]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
io_uring: initialize 'timeout' properly in io_sq_thread()
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265
266 /*
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
269 *
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
273 *
274 * The kernel modifies neither the indices array nor the entries
275 * array.
276 */
277 u32 *sq_array;
278 unsigned cached_sq_head;
279 unsigned sq_entries;
280 unsigned sq_mask;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
285
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
289
290 wait_queue_head_t inflight_wait;
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned long cq_check_overflow;
358 struct wait_queue_head cq_wait;
359 struct fasync_struct *cq_fasync;
360 struct eventfd_ctx *cq_ev_fd;
361 } ____cacheline_aligned_in_smp;
362
363 struct {
364 struct mutex uring_lock;
365 wait_queue_head_t wait;
366 } ____cacheline_aligned_in_smp;
367
368 struct {
369 spinlock_t completion_lock;
370
371 /*
372 * ->iopoll_list is protected by the ctx->uring_lock for
373 * io_uring instances that don't use IORING_SETUP_SQPOLL.
374 * For SQPOLL, only the single threaded io_sq_thread() will
375 * manipulate the list, hence no extra locking is needed there.
376 */
377 struct list_head iopoll_list;
378 struct hlist_head *cancel_hash;
379 unsigned cancel_hash_bits;
380 bool poll_multi_file;
381
382 spinlock_t inflight_lock;
383 struct list_head inflight_list;
384 } ____cacheline_aligned_in_smp;
385
386 struct delayed_work file_put_work;
387 struct llist_head file_put_llist;
388
389 struct work_struct exit_work;
390 struct io_restriction restrictions;
391 };
392
393 /*
394 * First field must be the file pointer in all the
395 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
396 */
397 struct io_poll_iocb {
398 struct file *file;
399 struct wait_queue_head *head;
400 __poll_t events;
401 bool done;
402 bool canceled;
403 struct wait_queue_entry wait;
404 };
405
406 struct io_poll_remove {
407 struct file *file;
408 u64 addr;
409 };
410
411 struct io_close {
412 struct file *file;
413 struct file *put_file;
414 int fd;
415 };
416
417 struct io_timeout_data {
418 struct io_kiocb *req;
419 struct hrtimer timer;
420 struct timespec64 ts;
421 enum hrtimer_mode mode;
422 };
423
424 struct io_accept {
425 struct file *file;
426 struct sockaddr __user *addr;
427 int __user *addr_len;
428 int flags;
429 unsigned long nofile;
430 };
431
432 struct io_sync {
433 struct file *file;
434 loff_t len;
435 loff_t off;
436 int flags;
437 int mode;
438 };
439
440 struct io_cancel {
441 struct file *file;
442 u64 addr;
443 };
444
445 struct io_timeout {
446 struct file *file;
447 u32 off;
448 u32 target_seq;
449 struct list_head list;
450 /* head of the link, used by linked timeouts only */
451 struct io_kiocb *head;
452 };
453
454 struct io_timeout_rem {
455 struct file *file;
456 u64 addr;
457 };
458
459 struct io_rw {
460 /* NOTE: kiocb has the file as the first member, so don't do it here */
461 struct kiocb kiocb;
462 u64 addr;
463 u64 len;
464 };
465
466 struct io_connect {
467 struct file *file;
468 struct sockaddr __user *addr;
469 int addr_len;
470 };
471
472 struct io_sr_msg {
473 struct file *file;
474 union {
475 struct user_msghdr __user *umsg;
476 void __user *buf;
477 };
478 int msg_flags;
479 int bgid;
480 size_t len;
481 struct io_buffer *kbuf;
482 };
483
484 struct io_open {
485 struct file *file;
486 int dfd;
487 bool ignore_nonblock;
488 struct filename *filename;
489 struct open_how how;
490 unsigned long nofile;
491 };
492
493 struct io_files_update {
494 struct file *file;
495 u64 arg;
496 u32 nr_args;
497 u32 offset;
498 };
499
500 struct io_fadvise {
501 struct file *file;
502 u64 offset;
503 u32 len;
504 u32 advice;
505 };
506
507 struct io_madvise {
508 struct file *file;
509 u64 addr;
510 u32 len;
511 u32 advice;
512 };
513
514 struct io_epoll {
515 struct file *file;
516 int epfd;
517 int op;
518 int fd;
519 struct epoll_event event;
520 };
521
522 struct io_splice {
523 struct file *file_out;
524 struct file *file_in;
525 loff_t off_out;
526 loff_t off_in;
527 u64 len;
528 unsigned int flags;
529 };
530
531 struct io_provide_buf {
532 struct file *file;
533 __u64 addr;
534 __s32 len;
535 __u32 bgid;
536 __u16 nbufs;
537 __u16 bid;
538 };
539
540 struct io_statx {
541 struct file *file;
542 int dfd;
543 unsigned int mask;
544 unsigned int flags;
545 const char __user *filename;
546 struct statx __user *buffer;
547 };
548
549 struct io_shutdown {
550 struct file *file;
551 int how;
552 };
553
554 struct io_rename {
555 struct file *file;
556 int old_dfd;
557 int new_dfd;
558 struct filename *oldpath;
559 struct filename *newpath;
560 int flags;
561 };
562
563 struct io_unlink {
564 struct file *file;
565 int dfd;
566 int flags;
567 struct filename *filename;
568 };
569
570 struct io_completion {
571 struct file *file;
572 struct list_head list;
573 int cflags;
574 };
575
576 struct io_async_connect {
577 struct sockaddr_storage address;
578 };
579
580 struct io_async_msghdr {
581 struct iovec fast_iov[UIO_FASTIOV];
582 struct iovec *iov;
583 struct sockaddr __user *uaddr;
584 struct msghdr msg;
585 struct sockaddr_storage addr;
586 };
587
588 struct io_async_rw {
589 struct iovec fast_iov[UIO_FASTIOV];
590 const struct iovec *free_iovec;
591 struct iov_iter iter;
592 size_t bytes_done;
593 struct wait_page_queue wpq;
594 };
595
596 enum {
597 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
598 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
599 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
600 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
601 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
602 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
603
604 REQ_F_FAIL_LINK_BIT,
605 REQ_F_INFLIGHT_BIT,
606 REQ_F_CUR_POS_BIT,
607 REQ_F_NOWAIT_BIT,
608 REQ_F_LINK_TIMEOUT_BIT,
609 REQ_F_ISREG_BIT,
610 REQ_F_NEED_CLEANUP_BIT,
611 REQ_F_POLLED_BIT,
612 REQ_F_BUFFER_SELECTED_BIT,
613 REQ_F_NO_FILE_TABLE_BIT,
614 REQ_F_WORK_INITIALIZED_BIT,
615 REQ_F_LTIMEOUT_ACTIVE_BIT,
616
617 /* not a real bit, just to check we're not overflowing the space */
618 __REQ_F_LAST_BIT,
619 };
620
621 enum {
622 /* ctx owns file */
623 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
624 /* drain existing IO first */
625 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
626 /* linked sqes */
627 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
628 /* doesn't sever on completion < 0 */
629 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
630 /* IOSQE_ASYNC */
631 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
632 /* IOSQE_BUFFER_SELECT */
633 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
634
635 /* fail rest of links */
636 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
637 /* on inflight list */
638 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
639 /* read/write uses file position */
640 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
641 /* must not punt to workers */
642 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
643 /* has or had linked timeout */
644 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
645 /* regular file */
646 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
647 /* needs cleanup */
648 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
649 /* already went through poll handler */
650 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
651 /* buffer already selected */
652 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
653 /* doesn't need file table for this request */
654 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
655 /* io_wq_work is initialized */
656 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
657 /* linked timeout is active, i.e. prepared by link's head */
658 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
659 };
660
661 struct async_poll {
662 struct io_poll_iocb poll;
663 struct io_poll_iocb *double_poll;
664 };
665
666 /*
667 * NOTE! Each of the iocb union members has the file pointer
668 * as the first entry in their struct definition. So you can
669 * access the file pointer through any of the sub-structs,
670 * or directly as just 'ki_filp' in this struct.
671 */
672 struct io_kiocb {
673 union {
674 struct file *file;
675 struct io_rw rw;
676 struct io_poll_iocb poll;
677 struct io_poll_remove poll_remove;
678 struct io_accept accept;
679 struct io_sync sync;
680 struct io_cancel cancel;
681 struct io_timeout timeout;
682 struct io_timeout_rem timeout_rem;
683 struct io_connect connect;
684 struct io_sr_msg sr_msg;
685 struct io_open open;
686 struct io_close close;
687 struct io_files_update files_update;
688 struct io_fadvise fadvise;
689 struct io_madvise madvise;
690 struct io_epoll epoll;
691 struct io_splice splice;
692 struct io_provide_buf pbuf;
693 struct io_statx statx;
694 struct io_shutdown shutdown;
695 struct io_rename rename;
696 struct io_unlink unlink;
697 /* use only after cleaning per-op data, see io_clean_op() */
698 struct io_completion compl;
699 };
700
701 /* opcode allocated if it needs to store data for async defer */
702 void *async_data;
703 u8 opcode;
704 /* polled IO has completed */
705 u8 iopoll_completed;
706
707 u16 buf_index;
708 u32 result;
709
710 struct io_ring_ctx *ctx;
711 unsigned int flags;
712 refcount_t refs;
713 struct task_struct *task;
714 u64 user_data;
715
716 struct io_kiocb *link;
717 struct percpu_ref *fixed_file_refs;
718
719 /*
720 * 1. used with ctx->iopoll_list with reads/writes
721 * 2. to track reqs with ->files (see io_op_def::file_table)
722 */
723 struct list_head inflight_entry;
724 struct callback_head task_work;
725 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
726 struct hlist_node hash_node;
727 struct async_poll *apoll;
728 struct io_wq_work work;
729 };
730
731 struct io_defer_entry {
732 struct list_head list;
733 struct io_kiocb *req;
734 u32 seq;
735 };
736
737 #define IO_IOPOLL_BATCH 8
738
739 struct io_comp_state {
740 unsigned int nr;
741 struct list_head list;
742 struct io_ring_ctx *ctx;
743 };
744
745 struct io_submit_state {
746 struct blk_plug plug;
747
748 /*
749 * io_kiocb alloc cache
750 */
751 void *reqs[IO_IOPOLL_BATCH];
752 unsigned int free_reqs;
753
754 bool plug_started;
755
756 /*
757 * Batch completion logic
758 */
759 struct io_comp_state comp;
760
761 /*
762 * File reference cache
763 */
764 struct file *file;
765 unsigned int fd;
766 unsigned int has_refs;
767 unsigned int ios_left;
768 };
769
770 struct io_op_def {
771 /* needs req->file assigned */
772 unsigned needs_file : 1;
773 /* don't fail if file grab fails */
774 unsigned needs_file_no_error : 1;
775 /* hash wq insertion if file is a regular file */
776 unsigned hash_reg_file : 1;
777 /* unbound wq insertion if file is a non-regular file */
778 unsigned unbound_nonreg_file : 1;
779 /* opcode is not supported by this kernel */
780 unsigned not_supported : 1;
781 /* set if opcode supports polled "wait" */
782 unsigned pollin : 1;
783 unsigned pollout : 1;
784 /* op supports buffer selection */
785 unsigned buffer_select : 1;
786 /* must always have async data allocated */
787 unsigned needs_async_data : 1;
788 /* should block plug */
789 unsigned plug : 1;
790 /* size of async data needed, if any */
791 unsigned short async_size;
792 unsigned work_flags;
793 };
794
795 static const struct io_op_def io_op_defs[] = {
796 [IORING_OP_NOP] = {},
797 [IORING_OP_READV] = {
798 .needs_file = 1,
799 .unbound_nonreg_file = 1,
800 .pollin = 1,
801 .buffer_select = 1,
802 .needs_async_data = 1,
803 .plug = 1,
804 .async_size = sizeof(struct io_async_rw),
805 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
806 },
807 [IORING_OP_WRITEV] = {
808 .needs_file = 1,
809 .hash_reg_file = 1,
810 .unbound_nonreg_file = 1,
811 .pollout = 1,
812 .needs_async_data = 1,
813 .plug = 1,
814 .async_size = sizeof(struct io_async_rw),
815 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
816 IO_WQ_WORK_FSIZE,
817 },
818 [IORING_OP_FSYNC] = {
819 .needs_file = 1,
820 .work_flags = IO_WQ_WORK_BLKCG,
821 },
822 [IORING_OP_READ_FIXED] = {
823 .needs_file = 1,
824 .unbound_nonreg_file = 1,
825 .pollin = 1,
826 .plug = 1,
827 .async_size = sizeof(struct io_async_rw),
828 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
829 },
830 [IORING_OP_WRITE_FIXED] = {
831 .needs_file = 1,
832 .hash_reg_file = 1,
833 .unbound_nonreg_file = 1,
834 .pollout = 1,
835 .plug = 1,
836 .async_size = sizeof(struct io_async_rw),
837 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
838 IO_WQ_WORK_MM,
839 },
840 [IORING_OP_POLL_ADD] = {
841 .needs_file = 1,
842 .unbound_nonreg_file = 1,
843 },
844 [IORING_OP_POLL_REMOVE] = {},
845 [IORING_OP_SYNC_FILE_RANGE] = {
846 .needs_file = 1,
847 .work_flags = IO_WQ_WORK_BLKCG,
848 },
849 [IORING_OP_SENDMSG] = {
850 .needs_file = 1,
851 .unbound_nonreg_file = 1,
852 .pollout = 1,
853 .needs_async_data = 1,
854 .async_size = sizeof(struct io_async_msghdr),
855 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
856 IO_WQ_WORK_FS,
857 },
858 [IORING_OP_RECVMSG] = {
859 .needs_file = 1,
860 .unbound_nonreg_file = 1,
861 .pollin = 1,
862 .buffer_select = 1,
863 .needs_async_data = 1,
864 .async_size = sizeof(struct io_async_msghdr),
865 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
866 IO_WQ_WORK_FS,
867 },
868 [IORING_OP_TIMEOUT] = {
869 .needs_async_data = 1,
870 .async_size = sizeof(struct io_timeout_data),
871 .work_flags = IO_WQ_WORK_MM,
872 },
873 [IORING_OP_TIMEOUT_REMOVE] = {},
874 [IORING_OP_ACCEPT] = {
875 .needs_file = 1,
876 .unbound_nonreg_file = 1,
877 .pollin = 1,
878 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
879 },
880 [IORING_OP_ASYNC_CANCEL] = {},
881 [IORING_OP_LINK_TIMEOUT] = {
882 .needs_async_data = 1,
883 .async_size = sizeof(struct io_timeout_data),
884 .work_flags = IO_WQ_WORK_MM,
885 },
886 [IORING_OP_CONNECT] = {
887 .needs_file = 1,
888 .unbound_nonreg_file = 1,
889 .pollout = 1,
890 .needs_async_data = 1,
891 .async_size = sizeof(struct io_async_connect),
892 .work_flags = IO_WQ_WORK_MM,
893 },
894 [IORING_OP_FALLOCATE] = {
895 .needs_file = 1,
896 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
897 },
898 [IORING_OP_OPENAT] = {
899 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
