void io_sq_thread_drop_mm_files(void)
1087 {
1088 struct files_struct *files = current->files;
1089 struct mm_struct *mm = current->mm;
1090
1091 if (mm) {
1092 kthread_unuse_mm(mm);
1093 mmput(mm);
1094 current->mm = NULL;
1095 }
1096 if (files) {
1097 struct nsproxy *nsproxy = current->nsproxy;
1098
1099 task_lock(current);
1100 current->files = NULL;
1101 current->nsproxy = NULL;
1102 task_unlock(current);
1103 put_files_struct(files);
1104 put_nsproxy(nsproxy);
1105 }
1106 }
1107
1108 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1109 {
1110 if (current->flags & PF_EXITING)
1111 return -EFAULT;
1112
1113 if (!current->files) {
1114 struct files_struct *files;
1115 struct nsproxy *nsproxy;
1116
1117 task_lock(ctx->sqo_task);
1118 files = ctx->sqo_task->files;
1119 if (!files) {
1120 task_unlock(ctx->sqo_task);
1121 return -EOWNERDEAD;
1122 }
1123 atomic_inc(&files->count);
1124 get_nsproxy(ctx->sqo_task->nsproxy);
1125 nsproxy = ctx->sqo_task->nsproxy;
1126 task_unlock(ctx->sqo_task);
1127
1128 task_lock(current);
1129 current->files = files;
1130 current->nsproxy = nsproxy;
1131 task_unlock(current);
1132 }
1133 return 0;
1134 }
1135
1136 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1137 {
1138 struct mm_struct *mm;
1139
1140 if (current->flags & PF_EXITING)
1141 return -EFAULT;
1142 if (current->mm)
1143 return 0;
1144
1145 /* Should never happen */
1146 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1147 return -EFAULT;
1148
1149 task_lock(ctx->sqo_task);
1150 mm = ctx->sqo_task->mm;
1151 if (unlikely(!mm || !mmget_not_zero(mm)))
1152 mm = NULL;
1153 task_unlock(ctx->sqo_task);
1154
1155 if (mm) {
1156 kthread_use_mm(mm);
1157 return 0;
1158 }
1159
1160 return -EFAULT;
1161 }
1162
1163 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1164 struct io_kiocb *req)
1165 {
1166 const struct io_op_def *def = &io_op_defs[req->opcode];
1167 int ret;
1168
1169 if (def->work_flags & IO_WQ_WORK_MM) {
1170 ret = __io_sq_thread_acquire_mm(ctx);
1171 if (unlikely(ret))
1172 return ret;
1173 }
1174
1175 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1176 ret = __io_sq_thread_acquire_files(ctx);
1177 if (unlikely(ret))
1178 return ret;
1179 }
1180
1181 return 0;
1182 }
1183
1184 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1185 struct cgroup_subsys_state **cur_css)
1186
1187 {
1188 #ifdef CONFIG_BLK_CGROUP
1189 /* puts the old one when swapping */
1190 if (*cur_css != ctx->sqo_blkcg_css) {
1191 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1192 *cur_css = ctx->sqo_blkcg_css;
1193 }
1194 #endif
1195 }
1196
1197 static void io_sq_thread_unassociate_blkcg(void)
1198 {
1199 #ifdef CONFIG_BLK_CGROUP
1200 kthread_associate_blkcg(NULL);
1201 #endif
1202 }
1203
1204 static inline void req_set_fail_links(struct io_kiocb *req)
1205 {
1206 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1207 req->flags |= REQ_F_FAIL_LINK;
1208 }
1209
1210 /*
1211 * None of these are dereferenced, they are simply used to check if any of
1212 * them have changed. If we're under current and check they are still the
1213 * same, we're fine to grab references to them for actual out-of-line use.
1214 */
1215 static void io_init_identity(struct io_identity *id)
1216 {
1217 id->files = current->files;
1218 id->mm = current->mm;
1219 #ifdef CONFIG_BLK_CGROUP
1220 rcu_read_lock();
1221 id->blkcg_css = blkcg_css();
1222 rcu_read_unlock();
1223 #endif
1224 id->creds = current_cred();
1225 id->nsproxy = current->nsproxy;
1226 id->fs = current->fs;
1227 id->fsize = rlimit(RLIMIT_FSIZE);
1228 #ifdef CONFIG_AUDIT
1229 id->loginuid = current->loginuid;
1230 id->sessionid = current->sessionid;
1231 #endif
1232 refcount_set(&id->count, 1);
1233 }
1234
1235 static inline void __io_req_init_async(struct io_kiocb *req)
1236 {
1237 memset(&req->work, 0, sizeof(req->work));
1238 req->flags |= REQ_F_WORK_INITIALIZED;
1239 }
1240
1241 /*
1242 * Note: must call io_req_init_async() for the first time you
1243 * touch any members of io_wq_work.
1244 */
1245 static inline void io_req_init_async(struct io_kiocb *req)
1246 {
1247 struct io_uring_task *tctx = current->io_uring;
1248
1249 if (req->flags & REQ_F_WORK_INITIALIZED)
1250 return;
1251
1252 __io_req_init_async(req);
1253
1254 /* Grab a ref if this isn't our static identity */
1255 req->work.identity = tctx->identity;
1256 if (tctx->identity != &tctx->__identity)
1257 refcount_inc(&req->work.identity->count);
1258 }
1259
1260 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1261 {
1262 return ctx->flags & IORING_SETUP_SQPOLL;
1263 }
1264
1265 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1266 {
1267 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1268
1269 complete(&ctx->ref_comp);
1270 }
1271
1272 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1273 {
1274 return !req->timeout.off;
1275 }
1276
1277 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1278 {
1279 struct io_ring_ctx *ctx;
1280 int hash_bits;
1281
1282 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1283 if (!ctx)
1284 return NULL;
1285
1286 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1287 if (!ctx->fallback_req)
1288 goto err;
1289
1290 /*
1291 * Use 5 bits less than the max cq entries, that should give us around
1292 * 32 entries per hash list if totally full and uniformly spread.
1293 */
1294 hash_bits = ilog2(p->cq_entries);
1295 hash_bits -= 5;
1296 if (hash_bits <= 0)
1297 hash_bits = 1;
1298 ctx->cancel_hash_bits = hash_bits;
1299 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1300 GFP_KERNEL);
1301 if (!ctx->cancel_hash)
1302 goto err;
1303 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1304
1305 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1306 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1307 goto err;
1308
1309 ctx->flags = p->flags;
1310 init_waitqueue_head(&ctx->sqo_sq_wait);
1311 INIT_LIST_HEAD(&ctx->sqd_list);
1312 init_waitqueue_head(&ctx->cq_wait);
1313 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1314 init_completion(&ctx->ref_comp);
1315 init_completion(&ctx->sq_thread_comp);
1316 idr_init(&ctx->io_buffer_idr);
1317 idr_init(&ctx->personality_idr);
1318 mutex_init(&ctx->uring_lock);
1319 init_waitqueue_head(&ctx->wait);
1320 spin_lock_init(&ctx->completion_lock);
1321 INIT_LIST_HEAD(&ctx->iopoll_list);
1322 INIT_LIST_HEAD(&ctx->defer_list);
1323 INIT_LIST_HEAD(&ctx->timeout_list);
1324 spin_lock_init(&ctx->inflight_lock);
1325 INIT_LIST_HEAD(&ctx->inflight_list);
1326 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1327 init_llist_head(&ctx->file_put_llist);
1328 return ctx;
1329 err:
1330 if (ctx->fallback_req)
1331 kmem_cache_free(req_cachep, ctx->fallback_req);
1332 kfree(ctx->cancel_hash);
1333 kfree(ctx);
1334 return NULL;
1335 }
1336
1337 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1338 {
1339 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1340 struct io_ring_ctx *ctx = req->ctx;
1341
1342 return seq != ctx->cached_cq_tail
1343 + READ_ONCE(ctx->cached_cq_overflow);
1344 }
1345
1346 return false;
1347 }
1348
1349 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1350 {
1351 struct io_rings *rings = ctx->rings;
1352
1353 /* order cqe stores with ring update */
1354 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1355 }
1356
1357 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1358 {
1359 if (req->work.identity == &tctx->__identity)
1360 return;
1361 if (refcount_dec_and_test(&req->work.identity->count))
1362 kfree(req->work.identity);
1363 }
1364
1365 static void io_req_clean_work(struct io_kiocb *req)
1366 {
1367 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1368 return;
1369
1370 req->flags &= ~REQ_F_WORK_INITIALIZED;
1371
1372 if (req->work.flags & IO_WQ_WORK_MM) {
1373 mmdrop(req->work.identity->mm);
1374 req->work.flags &= ~IO_WQ_WORK_MM;
1375 }
1376 #ifdef CONFIG_BLK_CGROUP
1377 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1378 css_put(req->work.identity->blkcg_css);
1379 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1380 }
1381 #endif
1382 if (req->work.flags & IO_WQ_WORK_CREDS) {
1383 put_cred(req->work.identity->creds);
1384 req->work.flags &= ~IO_WQ_WORK_CREDS;
1385 }
1386 if (req->work.flags & IO_WQ_WORK_FS) {
1387 struct fs_struct *fs = req->work.identity->fs;
1388
1389 spin_lock(&req->work.identity->fs->lock);
1390 if (--fs->users)
1391 fs = NULL;
1392 spin_unlock(&req->work.identity->fs->lock);
1393 if (fs)
1394 free_fs_struct(fs);
1395 req->work.flags &= ~IO_WQ_WORK_FS;
1396 }
1397
1398 io_put_identity(req->task->io_uring, req);
1399 }
1400
1401 /*
1402 * Create a private copy of io_identity, since some fields don't match
1403 * the current context.
1404 */
1405 static bool io_identity_cow(struct io_kiocb *req)
1406 {
1407 struct io_uring_task *tctx = current->io_uring;
1408 const struct cred *creds = NULL;
1409 struct io_identity *id;
1410
1411 if (req->work.flags & IO_WQ_WORK_CREDS)
1412 creds = req->work.identity->creds;
1413
1414 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1415 if (unlikely(!id)) {
1416 req->work.flags |= IO_WQ_WORK_CANCEL;
1417 return false;
1418 }
1419
1420 /*
1421 * We can safely just re-init the creds we copied Either the field
1422 * matches the current one, or we haven't grabbed it yet. The only
1423 * exception is ->creds, through registered personalities, so handle
1424 * that one separately.
1425 */
1426 io_init_identity(id);
1427 if (creds)
1428 id->creds = creds;
1429
1430 /* add one for this request */
1431 refcount_inc(&id->count);
1432
1433 /* drop tctx and req identity references, if needed */
1434 if (tctx->identity != &tctx->__identity &&
1435 refcount_dec_and_test(&tctx->identity->count))
1436 kfree(tctx->identity);
1437 if (req->work.identity != &tctx->__identity &&
1438 refcount_dec_and_test(&req->work.identity->count))
1439 kfree(req->work.identity);
1440
1441 req->work.identity = id;
1442 tctx->identity = id;
1443 return true;
1444 }
1445
1446 static bool io_grab_identity(struct io_kiocb *req)
1447 {
1448 const struct io_op_def *def = &io_op_defs[req->opcode];
1449 struct io_identity *id = req->work.identity;
1450 struct io_ring_ctx *ctx = req->ctx;
1451
1452 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1453 if (id->fsize != rlimit(RLIMIT_FSIZE))
1454 return false;
1455 req->work.flags |= IO_WQ_WORK_FSIZE;
1456 }
1457 #ifdef CONFIG_BLK_CGROUP
1458 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1459 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1460 rcu_read_lock();
1461 if (id->blkcg_css != blkcg_css()) {
1462 rcu_read_unlock();
1463 return false;
1464 }
1465 /*
1466 * This should be rare, either the cgroup is dying or the task
1467 * is moving cgroups. Just punt to root for the handful of ios.
1468 */
1469 if (css_tryget_online(id->blkcg_css))
1470 req->work.flags |= IO_WQ_WORK_BLKCG;
1471 rcu_read_unlock();
1472 }
1473 #endif
1474 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1475 if (id->creds != current_cred())
1476 return false;
1477 get_cred(id->creds);
1478 req->work.flags |= IO_WQ_WORK_CREDS;
1479 }
1480 #ifdef CONFIG_AUDIT
1481 if (!uid_eq(current->loginuid, id->loginuid) ||
1482 current->sessionid != id->sessionid)
1483 return false;
1484 #endif
1485 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1486 (def->work_flags & IO_WQ_WORK_FS)) {
1487 if (current->fs != id->fs)
1488 return false;
1489 spin_lock(&id->fs->lock);
1490 if (!id->fs->in_exec) {
1491 id->fs->users++;
1492 req->work.flags |= IO_WQ_WORK_FS;
1493 } else {
1494 req->work.flags |= IO_WQ_WORK_CANCEL;
1495 }
1496 spin_unlock(&current->fs->lock);
1497 }
1498 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1499 (def->work_flags & IO_WQ_WORK_FILES) &&
1500 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1501 if (id->files != current->files ||
1502 id->nsproxy != current->nsproxy)
1503 return false;
1504 atomic_inc(&id->files->count);
1505 get_nsproxy(id->nsproxy);
1506 req->flags |= REQ_F_INFLIGHT;
1507
1508 spin_lock_irq(&ctx->inflight_lock);
1509 list_add(&req->inflight_entry, &ctx->inflight_list);
1510 spin_unlock_irq(&ctx->inflight_lock);
1511 req->work.flags |= IO_WQ_WORK_FILES;
1512 }
1513 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1514 (def->work_flags & IO_WQ_WORK_MM)) {
1515 if (id->mm != current->mm)
1516 return false;
1517 mmgrab(id->mm);
1518 req->work.flags |= IO_WQ_WORK_MM;
1519 }
1520
1521 return true;
1522 }
1523
1524 static void io_prep_async_work(struct io_kiocb *req)
1525 {
1526 const struct io_op_def *def = &io_op_defs[req->opcode];
1527 struct io_ring_ctx *ctx = req->ctx;
1528
1529 io_req_init_async(req);
1530
1531 if (req->flags & REQ_F_FORCE_ASYNC)
1532 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1533
1534 if (req->flags & REQ_F_ISREG) {
1535 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1536 io_wq_hash_work(&req->work, file_inode(req->file));
1537 } else {
1538 if (def->unbound_nonreg_file)
1539 req->work.flags |= IO_WQ_WORK_UNBOUND;
1540 }
1541
1542 /* if we fail grabbing identity, we must COW, regrab, and retry */
1543 if (io_grab_identity(req))
1544 return;
1545
1546 if (!io_identity_cow(req))
1547 return;
1548
1549 /* can't fail at this point */
1550 if (!io_grab_identity(req))
1551 WARN_ON(1);
1552 }
1553
1554 static void io_prep_async_link(struct io_kiocb *req)
1555 {
1556 struct io_kiocb *cur;
1557
1558 io_for_each_link(cur, req)
1559 io_prep_async_work(cur);
1560 }
1561
1562 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1563 {
1564 struct io_ring_ctx *ctx = req->ctx;
1565 struct io_kiocb *link = io_prep_linked_timeout(req);
1566
1567 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1568 &req->work, req->flags);
1569 io_wq_enqueue(ctx->io_wq, &req->work);
1570 return link;
1571 }
1572
1573 static void io_queue_async_work(struct io_kiocb *req)
1574 {
1575 struct io_kiocb *link;
1576
1577 /* init ->work of the whole link before punting */
1578 io_prep_async_link(req);
1579 link = __io_queue_async_work(req);
1580
1581 if (link)
1582 io_queue_linked_timeout(link);
1583 }
1584
1585 static void io_kill_timeout(struct io_kiocb *req)
1586 {
1587 struct io_timeout_data *io = req->async_data;
1588 int ret;
1589
1590 ret = hrtimer_try_to_cancel(&io->timer);
1591 if (ret != -1) {
1592 atomic_set(&req->ctx->cq_timeouts,
1593 atomic_read(&req->ctx->cq_timeouts) + 1);
1594 list_del_init(&req->timeout.list);
1595 io_cqring_fill_event(req, 0);
1596 io_put_req_deferred(req, 1);
1597 }
1598 }
1599
1600 /*
1601 * Returns true if we found and killed one or more timeouts
1602 */
1603 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1604 struct files_struct *files)
1605 {
1606 struct io_kiocb *req, *tmp;
1607 int canceled = 0;
1608
1609 spin_lock_irq(&ctx->completion_lock);
1610 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1611 if (io_match_task(req, tsk, files)) {
1612 io_kill_timeout(req);
1613 canceled++;
1614 }
1615 }
1616 spin_unlock_irq(&ctx->completion_lock);
1617 return canceled != 0;
1618 }
1619
1620 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1621 {
1622 do {
1623 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1624 struct io_defer_entry, list);
1625 struct io_kiocb *link;
1626
1627 if (req_need_defer(de->req, de->seq))
1628 break;
1629 list_del_init(&de->list);
1630 /* punt-init is done before queueing for defer */
1631 link = __io_queue_async_work(de->req);
1632 if (link) {
1633 __io_queue_linked_timeout(link);
1634 /* drop submission reference */
1635 io_put_req_deferred(link, 1);
1636 }
1637 kfree(de);
1638 } while (!list_empty(&ctx->defer_list));
1639 }
1640
1641 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1642 {
1643 u32 seq;
1644
1645 if (list_empty(&ctx->timeout_list))
1646 return;
1647
1648 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1649
1650 do {
1651 u32 events_needed, events_got;
1652 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1653 struct io_kiocb, timeout.list);
1654
1655 if (io_is_timeout_noseq(req))
1656 break;
1657
1658 /*
1659 * Since seq can easily wrap around over time, subtract
1660 * the last seq at which timeouts were flushed before comparing.
1661 * Assuming not more than 2^31-1 events have happened since,
1662 * these subtractions won't have wrapped, so we can check if
1663 * target is in [last_seq, current_seq] by comparing the two.
1664 */
1665 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1666 events_got = seq - ctx->cq_last_tm_flush;
1667 if (events_got < events_needed)
1668 break;
1669
1670 list_del_init(&req->timeout.list);
1671 io_kill_timeout(req);
1672 } while (!list_empty(&ctx->timeout_list));
1673
1674 ctx->cq_last_tm_flush = seq;
1675 }
1676
1677 static void io_commit_cqring(struct io_ring_ctx *ctx)
1678 {
1679 io_flush_timeouts(ctx);
1680 __io_commit_cqring(ctx);
1681
1682 if (unlikely(!list_empty(&ctx->defer_list)))
1683 __io_queue_deferred(ctx);
1684 }
1685
1686 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1687 {
1688 struct io_rings *r = ctx->rings;
1689
1690 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1691 }
1692
1693 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1694 {
1695 struct io_rings *rings = ctx->rings;
1696 unsigned tail;
1697
1698 tail = ctx->cached_cq_tail;
1699 /*
1700 * writes to the cq entry need to come after reading head; the
1701 * control dependency is enough as we're using WRITE_ONCE to
1702 * fill the cq entry
1703 */
1704 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1705 return NULL;
1706
1707 ctx->cached_cq_tail++;
1708 return &rings->cqes[tail & ctx->cq_mask];
1709 }
1710
1711 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1712 {
1713 if (!ctx->cq_ev_fd)
1714 return false;
1715 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1716 return false;
1717 if (!ctx->eventfd_async)
1718 return true;
1719 return io_wq_current_is_worker();
1720 }
1721
1722 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1723 {
1724 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1725 }
1726
1727 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1728 {
1729 /* see waitqueue_active() comment */
1730 smp_mb();
1731
1732 if (waitqueue_active(&ctx->wait))
1733 wake_up(&ctx->wait);
1734 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1735 wake_up(&ctx->sq_data->wait);
1736 if (io_should_trigger_evfd(ctx))
1737 eventfd_signal(ctx->cq_ev_fd, 1);
1738 if (waitqueue_active(&ctx->cq_wait)) {
1739 wake_up_interruptible(&ctx->cq_wait);
1740 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1741 }
1742 }
1743
1744 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1745 {
1746 /* see waitqueue_active() comment */
1747 smp_mb();
1748
1749 if (ctx->flags & IORING_SETUP_SQPOLL) {
1750 if (waitqueue_active(&ctx->wait))
1751 wake_up(&ctx->wait);
1752 }
1753 if (io_should_trigger_evfd(ctx))
1754 eventfd_signal(ctx->cq_ev_fd, 1);
1755 if (waitqueue_active(&ctx->cq_wait)) {
1756 wake_up_interruptible(&ctx->cq_wait);
1757 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1758 }
1759 }
1760
1761 /* Returns true if there are no backlogged entries after the flush */
1762 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1763 struct task_struct *tsk,
1764 struct files_struct *files)
1765 {
1766 struct io_rings *rings = ctx->rings;
1767 struct io_kiocb *req, *tmp;
1768 struct io_uring_cqe *cqe;
1769 unsigned long flags;
1770 bool all_flushed;
1771 LIST_HEAD(list);
1772
1773 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1774 return false;
1775
1776 spin_lock_irqsave(&ctx->completion_lock, flags);
1777 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1778 if (!io_match_task(req, tsk, files))
1779 continue;
1780
1781 cqe = io_get_cqring(ctx);
1782 if (!cqe && !force)
1783 break;
1784
1785 list_move(&req->compl.list, &list);
1786 if (cqe) {
1787 WRITE_ONCE(cqe->user_data, req->user_data);
1788 WRITE_ONCE(cqe->res, req->result);
1789 WRITE_ONCE(cqe->flags, req->compl.cflags);
1790 } else {
1791 ctx->cached_cq_overflow++;
1792 WRITE_ONCE(ctx->rings->cq_overflow,
1793 ctx->cached_cq_overflow);
1794 }
1795 }
1796
1797 all_flushed = list_empty(&ctx->cq_overflow_list);
1798 if (all_flushed) {
1799 clear_bit(0, &ctx->sq_check_overflow);
1800 clear_bit(0, &ctx->cq_check_overflow);
1801 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1802 }
1803
1804 io_commit_cqring(ctx);
1805 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1806 io_cqring_ev_posted(ctx);
1807
1808 while (!list_empty(&list)) {
1809 req = list_first_entry(&list, struct io_kiocb, compl.list);
1810 list_del(&req->compl.list);
1811 io_put_req(req);
1812 }
1813
1814 return all_flushed;
1815 }
1816
1817 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1818 struct task_struct *tsk,
1819 struct files_struct *files)
1820 {
1821 if (test_bit(0, &ctx->cq_check_overflow)) {
1822 /* iopoll syncs against uring_lock, not completion_lock */
1823 if (ctx->flags & IORING_SETUP_IOPOLL)
1824 mutex_lock(&ctx->uring_lock);
1825 __io_cqring_overflow_flush(ctx, force, tsk, files);
1826 if (ctx->flags & IORING_SETUP_IOPOLL)
1827 mutex_unlock(&ctx->uring_lock);
1828 }
1829 }
1830
1831 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1832 {
1833 struct io_ring_ctx *ctx = req->ctx;
1834 struct io_uring_cqe *cqe;
1835
1836 trace_io_uring_complete(ctx, req->user_data, res);
1837
1838 /*
1839 * If we can't get a cq entry, userspace overflowed the
1840 * submission (by quite a lot). Increment the overflow count in
1841 * the ring.
1842 */
1843 cqe = io_get_cqring(ctx);
1844 if (likely(cqe)) {
1845 WRITE_ONCE(cqe->user_data, req->user_data);
1846 WRITE_ONCE(cqe->res, res);
1847 WRITE_ONCE(cqe->flags, cflags);
1848 } else if (ctx->cq_overflow_flushed ||
1849 atomic_read(&req->task->io_uring->in_idle)) {
1850 /*
1851 * If we're in ring overflow flush mode, or in task cancel mode,
1852 * then we cannot store the request for later flushing, we need
1853 * to drop it on the floor.
1854 */
1855 ctx->cached_cq_overflow++;
1856 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1857 } else {
1858 if (list_empty(&ctx->cq_overflow_list)) {
1859 set_bit(0, &ctx->sq_check_overflow);
1860 set_bit(0, &ctx->cq_check_overflow);
1861 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1862 }
1863 io_clean_op(req);
1864 req->result = res;
1865 req->compl.cflags = cflags;
1866 refcount_inc(&req->refs);
1867 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1868 }
1869 }
1870
1871 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1872 {
1873 __io_cqring_fill_event(req, res, 0);
1874 }
1875
1876 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1877 {
1878 struct io_ring_ctx *ctx = req->ctx;
1879 unsigned long flags;
1880
1881 spin_lock_irqsave(&ctx->completion_lock, flags);
1882 __io_cqring_fill_event(req, res, cflags);
1883 io_commit_cqring(ctx);
1884 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1885
1886 io_cqring_ev_posted(ctx);
1887 }
1888
1889 static void io_submit_flush_completions(struct io_comp_state *cs)
1890 {
1891 struct io_ring_ctx *ctx = cs->ctx;
1892
1893 spin_lock_irq(&ctx->completion_lock);
1894 while (!list_empty(&cs->list)) {
1895 struct io_kiocb *req;
1896
1897 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1898 list_del(&req->compl.list);
1899 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1900
1901 /*
1902 * io_free_req() doesn't care about completion_lock unless one
1903 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1904 * because of a potential deadlock with req->work.fs->lock
1905 */
1906 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1907 |REQ_F_WORK_INITIALIZED)) {
1908 spin_unlock_irq(&ctx->completion_lock);
1909 io_put_req(req);
1910 spin_lock_irq(&ctx->completion_lock);
1911 } else {
1912 io_put_req(req);
1913 }
1914 }
1915 io_commit_cqring(ctx);
1916 spin_unlock_irq(&ctx->completion_lock);
1917
1918 io_cqring_ev_posted(ctx);
1919 cs->nr = 0;
1920 }
1921
1922 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1923 struct io_comp_state *cs)
1924 {
1925 if (!cs) {
1926 io_cqring_add_event(req, res, cflags);
1927 io_put_req(req);
1928 } else {
1929 io_clean_op(req);
1930 req->result = res;
1931 req->compl.cflags = cflags;
1932 list_add_tail(&req->compl.list, &cs->list);
1933 if (++cs->nr >= 32)
1934 io_submit_flush_completions(cs);
1935 }
1936 }
1937
1938 static void io_req_complete(struct io_kiocb *req, long res)
1939 {
1940 __io_req_complete(req, res, 0, NULL);
1941 }
1942
1943 static inline bool io_is_fallback_req(struct io_kiocb *req)
1944 {
1945 return req == (struct io_kiocb *)
1946 ((unsigned long) req->ctx->fallback_req & ~1UL);
1947 }
1948
1949 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1950 {
1951 struct io_kiocb *req;
1952
1953 req = ctx->fallback_req;
1954 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1955 return req;
1956
1957 return NULL;
1958 }
1959
1960 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1961 struct io_submit_state *state)
1962 {
1963 if (!state->free_reqs) {
1964 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1965 size_t sz;
1966 int ret;
1967
1968 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1969 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1970
1971 /*
1972 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1973 * retry single alloc to be on the safe side.
1974 */
1975 if (unlikely(ret <= 0)) {
1976 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1977 if (!state->reqs[0])
1978 goto fallback;
1979 ret = 1;
1980 }
1981 state->free_reqs = ret;
1982 }
1983
1984 state->free_reqs--;
1985 return state->reqs[state->free_reqs];
1986 fallback:
1987 return io_get_fallback_req(ctx);
1988 }
1989
1990 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1991 bool fixed)
1992 {
1993 if (!fixed)
1994 fput(file);
1995 }
1996
1997 static void io_dismantle_req(struct io_kiocb *req)
1998 {
1999 io_clean_op(req);
2000
2001 if (req->async_data)
2002 kfree(req->async_data);
2003 if (req->file)
2004 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2005 if (req->fixed_file_refs)
2006 percpu_ref_put(req->fixed_file_refs);
2007 io_req_clean_work(req);
2008 }
2009
2010 static void __io_free_req(struct io_kiocb *req)
2011 {
2012 struct io_uring_task *tctx = req->task->io_uring;
2013 struct io_ring_ctx *ctx = req->ctx;
2014
2015 io_dismantle_req(req);
2016
2017 percpu_counter_dec(&tctx->inflight);
2018 if (atomic_read(&tctx->in_idle))
2019 wake_up(&tctx->wait);
2020 put_task_struct(req->task);
2021
2022 if (likely(!io_is_fallback_req(req)))
2023 kmem_cache_free(req_cachep, req);
2024 else
2025 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2026 percpu_ref_put(&ctx->refs);
2027 }
2028
2029 static inline void io_remove_next_linked(struct io_kiocb *req)
2030 {
2031 struct io_kiocb *nxt = req->link;
2032
2033 req->link = nxt->link;
2034 nxt->link = NULL;
2035 }
2036
2037 static void io_kill_linked_timeout(struct io_kiocb *req)
2038 {
2039 struct io_ring_ctx *ctx = req->ctx;
2040 struct io_kiocb *link;
2041 bool cancelled = false;
2042 unsigned long flags;
2043
2044 spin_lock_irqsave(&ctx->completion_lock, flags);
2045 link = req->link;
2046
2047 /*
2048 * Can happen if a linked timeout fired and link had been like
2049 * req -> link t-out -> link t-out [-> ...]
2050 */
2051 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2052 struct io_timeout_data *io = link->async_data;
2053 int ret;
2054
2055 io_remove_next_linked(req);
2056 link->timeout.head = NULL;
2057 ret = hrtimer_try_to_cancel(&io->timer);
2058 if (ret != -1) {
2059 io_cqring_fill_event(link, -ECANCELED);
2060 io_commit_cqring(ctx);
2061 cancelled = true;
2062 }
2063 }
2064 req->flags &= ~REQ_F_LINK_TIMEOUT;
2065 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2066
2067 if (cancelled) {
2068 io_cqring_ev_posted(ctx);
2069 io_put_req(link);
2070 }
2071 }
2072
2073
2074 static void io_fail_links(struct io_kiocb *req)
2075 {
2076 struct io_kiocb *link, *nxt;
2077 struct io_ring_ctx *ctx = req->ctx;
2078 unsigned long flags;
2079
2080 spin_lock_irqsave(&ctx->completion_lock, flags);
2081 link = req->link;
2082 req->link = NULL;
2083
2084 while (link) {
2085 nxt = link->link;
2086 link->link = NULL;
2087
2088 trace_io_uring_fail_link(req, link);
2089 io_cqring_fill_event(link, -ECANCELED);
2090
2091 /*
2092 * It's ok to free under spinlock as they're not linked anymore,
2093 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2094 * work.fs->lock.
2095 */
2096 if (link->flags & REQ_F_WORK_INITIALIZED)
2097 io_put_req_deferred(link, 2);
2098 else
2099 io_double_put_req(link);
2100 link = nxt;
2101 }
2102 io_commit_cqring(ctx);
2103 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2104
2105 io_cqring_ev_posted(ctx);
2106 }
2107
2108 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2109 {
2110 if (req->flags & REQ_F_LINK_TIMEOUT)
2111 io_kill_linked_timeout(req);
2112
2113 /*
2114 * If LINK is set, we have dependent requests in this chain. If we
2115 * didn't fail this request, queue the first one up, moving any other
2116 * dependencies to the next request. In case of failure, fail the rest
2117 * of the chain.
2118 */
2119 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2120 struct io_kiocb *nxt = req->link;
2121
2122 req->link = NULL;
2123 return nxt;
2124 }
2125 io_fail_links(req);
2126 return NULL;
2127 }
2128
2129 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2130 {
2131 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2132 return NULL;
2133 return __io_req_find_next(req);
2134 }
2135
2136 static int io_req_task_work_add(struct io_kiocb *req)
2137 {
2138 struct task_struct *tsk = req->task;
2139 struct io_ring_ctx *ctx = req->ctx;
2140 enum task_work_notify_mode notify;
2141 int ret;
2142
2143 if (tsk->flags & PF_EXITING)
2144 return -ESRCH;
2145
2146 /*
2147 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2148 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2149 * processing task_work. There's no reliable way to tell if TWA_RESUME
2150 * will do the job.