900 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
901 },
902 [IORING_OP_CLOSE] = {
903 .needs_file = 1,
904 .needs_file_no_error = 1,
905 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
906 },
907 [IORING_OP_FILES_UPDATE] = {
908 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
909 },
910 [IORING_OP_STATX] = {
911 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
912 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
913 },
914 [IORING_OP_READ] = {
915 .needs_file = 1,
916 .unbound_nonreg_file = 1,
917 .pollin = 1,
918 .buffer_select = 1,
919 .plug = 1,
920 .async_size = sizeof(struct io_async_rw),
921 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
922 },
923 [IORING_OP_WRITE] = {
924 .needs_file = 1,
925 .unbound_nonreg_file = 1,
926 .pollout = 1,
927 .plug = 1,
928 .async_size = sizeof(struct io_async_rw),
929 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
930 IO_WQ_WORK_FSIZE,
931 },
932 [IORING_OP_FADVISE] = {
933 .needs_file = 1,
934 .work_flags = IO_WQ_WORK_BLKCG,
935 },
936 [IORING_OP_MADVISE] = {
937 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
938 },
939 [IORING_OP_SEND] = {
940 .needs_file = 1,
941 .unbound_nonreg_file = 1,
942 .pollout = 1,
943 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
944 },
945 [IORING_OP_RECV] = {
946 .needs_file = 1,
947 .unbound_nonreg_file = 1,
948 .pollin = 1,
949 .buffer_select = 1,
950 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
951 },
952 [IORING_OP_OPENAT2] = {
953 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
954 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
955 },
956 [IORING_OP_EPOLL_CTL] = {
957 .unbound_nonreg_file = 1,
958 .work_flags = IO_WQ_WORK_FILES,
959 },
960 [IORING_OP_SPLICE] = {
961 .needs_file = 1,
962 .hash_reg_file = 1,
963 .unbound_nonreg_file = 1,
964 .work_flags = IO_WQ_WORK_BLKCG,
965 },
966 [IORING_OP_PROVIDE_BUFFERS] = {},
967 [IORING_OP_REMOVE_BUFFERS] = {},
968 [IORING_OP_TEE] = {
969 .needs_file = 1,
970 .hash_reg_file = 1,
971 .unbound_nonreg_file = 1,
972 },
973 [IORING_OP_SHUTDOWN] = {
974 .needs_file = 1,
975 },
976 [IORING_OP_RENAMEAT] = {
977 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
978 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
979 },
980 [IORING_OP_UNLINKAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
983 },
984 };
985
986 enum io_mem_account {
987 ACCT_LOCKED,
988 ACCT_PINNED,
989 };
990
991 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
992 struct io_comp_state *cs);
993 static void io_cqring_fill_event(struct io_kiocb *req, long res);
994 static void io_put_req(struct io_kiocb *req);
995 static void io_put_req_deferred(struct io_kiocb *req, int nr);
996 static void io_double_put_req(struct io_kiocb *req);
997 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
998 static void __io_queue_linked_timeout(struct io_kiocb *req);
999 static void io_queue_linked_timeout(struct io_kiocb *req);
1000 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1001 struct io_uring_files_update *ip,
1002 unsigned nr_args);
1003 static void __io_clean_op(struct io_kiocb *req);
1004 static struct file *io_file_get(struct io_submit_state *state,
1005 struct io_kiocb *req, int fd, bool fixed);
1006 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1007 static void io_file_put_work(struct work_struct *work);
1008
1009 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1010 struct iovec **iovec, struct iov_iter *iter,
1011 bool needs_lock);
1012 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1013 const struct iovec *fast_iov,
1014 struct iov_iter *iter, bool force);
1015
1016 static struct kmem_cache *req_cachep;
1017
1018 static const struct file_operations io_uring_fops;
1019
1020 struct sock *io_uring_get_socket(struct file *file)
1021 {
1022 #if defined(CONFIG_UNIX)
1023 if (file->f_op == &io_uring_fops) {
1024 struct io_ring_ctx *ctx = file->private_data;
1025
1026 return ctx->ring_sock->sk;
1027 }
1028 #endif
1029 return NULL;
1030 }
1031 EXPORT_SYMBOL(io_uring_get_socket);
1032
1033 #define io_for_each_link(pos, head) \
1034 for (pos = (head); pos; pos = pos->link)
1035
1036 static inline void io_clean_op(struct io_kiocb *req)
1037 {
1038 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1039 REQ_F_INFLIGHT))
1040 __io_clean_op(req);
1041 }
1042
1043 static bool io_match_task(struct io_kiocb *head,
1044 struct task_struct *task,
1045 struct files_struct *files)
1046 {
1047 struct io_kiocb *req;
1048
1049 if (task && head->task != task)
1050 return false;
1051 if (!files)
1052 return true;
1053
1054 io_for_each_link(req, head) {
1055 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1056 (req->work.flags & IO_WQ_WORK_FILES) &&
1057 req->work.identity->files == files)
1058 return true;
1059 }
1060 return false;
1061 }
1062
1063 static void io_sq_thread_drop_mm_files(void)
1064 {
1065 struct files_struct *files = current->files;
1066 struct mm_struct *mm = current->mm;
1067
1068 if (mm) {
1069 kthread_unuse_mm(mm);
1070 mmput(mm);
1071 current->mm = NULL;
1072 }
1073 if (files) {
1074 struct nsproxy *nsproxy = current->nsproxy;
1075
1076 task_lock(current);
1077 current->files = NULL;
1078 current->nsproxy = NULL;
1079 task_unlock(current);
1080 put_files_struct(files);
1081 put_nsproxy(nsproxy);
1082 }
1083 }
1084
1085 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1086 {
1087 if (!current->files) {
1088 struct files_struct *files;
1089 struct nsproxy *nsproxy;
1090
1091 task_lock(ctx->sqo_task);
1092 files = ctx->sqo_task->files;
1093 if (!files) {
1094 task_unlock(ctx->sqo_task);
1095 return -EOWNERDEAD;
1096 }
1097 atomic_inc(&files->count);
1098 get_nsproxy(ctx->sqo_task->nsproxy);
1099 nsproxy = ctx->sqo_task->nsproxy;
1100 task_unlock(ctx->sqo_task);
1101
1102 task_lock(current);
1103 current->files = files;
1104 current->nsproxy = nsproxy;
1105 task_unlock(current);
1106 }
1107 return 0;
1108 }
1109
1110 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1111 {
1112 struct mm_struct *mm;
1113
1114 if (current->mm)
1115 return 0;
1116
1117 /* Should never happen */
1118 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1119 return -EFAULT;
1120
1121 task_lock(ctx->sqo_task);
1122 mm = ctx->sqo_task->mm;
1123 if (unlikely(!mm || !mmget_not_zero(mm)))
1124 mm = NULL;
1125 task_unlock(ctx->sqo_task);
1126
1127 if (mm) {
1128 kthread_use_mm(mm);
1129 return 0;
1130 }
1131
1132 return -EFAULT;
1133 }
1134
1135 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1136 struct io_kiocb *req)
1137 {
1138 const struct io_op_def *def = &io_op_defs[req->opcode];
1139 int ret;
1140
1141 if (def->work_flags & IO_WQ_WORK_MM) {
1142 ret = __io_sq_thread_acquire_mm(ctx);
1143 if (unlikely(ret))
1144 return ret;
1145 }
1146
1147 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1148 ret = __io_sq_thread_acquire_files(ctx);
1149 if (unlikely(ret))
1150 return ret;
1151 }
1152
1153 return 0;
1154 }
1155
1156 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1157 struct cgroup_subsys_state **cur_css)
1158
1159 {
1160 #ifdef CONFIG_BLK_CGROUP
1161 /* puts the old one when swapping */
1162 if (*cur_css != ctx->sqo_blkcg_css) {
1163 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1164 *cur_css = ctx->sqo_blkcg_css;
1165 }
1166 #endif
1167 }
1168
1169 static void io_sq_thread_unassociate_blkcg(void)
1170 {
1171 #ifdef CONFIG_BLK_CGROUP
1172 kthread_associate_blkcg(NULL);
1173 #endif
1174 }
1175
1176 static inline void req_set_fail_links(struct io_kiocb *req)
1177 {
1178 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1179 req->flags |= REQ_F_FAIL_LINK;
1180 }
1181
1182 /*
1183 * None of these are dereferenced, they are simply used to check if any of
1184 * them have changed. If we're under current and check they are still the
1185 * same, we're fine to grab references to them for actual out-of-line use.
1186 */
1187 static void io_init_identity(struct io_identity *id)
1188 {
1189 id->files = current->files;
1190 id->mm = current->mm;
1191 #ifdef CONFIG_BLK_CGROUP
1192 rcu_read_lock();
1193 id->blkcg_css = blkcg_css();
1194 rcu_read_unlock();
1195 #endif
1196 id->creds = current_cred();
1197 id->nsproxy = current->nsproxy;
1198 id->fs = current->fs;
1199 id->fsize = rlimit(RLIMIT_FSIZE);
1200 #ifdef CONFIG_AUDIT
1201 id->loginuid = current->loginuid;
1202 id->sessionid = current->sessionid;
1203 #endif
1204 refcount_set(&id->count, 1);
1205 }
1206
1207 static inline void __io_req_init_async(struct io_kiocb *req)
1208 {
1209 memset(&req->work, 0, sizeof(req->work));
1210 req->flags |= REQ_F_WORK_INITIALIZED;
1211 }
1212
1213 /*
1214 * Note: must call io_req_init_async() for the first time you
1215 * touch any members of io_wq_work.
1216 */
1217 static inline void io_req_init_async(struct io_kiocb *req)
1218 {
1219 struct io_uring_task *tctx = current->io_uring;
1220
1221 if (req->flags & REQ_F_WORK_INITIALIZED)
1222 return;
1223
1224 __io_req_init_async(req);
1225
1226 /* Grab a ref if this isn't our static identity */
1227 req->work.identity = tctx->identity;
1228 if (tctx->identity != &tctx->__identity)
1229 refcount_inc(&req->work.identity->count);
1230 }
1231
1232 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1233 {
1234 return ctx->flags & IORING_SETUP_SQPOLL;
1235 }
1236
1237 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1238 {
1239 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1240
1241 complete(&ctx->ref_comp);
1242 }
1243
1244 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1245 {
1246 return !req->timeout.off;
1247 }
1248
1249 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1250 {
1251 struct io_ring_ctx *ctx;
1252 int hash_bits;
1253
1254 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1255 if (!ctx)
1256 return NULL;
1257
1258 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1259 if (!ctx->fallback_req)
1260 goto err;
1261
1262 /*
1263 * Use 5 bits less than the max cq entries, that should give us around
1264 * 32 entries per hash list if totally full and uniformly spread.
1265 */
1266 hash_bits = ilog2(p->cq_entries);
1267 hash_bits -= 5;
1268 if (hash_bits <= 0)
1269 hash_bits = 1;
1270 ctx->cancel_hash_bits = hash_bits;
1271 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1272 GFP_KERNEL);
1273 if (!ctx->cancel_hash)
1274 goto err;
1275 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1276
1277 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1278 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1279 goto err;
1280
1281 ctx->flags = p->flags;
1282 init_waitqueue_head(&ctx->sqo_sq_wait);
1283 INIT_LIST_HEAD(&ctx->sqd_list);
1284 init_waitqueue_head(&ctx->cq_wait);
1285 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1286 init_completion(&ctx->ref_comp);
1287 init_completion(&ctx->sq_thread_comp);
1288 idr_init(&ctx->io_buffer_idr);
1289 idr_init(&ctx->personality_idr);
1290 mutex_init(&ctx->uring_lock);
1291 init_waitqueue_head(&ctx->wait);
1292 spin_lock_init(&ctx->completion_lock);
1293 INIT_LIST_HEAD(&ctx->iopoll_list);
1294 INIT_LIST_HEAD(&ctx->defer_list);
1295 INIT_LIST_HEAD(&ctx->timeout_list);
1296 init_waitqueue_head(&ctx->inflight_wait);
1297 spin_lock_init(&ctx->inflight_lock);
1298 INIT_LIST_HEAD(&ctx->inflight_list);
1299 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1300 init_llist_head(&ctx->file_put_llist);
1301 return ctx;
1302 err:
1303 if (ctx->fallback_req)
1304 kmem_cache_free(req_cachep, ctx->fallback_req);
1305 kfree(ctx->cancel_hash);
1306 kfree(ctx);
1307 return NULL;
1308 }
1309
1310 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1311 {
1312 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1313 struct io_ring_ctx *ctx = req->ctx;
1314
1315 return seq != ctx->cached_cq_tail
1316 + READ_ONCE(ctx->cached_cq_overflow);
1317 }
1318
1319 return false;
1320 }
1321
1322 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1323 {
1324 struct io_rings *rings = ctx->rings;
1325
1326 /* order cqe stores with ring update */
1327 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1328
1329 if (wq_has_sleeper(&ctx->cq_wait)) {
1330 wake_up_interruptible(&ctx->cq_wait);
1331 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1332 }
1333 }
1334
1335 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1336 {
1337 if (req->work.identity == &tctx->__identity)
1338 return;
1339 if (refcount_dec_and_test(&req->work.identity->count))
1340 kfree(req->work.identity);
1341 }
1342
1343 static void io_req_clean_work(struct io_kiocb *req)
1344 {
1345 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1346 return;
1347
1348 req->flags &= ~REQ_F_WORK_INITIALIZED;
1349
1350 if (req->work.flags & IO_WQ_WORK_MM) {
1351 mmdrop(req->work.identity->mm);
1352 req->work.flags &= ~IO_WQ_WORK_MM;
1353 }
1354 #ifdef CONFIG_BLK_CGROUP
1355 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1356 css_put(req->work.identity->blkcg_css);
1357 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1358 }
1359 #endif
1360 if (req->work.flags & IO_WQ_WORK_CREDS) {
1361 put_cred(req->work.identity->creds);
1362 req->work.flags &= ~IO_WQ_WORK_CREDS;
1363 }
1364 if (req->work.flags & IO_WQ_WORK_FS) {
1365 struct fs_struct *fs = req->work.identity->fs;
1366
1367 spin_lock(&req->work.identity->fs->lock);
1368 if (--fs->users)
1369 fs = NULL;
1370 spin_unlock(&req->work.identity->fs->lock);
1371 if (fs)
1372 free_fs_struct(fs);
1373 req->work.flags &= ~IO_WQ_WORK_FS;
1374 }
1375
1376 io_put_identity(req->task->io_uring, req);
1377 }
1378
1379 /*
1380 * Create a private copy of io_identity, since some fields don't match
1381 * the current context.
1382 */
1383 static bool io_identity_cow(struct io_kiocb *req)
1384 {
1385 struct io_uring_task *tctx = current->io_uring;
1386 const struct cred *creds = NULL;
1387 struct io_identity *id;
1388
1389 if (req->work.flags & IO_WQ_WORK_CREDS)
1390 creds = req->work.identity->creds;
1391
1392 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1393 if (unlikely(!id)) {
1394 req->work.flags |= IO_WQ_WORK_CANCEL;
1395 return false;
1396 }
1397
1398 /*
1399 * We can safely just re-init the creds we copied Either the field
1400 * matches the current one, or we haven't grabbed it yet. The only
1401 * exception is ->creds, through registered personalities, so handle
1402 * that one separately.