2151 */
2152 notify = TWA_NONE;
2153 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2154 notify = TWA_SIGNAL;
2155
2156 ret = task_work_add(tsk, &req->task_work, notify);
2157 if (!ret)
2158 wake_up_process(tsk);
2159
2160 return ret;
2161 }
2162
2163 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2164 {
2165 struct io_ring_ctx *ctx = req->ctx;
2166
2167 spin_lock_irq(&ctx->completion_lock);
2168 io_cqring_fill_event(req, error);
2169 io_commit_cqring(ctx);
2170 spin_unlock_irq(&ctx->completion_lock);
2171
2172 io_cqring_ev_posted(ctx);
2173 req_set_fail_links(req);
2174 io_double_put_req(req);
2175 }
2176
2177 static void io_req_task_cancel(struct callback_head *cb)
2178 {
2179 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2180 struct io_ring_ctx *ctx = req->ctx;
2181
2182 __io_req_task_cancel(req, -ECANCELED);
2183 percpu_ref_put(&ctx->refs);
2184 }
2185
2186 static void __io_req_task_submit(struct io_kiocb *req)
2187 {
2188 struct io_ring_ctx *ctx = req->ctx;
2189
2190 mutex_lock(&ctx->uring_lock);
2191 if (!ctx->sqo_dead &&
2192 !__io_sq_thread_acquire_mm(ctx) &&
2193 !__io_sq_thread_acquire_files(ctx))
2194 __io_queue_sqe(req, NULL);
2195 else
2196 __io_req_task_cancel(req, -EFAULT);
2197 mutex_unlock(&ctx->uring_lock);
2198 }
2199
2200 static void io_req_task_submit(struct callback_head *cb)
2201 {
2202 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2203 struct io_ring_ctx *ctx = req->ctx;
2204
2205 __io_req_task_submit(req);
2206 percpu_ref_put(&ctx->refs);
2207 }
2208
2209 static void io_req_task_queue(struct io_kiocb *req)
2210 {
2211 int ret;
2212
2213 init_task_work(&req->task_work, io_req_task_submit);
2214 percpu_ref_get(&req->ctx->refs);
2215
2216 ret = io_req_task_work_add(req);
2217 if (unlikely(ret)) {
2218 struct task_struct *tsk;
2219
2220 init_task_work(&req->task_work, io_req_task_cancel);
2221 tsk = io_wq_get_task(req->ctx->io_wq);
2222 task_work_add(tsk, &req->task_work, TWA_NONE);
2223 wake_up_process(tsk);
2224 }
2225 }
2226
2227 static inline void io_queue_next(struct io_kiocb *req)
2228 {
2229 struct io_kiocb *nxt = io_req_find_next(req);
2230
2231 if (nxt)
2232 io_req_task_queue(nxt);
2233 }
2234
2235 static void io_free_req(struct io_kiocb *req)
2236 {
2237 io_queue_next(req);
2238 __io_free_req(req);
2239 }
2240
2241 struct req_batch {
2242 void *reqs[IO_IOPOLL_BATCH];
2243 int to_free;
2244
2245 struct task_struct *task;
2246 int task_refs;
2247 };
2248
2249 static inline void io_init_req_batch(struct req_batch *rb)
2250 {
2251 rb->to_free = 0;
2252 rb->task_refs = 0;
2253 rb->task = NULL;
2254 }
2255
2256 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2257 struct req_batch *rb)
2258 {
2259 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2260 percpu_ref_put_many(&ctx->refs, rb->to_free);
2261 rb->to_free = 0;
2262 }
2263
2264 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2265 struct req_batch *rb)
2266 {
2267 if (rb->to_free)
2268 __io_req_free_batch_flush(ctx, rb);
2269 if (rb->task) {
2270 struct io_uring_task *tctx = rb->task->io_uring;
2271
2272 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2273 if (atomic_read(&tctx->in_idle))
2274 wake_up(&tctx->wait);
2275 put_task_struct_many(rb->task, rb->task_refs);
2276 rb->task = NULL;
2277 }
2278 }
2279
2280 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2281 {
2282 if (unlikely(io_is_fallback_req(req))) {
2283 io_free_req(req);
2284 return;
2285 }
2286 io_queue_next(req);
2287
2288 if (req->task != rb->task) {
2289 if (rb->task) {
2290 struct io_uring_task *tctx = rb->task->io_uring;
2291
2292 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2293 if (atomic_read(&tctx->in_idle))
2294 wake_up(&tctx->wait);
2295 put_task_struct_many(rb->task, rb->task_refs);
2296 }
2297 rb->task = req->task;
2298 rb->task_refs = 0;
2299 }
2300 rb->task_refs++;
2301
2302 io_dismantle_req(req);
2303 rb->reqs[rb->to_free++] = req;
2304 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2305 __io_req_free_batch_flush(req->ctx, rb);
2306 }
2307
2308 /*
2309 * Drop reference to request, return next in chain (if there is one) if this
2310 * was the last reference to this request.
2311 */
2312 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2313 {
2314 struct io_kiocb *nxt = NULL;
2315
2316 if (refcount_dec_and_test(&req->refs)) {
2317 nxt = io_req_find_next(req);
2318 __io_free_req(req);
2319 }
2320 return nxt;
2321 }
2322
2323 static void io_put_req(struct io_kiocb *req)
2324 {
2325 if (refcount_dec_and_test(&req->refs))
2326 io_free_req(req);
2327 }
2328
2329 static void io_put_req_deferred_cb(struct callback_head *cb)
2330 {
2331 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2332
2333 io_free_req(req);
2334 }
2335
2336 static void io_free_req_deferred(struct io_kiocb *req)
2337 {
2338 int ret;
2339
2340 init_task_work(&req->task_work, io_put_req_deferred_cb);
2341 ret = io_req_task_work_add(req);
2342 if (unlikely(ret)) {
2343 struct task_struct *tsk;
2344
2345 tsk = io_wq_get_task(req->ctx->io_wq);
2346 task_work_add(tsk, &req->task_work, TWA_NONE);
2347 wake_up_process(tsk);
2348 }
2349 }
2350
2351 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2352 {
2353 if (refcount_sub_and_test(refs, &req->refs))
2354 io_free_req_deferred(req);
2355 }
2356
2357 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2358 {
2359 struct io_kiocb *nxt;
2360
2361 /*
2362 * A ref is owned by io-wq in which context we're. So, if that's the
2363 * last one, it's safe to steal next work. False negatives are Ok,
2364 * it just will be re-punted async in io_put_work()
2365 */
2366 if (refcount_read(&req->refs) != 1)
2367 return NULL;
2368
2369 nxt = io_req_find_next(req);
2370 return nxt ? &nxt->work : NULL;
2371 }
2372
2373 static void io_double_put_req(struct io_kiocb *req)
2374 {
2375 /* drop both submit and complete references */
2376 if (refcount_sub_and_test(2, &req->refs))
2377 io_free_req(req);
2378 }
2379
2380 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2381 {
2382 /* See comment at the top of this file */
2383 smp_rmb();
2384 return __io_cqring_events(ctx);
2385 }
2386
2387 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2388 {
2389 struct io_rings *rings = ctx->rings;
2390
2391 /* make sure SQ entry isn't read before tail */
2392 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2393 }
2394
2395 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2396 {
2397 unsigned int cflags;
2398
2399 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2400 cflags |= IORING_CQE_F_BUFFER;
2401 req->flags &= ~REQ_F_BUFFER_SELECTED;
2402 kfree(kbuf);
2403 return cflags;
2404 }
2405
2406 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2407 {
2408 struct io_buffer *kbuf;
2409
2410 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2411 return io_put_kbuf(req, kbuf);
2412 }
2413
2414 static inline bool io_run_task_work(void)
2415 {
2416 /*
2417 * Not safe to run on exiting task, and the task_work handling will
2418 * not add work to such a task.
2419 */
2420 if (unlikely(current->flags & PF_EXITING))
2421 return false;
2422 if (current->task_works) {
2423 __set_current_state(TASK_RUNNING);
2424 task_work_run();
2425 return true;
2426 }
2427
2428 return false;
2429 }
2430
2431 static void io_iopoll_queue(struct list_head *again)
2432 {
2433 struct io_kiocb *req;
2434
2435 do {
2436 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2437 list_del(&req->inflight_entry);
2438 __io_complete_rw(req, -EAGAIN, 0, NULL);
2439 } while (!list_empty(again));
2440 }
2441
2442 /*
2443 * Find and free completed poll iocbs
2444 */
2445 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2446 struct list_head *done)
2447 {
2448 struct req_batch rb;
2449 struct io_kiocb *req;
2450 LIST_HEAD(again);
2451
2452 /* order with ->result store in io_complete_rw_iopoll() */
2453 smp_rmb();
2454
2455 io_init_req_batch(&rb);
2456 while (!list_empty(done)) {
2457 int cflags = 0;
2458
2459 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2460 if (READ_ONCE(req->result) == -EAGAIN) {
2461 req->result = 0;
2462 req->iopoll_completed = 0;
2463 list_move_tail(&req->inflight_entry, &again);
2464 continue;
2465 }
2466 list_del(&req->inflight_entry);
2467
2468 if (req->flags & REQ_F_BUFFER_SELECTED)
2469 cflags = io_put_rw_kbuf(req);
2470
2471 __io_cqring_fill_event(req, req->result, cflags);
2472 (*nr_events)++;
2473
2474 if (refcount_dec_and_test(&req->refs))
2475 io_req_free_batch(&rb, req);
2476 }
2477
2478 io_commit_cqring(ctx);
2479 io_cqring_ev_posted_iopoll(ctx);
2480 io_req_free_batch_finish(ctx, &rb);
2481
2482 if (!list_empty(&again))
2483 io_iopoll_queue(&again);
2484 }
2485
2486 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2487 long min)
2488 {
2489 struct io_kiocb *req, *tmp;
2490 LIST_HEAD(done);
2491 bool spin;
2492 int ret;
2493
2494 /*
2495 * Only spin for completions if we don't have multiple devices hanging
2496 * off our complete list, and we're under the requested amount.
2497 */
2498 spin = !ctx->poll_multi_file && *nr_events < min;
2499
2500 ret = 0;
2501 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2502 struct kiocb *kiocb = &req->rw.kiocb;
2503
2504 /*
2505 * Move completed and retryable entries to our local lists.
2506 * If we find a request that requires polling, break out
2507 * and complete those lists first, if we have entries there.
2508 */
2509 if (READ_ONCE(req->iopoll_completed)) {
2510 list_move_tail(&req->inflight_entry, &done);
2511 continue;
2512 }
2513 if (!list_empty(&done))
2514 break;
2515
2516 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2517 if (ret < 0)
2518 break;
2519
2520 /* iopoll may have completed current req */
2521 if (READ_ONCE(req->iopoll_completed))
2522 list_move_tail(&req->inflight_entry, &done);
2523
2524 if (ret && spin)
2525 spin = false;
2526 ret = 0;
2527 }
2528
2529 if (!list_empty(&done))
2530 io_iopoll_complete(ctx, nr_events, &done);
2531
2532 return ret;
2533 }
2534
2535 /*
2536 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2537 * non-spinning poll check - we'll still enter the driver poll loop, but only
2538 * as a non-spinning completion check.
2539 */
2540 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2541 long min)
2542 {
2543 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2544 int ret;
2545
2546 ret = io_do_iopoll(ctx, nr_events, min);
2547 if (ret < 0)
2548 return ret;
2549 if (*nr_events >= min)
2550 return 0;
2551 }
2552
2553 return 1;
2554 }
2555
2556 /*
2557 * We can't just wait for polled events to come to us, we have to actively
2558 * find and complete them.
2559 */
2560 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2561 {
2562 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2563 return;
2564
2565 mutex_lock(&ctx->uring_lock);
2566 while (!list_empty(&ctx->iopoll_list)) {
2567 unsigned int nr_events = 0;
2568
2569 io_do_iopoll(ctx, &nr_events, 0);
2570
2571 /* let it sleep and repeat later if can't complete a request */
2572 if (nr_events == 0)
2573 break;
2574 /*
2575 * Ensure we allow local-to-the-cpu processing to take place,
2576 * in this case we need to ensure that we reap all events.
2577 * Also let task_work, etc. to progress by releasing the mutex
2578 */
2579 if (need_resched()) {
2580 mutex_unlock(&ctx->uring_lock);
2581 cond_resched();
2582 mutex_lock(&ctx->uring_lock);
2583 }
2584 }
2585 mutex_unlock(&ctx->uring_lock);
2586 }
2587
2588 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2589 {
2590 unsigned int nr_events = 0;
2591 int iters = 0, ret = 0;
2592
2593 /*
2594 * We disallow the app entering submit/complete with polling, but we
2595 * still need to lock the ring to prevent racing with polled issue
2596 * that got punted to a workqueue.
2597 */
2598 mutex_lock(&ctx->uring_lock);
2599 do {
2600 /*
2601 * Don't enter poll loop if we already have events pending.
2602 * If we do, we can potentially be spinning for commands that
2603 * already triggered a CQE (eg in error).
2604 */
2605 if (test_bit(0, &ctx->cq_check_overflow))
2606 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2607 if (io_cqring_events(ctx))
2608 break;
2609
2610 /*
2611 * If a submit got punted to a workqueue, we can have the
2612 * application entering polling for a command before it gets
2613 * issued. That app will hold the uring_lock for the duration
2614 * of the poll right here, so we need to take a breather every
2615 * now and then to ensure that the issue has a chance to add
2616 * the poll to the issued list. Otherwise we can spin here
2617 * forever, while the workqueue is stuck trying to acquire the
2618 * very same mutex.
2619 */
2620 if (!(++iters & 7)) {
2621 mutex_unlock(&ctx->uring_lock);
2622 io_run_task_work();
2623 mutex_lock(&ctx->uring_lock);
2624 }
2625
2626 ret = io_iopoll_getevents(ctx, &nr_events, min);
2627 if (ret <= 0)
2628 break;
2629 ret = 0;
2630 } while (min && !nr_events && !need_resched());
2631
2632 mutex_unlock(&ctx->uring_lock);
2633 return ret;
2634 }
2635
2636 static void kiocb_end_write(struct io_kiocb *req)
2637 {
2638 /*
2639 * Tell lockdep we inherited freeze protection from submission
2640 * thread.
2641 */
2642 if (req->flags & REQ_F_ISREG) {
2643 struct inode *inode = file_inode(req->file);
2644
2645 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2646 }
2647 file_end_write(req->file);
2648 }
2649
2650 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2651 struct io_comp_state *cs)
2652 {
2653 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2654 int cflags = 0;
2655
2656 if (kiocb->ki_flags & IOCB_WRITE)
2657 kiocb_end_write(req);
2658
2659 if (res != req->result)
2660 req_set_fail_links(req);
2661 if (req->flags & REQ_F_BUFFER_SELECTED)
2662 cflags = io_put_rw_kbuf(req);
2663 __io_req_complete(req, res, cflags, cs);
2664 }
2665
2666 #ifdef CONFIG_BLOCK
2667 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2668 {
2669 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2670 ssize_t ret = -ECANCELED;
2671 struct iov_iter iter;
2672 int rw;
2673
2674 if (error) {
2675 ret = error;
2676 goto end_req;
2677 }
2678
2679 switch (req->opcode) {
2680 case IORING_OP_READV:
2681 case IORING_OP_READ_FIXED:
2682 case IORING_OP_READ:
2683 rw = READ;
2684 break;
2685 case IORING_OP_WRITEV:
2686 case IORING_OP_WRITE_FIXED:
2687 case IORING_OP_WRITE:
2688 rw = WRITE;
2689 break;
2690 default:
2691 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2692 req->opcode);
2693 goto end_req;
2694 }
2695
2696 if (!req->async_data) {
2697 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2698 if (ret < 0)
2699 goto end_req;
2700 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2701 if (!ret)
2702 return true;
2703 kfree(iovec);
2704 } else {
2705 return true;
2706 }
2707 end_req:
2708 req_set_fail_links(req);
2709 return false;
2710 }
2711 #endif
2712
2713 static bool io_rw_reissue(struct io_kiocb *req, long res)
2714 {
2715 #ifdef CONFIG_BLOCK
2716 umode_t mode = file_inode(req->file)->i_mode;
2717 int ret;
2718
2719 if (!S_ISBLK(mode) && !S_ISREG(mode))
2720 return false;
2721 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2722 return false;
2723
2724 lockdep_assert_held(&req->ctx->uring_lock);
2725
2726 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2727
2728 if (io_resubmit_prep(req, ret)) {
2729 refcount_inc(&req->refs);
2730 io_queue_async_work(req);
2731 return true;
2732 }
2733
2734 #endif
2735 return false;
2736 }
2737
2738 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2739 struct io_comp_state *cs)
2740 {
2741 if (!io_rw_reissue(req, res))
2742 io_complete_rw_common(&req->rw.kiocb, res, cs);
2743 }
2744
2745 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2746 {
2747 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2748
2749 __io_complete_rw(req, res, res2, NULL);
2750 }
2751
2752 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2753 {
2754 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2755
2756 if (kiocb->ki_flags & IOCB_WRITE)
2757 kiocb_end_write(req);
2758
2759 if (res != -EAGAIN && res != req->result)
2760 req_set_fail_links(req);
2761
2762 WRITE_ONCE(req->result, res);
2763 /* order with io_poll_complete() checking ->result */
2764 smp_wmb();
2765 WRITE_ONCE(req->iopoll_completed, 1);
2766 }
2767
2768 /*
2769 * After the iocb has been issued, it's safe to be found on the poll list.
2770 * Adding the kiocb to the list AFTER submission ensures that we don't
2771 * find it from a io_iopoll_getevents() thread before the issuer is done
2772 * accessing the kiocb cookie.
2773 */
2774 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2775 {
2776 struct io_ring_ctx *ctx = req->ctx;
2777
2778 /*
2779 * Track whether we have multiple files in our lists. This will impact
2780 * how we do polling eventually, not spinning if we're on potentially
2781 * different devices.
2782 */
2783 if (list_empty(&ctx->iopoll_list)) {
2784 ctx->poll_multi_file = false;
2785 } else if (!ctx->poll_multi_file) {
2786 struct io_kiocb *list_req;
2787
2788 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2789 inflight_entry);
2790 if (list_req->file != req->file)
2791 ctx->poll_multi_file = true;
2792 }
2793
2794 /*
2795 * For fast devices, IO may have already completed. If it has, add
2796 * it to the front so we find it first.
2797 */
2798 if (READ_ONCE(req->iopoll_completed))
2799 list_add(&req->inflight_entry, &ctx->iopoll_list);
2800 else
2801 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2802
2803 /*
2804 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2805 * task context or in io worker task context. If current task context is
2806 * sq thread, we don't need to check whether should wake up sq thread.
2807 */
2808 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2809 wq_has_sleeper(&ctx->sq_data->wait))
2810 wake_up(&ctx->sq_data->wait);
2811 }
2812
2813 static inline void __io_state_file_put(struct io_submit_state *state)
2814 {
2815 fput_many(state->file, state->file_refs);
2816 state->file_refs = 0;
2817 }
2818
2819 static inline void io_state_file_put(struct io_submit_state *state)
2820 {
2821 if (state->file_refs)
2822 __io_state_file_put(state);
2823 }
2824
2825 /*
2826 * Get as many references to a file as we have IOs left in this submission,
2827 * assuming most submissions are for one file, or at least that each file
2828 * has more than one submission.
2829 */
2830 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2831 {
2832 if (!state)
2833 return fget(fd);
2834
2835 if (state->file_refs) {
2836 if (state->fd == fd) {
2837 state->file_refs--;
2838 return state->file;
2839 }
2840 __io_state_file_put(state);
2841 }
2842 state->file = fget_many(fd, state->ios_left);
2843 if (unlikely(!state->file))
2844 return NULL;
2845
2846 state->fd = fd;
2847 state->file_refs = state->ios_left - 1;
2848 return state->file;
2849 }
2850
2851 static bool io_bdev_nowait(struct block_device *bdev)
2852 {
2853 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2854 }
2855
2856 /*
2857 * If we tracked the file through the SCM inflight mechanism, we could support
2858 * any file. For now, just ensure that anything potentially problematic is done
2859 * inline.
2860 */
2861 static bool io_file_supports_async(struct file *file, int rw)
2862 {
2863 umode_t mode = file_inode(file)->i_mode;
2864
2865 if (S_ISBLK(mode)) {
2866 if (IS_ENABLED(CONFIG_BLOCK) &&
2867 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2868 return true;
2869 return false;
2870 }
2871 if (S_ISCHR(mode) || S_ISSOCK(mode))
2872 return true;
2873 if (S_ISREG(mode)) {
2874 if (IS_ENABLED(CONFIG_BLOCK) &&
2875 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2876 file->f_op != &io_uring_fops)
2877 return true;
2878 return false;
2879 }
2880
2881 /* any ->read/write should understand O_NONBLOCK */
2882 if (file->f_flags & O_NONBLOCK)
2883 return true;
2884
2885 if (!(file->f_mode & FMODE_NOWAIT))
2886 return false;
2887
2888 if (rw == READ)
2889 return file->f_op->read_iter != NULL;
2890
2891 return file->f_op->write_iter != NULL;
2892 }
2893
2894 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2895 {
2896 struct io_ring_ctx *ctx = req->ctx;
2897 struct kiocb *kiocb = &req->rw.kiocb;
2898 unsigned ioprio;
2899 int ret;
2900
2901 if (S_ISREG(file_inode(req->file)->i_mode))
2902 req->flags |= REQ_F_ISREG;
2903
2904 kiocb->ki_pos = READ_ONCE(sqe->off);
2905 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2906 req->flags |= REQ_F_CUR_POS;
2907 kiocb->ki_pos = req->file->f_pos;
2908 }
2909 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2910 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2911 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2912 if (unlikely(ret))
2913 return ret;
2914
2915 ioprio = READ_ONCE(sqe->ioprio);
2916 if (ioprio) {
2917 ret = ioprio_check_cap(ioprio);
2918 if (ret)
2919 return ret;
2920
2921 kiocb->ki_ioprio = ioprio;
2922 } else
2923 kiocb->ki_ioprio = get_current_ioprio();
2924
2925 /* don't allow async punt if RWF_NOWAIT was requested */
2926 if (kiocb->ki_flags & IOCB_NOWAIT)
2927 req->flags |= REQ_F_NOWAIT;
2928
2929 if (ctx->flags & IORING_SETUP_IOPOLL) {
2930 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2931 !kiocb->ki_filp->f_op->iopoll)
2932 return -EOPNOTSUPP;
2933
2934 kiocb->ki_flags |= IOCB_HIPRI;
2935 kiocb->ki_complete = io_complete_rw_iopoll;
2936 req->iopoll_completed = 0;
2937 } else {
2938 if (kiocb->ki_flags & IOCB_HIPRI)
2939 return -EINVAL;
2940 kiocb->ki_complete = io_complete_rw;
2941 }
2942
2943 req->rw.addr = READ_ONCE(sqe->addr);
2944 req->rw.len = READ_ONCE(sqe->len);
2945 req->buf_index = READ_ONCE(sqe->buf_index);
2946 return 0;
2947 }
2948
2949 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2950 {
2951 switch (ret) {
2952 case -EIOCBQUEUED:
2953 break;
2954 case -ERESTARTSYS:
2955 case -ERESTARTNOINTR:
2956 case -ERESTARTNOHAND:
2957 case -ERESTART_RESTARTBLOCK:
2958 /*
2959 * We can't just restart the syscall, since previously
2960 * submitted sqes may already be in progress. Just fail this
2961 * IO with EINTR.
2962 */
2963 ret = -EINTR;
2964 fallthrough;
2965 default:
2966 kiocb->ki_complete(kiocb, ret, 0);
2967 }
2968 }
2969
2970 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2971 struct io_comp_state *cs)
2972 {
2973 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2974 struct io_async_rw *io = req->async_data;
2975
2976 /* add previously done IO, if any */
2977 if (io && io->bytes_done > 0) {
2978 if (ret < 0)
2979 ret = io->bytes_done;
2980 else
2981 ret += io->bytes_done;
2982 }
2983
2984 if (req->flags & REQ_F_CUR_POS)
2985 req->file->f_pos = kiocb->ki_pos;
2986 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2987 __io_complete_rw(req, ret, 0, cs);
2988 else
2989 io_rw_done(kiocb, ret);
2990 }
2991
2992 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2993 struct iov_iter *iter)
2994 {
2995 struct io_ring_ctx *ctx = req->ctx;
2996 size_t len = req->rw.len;
2997 struct io_mapped_ubuf *imu;
2998 u16 index, buf_index = req->buf_index;
2999 size_t offset;
3000 u64 buf_addr;
3001
3002 if (unlikely(buf_index >= ctx->nr_user_bufs))
3003 return -EFAULT;
3004 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3005 imu = &ctx->user_bufs[index];
3006 buf_addr = req->rw.addr;
3007
3008 /* overflow */
3009 if (buf_addr + len < buf_addr)
3010 return -EFAULT;
3011 /* not inside the mapped region */
3012 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3013 return -EFAULT;
3014
3015 /*
3016 * May not be a start of buffer, set size appropriately
3017 * and advance us to the beginning.
3018 */
3019 offset = buf_addr - imu->ubuf;
3020 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3021
3022 if (offset) {
3023 /*
3024 * Don't use iov_iter_advance() here, as it's really slow for
3025 * using the latter parts of a big fixed buffer - it iterates
3026 * over each segment manually. We can cheat a bit here, because
3027 * we know that:
3028 *
3029 * 1) it's a BVEC iter, we set it up
3030 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3031 * first and last bvec
3032 *
3033 * So just find our index, and adjust the iterator afterwards.
3034 * If the offset is within the first bvec (or the whole first
3035 * bvec, just use iov_iter_advance(). This makes it easier
3036 * since we can just skip the first segment, which may not
3037 * be PAGE_SIZE aligned.
3038 */
3039 const struct bio_vec *bvec = imu->bvec;
3040
3041 if (offset <= bvec->bv_len) {
3042 iov_iter_advance(iter, offset);
3043 } else {
3044 unsigned long seg_skip;
3045
3046 /* skip first vec */
3047 offset -= bvec->bv_len;
3048 seg_skip = 1 + (offset >> PAGE_SHIFT);
3049
3050 iter->bvec = bvec + seg_skip;
3051 iter->nr_segs -= seg_skip;
3052 iter->count -= bvec->bv_len + offset;
3053 iter->iov_offset = offset & ~PAGE_MASK;
3054 }
3055 }
3056
3057 return len;
3058 }
3059
3060 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3061 {
3062 if (needs_lock)
3063 mutex_unlock(&ctx->uring_lock);
3064 }
3065
3066 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3067 {
3068 /*
3069 * "Normal" inline submissions always hold the uring_lock, since we
3070 * grab it from the system call. Same is true for the SQPOLL offload.
3071 * The only exception is when we've detached the request and issue it
3072 * from an async worker thread, grab the lock for that case.
3073 */
3074 if (needs_lock)
3075 mutex_lock(&ctx->uring_lock);
3076 }
3077
3078 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3079 int bgid, struct io_buffer *kbuf,
3080 bool needs_lock)
3081 {
3082 struct io_buffer *head;
3083
3084 if (req->flags & REQ_F_BUFFER_SELECTED)
3085 return kbuf;
3086
3087 io_ring_submit_lock(req->ctx, needs_lock);
3088
3089 lockdep_assert_held(&req->ctx->uring_lock);
3090
3091 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3092 if (head) {
3093 if (!list_empty(&head->list)) {
3094 kbuf = list_last_entry(&head->list, struct io_buffer,
3095 list);
3096 list_del(&kbuf->list);
3097 } else {
3098 kbuf = head;
3099 idr_remove(&req->ctx->io_buffer_idr, bgid);
3100 }
3101 if (*len > kbuf->len)
3102 *len = kbuf->len;
3103 } else {
3104 kbuf = ERR_PTR(-ENOBUFS);
3105 }
3106
3107 io_ring_submit_unlock(req->ctx, needs_lock);
3108
3109 return kbuf;
3110 }
3111
3112 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3113 bool needs_lock)
3114 {
3115 struct io_buffer *kbuf;
3116 u16 bgid;
3117
3118 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3119 bgid = req->buf_index;
3120 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3121 if (IS_ERR(kbuf))
3122 return kbuf;
3123 req->rw.addr = (u64) (unsigned long) kbuf;
3124 req->flags |= REQ_F_BUFFER_SELECTED;
3125 return u64_to_user_ptr(kbuf->addr);
3126 }
3127
3128 #ifdef CONFIG_COMPAT
3129 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3130 bool needs_lock)
3131 {
3132 struct compat_iovec __user *uiov;
3133 compat_ssize_t clen;
3134 void __user *buf;
3135 ssize_t len;
3136
3137 uiov = u64_to_user_ptr(req->rw.addr);
3138 if (!access_ok(uiov, sizeof(*uiov)))
3139 return -EFAULT;
3140 if (__get_user(clen, &uiov->iov_len))
3141 return -EFAULT;
3142 if (clen < 0)
3143 return -EINVAL;
3144
3145 len = clen;
3146 buf = io_rw_buffer_select(req, &len, needs_lock);
3147 if (IS_ERR(buf))
3148 return PTR_ERR(buf);
3149 iov[0].iov_base = buf;
3150 iov[0].iov_len = (compat_size_t) len;
3151 return 0;
3152 }
3153 #endif
3154
3155 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3156 bool needs_lock)
3157 {
3158 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3159 void __user *buf;
3160 ssize_t len;
3161
3162 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3163 return -EFAULT;
3164
3165 len = iov[0].iov_len;
3166 if (len < 0)
3167 return -EINVAL;
3168 buf = io_rw_buffer_select(req, &len, needs_lock);
3169 if (IS_ERR(buf))
3170 return PTR_ERR(buf);
3171 iov[0].iov_base = buf;
3172 iov[0].iov_len = len;
3173 return 0;
3174 }
3175
3176 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3177 bool needs_lock)
3178 {
3179 if (req->flags & REQ_F_BUFFER_SELECTED) {
3180 struct io_buffer *kbuf;
3181
3182 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3183 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3184 iov[0].iov_len = kbuf->len;
3185 return 0;
3186 }
3187 if (req->rw.len != 1)
3188 return -EINVAL;
3189
3190 #ifdef CONFIG_COMPAT
3191 if (req->ctx->compat)
3192 return io_compat_import(req, iov, needs_lock);
3193 #endif
3194
3195 return __io_iov_buffer_select(req, iov, needs_lock);
3196 }
3197
3198 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3199 struct iovec **iovec, struct iov_iter *iter,
3200 bool needs_lock)
3201 {
3202 void __user *buf = u64_to_user_ptr(req->rw.addr);
3203 size_t sqe_len = req->rw.len;
3204 ssize_t ret;
3205 u8 opcode;
3206
3207 opcode = req->opcode;
3208 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3209 *iovec = NULL;
3210 return io_import_fixed(req, rw, iter);
3211 }
3212
3213 /* buffer index only valid with fixed read/write, or buffer select */
3214 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3215 return -EINVAL;
3216
3217 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3218 if (req->flags & REQ_F_BUFFER_SELECT) {
3219 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3220 if (IS_ERR(buf))
3221 return PTR_ERR(buf);
3222 req->rw.len = sqe_len;
3223 }
3224
3225 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3226 *iovec = NULL;
3227 return ret;
3228 }
3229
3230 if (req->flags & REQ_F_BUFFER_SELECT) {
3231 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3232 if (!ret) {
3233 ret = (*iovec)->iov_len;
3234 iov_iter_init(iter, rw, *iovec, 1, ret);
3235 }
3236 *iovec = NULL;
3237 return ret;
3238 }
3239
3240 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3241 req->ctx->compat);
3242 }
3243
3244 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3245 {
3246 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3247 }
3248
3249 /*
3250 * For files that don't have ->read_iter() and ->write_iter(), handle them
3251 * by looping over ->read() or ->write() manually.
3252 */
3253 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3254 {
3255 struct kiocb *kiocb = &req->rw.kiocb;
3256 struct file *file = req->file;
3257 ssize_t ret = 0;
3258
3259 /*
3260 * Don't support polled IO through this interface, and we can't
3261 * support non-blocking either. For the latter, this just causes
3262 * the kiocb to be handled from an async context.
3263 */
3264 if (kiocb->ki_flags & IOCB_HIPRI)
3265 return -EOPNOTSUPP;
3266 if (kiocb->ki_flags & IOCB_NOWAIT)
3267 return -EAGAIN;
3268
3269 while (iov_iter_count(iter)) {
3270 struct iovec iovec;
3271 ssize_t nr;
3272
3273 if (!iov_iter_is_bvec(iter)) {
3274 iovec = iov_iter_iovec(iter);
3275 } else {
3276 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3277 iovec.iov_len = req->rw.len;
3278 }
3279
3280 if (rw == READ) {
3281 nr = file->f_op->read(file, iovec.iov_base,
3282 iovec.iov_len, io_kiocb_ppos(kiocb));
3283 } else {
3284 nr = file->f_op->write(file, iovec.iov_base,
3285 iovec.iov_len, io_kiocb_ppos(kiocb));
3286 }
3287
3288 if (nr < 0) {
3289 if (!ret)
3290 ret = nr;
3291 break;
3292 }
3293 ret += nr;
3294 if (nr != iovec.iov_len)
3295 break;
3296 req->rw.len -= nr;
3297 req->rw.addr += nr;
3298 iov_iter_advance(iter, nr);
3299 }
3300
3301 return ret;
3302 }
3303
3304 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3305 const struct iovec *fast_iov, struct iov_iter *iter)
3306 {
3307 struct io_async_rw *rw = req->async_data;
3308
3309 memcpy(&rw->iter, iter, sizeof(*iter));
3310 rw->free_iovec = iovec;
3311 rw->bytes_done = 0;
3312 /* can only be fixed buffers, no need to do anything */
3313 if (iov_iter_is_bvec(iter))
3314 return;
3315 if (!iovec) {
3316 unsigned iov_off = 0;
3317
3318 rw->iter.iov = rw->fast_iov;
3319 if (iter->iov != fast_iov) {
3320 iov_off = iter->iov - fast_iov;
3321 rw->iter.iov += iov_off;
3322 }
3323 if (rw->fast_iov != fast_iov)
3324 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3325 sizeof(struct iovec) * iter->nr_segs);
3326 } else {
3327 req->flags |= REQ_F_NEED_CLEANUP;
3328 }
3329 }
3330
3331 static inline int __io_alloc_async_data(struct io_kiocb *req)
3332 {
3333 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3334 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3335 return req->async_data == NULL;
3336 }
3337
3338 static int io_alloc_async_data(struct io_kiocb *req)
3339 {
3340 if (!io_op_defs[req->opcode].needs_async_data)
3341 return 0;
3342
3343 return __io_alloc_async_data(req);
3344 }
3345
3346 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3347 const struct iovec *fast_iov,
3348 struct iov_iter *iter, bool force)
3349 {
3350 if (!force && !io_op_defs[req->opcode].needs_async_data)
3351 return 0;
3352 if (!req->async_data) {
3353 if (__io_alloc_async_data(req))
3354 return -ENOMEM;
3355
3356 io_req_map_rw(req, iovec, fast_iov, iter);
3357 }
3358 return 0;
3359 }
3360
3361 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3362 {
3363 struct io_async_rw *iorw = req->async_data;
3364 struct iovec *iov = iorw->fast_iov;
3365 ssize_t ret;
3366
3367 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3368 if (unlikely(ret < 0))
3369 return ret;
3370
3371 iorw->bytes_done = 0;
3372 iorw->free_iovec = iov;
3373 if (iov)
3374 req->flags |= REQ_F_NEED_CLEANUP;
3375 return 0;
3376 }
3377
3378 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3379 {
3380 ssize_t ret;
3381
3382 ret = io_prep_rw(req, sqe);
3383 if (ret)
3384 return ret;
3385
3386 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3387 return -EBADF;
3388
3389 /* either don't need iovec imported or already have it */
3390 if (!req->async_data)
3391 return 0;
3392 return io_rw_prep_async(req, READ);
3393 }
3394
3395 /*
3396 * This is our waitqueue callback handler, registered through lock_page_async()
3397 * when we initially tried to do the IO with the iocb armed our waitqueue.
3398 * This gets called when the page is unlocked, and we generally expect that to
3399 * happen when the page IO is completed and the page is now uptodate. This will
3400 * queue a task_work based retry of the operation, attempting to copy the data
3401 * again. If the latter fails because the page was NOT uptodate, then we will
3402 * do a thread based blocking retry of the operation. That's the unexpected
3403 * slow path.
3404 */
3405 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3406 int sync, void *arg)
3407 {
3408 struct wait_page_queue *wpq;
3409 struct io_kiocb *req = wait->private;
3410 struct wait_page_key *key = arg;
3411 int ret;
3412
3413 wpq = container_of(wait, struct wait_page_queue, wait);
3414
3415 if (!wake_page_match(wpq, key))
3416 return 0;
3417
3418 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3419 list_del_init(&wait->entry);
3420
3421 init_task_work(&req->task_work, io_req_task_submit);
3422 percpu_ref_get(&req->ctx->refs);
3423
3424 /* submit ref gets dropped, acquire a new one */
3425 refcount_inc(&req->refs);
3426 ret = io_req_task_work_add(req);
3427 if (unlikely(ret)) {
3428 struct task_struct *tsk;
3429
3430 /* queue just for cancelation */
3431 init_task_work(&req->task_work, io_req_task_cancel);
3432 tsk = io_wq_get_task(req->ctx->io_wq);
3433 task_work_add(tsk, &req->task_work, TWA_NONE);
3434 wake_up_process(tsk);
3435 }
3436 return 1;
3437 }
3438
3439 /*
3440 * This controls whether a given IO request should be armed for async page
3441 * based retry. If we return false here, the request is handed to the async
3442 * worker threads for retry. If we're doing buffered reads on a regular file,
3443 * we prepare a private wait_page_queue entry and retry the operation. This
3444 * will either succeed because the page is now uptodate and unlocked, or it
3445 * will register a callback when the page is unlocked at IO completion. Through
3446 * that callback, io_uring uses task_work to setup a retry of the operation.
3447 * That retry will attempt the buffered read again. The retry will generally
3448 * succeed, or in rare cases where it fails, we then fall back to using the
3449 * async worker threads for a blocking retry.
3450 */
3451 static bool io_rw_should_retry(struct io_kiocb *req)
3452 {
3453 struct io_async_rw *rw = req->async_data;
3454 struct wait_page_queue *wait = &rw->wpq;
3455 struct kiocb *kiocb = &req->rw.kiocb;
3456
3457 /* never retry for NOWAIT, we just complete with -EAGAIN */
3458 if (req->flags & REQ_F_NOWAIT)
3459 return false;
3460
3461 /* Only for buffered IO */
3462 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3463 return false;
3464
3465 /*
3466 * just use poll if we can, and don't attempt if the fs doesn't
3467 * support callback based unlocks
3468 */
3469 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3470 return false;
3471
3472 wait->wait.func = io_async_buf_func;
3473 wait->wait.private = req;
3474 wait->wait.flags = 0;
3475 INIT_LIST_HEAD(&wait->wait.entry);
3476 kiocb->ki_flags |= IOCB_WAITQ;
3477 kiocb->ki_flags &= ~IOCB_NOWAIT;
3478 kiocb->ki_waitq = wait;
3479 return true;
3480 }
3481
3482 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3483 {
3484 if (req->file->f_op->read_iter)
3485 return call_read_iter(req->file, &req->rw.kiocb, iter);
3486 else if (req->file->f_op->read)
3487 return loop_rw_iter(READ, req, iter);
3488 else
3489 return -EINVAL;
3490 }
3491
3492 static int io_read(struct io_kiocb *req, bool force_nonblock,
3493 struct io_comp_state *cs)
3494 {
3495 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3496 struct kiocb *kiocb = &req->rw.kiocb;
3497 struct iov_iter __iter, *iter = &__iter;
3498 struct io_async_rw *rw = req->async_data;
3499 ssize_t io_size, ret, ret2;
3500 bool no_async;
3501
3502 if (rw) {
3503 iter = &rw->iter;
3504 iovec = NULL;
3505 } else {
3506 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3507 if (ret < 0)
3508 return ret;
3509 }
3510 io_size = iov_iter_count(iter);
3511 req->result = io_size;
3512 ret = 0;
3513
3514 /* Ensure we clear previously set non-block flag */
3515 if (!force_nonblock)
3516 kiocb->ki_flags &= ~IOCB_NOWAIT;
3517 else
3518 kiocb->ki_flags |= IOCB_NOWAIT;
3519
3520
3521 /* If the file doesn't support async, just async punt */
3522 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3523 if (no_async)
3524 goto copy_iov;
3525
3526 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3527 if (unlikely(ret))
3528 goto out_free;
3529
3530 ret = io_iter_do_read(req, iter);
3531
3532 if (!ret) {
3533 goto done;
3534 } else if (ret == -EIOCBQUEUED) {
3535 ret = 0;
3536 goto out_free;
3537 } else if (ret == -EAGAIN) {
3538 /* IOPOLL retry should happen for io-wq threads */
3539 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3540 goto done;
3541 /* no retry on NONBLOCK marked file */
3542 if (req->file->f_flags & O_NONBLOCK)
3543 goto done;
3544 /* some cases will consume bytes even on error returns */
3545 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3546 ret = 0;
3547 goto copy_iov;
3548 } else if (ret < 0) {
3549 /* make sure -ERESTARTSYS -> -EINTR is done */
3550 goto done;
3551 }
3552
3553 /* read it all, or we did blocking attempt. no retry. */
3554 if (!iov_iter_count(iter) || !force_nonblock ||
3555 (req->file->f_flags & O_NONBLOCK) || !(req->flags & REQ_F_ISREG))
3556 goto done;
3557
3558 io_size -= ret;
3559 copy_iov:
3560 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3561 if (ret2) {
3562 ret = ret2;
3563 goto out_free;
3564 }
3565 if (no_async)
3566 return -EAGAIN;
3567 rw = req->async_data;
3568 /* it's copied and will be cleaned with ->io */
3569 iovec = NULL;
3570 /* now use our persistent iterator, if we aren't already */
3571 iter = &rw->iter;
3572 retry:
3573 rw->bytes_done += ret;
3574 /* if we can retry, do so with the callbacks armed */
3575 if (!io_rw_should_retry(req)) {
3576 kiocb->ki_flags &= ~IOCB_WAITQ;
3577 return -EAGAIN;
3578 }
3579
3580 /*
3581 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3582 * get -EIOCBQUEUED, then we'll get a notification when the desired
3583 * page gets unlocked. We can also get a partial read here, and if we
3584 * do, then just retry at the new offset.
3585 */
3586 ret = io_iter_do_read(req, iter);
3587 if (ret == -EIOCBQUEUED) {
3588 ret = 0;
3589 goto out_free;
3590 } else if (ret > 0 && ret < io_size) {
3591 /* we got some bytes, but not all. retry. */
3592 goto retry;
3593 }
3594 done:
3595 kiocb_done(kiocb, ret, cs);
3596 ret = 0;
3597 out_free:
3598 /* it's reportedly faster than delegating the null check to kfree() */
3599 if (iovec)
3600 kfree(iovec);
3601 return ret;
3602 }
3603
3604 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3605 {
3606 ssize_t ret;
3607
3608 ret = io_prep_rw(req, sqe);
3609 if (ret)
3610 return ret;
3611
3612 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3613 return -EBADF;
3614
3615 /* either don't need iovec imported or already have it */
3616 if (!req->async_data)
3617 return 0;
3618 return io_rw_prep_async(req, WRITE);
3619 }
3620
3621 static int io_write(struct io_kiocb *req, bool force_nonblock,
3622 struct io_comp_state *cs)
3623 {
3624 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3625 struct kiocb *kiocb = &req->rw.kiocb;
3626 struct iov_iter __iter, *iter = &__iter;
3627 struct io_async_rw *rw = req->async_data;
3628 ssize_t ret, ret2, io_size;
3629
3630 if (rw) {
3631 iter = &rw->iter;
3632 iovec = NULL;
3633 } else {
3634 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3635 if (ret < 0)
3636 return ret;
3637 }
3638 io_size = iov_iter_count(iter);
3639 req->result = io_size;
3640
3641 /* Ensure we clear previously set non-block flag */
3642 if (!force_nonblock)
3643 kiocb->ki_flags &= ~IOCB_NOWAIT;
3644 else
3645 kiocb->ki_flags |= IOCB_NOWAIT;
3646
3647 /* If the file doesn't support async, just async punt */
3648 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3649 goto copy_iov;
3650
3651 /* file path doesn't support NOWAIT for non-direct_IO */
3652 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3653 (req->flags & REQ_F_ISREG))
3654 goto copy_iov;
3655
3656 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3657 if (unlikely(ret))
3658 goto out_free;
3659
3660 /*
3661 * Open-code file_start_write here to grab freeze protection,
3662 * which will be released by another thread in
3663 * io_complete_rw(). Fool lockdep by telling it the lock got
3664 * released so that it doesn't complain about the held lock when
3665 * we return to userspace.
3666 */
3667 if (req->flags & REQ_F_ISREG) {
3668 sb_start_write(file_inode(req->file)->i_sb);
3669 __sb_writers_release(file_inode(req->file)->i_sb,
3670 SB_FREEZE_WRITE);
3671 }
3672 kiocb->ki_flags |= IOCB_WRITE;
3673
3674 if (req->file->f_op->write_iter)
3675 ret2 = call_write_iter(req->file, kiocb, iter);
3676 else if (req->file->f_op->write)
3677 ret2 = loop_rw_iter(WRITE, req, iter);
3678 else
3679 ret2 = -EINVAL;
3680
3681 /*
3682 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3683 * retry them without IOCB_NOWAIT.
3684 */
3685 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3686 ret2 = -EAGAIN;
3687 /* no retry on NONBLOCK marked file */
3688 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3689 goto done;
3690 if (!force_nonblock || ret2 != -EAGAIN) {
3691 /* IOPOLL retry should happen for io-wq threads */
3692 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3693 goto copy_iov;
3694 done:
3695 kiocb_done(kiocb, ret2, cs);
3696 } else {
3697 copy_iov:
3698 /* some cases will consume bytes even on error returns */
3699 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3700 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3701 if (!ret)
3702 return -EAGAIN;
3703 }
3704 out_free:
3705 /* it's reportedly faster than delegating the null check to kfree() */
3706 if (iovec)
3707 kfree(iovec);
3708 return ret;
3709 }
3710
3711 static int io_renameat_prep(struct io_kiocb *req,
3712 const struct io_uring_sqe *sqe)
3713 {
3714 struct io_rename *ren = &req->rename;
3715 const char __user *oldf, *newf;
3716
3717 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3718 return -EBADF;
3719
3720 ren->old_dfd = READ_ONCE(sqe->fd);
3721 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3722 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3723 ren->new_dfd = READ_ONCE(sqe->len);
3724 ren->flags = READ_ONCE(sqe->rename_flags);
3725
3726 ren->oldpath = getname(oldf);
3727 if (IS_ERR(ren->oldpath))
3728 return PTR_ERR(ren->oldpath);
3729
3730 ren->newpath = getname(newf);
3731 if (IS_ERR(ren->newpath)) {
3732 putname(ren->oldpath);
3733 return PTR_ERR(ren->newpath);
3734 }
3735
3736 req->flags |= REQ_F_NEED_CLEANUP;
3737 return 0;
3738 }
3739
3740 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3741 {
3742 struct io_rename *ren = &req->rename;
3743 int ret;
3744
3745 if (force_nonblock)
3746 return -EAGAIN;
3747
3748 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3749 ren->newpath, ren->flags);
3750
3751 req->flags &= ~REQ_F_NEED_CLEANUP;
3752 if (ret < 0)
3753 req_set_fail_links(req);
3754 io_req_complete(req, ret);
3755 return 0;
3756 }
3757
3758 static int io_unlinkat_prep(struct io_kiocb *req,
3759 const struct io_uring_sqe *sqe)
3760 {
3761 struct io_unlink *un = &req->unlink;
3762 const char __user *fname;
3763
3764 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3765 return -EBADF;
3766
3767 un->dfd = READ_ONCE(sqe->fd);
3768
3769 un->flags = READ_ONCE(sqe->unlink_flags);
3770 if (un->flags & ~AT_REMOVEDIR)
3771 return -EINVAL;
3772
3773 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3774 un->filename = getname(fname);
3775 if (IS_ERR(un->filename))
3776 return PTR_ERR(un->filename);
3777
3778 req->flags |= REQ_F_NEED_CLEANUP;
3779 return 0;
3780 }
3781
3782 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3783 {
3784 struct io_unlink *un = &req->unlink;
3785 int ret;
3786
3787 if (force_nonblock)
3788 return -EAGAIN;
3789
3790 if (un->flags & AT_REMOVEDIR)
3791 ret = do_rmdir(un->dfd, un->filename);
3792 else
3793 ret = do_unlinkat(un->dfd, un->filename);
3794
3795 req->flags &= ~REQ_F_NEED_CLEANUP;
3796 if (ret < 0)
3797 req_set_fail_links(req);
3798 io_req_complete(req, ret);
3799 return 0;
3800 }
3801
3802 static int io_shutdown_prep(struct io_kiocb *req,
3803 const struct io_uring_sqe *sqe)
3804 {
3805 #if defined(CONFIG_NET)
3806 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3807 return -EINVAL;
3808 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3809 sqe->buf_index)
3810 return -EINVAL;
3811
3812 req->shutdown.how = READ_ONCE(sqe->len);
3813 return 0;
3814 #else
3815 return -EOPNOTSUPP;
3816 #endif
3817 }
3818
3819 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3820 {
3821 #if defined(CONFIG_NET)
3822 struct socket *sock;
3823 int ret;
3824
3825 if (force_nonblock)
3826 return -EAGAIN;
3827
3828 sock = sock_from_file(req->file);
3829 if (unlikely(!sock))
3830 return -ENOTSOCK;
3831
3832 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3833 if (ret < 0)
3834 req_set_fail_links(req);
3835 io_req_complete(req, ret);
3836 return 0;
3837 #else
3838 return -EOPNOTSUPP;
3839 #endif
3840 }
3841
3842 static int __io_splice_prep(struct io_kiocb *req,
3843 const struct io_uring_sqe *sqe)
3844 {
3845 struct io_splice* sp = &req->splice;
3846 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3847
3848 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3849 return -EINVAL;
3850
3851 sp->file_in = NULL;
3852 sp->len = READ_ONCE(sqe->len);
3853 sp->flags = READ_ONCE(sqe->splice_flags);
3854
3855 if (unlikely(sp->flags & ~valid_flags))
3856 return -EINVAL;
3857
3858 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3859 (sp->flags & SPLICE_F_FD_IN_FIXED));
3860 if (!sp->file_in)
3861 return -EBADF;
3862 req->flags |= REQ_F_NEED_CLEANUP;
3863
3864 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3865 /*
3866 * Splice operation will be punted aync, and here need to
3867 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3868 */
3869 io_req_init_async(req);
3870 req->work.flags |= IO_WQ_WORK_UNBOUND;
3871 }
3872
3873 return 0;
3874 }
3875
3876 static int io_tee_prep(struct io_kiocb *req,
3877 const struct io_uring_sqe *sqe)
3878 {
3879 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3880 return -EINVAL;
3881 return __io_splice_prep(req, sqe);
3882 }
3883
3884 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3885 {
3886 struct io_splice *sp = &req->splice;
3887 struct file *in = sp->file_in;
3888 struct file *out = sp->file_out;
3889 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3890 long ret = 0;
3891
3892 if (force_nonblock)
3893 return -EAGAIN;
3894 if (sp->len)
3895 ret = do_tee(in, out, sp->len, flags);
3896
3897 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3898 req->flags &= ~REQ_F_NEED_CLEANUP;
3899
3900 if (ret != sp->len)
3901 req_set_fail_links(req);
3902 io_req_complete(req, ret);
3903 return 0;
3904 }
3905
3906 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3907 {
3908 struct io_splice* sp = &req->splice;
3909
3910 sp->off_in = READ_ONCE(sqe->splice_off_in);
3911 sp->off_out = READ_ONCE(sqe->off);
3912 return __io_splice_prep(req, sqe);
3913 }
3914
3915 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3916 {
3917 struct io_splice *sp = &req->splice;
3918 struct file *in = sp->file_in;
3919 struct file *out = sp->file_out;
3920 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3921 loff_t *poff_in, *poff_out;
3922 long ret = 0;
3923
3924 if (force_nonblock)
3925 return -EAGAIN;
3926
3927 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3928 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3929
3930 if (sp->len)
3931 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3932
3933 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3934 req->flags &= ~REQ_F_NEED_CLEANUP;
3935
3936 if (ret != sp->len)
3937 req_set_fail_links(req);
3938 io_req_complete(req, ret);
3939 return 0;
3940 }
3941
3942 /*
3943 * IORING_OP_NOP just posts a completion event, nothing else.
3944 */
3945 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3946 {
3947 struct io_ring_ctx *ctx = req->ctx;
3948
3949 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3950 return -EINVAL;
3951
3952 __io_req_complete(req, 0, 0, cs);
3953 return 0;
3954 }
3955
3956 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3957 {
3958 struct io_ring_ctx *ctx = req->ctx;
3959
3960 if (!req->file)
3961 return -EBADF;
3962
3963 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3964 return -EINVAL;
3965 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3966 return -EINVAL;
3967
3968 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3969 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3970 return -EINVAL;
3971
3972 req->sync.off = READ_ONCE(sqe->off);
3973 req->sync.len = READ_ONCE(sqe->len);
3974 return 0;
3975 }
3976
3977 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3978 {
3979 loff_t end = req->sync.off + req->sync.len;
3980 int ret;
3981
3982 /* fsync always requires a blocking context */
3983 if (force_nonblock)
3984 return -EAGAIN;
3985
3986 ret = vfs_fsync_range(req->file, req->sync.off,
3987 end > 0 ? end : LLONG_MAX,
3988 req->sync.flags & IORING_FSYNC_DATASYNC);
3989 if (ret < 0)
3990 req_set_fail_links(req);
3991 io_req_complete(req, ret);
3992 return 0;
3993 }
3994
3995 static int io_fallocate_prep(struct io_kiocb *req,
3996 const struct io_uring_sqe *sqe)
3997 {
3998 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3999 return -EINVAL;
4000 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4001 return -EINVAL;
4002
4003 req->sync.off = READ_ONCE(sqe->off);
4004 req->sync.len = READ_ONCE(sqe->addr);
4005 req->sync.mode = READ_ONCE(sqe->len);
4006 return 0;
4007 }
4008
4009 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4010 {
4011 int ret;
4012
4013 /* fallocate always requiring blocking context */
4014 if (force_nonblock)
4015 return -EAGAIN;
4016 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4017 req->sync.len);
4018 if (ret < 0)
4019 req_set_fail_links(req);
4020 io_req_complete(req, ret);
4021 return 0;
4022 }
4023
4024 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4025 {
4026 const char __user *fname;
4027 int ret;
4028
4029 if (unlikely(sqe->ioprio || sqe->buf_index))
4030 return -EINVAL;
4031 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4032 return -EBADF;
4033
4034 /* open.how should be already initialised */
4035 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4036 req->open.how.flags |= O_LARGEFILE;
4037
4038 req->open.dfd = READ_ONCE(sqe->fd);
4039 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4040 req->open.filename = getname(fname);
4041 if (IS_ERR(req->open.filename)) {
4042 ret = PTR_ERR(req->open.filename);
4043 req->open.filename = NULL;
4044 return ret;
4045 }
4046 req->open.nofile = rlimit(RLIMIT_NOFILE);
4047 req->open.ignore_nonblock = false;
4048 req->flags |= REQ_F_NEED_CLEANUP;
4049 return 0;
4050 }
4051
4052 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4053 {
4054 u64 flags, mode;
4055
4056 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4057 return -EINVAL;
4058 mode = READ_ONCE(sqe->len);
4059 flags = READ_ONCE(sqe->open_flags);
4060 req->open.how = build_open_how(flags, mode);
4061 return __io_openat_prep(req, sqe);
4062 }
4063
4064 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4065 {
4066 struct open_how __user *how;
4067 size_t len;
4068 int ret;
4069
4070 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4071 return -EINVAL;
4072 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4073 len = READ_ONCE(sqe->len);
4074 if (len < OPEN_HOW_SIZE_VER0)
4075 return -EINVAL;
4076
4077 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4078 len);
4079 if (ret)
4080 return ret;
4081
4082 return __io_openat_prep(req, sqe);
4083 }
4084
4085 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4086 {
4087 struct open_flags op;
4088 struct file *file;
4089 int ret;
4090
4091 if (force_nonblock && !req->open.ignore_nonblock)
4092 return -EAGAIN;
4093
4094 ret = build_open_flags(&req->open.how, &op);
4095 if (ret)
4096 goto err;
4097
4098 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4099 if (ret < 0)
4100 goto err;
4101
4102 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4103 if (IS_ERR(file)) {
4104 put_unused_fd(ret);
4105 ret = PTR_ERR(file);
4106 /*
4107 * A work-around to ensure that /proc/self works that way
4108 * that it should - if we get -EOPNOTSUPP back, then assume
4109 * that proc_self_get_link() failed us because we're in async
4110 * context. We should be safe to retry this from the task
4111 * itself with force_nonblock == false set, as it should not
4112 * block on lookup. Would be nice to know this upfront and
4113 * avoid the async dance, but doesn't seem feasible.
4114 */
4115 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4116 req->open.ignore_nonblock = true;
4117 refcount_inc(&req->refs);
4118 io_req_task_queue(req);
4119 return 0;
4120 }
4121 } else {
4122 fsnotify_open(file);
4123 fd_install(ret, file);
4124 }
4125 err:
4126 putname(req->open.filename);
4127 req->flags &= ~REQ_F_NEED_CLEANUP;
4128 if (ret < 0)
4129 req_set_fail_links(req);
4130 io_req_complete(req, ret);
4131 return 0;
4132 }
4133
4134 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4135 {
4136 return io_openat2(req, force_nonblock);
4137 }
4138
4139 static int io_remove_buffers_prep(struct io_kiocb *req,
4140 const struct io_uring_sqe *sqe)
4141 {
4142 struct io_provide_buf *p = &req->pbuf;
4143 u64 tmp;
4144
4145 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4146 return -EINVAL;
4147
4148 tmp = READ_ONCE(sqe->fd);
4149 if (!tmp || tmp > USHRT_MAX)
4150 return -EINVAL;
4151
4152 memset(p, 0, sizeof(*p));
4153 p->nbufs = tmp;
4154 p->bgid = READ_ONCE(sqe->buf_group);
4155 return 0;
4156 }
4157
4158 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4159 int bgid, unsigned nbufs)
4160 {
4161 unsigned i = 0;
4162
4163 /* shouldn't happen */
4164 if (!nbufs)
4165 return 0;
4166
4167 /* the head kbuf is the list itself */
4168 while (!list_empty(&buf->list)) {
4169 struct io_buffer *nxt;
4170
4171 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4172 list_del(&nxt->list);
4173 kfree(nxt);
4174 if (++i == nbufs)
4175 return i;
4176 }
4177 i++;
4178 kfree(buf);
4179 idr_remove(&ctx->io_buffer_idr, bgid);
4180
4181 return i;
4182 }
4183
4184 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4185 struct io_comp_state *cs)
4186 {
4187 struct io_provide_buf *p = &req->pbuf;
4188 struct io_ring_ctx *ctx = req->ctx;
4189 struct io_buffer *head;
4190 int ret = 0;
4191
4192 io_ring_submit_lock(ctx, !force_nonblock);
4193
4194 lockdep_assert_held(&ctx->uring_lock);
4195
4196 ret = -ENOENT;
4197 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4198 if (head)
4199 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4200 if (ret < 0)
4201 req_set_fail_links(req);
4202
4203 /* need to hold the lock to complete IOPOLL requests */
4204 if (ctx->flags & IORING_SETUP_IOPOLL) {
4205 __io_req_complete(req, ret, 0, cs);
4206 io_ring_submit_unlock(ctx, !force_nonblock);
4207 } else {
4208 io_ring_submit_unlock(ctx, !force_nonblock);
4209 __io_req_complete(req, ret, 0, cs);
4210 }
4211 return 0;
4212 }
4213
4214 static int io_provide_buffers_prep(struct io_kiocb *req,
4215 const struct io_uring_sqe *sqe)
4216 {
4217 struct io_provide_buf *p = &req->pbuf;
4218 u64 tmp;
4219
4220 if (sqe->ioprio || sqe->rw_flags)
4221 return -EINVAL;
4222
4223 tmp = READ_ONCE(sqe->fd);
4224 if (!tmp || tmp > USHRT_MAX)
4225 return -E2BIG;
4226 p->nbufs = tmp;
4227 p->addr = READ_ONCE(sqe->addr);
4228 p->len = READ_ONCE(sqe->len);
4229
4230 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4231 return -EFAULT;
4232
4233 p->bgid = READ_ONCE(sqe->buf_group);
4234 tmp = READ_ONCE(sqe->off);
4235 if (tmp > USHRT_MAX)
4236 return -E2BIG;
4237 p->bid = tmp;
4238 return 0;
4239 }
4240
4241 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4242 {
4243 struct io_buffer *buf;
4244 u64 addr = pbuf->addr;
4245 int i, bid = pbuf->bid;
4246
4247 for (i = 0; i < pbuf->nbufs; i++) {
4248 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4249 if (!buf)
4250 break;
4251
4252 buf->addr = addr;
4253 buf->len = pbuf->len;
4254 buf->bid = bid;
4255 addr += pbuf->len;
4256 bid++;
4257 if (!*head) {
4258 INIT_LIST_HEAD(&buf->list);
4259 *head = buf;
4260 } else {
4261 list_add_tail(&buf->list, &(*head)->list);
4262 }
4263 }
4264
4265 return i ? i : -ENOMEM;
4266 }
4267
4268 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4269 struct io_comp_state *cs)
4270 {
4271 struct io_provide_buf *p = &req->pbuf;
4272 struct io_ring_ctx *ctx = req->ctx;
4273 struct io_buffer *head, *list;
4274 int ret = 0;
4275
4276 io_ring_submit_lock(ctx, !force_nonblock);
4277
4278 lockdep_assert_held(&ctx->uring_lock);
4279
4280 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4281
4282 ret = io_add_buffers(p, &head);
4283 if (ret < 0)
4284 goto out;
4285
4286 if (!list) {
4287 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4288 GFP_KERNEL);
4289 if (ret < 0) {
4290 __io_remove_buffers(ctx, head, p->bgid, -1U);
4291 goto out;
4292 }
4293 }
4294 out:
4295 if (ret < 0)
4296 req_set_fail_links(req);
4297
4298 /* need to hold the lock to complete IOPOLL requests */
4299 if (ctx->flags & IORING_SETUP_IOPOLL) {
4300 __io_req_complete(req, ret, 0, cs);
4301 io_ring_submit_unlock(ctx, !force_nonblock);
4302 } else {
4303 io_ring_submit_unlock(ctx, !force_nonblock);
4304 __io_req_complete(req, ret, 0, cs);
4305 }
4306 return 0;
4307 }
4308
4309 static int io_epoll_ctl_prep(struct io_kiocb *req,
4310 const struct io_uring_sqe *sqe)
4311 {
4312 #if defined(CONFIG_EPOLL)
4313 if (sqe->ioprio || sqe->buf_index)
4314 return -EINVAL;
4315 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4316 return -EINVAL;
4317
4318 req->epoll.epfd = READ_ONCE(sqe->fd);
4319 req->epoll.op = READ_ONCE(sqe->len);
4320 req->epoll.fd = READ_ONCE(sqe->off);
4321
4322 if (ep_op_has_event(req->epoll.op)) {
4323 struct epoll_event __user *ev;
4324
4325 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4326 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4327 return -EFAULT;
4328 }
4329
4330 return 0;
4331 #else
4332 return -EOPNOTSUPP;
4333 #endif
4334 }
4335
4336 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4337 struct io_comp_state *cs)
4338 {
4339 #if defined(CONFIG_EPOLL)
4340 struct io_epoll *ie = &req->epoll;
4341 int ret;
4342
4343 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4344 if (force_nonblock && ret == -EAGAIN)
4345 return -EAGAIN;
4346
4347 if (ret < 0)
4348 req_set_fail_links(req);
4349 __io_req_complete(req, ret, 0, cs);
4350 return 0;
4351 #else
4352 return -EOPNOTSUPP;
4353 #endif
4354 }
4355
4356 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4357 {
4358 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4359 if (sqe->ioprio || sqe->buf_index || sqe->off)
4360 return -EINVAL;
4361 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4362 return -EINVAL;
4363
4364 req->madvise.addr = READ_ONCE(sqe->addr);
4365 req->madvise.len = READ_ONCE(sqe->len);
4366 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4367 return 0;
4368 #else
4369 return -EOPNOTSUPP;
4370 #endif
4371 }
4372
4373 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4374 {
4375 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4376 struct io_madvise *ma = &req->madvise;
4377 int ret;
4378
4379 if (force_nonblock)
4380 return -EAGAIN;
4381
4382 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4383 if (ret < 0)
4384 req_set_fail_links(req);
4385 io_req_complete(req, ret);
4386 return 0;
4387 #else
4388 return -EOPNOTSUPP;
4389 #endif
4390 }
4391
4392 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4393 {
4394 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4395 return -EINVAL;
4396 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4397 return -EINVAL;
4398
4399 req->fadvise.offset = READ_ONCE(sqe->off);
4400 req->fadvise.len = READ_ONCE(sqe->len);
4401 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4402 return 0;
4403 }
4404
4405 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4406 {
4407 struct io_fadvise *fa = &req->fadvise;
4408 int ret;
4409
4410 if (force_nonblock) {
4411 switch (fa->advice) {
4412 case POSIX_FADV_NORMAL:
4413 case POSIX_FADV_RANDOM:
4414 case POSIX_FADV_SEQUENTIAL:
4415 break;
4416 default:
4417 return -EAGAIN;
4418 }
4419 }
4420
4421 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4422 if (ret < 0)
4423 req_set_fail_links(req);
4424 io_req_complete(req, ret);
4425 return 0;
4426 }
4427
4428 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4429 {
4430 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4431 return -EINVAL;
4432 if (sqe->ioprio || sqe->buf_index)
4433 return -EINVAL;
4434 if (req->flags & REQ_F_FIXED_FILE)
4435 return -EBADF;
4436
4437 req->statx.dfd = READ_ONCE(sqe->fd);
4438 req->statx.mask = READ_ONCE(sqe->len);
4439 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4440 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4441 req->statx.flags = READ_ONCE(sqe->statx_flags);
4442
4443 return 0;
4444 }
4445
4446 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4447 {
4448 struct io_statx *ctx = &req->statx;
4449 int ret;
4450
4451 if (force_nonblock) {
4452 /* only need file table for an actual valid fd */
4453 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4454 req->flags |= REQ_F_NO_FILE_TABLE;
4455 return -EAGAIN;
4456 }
4457
4458 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4459 ctx->buffer);
4460
4461 if (ret < 0)
4462 req_set_fail_links(req);
4463 io_req_complete(req, ret);
4464 return 0;
4465 }
4466
4467 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4468 {
4469 /*
4470 * If we queue this for async, it must not be cancellable. That would
4471 * leave the 'file' in an undeterminate state, and here need to modify
4472 * io_wq_work.flags, so initialize io_wq_work firstly.