1403 */
1404 io_init_identity(id);
1405 if (creds)
1406 req->work.identity->creds = creds;
1407
1408 /* add one for this request */
1409 refcount_inc(&id->count);
1410
1411 /* drop tctx and req identity references, if needed */
1412 if (tctx->identity != &tctx->__identity &&
1413 refcount_dec_and_test(&tctx->identity->count))
1414 kfree(tctx->identity);
1415 if (req->work.identity != &tctx->__identity &&
1416 refcount_dec_and_test(&req->work.identity->count))
1417 kfree(req->work.identity);
1418
1419 req->work.identity = id;
1420 tctx->identity = id;
1421 return true;
1422 }
1423
1424 static bool io_grab_identity(struct io_kiocb *req)
1425 {
1426 const struct io_op_def *def = &io_op_defs[req->opcode];
1427 struct io_identity *id = req->work.identity;
1428 struct io_ring_ctx *ctx = req->ctx;
1429
1430 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1431 if (id->fsize != rlimit(RLIMIT_FSIZE))
1432 return false;
1433 req->work.flags |= IO_WQ_WORK_FSIZE;
1434 }
1435
1436 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1437 (def->work_flags & IO_WQ_WORK_FILES) &&
1438 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1439 if (id->files != current->files ||
1440 id->nsproxy != current->nsproxy)
1441 return false;
1442 atomic_inc(&id->files->count);
1443 get_nsproxy(id->nsproxy);
1444 req->flags |= REQ_F_INFLIGHT;
1445
1446 spin_lock_irq(&ctx->inflight_lock);
1447 list_add(&req->inflight_entry, &ctx->inflight_list);
1448 spin_unlock_irq(&ctx->inflight_lock);
1449 req->work.flags |= IO_WQ_WORK_FILES;
1450 }
1451 #ifdef CONFIG_BLK_CGROUP
1452 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1453 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1454 rcu_read_lock();
1455 if (id->blkcg_css != blkcg_css()) {
1456 rcu_read_unlock();
1457 return false;
1458 }
1459 /*
1460 * This should be rare, either the cgroup is dying or the task
1461 * is moving cgroups. Just punt to root for the handful of ios.
1462 */
1463 if (css_tryget_online(id->blkcg_css))
1464 req->work.flags |= IO_WQ_WORK_BLKCG;
1465 rcu_read_unlock();
1466 }
1467 #endif
1468 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1469 if (id->creds != current_cred())
1470 return false;
1471 get_cred(id->creds);
1472 req->work.flags |= IO_WQ_WORK_CREDS;
1473 }
1474 #ifdef CONFIG_AUDIT
1475 if (!uid_eq(current->loginuid, id->loginuid) ||
1476 current->sessionid != id->sessionid)
1477 return false;
1478 #endif
1479 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1480 (def->work_flags & IO_WQ_WORK_FS)) {
1481 if (current->fs != id->fs)
1482 return false;
1483 spin_lock(&id->fs->lock);
1484 if (!id->fs->in_exec) {
1485 id->fs->users++;
1486 req->work.flags |= IO_WQ_WORK_FS;
1487 } else {
1488 req->work.flags |= IO_WQ_WORK_CANCEL;
1489 }
1490 spin_unlock(&current->fs->lock);
1491 }
1492
1493 return true;
1494 }
1495
1496 static void io_prep_async_work(struct io_kiocb *req)
1497 {
1498 const struct io_op_def *def = &io_op_defs[req->opcode];
1499 struct io_ring_ctx *ctx = req->ctx;
1500 struct io_identity *id;
1501
1502 io_req_init_async(req);
1503 id = req->work.identity;
1504
1505 if (req->flags & REQ_F_FORCE_ASYNC)
1506 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1507
1508 if (req->flags & REQ_F_ISREG) {
1509 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1510 io_wq_hash_work(&req->work, file_inode(req->file));
1511 } else {
1512 if (def->unbound_nonreg_file)
1513 req->work.flags |= IO_WQ_WORK_UNBOUND;
1514 }
1515
1516 /* ->mm can never change on us */
1517 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1518 (def->work_flags & IO_WQ_WORK_MM)) {
1519 mmgrab(id->mm);
1520 req->work.flags |= IO_WQ_WORK_MM;
1521 }
1522
1523 /* if we fail grabbing identity, we must COW, regrab, and retry */
1524 if (io_grab_identity(req))
1525 return;
1526
1527 if (!io_identity_cow(req))
1528 return;
1529
1530 /* can't fail at this point */
1531 if (!io_grab_identity(req))
1532 WARN_ON(1);
1533 }
1534
1535 static void io_prep_async_link(struct io_kiocb *req)
1536 {
1537 struct io_kiocb *cur;
1538
1539 io_for_each_link(cur, req)
1540 io_prep_async_work(cur);
1541 }
1542
1543 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1544 {
1545 struct io_ring_ctx *ctx = req->ctx;
1546 struct io_kiocb *link = io_prep_linked_timeout(req);
1547
1548 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1549 &req->work, req->flags);
1550 io_wq_enqueue(ctx->io_wq, &req->work);
1551 return link;
1552 }
1553
1554 static void io_queue_async_work(struct io_kiocb *req)
1555 {
1556 struct io_kiocb *link;
1557
1558 /* init ->work of the whole link before punting */
1559 io_prep_async_link(req);
1560 link = __io_queue_async_work(req);
1561
1562 if (link)
1563 io_queue_linked_timeout(link);
1564 }
1565
1566 static void io_kill_timeout(struct io_kiocb *req)
1567 {
1568 struct io_timeout_data *io = req->async_data;
1569 int ret;
1570
1571 ret = hrtimer_try_to_cancel(&io->timer);
1572 if (ret != -1) {
1573 atomic_set(&req->ctx->cq_timeouts,
1574 atomic_read(&req->ctx->cq_timeouts) + 1);
1575 list_del_init(&req->timeout.list);
1576 io_cqring_fill_event(req, 0);
1577 io_put_req_deferred(req, 1);
1578 }
1579 }
1580
1581 /*
1582 * Returns true if we found and killed one or more timeouts
1583 */
1584 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1585 struct files_struct *files)
1586 {
1587 struct io_kiocb *req, *tmp;
1588 int canceled = 0;
1589
1590 spin_lock_irq(&ctx->completion_lock);
1591 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1592 if (io_match_task(req, tsk, files)) {
1593 io_kill_timeout(req);
1594 canceled++;
1595 }
1596 }
1597 spin_unlock_irq(&ctx->completion_lock);
1598 return canceled != 0;
1599 }
1600
1601 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1602 {
1603 do {
1604 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1605 struct io_defer_entry, list);
1606 struct io_kiocb *link;
1607
1608 if (req_need_defer(de->req, de->seq))
1609 break;
1610 list_del_init(&de->list);
1611 /* punt-init is done before queueing for defer */
1612 link = __io_queue_async_work(de->req);
1613 if (link) {
1614 __io_queue_linked_timeout(link);
1615 /* drop submission reference */
1616 io_put_req_deferred(link, 1);
1617 }
1618 kfree(de);
1619 } while (!list_empty(&ctx->defer_list));
1620 }
1621
1622 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1623 {
1624 while (!list_empty(&ctx->timeout_list)) {
1625 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1626 struct io_kiocb, timeout.list);
1627
1628 if (io_is_timeout_noseq(req))
1629 break;
1630 if (req->timeout.target_seq != ctx->cached_cq_tail
1631 - atomic_read(&ctx->cq_timeouts))
1632 break;
1633
1634 list_del_init(&req->timeout.list);
1635 io_kill_timeout(req);
1636 }
1637 }
1638
1639 static void io_commit_cqring(struct io_ring_ctx *ctx)
1640 {
1641 io_flush_timeouts(ctx);
1642 __io_commit_cqring(ctx);
1643
1644 if (unlikely(!list_empty(&ctx->defer_list)))
1645 __io_queue_deferred(ctx);
1646 }
1647
1648 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1649 {
1650 struct io_rings *r = ctx->rings;
1651
1652 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1653 }
1654
1655 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1656 {
1657 struct io_rings *rings = ctx->rings;
1658 unsigned tail;
1659
1660 tail = ctx->cached_cq_tail;
1661 /*
1662 * writes to the cq entry need to come after reading head; the
1663 * control dependency is enough as we're using WRITE_ONCE to
1664 * fill the cq entry
1665 */
1666 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1667 return NULL;
1668
1669 ctx->cached_cq_tail++;
1670 return &rings->cqes[tail & ctx->cq_mask];
1671 }
1672
1673 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1674 {
1675 if (!ctx->cq_ev_fd)
1676 return false;
1677 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1678 return false;
1679 if (!ctx->eventfd_async)
1680 return true;
1681 return io_wq_current_is_worker();
1682 }
1683
1684 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1685 {
1686 if (waitqueue_active(&ctx->wait))
1687 wake_up(&ctx->wait);
1688 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1689 wake_up(&ctx->sq_data->wait);
1690 if (io_should_trigger_evfd(ctx))
1691 eventfd_signal(ctx->cq_ev_fd, 1);
1692 }
1693
1694 static void io_cqring_mark_overflow(struct io_ring_ctx *ctx)
1695 {
1696 if (list_empty(&ctx->cq_overflow_list)) {
1697 clear_bit(0, &ctx->sq_check_overflow);
1698 clear_bit(0, &ctx->cq_check_overflow);
1699 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1700 }
1701 }
1702
1703 /* Returns true if there are no backlogged entries after the flush */
1704 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1705 struct task_struct *tsk,
1706 struct files_struct *files)
1707 {
1708 struct io_rings *rings = ctx->rings;
1709 struct io_kiocb *req, *tmp;
1710 struct io_uring_cqe *cqe;
1711 unsigned long flags;
1712 LIST_HEAD(list);
1713
1714 if (!force) {
1715 if (list_empty_careful(&ctx->cq_overflow_list))
1716 return true;
1717 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1718 rings->cq_ring_entries))
1719 return false;
1720 }
1721
1722 spin_lock_irqsave(&ctx->completion_lock, flags);
1723
1724 /* if force is set, the ring is going away. always drop after that */
1725 if (force)
1726 ctx->cq_overflow_flushed = 1;
1727
1728 cqe = NULL;
1729 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1730 if (!io_match_task(req, tsk, files))
1731 continue;
1732
1733 cqe = io_get_cqring(ctx);
1734 if (!cqe && !force)
1735 break;
1736
1737 list_move(&req->compl.list, &list);
1738 if (cqe) {
1739 WRITE_ONCE(cqe->user_data, req->user_data);
1740 WRITE_ONCE(cqe->res, req->result);
1741 WRITE_ONCE(cqe->flags, req->compl.cflags);
1742 } else {
1743 ctx->cached_cq_overflow++;
1744 WRITE_ONCE(ctx->rings->cq_overflow,
1745 ctx->cached_cq_overflow);
1746 }
1747 }
1748
1749 io_commit_cqring(ctx);
1750 io_cqring_mark_overflow(ctx);
1751
1752 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1753 io_cqring_ev_posted(ctx);
1754
1755 while (!list_empty(&list)) {
1756 req = list_first_entry(&list, struct io_kiocb, compl.list);
1757 list_del(&req->compl.list);
1758 io_put_req(req);
1759 }
1760
1761 return cqe != NULL;
1762 }
1763
1764 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1765 {
1766 struct io_ring_ctx *ctx = req->ctx;
1767 struct io_uring_cqe *cqe;
1768
1769 trace_io_uring_complete(ctx, req->user_data, res);
1770
1771 /*
1772 * If we can't get a cq entry, userspace overflowed the
1773 * submission (by quite a lot). Increment the overflow count in
1774 * the ring.
1775 */
1776 cqe = io_get_cqring(ctx);
1777 if (likely(cqe)) {
1778 WRITE_ONCE(cqe->user_data, req->user_data);
1779 WRITE_ONCE(cqe->res, res);
1780 WRITE_ONCE(cqe->flags, cflags);
1781 } else if (ctx->cq_overflow_flushed ||
1782 atomic_read(&req->task->io_uring->in_idle)) {
1783 /*
1784 * If we're in ring overflow flush mode, or in task cancel mode,
1785 * then we cannot store the request for later flushing, we need
1786 * to drop it on the floor.
1787 */
1788 ctx->cached_cq_overflow++;
1789 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1790 } else {
1791 if (list_empty(&ctx->cq_overflow_list)) {
1792 set_bit(0, &ctx->sq_check_overflow);
1793 set_bit(0, &ctx->cq_check_overflow);
1794 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1795 }
1796 io_clean_op(req);
1797 req->result = res;
1798 req->compl.cflags = cflags;
1799 refcount_inc(&req->refs);
1800 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1801 }
1802 }
1803
1804 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1805 {
1806 __io_cqring_fill_event(req, res, 0);
1807 }
1808
1809 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1810 {
1811 struct io_ring_ctx *ctx = req->ctx;
1812 unsigned long flags;
1813
1814 spin_lock_irqsave(&ctx->completion_lock, flags);
1815 __io_cqring_fill_event(req, res, cflags);
1816 io_commit_cqring(ctx);
1817 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1818
1819 io_cqring_ev_posted(ctx);
1820 }
1821
1822 static void io_submit_flush_completions(struct io_comp_state *cs)
1823 {
1824 struct io_ring_ctx *ctx = cs->ctx;
1825
1826 spin_lock_irq(&ctx->completion_lock);
1827 while (!list_empty(&cs->list)) {
1828 struct io_kiocb *req;
1829
1830 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1831 list_del(&req->compl.list);
1832 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1833
1834 /*
1835 * io_free_req() doesn't care about completion_lock unless one
1836 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1837 * because of a potential deadlock with req->work.fs->lock
1838 */
1839 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1840 |REQ_F_WORK_INITIALIZED)) {
1841 spin_unlock_irq(&ctx->completion_lock);
1842 io_put_req(req);
1843 spin_lock_irq(&ctx->completion_lock);
1844 } else {
1845 io_put_req(req);
1846 }
1847 }
1848 io_commit_cqring(ctx);
1849 spin_unlock_irq(&ctx->completion_lock);
1850
1851 io_cqring_ev_posted(ctx);
1852 cs->nr = 0;
1853 }
1854
1855 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1856 struct io_comp_state *cs)
1857 {
1858 if (!cs) {
1859 io_cqring_add_event(req, res, cflags);
1860 io_put_req(req);
1861 } else {
1862 io_clean_op(req);
1863 req->result = res;
1864 req->compl.cflags = cflags;
1865 list_add_tail(&req->compl.list, &cs->list);
1866 if (++cs->nr >= 32)
1867 io_submit_flush_completions(cs);
1868 }
1869 }
1870
1871 static void io_req_complete(struct io_kiocb *req, long res)
1872 {
1873 __io_req_complete(req, res, 0, NULL);
1874 }
1875
1876 static inline bool io_is_fallback_req(struct io_kiocb *req)
1877 {
1878 return req == (struct io_kiocb *)
1879 ((unsigned long) req->ctx->fallback_req & ~1UL);
1880 }
1881
1882 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1883 {
1884 struct io_kiocb *req;
1885
1886 req = ctx->fallback_req;
1887 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1888 return req;
1889
1890 return NULL;
1891 }
1892
1893 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1894 struct io_submit_state *state)
1895 {
1896 if (!state->free_reqs) {
1897 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1898 size_t sz;
1899 int ret;
1900
1901 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1902 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1903
1904 /*
1905 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1906 * retry single alloc to be on the safe side.
1907 */
1908 if (unlikely(ret <= 0)) {
1909 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1910 if (!state->reqs[0])
1911 goto fallback;
1912 ret = 1;
1913 }
1914 state->free_reqs = ret;
1915 }
1916
1917 state->free_reqs--;
1918 return state->reqs[state->free_reqs];
1919 fallback:
1920 return io_get_fallback_req(ctx);
1921 }
1922
1923 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1924 bool fixed)
1925 {
1926 if (fixed)
1927 percpu_ref_put(req->fixed_file_refs);
1928 else
1929 fput(file);
1930 }
1931
1932 static void io_dismantle_req(struct io_kiocb *req)
1933 {
1934 io_clean_op(req);
1935
1936 if (req->async_data)
1937 kfree(req->async_data);
1938 if (req->file)
1939 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1940
1941 io_req_clean_work(req);
1942 }
1943
1944 static void __io_free_req(struct io_kiocb *req)
1945 {
1946 struct io_uring_task *tctx = req->task->io_uring;
1947 struct io_ring_ctx *ctx = req->ctx;
1948
1949 io_dismantle_req(req);
1950
1951 percpu_counter_dec(&tctx->inflight);
1952 if (atomic_read(&tctx->in_idle))
1953 wake_up(&tctx->wait);
1954 put_task_struct(req->task);
1955
1956 if (likely(!io_is_fallback_req(req)))
1957 kmem_cache_free(req_cachep, req);
1958 else
1959 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1960 percpu_ref_put(&ctx->refs);
1961 }
1962
1963 static inline void io_remove_next_linked(struct io_kiocb *req)
1964 {
1965 struct io_kiocb *nxt = req->link;
1966
1967 req->link = nxt->link;
1968 nxt->link = NULL;
1969 }
1970
1971 static void io_kill_linked_timeout(struct io_kiocb *req)
1972 {
1973 struct io_ring_ctx *ctx = req->ctx;
1974 struct io_kiocb *link;
1975 bool cancelled = false;
1976 unsigned long flags;
1977
1978 spin_lock_irqsave(&ctx->completion_lock, flags);
1979 link = req->link;
1980
1981 /*
1982 * Can happen if a linked timeout fired and link had been like
1983 * req -> link t-out -> link t-out [-> ...]
1984 */
1985 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1986 struct io_timeout_data *io = link->async_data;
1987 int ret;
1988
1989 io_remove_next_linked(req);
1990 link->timeout.head = NULL;
1991 ret = hrtimer_try_to_cancel(&io->timer);
1992 if (ret != -1) {
1993 io_cqring_fill_event(link, -ECANCELED);
1994 io_commit_cqring(ctx);
1995 cancelled = true;
1996 }
1997 }
1998 req->flags &= ~REQ_F_LINK_TIMEOUT;
1999 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2000
2001 if (cancelled) {
2002 io_cqring_ev_posted(ctx);
2003 io_put_req(link);
2004 }
2005 }
2006
2007
2008 static void io_fail_links(struct io_kiocb *req)
2009 {
2010 struct io_kiocb *link, *nxt;
2011 struct io_ring_ctx *ctx = req->ctx;
2012 unsigned long flags;
2013
2014 spin_lock_irqsave(&ctx->completion_lock, flags);
2015 link = req->link;
2016 req->link = NULL;
2017
2018 while (link) {
2019 nxt = link->link;
2020 link->link = NULL;
2021
2022 trace_io_uring_fail_link(req, link);
2023 io_cqring_fill_event(link, -ECANCELED);
2024
2025 /*
2026 * It's ok to free under spinlock as they're not linked anymore,
2027 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2028 * work.fs->lock.
2029 */
2030 if (link->flags & REQ_F_WORK_INITIALIZED)
2031 io_put_req_deferred(link, 2);
2032 else
2033 io_double_put_req(link);
2034 link = nxt;
2035 }
2036 io_commit_cqring(ctx);
2037 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2038
2039 io_cqring_ev_posted(ctx);
2040 }
2041
2042 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2043 {
2044 if (req->flags & REQ_F_LINK_TIMEOUT)
2045 io_kill_linked_timeout(req);
2046
2047 /*
2048 * If LINK is set, we have dependent requests in this chain. If we
2049 * didn't fail this request, queue the first one up, moving any other
2050 * dependencies to the next request. In case of failure, fail the rest
2051 * of the chain.
2052 */
2053 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2054 struct io_kiocb *nxt = req->link;
2055
2056 req->link = NULL;
2057 return nxt;
2058 }
2059 io_fail_links(req);
2060 return NULL;
2061 }
2062
2063 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2064 {
2065 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2066 return NULL;
2067 return __io_req_find_next(req);
2068 }
2069
2070 static int io_req_task_work_add(struct io_kiocb *req, bool twa_signal_ok)
2071 {
2072 struct task_struct *tsk = req->task;
2073 struct io_ring_ctx *ctx = req->ctx;
2074 enum task_work_notify_mode notify;
2075 int ret;
2076
2077 if (tsk->flags & PF_EXITING)
2078 return -ESRCH;
2079
2080 /*
2081 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2082 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2083 * processing task_work. There's no reliable way to tell if TWA_RESUME
2084 * will do the job.
2085 */
2086 notify = TWA_NONE;
2087 if (!(ctx->flags & IORING_SETUP_SQPOLL) && twa_signal_ok)
2088 notify = TWA_SIGNAL;
2089
2090 ret = task_work_add(tsk, &req->task_work, notify);
2091 if (!ret)
2092 wake_up_process(tsk);
2093
2094 return ret;
2095 }
2096
2097 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2098 {
2099 struct io_ring_ctx *ctx = req->ctx;
2100
2101 spin_lock_irq(&ctx->completion_lock);
2102 io_cqring_fill_event(req, error);
2103 io_commit_cqring(ctx);
2104 spin_unlock_irq(&ctx->completion_lock);
2105
2106 io_cqring_ev_posted(ctx);
2107 req_set_fail_links(req);
2108 io_double_put_req(req);
2109 }
2110
2111 static void io_req_task_cancel(struct callback_head *cb)
2112 {
2113 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2114 struct io_ring_ctx *ctx = req->ctx;
2115
2116 __io_req_task_cancel(req, -ECANCELED);
2117 percpu_ref_put(&ctx->refs);
2118 }
2119
2120 static void __io_req_task_submit(struct io_kiocb *req)
2121 {
2122 struct io_ring_ctx *ctx = req->ctx;
2123
2124 if (!__io_sq_thread_acquire_mm(ctx) &&
2125 !__io_sq_thread_acquire_files(ctx)) {
2126 mutex_lock(&ctx->uring_lock);
2127 __io_queue_sqe(req, NULL);
2128 mutex_unlock(&ctx->uring_lock);
2129 } else {
2130 __io_req_task_cancel(req, -EFAULT);
2131 }
2132 }
2133
2134 static void io_req_task_submit(struct callback_head *cb)
2135 {
2136 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2137 struct io_ring_ctx *ctx = req->ctx;
2138
2139 __io_req_task_submit(req);
2140 percpu_ref_put(&ctx->refs);
2141 }
2142
2143 static void io_req_task_queue(struct io_kiocb *req)
2144 {
2145 int ret;
2146
2147 init_task_work(&req->task_work, io_req_task_submit);
2148 percpu_ref_get(&req->ctx->refs);
2149
2150 ret = io_req_task_work_add(req, true);
2151 if (unlikely(ret)) {
2152 struct task_struct *tsk;
2153
2154 init_task_work(&req->task_work, io_req_task_cancel);
2155 tsk = io_wq_get_task(req->ctx->io_wq);
2156 task_work_add(tsk, &req->task_work, TWA_NONE);
2157 wake_up_process(tsk);
2158 }
2159 }
2160
2161 static inline void io_queue_next(struct io_kiocb *req)
2162 {
2163 struct io_kiocb *nxt = io_req_find_next(req);
2164
2165 if (nxt)
2166 io_req_task_queue(nxt);
2167 }
2168
2169 static void io_free_req(struct io_kiocb *req)
2170 {
2171 io_queue_next(req);
2172 __io_free_req(req);
2173 }
2174
2175 struct req_batch {
2176 void *reqs[IO_IOPOLL_BATCH];
2177 int to_free;
2178
2179 struct task_struct *task;
2180 int task_refs;
2181 };
2182
2183 static inline void io_init_req_batch(struct req_batch *rb)
2184 {
2185 rb->to_free = 0;
2186 rb->task_refs = 0;
2187 rb->task = NULL;
2188 }
2189
2190 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2191 struct req_batch *rb)
2192 {
2193 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2194 percpu_ref_put_many(&ctx->refs, rb->to_free);
2195 rb->to_free = 0;
2196 }
2197
2198 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2199 struct req_batch *rb)
2200 {
2201 if (rb->to_free)
2202 __io_req_free_batch_flush(ctx, rb);
2203 if (rb->task) {
2204 struct io_uring_task *tctx = rb->task->io_uring;
2205
2206 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2207 put_task_struct_many(rb->task, rb->task_refs);
2208 rb->task = NULL;
2209 }
2210 }
2211
2212 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2213 {
2214 if (unlikely(io_is_fallback_req(req))) {
2215 io_free_req(req);
2216 return;
2217 }
2218 io_queue_next(req);
2219
2220 if (req->task != rb->task) {
2221 if (rb->task) {
2222 struct io_uring_task *tctx = rb->task->io_uring;
2223
2224 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2225 put_task_struct_many(rb->task, rb->task_refs);
2226 }
2227 rb->task = req->task;
2228 rb->task_refs = 0;
2229 }
2230 rb->task_refs++;
2231
2232 io_dismantle_req(req);
2233 rb->reqs[rb->to_free++] = req;
2234 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2235 __io_req_free_batch_flush(req->ctx, rb);
2236 }
2237
2238 /*
2239 * Drop reference to request, return next in chain (if there is one) if this
2240 * was the last reference to this request.
2241 */
2242 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2243 {
2244 struct io_kiocb *nxt = NULL;
2245
2246 if (refcount_dec_and_test(&req->refs)) {
2247 nxt = io_req_find_next(req);
2248 __io_free_req(req);
2249 }
2250 return nxt;
2251 }
2252
2253 static void io_put_req(struct io_kiocb *req)
2254 {
2255 if (refcount_dec_and_test(&req->refs))
2256 io_free_req(req);
2257 }
2258
2259 static void io_put_req_deferred_cb(struct callback_head *cb)
2260 {
2261 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2262
2263 io_free_req(req);
2264 }
2265
2266 static void io_free_req_deferred(struct io_kiocb *req)
2267 {
2268 int ret;
2269
2270 init_task_work(&req->task_work, io_put_req_deferred_cb);
2271 ret = io_req_task_work_add(req, true);
2272 if (unlikely(ret)) {
2273 struct task_struct *tsk;
2274
2275 tsk = io_wq_get_task(req->ctx->io_wq);
2276 task_work_add(tsk, &req->task_work, TWA_NONE);
2277 wake_up_process(tsk);
2278 }
2279 }
2280
2281 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2282 {
2283 if (refcount_sub_and_test(refs, &req->refs))
2284 io_free_req_deferred(req);
2285 }
2286
2287 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2288 {
2289 struct io_kiocb *nxt;
2290
2291 /*
2292 * A ref is owned by io-wq in which context we're. So, if that's the
2293 * last one, it's safe to steal next work. False negatives are Ok,
2294 * it just will be re-punted async in io_put_work()
2295 */
2296 if (refcount_read(&req->refs) != 1)
2297 return NULL;
2298
2299 nxt = io_req_find_next(req);
2300 return nxt ? &nxt->work : NULL;
2301 }
2302
2303 static void io_double_put_req(struct io_kiocb *req)
2304 {
2305 /* drop both submit and complete references */
2306 if (refcount_sub_and_test(2, &req->refs))
2307 io_free_req(req);
2308 }
2309
2310 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2311 {
2312 struct io_rings *rings = ctx->rings;
2313
2314 if (test_bit(0, &ctx->cq_check_overflow)) {
2315 /*
2316 * noflush == true is from the waitqueue handler, just ensure
2317 * we wake up the task, and the next invocation will flush the
2318 * entries. We cannot safely to it from here.
2319 */
2320 if (noflush && !list_empty(&ctx->cq_overflow_list))
2321 return -1U;
2322
2323 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2324 }
2325
2326 /* See comment at the top of this file */
2327 smp_rmb();
2328 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
2329 }
2330
2331 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2332 {
2333 struct io_rings *rings = ctx->rings;
2334
2335 /* make sure SQ entry isn't read before tail */
2336 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2337 }
2338
2339 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2340 {
2341 unsigned int cflags;
2342
2343 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2344 cflags |= IORING_CQE_F_BUFFER;
2345 req->flags &= ~REQ_F_BUFFER_SELECTED;
2346 kfree(kbuf);
2347 return cflags;
2348 }
2349
2350 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2351 {
2352 struct io_buffer *kbuf;
2353
2354 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2355 return io_put_kbuf(req, kbuf);
2356 }
2357
2358 static inline bool io_run_task_work(void)
2359 {
2360 /*
2361 * Not safe to run on exiting task, and the task_work handling will
2362 * not add work to such a task.
2363 */
2364 if (unlikely(current->flags & PF_EXITING))
2365 return false;
2366 if (current->task_works) {
2367 __set_current_state(TASK_RUNNING);
2368 task_work_run();
2369 return true;
2370 }
2371
2372 return false;
2373 }
2374
2375 static void io_iopoll_queue(struct list_head *again)
2376 {
2377 struct io_kiocb *req;
2378
2379 do {
2380 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2381 list_del(&req->inflight_entry);
2382 __io_complete_rw(req, -EAGAIN, 0, NULL);
2383 } while (!list_empty(again));
2384 }
2385
2386 /*
2387 * Find and free completed poll iocbs
2388 */
2389 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2390 struct list_head *done)
2391 {
2392 struct req_batch rb;
2393 struct io_kiocb *req;
2394 LIST_HEAD(again);
2395
2396 /* order with ->result store in io_complete_rw_iopoll() */
2397 smp_rmb();
2398
2399 io_init_req_batch(&rb);
2400 while (!list_empty(done)) {
2401 int cflags = 0;
2402
2403 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2404 if (READ_ONCE(req->result) == -EAGAIN) {
2405 req->result = 0;
2406 req->iopoll_completed = 0;
2407 list_move_tail(&req->inflight_entry, &again);
2408 continue;
2409 }
2410 list_del(&req->inflight_entry);
2411
2412 if (req->flags & REQ_F_BUFFER_SELECTED)
2413 cflags = io_put_rw_kbuf(req);
2414
2415 __io_cqring_fill_event(req, req->result, cflags);
2416 (*nr_events)++;
2417
2418 if (refcount_dec_and_test(&req->refs))
2419 io_req_free_batch(&rb, req);
2420 }
2421
2422 io_commit_cqring(ctx);
2423 if (ctx->flags & IORING_SETUP_SQPOLL)
2424 io_cqring_ev_posted(ctx);
2425 io_req_free_batch_finish(ctx, &rb);
2426
2427 if (!list_empty(&again))
2428 io_iopoll_queue(&again);
2429 }
2430
2431 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2432 long min)
2433 {
2434 struct io_kiocb *req, *tmp;
2435 LIST_HEAD(done);
2436 bool spin;
2437 int ret;
2438
2439 /*
2440 * Only spin for completions if we don't have multiple devices hanging
2441 * off our complete list, and we're under the requested amount.