4473 */
4474 io_req_init_async(req);
4475
4476 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4477 return -EINVAL;
4478 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4479 sqe->rw_flags || sqe->buf_index)
4480 return -EINVAL;
4481 if (req->flags & REQ_F_FIXED_FILE)
4482 return -EBADF;
4483
4484 req->close.fd = READ_ONCE(sqe->fd);
4485 if ((req->file && req->file->f_op == &io_uring_fops))
4486 return -EBADF;
4487
4488 req->close.put_file = NULL;
4489 return 0;
4490 }
4491
4492 static int io_close(struct io_kiocb *req, bool force_nonblock,
4493 struct io_comp_state *cs)
4494 {
4495 struct io_close *close = &req->close;
4496 int ret;
4497
4498 /* might be already done during nonblock submission */
4499 if (!close->put_file) {
4500 ret = close_fd_get_file(close->fd, &close->put_file);
4501 if (ret < 0)
4502 return (ret == -ENOENT) ? -EBADF : ret;
4503 }
4504
4505 /* if the file has a flush method, be safe and punt to async */
4506 if (close->put_file->f_op->flush && force_nonblock) {
4507 /* not safe to cancel at this point */
4508 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4509 /* was never set, but play safe */
4510 req->flags &= ~REQ_F_NOWAIT;
4511 /* avoid grabbing files - we don't need the files */
4512 req->flags |= REQ_F_NO_FILE_TABLE;
4513 return -EAGAIN;
4514 }
4515
4516 /* No ->flush() or already async, safely close from here */
4517 ret = filp_close(close->put_file, req->work.identity->files);
4518 if (ret < 0)
4519 req_set_fail_links(req);
4520 fput(close->put_file);
4521 close->put_file = NULL;
4522 __io_req_complete(req, ret, 0, cs);
4523 return 0;
4524 }
4525
4526 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4527 {
4528 struct io_ring_ctx *ctx = req->ctx;
4529
4530 if (!req->file)
4531 return -EBADF;
4532
4533 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4534 return -EINVAL;
4535 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4536 return -EINVAL;
4537
4538 req->sync.off = READ_ONCE(sqe->off);
4539 req->sync.len = READ_ONCE(sqe->len);
4540 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4541 return 0;
4542 }
4543
4544 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4545 {
4546 int ret;
4547
4548 /* sync_file_range always requires a blocking context */
4549 if (force_nonblock)
4550 return -EAGAIN;
4551
4552 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4553 req->sync.flags);
4554 if (ret < 0)
4555 req_set_fail_links(req);
4556 io_req_complete(req, ret);
4557 return 0;
4558 }
4559
4560 #if defined(CONFIG_NET)
4561 static int io_setup_async_msg(struct io_kiocb *req,
4562 struct io_async_msghdr *kmsg)
4563 {
4564 struct io_async_msghdr *async_msg = req->async_data;
4565
4566 if (async_msg)
4567 return -EAGAIN;
4568 if (io_alloc_async_data(req)) {
4569 if (kmsg->iov != kmsg->fast_iov)
4570 kfree(kmsg->iov);
4571 return -ENOMEM;
4572 }
4573 async_msg = req->async_data;
4574 req->flags |= REQ_F_NEED_CLEANUP;
4575 memcpy(async_msg, kmsg, sizeof(*kmsg));
4576 return -EAGAIN;
4577 }
4578
4579 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4580 struct io_async_msghdr *iomsg)
4581 {
4582 iomsg->iov = iomsg->fast_iov;
4583 iomsg->msg.msg_name = &iomsg->addr;
4584 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4585 req->sr_msg.msg_flags, &iomsg->iov);
4586 }
4587
4588 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4589 {
4590 struct io_async_msghdr *async_msg = req->async_data;
4591 struct io_sr_msg *sr = &req->sr_msg;
4592 int ret;
4593
4594 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4595 return -EINVAL;
4596
4597 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4598 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4599 sr->len = READ_ONCE(sqe->len);
4600
4601 #ifdef CONFIG_COMPAT
4602 if (req->ctx->compat)
4603 sr->msg_flags |= MSG_CMSG_COMPAT;
4604 #endif
4605
4606 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4607 return 0;
4608 ret = io_sendmsg_copy_hdr(req, async_msg);
4609 if (!ret)
4610 req->flags |= REQ_F_NEED_CLEANUP;
4611 return ret;
4612 }
4613
4614 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4615 struct io_comp_state *cs)
4616 {
4617 struct io_async_msghdr iomsg, *kmsg;
4618 struct socket *sock;
4619 unsigned flags;
4620 int ret;
4621
4622 sock = sock_from_file(req->file);
4623 if (unlikely(!sock))
4624 return -ENOTSOCK;
4625
4626 if (req->async_data) {
4627 kmsg = req->async_data;
4628 kmsg->msg.msg_name = &kmsg->addr;
4629 /* if iov is set, it's allocated already */
4630 if (!kmsg->iov)
4631 kmsg->iov = kmsg->fast_iov;
4632 kmsg->msg.msg_iter.iov = kmsg->iov;
4633 } else {
4634 ret = io_sendmsg_copy_hdr(req, &iomsg);
4635 if (ret)
4636 return ret;
4637 kmsg = &iomsg;
4638 }
4639
4640 flags = req->sr_msg.msg_flags;
4641 if (flags & MSG_DONTWAIT)
4642 req->flags |= REQ_F_NOWAIT;
4643 else if (force_nonblock)
4644 flags |= MSG_DONTWAIT;
4645
4646 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4647 if (force_nonblock && ret == -EAGAIN)
4648 return io_setup_async_msg(req, kmsg);
4649 if (ret == -ERESTARTSYS)
4650 ret = -EINTR;
4651
4652 if (kmsg->iov != kmsg->fast_iov)
4653 kfree(kmsg->iov);
4654 req->flags &= ~REQ_F_NEED_CLEANUP;
4655 if (ret < 0)
4656 req_set_fail_links(req);
4657 __io_req_complete(req, ret, 0, cs);
4658 return 0;
4659 }
4660
4661 static int io_send(struct io_kiocb *req, bool force_nonblock,
4662 struct io_comp_state *cs)
4663 {
4664 struct io_sr_msg *sr = &req->sr_msg;
4665 struct msghdr msg;
4666 struct iovec iov;
4667 struct socket *sock;
4668 unsigned flags;
4669 int ret;
4670
4671 sock = sock_from_file(req->file);
4672 if (unlikely(!sock))
4673 return -ENOTSOCK;
4674
4675 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4676 if (unlikely(ret))
4677 return ret;
4678
4679 msg.msg_name = NULL;
4680 msg.msg_control = NULL;
4681 msg.msg_controllen = 0;
4682 msg.msg_namelen = 0;
4683
4684 flags = req->sr_msg.msg_flags;
4685 if (flags & MSG_DONTWAIT)
4686 req->flags |= REQ_F_NOWAIT;
4687 else if (force_nonblock)
4688 flags |= MSG_DONTWAIT;
4689
4690 msg.msg_flags = flags;
4691 ret = sock_sendmsg(sock, &msg);
4692 if (force_nonblock && ret == -EAGAIN)
4693 return -EAGAIN;
4694 if (ret == -ERESTARTSYS)
4695 ret = -EINTR;
4696
4697 if (ret < 0)
4698 req_set_fail_links(req);
4699 __io_req_complete(req, ret, 0, cs);
4700 return 0;
4701 }
4702
4703 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4704 struct io_async_msghdr *iomsg)
4705 {
4706 struct io_sr_msg *sr = &req->sr_msg;
4707 struct iovec __user *uiov;
4708 size_t iov_len;
4709 int ret;
4710
4711 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4712 &iomsg->uaddr, &uiov, &iov_len);
4713 if (ret)
4714 return ret;
4715
4716 if (req->flags & REQ_F_BUFFER_SELECT) {
4717 if (iov_len > 1)
4718 return -EINVAL;
4719 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4720 return -EFAULT;
4721 sr->len = iomsg->iov[0].iov_len;
4722 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4723 sr->len);
4724 iomsg->iov = NULL;
4725 } else {
4726 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4727 &iomsg->iov, &iomsg->msg.msg_iter,
4728 false);
4729 if (ret > 0)
4730 ret = 0;
4731 }
4732
4733 return ret;
4734 }
4735
4736 #ifdef CONFIG_COMPAT
4737 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4738 struct io_async_msghdr *iomsg)
4739 {
4740 struct compat_msghdr __user *msg_compat;
4741 struct io_sr_msg *sr = &req->sr_msg;
4742 struct compat_iovec __user *uiov;
4743 compat_uptr_t ptr;
4744 compat_size_t len;
4745 int ret;
4746
4747 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4748 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4749 &ptr, &len);
4750 if (ret)
4751 return ret;
4752
4753 uiov = compat_ptr(ptr);
4754 if (req->flags & REQ_F_BUFFER_SELECT) {
4755 compat_ssize_t clen;
4756
4757 if (len > 1)
4758 return -EINVAL;
4759 if (!access_ok(uiov, sizeof(*uiov)))
4760 return -EFAULT;
4761 if (__get_user(clen, &uiov->iov_len))
4762 return -EFAULT;
4763 if (clen < 0)
4764 return -EINVAL;
4765 sr->len = clen;
4766 iomsg->iov[0].iov_len = clen;
4767 iomsg->iov = NULL;
4768 } else {
4769 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4770 UIO_FASTIOV, &iomsg->iov,
4771 &iomsg->msg.msg_iter, true);
4772 if (ret < 0)
4773 return ret;
4774 }
4775
4776 return 0;
4777 }
4778 #endif
4779
4780 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4781 struct io_async_msghdr *iomsg)
4782 {
4783 iomsg->msg.msg_name = &iomsg->addr;
4784 iomsg->iov = iomsg->fast_iov;
4785
4786 #ifdef CONFIG_COMPAT
4787 if (req->ctx->compat)
4788 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4789 #endif
4790
4791 return __io_recvmsg_copy_hdr(req, iomsg);
4792 }
4793
4794 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4795 bool needs_lock)
4796 {
4797 struct io_sr_msg *sr = &req->sr_msg;
4798 struct io_buffer *kbuf;
4799
4800 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4801 if (IS_ERR(kbuf))
4802 return kbuf;
4803
4804 sr->kbuf = kbuf;
4805 req->flags |= REQ_F_BUFFER_SELECTED;
4806 return kbuf;
4807 }
4808
4809 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4810 {
4811 return io_put_kbuf(req, req->sr_msg.kbuf);
4812 }
4813
4814 static int io_recvmsg_prep(struct io_kiocb *req,
4815 const struct io_uring_sqe *sqe)
4816 {
4817 struct io_async_msghdr *async_msg = req->async_data;
4818 struct io_sr_msg *sr = &req->sr_msg;
4819 int ret;
4820
4821 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4822 return -EINVAL;
4823
4824 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4825 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4826 sr->len = READ_ONCE(sqe->len);
4827 sr->bgid = READ_ONCE(sqe->buf_group);
4828
4829 #ifdef CONFIG_COMPAT
4830 if (req->ctx->compat)
4831 sr->msg_flags |= MSG_CMSG_COMPAT;
4832 #endif
4833
4834 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4835 return 0;
4836 ret = io_recvmsg_copy_hdr(req, async_msg);
4837 if (!ret)
4838 req->flags |= REQ_F_NEED_CLEANUP;
4839 return ret;
4840 }
4841
4842 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4843 struct io_comp_state *cs)
4844 {
4845 struct io_async_msghdr iomsg, *kmsg;
4846 struct socket *sock;
4847 struct io_buffer *kbuf;
4848 unsigned flags;
4849 int ret, cflags = 0;
4850
4851 sock = sock_from_file(req->file);
4852 if (unlikely(!sock))
4853 return -ENOTSOCK;
4854
4855 if (req->async_data) {
4856 kmsg = req->async_data;
4857 kmsg->msg.msg_name = &kmsg->addr;
4858 /* if iov is set, it's allocated already */
4859 if (!kmsg->iov)
4860 kmsg->iov = kmsg->fast_iov;
4861 kmsg->msg.msg_iter.iov = kmsg->iov;
4862 } else {
4863 ret = io_recvmsg_copy_hdr(req, &iomsg);
4864 if (ret)
4865 return ret;
4866 kmsg = &iomsg;
4867 }
4868
4869 if (req->flags & REQ_F_BUFFER_SELECT) {
4870 kbuf = io_recv_buffer_select(req, !force_nonblock);
4871 if (IS_ERR(kbuf))
4872 return PTR_ERR(kbuf);
4873 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4874 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4875 1, req->sr_msg.len);
4876 }
4877
4878 flags = req->sr_msg.msg_flags;
4879 if (flags & MSG_DONTWAIT)
4880 req->flags |= REQ_F_NOWAIT;
4881 else if (force_nonblock)
4882 flags |= MSG_DONTWAIT;
4883
4884 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4885 kmsg->uaddr, flags);
4886 if (force_nonblock && ret == -EAGAIN)
4887 return io_setup_async_msg(req, kmsg);
4888 if (ret == -ERESTARTSYS)
4889 ret = -EINTR;
4890
4891 if (req->flags & REQ_F_BUFFER_SELECTED)
4892 cflags = io_put_recv_kbuf(req);
4893 if (kmsg->iov != kmsg->fast_iov)
4894 kfree(kmsg->iov);
4895 req->flags &= ~REQ_F_NEED_CLEANUP;
4896 if (ret < 0)
4897 req_set_fail_links(req);
4898 __io_req_complete(req, ret, cflags, cs);
4899 return 0;
4900 }
4901
4902 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4903 struct io_comp_state *cs)
4904 {
4905 struct io_buffer *kbuf;
4906 struct io_sr_msg *sr = &req->sr_msg;
4907 struct msghdr msg;
4908 void __user *buf = sr->buf;
4909 struct socket *sock;
4910 struct iovec iov;
4911 unsigned flags;
4912 int ret, cflags = 0;
4913
4914 sock = sock_from_file(req->file);
4915 if (unlikely(!sock))
4916 return -ENOTSOCK;
4917
4918 if (req->flags & REQ_F_BUFFER_SELECT) {
4919 kbuf = io_recv_buffer_select(req, !force_nonblock);
4920 if (IS_ERR(kbuf))
4921 return PTR_ERR(kbuf);
4922 buf = u64_to_user_ptr(kbuf->addr);
4923 }
4924
4925 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4926 if (unlikely(ret))
4927 goto out_free;
4928
4929 msg.msg_name = NULL;
4930 msg.msg_control = NULL;
4931 msg.msg_controllen = 0;
4932 msg.msg_namelen = 0;
4933 msg.msg_iocb = NULL;
4934 msg.msg_flags = 0;
4935
4936 flags = req->sr_msg.msg_flags;
4937 if (flags & MSG_DONTWAIT)
4938 req->flags |= REQ_F_NOWAIT;
4939 else if (force_nonblock)
4940 flags |= MSG_DONTWAIT;
4941
4942 ret = sock_recvmsg(sock, &msg, flags);
4943 if (force_nonblock && ret == -EAGAIN)
4944 return -EAGAIN;
4945 if (ret == -ERESTARTSYS)
4946 ret = -EINTR;
4947 out_free:
4948 if (req->flags & REQ_F_BUFFER_SELECTED)
4949 cflags = io_put_recv_kbuf(req);
4950 if (ret < 0)
4951 req_set_fail_links(req);
4952 __io_req_complete(req, ret, cflags, cs);
4953 return 0;
4954 }
4955
4956 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4957 {
4958 struct io_accept *accept = &req->accept;
4959
4960 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4961 return -EINVAL;
4962 if (sqe->ioprio || sqe->len || sqe->buf_index)
4963 return -EINVAL;
4964
4965 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4966 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4967 accept->flags = READ_ONCE(sqe->accept_flags);
4968 accept->nofile = rlimit(RLIMIT_NOFILE);
4969 return 0;
4970 }
4971
4972 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4973 struct io_comp_state *cs)
4974 {
4975 struct io_accept *accept = &req->accept;
4976 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4977 int ret;
4978
4979 if (req->file->f_flags & O_NONBLOCK)
4980 req->flags |= REQ_F_NOWAIT;
4981
4982 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4983 accept->addr_len, accept->flags,
4984 accept->nofile);
4985 if (ret == -EAGAIN && force_nonblock)
4986 return -EAGAIN;
4987 if (ret < 0) {
4988 if (ret == -ERESTARTSYS)
4989 ret = -EINTR;
4990 req_set_fail_links(req);
4991 }
4992 __io_req_complete(req, ret, 0, cs);
4993 return 0;
4994 }
4995
4996 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4997 {
4998 struct io_connect *conn = &req->connect;
4999 struct io_async_connect *io = req->async_data;
5000
5001 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5002 return -EINVAL;
5003 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5004 return -EINVAL;
5005
5006 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5007 conn->addr_len = READ_ONCE(sqe->addr2);
5008
5009 if (!io)
5010 return 0;
5011
5012 return move_addr_to_kernel(conn->addr, conn->addr_len,
5013 &io->address);
5014 }
5015
5016 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5017 struct io_comp_state *cs)
5018 {
5019 struct io_async_connect __io, *io;
5020 unsigned file_flags;
5021 int ret;
5022
5023 if (req->async_data) {
5024 io = req->async_data;
5025 } else {
5026 ret = move_addr_to_kernel(req->connect.addr,
5027 req->connect.addr_len,
5028 &__io.address);
5029 if (ret)
5030 goto out;
5031 io = &__io;
5032 }
5033
5034 file_flags = force_nonblock ? O_NONBLOCK : 0;
5035
5036 ret = __sys_connect_file(req->file, &io->address,
5037 req->connect.addr_len, file_flags);
5038 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5039 if (req->async_data)
5040 return -EAGAIN;
5041 if (io_alloc_async_data(req)) {
5042 ret = -ENOMEM;
5043 goto out;
5044 }
5045 io = req->async_data;
5046 memcpy(req->async_data, &__io, sizeof(__io));
5047 return -EAGAIN;
5048 }
5049 if (ret == -ERESTARTSYS)
5050 ret = -EINTR;
5051 out:
5052 if (ret < 0)
5053 req_set_fail_links(req);
5054 __io_req_complete(req, ret, 0, cs);
5055 return 0;
5056 }
5057 #else /* !CONFIG_NET */
5058 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5059 {
5060 return -EOPNOTSUPP;
5061 }
5062
5063 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5064 struct io_comp_state *cs)
5065 {
5066 return -EOPNOTSUPP;
5067 }
5068
5069 static int io_send(struct io_kiocb *req, bool force_nonblock,
5070 struct io_comp_state *cs)
5071 {
5072 return -EOPNOTSUPP;
5073 }
5074
5075 static int io_recvmsg_prep(struct io_kiocb *req,
5076 const struct io_uring_sqe *sqe)
5077 {
5078 return -EOPNOTSUPP;
5079 }
5080
5081 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5082 struct io_comp_state *cs)
5083 {
5084 return -EOPNOTSUPP;
5085 }
5086
5087 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5088 struct io_comp_state *cs)
5089 {
5090 return -EOPNOTSUPP;
5091 }
5092
5093 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5094 {
5095 return -EOPNOTSUPP;
5096 }
5097
5098 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5099 struct io_comp_state *cs)
5100 {
5101 return -EOPNOTSUPP;
5102 }
5103
5104 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5105 {
5106 return -EOPNOTSUPP;
5107 }
5108
5109 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5110 struct io_comp_state *cs)
5111 {
5112 return -EOPNOTSUPP;
5113 }
5114 #endif /* CONFIG_NET */
5115
5116 struct io_poll_table {
5117 struct poll_table_struct pt;
5118 struct io_kiocb *req;
5119 int error;
5120 };
5121
5122 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5123 __poll_t mask, task_work_func_t func)
5124 {
5125 int ret;
5126
5127 /* for instances that support it check for an event match first: */
5128 if (mask && !(mask & poll->events))
5129 return 0;
5130
5131 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5132
5133 list_del_init(&poll->wait.entry);
5134
5135 req->result = mask;
5136 init_task_work(&req->task_work, func);
5137 percpu_ref_get(&req->ctx->refs);
5138
5139 /*
5140 * If this fails, then the task is exiting. When a task exits, the
5141 * work gets canceled, so just cancel this request as well instead
5142 * of executing it. We can't safely execute it anyway, as we may not
5143 * have the needed state needed for it anyway.
5144 */
5145 ret = io_req_task_work_add(req);
5146 if (unlikely(ret)) {
5147 struct task_struct *tsk;
5148
5149 WRITE_ONCE(poll->canceled, true);
5150 tsk = io_wq_get_task(req->ctx->io_wq);
5151 task_work_add(tsk, &req->task_work, TWA_NONE);
5152 wake_up_process(tsk);
5153 }
5154 return 1;
5155 }
5156
5157 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5158 __acquires(&req->ctx->completion_lock)
5159 {
5160 struct io_ring_ctx *ctx = req->ctx;
5161
5162 if (!req->result && !READ_ONCE(poll->canceled)) {
5163 struct poll_table_struct pt = { ._key = poll->events };
5164
5165 req->result = vfs_poll(req->file, &pt) & poll->events;
5166 }
5167
5168 spin_lock_irq(&ctx->completion_lock);
5169 if (!req->result && !READ_ONCE(poll->canceled)) {
5170 add_wait_queue(poll->head, &poll->wait);
5171 return true;
5172 }
5173
5174 return false;
5175 }
5176
5177 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5178 {
5179 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5180 if (req->opcode == IORING_OP_POLL_ADD)
5181 return req->async_data;
5182 return req->apoll->double_poll;
5183 }
5184
5185 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5186 {
5187 if (req->opcode == IORING_OP_POLL_ADD)
5188 return &req->poll;
5189 return &req->apoll->poll;
5190 }
5191
5192 static void io_poll_remove_double(struct io_kiocb *req)
5193 {
5194 struct io_poll_iocb *poll = io_poll_get_double(req);
5195
5196 lockdep_assert_held(&req->ctx->completion_lock);
5197
5198 if (poll && poll->head) {
5199 struct wait_queue_head *head = poll->head;
5200
5201 spin_lock(&head->lock);
5202 list_del_init(&poll->wait.entry);
5203 if (poll->wait.private)
5204 refcount_dec(&req->refs);
5205 poll->head = NULL;
5206 spin_unlock(&head->lock);
5207 }
5208 }
5209
5210 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5211 {
5212 struct io_ring_ctx *ctx = req->ctx;
5213
5214 io_poll_remove_double(req);
5215 req->poll.done = true;
5216 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5217 io_commit_cqring(ctx);
5218 }
5219
5220 static void io_poll_task_func(struct callback_head *cb)
5221 {
5222 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5223 struct io_ring_ctx *ctx = req->ctx;
5224 struct io_kiocb *nxt;
5225
5226 if (io_poll_rewait(req, &req->poll)) {
5227 spin_unlock_irq(&ctx->completion_lock);
5228 } else {
5229 hash_del(&req->hash_node);
5230 io_poll_complete(req, req->result, 0);
5231 spin_unlock_irq(&ctx->completion_lock);
5232
5233 nxt = io_put_req_find_next(req);
5234 io_cqring_ev_posted(ctx);
5235 if (nxt)
5236 __io_req_task_submit(nxt);
5237 }
5238
5239 percpu_ref_put(&ctx->refs);
5240 }
5241
5242 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5243 int sync, void *key)
5244 {
5245 struct io_kiocb *req = wait->private;
5246 struct io_poll_iocb *poll = io_poll_get_single(req);
5247 __poll_t mask = key_to_poll(key);
5248
5249 /* for instances that support it check for an event match first: */
5250 if (mask && !(mask & poll->events))
5251 return 0;
5252
5253 list_del_init(&wait->entry);
5254
5255 if (poll && poll->head) {
5256 bool done;
5257
5258 spin_lock(&poll->head->lock);
5259 done = list_empty(&poll->wait.entry);
5260 if (!done)
5261 list_del_init(&poll->wait.entry);
5262 /* make sure double remove sees this as being gone */
5263 wait->private = NULL;
5264 spin_unlock(&poll->head->lock);
5265 if (!done) {
5266 /* use wait func handler, so it matches the rq type */
5267 poll->wait.func(&poll->wait, mode, sync, key);
5268 }
5269 }
5270 refcount_dec(&req->refs);
5271 return 1;
5272 }
5273
5274 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5275 wait_queue_func_t wake_func)
5276 {
5277 poll->head = NULL;
5278 poll->done = false;
5279 poll->canceled = false;
5280 poll->events = events;
5281 INIT_LIST_HEAD(&poll->wait.entry);
5282 init_waitqueue_func_entry(&poll->wait, wake_func);
5283 }
5284
5285 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5286 struct wait_queue_head *head,
5287 struct io_poll_iocb **poll_ptr)
5288 {
5289 struct io_kiocb *req = pt->req;
5290
5291 /*
5292 * If poll->head is already set, it's because the file being polled
5293 * uses multiple waitqueues for poll handling (eg one for read, one
5294 * for write). Setup a separate io_poll_iocb if this happens.
5295 */
5296 if (unlikely(poll->head)) {
5297 struct io_poll_iocb *poll_one = poll;
5298
5299 /* already have a 2nd entry, fail a third attempt */
5300 if (*poll_ptr) {
5301 pt->error = -EINVAL;
5302 return;
5303 }
5304 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5305 if (!poll) {
5306 pt->error = -ENOMEM;
5307 return;
5308 }
5309 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5310 refcount_inc(&req->refs);
5311 poll->wait.private = req;
5312 *poll_ptr = poll;
5313 }
5314
5315 pt->error = 0;
5316 poll->head = head;
5317
5318 if (poll->events & EPOLLEXCLUSIVE)
5319 add_wait_queue_exclusive(head, &poll->wait);
5320 else
5321 add_wait_queue(head, &poll->wait);
5322 }
5323
5324 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5325 struct poll_table_struct *p)
5326 {
5327 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5328 struct async_poll *apoll = pt->req->apoll;
5329
5330 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5331 }
5332
5333 static void io_async_task_func(struct callback_head *cb)
5334 {
5335 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5336 struct async_poll *apoll = req->apoll;
5337 struct io_ring_ctx *ctx = req->ctx;
5338
5339 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5340
5341 if (io_poll_rewait(req, &apoll->poll)) {
5342 spin_unlock_irq(&ctx->completion_lock);
5343 percpu_ref_put(&ctx->refs);
5344 return;
5345 }
5346
5347 /* If req is still hashed, it cannot have been canceled. Don't check. */
5348 if (hash_hashed(&req->hash_node))
5349 hash_del(&req->hash_node);
5350
5351 io_poll_remove_double(req);
5352 spin_unlock_irq(&ctx->completion_lock);
5353
5354 if (!READ_ONCE(apoll->poll.canceled))
5355 __io_req_task_submit(req);
5356 else
5357 __io_req_task_cancel(req, -ECANCELED);
5358
5359 percpu_ref_put(&ctx->refs);
5360 kfree(apoll->double_poll);
5361 kfree(apoll);
5362 }
5363
5364 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5365 void *key)
5366 {
5367 struct io_kiocb *req = wait->private;
5368 struct io_poll_iocb *poll = &req->apoll->poll;
5369
5370 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5371 key_to_poll(key));
5372
5373 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5374 }
5375
5376 static void io_poll_req_insert(struct io_kiocb *req)
5377 {
5378 struct io_ring_ctx *ctx = req->ctx;
5379 struct hlist_head *list;
5380
5381 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5382 hlist_add_head(&req->hash_node, list);
5383 }
5384
5385 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5386 struct io_poll_iocb *poll,
5387 struct io_poll_table *ipt, __poll_t mask,
5388 wait_queue_func_t wake_func)
5389 __acquires(&ctx->completion_lock)
5390 {
5391 struct io_ring_ctx *ctx = req->ctx;
5392 bool cancel = false;
5393
5394 INIT_HLIST_NODE(&req->hash_node);
5395 io_init_poll_iocb(poll, mask, wake_func);
5396 poll->file = req->file;
5397 poll->wait.private = req;
5398
5399 ipt->pt._key = mask;
5400 ipt->req = req;
5401 ipt->error = -EINVAL;
5402
5403 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5404
5405 spin_lock_irq(&ctx->completion_lock);
5406 if (likely(poll->head)) {
5407 spin_lock(&poll->head->lock);
5408 if (unlikely(list_empty(&poll->wait.entry))) {
5409 if (ipt->error)
5410 cancel = true;
5411 ipt->error = 0;
5412 mask = 0;
5413 }
5414 if (mask || ipt->error)
5415 list_del_init(&poll->wait.entry);
5416 else if (cancel)
5417 WRITE_ONCE(poll->canceled, true);
5418 else if (!poll->done) /* actually waiting for an event */
5419 io_poll_req_insert(req);
5420 spin_unlock(&poll->head->lock);
5421 }
5422
5423 return mask;
5424 }
5425
5426 static bool io_arm_poll_handler(struct io_kiocb *req)
5427 {
5428 const struct io_op_def *def = &io_op_defs[req->opcode];
5429 struct io_ring_ctx *ctx = req->ctx;
5430 struct async_poll *apoll;
5431 struct io_poll_table ipt;
5432 __poll_t mask, ret;
5433 int rw;
5434
5435 if (!req->file || !file_can_poll(req->file))
5436 return false;
5437 if (req->flags & REQ_F_POLLED)
5438 return false;
5439 if (def->pollin)
5440 rw = READ;
5441 else if (def->pollout)
5442 rw = WRITE;
5443 else
5444 return false;
5445 /* if we can't nonblock try, then no point in arming a poll handler */
5446 if (!io_file_supports_async(req->file, rw))
5447 return false;
5448
5449 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5450 if (unlikely(!apoll))
5451 return false;
5452 apoll->double_poll = NULL;
5453
5454 req->flags |= REQ_F_POLLED;
5455 req->apoll = apoll;
5456
5457 mask = 0;
5458 if (def->pollin)
5459 mask |= POLLIN | POLLRDNORM;
5460 if (def->pollout)
5461 mask |= POLLOUT | POLLWRNORM;
5462
5463 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5464 if ((req->opcode == IORING_OP_RECVMSG) &&
5465 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5466 mask &= ~POLLIN;
5467
5468 mask |= POLLERR | POLLPRI;
5469
5470 ipt.pt._qproc = io_async_queue_proc;
5471
5472 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5473 io_async_wake);
5474 if (ret || ipt.error) {
5475 io_poll_remove_double(req);
5476 spin_unlock_irq(&ctx->completion_lock);
5477 kfree(apoll->double_poll);
5478 kfree(apoll);
5479 return false;
5480 }
5481 spin_unlock_irq(&ctx->completion_lock);
5482 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5483 apoll->poll.events);
5484 return true;
5485 }
5486
5487 static bool __io_poll_remove_one(struct io_kiocb *req,
5488 struct io_poll_iocb *poll)
5489 {
5490 bool do_complete = false;
5491
5492 spin_lock(&poll->head->lock);
5493 WRITE_ONCE(poll->canceled, true);
5494 if (!list_empty(&poll->wait.entry)) {
5495 list_del_init(&poll->wait.entry);
5496 do_complete = true;
5497 }
5498 spin_unlock(&poll->head->lock);
5499 hash_del(&req->hash_node);
5500 return do_complete;
5501 }
5502
5503 static bool io_poll_remove_one(struct io_kiocb *req)
5504 {
5505 bool do_complete;
5506
5507 io_poll_remove_double(req);
5508
5509 if (req->opcode == IORING_OP_POLL_ADD) {
5510 do_complete = __io_poll_remove_one(req, &req->poll);
5511 } else {
5512 struct async_poll *apoll = req->apoll;
5513
5514 /* non-poll requests have submit ref still */
5515 do_complete = __io_poll_remove_one(req, &apoll->poll);
5516 if (do_complete) {
5517 io_put_req(req);
5518 kfree(apoll->double_poll);
5519 kfree(apoll);
5520 }
5521 }
5522
5523 if (do_complete) {
5524 io_cqring_fill_event(req, -ECANCELED);
5525 io_commit_cqring(req->ctx);
5526 req_set_fail_links(req);
5527 io_put_req_deferred(req, 1);
5528 }
5529
5530 return do_complete;
5531 }
5532
5533 /*
5534 * Returns true if we found and killed one or more poll requests
5535 */
5536 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5537 struct files_struct *files)
5538 {
5539 struct hlist_node *tmp;
5540 struct io_kiocb *req;
5541 int posted = 0, i;
5542
5543 spin_lock_irq(&ctx->completion_lock);
5544 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5545 struct hlist_head *list;
5546
5547 list = &ctx->cancel_hash[i];
5548 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5549 if (io_match_task(req, tsk, files))
5550 posted += io_poll_remove_one(req);
5551 }
5552 }
5553 spin_unlock_irq(&ctx->completion_lock);
5554
5555 if (posted)
5556 io_cqring_ev_posted(ctx);
5557
5558 return posted != 0;
5559 }
5560
5561 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5562 {
5563 struct hlist_head *list;
5564 struct io_kiocb *req;
5565
5566 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5567 hlist_for_each_entry(req, list, hash_node) {
5568 if (sqe_addr != req->user_data)
5569 continue;
5570 if (io_poll_remove_one(req))
5571 return 0;
5572 return -EALREADY;
5573 }
5574
5575 return -ENOENT;
5576 }
5577
5578 static int io_poll_remove_prep(struct io_kiocb *req,
5579 const struct io_uring_sqe *sqe)
5580 {
5581 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5582 return -EINVAL;
5583 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5584 sqe->poll_events)
5585 return -EINVAL;
5586
5587 req->poll_remove.addr = READ_ONCE(sqe->addr);
5588 return 0;
5589 }
5590
5591 /*
5592 * Find a running poll command that matches one specified in sqe->addr,
5593 * and remove it if found.