2442 */
2443 spin = !ctx->poll_multi_file && *nr_events < min;
2444
2445 ret = 0;
2446 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2447 struct kiocb *kiocb = &req->rw.kiocb;
2448
2449 /*
2450 * Move completed and retryable entries to our local lists.
2451 * If we find a request that requires polling, break out
2452 * and complete those lists first, if we have entries there.
2453 */
2454 if (READ_ONCE(req->iopoll_completed)) {
2455 list_move_tail(&req->inflight_entry, &done);
2456 continue;
2457 }
2458 if (!list_empty(&done))
2459 break;
2460
2461 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2462 if (ret < 0)
2463 break;
2464
2465 /* iopoll may have completed current req */
2466 if (READ_ONCE(req->iopoll_completed))
2467 list_move_tail(&req->inflight_entry, &done);
2468
2469 if (ret && spin)
2470 spin = false;
2471 ret = 0;
2472 }
2473
2474 if (!list_empty(&done))
2475 io_iopoll_complete(ctx, nr_events, &done);
2476
2477 return ret;
2478 }
2479
2480 /*
2481 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2482 * non-spinning poll check - we'll still enter the driver poll loop, but only
2483 * as a non-spinning completion check.
2484 */
2485 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2486 long min)
2487 {
2488 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2489 int ret;
2490
2491 ret = io_do_iopoll(ctx, nr_events, min);
2492 if (ret < 0)
2493 return ret;
2494 if (*nr_events >= min)
2495 return 0;
2496 }
2497
2498 return 1;
2499 }
2500
2501 /*
2502 * We can't just wait for polled events to come to us, we have to actively
2503 * find and complete them.
2504 */
2505 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2506 {
2507 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2508 return;
2509
2510 mutex_lock(&ctx->uring_lock);
2511 while (!list_empty(&ctx->iopoll_list)) {
2512 unsigned int nr_events = 0;
2513
2514 io_do_iopoll(ctx, &nr_events, 0);
2515
2516 /* let it sleep and repeat later if can't complete a request */
2517 if (nr_events == 0)
2518 break;
2519 /*
2520 * Ensure we allow local-to-the-cpu processing to take place,
2521 * in this case we need to ensure that we reap all events.
2522 * Also let task_work, etc. to progress by releasing the mutex
2523 */
2524 if (need_resched()) {
2525 mutex_unlock(&ctx->uring_lock);
2526 cond_resched();
2527 mutex_lock(&ctx->uring_lock);
2528 }
2529 }
2530 mutex_unlock(&ctx->uring_lock);
2531 }
2532
2533 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2534 {
2535 unsigned int nr_events = 0;
2536 int iters = 0, ret = 0;
2537
2538 /*
2539 * We disallow the app entering submit/complete with polling, but we
2540 * still need to lock the ring to prevent racing with polled issue
2541 * that got punted to a workqueue.
2542 */
2543 mutex_lock(&ctx->uring_lock);
2544 do {
2545 /*
2546 * Don't enter poll loop if we already have events pending.
2547 * If we do, we can potentially be spinning for commands that
2548 * already triggered a CQE (eg in error).
2549 */
2550 if (io_cqring_events(ctx, false))
2551 break;
2552
2553 /*
2554 * If a submit got punted to a workqueue, we can have the
2555 * application entering polling for a command before it gets
2556 * issued. That app will hold the uring_lock for the duration
2557 * of the poll right here, so we need to take a breather every
2558 * now and then to ensure that the issue has a chance to add
2559 * the poll to the issued list. Otherwise we can spin here
2560 * forever, while the workqueue is stuck trying to acquire the
2561 * very same mutex.
2562 */
2563 if (!(++iters & 7)) {
2564 mutex_unlock(&ctx->uring_lock);
2565 io_run_task_work();
2566 mutex_lock(&ctx->uring_lock);
2567 }
2568
2569 ret = io_iopoll_getevents(ctx, &nr_events, min);
2570 if (ret <= 0)
2571 break;
2572 ret = 0;
2573 } while (min && !nr_events && !need_resched());
2574
2575 mutex_unlock(&ctx->uring_lock);
2576 return ret;
2577 }
2578
2579 static void kiocb_end_write(struct io_kiocb *req)
2580 {
2581 /*
2582 * Tell lockdep we inherited freeze protection from submission
2583 * thread.
2584 */
2585 if (req->flags & REQ_F_ISREG) {
2586 struct inode *inode = file_inode(req->file);
2587
2588 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2589 }
2590 file_end_write(req->file);
2591 }
2592
2593 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2594 struct io_comp_state *cs)
2595 {
2596 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2597 int cflags = 0;
2598
2599 if (kiocb->ki_flags & IOCB_WRITE)
2600 kiocb_end_write(req);
2601
2602 if (res != req->result)
2603 req_set_fail_links(req);
2604 if (req->flags & REQ_F_BUFFER_SELECTED)
2605 cflags = io_put_rw_kbuf(req);
2606 __io_req_complete(req, res, cflags, cs);
2607 }
2608
2609 #ifdef CONFIG_BLOCK
2610 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2611 {
2612 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2613 ssize_t ret = -ECANCELED;
2614 struct iov_iter iter;
2615 int rw;
2616
2617 if (error) {
2618 ret = error;
2619 goto end_req;
2620 }
2621
2622 switch (req->opcode) {
2623 case IORING_OP_READV:
2624 case IORING_OP_READ_FIXED:
2625 case IORING_OP_READ:
2626 rw = READ;
2627 break;
2628 case IORING_OP_WRITEV:
2629 case IORING_OP_WRITE_FIXED:
2630 case IORING_OP_WRITE:
2631 rw = WRITE;
2632 break;
2633 default:
2634 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2635 req->opcode);
2636 goto end_req;
2637 }
2638
2639 if (!req->async_data) {
2640 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2641 if (ret < 0)
2642 goto end_req;
2643 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2644 if (!ret)
2645 return true;
2646 kfree(iovec);
2647 } else {
2648 return true;
2649 }
2650 end_req:
2651 req_set_fail_links(req);
2652 return false;
2653 }
2654 #endif
2655
2656 static bool io_rw_reissue(struct io_kiocb *req, long res)
2657 {
2658 #ifdef CONFIG_BLOCK
2659 umode_t mode = file_inode(req->file)->i_mode;
2660 int ret;
2661
2662 if (!S_ISBLK(mode) && !S_ISREG(mode))
2663 return false;
2664 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2665 return false;
2666
2667 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2668
2669 if (io_resubmit_prep(req, ret)) {
2670 refcount_inc(&req->refs);
2671 io_queue_async_work(req);
2672 return true;
2673 }
2674
2675 #endif
2676 return false;
2677 }
2678
2679 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2680 struct io_comp_state *cs)
2681 {
2682 if (!io_rw_reissue(req, res))
2683 io_complete_rw_common(&req->rw.kiocb, res, cs);
2684 }
2685
2686 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2687 {
2688 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2689
2690 __io_complete_rw(req, res, res2, NULL);
2691 }
2692
2693 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2694 {
2695 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2696
2697 if (kiocb->ki_flags & IOCB_WRITE)
2698 kiocb_end_write(req);
2699
2700 if (res != -EAGAIN && res != req->result)
2701 req_set_fail_links(req);
2702
2703 WRITE_ONCE(req->result, res);
2704 /* order with io_poll_complete() checking ->result */
2705 smp_wmb();
2706 WRITE_ONCE(req->iopoll_completed, 1);
2707 }
2708
2709 /*
2710 * After the iocb has been issued, it's safe to be found on the poll list.
2711 * Adding the kiocb to the list AFTER submission ensures that we don't
2712 * find it from a io_iopoll_getevents() thread before the issuer is done
2713 * accessing the kiocb cookie.
2714 */
2715 static void io_iopoll_req_issued(struct io_kiocb *req)
2716 {
2717 struct io_ring_ctx *ctx = req->ctx;
2718
2719 /*
2720 * Track whether we have multiple files in our lists. This will impact
2721 * how we do polling eventually, not spinning if we're on potentially
2722 * different devices.
2723 */
2724 if (list_empty(&ctx->iopoll_list)) {
2725 ctx->poll_multi_file = false;
2726 } else if (!ctx->poll_multi_file) {
2727 struct io_kiocb *list_req;
2728
2729 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2730 inflight_entry);
2731 if (list_req->file != req->file)
2732 ctx->poll_multi_file = true;
2733 }
2734
2735 /*
2736 * For fast devices, IO may have already completed. If it has, add
2737 * it to the front so we find it first.
2738 */
2739 if (READ_ONCE(req->iopoll_completed))
2740 list_add(&req->inflight_entry, &ctx->iopoll_list);
2741 else
2742 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2743
2744 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2745 wq_has_sleeper(&ctx->sq_data->wait))
2746 wake_up(&ctx->sq_data->wait);
2747 }
2748
2749 static void __io_state_file_put(struct io_submit_state *state)
2750 {
2751 if (state->has_refs)
2752 fput_many(state->file, state->has_refs);
2753 state->file = NULL;
2754 }
2755
2756 static inline void io_state_file_put(struct io_submit_state *state)
2757 {
2758 if (state->file)
2759 __io_state_file_put(state);
2760 }
2761
2762 /*
2763 * Get as many references to a file as we have IOs left in this submission,
2764 * assuming most submissions are for one file, or at least that each file
2765 * has more than one submission.
2766 */
2767 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2768 {
2769 if (!state)
2770 return fget(fd);
2771
2772 if (state->file) {
2773 if (state->fd == fd) {
2774 state->has_refs--;
2775 return state->file;
2776 }
2777 __io_state_file_put(state);
2778 }
2779 state->file = fget_many(fd, state->ios_left);
2780 if (!state->file)
2781 return NULL;
2782
2783 state->fd = fd;
2784 state->has_refs = state->ios_left - 1;
2785 return state->file;
2786 }
2787
2788 static bool io_bdev_nowait(struct block_device *bdev)
2789 {
2790 #ifdef CONFIG_BLOCK
2791 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2792 #else
2793 return true;
2794 #endif
2795 }
2796
2797 /*
2798 * If we tracked the file through the SCM inflight mechanism, we could support
2799 * any file. For now, just ensure that anything potentially problematic is done
2800 * inline.
2801 */
2802 static bool io_file_supports_async(struct file *file, int rw)
2803 {
2804 umode_t mode = file_inode(file)->i_mode;
2805
2806 if (S_ISBLK(mode)) {
2807 if (io_bdev_nowait(file->f_inode->i_bdev))
2808 return true;
2809 return false;
2810 }
2811 if (S_ISCHR(mode) || S_ISSOCK(mode))
2812 return true;
2813 if (S_ISREG(mode)) {
2814 if (io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2815 file->f_op != &io_uring_fops)
2816 return true;
2817 return false;
2818 }
2819
2820 /* any ->read/write should understand O_NONBLOCK */
2821 if (file->f_flags & O_NONBLOCK)
2822 return true;
2823
2824 if (!(file->f_mode & FMODE_NOWAIT))
2825 return false;
2826
2827 if (rw == READ)
2828 return file->f_op->read_iter != NULL;
2829
2830 return file->f_op->write_iter != NULL;
2831 }
2832
2833 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2834 {
2835 struct io_ring_ctx *ctx = req->ctx;
2836 struct kiocb *kiocb = &req->rw.kiocb;
2837 unsigned ioprio;
2838 int ret;
2839
2840 if (S_ISREG(file_inode(req->file)->i_mode))
2841 req->flags |= REQ_F_ISREG;
2842
2843 kiocb->ki_pos = READ_ONCE(sqe->off);
2844 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2845 req->flags |= REQ_F_CUR_POS;
2846 kiocb->ki_pos = req->file->f_pos;
2847 }
2848 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2849 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2850 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2851 if (unlikely(ret))
2852 return ret;
2853
2854 ioprio = READ_ONCE(sqe->ioprio);
2855 if (ioprio) {
2856 ret = ioprio_check_cap(ioprio);
2857 if (ret)
2858 return ret;
2859
2860 kiocb->ki_ioprio = ioprio;
2861 } else
2862 kiocb->ki_ioprio = get_current_ioprio();
2863
2864 /* don't allow async punt if RWF_NOWAIT was requested */
2865 if (kiocb->ki_flags & IOCB_NOWAIT)
2866 req->flags |= REQ_F_NOWAIT;
2867
2868 if (ctx->flags & IORING_SETUP_IOPOLL) {
2869 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2870 !kiocb->ki_filp->f_op->iopoll)
2871 return -EOPNOTSUPP;
2872
2873 kiocb->ki_flags |= IOCB_HIPRI;
2874 kiocb->ki_complete = io_complete_rw_iopoll;
2875 req->iopoll_completed = 0;
2876 } else {
2877 if (kiocb->ki_flags & IOCB_HIPRI)
2878 return -EINVAL;
2879 kiocb->ki_complete = io_complete_rw;
2880 }
2881
2882 req->rw.addr = READ_ONCE(sqe->addr);
2883 req->rw.len = READ_ONCE(sqe->len);
2884 req->buf_index = READ_ONCE(sqe->buf_index);
2885 return 0;
2886 }
2887
2888 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2889 {
2890 switch (ret) {
2891 case -EIOCBQUEUED:
2892 break;
2893 case -ERESTARTSYS:
2894 case -ERESTARTNOINTR:
2895 case -ERESTARTNOHAND:
2896 case -ERESTART_RESTARTBLOCK:
2897 /*
2898 * We can't just restart the syscall, since previously
2899 * submitted sqes may already be in progress. Just fail this
2900 * IO with EINTR.
2901 */
2902 ret = -EINTR;
2903 fallthrough;
2904 default:
2905 kiocb->ki_complete(kiocb, ret, 0);
2906 }
2907 }
2908
2909 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2910 struct io_comp_state *cs)
2911 {
2912 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2913 struct io_async_rw *io = req->async_data;
2914
2915 /* add previously done IO, if any */
2916 if (io && io->bytes_done > 0) {
2917 if (ret < 0)
2918 ret = io->bytes_done;
2919 else
2920 ret += io->bytes_done;
2921 }
2922
2923 if (req->flags & REQ_F_CUR_POS)
2924 req->file->f_pos = kiocb->ki_pos;
2925 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2926 __io_complete_rw(req, ret, 0, cs);
2927 else
2928 io_rw_done(kiocb, ret);
2929 }
2930
2931 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2932 struct iov_iter *iter)
2933 {
2934 struct io_ring_ctx *ctx = req->ctx;
2935 size_t len = req->rw.len;
2936 struct io_mapped_ubuf *imu;
2937 u16 index, buf_index = req->buf_index;
2938 size_t offset;
2939 u64 buf_addr;
2940
2941 if (unlikely(buf_index >= ctx->nr_user_bufs))
2942 return -EFAULT;
2943 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2944 imu = &ctx->user_bufs[index];
2945 buf_addr = req->rw.addr;
2946
2947 /* overflow */
2948 if (buf_addr + len < buf_addr)
2949 return -EFAULT;
2950 /* not inside the mapped region */
2951 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2952 return -EFAULT;
2953
2954 /*
2955 * May not be a start of buffer, set size appropriately
2956 * and advance us to the beginning.