5594 */
5595 static int io_poll_remove(struct io_kiocb *req)
5596 {
5597 struct io_ring_ctx *ctx = req->ctx;
5598 int ret;
5599
5600 spin_lock_irq(&ctx->completion_lock);
5601 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5602 spin_unlock_irq(&ctx->completion_lock);
5603
5604 if (ret < 0)
5605 req_set_fail_links(req);
5606 io_req_complete(req, ret);
5607 return 0;
5608 }
5609
5610 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5611 void *key)
5612 {
5613 struct io_kiocb *req = wait->private;
5614 struct io_poll_iocb *poll = &req->poll;
5615
5616 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5617 }
5618
5619 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5620 struct poll_table_struct *p)
5621 {
5622 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5623
5624 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5625 }
5626
5627 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5628 {
5629 struct io_poll_iocb *poll = &req->poll;
5630 u32 events;
5631
5632 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5633 return -EINVAL;
5634 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5635 return -EINVAL;
5636
5637 events = READ_ONCE(sqe->poll32_events);
5638 #ifdef __BIG_ENDIAN
5639 events = swahw32(events);
5640 #endif
5641 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5642 (events & EPOLLEXCLUSIVE);
5643 return 0;
5644 }
5645
5646 static int io_poll_add(struct io_kiocb *req)
5647 {
5648 struct io_poll_iocb *poll = &req->poll;
5649 struct io_ring_ctx *ctx = req->ctx;
5650 struct io_poll_table ipt;
5651 __poll_t mask;
5652
5653 ipt.pt._qproc = io_poll_queue_proc;
5654
5655 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5656 io_poll_wake);
5657
5658 if (mask) { /* no async, we'd stolen it */
5659 ipt.error = 0;
5660 io_poll_complete(req, mask, 0);
5661 }
5662 spin_unlock_irq(&ctx->completion_lock);
5663
5664 if (mask) {
5665 io_cqring_ev_posted(ctx);
5666 io_put_req(req);
5667 }
5668 return ipt.error;
5669 }
5670
5671 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5672 {
5673 struct io_timeout_data *data = container_of(timer,
5674 struct io_timeout_data, timer);
5675 struct io_kiocb *req = data->req;
5676 struct io_ring_ctx *ctx = req->ctx;
5677 unsigned long flags;
5678
5679 spin_lock_irqsave(&ctx->completion_lock, flags);
5680 list_del_init(&req->timeout.list);
5681 atomic_set(&req->ctx->cq_timeouts,
5682 atomic_read(&req->ctx->cq_timeouts) + 1);
5683
5684 io_cqring_fill_event(req, -ETIME);
5685 io_commit_cqring(ctx);
5686 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5687
5688 io_cqring_ev_posted(ctx);
5689 req_set_fail_links(req);
5690 io_put_req(req);
5691 return HRTIMER_NORESTART;
5692 }
5693
5694 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5695 __u64 user_data)
5696 {
5697 struct io_timeout_data *io;
5698 struct io_kiocb *req;
5699 int ret = -ENOENT;
5700
5701 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5702 if (user_data == req->user_data) {
5703 ret = 0;
5704 break;
5705 }
5706 }
5707
5708 if (ret == -ENOENT)
5709 return ERR_PTR(ret);
5710
5711 io = req->async_data;
5712 ret = hrtimer_try_to_cancel(&io->timer);
5713 if (ret == -1)
5714 return ERR_PTR(-EALREADY);
5715 list_del_init(&req->timeout.list);
5716 return req;
5717 }
5718
5719 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5720 {
5721 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5722
5723 if (IS_ERR(req))
5724 return PTR_ERR(req);
5725
5726 req_set_fail_links(req);
5727 io_cqring_fill_event(req, -ECANCELED);
5728 io_put_req_deferred(req, 1);
5729 return 0;
5730 }
5731
5732 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5733 struct timespec64 *ts, enum hrtimer_mode mode)
5734 {
5735 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5736 struct io_timeout_data *data;
5737
5738 if (IS_ERR(req))
5739 return PTR_ERR(req);
5740
5741 req->timeout.off = 0; /* noseq */
5742 data = req->async_data;
5743 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5744 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5745 data->timer.function = io_timeout_fn;
5746 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5747 return 0;
5748 }
5749
5750 static int io_timeout_remove_prep(struct io_kiocb *req,
5751 const struct io_uring_sqe *sqe)
5752 {
5753 struct io_timeout_rem *tr = &req->timeout_rem;
5754
5755 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5756 return -EINVAL;
5757 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5758 return -EINVAL;
5759 if (sqe->ioprio || sqe->buf_index || sqe->len)
5760 return -EINVAL;
5761
5762 tr->addr = READ_ONCE(sqe->addr);
5763 tr->flags = READ_ONCE(sqe->timeout_flags);
5764 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5765 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5766 return -EINVAL;
5767 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5768 return -EFAULT;
5769 } else if (tr->flags) {
5770 /* timeout removal doesn't support flags */
5771 return -EINVAL;
5772 }
5773
5774 return 0;
5775 }
5776
5777 /*
5778 * Remove or update an existing timeout command
5779 */
5780 static int io_timeout_remove(struct io_kiocb *req)
5781 {
5782 struct io_timeout_rem *tr = &req->timeout_rem;
5783 struct io_ring_ctx *ctx = req->ctx;
5784 int ret;
5785
5786 spin_lock_irq(&ctx->completion_lock);
5787 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5788 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5789 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5790
5791 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5792 } else {
5793 ret = io_timeout_cancel(ctx, tr->addr);
5794 }
5795
5796 io_cqring_fill_event(req, ret);
5797 io_commit_cqring(ctx);
5798 spin_unlock_irq(&ctx->completion_lock);
5799 io_cqring_ev_posted(ctx);
5800 if (ret < 0)
5801 req_set_fail_links(req);
5802 io_put_req(req);
5803 return 0;
5804 }
5805
5806 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5807 bool is_timeout_link)
5808 {
5809 struct io_timeout_data *data;
5810 unsigned flags;
5811 u32 off = READ_ONCE(sqe->off);
5812
5813 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5814 return -EINVAL;
5815 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5816 return -EINVAL;
5817 if (off && is_timeout_link)
5818 return -EINVAL;
5819 flags = READ_ONCE(sqe->timeout_flags);
5820 if (flags & ~IORING_TIMEOUT_ABS)
5821 return -EINVAL;
5822
5823 req->timeout.off = off;
5824
5825 if (!req->async_data && io_alloc_async_data(req))
5826 return -ENOMEM;
5827
5828 data = req->async_data;
5829 data->req = req;
5830
5831 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5832 return -EFAULT;
5833
5834 if (flags & IORING_TIMEOUT_ABS)
5835 data->mode = HRTIMER_MODE_ABS;
5836 else
5837 data->mode = HRTIMER_MODE_REL;
5838
5839 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5840 return 0;
5841 }
5842
5843 static int io_timeout(struct io_kiocb *req)
5844 {
5845 struct io_ring_ctx *ctx = req->ctx;
5846 struct io_timeout_data *data = req->async_data;
5847 struct list_head *entry;
5848 u32 tail, off = req->timeout.off;
5849
5850 spin_lock_irq(&ctx->completion_lock);
5851
5852 /*
5853 * sqe->off holds how many events that need to occur for this
5854 * timeout event to be satisfied. If it isn't set, then this is
5855 * a pure timeout request, sequence isn't used.
5856 */
5857 if (io_is_timeout_noseq(req)) {
5858 entry = ctx->timeout_list.prev;
5859 goto add;
5860 }
5861
5862 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5863 req->timeout.target_seq = tail + off;
5864
5865 /* Update the last seq here in case io_flush_timeouts() hasn't.
5866 * This is safe because ->completion_lock is held, and submissions
5867 * and completions are never mixed in the same ->completion_lock section.
5868 */
5869 ctx->cq_last_tm_flush = tail;
5870
5871 /*
5872 * Insertion sort, ensuring the first entry in the list is always
5873 * the one we need first.
5874 */
5875 list_for_each_prev(entry, &ctx->timeout_list) {
5876 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5877 timeout.list);
5878
5879 if (io_is_timeout_noseq(nxt))
5880 continue;
5881 /* nxt.seq is behind @tail, otherwise would've been completed */
5882 if (off >= nxt->timeout.target_seq - tail)
5883 break;
5884 }
5885 add:
5886 list_add(&req->timeout.list, entry);
5887 data->timer.function = io_timeout_fn;
5888 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5889 spin_unlock_irq(&ctx->completion_lock);
5890 return 0;
5891 }
5892
5893 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5894 {
5895 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5896
5897 return req->user_data == (unsigned long) data;
5898 }
5899
5900 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5901 {
5902 enum io_wq_cancel cancel_ret;
5903 int ret = 0;
5904
5905 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5906 switch (cancel_ret) {
5907 case IO_WQ_CANCEL_OK:
5908 ret = 0;
5909 break;
5910 case IO_WQ_CANCEL_RUNNING:
5911 ret = -EALREADY;
5912 break;
5913 case IO_WQ_CANCEL_NOTFOUND:
5914 ret = -ENOENT;
5915 break;
5916 }
5917
5918 return ret;
5919 }
5920
5921 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5922 struct io_kiocb *req, __u64 sqe_addr,
5923 int success_ret)
5924 {
5925 unsigned long flags;
5926 int ret;
5927
5928 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5929 if (ret != -ENOENT) {
5930 spin_lock_irqsave(&ctx->completion_lock, flags);
5931 goto done;
5932 }
5933
5934 spin_lock_irqsave(&ctx->completion_lock, flags);
5935 ret = io_timeout_cancel(ctx, sqe_addr);
5936 if (ret != -ENOENT)
5937 goto done;
5938 ret = io_poll_cancel(ctx, sqe_addr);
5939 done:
5940 if (!ret)
5941 ret = success_ret;
5942 io_cqring_fill_event(req, ret);
5943 io_commit_cqring(ctx);
5944 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5945 io_cqring_ev_posted(ctx);
5946
5947 if (ret < 0)
5948 req_set_fail_links(req);
5949 io_put_req(req);
5950 }
5951
5952 static int io_async_cancel_prep(struct io_kiocb *req,
5953 const struct io_uring_sqe *sqe)
5954 {
5955 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5956 return -EINVAL;
5957 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5958 return -EINVAL;
5959 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5960 return -EINVAL;
5961
5962 req->cancel.addr = READ_ONCE(sqe->addr);
5963 return 0;
5964 }
5965
5966 static int io_async_cancel(struct io_kiocb *req)
5967 {
5968 struct io_ring_ctx *ctx = req->ctx;
5969
5970 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5971 return 0;
5972 }
5973
5974 static int io_files_update_prep(struct io_kiocb *req,
5975 const struct io_uring_sqe *sqe)
5976 {
5977 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5978 return -EINVAL;
5979 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5980 return -EINVAL;
5981 if (sqe->ioprio || sqe->rw_flags)
5982 return -EINVAL;
5983
5984 req->files_update.offset = READ_ONCE(sqe->off);
5985 req->files_update.nr_args = READ_ONCE(sqe->len);
5986 if (!req->files_update.nr_args)
5987 return -EINVAL;
5988 req->files_update.arg = READ_ONCE(sqe->addr);
5989 return 0;
5990 }
5991
5992 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5993 struct io_comp_state *cs)
5994 {
5995 struct io_ring_ctx *ctx = req->ctx;
5996 struct io_uring_files_update up;
5997 int ret;
5998
5999 if (force_nonblock)
6000 return -EAGAIN;
6001
6002 up.offset = req->files_update.offset;
6003 up.fds = req->files_update.arg;
6004
6005 mutex_lock(&ctx->uring_lock);
6006 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6007 mutex_unlock(&ctx->uring_lock);
6008
6009 if (ret < 0)
6010 req_set_fail_links(req);
6011 __io_req_complete(req, ret, 0, cs);
6012 return 0;
6013 }
6014
6015 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6016 {
6017 switch (req->opcode) {
6018 case IORING_OP_NOP:
6019 return 0;
6020 case IORING_OP_READV:
6021 case IORING_OP_READ_FIXED:
6022 case IORING_OP_READ:
6023 return io_read_prep(req, sqe);
6024 case IORING_OP_WRITEV:
6025 case IORING_OP_WRITE_FIXED:
6026 case IORING_OP_WRITE:
6027 return io_write_prep(req, sqe);
6028 case IORING_OP_POLL_ADD:
6029 return io_poll_add_prep(req, sqe);
6030 case IORING_OP_POLL_REMOVE:
6031 return io_poll_remove_prep(req, sqe);
6032 case IORING_OP_FSYNC:
6033 return io_prep_fsync(req, sqe);
6034 case IORING_OP_SYNC_FILE_RANGE:
6035 return io_prep_sfr(req, sqe);
6036 case IORING_OP_SENDMSG:
6037 case IORING_OP_SEND:
6038 return io_sendmsg_prep(req, sqe);
6039 case IORING_OP_RECVMSG:
6040 case IORING_OP_RECV:
6041 return io_recvmsg_prep(req, sqe);
6042 case IORING_OP_CONNECT:
6043 return io_connect_prep(req, sqe);
6044 case IORING_OP_TIMEOUT:
6045 return io_timeout_prep(req, sqe, false);
6046 case IORING_OP_TIMEOUT_REMOVE:
6047 return io_timeout_remove_prep(req, sqe);
6048 case IORING_OP_ASYNC_CANCEL:
6049 return io_async_cancel_prep(req, sqe);
6050 case IORING_OP_LINK_TIMEOUT:
6051 return io_timeout_prep(req, sqe, true);
6052 case IORING_OP_ACCEPT:
6053 return io_accept_prep(req, sqe);
6054 case IORING_OP_FALLOCATE:
6055 return io_fallocate_prep(req, sqe);
6056 case IORING_OP_OPENAT:
6057 return io_openat_prep(req, sqe);
6058 case IORING_OP_CLOSE:
6059 return io_close_prep(req, sqe);
6060 case IORING_OP_FILES_UPDATE:
6061 return io_files_update_prep(req, sqe);
6062 case IORING_OP_STATX:
6063 return io_statx_prep(req, sqe);
6064 case IORING_OP_FADVISE:
6065 return io_fadvise_prep(req, sqe);
6066 case IORING_OP_MADVISE:
6067 return io_madvise_prep(req, sqe);
6068 case IORING_OP_OPENAT2:
6069 return io_openat2_prep(req, sqe);
6070 case IORING_OP_EPOLL_CTL:
6071 return io_epoll_ctl_prep(req, sqe);
6072 case IORING_OP_SPLICE:
6073 return io_splice_prep(req, sqe);
6074 case IORING_OP_PROVIDE_BUFFERS:
6075 return io_provide_buffers_prep(req, sqe);
6076 case IORING_OP_REMOVE_BUFFERS:
6077 return io_remove_buffers_prep(req, sqe);
6078 case IORING_OP_TEE:
6079 return io_tee_prep(req, sqe);
6080 case IORING_OP_SHUTDOWN:
6081 return io_shutdown_prep(req, sqe);
6082 case IORING_OP_RENAMEAT:
6083 return io_renameat_prep(req, sqe);
6084 case IORING_OP_UNLINKAT:
6085 return io_unlinkat_prep(req, sqe);
6086 }
6087
6088 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6089 req->opcode);
6090 return-EINVAL;
6091 }
6092
6093 static int io_req_defer_prep(struct io_kiocb *req,
6094 const struct io_uring_sqe *sqe)
6095 {
6096 if (!sqe)
6097 return 0;
6098 if (io_alloc_async_data(req))
6099 return -EAGAIN;
6100 return io_req_prep(req, sqe);
6101 }
6102
6103 static u32 io_get_sequence(struct io_kiocb *req)
6104 {
6105 struct io_kiocb *pos;
6106 struct io_ring_ctx *ctx = req->ctx;
6107 u32 total_submitted, nr_reqs = 0;
6108
6109 io_for_each_link(pos, req)
6110 nr_reqs++;
6111
6112 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6113 return total_submitted - nr_reqs;
6114 }
6115
6116 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6117 {
6118 struct io_ring_ctx *ctx = req->ctx;
6119 struct io_defer_entry *de;
6120 int ret;
6121 u32 seq;
6122
6123 /* Still need defer if there is pending req in defer list. */
6124 if (likely(list_empty_careful(&ctx->defer_list) &&
6125 !(req->flags & REQ_F_IO_DRAIN)))
6126 return 0;
6127
6128 seq = io_get_sequence(req);
6129 /* Still a chance to pass the sequence check */
6130 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6131 return 0;
6132
6133 if (!req->async_data) {
6134 ret = io_req_defer_prep(req, sqe);
6135 if (ret)
6136 return ret;
6137 }
6138 io_prep_async_link(req);
6139 de = kmalloc(sizeof(*de), GFP_KERNEL);
6140 if (!de)
6141 return -ENOMEM;
6142
6143 spin_lock_irq(&ctx->completion_lock);
6144 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6145 spin_unlock_irq(&ctx->completion_lock);
6146 kfree(de);
6147 io_queue_async_work(req);
6148 return -EIOCBQUEUED;
6149 }
6150
6151 trace_io_uring_defer(ctx, req, req->user_data);
6152 de->req = req;
6153 de->seq = seq;
6154 list_add_tail(&de->list, &ctx->defer_list);
6155 spin_unlock_irq(&ctx->completion_lock);
6156 return -EIOCBQUEUED;
6157 }
6158
6159 static void io_req_drop_files(struct io_kiocb *req)
6160 {
6161 struct io_ring_ctx *ctx = req->ctx;
6162 struct io_uring_task *tctx = req->task->io_uring;
6163 unsigned long flags;
6164
6165 put_files_struct(req->work.identity->files);
6166 put_nsproxy(req->work.identity->nsproxy);
6167 spin_lock_irqsave(&ctx->inflight_lock, flags);
6168 list_del(&req->inflight_entry);
6169 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6170 req->flags &= ~REQ_F_INFLIGHT;
6171 req->work.flags &= ~IO_WQ_WORK_FILES;
6172 if (atomic_read(&tctx->in_idle))
6173 wake_up(&tctx->wait);
6174 }
6175
6176 static void __io_clean_op(struct io_kiocb *req)
6177 {
6178 if (req->flags & REQ_F_BUFFER_SELECTED) {
6179 switch (req->opcode) {
6180 case IORING_OP_READV:
6181 case IORING_OP_READ_FIXED:
6182 case IORING_OP_READ:
6183 kfree((void *)(unsigned long)req->rw.addr);
6184 break;
6185 case IORING_OP_RECVMSG:
6186 case IORING_OP_RECV:
6187 kfree(req->sr_msg.kbuf);
6188 break;
6189 }
6190 req->flags &= ~REQ_F_BUFFER_SELECTED;
6191 }
6192
6193 if (req->flags & REQ_F_NEED_CLEANUP) {
6194 switch (req->opcode) {
6195 case IORING_OP_READV:
6196 case IORING_OP_READ_FIXED:
6197 case IORING_OP_READ:
6198 case IORING_OP_WRITEV:
6199 case IORING_OP_WRITE_FIXED:
6200 case IORING_OP_WRITE: {
6201 struct io_async_rw *io = req->async_data;
6202 if (io->free_iovec)
6203 kfree(io->free_iovec);
6204 break;
6205 }
6206 case IORING_OP_RECVMSG:
6207 case IORING_OP_SENDMSG: {
6208 struct io_async_msghdr *io = req->async_data;
6209 if (io->iov != io->fast_iov)
6210 kfree(io->iov);
6211 break;
6212 }
6213 case IORING_OP_SPLICE:
6214 case IORING_OP_TEE:
6215 io_put_file(req, req->splice.file_in,
6216 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6217 break;
6218 case IORING_OP_OPENAT:
6219 case IORING_OP_OPENAT2:
6220 if (req->open.filename)
6221 putname(req->open.filename);
6222 break;
6223 case IORING_OP_RENAMEAT:
6224 putname(req->rename.oldpath);
6225 putname(req->rename.newpath);
6226 break;
6227 case IORING_OP_UNLINKAT:
6228 putname(req->unlink.filename);
6229 break;
6230 }
6231 req->flags &= ~REQ_F_NEED_CLEANUP;
6232 }
6233
6234 if (req->flags & REQ_F_INFLIGHT)
6235 io_req_drop_files(req);
6236 }
6237
6238 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6239 struct io_comp_state *cs)
6240 {
6241 struct io_ring_ctx *ctx = req->ctx;
6242 int ret;
6243
6244 switch (req->opcode) {
6245 case IORING_OP_NOP:
6246 ret = io_nop(req, cs);
6247 break;
6248 case IORING_OP_READV:
6249 case IORING_OP_READ_FIXED:
6250 case IORING_OP_READ:
6251 ret = io_read(req, force_nonblock, cs);
6252 break;
6253 case IORING_OP_WRITEV:
6254 case IORING_OP_WRITE_FIXED:
6255 case IORING_OP_WRITE:
6256 ret = io_write(req, force_nonblock, cs);
6257 break;
6258 case IORING_OP_FSYNC:
6259 ret = io_fsync(req, force_nonblock);
6260 break;
6261 case IORING_OP_POLL_ADD:
6262 ret = io_poll_add(req);
6263 break;
6264 case IORING_OP_POLL_REMOVE:
6265 ret = io_poll_remove(req);
6266 break;
6267 case IORING_OP_SYNC_FILE_RANGE:
6268 ret = io_sync_file_range(req, force_nonblock);
6269 break;
6270 case IORING_OP_SENDMSG:
6271 ret = io_sendmsg(req, force_nonblock, cs);
6272 break;
6273 case IORING_OP_SEND:
6274 ret = io_send(req, force_nonblock, cs);
6275 break;
6276 case IORING_OP_RECVMSG:
6277 ret = io_recvmsg(req, force_nonblock, cs);
6278 break;
6279 case IORING_OP_RECV:
6280 ret = io_recv(req, force_nonblock, cs);
6281 break;
6282 case IORING_OP_TIMEOUT:
6283 ret = io_timeout(req);
6284 break;
6285 case IORING_OP_TIMEOUT_REMOVE:
6286 ret = io_timeout_remove(req);
6287 break;
6288 case IORING_OP_ACCEPT:
6289 ret = io_accept(req, force_nonblock, cs);
6290 break;
6291 case IORING_OP_CONNECT:
6292 ret = io_connect(req, force_nonblock, cs);
6293 break;
6294 case IORING_OP_ASYNC_CANCEL:
6295 ret = io_async_cancel(req);
6296 break;
6297 case IORING_OP_FALLOCATE:
6298 ret = io_fallocate(req, force_nonblock);
6299 break;
6300 case IORING_OP_OPENAT:
6301 ret = io_openat(req, force_nonblock);
6302 break;
6303 case IORING_OP_CLOSE:
6304 ret = io_close(req, force_nonblock, cs);
6305 break;
6306 case IORING_OP_FILES_UPDATE:
6307 ret = io_files_update(req, force_nonblock, cs);
6308 break;
6309 case IORING_OP_STATX:
6310 ret = io_statx(req, force_nonblock);
6311 break;
6312 case IORING_OP_FADVISE:
6313 ret = io_fadvise(req, force_nonblock);
6314 break;
6315 case IORING_OP_MADVISE:
6316 ret = io_madvise(req, force_nonblock);
6317 break;
6318 case IORING_OP_OPENAT2:
6319 ret = io_openat2(req, force_nonblock);
6320 break;
6321 case IORING_OP_EPOLL_CTL:
6322 ret = io_epoll_ctl(req, force_nonblock, cs);
6323 break;
6324 case IORING_OP_SPLICE:
6325 ret = io_splice(req, force_nonblock);
6326 break;
6327 case IORING_OP_PROVIDE_BUFFERS:
6328 ret = io_provide_buffers(req, force_nonblock, cs);
6329 break;
6330 case IORING_OP_REMOVE_BUFFERS:
6331 ret = io_remove_buffers(req, force_nonblock, cs);
6332 break;
6333 case IORING_OP_TEE:
6334 ret = io_tee(req, force_nonblock);
6335 break;
6336 case IORING_OP_SHUTDOWN:
6337 ret = io_shutdown(req, force_nonblock);
6338 break;
6339 case IORING_OP_RENAMEAT:
6340 ret = io_renameat(req, force_nonblock);
6341 break;
6342 case IORING_OP_UNLINKAT:
6343 ret = io_unlinkat(req, force_nonblock);
6344 break;
6345 default:
6346 ret = -EINVAL;
6347 break;
6348 }
6349
6350 if (ret)
6351 return ret;
6352
6353 /* If the op doesn't have a file, we're not polling for it */
6354 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6355 const bool in_async = io_wq_current_is_worker();
6356
6357 /* workqueue context doesn't hold uring_lock, grab it now */
6358 if (in_async)
6359 mutex_lock(&ctx->uring_lock);
6360
6361 io_iopoll_req_issued(req, in_async);
6362
6363 if (in_async)
6364 mutex_unlock(&ctx->uring_lock);
6365 }
6366
6367 return 0;
6368 }
6369
6370 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6371 {
6372 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6373 struct io_kiocb *timeout;
6374 int ret = 0;
6375
6376 timeout = io_prep_linked_timeout(req);
6377 if (timeout)
6378 io_queue_linked_timeout(timeout);
6379
6380 /* if NO_CANCEL is set, we must still run the work */
6381 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6382 IO_WQ_WORK_CANCEL) {
6383 ret = -ECANCELED;
6384 }
6385
6386 if (!ret) {
6387 do {
6388 ret = io_issue_sqe(req, false, NULL);
6389 /*
6390 * We can get EAGAIN for polled IO even though we're
6391 * forcing a sync submission from here, since we can't
6392 * wait for request slots on the block side.
6393 */
6394 if (ret != -EAGAIN)
6395 break;
6396 cond_resched();
6397 } while (1);
6398 }
6399
6400 if (ret) {
6401 struct io_ring_ctx *lock_ctx = NULL;
6402
6403 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6404 lock_ctx = req->ctx;
6405
6406 /*
6407 * io_iopoll_complete() does not hold completion_lock to
6408 * complete polled io, so here for polled io, we can not call
6409 * io_req_complete() directly, otherwise there maybe concurrent
6410 * access to cqring, defer_list, etc, which is not safe. Given
6411 * that io_iopoll_complete() is always called under uring_lock,
6412 * so here for polled io, we also get uring_lock to complete
6413 * it.
6414 */
6415 if (lock_ctx)
6416 mutex_lock(&lock_ctx->uring_lock);
6417
6418 req_set_fail_links(req);
6419 io_req_complete(req, ret);
6420
6421 if (lock_ctx)
6422 mutex_unlock(&lock_ctx->uring_lock);
6423 }
6424
6425 return io_steal_work(req);
6426 }
6427
6428 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6429 int index)
6430 {
6431 struct fixed_file_table *table;
6432
6433 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6434 return table->files[index & IORING_FILE_TABLE_MASK];
6435 }
6436
6437 static struct file *io_file_get(struct io_submit_state *state,
6438 struct io_kiocb *req, int fd, bool fixed)
6439 {
6440 struct io_ring_ctx *ctx = req->ctx;
6441 struct file *file;
6442
6443 if (fixed) {
6444 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6445 return NULL;
6446 fd = array_index_nospec(fd, ctx->nr_user_files);
6447 file = io_file_from_index(ctx, fd);
6448 io_set_resource_node(req);
6449 } else {
6450 trace_io_uring_file_get(ctx, fd);
6451 file = __io_file_get(state, fd);
6452 }
6453
6454 return file;
6455 }
6456
6457 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6458 {
6459 struct io_timeout_data *data = container_of(timer,
6460 struct io_timeout_data, timer);
6461 struct io_kiocb *prev, *req = data->req;
6462 struct io_ring_ctx *ctx = req->ctx;
6463 unsigned long flags;
6464
6465 spin_lock_irqsave(&ctx->completion_lock, flags);
6466 prev = req->timeout.head;
6467 req->timeout.head = NULL;
6468
6469 /*
6470 * We don't expect the list to be empty, that will only happen if we
6471 * race with the completion of the linked work.
6472 */
6473 if (prev && refcount_inc_not_zero(&prev->refs))
6474 io_remove_next_linked(prev);
6475 else
6476 prev = NULL;
6477 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6478
6479 if (prev) {
6480 req_set_fail_links(prev);
6481 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6482 io_put_req(prev);
6483 } else {
6484 io_req_complete(req, -ETIME);
6485 }
6486 return HRTIMER_NORESTART;
6487 }
6488
6489 static void __io_queue_linked_timeout(struct io_kiocb *req)
6490 {
6491 /*
6492 * If the back reference is NULL, then our linked request finished
6493 * before we got a chance to setup the timer
6494 */
6495 if (req->timeout.head) {
6496 struct io_timeout_data *data = req->async_data;
6497
6498 data->timer.function = io_link_timeout_fn;
6499 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6500 data->mode);
6501 }
6502 }
6503
6504 static void io_queue_linked_timeout(struct io_kiocb *req)
6505 {
6506 struct io_ring_ctx *ctx = req->ctx;
6507
6508 spin_lock_irq(&ctx->completion_lock);
6509 __io_queue_linked_timeout(req);
6510 spin_unlock_irq(&ctx->completion_lock);
6511
6512 /* drop submission reference */
6513 io_put_req(req);
6514 }
6515
6516 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6517 {
6518 struct io_kiocb *nxt = req->link;
6519
6520 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6521 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6522 return NULL;
6523
6524 nxt->timeout.head = req;
6525 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6526 req->flags |= REQ_F_LINK_TIMEOUT;
6527 return nxt;
6528 }
6529
6530 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6531 {
6532 struct io_kiocb *linked_timeout;
6533 const struct cred *old_creds = NULL;
6534 int ret;
6535
6536 again:
6537 linked_timeout = io_prep_linked_timeout(req);
6538
6539 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6540 (req->work.flags & IO_WQ_WORK_CREDS) &&
6541 req->work.identity->creds != current_cred()) {
6542 if (old_creds)
6543 revert_creds(old_creds);
6544 if (old_creds == req->work.identity->creds)
6545 old_creds = NULL; /* restored original creds */
6546 else
6547 old_creds = override_creds(req->work.identity->creds);
6548 }
6549
6550 ret = io_issue_sqe(req, true, cs);
6551
6552 /*
6553 * We async punt it if the file wasn't marked NOWAIT, or if the file
6554 * doesn't support non-blocking read/write attempts
6555 */
6556 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6557 if (!io_arm_poll_handler(req)) {
6558 /*
6559 * Queued up for async execution, worker will release
6560 * submit reference when the iocb is actually submitted.
6561 */
6562 io_queue_async_work(req);
6563 }
6564
6565 if (linked_timeout)
6566 io_queue_linked_timeout(linked_timeout);
6567 } else if (likely(!ret)) {
6568 /* drop submission reference */
6569 req = io_put_req_find_next(req);
6570 if (linked_timeout)
6571 io_queue_linked_timeout(linked_timeout);
6572
6573 if (req) {
6574 if (!(req->flags & REQ_F_FORCE_ASYNC))
6575 goto again;
6576 io_queue_async_work(req);
6577 }
6578 } else {
6579 /* un-prep timeout, so it'll be killed as any other linked */
6580 req->flags &= ~REQ_F_LINK_TIMEOUT;
6581 req_set_fail_links(req);
6582 io_put_req(req);
6583 io_req_complete(req, ret);
6584 }
6585
6586 if (old_creds)
6587 revert_creds(old_creds);
6588 }
6589
6590 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6591 struct io_comp_state *cs)
6592 {
6593 int ret;
6594
6595 ret = io_req_defer(req, sqe);
6596 if (ret) {
6597 if (ret != -EIOCBQUEUED) {
6598 fail_req:
6599 req_set_fail_links(req);
6600 io_put_req(req);
6601 io_req_complete(req, ret);
6602 }
6603 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6604 if (!req->async_data) {
6605 ret = io_req_defer_prep(req, sqe);
6606 if (unlikely(ret))
6607 goto fail_req;
6608 }
6609 io_queue_async_work(req);
6610 } else {
6611 if (sqe) {
6612 ret = io_req_prep(req, sqe);
6613 if (unlikely(ret))
6614 goto fail_req;
6615 }
6616 __io_queue_sqe(req, cs);
6617 }
6618 }
6619
6620 static inline void io_queue_link_head(struct io_kiocb *req,
6621 struct io_comp_state *cs)
6622 {
6623 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6624 io_put_req(req);
6625 io_req_complete(req, -ECANCELED);
6626 } else
6627 io_queue_sqe(req, NULL, cs);
6628 }
6629
6630 struct io_submit_link {
6631 struct io_kiocb *head;
6632 struct io_kiocb *last;
6633 };
6634
6635 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6636 struct io_submit_link *link, struct io_comp_state *cs)
6637 {
6638 struct io_ring_ctx *ctx = req->ctx;
6639 int ret;
6640
6641 /*
6642 * If we already have a head request, queue this one for async
6643 * submittal once the head completes. If we don't have a head but
6644 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6645 * submitted sync once the chain is complete. If none of those
6646 * conditions are true (normal request), then just queue it.
6647 */
6648 if (link->head) {
6649 struct io_kiocb *head = link->head;
6650
6651 /*
6652 * Taking sequential execution of a link, draining both sides
6653 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6654 * requests in the link. So, it drains the head and the
6655 * next after the link request. The last one is done via
6656 * drain_next flag to persist the effect across calls.
6657 */
6658 if (req->flags & REQ_F_IO_DRAIN) {
6659 head->flags |= REQ_F_IO_DRAIN;
6660 ctx->drain_next = 1;
6661 }
6662 ret = io_req_defer_prep(req, sqe);
6663 if (unlikely(ret)) {
6664 /* fail even hard links since we don't submit */
6665 head->flags |= REQ_F_FAIL_LINK;
6666 return ret;
6667 }
6668 trace_io_uring_link(ctx, req, head);
6669 link->last->link = req;
6670 link->last = req;
6671
6672 /* last request of a link, enqueue the link */
6673 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6674 io_queue_link_head(head, cs);
6675 link->head = NULL;
6676 }
6677 } else {
6678 if (unlikely(ctx->drain_next)) {
6679 req->flags |= REQ_F_IO_DRAIN;
6680 ctx->drain_next = 0;
6681 }
6682 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6683 ret = io_req_defer_prep(req, sqe);
6684 if (unlikely(ret))
6685 req->flags |= REQ_F_FAIL_LINK;
6686 link->head = req;
6687 link->last = req;
6688 } else {
6689 io_queue_sqe(req, sqe, cs);
6690 }
6691 }
6692
6693 return 0;
6694 }
6695
6696 /*
6697 * Batched submission is done, ensure local IO is flushed out.
6698 */
6699 static void io_submit_state_end(struct io_submit_state *state)
6700 {
6701 if (!list_empty(&state->comp.list))
6702 io_submit_flush_completions(&state->comp);
6703 if (state->plug_started)
6704 blk_finish_plug(&state->plug);
6705 io_state_file_put(state);
6706 if (state->free_reqs)
6707 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6708 }
6709
6710 /*
6711 * Start submission side cache.
6712 */
6713 static void io_submit_state_start(struct io_submit_state *state,
6714 struct io_ring_ctx *ctx, unsigned int max_ios)
6715 {
6716 state->plug_started = false;
6717 state->comp.nr = 0;
6718 INIT_LIST_HEAD(&state->comp.list);
6719 state->comp.ctx = ctx;
6720 state->free_reqs = 0;
6721 state->file_refs = 0;
6722 state->ios_left = max_ios;
6723 }
6724
6725 static void io_commit_sqring(struct io_ring_ctx *ctx)
6726 {
6727 struct io_rings *rings = ctx->rings;
6728
6729 /*
6730 * Ensure any loads from the SQEs are done at this point,
6731 * since once we write the new head, the application could
6732 * write new data to them.
6733 */
6734 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6735 }
6736
6737 /*
6738 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6739 * that is mapped by userspace. This means that care needs to be taken to
6740 * ensure that reads are stable, as we cannot rely on userspace always
6741 * being a good citizen. If members of the sqe are validated and then later
6742 * used, it's important that those reads are done through READ_ONCE() to
6743 * prevent a re-load down the line.
6744 */
6745 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6746 {
6747 u32 *sq_array = ctx->sq_array;
6748 unsigned head;
6749
6750 /*
6751 * The cached sq head (or cq tail) serves two purposes:
6752 *
6753 * 1) allows us to batch the cost of updating the user visible
6754 * head updates.
6755 * 2) allows the kernel side to track the head on its own, even
6756 * though the application is the one updating it.
6757 */
6758 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6759 if (likely(head < ctx->sq_entries))
6760 return &ctx->sq_sqes[head];
6761
6762 /* drop invalid entries */
6763 ctx->cached_sq_dropped++;
6764 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6765 return NULL;
6766 }
6767
6768 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6769 {
6770 ctx->cached_sq_head++;
6771 }
6772
6773 /*
6774 * Check SQE restrictions (opcode and flags).
6775 *
6776 * Returns 'true' if SQE is allowed, 'false' otherwise.
6777 */
6778 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6779 struct io_kiocb *req,
6780 unsigned int sqe_flags)
6781 {
6782 if (!ctx->restricted)
6783 return true;
6784
6785 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6786 return false;
6787
6788 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6789 ctx->restrictions.sqe_flags_required)
6790 return false;
6791
6792 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6793 ctx->restrictions.sqe_flags_required))
6794 return false;
6795
6796 return true;
6797 }
6798
6799 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6800 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6801 IOSQE_BUFFER_SELECT)
6802
6803 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6804 const struct io_uring_sqe *sqe,
6805 struct io_submit_state *state)
6806 {
6807 unsigned int sqe_flags;
6808 int id, ret;
6809
6810 req->opcode = READ_ONCE(sqe->opcode);
6811 req->user_data = READ_ONCE(sqe->user_data);
6812 req->async_data = NULL;
6813 req->file = NULL;
6814 req->ctx = ctx;
6815 req->flags = 0;
6816 req->link = NULL;
6817 req->fixed_file_refs = NULL;
6818 /* one is dropped after submission, the other at completion */
6819 refcount_set(&req->refs, 2);
6820 req->task = current;
6821 req->result = 0;
6822
6823 if (unlikely(req->opcode >= IORING_OP_LAST))
6824 return -EINVAL;
6825
6826 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6827 return -EFAULT;
6828
6829 sqe_flags = READ_ONCE(sqe->flags);
6830 /* enforce forwards compatibility on users */
6831 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6832 return -EINVAL;
6833
6834 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6835 return -EACCES;
6836
6837 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6838 !io_op_defs[req->opcode].buffer_select)
6839 return -EOPNOTSUPP;
6840
6841 id = READ_ONCE(sqe->personality);
6842 if (id) {
6843 struct io_identity *iod;
6844
6845 iod = idr_find(&ctx->personality_idr, id);
6846 if (unlikely(!iod))
6847 return -EINVAL;
6848 refcount_inc(&iod->count);
6849
6850 __io_req_init_async(req);
6851 get_cred(iod->creds);
6852 req->work.identity = iod;
6853 req->work.flags |= IO_WQ_WORK_CREDS;
6854 }
6855
6856 /* same numerical values with corresponding REQ_F_*, safe to copy */
6857 req->flags |= sqe_flags;
6858
6859 /*
6860 * Plug now if we have more than 1 IO left after this, and the target
6861 * is potentially a read/write to block based storage.
6862 */
6863 if (!state->plug_started && state->ios_left > 1 &&
6864 io_op_defs[req->opcode].plug) {
6865 blk_start_plug(&state->plug);
6866 state->plug_started = true;
6867 }
6868
6869 ret = 0;
6870 if (io_op_defs[req->opcode].needs_file) {
6871 bool fixed = req->flags & REQ_F_FIXED_FILE;
6872
6873 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6874 if (unlikely(!req->file &&
6875 !io_op_defs[req->opcode].needs_file_no_error))
6876 ret = -EBADF;
6877 }
6878
6879 state->ios_left--;
6880 return ret;
6881 }
6882
6883 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6884 {
6885 struct io_submit_state state;
6886 struct io_submit_link link;
6887 int i, submitted = 0;
6888
6889 /* if we have a backlog and couldn't flush it all, return BUSY */
6890 if (test_bit(0, &ctx->sq_check_overflow)) {
6891 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6892 return -EBUSY;
6893 }
6894
6895 /* make sure SQ entry isn't read before tail */
6896 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6897
6898 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6899 return -EAGAIN;
6900
6901 percpu_counter_add(&current->io_uring->inflight, nr);
6902 refcount_add(nr, &current->usage);
6903
6904 io_submit_state_start(&state, ctx, nr);
6905 link.head = NULL;
6906
6907 for (i = 0; i < nr; i++) {
6908 const struct io_uring_sqe *sqe;
6909 struct io_kiocb *req;
6910 int err;
6911
6912 sqe = io_get_sqe(ctx);
6913 if (unlikely(!sqe)) {
6914 io_consume_sqe(ctx);
6915 break;
6916 }
6917 req = io_alloc_req(ctx, &state);
6918 if (unlikely(!req)) {
6919 if (!submitted)
6920 submitted = -EAGAIN;
6921 break;
6922 }
6923 io_consume_sqe(ctx);
6924 /* will complete beyond this point, count as submitted */
6925 submitted++;
6926
6927 err = io_init_req(ctx, req, sqe, &state);
6928 if (unlikely(err)) {
6929 fail_req:
6930 io_put_req(req);
6931 io_req_complete(req, err);
6932 break;
6933 }
6934
6935 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6936 true, io_async_submit(ctx));
6937 err = io_submit_sqe(req, sqe, &link, &state.comp);
6938 if (err)
6939 goto fail_req;
6940 }
6941
6942 if (unlikely(submitted != nr)) {
6943 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6944 struct io_uring_task *tctx = current->io_uring;
6945 int unused = nr - ref_used;
6946
6947 percpu_ref_put_many(&ctx->refs, unused);
6948 percpu_counter_sub(&tctx->inflight, unused);
6949 put_task_struct_many(current, unused);
6950 }
6951 if (link.head)
6952 io_queue_link_head(link.head, &state.comp);
6953 io_submit_state_end(&state);
6954
6955 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6956 io_commit_sqring(ctx);
6957
6958 return submitted;
6959 }
6960
6961 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6962 {
6963 /* Tell userspace we may need a wakeup call */
6964 spin_lock_irq(&ctx->completion_lock);
6965 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6966 spin_unlock_irq(&ctx->completion_lock);
6967 }
6968
6969 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6970 {
6971 spin_lock_irq(&ctx->completion_lock);
6972 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6973 spin_unlock_irq(&ctx->completion_lock);
6974 }
6975
6976 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6977 {
6978 unsigned int to_submit;
6979 int ret = 0;
6980
6981 to_submit = io_sqring_entries(ctx);
6982 /* if we're handling multiple rings, cap submit size for fairness */
6983 if (cap_entries && to_submit > 8)
6984 to_submit = 8;
6985
6986 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6987 unsigned nr_events = 0;
6988
6989 mutex_lock(&ctx->uring_lock);
6990 if (!list_empty(&ctx->iopoll_list))
6991 io_do_iopoll(ctx, &nr_events, 0);
6992
6993 if (to_submit && !ctx->sqo_dead &&
6994 likely(!percpu_ref_is_dying(&ctx->refs)))
6995 ret = io_submit_sqes(ctx, to_submit);
6996 mutex_unlock(&ctx->uring_lock);
6997 }
6998
6999 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7000 wake_up(&ctx->sqo_sq_wait);
7001
7002 return ret;
7003 }
7004
7005 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7006 {
7007 struct io_ring_ctx *ctx;
7008 unsigned sq_thread_idle = 0;
7009
7010 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7011 if (sq_thread_idle < ctx->sq_thread_idle)
7012 sq_thread_idle = ctx->sq_thread_idle;
7013 }
7014
7015 sqd->sq_thread_idle = sq_thread_idle;
7016 }
7017
7018 static void io_sqd_init_new(struct io_sq_data *sqd)
7019 {
7020 struct io_ring_ctx *ctx;
7021
7022 while (!list_empty(&sqd->ctx_new_list)) {
7023 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7024 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7025 complete(&ctx->sq_thread_comp);
7026 }
7027
7028 io_sqd_update_thread_idle(sqd);
7029 }
7030
7031 static int io_sq_thread(void *data)
7032 {
7033 struct cgroup_subsys_state *cur_css = NULL;
7034 struct files_struct *old_files = current->files;
7035 struct nsproxy *old_nsproxy = current->nsproxy;
7036 const struct cred *old_cred = NULL;
7037 struct io_sq_data *sqd = data;
7038 struct io_ring_ctx *ctx;
7039 unsigned long timeout = 0;
7040 DEFINE_WAIT(wait);
7041
7042 task_lock(current);
7043 current->files = NULL;
7044 current->nsproxy = NULL;
7045 task_unlock(current);
7046
7047 while (!kthread_should_stop()) {
7048 int ret;
7049 bool cap_entries, sqt_spin, needs_sched;
7050
7051 /*
7052 * Any changes to the sqd lists are synchronized through the
7053 * kthread parking. This synchronizes the thread vs users,
7054 * the users are synchronized on the sqd->ctx_lock.
7055 */
7056 if (kthread_should_park()) {
7057 kthread_parkme();
7058 /*
7059 * When sq thread is unparked, in case the previous park operation
7060 * comes from io_put_sq_data(), which means that sq thread is going
7061 * to be stopped, so here needs to have a check.
7062 */
7063 if (kthread_should_stop())
7064 break;
7065 }
7066
7067 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7068 io_sqd_init_new(sqd);
7069 timeout = jiffies + sqd->sq_thread_idle;
7070 }
7071
7072 sqt_spin = false;
7073 cap_entries = !list_is_singular(&sqd->ctx_list);
7074 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7075 if (current->cred != ctx->creds) {
7076 if (old_cred)
7077 revert_creds(old_cred);
7078 old_cred = override_creds(ctx->creds);
7079 }
7080 io_sq_thread_associate_blkcg(ctx, &cur_css);
7081 #ifdef CONFIG_AUDIT
7082 current->loginuid = ctx->loginuid;
7083 current->sessionid = ctx->sessionid;
7084 #endif
7085
7086 ret = __io_sq_thread(ctx, cap_entries);
7087 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7088 sqt_spin = true;
7089
7090 io_sq_thread_drop_mm_files();
7091 }
7092
7093 if (sqt_spin || !time_after(jiffies, timeout)) {
7094 io_run_task_work();
7095 io_sq_thread_drop_mm_files();
7096 cond_resched();
7097 if (sqt_spin)
7098 timeout = jiffies + sqd->sq_thread_idle;
7099 continue;
7100 }
7101
7102 if (kthread_should_park())
7103 continue;
7104
7105 needs_sched = true;
7106 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7107 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7108 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7109 !list_empty_careful(&ctx->iopoll_list)) {
7110 needs_sched = false;
7111 break;
7112 }
7113 if (io_sqring_entries(ctx)) {
7114 needs_sched = false;
7115 break;
7116 }
7117 }
7118
7119 if (needs_sched) {
7120 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7121 io_ring_set_wakeup_flag(ctx);
7122
7123 schedule();
7124 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7125 io_ring_clear_wakeup_flag(ctx);
7126 }
7127
7128 finish_wait(&sqd->wait, &wait);
7129 timeout = jiffies + sqd->sq_thread_idle;
7130 }
7131
7132 io_run_task_work();
7133 io_sq_thread_drop_mm_files();
7134
7135 if (cur_css)
7136 io_sq_thread_unassociate_blkcg();
7137 if (old_cred)
7138 revert_creds(old_cred);
7139
7140 task_lock(current);
7141 current->files = old_files;
7142 current->nsproxy = old_nsproxy;
7143 task_unlock(current);
7144
7145 kthread_parkme();
7146
7147 return 0;
7148 }
7149
7150 struct io_wait_queue {
7151 struct wait_queue_entry wq;
7152 struct io_ring_ctx *ctx;
7153 unsigned to_wait;
7154 unsigned nr_timeouts;
7155 };
7156
7157 static inline bool io_should_wake(struct io_wait_queue *iowq)
7158 {
7159 struct io_ring_ctx *ctx = iowq->ctx;
7160
7161 /*
7162 * Wake up if we have enough events, or if a timeout occurred since we
7163 * started waiting. For timeouts, we always want to return to userspace,
7164 * regardless of event count.
7165 */
7166 return io_cqring_events(ctx) >= iowq->to_wait ||
7167 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7168 }
7169
7170 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7171 int wake_flags, void *key)
7172 {
7173 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7174 wq);
7175
7176 /*
7177 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7178 * the task, and the next invocation will do it.
7179 */
7180 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7181 return autoremove_wake_function(curr, mode, wake_flags, key);
7182 return -1;
7183 }
7184
7185 static int io_run_task_work_sig(void)
7186 {
7187 if (io_run_task_work())
7188 return 1;
7189 if (!signal_pending(current))
7190 return 0;
7191 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7192 return -ERESTARTSYS;
7193 return -EINTR;
7194 }
7195
7196 /*
7197 * Wait until events become available, if we don't already have some. The
7198 * application must reap them itself, as they reside on the shared cq ring.
7199 */
7200 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7201 const sigset_t __user *sig, size_t sigsz,
7202 struct __kernel_timespec __user *uts)
7203 {
7204 struct io_wait_queue iowq = {
7205 .wq = {
7206 .private = current,
7207 .func = io_wake_function,
7208 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7209 },
7210 .ctx = ctx,
7211 .to_wait = min_events,
7212 };
7213 struct io_rings *rings = ctx->rings;
7214 struct timespec64 ts;
7215 signed long timeout = 0;
7216 int ret = 0;
7217
7218 do {
7219 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7220 if (io_cqring_events(ctx) >= min_events)
7221 return 0;
7222 if (!io_run_task_work())
7223 break;
7224 } while (1);
7225
7226 if (sig) {
7227 #ifdef CONFIG_COMPAT
7228 if (in_compat_syscall())
7229 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7230 sigsz);
7231 else
7232 #endif
7233 ret = set_user_sigmask(sig, sigsz);
7234
7235 if (ret)
7236 return ret;
7237 }
7238
7239 if (uts) {
7240 if (get_timespec64(&ts, uts))
7241 return -EFAULT;
7242 timeout = timespec64_to_jiffies(&ts);
7243 }
7244
7245 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7246 trace_io_uring_cqring_wait(ctx, min_events);
7247 do {
7248 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7249 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7250 TASK_INTERRUPTIBLE);
7251 /* make sure we run task_work before checking for signals */
7252 ret = io_run_task_work_sig();
7253 if (ret > 0)
7254 continue;
7255 else if (ret < 0)
7256 break;
7257 if (io_should_wake(&iowq))
7258 break;
7259 if (test_bit(0, &ctx->cq_check_overflow))
7260 continue;
7261 if (uts) {
7262 timeout = schedule_timeout(timeout);
7263 if (timeout == 0) {
7264 ret = -ETIME;
7265 break;
7266 }
7267 } else {
7268 schedule();
7269 }
7270 } while (1);
7271 finish_wait(&ctx->wait, &iowq.wq);
7272
7273 restore_saved_sigmask_unless(ret == -EINTR);
7274
7275 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7276 }
7277
7278 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7279 {
7280 #if defined(CONFIG_UNIX)
7281 if (ctx->ring_sock) {
7282 struct sock *sock = ctx->ring_sock->sk;
7283 struct sk_buff *skb;
7284
7285 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7286 kfree_skb(skb);
7287 }
7288 #else
7289 int i;
7290
7291 for (i = 0; i < ctx->nr_user_files; i++) {
7292 struct file *file;
7293
7294 file = io_file_from_index(ctx, i);
7295 if (file)
7296 fput(file);
7297 }
7298 #endif
7299 }
7300
7301 static void io_file_ref_kill(struct percpu_ref *ref)
7302 {
7303 struct fixed_file_data *data;
7304
7305 data = container_of(ref, struct fixed_file_data, refs);
7306 complete(&data->done);
7307 }
7308
7309 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7310 struct fixed_file_ref_node *ref_node)
7311 {
7312 spin_lock_bh(&file_data->lock);
7313 file_data->node = ref_node;
7314 list_add_tail(&ref_node->node, &file_data->ref_list);
7315 spin_unlock_bh(&file_data->lock);
7316 percpu_ref_get(&file_data->refs);
7317 }
7318
7319 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7320 {
7321 struct fixed_file_data *data = ctx->file_data;
7322 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7323 unsigned nr_tables, i;
7324 int ret;
7325
7326 if (!data)
7327 return -ENXIO;
7328 backup_node = alloc_fixed_file_ref_node(ctx);
7329 if (!backup_node)
7330 return -ENOMEM;
7331
7332 spin_lock_bh(&data->lock);
7333 ref_node = data->node;
7334 spin_unlock_bh(&data->lock);
7335 if (ref_node)
7336 percpu_ref_kill(&ref_node->refs);
7337
7338 percpu_ref_kill(&data->refs);
7339
7340 /* wait for all refs nodes to complete */
7341 flush_delayed_work(&ctx->file_put_work);
7342 do {
7343 ret = wait_for_completion_interruptible(&data->done);
7344 if (!ret)
7345 break;
7346 ret = io_run_task_work_sig();
7347 if (ret < 0) {
7348 percpu_ref_resurrect(&data->refs);
7349 reinit_completion(&data->done);
7350 io_sqe_files_set_node(data, backup_node);
7351 return ret;
7352 }
7353 } while (1);
7354
7355 __io_sqe_files_unregister(ctx);
7356 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7357 for (i = 0; i < nr_tables; i++)
7358 kfree(data->table[i].files);
7359 kfree(data->table);
7360 percpu_ref_exit(&data->refs);
7361 kfree(data);
7362 ctx->file_data = NULL;
7363 ctx->nr_user_files = 0;
7364 destroy_fixed_file_ref_node(backup_node);
7365 return 0;
7366 }
7367
7368 static void io_put_sq_data(struct io_sq_data *sqd)
7369 {
7370 if (refcount_dec_and_test(&sqd->refs)) {
7371 /*
7372 * The park is a bit of a work-around, without it we get
7373 * warning spews on shutdown with SQPOLL set and affinity
7374 * set to a single CPU.
7375 */
7376 if (sqd->thread) {
7377 kthread_park(sqd->thread);
7378 kthread_stop(sqd->thread);
7379 }
7380
7381 kfree(sqd);
7382 }
7383 }
7384
7385 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7386 {
7387 struct io_ring_ctx *ctx_attach;
7388 struct io_sq_data *sqd;
7389 struct fd f;
7390
7391 f = fdget(p->wq_fd);
7392 if (!f.file)
7393 return ERR_PTR(-ENXIO);
7394 if (f.file->f_op != &io_uring_fops) {
7395 fdput(f);
7396 return ERR_PTR(-EINVAL);
7397 }
7398
7399 ctx_attach = f.file->private_data;
7400 sqd = ctx_attach->sq_data;
7401 if (!sqd) {
7402 fdput(f);
7403 return ERR_PTR(-EINVAL);
7404 }
7405
7406 refcount_inc(&sqd->refs);
7407 fdput(f);
7408 return sqd;
7409 }
7410
7411 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7412 {
7413 struct io_sq_data *sqd;
7414
7415 if (p->flags & IORING_SETUP_ATTACH_WQ)
7416 return io_attach_sq_data(p);
7417
7418 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7419 if (!sqd)
7420 return ERR_PTR(-ENOMEM);
7421
7422 refcount_set(&sqd->refs, 1);
7423 INIT_LIST_HEAD(&sqd->ctx_list);
7424 INIT_LIST_HEAD(&sqd->ctx_new_list);
7425 mutex_init(&sqd->ctx_lock);
7426 mutex_init(&sqd->lock);
7427 init_waitqueue_head(&sqd->wait);
7428 return sqd;
7429 }
7430
7431 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7432 __releases(&sqd->lock)
7433 {
7434 if (!sqd->thread)
7435 return;
7436 kthread_unpark(sqd->thread);
7437 mutex_unlock(&sqd->lock);
7438 }
7439
7440 static void io_sq_thread_park(struct io_sq_data *sqd)
7441 __acquires(&sqd->lock)
7442 {
7443 if (!sqd->thread)
7444 return;
7445 mutex_lock(&sqd->lock);
7446 kthread_park(sqd->thread);
7447 }
7448
7449 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7450 {
7451 struct io_sq_data *sqd = ctx->sq_data;
7452
7453 if (sqd) {
7454 if (sqd->thread) {
7455 /*
7456 * We may arrive here from the error branch in
7457 * io_sq_offload_create() where the kthread is created
7458 * without being waked up, thus wake it up now to make
7459 * sure the wait will complete.
7460 */
7461 wake_up_process(sqd->thread);
7462 wait_for_completion(&ctx->sq_thread_comp);
7463
7464 io_sq_thread_park(sqd);
7465 }
7466
7467 mutex_lock(&sqd->ctx_lock);
7468 list_del(&ctx->sqd_list);
7469 io_sqd_update_thread_idle(sqd);
7470 mutex_unlock(&sqd->ctx_lock);
7471
7472 if (sqd->thread)
7473 io_sq_thread_unpark(sqd);
7474
7475 io_put_sq_data(sqd);
7476 ctx->sq_data = NULL;
7477 }
7478 }
7479
7480 static void io_finish_async(struct io_ring_ctx *ctx)
7481 {
7482 io_sq_thread_stop(ctx);
7483
7484 if (ctx->io_wq) {
7485 io_wq_destroy(ctx->io_wq);
7486 ctx->io_wq = NULL;
7487 }
7488 }
7489
7490 #if defined(CONFIG_UNIX)
7491 /*
7492 * Ensure the UNIX gc is aware of our file set, so we are certain that
7493 * the io_uring can be safely unregistered on process exit, even if we have
7494 * loops in the file referencing.
7495 */
7496 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7497 {
7498 struct sock *sk = ctx->ring_sock->sk;
7499 struct scm_fp_list *fpl;
7500 struct sk_buff *skb;
7501 int i, nr_files;
7502
7503 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7504 if (!fpl)
7505 return -ENOMEM;
7506
7507 skb = alloc_skb(0, GFP_KERNEL);
7508 if (!skb) {
7509 kfree(fpl);
7510 return -ENOMEM;
7511 }
7512
7513 skb->sk = sk;
7514
7515 nr_files = 0;
7516 fpl->user = get_uid(ctx->user);
7517 for (i = 0; i < nr; i++) {
7518 struct file *file = io_file_from_index(ctx, i + offset);
7519
7520 if (!file)
7521 continue;
7522 fpl->fp[nr_files] = get_file(file);
7523 unix_inflight(fpl->user, fpl->fp[nr_files]);
7524 nr_files++;
7525 }
7526
7527 if (nr_files) {
7528 fpl->max = SCM_MAX_FD;
7529 fpl->count = nr_files;
7530 UNIXCB(skb).fp = fpl;
7531 skb->destructor = unix_destruct_scm;
7532 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7533 skb_queue_head(&sk->sk_receive_queue, skb);
7534
7535 for (i = 0; i < nr_files; i++)
7536 fput(fpl->fp[i]);
7537 } else {
7538 kfree_skb(skb);
7539 kfree(fpl);
7540 }
7541
7542 return 0;
7543 }
7544
7545 /*
7546 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7547 * causes regular reference counting to break down. We rely on the UNIX
7548 * garbage collection to take care of this problem for us.
7549 */
7550 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7551 {
7552 unsigned left, total;
7553 int ret = 0;
7554
7555 total = 0;
7556 left = ctx->nr_user_files;
7557 while (left) {
7558 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7559
7560 ret = __io_sqe_files_scm(ctx, this_files, total);
7561 if (ret)
7562 break;
7563 left -= this_files;
7564 total += this_files;
7565 }
7566
7567 if (!ret)
7568 return 0;
7569
7570 while (total < ctx->nr_user_files) {
7571 struct file *file = io_file_from_index(ctx, total);
7572
7573 if (file)
7574 fput(file);
7575 total++;
7576 }
7577
7578 return ret;
7579 }
7580 #else
7581 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7582 {
7583 return 0;
7584 }
7585 #endif
7586
7587 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7588 unsigned nr_tables, unsigned nr_files)
7589 {
7590 int i;
7591
7592 for (i = 0; i < nr_tables; i++) {
7593 struct fixed_file_table *table = &file_data->table[i];
7594 unsigned this_files;
7595
7596 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7597 table->files = kcalloc(this_files, sizeof(struct file *),
7598 GFP_KERNEL);
7599 if (!table->files)
7600 break;
7601 nr_files -= this_files;
7602 }
7603
7604 if (i == nr_tables)
7605 return 0;
7606
7607 for (i = 0; i < nr_tables; i++) {
7608 struct fixed_file_table *table = &file_data->table[i];
7609 kfree(table->files);
7610 }
7611 return 1;
7612 }
7613
7614 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7615 {
7616 #if defined(CONFIG_UNIX)
7617 struct sock *sock = ctx->ring_sock->sk;
7618 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7619 struct sk_buff *skb;
7620 int i;
7621
7622 __skb_queue_head_init(&list);
7623
7624 /*
7625 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7626 * remove this entry and rearrange the file array.
7627 */
7628 skb = skb_dequeue(head);
7629 while (skb) {
7630 struct scm_fp_list *fp;
7631
7632 fp = UNIXCB(skb).fp;
7633 for (i = 0; i < fp->count; i++) {
7634 int left;
7635
7636 if (fp->fp[i] != file)
7637 continue;
7638
7639 unix_notinflight(fp->user, fp->fp[i]);
7640 left = fp->count - 1 - i;
7641 if (left) {
7642 memmove(&fp->fp[i], &fp->fp[i + 1],
7643 left * sizeof(struct file *));
7644 }
7645 fp->count--;
7646 if (!fp->count) {
7647 kfree_skb(skb);
7648 skb = NULL;
7649 } else {
7650 __skb_queue_tail(&list, skb);
7651 }
7652 fput(file);
7653 file = NULL;
7654 break;
7655 }
7656
7657 if (!file)
7658 break;
7659
7660 __skb_queue_tail(&list, skb);
7661
7662 skb = skb_dequeue(head);
7663 }
7664
7665 if (skb_peek(&list)) {
7666 spin_lock_irq(&head->lock);
7667 while ((skb = __skb_dequeue(&list)) != NULL)
7668 __skb_queue_tail(head, skb);
7669 spin_unlock_irq(&head->lock);
7670 }
7671 #else
7672 fput(file);
7673 #endif
7674 }
7675
7676 struct io_file_put {
7677 struct list_head list;
7678 struct file *file;
7679 };
7680
7681 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7682 {
7683 struct fixed_file_data *file_data = ref_node->file_data;
7684 struct io_ring_ctx *ctx = file_data->ctx;
7685 struct io_file_put *pfile, *tmp;
7686
7687 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7688 list_del(&pfile->list);
7689 io_ring_file_put(ctx, pfile->file);
7690 kfree(pfile);
7691 }
7692
7693 percpu_ref_exit(&ref_node->refs);
7694 kfree(ref_node);
7695 percpu_ref_put(&file_data->refs);
7696 }
7697
7698 static void io_file_put_work(struct work_struct *work)
7699 {
7700 struct io_ring_ctx *ctx;
7701 struct llist_node *node;
7702
7703 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7704 node = llist_del_all(&ctx->file_put_llist);
7705
7706 while (node) {
7707 struct fixed_file_ref_node *ref_node;
7708 struct llist_node *next = node->next;
7709
7710 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7711 __io_file_put_work(ref_node);
7712 node = next;
7713 }
7714 }
7715
7716 static void io_file_data_ref_zero(struct percpu_ref *ref)
7717 {
7718 struct fixed_file_ref_node *ref_node;
7719 struct fixed_file_data *data;
7720 struct io_ring_ctx *ctx;
7721 bool first_add = false;
7722 int delay = HZ;
7723
7724 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7725 data = ref_node->file_data;
7726 ctx = data->ctx;
7727
7728 spin_lock_bh(&data->lock);
7729 ref_node->done = true;
7730
7731 while (!list_empty(&data->ref_list)) {
7732 ref_node = list_first_entry(&data->ref_list,
7733 struct fixed_file_ref_node, node);
7734 /* recycle ref nodes in order */
7735 if (!ref_node->done)
7736 break;
7737 list_del(&ref_node->node);
7738 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7739 }
7740 spin_unlock_bh(&data->lock);
7741
7742 if (percpu_ref_is_dying(&data->refs))
7743 delay = 0;
7744
7745 if (!delay)
7746 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7747 else if (first_add)
7748 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7749 }
7750
7751 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7752 struct io_ring_ctx *ctx)
7753 {
7754 struct fixed_file_ref_node *ref_node;
7755
7756 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7757 if (!ref_node)
7758 return NULL;
7759
7760 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7761 0, GFP_KERNEL)) {
7762 kfree(ref_node);
7763 return NULL;
7764 }
7765 INIT_LIST_HEAD(&ref_node->node);
7766 INIT_LIST_HEAD(&ref_node->file_list);
7767 ref_node->file_data = ctx->file_data;
7768 ref_node->done = false;
7769 return ref_node;
7770 }
7771
7772 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7773 {
7774 percpu_ref_exit(&ref_node->refs);
7775 kfree(ref_node);
7776 }
7777
7778 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7779 unsigned nr_args)
7780 {
7781 __s32 __user *fds = (__s32 __user *) arg;
7782 unsigned nr_tables, i;
7783 struct file *file;
7784 int fd, ret = -ENOMEM;
7785 struct fixed_file_ref_node *ref_node;
7786 struct fixed_file_data *file_data;
7787
7788 if (ctx->file_data)
7789 return -EBUSY;
7790 if (!nr_args)
7791 return -EINVAL;
7792 if (nr_args > IORING_MAX_FIXED_FILES)
7793 return -EMFILE;
7794
7795 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7796 if (!file_data)
7797 return -ENOMEM;
7798 file_data->ctx = ctx;
7799 init_completion(&file_data->done);
7800 INIT_LIST_HEAD(&file_data->ref_list);
7801 spin_lock_init(&file_data->lock);
7802
7803 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7804 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7805 GFP_KERNEL);
7806 if (!file_data->table)
7807 goto out_free;
7808
7809 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7810 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7811 goto out_free;
7812
7813 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7814 goto out_ref;
7815 ctx->file_data = file_data;
7816
7817 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7818 struct fixed_file_table *table;
7819 unsigned index;
7820
7821 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7822 ret = -EFAULT;
7823 goto out_fput;
7824 }
7825 /* allow sparse sets */
7826 if (fd == -1)
7827 continue;
7828
7829 file = fget(fd);
7830 ret = -EBADF;
7831 if (!file)
7832 goto out_fput;
7833
7834 /*
7835 * Don't allow io_uring instances to be registered. If UNIX
7836 * isn't enabled, then this causes a reference cycle and this
7837 * instance can never get freed. If UNIX is enabled we'll
7838 * handle it just fine, but there's still no point in allowing
7839 * a ring fd as it doesn't support regular read/write anyway.