2957 */
2958 offset = buf_addr - imu->ubuf;
2959 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2960
2961 if (offset) {
2962 /*
2963 * Don't use iov_iter_advance() here, as it's really slow for
2964 * using the latter parts of a big fixed buffer - it iterates
2965 * over each segment manually. We can cheat a bit here, because
2966 * we know that:
2967 *
2968 * 1) it's a BVEC iter, we set it up
2969 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2970 * first and last bvec
2971 *
2972 * So just find our index, and adjust the iterator afterwards.
2973 * If the offset is within the first bvec (or the whole first
2974 * bvec, just use iov_iter_advance(). This makes it easier
2975 * since we can just skip the first segment, which may not
2976 * be PAGE_SIZE aligned.
2977 */
2978 const struct bio_vec *bvec = imu->bvec;
2979
2980 if (offset <= bvec->bv_len) {
2981 iov_iter_advance(iter, offset);
2982 } else {
2983 unsigned long seg_skip;
2984
2985 /* skip first vec */
2986 offset -= bvec->bv_len;
2987 seg_skip = 1 + (offset >> PAGE_SHIFT);
2988
2989 iter->bvec = bvec + seg_skip;
2990 iter->nr_segs -= seg_skip;
2991 iter->count -= bvec->bv_len + offset;
2992 iter->iov_offset = offset & ~PAGE_MASK;
2993 }
2994 }
2995
2996 return len;
2997 }
2998
2999 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3000 {
3001 if (needs_lock)
3002 mutex_unlock(&ctx->uring_lock);
3003 }
3004
3005 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3006 {
3007 /*
3008 * "Normal" inline submissions always hold the uring_lock, since we
3009 * grab it from the system call. Same is true for the SQPOLL offload.
3010 * The only exception is when we've detached the request and issue it
3011 * from an async worker thread, grab the lock for that case.
3012 */
3013 if (needs_lock)
3014 mutex_lock(&ctx->uring_lock);
3015 }
3016
3017 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3018 int bgid, struct io_buffer *kbuf,
3019 bool needs_lock)
3020 {
3021 struct io_buffer *head;
3022
3023 if (req->flags & REQ_F_BUFFER_SELECTED)
3024 return kbuf;
3025
3026 io_ring_submit_lock(req->ctx, needs_lock);
3027
3028 lockdep_assert_held(&req->ctx->uring_lock);
3029
3030 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3031 if (head) {
3032 if (!list_empty(&head->list)) {
3033 kbuf = list_last_entry(&head->list, struct io_buffer,
3034 list);
3035 list_del(&kbuf->list);
3036 } else {
3037 kbuf = head;
3038 idr_remove(&req->ctx->io_buffer_idr, bgid);
3039 }
3040 if (*len > kbuf->len)
3041 *len = kbuf->len;
3042 } else {
3043 kbuf = ERR_PTR(-ENOBUFS);
3044 }
3045
3046 io_ring_submit_unlock(req->ctx, needs_lock);
3047
3048 return kbuf;
3049 }
3050
3051 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3052 bool needs_lock)
3053 {
3054 struct io_buffer *kbuf;
3055 u16 bgid;
3056
3057 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3058 bgid = req->buf_index;
3059 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3060 if (IS_ERR(kbuf))
3061 return kbuf;
3062 req->rw.addr = (u64) (unsigned long) kbuf;
3063 req->flags |= REQ_F_BUFFER_SELECTED;
3064 return u64_to_user_ptr(kbuf->addr);
3065 }
3066
3067 #ifdef CONFIG_COMPAT
3068 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3069 bool needs_lock)
3070 {
3071 struct compat_iovec __user *uiov;
3072 compat_ssize_t clen;
3073 void __user *buf;
3074 ssize_t len;
3075
3076 uiov = u64_to_user_ptr(req->rw.addr);
3077 if (!access_ok(uiov, sizeof(*uiov)))
3078 return -EFAULT;
3079 if (__get_user(clen, &uiov->iov_len))
3080 return -EFAULT;
3081 if (clen < 0)
3082 return -EINVAL;
3083
3084 len = clen;
3085 buf = io_rw_buffer_select(req, &len, needs_lock);
3086 if (IS_ERR(buf))
3087 return PTR_ERR(buf);
3088 iov[0].iov_base = buf;
3089 iov[0].iov_len = (compat_size_t) len;
3090 return 0;
3091 }
3092 #endif
3093
3094 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3095 bool needs_lock)
3096 {
3097 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3098 void __user *buf;
3099 ssize_t len;
3100
3101 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3102 return -EFAULT;
3103
3104 len = iov[0].iov_len;
3105 if (len < 0)
3106 return -EINVAL;
3107 buf = io_rw_buffer_select(req, &len, needs_lock);
3108 if (IS_ERR(buf))
3109 return PTR_ERR(buf);
3110 iov[0].iov_base = buf;
3111 iov[0].iov_len = len;
3112 return 0;
3113 }
3114
3115 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3116 bool needs_lock)
3117 {
3118 if (req->flags & REQ_F_BUFFER_SELECTED) {
3119 struct io_buffer *kbuf;
3120
3121 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3122 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3123 iov[0].iov_len = kbuf->len;
3124 return 0;
3125 }
3126 if (!req->rw.len)
3127 return 0;
3128 else if (req->rw.len > 1)
3129 return -EINVAL;
3130
3131 #ifdef CONFIG_COMPAT
3132 if (req->ctx->compat)
3133 return io_compat_import(req, iov, needs_lock);
3134 #endif
3135
3136 return __io_iov_buffer_select(req, iov, needs_lock);
3137 }
3138
3139 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3140 struct iovec **iovec, struct iov_iter *iter,
3141 bool needs_lock)
3142 {
3143 void __user *buf = u64_to_user_ptr(req->rw.addr);
3144 size_t sqe_len = req->rw.len;
3145 ssize_t ret;
3146 u8 opcode;
3147
3148 opcode = req->opcode;
3149 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3150 *iovec = NULL;
3151 return io_import_fixed(req, rw, iter);
3152 }
3153
3154 /* buffer index only valid with fixed read/write, or buffer select */
3155 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3156 return -EINVAL;
3157
3158 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3159 if (req->flags & REQ_F_BUFFER_SELECT) {
3160 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3161 if (IS_ERR(buf))
3162 return PTR_ERR(buf);
3163 req->rw.len = sqe_len;
3164 }
3165
3166 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3167 *iovec = NULL;
3168 return ret;
3169 }
3170
3171 if (req->flags & REQ_F_BUFFER_SELECT) {
3172 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3173 if (!ret) {
3174 ret = (*iovec)->iov_len;
3175 iov_iter_init(iter, rw, *iovec, 1, ret);
3176 }
3177 *iovec = NULL;
3178 return ret;
3179 }
3180
3181 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3182 req->ctx->compat);
3183 }
3184
3185 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3186 {
3187 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3188 }
3189
3190 /*
3191 * For files that don't have ->read_iter() and ->write_iter(), handle them
3192 * by looping over ->read() or ->write() manually.
3193 */
3194 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3195 {
3196 struct kiocb *kiocb = &req->rw.kiocb;
3197 struct file *file = req->file;
3198 ssize_t ret = 0;
3199
3200 /*
3201 * Don't support polled IO through this interface, and we can't
3202 * support non-blocking either. For the latter, this just causes
3203 * the kiocb to be handled from an async context.
3204 */
3205 if (kiocb->ki_flags & IOCB_HIPRI)
3206 return -EOPNOTSUPP;
3207 if (kiocb->ki_flags & IOCB_NOWAIT)
3208 return -EAGAIN;
3209
3210 while (iov_iter_count(iter)) {
3211 struct iovec iovec;
3212 ssize_t nr;
3213
3214 if (!iov_iter_is_bvec(iter)) {
3215 iovec = iov_iter_iovec(iter);
3216 } else {
3217 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3218 iovec.iov_len = req->rw.len;
3219 }
3220
3221 if (rw == READ) {
3222 nr = file->f_op->read(file, iovec.iov_base,
3223 iovec.iov_len, io_kiocb_ppos(kiocb));
3224 } else {
3225 nr = file->f_op->write(file, iovec.iov_base,
3226 iovec.iov_len, io_kiocb_ppos(kiocb));
3227 }
3228
3229 if (nr < 0) {
3230 if (!ret)
3231 ret = nr;
3232 break;
3233 }
3234 ret += nr;
3235 if (nr != iovec.iov_len)
3236 break;
3237 req->rw.len -= nr;
3238 req->rw.addr += nr;
3239 iov_iter_advance(iter, nr);
3240 }
3241
3242 return ret;
3243 }
3244
3245 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3246 const struct iovec *fast_iov, struct iov_iter *iter)
3247 {
3248 struct io_async_rw *rw = req->async_data;
3249
3250 memcpy(&rw->iter, iter, sizeof(*iter));
3251 rw->free_iovec = iovec;
3252 rw->bytes_done = 0;
3253 /* can only be fixed buffers, no need to do anything */
3254 if (iter->type == ITER_BVEC)
3255 return;
3256 if (!iovec) {
3257 unsigned iov_off = 0;
3258
3259 rw->iter.iov = rw->fast_iov;
3260 if (iter->iov != fast_iov) {
3261 iov_off = iter->iov - fast_iov;
3262 rw->iter.iov += iov_off;
3263 }
3264 if (rw->fast_iov != fast_iov)
3265 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3266 sizeof(struct iovec) * iter->nr_segs);
3267 } else {
3268 req->flags |= REQ_F_NEED_CLEANUP;
3269 }
3270 }
3271
3272 static inline int __io_alloc_async_data(struct io_kiocb *req)
3273 {
3274 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3275 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3276 return req->async_data == NULL;
3277 }
3278
3279 static int io_alloc_async_data(struct io_kiocb *req)
3280 {
3281 if (!io_op_defs[req->opcode].needs_async_data)
3282 return 0;
3283
3284 return __io_alloc_async_data(req);
3285 }
3286
3287 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3288 const struct iovec *fast_iov,
3289 struct iov_iter *iter, bool force)
3290 {
3291 if (!force && !io_op_defs[req->opcode].needs_async_data)
3292 return 0;
3293 if (!req->async_data) {
3294 if (__io_alloc_async_data(req))
3295 return -ENOMEM;
3296
3297 io_req_map_rw(req, iovec, fast_iov, iter);
3298 }
3299 return 0;
3300 }
3301
3302 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3303 {
3304 struct io_async_rw *iorw = req->async_data;
3305 struct iovec *iov = iorw->fast_iov;
3306 ssize_t ret;
3307
3308 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3309 if (unlikely(ret < 0))
3310 return ret;
3311
3312 iorw->bytes_done = 0;
3313 iorw->free_iovec = iov;
3314 if (iov)
3315 req->flags |= REQ_F_NEED_CLEANUP;
3316 return 0;
3317 }
3318
3319 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3320 {
3321 ssize_t ret;
3322
3323 ret = io_prep_rw(req, sqe);
3324 if (ret)
3325 return ret;
3326
3327 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3328 return -EBADF;
3329
3330 /* either don't need iovec imported or already have it */
3331 if (!req->async_data)
3332 return 0;
3333 return io_rw_prep_async(req, READ);
3334 }
3335
3336 /*
3337 * This is our waitqueue callback handler, registered through lock_page_async()
3338 * when we initially tried to do the IO with the iocb armed our waitqueue.
3339 * This gets called when the page is unlocked, and we generally expect that to
3340 * happen when the page IO is completed and the page is now uptodate. This will
3341 * queue a task_work based retry of the operation, attempting to copy the data
3342 * again. If the latter fails because the page was NOT uptodate, then we will
3343 * do a thread based blocking retry of the operation. That's the unexpected
3344 * slow path.
3345 */
3346 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3347 int sync, void *arg)
3348 {
3349 struct wait_page_queue *wpq;
3350 struct io_kiocb *req = wait->private;
3351 struct wait_page_key *key = arg;
3352 int ret;
3353
3354 wpq = container_of(wait, struct wait_page_queue, wait);
3355
3356 if (!wake_page_match(wpq, key))
3357 return 0;
3358
3359 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3360 list_del_init(&wait->entry);
3361
3362 init_task_work(&req->task_work, io_req_task_submit);
3363 percpu_ref_get(&req->ctx->refs);
3364
3365 /* submit ref gets dropped, acquire a new one */
3366 refcount_inc(&req->refs);
3367 ret = io_req_task_work_add(req, true);
3368 if (unlikely(ret)) {
3369 struct task_struct *tsk;
3370
3371 /* queue just for cancelation */
3372 init_task_work(&req->task_work, io_req_task_cancel);
3373 tsk = io_wq_get_task(req->ctx->io_wq);
3374 task_work_add(tsk, &req->task_work, TWA_NONE);
3375 wake_up_process(tsk);
3376 }
3377 return 1;
3378 }
3379
3380 /*
3381 * This controls whether a given IO request should be armed for async page
3382 * based retry. If we return false here, the request is handed to the async
3383 * worker threads for retry. If we're doing buffered reads on a regular file,
3384 * we prepare a private wait_page_queue entry and retry the operation. This
3385 * will either succeed because the page is now uptodate and unlocked, or it
3386 * will register a callback when the page is unlocked at IO completion. Through
3387 * that callback, io_uring uses task_work to setup a retry of the operation.
3388 * That retry will attempt the buffered read again. The retry will generally
3389 * succeed, or in rare cases where it fails, we then fall back to using the
3390 * async worker threads for a blocking retry.