7840 */
7841 if (file->f_op == &io_uring_fops) {
7842 fput(file);
7843 goto out_fput;
7844 }
7845 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7846 index = i & IORING_FILE_TABLE_MASK;
7847 table->files[index] = file;
7848 }
7849
7850 ret = io_sqe_files_scm(ctx);
7851 if (ret) {
7852 io_sqe_files_unregister(ctx);
7853 return ret;
7854 }
7855
7856 ref_node = alloc_fixed_file_ref_node(ctx);
7857 if (!ref_node) {
7858 io_sqe_files_unregister(ctx);
7859 return -ENOMEM;
7860 }
7861
7862 io_sqe_files_set_node(file_data, ref_node);
7863 return ret;
7864 out_fput:
7865 for (i = 0; i < ctx->nr_user_files; i++) {
7866 file = io_file_from_index(ctx, i);
7867 if (file)
7868 fput(file);
7869 }
7870 for (i = 0; i < nr_tables; i++)
7871 kfree(file_data->table[i].files);
7872 ctx->nr_user_files = 0;
7873 out_ref:
7874 percpu_ref_exit(&file_data->refs);
7875 out_free:
7876 kfree(file_data->table);
7877 kfree(file_data);
7878 ctx->file_data = NULL;
7879 return ret;
7880 }
7881
7882 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7883 int index)
7884 {
7885 #if defined(CONFIG_UNIX)
7886 struct sock *sock = ctx->ring_sock->sk;
7887 struct sk_buff_head *head = &sock->sk_receive_queue;
7888 struct sk_buff *skb;
7889
7890 /*
7891 * See if we can merge this file into an existing skb SCM_RIGHTS
7892 * file set. If there's no room, fall back to allocating a new skb
7893 * and filling it in.
7894 */
7895 spin_lock_irq(&head->lock);
7896 skb = skb_peek(head);
7897 if (skb) {
7898 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7899
7900 if (fpl->count < SCM_MAX_FD) {
7901 __skb_unlink(skb, head);
7902 spin_unlock_irq(&head->lock);
7903 fpl->fp[fpl->count] = get_file(file);
7904 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7905 fpl->count++;
7906 spin_lock_irq(&head->lock);
7907 __skb_queue_head(head, skb);
7908 } else {
7909 skb = NULL;
7910 }
7911 }
7912 spin_unlock_irq(&head->lock);
7913
7914 if (skb) {
7915 fput(file);
7916 return 0;
7917 }
7918
7919 return __io_sqe_files_scm(ctx, 1, index);
7920 #else
7921 return 0;
7922 #endif
7923 }
7924
7925 static int io_queue_file_removal(struct fixed_file_data *data,
7926 struct file *file)
7927 {
7928 struct io_file_put *pfile;
7929 struct fixed_file_ref_node *ref_node = data->node;
7930
7931 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7932 if (!pfile)
7933 return -ENOMEM;
7934
7935 pfile->file = file;
7936 list_add(&pfile->list, &ref_node->file_list);
7937
7938 return 0;
7939 }
7940
7941 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7942 struct io_uring_files_update *up,
7943 unsigned nr_args)
7944 {
7945 struct fixed_file_data *data = ctx->file_data;
7946 struct fixed_file_ref_node *ref_node;
7947 struct file *file;
7948 __s32 __user *fds;
7949 int fd, i, err;
7950 __u32 done;
7951 bool needs_switch = false;
7952
7953 if (check_add_overflow(up->offset, nr_args, &done))
7954 return -EOVERFLOW;
7955 if (done > ctx->nr_user_files)
7956 return -EINVAL;
7957
7958 ref_node = alloc_fixed_file_ref_node(ctx);
7959 if (!ref_node)
7960 return -ENOMEM;
7961
7962 done = 0;
7963 fds = u64_to_user_ptr(up->fds);
7964 while (nr_args) {
7965 struct fixed_file_table *table;
7966 unsigned index;
7967
7968 err = 0;
7969 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7970 err = -EFAULT;
7971 break;
7972 }
7973 i = array_index_nospec(up->offset, ctx->nr_user_files);
7974 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7975 index = i & IORING_FILE_TABLE_MASK;
7976 if (table->files[index]) {
7977 file = table->files[index];
7978 err = io_queue_file_removal(data, file);
7979 if (err)
7980 break;
7981 table->files[index] = NULL;
7982 needs_switch = true;
7983 }
7984 if (fd != -1) {
7985 file = fget(fd);
7986 if (!file) {
7987 err = -EBADF;
7988 break;
7989 }
7990 /*
7991 * Don't allow io_uring instances to be registered. If
7992 * UNIX isn't enabled, then this causes a reference
7993 * cycle and this instance can never get freed. If UNIX
7994 * is enabled we'll handle it just fine, but there's
7995 * still no point in allowing a ring fd as it doesn't
7996 * support regular read/write anyway.
7997 */
7998 if (file->f_op == &io_uring_fops) {
7999 fput(file);
8000 err = -EBADF;
8001 break;
8002 }
8003 table->files[index] = file;
8004 err = io_sqe_file_register(ctx, file, i);
8005 if (err) {
8006 table->files[index] = NULL;
8007 fput(file);
8008 break;
8009 }
8010 }
8011 nr_args--;
8012 done++;
8013 up->offset++;
8014 }
8015
8016 if (needs_switch) {
8017 percpu_ref_kill(&data->node->refs);
8018 io_sqe_files_set_node(data, ref_node);
8019 } else
8020 destroy_fixed_file_ref_node(ref_node);
8021
8022 return done ? done : err;
8023 }
8024
8025 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8026 unsigned nr_args)
8027 {
8028 struct io_uring_files_update up;
8029
8030 if (!ctx->file_data)
8031 return -ENXIO;
8032 if (!nr_args)
8033 return -EINVAL;
8034 if (copy_from_user(&up, arg, sizeof(up)))
8035 return -EFAULT;
8036 if (up.resv)
8037 return -EINVAL;
8038
8039 return __io_sqe_files_update(ctx, &up, nr_args);
8040 }
8041
8042 static void io_free_work(struct io_wq_work *work)
8043 {
8044 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8045
8046 /* Consider that io_steal_work() relies on this ref */
8047 io_put_req(req);
8048 }
8049
8050 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8051 struct io_uring_params *p)
8052 {
8053 struct io_wq_data data;
8054 struct fd f;
8055 struct io_ring_ctx *ctx_attach;
8056 unsigned int concurrency;
8057 int ret = 0;
8058
8059 data.user = ctx->user;
8060 data.free_work = io_free_work;
8061 data.do_work = io_wq_submit_work;
8062
8063 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8064 /* Do QD, or 4 * CPUS, whatever is smallest */
8065 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8066
8067 ctx->io_wq = io_wq_create(concurrency, &data);
8068 if (IS_ERR(ctx->io_wq)) {
8069 ret = PTR_ERR(ctx->io_wq);
8070 ctx->io_wq = NULL;
8071 }
8072 return ret;
8073 }
8074
8075 f = fdget(p->wq_fd);
8076 if (!f.file)
8077 return -EBADF;
8078
8079 if (f.file->f_op != &io_uring_fops) {
8080 ret = -EINVAL;
8081 goto out_fput;
8082 }
8083
8084 ctx_attach = f.file->private_data;
8085 /* @io_wq is protected by holding the fd */
8086 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8087 ret = -EINVAL;
8088 goto out_fput;
8089 }
8090
8091 ctx->io_wq = ctx_attach->io_wq;
8092 out_fput:
8093 fdput(f);
8094 return ret;
8095 }
8096
8097 static int io_uring_alloc_task_context(struct task_struct *task)
8098 {
8099 struct io_uring_task *tctx;
8100 int ret;
8101
8102 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8103 if (unlikely(!tctx))
8104 return -ENOMEM;
8105
8106 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8107 if (unlikely(ret)) {
8108 kfree(tctx);
8109 return ret;
8110 }
8111
8112 xa_init(&tctx->xa);
8113 init_waitqueue_head(&tctx->wait);
8114 tctx->last = NULL;
8115 atomic_set(&tctx->in_idle, 0);
8116 tctx->sqpoll = false;
8117 io_init_identity(&tctx->__identity);
8118 tctx->identity = &tctx->__identity;
8119 task->io_uring = tctx;
8120 return 0;
8121 }
8122
8123 void __io_uring_free(struct task_struct *tsk)
8124 {
8125 struct io_uring_task *tctx = tsk->io_uring;
8126
8127 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8128 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8129 if (tctx->identity != &tctx->__identity)
8130 kfree(tctx->identity);
8131 percpu_counter_destroy(&tctx->inflight);
8132 kfree(tctx);
8133 tsk->io_uring = NULL;
8134 }
8135
8136 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8137 struct io_uring_params *p)
8138 {
8139 int ret;
8140
8141 if (ctx->flags & IORING_SETUP_SQPOLL) {
8142 struct io_sq_data *sqd;
8143
8144 ret = -EPERM;
8145 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8146 goto err;
8147
8148 sqd = io_get_sq_data(p);
8149 if (IS_ERR(sqd)) {
8150 ret = PTR_ERR(sqd);
8151 goto err;
8152 }
8153
8154 ctx->sq_data = sqd;
8155 io_sq_thread_park(sqd);
8156 mutex_lock(&sqd->ctx_lock);
8157 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8158 mutex_unlock(&sqd->ctx_lock);
8159 io_sq_thread_unpark(sqd);
8160
8161 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8162 if (!ctx->sq_thread_idle)
8163 ctx->sq_thread_idle = HZ;
8164
8165 if (sqd->thread)
8166 goto done;
8167
8168 if (p->flags & IORING_SETUP_SQ_AFF) {
8169 int cpu = p->sq_thread_cpu;
8170
8171 ret = -EINVAL;
8172 if (cpu >= nr_cpu_ids)
8173 goto err;
8174 if (!cpu_online(cpu))
8175 goto err;
8176
8177 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8178 cpu, "io_uring-sq");
8179 } else {
8180 sqd->thread = kthread_create(io_sq_thread, sqd,
8181 "io_uring-sq");
8182 }
8183 if (IS_ERR(sqd->thread)) {
8184 ret = PTR_ERR(sqd->thread);
8185 sqd->thread = NULL;
8186 goto err;
8187 }
8188 ret = io_uring_alloc_task_context(sqd->thread);
8189 if (ret)
8190 goto err;
8191 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8192 /* Can't have SQ_AFF without SQPOLL */
8193 ret = -EINVAL;
8194 goto err;
8195 }
8196
8197 done:
8198 ret = io_init_wq_offload(ctx, p);
8199 if (ret)
8200 goto err;
8201
8202 return 0;
8203 err:
8204 io_finish_async(ctx);
8205 return ret;
8206 }
8207
8208 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8209 {
8210 struct io_sq_data *sqd = ctx->sq_data;
8211
8212 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8213 wake_up_process(sqd->thread);
8214 }
8215
8216 static inline void __io_unaccount_mem(struct user_struct *user,
8217 unsigned long nr_pages)
8218 {
8219 atomic_long_sub(nr_pages, &user->locked_vm);
8220 }
8221
8222 static inline int __io_account_mem(struct user_struct *user,
8223 unsigned long nr_pages)
8224 {
8225 unsigned long page_limit, cur_pages, new_pages;
8226
8227 /* Don't allow more pages than we can safely lock */
8228 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8229
8230 do {
8231 cur_pages = atomic_long_read(&user->locked_vm);
8232 new_pages = cur_pages + nr_pages;
8233 if (new_pages > page_limit)
8234 return -ENOMEM;
8235 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8236 new_pages) != cur_pages);
8237
8238 return 0;
8239 }
8240
8241 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8242 enum io_mem_account acct)
8243 {
8244 if (ctx->limit_mem)
8245 __io_unaccount_mem(ctx->user, nr_pages);
8246
8247 if (ctx->mm_account) {
8248 if (acct == ACCT_LOCKED) {
8249 mmap_write_lock(ctx->mm_account);
8250 ctx->mm_account->locked_vm -= nr_pages;
8251 mmap_write_unlock(ctx->mm_account);
8252 }else if (acct == ACCT_PINNED) {
8253 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8254 }
8255 }
8256 }
8257
8258 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8259 enum io_mem_account acct)
8260 {
8261 int ret;
8262
8263 if (ctx->limit_mem) {
8264 ret = __io_account_mem(ctx->user, nr_pages);
8265 if (ret)
8266 return ret;
8267 }
8268
8269 if (ctx->mm_account) {
8270 if (acct == ACCT_LOCKED) {
8271 mmap_write_lock(ctx->mm_account);
8272 ctx->mm_account->locked_vm += nr_pages;
8273 mmap_write_unlock(ctx->mm_account);
8274 } else if (acct == ACCT_PINNED) {
8275 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8276 }
8277 }
8278
8279 return 0;
8280 }
8281
8282 static void io_mem_free(void *ptr)
8283 {
8284 struct page *page;
8285
8286 if (!ptr)
8287 return;
8288
8289 page = virt_to_head_page(ptr);
8290 if (put_page_testzero(page))
8291 free_compound_page(page);
8292 }
8293
8294 static void *io_mem_alloc(size_t size)
8295 {
8296 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8297 __GFP_NORETRY;
8298
8299 return (void *) __get_free_pages(gfp_flags, get_order(size));
8300 }
8301
8302 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8303 size_t *sq_offset)
8304 {
8305 struct io_rings *rings;
8306 size_t off, sq_array_size;
8307
8308 off = struct_size(rings, cqes, cq_entries);
8309 if (off == SIZE_MAX)
8310 return SIZE_MAX;
8311
8312 #ifdef CONFIG_SMP
8313 off = ALIGN(off, SMP_CACHE_BYTES);
8314 if (off == 0)
8315 return SIZE_MAX;
8316 #endif
8317
8318 if (sq_offset)
8319 *sq_offset = off;
8320
8321 sq_array_size = array_size(sizeof(u32), sq_entries);
8322 if (sq_array_size == SIZE_MAX)
8323 return SIZE_MAX;
8324
8325 if (check_add_overflow(off, sq_array_size, &off))
8326 return SIZE_MAX;
8327
8328 return off;
8329 }
8330
8331 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8332 {
8333 size_t pages;
8334
8335 pages = (size_t)1 << get_order(
8336 rings_size(sq_entries, cq_entries, NULL));
8337 pages += (size_t)1 << get_order(
8338 array_size(sizeof(struct io_uring_sqe), sq_entries));
8339
8340 return pages;
8341 }
8342
8343 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8344 {
8345 int i, j;
8346
8347 if (!ctx->user_bufs)
8348 return -ENXIO;
8349
8350 for (i = 0; i < ctx->nr_user_bufs; i++) {
8351 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8352
8353 for (j = 0; j < imu->nr_bvecs; j++)
8354 unpin_user_page(imu->bvec[j].bv_page);
8355
8356 if (imu->acct_pages)
8357 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8358 kvfree(imu->bvec);
8359 imu->nr_bvecs = 0;
8360 }
8361
8362 kfree(ctx->user_bufs);
8363 ctx->user_bufs = NULL;
8364 ctx->nr_user_bufs = 0;
8365 return 0;
8366 }
8367
8368 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8369 void __user *arg, unsigned index)
8370 {
8371 struct iovec __user *src;
8372
8373 #ifdef CONFIG_COMPAT
8374 if (ctx->compat) {
8375 struct compat_iovec __user *ciovs;
8376 struct compat_iovec ciov;
8377
8378 ciovs = (struct compat_iovec __user *) arg;
8379 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8380 return -EFAULT;
8381
8382 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8383 dst->iov_len = ciov.iov_len;
8384 return 0;
8385 }
8386 #endif
8387 src = (struct iovec __user *) arg;
8388 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8389 return -EFAULT;
8390 return 0;
8391 }
8392
8393 /*
8394 * Not super efficient, but this is just a registration time. And we do cache
8395 * the last compound head, so generally we'll only do a full search if we don't
8396 * match that one.
8397 *
8398 * We check if the given compound head page has already been accounted, to
8399 * avoid double accounting it. This allows us to account the full size of the
8400 * page, not just the constituent pages of a huge page.
8401 */
8402 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8403 int nr_pages, struct page *hpage)
8404 {
8405 int i, j;
8406
8407 /* check current page array */
8408 for (i = 0; i < nr_pages; i++) {
8409 if (!PageCompound(pages[i]))
8410 continue;
8411 if (compound_head(pages[i]) == hpage)
8412 return true;
8413 }
8414
8415 /* check previously registered pages */
8416 for (i = 0; i < ctx->nr_user_bufs; i++) {
8417 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8418
8419 for (j = 0; j < imu->nr_bvecs; j++) {
8420 if (!PageCompound(imu->bvec[j].bv_page))
8421 continue;
8422 if (compound_head(imu->bvec[j].bv_page) == hpage)
8423 return true;
8424 }
8425 }
8426
8427 return false;
8428 }
8429
8430 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8431 int nr_pages, struct io_mapped_ubuf *imu,
8432 struct page **last_hpage)
8433 {
8434 int i, ret;
8435
8436 for (i = 0; i < nr_pages; i++) {
8437 if (!PageCompound(pages[i])) {
8438 imu->acct_pages++;
8439 } else {
8440 struct page *hpage;
8441
8442 hpage = compound_head(pages[i]);
8443 if (hpage == *last_hpage)
8444 continue;
8445 *last_hpage = hpage;
8446 if (headpage_already_acct(ctx, pages, i, hpage))
8447 continue;
8448 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8449 }
8450 }
8451
8452 if (!imu->acct_pages)
8453 return 0;
8454
8455 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8456 if (ret)
8457 imu->acct_pages = 0;
8458 return ret;
8459 }
8460
8461 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8462 unsigned nr_args)
8463 {
8464 struct vm_area_struct **vmas = NULL;
8465 struct page **pages = NULL;
8466 struct page *last_hpage = NULL;
8467 int i, j, got_pages = 0;
8468 int ret = -EINVAL;
8469
8470 if (ctx->user_bufs)
8471 return -EBUSY;
8472 if (!nr_args || nr_args > UIO_MAXIOV)
8473 return -EINVAL;
8474
8475 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8476 GFP_KERNEL);
8477 if (!ctx->user_bufs)
8478 return -ENOMEM;
8479
8480 for (i = 0; i < nr_args; i++) {
8481 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8482 unsigned long off, start, end, ubuf;
8483 int pret, nr_pages;
8484 struct iovec iov;
8485 size_t size;
8486
8487 ret = io_copy_iov(ctx, &iov, arg, i);
8488 if (ret)
8489 goto err;
8490
8491 /*
8492 * Don't impose further limits on the size and buffer
8493 * constraints here, we'll -EINVAL later when IO is
8494 * submitted if they are wrong.
8495 */
8496 ret = -EFAULT;
8497 if (!iov.iov_base || !iov.iov_len)
8498 goto err;
8499
8500 /* arbitrary limit, but we need something */
8501 if (iov.iov_len > SZ_1G)
8502 goto err;
8503
8504 ubuf = (unsigned long) iov.iov_base;
8505 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8506 start = ubuf >> PAGE_SHIFT;
8507 nr_pages = end - start;
8508
8509 ret = 0;
8510 if (!pages || nr_pages > got_pages) {
8511 kvfree(vmas);
8512 kvfree(pages);
8513 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8514 GFP_KERNEL);
8515 vmas = kvmalloc_array(nr_pages,
8516 sizeof(struct vm_area_struct *),
8517 GFP_KERNEL);
8518 if (!pages || !vmas) {
8519 ret = -ENOMEM;
8520 goto err;
8521 }
8522 got_pages = nr_pages;
8523 }
8524
8525 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8526 GFP_KERNEL);
8527 ret = -ENOMEM;
8528 if (!imu->bvec)
8529 goto err;
8530
8531 ret = 0;
8532 mmap_read_lock(current->mm);
8533 pret = pin_user_pages(ubuf, nr_pages,
8534 FOLL_WRITE | FOLL_LONGTERM,
8535 pages, vmas);
8536 if (pret == nr_pages) {
8537 /* don't support file backed memory */
8538 for (j = 0; j < nr_pages; j++) {
8539 struct vm_area_struct *vma = vmas[j];
8540
8541 if (vma->vm_file &&
8542 !is_file_hugepages(vma->vm_file)) {
8543 ret = -EOPNOTSUPP;
8544 break;
8545 }
8546 }
8547 } else {
8548 ret = pret < 0 ? pret : -EFAULT;
8549 }
8550 mmap_read_unlock(current->mm);
8551 if (ret) {
8552 /*
8553 * if we did partial map, or found file backed vmas,
8554 * release any pages we did get
8555 */
8556 if (pret > 0)
8557 unpin_user_pages(pages, pret);
8558 kvfree(imu->bvec);
8559 goto err;
8560 }
8561
8562 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8563 if (ret) {
8564 unpin_user_pages(pages, pret);
8565 kvfree(imu->bvec);
8566 goto err;
8567 }
8568
8569 off = ubuf & ~PAGE_MASK;
8570 size = iov.iov_len;
8571 for (j = 0; j < nr_pages; j++) {
8572 size_t vec_len;
8573
8574 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8575 imu->bvec[j].bv_page = pages[j];
8576 imu->bvec[j].bv_len = vec_len;
8577 imu->bvec[j].bv_offset = off;
8578 off = 0;
8579 size -= vec_len;
8580 }
8581 /* store original address for later verification */
8582 imu->ubuf = ubuf;
8583 imu->len = iov.iov_len;
8584 imu->nr_bvecs = nr_pages;
8585
8586 ctx->nr_user_bufs++;
8587 }
8588 kvfree(pages);
8589 kvfree(vmas);
8590 return 0;
8591 err:
8592 kvfree(pages);
8593 kvfree(vmas);
8594 io_sqe_buffer_unregister(ctx);
8595 return ret;
8596 }
8597
8598 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8599 {
8600 __s32 __user *fds = arg;
8601 int fd;
8602
8603 if (ctx->cq_ev_fd)
8604 return -EBUSY;
8605
8606 if (copy_from_user(&fd, fds, sizeof(*fds)))
8607 return -EFAULT;
8608
8609 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8610 if (IS_ERR(ctx->cq_ev_fd)) {
8611 int ret = PTR_ERR(ctx->cq_ev_fd);
8612 ctx->cq_ev_fd = NULL;
8613 return ret;
8614 }
8615
8616 return 0;
8617 }
8618
8619 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8620 {
8621 if (ctx->cq_ev_fd) {
8622 eventfd_ctx_put(ctx->cq_ev_fd);
8623 ctx->cq_ev_fd = NULL;
8624 return 0;
8625 }
8626
8627 return -ENXIO;
8628 }
8629
8630 static int __io_destroy_buffers(int id, void *p, void *data)
8631 {
8632 struct io_ring_ctx *ctx = data;
8633 struct io_buffer *buf = p;
8634
8635 __io_remove_buffers(ctx, buf, id, -1U);
8636 return 0;
8637 }
8638
8639 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8640 {
8641 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8642 idr_destroy(&ctx->io_buffer_idr);
8643 }
8644
8645 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8646 {
8647 io_finish_async(ctx);
8648 io_sqe_buffer_unregister(ctx);
8649
8650 if (ctx->sqo_task) {
8651 put_task_struct(ctx->sqo_task);
8652 ctx->sqo_task = NULL;
8653 mmdrop(ctx->mm_account);
8654 ctx->mm_account = NULL;
8655 }
8656
8657 #ifdef CONFIG_BLK_CGROUP
8658 if (ctx->sqo_blkcg_css)
8659 css_put(ctx->sqo_blkcg_css);
8660 #endif
8661
8662 io_sqe_files_unregister(ctx);
8663 io_eventfd_unregister(ctx);
8664 io_destroy_buffers(ctx);
8665 idr_destroy(&ctx->personality_idr);
8666
8667 #if defined(CONFIG_UNIX)
8668 if (ctx->ring_sock) {
8669 ctx->ring_sock->file = NULL; /* so that iput() is called */
8670 sock_release(ctx->ring_sock);
8671 }
8672 #endif
8673
8674 io_mem_free(ctx->rings);
8675 io_mem_free(ctx->sq_sqes);
8676
8677 percpu_ref_exit(&ctx->refs);
8678 free_uid(ctx->user);
8679 put_cred(ctx->creds);
8680 kfree(ctx->cancel_hash);
8681 kmem_cache_free(req_cachep, ctx->fallback_req);
8682 kfree(ctx);
8683 }
8684
8685 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8686 {
8687 struct io_ring_ctx *ctx = file->private_data;
8688 __poll_t mask = 0;
8689
8690 poll_wait(file, &ctx->cq_wait, wait);
8691 /*
8692 * synchronizes with barrier from wq_has_sleeper call in
8693 * io_commit_cqring
8694 */
8695 smp_rmb();
8696 if (!io_sqring_full(ctx))
8697 mask |= EPOLLOUT | EPOLLWRNORM;
8698 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8699 if (io_cqring_events(ctx))
8700 mask |= EPOLLIN | EPOLLRDNORM;
8701
8702 return mask;
8703 }
8704
8705 static int io_uring_fasync(int fd, struct file *file, int on)
8706 {
8707 struct io_ring_ctx *ctx = file->private_data;
8708
8709 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8710 }
8711
8712 static int io_remove_personalities(int id, void *p, void *data)
8713 {
8714 struct io_ring_ctx *ctx = data;
8715 struct io_identity *iod;
8716
8717 iod = idr_remove(&ctx->personality_idr, id);
8718 if (iod) {
8719 put_cred(iod->creds);
8720 if (refcount_dec_and_test(&iod->count))
8721 kfree(iod);
8722 }
8723 return 0;
8724 }
8725
8726 static void io_ring_exit_work(struct work_struct *work)
8727 {
8728 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8729 exit_work);
8730
8731 /*
8732 * If we're doing polled IO and end up having requests being
8733 * submitted async (out-of-line), then completions can come in while
8734 * we're waiting for refs to drop. We need to reap these manually,
8735 * as nobody else will be looking for them.
8736 */
8737 do {
8738 __io_uring_cancel_task_requests(ctx, NULL);
8739 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8740 io_ring_ctx_free(ctx);
8741 }
8742
8743 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8744 {
8745 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8746
8747 return req->ctx == data;
8748 }
8749
8750 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8751 {
8752 mutex_lock(&ctx->uring_lock);
8753 percpu_ref_kill(&ctx->refs);
8754
8755 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8756 ctx->sqo_dead = 1;
8757
8758 /* if force is set, the ring is going away. always drop after that */
8759 ctx->cq_overflow_flushed = 1;
8760 if (ctx->rings)
8761 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8762 mutex_unlock(&ctx->uring_lock);
8763
8764 io_kill_timeouts(ctx, NULL, NULL);
8765 io_poll_remove_all(ctx, NULL, NULL);
8766
8767 if (ctx->io_wq)
8768 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8769
8770 /* if we failed setting up the ctx, we might not have any rings */
8771 io_iopoll_try_reap_events(ctx);
8772 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8773
8774 /*
8775 * Do this upfront, so we won't have a grace period where the ring
8776 * is closed but resources aren't reaped yet. This can cause
8777 * spurious failure in setting up a new ring.
8778 */
8779 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8780 ACCT_LOCKED);
8781
8782 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8783 /*
8784 * Use system_unbound_wq to avoid spawning tons of event kworkers
8785 * if we're exiting a ton of rings at the same time. It just adds
8786 * noise and overhead, there's no discernable change in runtime
8787 * over using system_wq.
8788 */
8789 queue_work(system_unbound_wq, &ctx->exit_work);
8790 }
8791
8792 static int io_uring_release(struct inode *inode, struct file *file)
8793 {
8794 struct io_ring_ctx *ctx = file->private_data;
8795
8796 file->private_data = NULL;
8797 io_ring_ctx_wait_and_kill(ctx);
8798 return 0;
8799 }
8800
8801 struct io_task_cancel {
8802 struct task_struct *task;
8803 struct files_struct *files;
8804 };
8805
8806 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8807 {
8808 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8809 struct io_task_cancel *cancel = data;
8810 bool ret;
8811
8812 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8813 unsigned long flags;
8814 struct io_ring_ctx *ctx = req->ctx;
8815
8816 /* protect against races with linked timeouts */
8817 spin_lock_irqsave(&ctx->completion_lock, flags);
8818 ret = io_match_task(req, cancel->task, cancel->files);
8819 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8820 } else {
8821 ret = io_match_task(req, cancel->task, cancel->files);
8822 }
8823 return ret;
8824 }
8825
8826 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8827 struct task_struct *task,
8828 struct files_struct *files)
8829 {
8830 struct io_defer_entry *de = NULL;
8831 LIST_HEAD(list);
8832
8833 spin_lock_irq(&ctx->completion_lock);
8834 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8835 if (io_match_task(de->req, task, files)) {
8836 list_cut_position(&list, &ctx->defer_list, &de->list);
8837 break;
8838 }
8839 }
8840 spin_unlock_irq(&ctx->completion_lock);
8841
8842 while (!list_empty(&list)) {
8843 de = list_first_entry(&list, struct io_defer_entry, list);
8844 list_del_init(&de->list);
8845 req_set_fail_links(de->req);
8846 io_put_req(de->req);
8847 io_req_complete(de->req, -ECANCELED);
8848 kfree(de);
8849 }
8850 }
8851
8852 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8853 struct task_struct *task,
8854 struct files_struct *files)
8855 {
8856 while (!list_empty_careful(&ctx->inflight_list)) {
8857 struct io_task_cancel cancel = { .task = task, .files = files };
8858 struct io_kiocb *req;
8859 DEFINE_WAIT(wait);
8860 bool found = false;
8861
8862 spin_lock_irq(&ctx->inflight_lock);
8863 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8864 if (req->task != task ||
8865 req->work.identity->files != files)
8866 continue;
8867 found = true;
8868 break;
8869 }
8870 if (found)
8871 prepare_to_wait(&task->io_uring->wait, &wait,
8872 TASK_UNINTERRUPTIBLE);
8873 spin_unlock_irq(&ctx->inflight_lock);
8874
8875 /* We need to keep going until we don't find a matching req */
8876 if (!found)
8877 break;
8878
8879 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8880 io_poll_remove_all(ctx, task, files);
8881 io_kill_timeouts(ctx, task, files);
8882 /* cancellations _may_ trigger task work */
8883 io_run_task_work();
8884 schedule();
8885 finish_wait(&task->io_uring->wait, &wait);
8886 }
8887 }
8888
8889 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8890 struct task_struct *task)
8891 {
8892 while (1) {
8893 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8894 enum io_wq_cancel cret;
8895 bool ret = false;
8896
8897 if (ctx->io_wq) {
8898 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8899 &cancel, true);
8900 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8901 }
8902
8903 /* SQPOLL thread does its own polling */
8904 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8905 while (!list_empty_careful(&ctx->iopoll_list)) {
8906 io_iopoll_try_reap_events(ctx);
8907 ret = true;
8908 }
8909 }
8910
8911 ret |= io_poll_remove_all(ctx, task, NULL);
8912 ret |= io_kill_timeouts(ctx, task, NULL);
8913 ret |= io_run_task_work();
8914 if (!ret)
8915 break;
8916 cond_resched();
8917 }
8918 }
8919
8920 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8921 {
8922 mutex_lock(&ctx->uring_lock);
8923 ctx->sqo_dead = 1;
8924 mutex_unlock(&ctx->uring_lock);
8925
8926 /* make sure callers enter the ring to get error */
8927 if (ctx->rings)
8928 io_ring_set_wakeup_flag(ctx);
8929 }
8930
8931 /*
8932 * We need to iteratively cancel requests, in case a request has dependent
8933 * hard links. These persist even for failure of cancelations, hence keep
8934 * looping until none are found.
8935 */
8936 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8937 struct files_struct *files)
8938 {
8939 struct task_struct *task = current;
8940
8941 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8942 /* for SQPOLL only sqo_task has task notes */
8943 WARN_ON_ONCE(ctx->sqo_task != current);
8944 io_disable_sqo_submit(ctx);
8945 task = ctx->sq_data->thread;
8946 atomic_inc(&task->io_uring->in_idle);
8947 io_sq_thread_park(ctx->sq_data);
8948 }
8949
8950 io_cancel_defer_files(ctx, task, files);
8951 io_cqring_overflow_flush(ctx, true, task, files);
8952
8953 if (!files)
8954 __io_uring_cancel_task_requests(ctx, task);
8955 else
8956 io_uring_cancel_files(ctx, task, files);
8957
8958 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8959 atomic_dec(&task->io_uring->in_idle);
8960 /*
8961 * If the files that are going away are the ones in the thread
8962 * identity, clear them out.
8963 */
8964 if (task->io_uring->identity->files == files)
8965 task->io_uring->identity->files = NULL;
8966 io_sq_thread_unpark(ctx->sq_data);
8967 }
8968 }
8969
8970 /*
8971 * Note that this task has used io_uring. We use it for cancelation purposes.
8972 */
8973 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8974 {
8975 struct io_uring_task *tctx = current->io_uring;
8976 int ret;
8977
8978 if (unlikely(!tctx)) {
8979 ret = io_uring_alloc_task_context(current);
8980 if (unlikely(ret))
8981 return ret;
8982 tctx = current->io_uring;
8983 }
8984 if (tctx->last != file) {
8985 void *old = xa_load(&tctx->xa, (unsigned long)file);
8986
8987 if (!old) {
8988 get_file(file);
8989 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8990 file, GFP_KERNEL));
8991 if (ret) {
8992 fput(file);
8993 return ret;
8994 }
8995 }
8996 tctx->last = file;
8997 }
8998
8999 /*
9000 * This is race safe in that the task itself is doing this, hence it
9001 * cannot be going through the exit/cancel paths at the same time.