3391 */
3392 static bool io_rw_should_retry(struct io_kiocb *req)
3393 {
3394 struct io_async_rw *rw = req->async_data;
3395 struct wait_page_queue *wait = &rw->wpq;
3396 struct kiocb *kiocb = &req->rw.kiocb;
3397
3398 /* never retry for NOWAIT, we just complete with -EAGAIN */
3399 if (req->flags & REQ_F_NOWAIT)
3400 return false;
3401
3402 /* Only for buffered IO */
3403 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3404 return false;
3405
3406 /*
3407 * just use poll if we can, and don't attempt if the fs doesn't
3408 * support callback based unlocks
3409 */
3410 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3411 return false;
3412
3413 wait->wait.func = io_async_buf_func;
3414 wait->wait.private = req;
3415 wait->wait.flags = 0;
3416 INIT_LIST_HEAD(&wait->wait.entry);
3417 kiocb->ki_flags |= IOCB_WAITQ;
3418 kiocb->ki_flags &= ~IOCB_NOWAIT;
3419 kiocb->ki_waitq = wait;
3420 return true;
3421 }
3422
3423 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3424 {
3425 if (req->file->f_op->read_iter)
3426 return call_read_iter(req->file, &req->rw.kiocb, iter);
3427 else if (req->file->f_op->read)
3428 return loop_rw_iter(READ, req, iter);
3429 else
3430 return -EINVAL;
3431 }
3432
3433 static int io_read(struct io_kiocb *req, bool force_nonblock,
3434 struct io_comp_state *cs)
3435 {
3436 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3437 struct kiocb *kiocb = &req->rw.kiocb;
3438 struct iov_iter __iter, *iter = &__iter;
3439 struct io_async_rw *rw = req->async_data;
3440 ssize_t io_size, ret, ret2;
3441 bool no_async;
3442
3443 if (rw) {
3444 iter = &rw->iter;
3445 iovec = NULL;
3446 } else {
3447 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3448 if (ret < 0)
3449 return ret;
3450 }
3451 io_size = iov_iter_count(iter);
3452 req->result = io_size;
3453 ret = 0;
3454
3455 /* Ensure we clear previously set non-block flag */
3456 if (!force_nonblock)
3457 kiocb->ki_flags &= ~IOCB_NOWAIT;
3458 else
3459 kiocb->ki_flags |= IOCB_NOWAIT;
3460
3461
3462 /* If the file doesn't support async, just async punt */
3463 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3464 if (no_async)
3465 goto copy_iov;
3466
3467 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3468 if (unlikely(ret))
3469 goto out_free;
3470
3471 ret = io_iter_do_read(req, iter);
3472
3473 if (!ret) {
3474 goto done;
3475 } else if (ret == -EIOCBQUEUED) {
3476 ret = 0;
3477 goto out_free;
3478 } else if (ret == -EAGAIN) {
3479 /* IOPOLL retry should happen for io-wq threads */
3480 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3481 goto done;
3482 /* no retry on NONBLOCK marked file */
3483 if (req->file->f_flags & O_NONBLOCK)
3484 goto done;
3485 /* some cases will consume bytes even on error returns */
3486 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3487 ret = 0;
3488 goto copy_iov;
3489 } else if (ret < 0) {
3490 /* make sure -ERESTARTSYS -> -EINTR is done */
3491 goto done;
3492 }
3493
3494 /* read it all, or we did blocking attempt. no retry. */
3495 if (!iov_iter_count(iter) || !force_nonblock ||
3496 (req->file->f_flags & O_NONBLOCK))
3497 goto done;
3498
3499 io_size -= ret;
3500 copy_iov:
3501 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3502 if (ret2) {
3503 ret = ret2;
3504 goto out_free;
3505 }
3506 if (no_async)
3507 return -EAGAIN;
3508 rw = req->async_data;
3509 /* it's copied and will be cleaned with ->io */
3510 iovec = NULL;
3511 /* now use our persistent iterator, if we aren't already */
3512 iter = &rw->iter;
3513 retry:
3514 rw->bytes_done += ret;
3515 /* if we can retry, do so with the callbacks armed */
3516 if (!io_rw_should_retry(req)) {
3517 kiocb->ki_flags &= ~IOCB_WAITQ;
3518 return -EAGAIN;
3519 }
3520
3521 /*
3522 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3523 * get -EIOCBQUEUED, then we'll get a notification when the desired
3524 * page gets unlocked. We can also get a partial read here, and if we
3525 * do, then just retry at the new offset.
3526 */
3527 ret = io_iter_do_read(req, iter);
3528 if (ret == -EIOCBQUEUED) {
3529 ret = 0;
3530 goto out_free;
3531 } else if (ret > 0 && ret < io_size) {
3532 /* we got some bytes, but not all. retry. */
3533 goto retry;
3534 }
3535 done:
3536 kiocb_done(kiocb, ret, cs);
3537 ret = 0;
3538 out_free:
3539 /* it's reportedly faster than delegating the null check to kfree() */
3540 if (iovec)
3541 kfree(iovec);
3542 return ret;
3543 }
3544
3545 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3546 {
3547 ssize_t ret;
3548
3549 ret = io_prep_rw(req, sqe);
3550 if (ret)
3551 return ret;
3552
3553 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3554 return -EBADF;
3555
3556 /* either don't need iovec imported or already have it */
3557 if (!req->async_data)
3558 return 0;
3559 return io_rw_prep_async(req, WRITE);
3560 }
3561
3562 static int io_write(struct io_kiocb *req, bool force_nonblock,
3563 struct io_comp_state *cs)
3564 {
3565 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3566 struct kiocb *kiocb = &req->rw.kiocb;
3567 struct iov_iter __iter, *iter = &__iter;
3568 struct io_async_rw *rw = req->async_data;
3569 ssize_t ret, ret2, io_size;
3570
3571 if (rw) {
3572 iter = &rw->iter;
3573 iovec = NULL;
3574 } else {
3575 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3576 if (ret < 0)
3577 return ret;
3578 }
3579 io_size = iov_iter_count(iter);
3580 req->result = io_size;
3581
3582 /* Ensure we clear previously set non-block flag */
3583 if (!force_nonblock)
3584 kiocb->ki_flags &= ~IOCB_NOWAIT;
3585 else
3586 kiocb->ki_flags |= IOCB_NOWAIT;
3587
3588 /* If the file doesn't support async, just async punt */
3589 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3590 goto copy_iov;
3591
3592 /* file path doesn't support NOWAIT for non-direct_IO */
3593 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3594 (req->flags & REQ_F_ISREG))
3595 goto copy_iov;
3596
3597 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3598 if (unlikely(ret))
3599 goto out_free;
3600
3601 /*
3602 * Open-code file_start_write here to grab freeze protection,
3603 * which will be released by another thread in
3604 * io_complete_rw(). Fool lockdep by telling it the lock got
3605 * released so that it doesn't complain about the held lock when
3606 * we return to userspace.
3607 */
3608 if (req->flags & REQ_F_ISREG) {
3609 sb_start_write(file_inode(req->file)->i_sb);
3610 __sb_writers_release(file_inode(req->file)->i_sb,
3611 SB_FREEZE_WRITE);
3612 }
3613 kiocb->ki_flags |= IOCB_WRITE;
3614
3615 if (req->file->f_op->write_iter)
3616 ret2 = call_write_iter(req->file, kiocb, iter);
3617 else if (req->file->f_op->write)
3618 ret2 = loop_rw_iter(WRITE, req, iter);
3619 else
3620 ret2 = -EINVAL;
3621
3622 /*
3623 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3624 * retry them without IOCB_NOWAIT.
3625 */
3626 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3627 ret2 = -EAGAIN;
3628 /* no retry on NONBLOCK marked file */
3629 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3630 goto done;
3631 if (!force_nonblock || ret2 != -EAGAIN) {
3632 /* IOPOLL retry should happen for io-wq threads */
3633 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3634 goto copy_iov;
3635 done:
3636 kiocb_done(kiocb, ret2, cs);
3637 } else {
3638 copy_iov:
3639 /* some cases will consume bytes even on error returns */
3640 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3641 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3642 if (!ret)
3643 return -EAGAIN;
3644 }
3645 out_free:
3646 /* it's reportedly faster than delegating the null check to kfree() */
3647 if (iovec)
3648 kfree(iovec);
3649 return ret;
3650 }
3651
3652 static int io_renameat_prep(struct io_kiocb *req,
3653 const struct io_uring_sqe *sqe)
3654 {
3655 struct io_rename *ren = &req->rename;
3656 const char __user *oldf, *newf;
3657
3658 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3659 return -EBADF;
3660
3661 ren->old_dfd = READ_ONCE(sqe->fd);
3662 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3663 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3664 ren->new_dfd = READ_ONCE(sqe->len);
3665 ren->flags = READ_ONCE(sqe->rename_flags);
3666
3667 ren->oldpath = getname(oldf);
3668 if (IS_ERR(ren->oldpath))
3669 return PTR_ERR(ren->oldpath);
3670
3671 ren->newpath = getname(newf);
3672 if (IS_ERR(ren->newpath)) {
3673 putname(ren->oldpath);
3674 return PTR_ERR(ren->newpath);
3675 }
3676
3677 req->flags |= REQ_F_NEED_CLEANUP;
3678 return 0;
3679 }
3680
3681 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3682 {
3683 struct io_rename *ren = &req->rename;
3684 int ret;
3685
3686 if (force_nonblock)
3687 return -EAGAIN;
3688
3689 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3690 ren->newpath, ren->flags);
3691
3692 req->flags &= ~REQ_F_NEED_CLEANUP;
3693 if (ret < 0)
3694 req_set_fail_links(req);
3695 io_req_complete(req, ret);
3696 return 0;
3697 }
3698
3699 static int io_unlinkat_prep(struct io_kiocb *req,
3700 const struct io_uring_sqe *sqe)
3701 {
3702 struct io_unlink *un = &req->unlink;
3703 const char __user *fname;
3704
3705 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3706 return -EBADF;
3707
3708 un->dfd = READ_ONCE(sqe->fd);
3709
3710 un->flags = READ_ONCE(sqe->unlink_flags);
3711 if (un->flags & ~AT_REMOVEDIR)
3712 return -EINVAL;
3713
3714 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3715 un->filename = getname(fname);
3716 if (IS_ERR(un->filename))
3717 return PTR_ERR(un->filename);
3718
3719 req->flags |= REQ_F_NEED_CLEANUP;
3720 return 0;
3721 }
3722
3723 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3724 {
3725 struct io_unlink *un = &req->unlink;
3726 int ret;
3727
3728 if (force_nonblock)
3729 return -EAGAIN;
3730
3731 if (un->flags & AT_REMOVEDIR)
3732 ret = do_rmdir(un->dfd, un->filename);
3733 else
3734 ret = do_unlinkat(un->dfd, un->filename);
3735
3736 req->flags &= ~REQ_F_NEED_CLEANUP;
3737 if (ret < 0)
3738 req_set_fail_links(req);
3739 io_req_complete(req, ret);
3740 return 0;
3741 }
3742
3743 static int io_shutdown_prep(struct io_kiocb *req,
3744 const struct io_uring_sqe *sqe)
3745 {
3746 #if defined(CONFIG_NET)
3747 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3748 return -EINVAL;
3749 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3750 sqe->buf_index)
3751 return -EINVAL;
3752
3753 req->shutdown.how = READ_ONCE(sqe->len);
3754 return 0;
3755 #else
3756 return -EOPNOTSUPP;
3757 #endif
3758 }
3759
3760 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3761 {
3762 #if defined(CONFIG_NET)
3763 struct socket *sock;
3764 int ret;
3765
3766 if (force_nonblock)
3767 return -EAGAIN;
3768
3769 sock = sock_from_file(req->file, &ret);
3770 if (unlikely(!sock))
3771 return ret;
3772
3773 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3774 io_req_complete(req, ret);
3775 return 0;
3776 #else
3777 return -EOPNOTSUPP;
3778 #endif
3779 }
3780
3781 static int __io_splice_prep(struct io_kiocb *req,
3782 const struct io_uring_sqe *sqe)
3783 {
3784 struct io_splice* sp = &req->splice;
3785 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3786
3787 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3788 return -EINVAL;
3789
3790 sp->file_in = NULL;
3791 sp->len = READ_ONCE(sqe->len);
3792 sp->flags = READ_ONCE(sqe->splice_flags);
3793
3794 if (unlikely(sp->flags & ~valid_flags))
3795 return -EINVAL;
3796
3797 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3798 (sp->flags & SPLICE_F_FD_IN_FIXED));
3799 if (!sp->file_in)
3800 return -EBADF;
3801 req->flags |= REQ_F_NEED_CLEANUP;
3802
3803 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3804 /*
3805 * Splice operation will be punted aync, and here need to
3806 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3807 */
3808 io_req_init_async(req);
3809 req->work.flags |= IO_WQ_WORK_UNBOUND;
3810 }
3811
3812 return 0;
3813 }
3814
3815 static int io_tee_prep(struct io_kiocb *req,
3816 const struct io_uring_sqe *sqe)
3817 {
3818 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3819 return -EINVAL;
3820 return __io_splice_prep(req, sqe);
3821 }
3822
3823 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3824 {
3825 struct io_splice *sp = &req->splice;
3826 struct file *in = sp->file_in;
3827 struct file *out = sp->file_out;
3828 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3829 long ret = 0;
3830
3831 if (force_nonblock)
3832 return -EAGAIN;
3833 if (sp->len)
3834 ret = do_tee(in, out, sp->len, flags);
3835
3836 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3837 req->flags &= ~REQ_F_NEED_CLEANUP;
3838
3839 if (ret != sp->len)
3840 req_set_fail_links(req);
3841 io_req_complete(req, ret);
3842 return 0;
3843 }
3844
3845 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3846 {
3847 struct io_splice* sp = &req->splice;
3848
3849 sp->off_in = READ_ONCE(sqe->splice_off_in);
3850 sp->off_out = READ_ONCE(sqe->off);
3851 return __io_splice_prep(req, sqe);
3852 }
3853
3854 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3855 {
3856 struct io_splice *sp = &req->splice;
3857 struct file *in = sp->file_in;
3858 struct file *out = sp->file_out;
3859 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3860 loff_t *poff_in, *poff_out;
3861 long ret = 0;
3862
3863 if (force_nonblock)
3864 return -EAGAIN;
3865
3866 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3867 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3868
3869 if (sp->len)
3870 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3871
3872 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3873 req->flags &= ~REQ_F_NEED_CLEANUP;
3874
3875 if (ret != sp->len)
3876 req_set_fail_links(req);
3877 io_req_complete(req, ret);
3878 return 0;
3879 }
3880
3881 /*
3882 * IORING_OP_NOP just posts a completion event, nothing else.
3883 */
3884 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3885 {
3886 struct io_ring_ctx *ctx = req->ctx;
3887
3888 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3889 return -EINVAL;
3890
3891 __io_req_complete(req, 0, 0, cs);
3892 return 0;
3893 }
3894
3895 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3896 {
3897 struct io_ring_ctx *ctx = req->ctx;
3898
3899 if (!req->file)
3900 return -EBADF;
3901
3902 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3903 return -EINVAL;
3904 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3905 return -EINVAL;
3906
3907 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3908 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3909 return -EINVAL;
3910
3911 req->sync.off = READ_ONCE(sqe->off);
3912 req->sync.len = READ_ONCE(sqe->len);
3913 return 0;
3914 }
3915
3916 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3917 {
3918 loff_t end = req->sync.off + req->sync.len;
3919 int ret;
3920
3921 /* fsync always requires a blocking context */
3922 if (force_nonblock)
3923 return -EAGAIN;
3924
3925 ret = vfs_fsync_range(req->file, req->sync.off,
3926 end > 0 ? end : LLONG_MAX,
3927 req->sync.flags & IORING_FSYNC_DATASYNC);
3928 if (ret < 0)
3929 req_set_fail_links(req);
3930 io_req_complete(req, ret);
3931 return 0;
3932 }
3933
3934 static int io_fallocate_prep(struct io_kiocb *req,
3935 const struct io_uring_sqe *sqe)
3936 {
3937 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3938 return -EINVAL;
3939 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3940 return -EINVAL;
3941
3942 req->sync.off = READ_ONCE(sqe->off);
3943 req->sync.len = READ_ONCE(sqe->addr);
3944 req->sync.mode = READ_ONCE(sqe->len);
3945 return 0;
3946 }
3947
3948 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3949 {
3950 int ret;
3951
3952 /* fallocate always requiring blocking context */
3953 if (force_nonblock)
3954 return -EAGAIN;
3955 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3956 req->sync.len);
3957 if (ret < 0)
3958 req_set_fail_links(req);
3959 io_req_complete(req, ret);
3960 return 0;
3961 }
3962
3963 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3964 {
3965 const char __user *fname;
3966 int ret;
3967
3968 if (unlikely(sqe->ioprio || sqe->buf_index))
3969 return -EINVAL;
3970 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3971 return -EBADF;
3972
3973 /* open.how should be already initialised */
3974 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3975 req->open.how.flags |= O_LARGEFILE;
3976
3977 req->open.dfd = READ_ONCE(sqe->fd);
3978 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3979 req->open.filename = getname(fname);
3980 if (IS_ERR(req->open.filename)) {
3981 ret = PTR_ERR(req->open.filename);
3982 req->open.filename = NULL;
3983 return ret;
3984 }
3985 req->open.nofile = rlimit(RLIMIT_NOFILE);
3986 req->open.ignore_nonblock = false;
3987 req->flags |= REQ_F_NEED_CLEANUP;
3988 return 0;
3989 }
3990
3991 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3992 {
3993 u64 flags, mode;
3994
3995 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3996 return -EINVAL;
3997 mode = READ_ONCE(sqe->len);
3998 flags = READ_ONCE(sqe->open_flags);
3999 req->open.how = build_open_how(flags, mode);
4000 return __io_openat_prep(req, sqe);
4001 }
4002
4003 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4004 {
4005 struct open_how __user *how;
4006 size_t len;
4007 int ret;
4008
4009 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4010 return -EINVAL;
4011 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4012 len = READ_ONCE(sqe->len);
4013 if (len < OPEN_HOW_SIZE_VER0)
4014 return -EINVAL;
4015
4016 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4017 len);
4018 if (ret)
4019 return ret;
4020
4021 return __io_openat_prep(req, sqe);
4022 }
4023
4024 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4025 {
4026 struct open_flags op;
4027 struct file *file;
4028 int ret;
4029
4030 if (force_nonblock && !req->open.ignore_nonblock)
4031 return -EAGAIN;
4032
4033 ret = build_open_flags(&req->open.how, &op);
4034 if (ret)
4035 goto err;
4036
4037 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4038 if (ret < 0)
4039 goto err;
4040
4041 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4042 if (IS_ERR(file)) {
4043 put_unused_fd(ret);
4044 ret = PTR_ERR(file);
4045 /*
4046 * A work-around to ensure that /proc/self works that way
4047 * that it should - if we get -EOPNOTSUPP back, then assume
4048 * that proc_self_get_link() failed us because we're in async
4049 * context. We should be safe to retry this from the task
4050 * itself with force_nonblock == false set, as it should not
4051 * block on lookup. Would be nice to know this upfront and
4052 * avoid the async dance, but doesn't seem feasible.