9002 * This cannot be modified while exit/cancel is running.
9003 */
9004 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9005 tctx->sqpoll = true;
9006
9007 return 0;
9008 }
9009
9010 /*
9011 * Remove this io_uring_file -> task mapping.
9012 */
9013 static void io_uring_del_task_file(struct file *file)
9014 {
9015 struct io_uring_task *tctx = current->io_uring;
9016
9017 if (tctx->last == file)
9018 tctx->last = NULL;
9019 file = xa_erase(&tctx->xa, (unsigned long)file);
9020 if (file)
9021 fput(file);
9022 }
9023
9024 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9025 {
9026 struct file *file;
9027 unsigned long index;
9028
9029 xa_for_each(&tctx->xa, index, file)
9030 io_uring_del_task_file(file);
9031 }
9032
9033 void __io_uring_files_cancel(struct files_struct *files)
9034 {
9035 struct io_uring_task *tctx = current->io_uring;
9036 struct file *file;
9037 unsigned long index;
9038
9039 /* make sure overflow events are dropped */
9040 atomic_inc(&tctx->in_idle);
9041 xa_for_each(&tctx->xa, index, file)
9042 io_uring_cancel_task_requests(file->private_data, files);
9043 atomic_dec(&tctx->in_idle);
9044
9045 if (files)
9046 io_uring_remove_task_files(tctx);
9047 }
9048
9049 static s64 tctx_inflight(struct io_uring_task *tctx)
9050 {
9051 unsigned long index;
9052 struct file *file;
9053 s64 inflight;
9054
9055 inflight = percpu_counter_sum(&tctx->inflight);
9056 if (!tctx->sqpoll)
9057 return inflight;
9058
9059 /*
9060 * If we have SQPOLL rings, then we need to iterate and find them, and
9061 * add the pending count for those.
9062 */
9063 xa_for_each(&tctx->xa, index, file) {
9064 struct io_ring_ctx *ctx = file->private_data;
9065
9066 if (ctx->flags & IORING_SETUP_SQPOLL) {
9067 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9068
9069 inflight += percpu_counter_sum(&__tctx->inflight);
9070 }
9071 }
9072
9073 return inflight;
9074 }
9075
9076 /*
9077 * Find any io_uring fd that this task has registered or done IO on, and cancel
9078 * requests.
9079 */
9080 void __io_uring_task_cancel(void)
9081 {
9082 struct io_uring_task *tctx = current->io_uring;
9083 DEFINE_WAIT(wait);
9084 s64 inflight;
9085
9086 /* make sure overflow events are dropped */
9087 atomic_inc(&tctx->in_idle);
9088
9089 /* trigger io_disable_sqo_submit() */
9090 if (tctx->sqpoll)
9091 __io_uring_files_cancel(NULL);
9092
9093 do {
9094 /* read completions before cancelations */
9095 inflight = tctx_inflight(tctx);
9096 if (!inflight)
9097 break;
9098 __io_uring_files_cancel(NULL);
9099
9100 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9101
9102 /*
9103 * If we've seen completions, retry. This avoids a race where
9104 * a completion comes in before we did prepare_to_wait().
9105 */
9106 if (inflight != tctx_inflight(tctx))
9107 continue;
9108 schedule();
9109 finish_wait(&tctx->wait, &wait);
9110 } while (1);
9111
9112 finish_wait(&tctx->wait, &wait);
9113 atomic_dec(&tctx->in_idle);
9114
9115 io_uring_remove_task_files(tctx);
9116 }
9117
9118 static int io_uring_flush(struct file *file, void *data)
9119 {
9120 struct io_uring_task *tctx = current->io_uring;
9121 struct io_ring_ctx *ctx = file->private_data;
9122
9123 if (!tctx)
9124 return 0;
9125
9126 /* we should have cancelled and erased it before PF_EXITING */
9127 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9128 xa_load(&tctx->xa, (unsigned long)file));
9129
9130 /*
9131 * fput() is pending, will be 2 if the only other ref is our potential
9132 * task file note. If the task is exiting, drop regardless of count.
9133 */
9134 if (atomic_long_read(&file->f_count) != 2)
9135 return 0;
9136
9137 if (ctx->flags & IORING_SETUP_SQPOLL) {
9138 /* there is only one file note, which is owned by sqo_task */
9139 WARN_ON_ONCE(ctx->sqo_task != current &&
9140 xa_load(&tctx->xa, (unsigned long)file));
9141 /* sqo_dead check is for when this happens after cancellation */
9142 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9143 !xa_load(&tctx->xa, (unsigned long)file));
9144
9145 io_disable_sqo_submit(ctx);
9146 }
9147
9148 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9149 io_uring_del_task_file(file);
9150 return 0;
9151 }
9152
9153 static void *io_uring_validate_mmap_request(struct file *file,
9154 loff_t pgoff, size_t sz)
9155 {
9156 struct io_ring_ctx *ctx = file->private_data;
9157 loff_t offset = pgoff << PAGE_SHIFT;
9158 struct page *page;
9159 void *ptr;
9160
9161 switch (offset) {
9162 case IORING_OFF_SQ_RING:
9163 case IORING_OFF_CQ_RING:
9164 ptr = ctx->rings;
9165 break;
9166 case IORING_OFF_SQES:
9167 ptr = ctx->sq_sqes;
9168 break;
9169 default:
9170 return ERR_PTR(-EINVAL);
9171 }
9172
9173 page = virt_to_head_page(ptr);
9174 if (sz > page_size(page))
9175 return ERR_PTR(-EINVAL);
9176
9177 return ptr;
9178 }
9179
9180 #ifdef CONFIG_MMU
9181
9182 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9183 {
9184 size_t sz = vma->vm_end - vma->vm_start;
9185 unsigned long pfn;
9186 void *ptr;
9187
9188 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9189 if (IS_ERR(ptr))
9190 return PTR_ERR(ptr);
9191
9192 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9193 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9194 }
9195
9196 #else /* !CONFIG_MMU */
9197
9198 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9199 {
9200 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9201 }
9202
9203 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9204 {
9205 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9206 }
9207
9208 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9209 unsigned long addr, unsigned long len,
9210 unsigned long pgoff, unsigned long flags)
9211 {
9212 void *ptr;
9213
9214 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9215 if (IS_ERR(ptr))
9216 return PTR_ERR(ptr);
9217
9218 return (unsigned long) ptr;
9219 }
9220
9221 #endif /* !CONFIG_MMU */
9222
9223 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9224 {
9225 int ret = 0;
9226 DEFINE_WAIT(wait);
9227
9228 do {
9229 if (!io_sqring_full(ctx))
9230 break;
9231
9232 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9233
9234 if (unlikely(ctx->sqo_dead)) {
9235 ret = -EOWNERDEAD;
9236 goto out;
9237 }
9238
9239 if (!io_sqring_full(ctx))
9240 break;
9241
9242 schedule();
9243 } while (!signal_pending(current));
9244
9245 finish_wait(&ctx->sqo_sq_wait, &wait);
9246 out:
9247 return ret;
9248 }
9249
9250 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9251 struct __kernel_timespec __user **ts,
9252 const sigset_t __user **sig)
9253 {
9254 struct io_uring_getevents_arg arg;
9255
9256 /*
9257 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9258 * is just a pointer to the sigset_t.
9259 */
9260 if (!(flags & IORING_ENTER_EXT_ARG)) {
9261 *sig = (const sigset_t __user *) argp;
9262 *ts = NULL;
9263 return 0;
9264 }
9265
9266 /*
9267 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9268 * timespec and sigset_t pointers if good.
9269 */
9270 if (*argsz != sizeof(arg))
9271 return -EINVAL;
9272 if (copy_from_user(&arg, argp, sizeof(arg)))
9273 return -EFAULT;
9274 *sig = u64_to_user_ptr(arg.sigmask);
9275 *argsz = arg.sigmask_sz;
9276 *ts = u64_to_user_ptr(arg.ts);
9277 return 0;
9278 }
9279
9280 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9281 u32, min_complete, u32, flags, const void __user *, argp,
9282 size_t, argsz)
9283 {
9284 struct io_ring_ctx *ctx;
9285 long ret = -EBADF;
9286 int submitted = 0;
9287 struct fd f;
9288
9289 io_run_task_work();
9290
9291 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9292 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9293 return -EINVAL;
9294
9295 f = fdget(fd);
9296 if (!f.file)
9297 return -EBADF;
9298
9299 ret = -EOPNOTSUPP;
9300 if (f.file->f_op != &io_uring_fops)
9301 goto out_fput;
9302
9303 ret = -ENXIO;
9304 ctx = f.file->private_data;
9305 if (!percpu_ref_tryget(&ctx->refs))
9306 goto out_fput;
9307
9308 ret = -EBADFD;
9309 if (ctx->flags & IORING_SETUP_R_DISABLED)
9310 goto out;
9311
9312 /*
9313 * For SQ polling, the thread will do all submissions and completions.
9314 * Just return the requested submit count, and wake the thread if
9315 * we were asked to.
9316 */
9317 ret = 0;
9318 if (ctx->flags & IORING_SETUP_SQPOLL) {
9319 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9320
9321 ret = -EOWNERDEAD;
9322 if (unlikely(ctx->sqo_dead))
9323 goto out;
9324 if (flags & IORING_ENTER_SQ_WAKEUP)
9325 wake_up(&ctx->sq_data->wait);
9326 if (flags & IORING_ENTER_SQ_WAIT) {
9327 ret = io_sqpoll_wait_sq(ctx);
9328 if (ret)
9329 goto out;
9330 }
9331 submitted = to_submit;
9332 } else if (to_submit) {
9333 ret = io_uring_add_task_file(ctx, f.file);
9334 if (unlikely(ret))
9335 goto out;
9336 mutex_lock(&ctx->uring_lock);
9337 submitted = io_submit_sqes(ctx, to_submit);
9338 mutex_unlock(&ctx->uring_lock);
9339
9340 if (submitted != to_submit)
9341 goto out;
9342 }
9343 if (flags & IORING_ENTER_GETEVENTS) {
9344 const sigset_t __user *sig;
9345 struct __kernel_timespec __user *ts;
9346
9347 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9348 if (unlikely(ret))
9349 goto out;
9350
9351 min_complete = min(min_complete, ctx->cq_entries);
9352
9353 /*
9354 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9355 * space applications don't need to do io completion events
9356 * polling again, they can rely on io_sq_thread to do polling
9357 * work, which can reduce cpu usage and uring_lock contention.
9358 */
9359 if (ctx->flags & IORING_SETUP_IOPOLL &&
9360 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9361 ret = io_iopoll_check(ctx, min_complete);
9362 } else {
9363 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9364 }
9365 }
9366
9367 out:
9368 percpu_ref_put(&ctx->refs);
9369 out_fput:
9370 fdput(f);
9371 return submitted ? submitted : ret;
9372 }
9373
9374 #ifdef CONFIG_PROC_FS
9375 static int io_uring_show_cred(int id, void *p, void *data)
9376 {
9377 struct io_identity *iod = p;
9378 const struct cred *cred = iod->creds;
9379 struct seq_file *m = data;
9380 struct user_namespace *uns = seq_user_ns(m);
9381 struct group_info *gi;
9382 kernel_cap_t cap;
9383 unsigned __capi;
9384 int g;
9385
9386 seq_printf(m, "%5d\n", id);
9387 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9388 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9389 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9390 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9391 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9392 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9393 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9394 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9395 seq_puts(m, "\n\tGroups:\t");
9396 gi = cred->group_info;
9397 for (g = 0; g < gi->ngroups; g++) {
9398 seq_put_decimal_ull(m, g ? " " : "",
9399 from_kgid_munged(uns, gi->gid[g]));
9400 }
9401 seq_puts(m, "\n\tCapEff:\t");
9402 cap = cred->cap_effective;
9403 CAP_FOR_EACH_U32(__capi)
9404 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9405 seq_putc(m, '\n');
9406 return 0;
9407 }
9408
9409 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9410 {
9411 struct io_sq_data *sq = NULL;
9412 bool has_lock;
9413 int i;
9414
9415 /*
9416 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9417 * since fdinfo case grabs it in the opposite direction of normal use
9418 * cases. If we fail to get the lock, we just don't iterate any
9419 * structures that could be going away outside the io_uring mutex.
9420 */
9421 has_lock = mutex_trylock(&ctx->uring_lock);
9422
9423 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9424 sq = ctx->sq_data;
9425
9426 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9427 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9428 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9429 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9430 struct fixed_file_table *table;
9431 struct file *f;
9432
9433 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9434 f = table->files[i & IORING_FILE_TABLE_MASK];
9435 if (f)
9436 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9437 else
9438 seq_printf(m, "%5u: <none>\n", i);
9439 }
9440 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9441 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9442 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9443
9444 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9445 (unsigned int) buf->len);
9446 }
9447 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9448 seq_printf(m, "Personalities:\n");
9449 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9450 }
9451 seq_printf(m, "PollList:\n");
9452 spin_lock_irq(&ctx->completion_lock);
9453 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9454 struct hlist_head *list = &ctx->cancel_hash[i];
9455 struct io_kiocb *req;
9456
9457 hlist_for_each_entry(req, list, hash_node)
9458 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9459 req->task->task_works != NULL);
9460 }
9461 spin_unlock_irq(&ctx->completion_lock);
9462 if (has_lock)
9463 mutex_unlock(&ctx->uring_lock);
9464 }
9465
9466 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9467 {
9468 struct io_ring_ctx *ctx = f->private_data;
9469
9470 if (percpu_ref_tryget(&ctx->refs)) {
9471 __io_uring_show_fdinfo(ctx, m);
9472 percpu_ref_put(&ctx->refs);
9473 }
9474 }
9475 #endif
9476
9477 static const struct file_operations io_uring_fops = {
9478 .release = io_uring_release,
9479 .flush = io_uring_flush,
9480 .mmap = io_uring_mmap,
9481 #ifndef CONFIG_MMU
9482 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9483 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9484 #endif
9485 .poll = io_uring_poll,
9486 .fasync = io_uring_fasync,
9487 #ifdef CONFIG_PROC_FS
9488 .show_fdinfo = io_uring_show_fdinfo,
9489 #endif
9490 };
9491
9492 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9493 struct io_uring_params *p)
9494 {
9495 struct io_rings *rings;
9496 size_t size, sq_array_offset;
9497
9498 /* make sure these are sane, as we already accounted them */
9499 ctx->sq_entries = p->sq_entries;
9500 ctx->cq_entries = p->cq_entries;
9501
9502 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9503 if (size == SIZE_MAX)
9504 return -EOVERFLOW;
9505
9506 rings = io_mem_alloc(size);
9507 if (!rings)
9508 return -ENOMEM;
9509
9510 ctx->rings = rings;
9511 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9512 rings->sq_ring_mask = p->sq_entries - 1;
9513 rings->cq_ring_mask = p->cq_entries - 1;
9514 rings->sq_ring_entries = p->sq_entries;
9515 rings->cq_ring_entries = p->cq_entries;
9516 ctx->sq_mask = rings->sq_ring_mask;
9517 ctx->cq_mask = rings->cq_ring_mask;
9518
9519 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9520 if (size == SIZE_MAX) {
9521 io_mem_free(ctx->rings);
9522 ctx->rings = NULL;
9523 return -EOVERFLOW;
9524 }
9525
9526 ctx->sq_sqes = io_mem_alloc(size);
9527 if (!ctx->sq_sqes) {
9528 io_mem_free(ctx->rings);
9529 ctx->rings = NULL;
9530 return -ENOMEM;
9531 }
9532
9533 return 0;
9534 }
9535
9536 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9537 {
9538 int ret, fd;
9539
9540 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9541 if (fd < 0)
9542 return fd;
9543
9544 ret = io_uring_add_task_file(ctx, file);
9545 if (ret) {
9546 put_unused_fd(fd);
9547 return ret;
9548 }
9549 fd_install(fd, file);
9550 return fd;
9551 }
9552
9553 /*
9554 * Allocate an anonymous fd, this is what constitutes the application
9555 * visible backing of an io_uring instance. The application mmaps this
9556 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9557 * we have to tie this fd to a socket for file garbage collection purposes.
9558 */
9559 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9560 {
9561 struct file *file;
9562 #if defined(CONFIG_UNIX)
9563 int ret;
9564
9565 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9566 &ctx->ring_sock);
9567 if (ret)
9568 return ERR_PTR(ret);
9569 #endif
9570
9571 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9572 O_RDWR | O_CLOEXEC);
9573 #if defined(CONFIG_UNIX)
9574 if (IS_ERR(file)) {
9575 sock_release(ctx->ring_sock);
9576 ctx->ring_sock = NULL;
9577 } else {
9578 ctx->ring_sock->file = file;
9579 }
9580 #endif
9581 return file;
9582 }
9583
9584 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9585 struct io_uring_params __user *params)
9586 {
9587 struct user_struct *user = NULL;
9588 struct io_ring_ctx *ctx;
9589 struct file *file;
9590 bool limit_mem;
9591 int ret;
9592
9593 if (!entries)
9594 return -EINVAL;
9595 if (entries > IORING_MAX_ENTRIES) {
9596 if (!(p->flags & IORING_SETUP_CLAMP))
9597 return -EINVAL;
9598 entries = IORING_MAX_ENTRIES;
9599 }
9600
9601 /*
9602 * Use twice as many entries for the CQ ring. It's possible for the
9603 * application to drive a higher depth than the size of the SQ ring,
9604 * since the sqes are only used at submission time. This allows for
9605 * some flexibility in overcommitting a bit. If the application has
9606 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9607 * of CQ ring entries manually.
9608 */
9609 p->sq_entries = roundup_pow_of_two(entries);
9610 if (p->flags & IORING_SETUP_CQSIZE) {
9611 /*
9612 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9613 * to a power-of-two, if it isn't already. We do NOT impose
9614 * any cq vs sq ring sizing.
9615 */
9616 if (!p->cq_entries)
9617 return -EINVAL;
9618 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9619 if (!(p->flags & IORING_SETUP_CLAMP))
9620 return -EINVAL;
9621 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9622 }
9623 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9624 if (p->cq_entries < p->sq_entries)
9625 return -EINVAL;
9626 } else {
9627 p->cq_entries = 2 * p->sq_entries;
9628 }
9629
9630 user = get_uid(current_user());
9631 limit_mem = !capable(CAP_IPC_LOCK);
9632
9633 if (limit_mem) {
9634 ret = __io_account_mem(user,
9635 ring_pages(p->sq_entries, p->cq_entries));
9636 if (ret) {
9637 free_uid(user);
9638 return ret;
9639 }
9640 }
9641
9642 ctx = io_ring_ctx_alloc(p);
9643 if (!ctx) {
9644 if (limit_mem)
9645 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9646 p->cq_entries));
9647 free_uid(user);
9648 return -ENOMEM;
9649 }
9650 ctx->compat = in_compat_syscall();
9651 ctx->user = user;
9652 ctx->creds = get_current_cred();
9653 #ifdef CONFIG_AUDIT
9654 ctx->loginuid = current->loginuid;
9655 ctx->sessionid = current->sessionid;
9656 #endif
9657 ctx->sqo_task = get_task_struct(current);
9658
9659 /*
9660 * This is just grabbed for accounting purposes. When a process exits,
9661 * the mm is exited and dropped before the files, hence we need to hang
9662 * on to this mm purely for the purposes of being able to unaccount
9663 * memory (locked/pinned vm). It's not used for anything else.
9664 */
9665 mmgrab(current->mm);
9666 ctx->mm_account = current->mm;
9667
9668 #ifdef CONFIG_BLK_CGROUP
9669 /*
9670 * The sq thread will belong to the original cgroup it was inited in.
9671 * If the cgroup goes offline (e.g. disabling the io controller), then
9672 * issued bios will be associated with the closest cgroup later in the
9673 * block layer.
9674 */
9675 rcu_read_lock();
9676 ctx->sqo_blkcg_css = blkcg_css();
9677 ret = css_tryget_online(ctx->sqo_blkcg_css);
9678 rcu_read_unlock();
9679 if (!ret) {
9680 /* don't init against a dying cgroup, have the user try again */
9681 ctx->sqo_blkcg_css = NULL;
9682 ret = -ENODEV;
9683 goto err;
9684 }
9685 #endif
9686
9687 /*
9688 * Account memory _before_ installing the file descriptor. Once
9689 * the descriptor is installed, it can get closed at any time. Also
9690 * do this before hitting the general error path, as ring freeing
9691 * will un-account as well.
9692 */
9693 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9694 ACCT_LOCKED);
9695 ctx->limit_mem = limit_mem;
9696
9697 ret = io_allocate_scq_urings(ctx, p);
9698 if (ret)
9699 goto err;
9700
9701 ret = io_sq_offload_create(ctx, p);
9702 if (ret)
9703 goto err;
9704
9705 if (!(p->flags & IORING_SETUP_R_DISABLED))
9706 io_sq_offload_start(ctx);
9707
9708 memset(&p->sq_off, 0, sizeof(p->sq_off));
9709 p->sq_off.head = offsetof(struct io_rings, sq.head);
9710 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9711 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9712 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9713 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9714 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9715 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9716
9717 memset(&p->cq_off, 0, sizeof(p->cq_off));
9718 p->cq_off.head = offsetof(struct io_rings, cq.head);
9719 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9720 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9721 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9722 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9723 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9724 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9725
9726 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9727 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9728 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9729 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9730 IORING_FEAT_EXT_ARG;
9731
9732 if (copy_to_user(params, p, sizeof(*p))) {
9733 ret = -EFAULT;
9734 goto err;
9735 }
9736
9737 file = io_uring_get_file(ctx);
9738 if (IS_ERR(file)) {
9739 ret = PTR_ERR(file);
9740 goto err;
9741 }
9742
9743 /*
9744 * Install ring fd as the very last thing, so we don't risk someone
9745 * having closed it before we finish setup
9746 */
9747 ret = io_uring_install_fd(ctx, file);
9748 if (ret < 0) {
9749 io_disable_sqo_submit(ctx);
9750 /* fput will clean it up */
9751 fput(file);
9752 return ret;
9753 }
9754
9755 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9756 return ret;
9757 err:
9758 io_disable_sqo_submit(ctx);
9759 io_ring_ctx_wait_and_kill(ctx);
9760 return ret;
9761 }
9762
9763 /*
9764 * Sets up an aio uring context, and returns the fd. Applications asks for a
9765 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9766 * params structure passed in.
9767 */
9768 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9769 {
9770 struct io_uring_params p;
9771 int i;
9772
9773 if (copy_from_user(&p, params, sizeof(p)))
9774 return -EFAULT;
9775 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9776 if (p.resv[i])
9777 return -EINVAL;
9778 }
9779
9780 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9781 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9782 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9783 IORING_SETUP_R_DISABLED))
9784 return -EINVAL;
9785
9786 return io_uring_create(entries, &p, params);
9787 }
9788
9789 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9790 struct io_uring_params __user *, params)
9791 {
9792 return io_uring_setup(entries, params);
9793 }
9794
9795 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9796 {
9797 struct io_uring_probe *p;
9798 size_t size;
9799 int i, ret;
9800
9801 size = struct_size(p, ops, nr_args);
9802 if (size == SIZE_MAX)
9803 return -EOVERFLOW;
9804 p = kzalloc(size, GFP_KERNEL);
9805 if (!p)
9806 return -ENOMEM;
9807
9808 ret = -EFAULT;
9809 if (copy_from_user(p, arg, size))
9810 goto out;
9811 ret = -EINVAL;
9812 if (memchr_inv(p, 0, size))
9813 goto out;
9814
9815 p->last_op = IORING_OP_LAST - 1;
9816 if (nr_args > IORING_OP_LAST)
9817 nr_args = IORING_OP_LAST;
9818
9819 for (i = 0; i < nr_args; i++) {
9820 p->ops[i].op = i;
9821 if (!io_op_defs[i].not_supported)
9822 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9823 }
9824 p->ops_len = i;
9825
9826 ret = 0;
9827 if (copy_to_user(arg, p, size))
9828 ret = -EFAULT;
9829 out:
9830 kfree(p);
9831 return ret;
9832 }
9833
9834 static int io_register_personality(struct io_ring_ctx *ctx)
9835 {
9836 struct io_identity *id;
9837 int ret;
9838
9839 id = kmalloc(sizeof(*id), GFP_KERNEL);
9840 if (unlikely(!id))
9841 return -ENOMEM;
9842
9843 io_init_identity(id);
9844 id->creds = get_current_cred();
9845
9846 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9847 if (ret < 0) {
9848 put_cred(id->creds);
9849 kfree(id);
9850 }
9851 return ret;
9852 }
9853
9854 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9855 {
9856 struct io_identity *iod;
9857
9858 iod = idr_remove(&ctx->personality_idr, id);
9859 if (iod) {
9860 put_cred(iod->creds);
9861 if (refcount_dec_and_test(&iod->count))
9862 kfree(iod);
9863 return 0;
9864 }
9865
9866 return -EINVAL;
9867 }
9868
9869 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9870 unsigned int nr_args)
9871 {
9872 struct io_uring_restriction *res;
9873 size_t size;
9874 int i, ret;
9875
9876 /* Restrictions allowed only if rings started disabled */
9877 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9878 return -EBADFD;
9879
9880 /* We allow only a single restrictions registration */
9881 if (ctx->restrictions.registered)
9882 return -EBUSY;
9883
9884 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9885 return -EINVAL;
9886
9887 size = array_size(nr_args, sizeof(*res));
9888 if (size == SIZE_MAX)
9889 return -EOVERFLOW;
9890
9891 res = memdup_user(arg, size);
9892 if (IS_ERR(res))
9893 return PTR_ERR(res);
9894
9895 ret = 0;
9896
9897 for (i = 0; i < nr_args; i++) {
9898 switch (res[i].opcode) {
9899 case IORING_RESTRICTION_REGISTER_OP:
9900 if (res[i].register_op >= IORING_REGISTER_LAST) {
9901 ret = -EINVAL;
9902 goto out;
9903 }
9904
9905 __set_bit(res[i].register_op,
9906 ctx->restrictions.register_op);
9907 break;
9908 case IORING_RESTRICTION_SQE_OP:
9909 if (res[i].sqe_op >= IORING_OP_LAST) {
9910 ret = -EINVAL;
9911 goto out;
9912 }
9913
9914 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9915 break;
9916 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9917 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9918 break;
9919 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9920 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9921 break;
9922 default:
9923 ret = -EINVAL;
9924 goto out;
9925 }
9926 }
9927
9928 out:
9929 /* Reset all restrictions if an error happened */
9930 if (ret != 0)
9931 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9932 else
9933 ctx->restrictions.registered = true;
9934
9935 kfree(res);
9936 return ret;
9937 }
9938
9939 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9940 {
9941 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9942 return -EBADFD;
9943
9944 if (ctx->restrictions.registered)
9945 ctx->restricted = 1;
9946
9947 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9948
9949 io_sq_offload_start(ctx);
9950
9951 return 0;
9952 }
9953
9954 static bool io_register_op_must_quiesce(int op)
9955 {
9956 switch (op) {
9957 case IORING_UNREGISTER_FILES:
9958 case IORING_REGISTER_FILES_UPDATE:
9959 case IORING_REGISTER_PROBE:
9960 case IORING_REGISTER_PERSONALITY:
9961 case IORING_UNREGISTER_PERSONALITY:
9962 return false;
9963 default:
9964 return true;
9965 }
9966 }
9967
9968 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9969 void __user *arg, unsigned nr_args)
9970 __releases(ctx->uring_lock)
9971 __acquires(ctx->uring_lock)
9972 {
9973 int ret;
9974
9975 /*
9976 * We're inside the ring mutex, if the ref is already dying, then
9977 * someone else killed the ctx or is already going through
9978 * io_uring_register().
9979 */
9980 if (percpu_ref_is_dying(&ctx->refs))
9981 return -ENXIO;
9982
9983 if (io_register_op_must_quiesce(opcode)) {
9984 percpu_ref_kill(&ctx->refs);
9985
9986 /*
9987 * Drop uring mutex before waiting for references to exit. If
9988 * another thread is currently inside io_uring_enter() it might
9989 * need to grab the uring_lock to make progress. If we hold it
9990 * here across the drain wait, then we can deadlock. It's safe
9991 * to drop the mutex here, since no new references will come in
9992 * after we've killed the percpu ref.
9993 */
9994 mutex_unlock(&ctx->uring_lock);
9995 do {
9996 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9997 if (!ret)
9998 break;
9999 ret = io_run_task_work_sig();
10000 if (ret < 0)
10001 break;
10002 } while (1);
10003
10004 mutex_lock(&ctx->uring_lock);
10005
10006 if (ret) {
10007 percpu_ref_resurrect(&ctx->refs);
10008 goto out_quiesce;
10009 }
10010 }
10011
10012 if (ctx->restricted) {
10013 if (opcode >= IORING_REGISTER_LAST) {
10014 ret = -EINVAL;
10015 goto out;
10016 }
10017
10018 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10019 ret = -EACCES;
10020 goto out;
10021 }
10022 }
10023
10024 switch (opcode) {
10025 case IORING_REGISTER_BUFFERS:
10026 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10027 break;
10028 case IORING_UNREGISTER_BUFFERS:
10029 ret = -EINVAL;
10030 if (arg || nr_args)
10031 break;
10032 ret = io_sqe_buffer_unregister(ctx);
10033 break;
10034 case IORING_REGISTER_FILES:
10035 ret = io_sqe_files_register(ctx, arg, nr_args);
10036 break;
10037 case IORING_UNREGISTER_FILES:
10038 ret = -EINVAL;
10039 if (arg || nr_args)
10040 break;
10041 ret = io_sqe_files_unregister(ctx);
10042 break;
10043 case IORING_REGISTER_FILES_UPDATE:
10044 ret = io_sqe_files_update(ctx, arg, nr_args);
10045 break;
10046 case IORING_REGISTER_EVENTFD:
10047 case IORING_REGISTER_EVENTFD_ASYNC:
10048 ret = -EINVAL;
10049 if (nr_args != 1)
10050 break;
10051 ret = io_eventfd_register(ctx, arg);
10052 if (ret)
10053 break;
10054 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10055 ctx->eventfd_async = 1;
10056 else
10057 ctx->eventfd_async = 0;
10058 break;
10059 case IORING_UNREGISTER_EVENTFD:
10060 ret = -EINVAL;
10061 if (arg || nr_args)
10062 break;
10063 ret = io_eventfd_unregister(ctx);
10064 break;
10065 case IORING_REGISTER_PROBE:
10066 ret = -EINVAL;
10067 if (!arg || nr_args > 256)
10068 break;
10069 ret = io_probe(ctx, arg, nr_args);
10070 break;
10071 case IORING_REGISTER_PERSONALITY:
10072 ret = -EINVAL;
10073 if (arg || nr_args)
10074 break;
10075 ret = io_register_personality(ctx);
10076 break;
10077 case IORING_UNREGISTER_PERSONALITY:
10078 ret = -EINVAL;
10079 if (arg)
10080 break;
10081 ret = io_unregister_personality(ctx, nr_args);
10082 break;
10083 case IORING_REGISTER_ENABLE_RINGS:
10084 ret = -EINVAL;
10085 if (arg || nr_args)
10086 break;
10087 ret = io_register_enable_rings(ctx);
10088 break;
10089 case IORING_REGISTER_RESTRICTIONS:
10090 ret = io_register_restrictions(ctx, arg, nr_args);
10091 break;
10092 default:
10093 ret = -EINVAL;
10094 break;
10095 }
10096
10097 out:
10098 if (io_register_op_must_quiesce(opcode)) {
10099 /* bring the ctx back to life */
10100 percpu_ref_reinit(&ctx->refs);
10101 out_quiesce:
10102 reinit_completion(&ctx->ref_comp);
10103 }
10104 return ret;
10105 }
10106
10107 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10108 void __user *, arg, unsigned int, nr_args)
10109 {
10110 struct io_ring_ctx *ctx;
10111 long ret = -EBADF;
10112 struct fd f;
10113
10114 f = fdget(fd);
10115 if (!f.file)
10116 return -EBADF;
10117
10118 ret = -EOPNOTSUPP;
10119 if (f.file->f_op != &io_uring_fops)
10120 goto out_fput;
10121
10122 ctx = f.file->private_data;
10123
10124 mutex_lock(&ctx->uring_lock);
10125 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10126 mutex_unlock(&ctx->uring_lock);
10127 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10128 ctx->cq_ev_fd != NULL, ret);
10129 out_fput:
10130 fdput(f);
10131 return ret;
10132 }
10133
10134 static int __init io_uring_init(void)
10135 {
10136 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10137 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10138 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10139 } while (0)
10140
10141 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10142 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10143 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10144 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10145 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10146 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10147 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10148 BUILD_BUG_SQE_ELEM(8, __u64, off);
10149 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10150 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10151 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10152 BUILD_BUG_SQE_ELEM(24, __u32, len);
10153 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10154 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10155 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10156 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10157 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10158 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10159 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10160 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10161 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10162 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10163 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10164 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10165 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10166 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10167 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10168 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10169 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10170 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10171 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10172
10173 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10174 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10175 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10176 return 0;
10177 };
10178 __initcall(io_uring_init);