4053 */
4054 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4055 req->open.ignore_nonblock = true;
4056 refcount_inc(&req->refs);
4057 io_req_task_queue(req);
4058 return 0;
4059 }
4060 } else {
4061 fsnotify_open(file);
4062 fd_install(ret, file);
4063 }
4064 err:
4065 putname(req->open.filename);
4066 req->flags &= ~REQ_F_NEED_CLEANUP;
4067 if (ret < 0)
4068 req_set_fail_links(req);
4069 io_req_complete(req, ret);
4070 return 0;
4071 }
4072
4073 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4074 {
4075 return io_openat2(req, force_nonblock);
4076 }
4077
4078 static int io_remove_buffers_prep(struct io_kiocb *req,
4079 const struct io_uring_sqe *sqe)
4080 {
4081 struct io_provide_buf *p = &req->pbuf;
4082 u64 tmp;
4083
4084 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4085 return -EINVAL;
4086
4087 tmp = READ_ONCE(sqe->fd);
4088 if (!tmp || tmp > USHRT_MAX)
4089 return -EINVAL;
4090
4091 memset(p, 0, sizeof(*p));
4092 p->nbufs = tmp;
4093 p->bgid = READ_ONCE(sqe->buf_group);
4094 return 0;
4095 }
4096
4097 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4098 int bgid, unsigned nbufs)
4099 {
4100 unsigned i = 0;
4101
4102 /* shouldn't happen */
4103 if (!nbufs)
4104 return 0;
4105
4106 /* the head kbuf is the list itself */
4107 while (!list_empty(&buf->list)) {
4108 struct io_buffer *nxt;
4109
4110 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4111 list_del(&nxt->list);
4112 kfree(nxt);
4113 if (++i == nbufs)
4114 return i;
4115 }
4116 i++;
4117 kfree(buf);
4118 idr_remove(&ctx->io_buffer_idr, bgid);
4119
4120 return i;
4121 }
4122
4123 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4124 struct io_comp_state *cs)
4125 {
4126 struct io_provide_buf *p = &req->pbuf;
4127 struct io_ring_ctx *ctx = req->ctx;
4128 struct io_buffer *head;
4129 int ret = 0;
4130
4131 io_ring_submit_lock(ctx, !force_nonblock);
4132
4133 lockdep_assert_held(&ctx->uring_lock);
4134
4135 ret = -ENOENT;
4136 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4137 if (head)
4138 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4139
4140 io_ring_submit_lock(ctx, !force_nonblock);
4141 if (ret < 0)
4142 req_set_fail_links(req);
4143 __io_req_complete(req, ret, 0, cs);
4144 return 0;
4145 }
4146
4147 static int io_provide_buffers_prep(struct io_kiocb *req,
4148 const struct io_uring_sqe *sqe)
4149 {
4150 struct io_provide_buf *p = &req->pbuf;
4151 u64 tmp;
4152
4153 if (sqe->ioprio || sqe->rw_flags)
4154 return -EINVAL;
4155
4156 tmp = READ_ONCE(sqe->fd);
4157 if (!tmp || tmp > USHRT_MAX)
4158 return -E2BIG;
4159 p->nbufs = tmp;
4160 p->addr = READ_ONCE(sqe->addr);
4161 p->len = READ_ONCE(sqe->len);
4162
4163 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4164 return -EFAULT;
4165
4166 p->bgid = READ_ONCE(sqe->buf_group);
4167 tmp = READ_ONCE(sqe->off);
4168 if (tmp > USHRT_MAX)
4169 return -E2BIG;
4170 p->bid = tmp;
4171 return 0;
4172 }
4173
4174 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4175 {
4176 struct io_buffer *buf;
4177 u64 addr = pbuf->addr;
4178 int i, bid = pbuf->bid;
4179
4180 for (i = 0; i < pbuf->nbufs; i++) {
4181 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4182 if (!buf)
4183 break;
4184
4185 buf->addr = addr;
4186 buf->len = pbuf->len;
4187 buf->bid = bid;
4188 addr += pbuf->len;
4189 bid++;
4190 if (!*head) {
4191 INIT_LIST_HEAD(&buf->list);
4192 *head = buf;
4193 } else {
4194 list_add_tail(&buf->list, &(*head)->list);
4195 }
4196 }
4197
4198 return i ? i : -ENOMEM;
4199 }
4200
4201 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4202 struct io_comp_state *cs)
4203 {
4204 struct io_provide_buf *p = &req->pbuf;
4205 struct io_ring_ctx *ctx = req->ctx;
4206 struct io_buffer *head, *list;
4207 int ret = 0;
4208
4209 io_ring_submit_lock(ctx, !force_nonblock);
4210
4211 lockdep_assert_held(&ctx->uring_lock);
4212
4213 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4214
4215 ret = io_add_buffers(p, &head);
4216 if (ret < 0)
4217 goto out;
4218
4219 if (!list) {
4220 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4221 GFP_KERNEL);
4222 if (ret < 0) {
4223 __io_remove_buffers(ctx, head, p->bgid, -1U);
4224 goto out;
4225 }
4226 }
4227 out:
4228 io_ring_submit_unlock(ctx, !force_nonblock);
4229 if (ret < 0)
4230 req_set_fail_links(req);
4231 __io_req_complete(req, ret, 0, cs);
4232 return 0;
4233 }
4234
4235 static int io_epoll_ctl_prep(struct io_kiocb *req,
4236 const struct io_uring_sqe *sqe)
4237 {
4238 #if defined(CONFIG_EPOLL)
4239 if (sqe->ioprio || sqe->buf_index)
4240 return -EINVAL;
4241 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4242 return -EINVAL;
4243
4244 req->epoll.epfd = READ_ONCE(sqe->fd);
4245 req->epoll.op = READ_ONCE(sqe->len);
4246 req->epoll.fd = READ_ONCE(sqe->off);
4247
4248 if (ep_op_has_event(req->epoll.op)) {
4249 struct epoll_event __user *ev;
4250
4251 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4252 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4253 return -EFAULT;
4254 }
4255
4256 return 0;
4257 #else
4258 return -EOPNOTSUPP;
4259 #endif
4260 }
4261
4262 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4263 struct io_comp_state *cs)
4264 {
4265 #if defined(CONFIG_EPOLL)
4266 struct io_epoll *ie = &req->epoll;
4267 int ret;
4268
4269 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4270 if (force_nonblock && ret == -EAGAIN)
4271 return -EAGAIN;
4272
4273 if (ret < 0)
4274 req_set_fail_links(req);
4275 __io_req_complete(req, ret, 0, cs);
4276 return 0;
4277 #else
4278 return -EOPNOTSUPP;
4279 #endif
4280 }
4281
4282 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4283 {
4284 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4285 if (sqe->ioprio || sqe->buf_index || sqe->off)
4286 return -EINVAL;
4287 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4288 return -EINVAL;
4289
4290 req->madvise.addr = READ_ONCE(sqe->addr);
4291 req->madvise.len = READ_ONCE(sqe->len);
4292 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4293 return 0;
4294 #else
4295 return -EOPNOTSUPP;
4296 #endif
4297 }
4298
4299 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4300 {
4301 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4302 struct io_madvise *ma = &req->madvise;
4303 int ret;
4304
4305 if (force_nonblock)
4306 return -EAGAIN;
4307
4308 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4309 if (ret < 0)
4310 req_set_fail_links(req);
4311 io_req_complete(req, ret);
4312 return 0;
4313 #else
4314 return -EOPNOTSUPP;
4315 #endif
4316 }
4317
4318 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4319 {
4320 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4321 return -EINVAL;
4322 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4323 return -EINVAL;
4324
4325 req->fadvise.offset = READ_ONCE(sqe->off);
4326 req->fadvise.len = READ_ONCE(sqe->len);
4327 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4328 return 0;
4329 }
4330
4331 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4332 {
4333 struct io_fadvise *fa = &req->fadvise;
4334 int ret;
4335
4336 if (force_nonblock) {
4337 switch (fa->advice) {
4338 case POSIX_FADV_NORMAL:
4339 case POSIX_FADV_RANDOM:
4340 case POSIX_FADV_SEQUENTIAL:
4341 break;
4342 default:
4343 return -EAGAIN;
4344 }
4345 }
4346
4347 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4348 if (ret < 0)
4349 req_set_fail_links(req);
4350 io_req_complete(req, ret);
4351 return 0;
4352 }
4353
4354 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4355 {
4356 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4357 return -EINVAL;
4358 if (sqe->ioprio || sqe->buf_index)
4359 return -EINVAL;
4360 if (req->flags & REQ_F_FIXED_FILE)
4361 return -EBADF;
4362
4363 req->statx.dfd = READ_ONCE(sqe->fd);
4364 req->statx.mask = READ_ONCE(sqe->len);
4365 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4366 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4367 req->statx.flags = READ_ONCE(sqe->statx_flags);
4368
4369 return 0;
4370 }
4371
4372 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4373 {
4374 struct io_statx *ctx = &req->statx;
4375 int ret;
4376
4377 if (force_nonblock) {
4378 /* only need file table for an actual valid fd */
4379 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4380 req->flags |= REQ_F_NO_FILE_TABLE;
4381 return -EAGAIN;
4382 }
4383
4384 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4385 ctx->buffer);
4386
4387 if (ret < 0)
4388 req_set_fail_links(req);
4389 io_req_complete(req, ret);
4390 return 0;
4391 }
4392
4393 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4394 {
4395 /*
4396 * If we queue this for async, it must not be cancellable. That would
4397 * leave the 'file' in an undeterminate state, and here need to modify
4398 * io_wq_work.flags, so initialize io_wq_work firstly.
4399 */
4400 io_req_init_async(req);
4401 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4402
4403 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4404 return -EINVAL;
4405 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4406 sqe->rw_flags || sqe->buf_index)
4407 return -EINVAL;
4408 if (req->flags & REQ_F_FIXED_FILE)
4409 return -EBADF;
4410
4411 req->close.fd = READ_ONCE(sqe->fd);
4412 if ((req->file && req->file->f_op == &io_uring_fops))
4413 return -EBADF;
4414
4415 req->close.put_file = NULL;
4416 return 0;
4417 }
4418
4419 static int io_close(struct io_kiocb *req, bool force_nonblock,
4420 struct io_comp_state *cs)
4421 {
4422 struct io_close *close = &req->close;
4423 int ret;
4424
4425 /* might be already done during nonblock submission */
4426 if (!close->put_file) {
4427 ret = __close_fd_get_file(close->fd, &close->put_file);
4428 if (ret < 0)
4429 return (ret == -ENOENT) ? -EBADF : ret;
4430 }
4431
4432 /* if the file has a flush method, be safe and punt to async */
4433 if (close->put_file->f_op->flush && force_nonblock) {
4434 /* was never set, but play safe */
4435 req->flags &= ~REQ_F_NOWAIT;
4436 /* avoid grabbing files - we don't need the files */
4437 req->flags |= REQ_F_NO_FILE_TABLE;
4438 return -EAGAIN;
4439 }
4440
4441 /* No ->flush() or already async, safely close from here */
4442 ret = filp_close(close->put_file, req->work.identity->files);
4443 if (ret < 0)
4444 req_set_fail_links(req);
4445 fput(close->put_file);
4446 close->put_file = NULL;
4447 __io_req_complete(req, ret, 0, cs);
4448 return 0;
4449 }
4450
4451 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4452 {
4453 struct io_ring_ctx *ctx = req->ctx;
4454
4455 if (!req->file)
4456 return -EBADF;
4457
4458 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4459 return -EINVAL;
4460 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4461 return -EINVAL;
4462
4463 req->sync.off = READ_ONCE(sqe->off);
4464 req->sync.len = READ_ONCE(sqe->len);
4465 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4466 return 0;
4467 }
4468
4469 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4470 {
4471 int ret;
4472
4473 /* sync_file_range always requires a blocking context */
4474 if (force_nonblock)
4475 return -EAGAIN;
4476
4477 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4478 req->sync.flags);
4479 if (ret < 0)
4480 req_set_fail_links(req);
4481 io_req_complete(req, ret);
4482 return 0;
4483 }
4484
4485 #if defined(CONFIG_NET)
4486 static int io_setup_async_msg(struct io_kiocb *req,
4487 struct io_async_msghdr *kmsg)
4488 {
4489 struct io_async_msghdr *async_msg = req->async_data;
4490
4491 if (async_msg)
4492 return -EAGAIN;
4493 if (io_alloc_async_data(req)) {
4494 if (kmsg->iov != kmsg->fast_iov)
4495 kfree(kmsg->iov);
4496 return -ENOMEM;
4497 }
4498 async_msg = req->async_data;
4499 req->flags |= REQ_F_NEED_CLEANUP;
4500 memcpy(async_msg, kmsg, sizeof(*kmsg));
4501 return -EAGAIN;
4502 }
4503
4504 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4505 struct io_async_msghdr *iomsg)
4506 {
4507 iomsg->iov = iomsg->fast_iov;
4508 iomsg->msg.msg_name = &iomsg->addr;
4509 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4510 req->sr_msg.msg_flags, &iomsg->iov);
4511 }
4512
4513 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4514 {
4515 struct io_async_msghdr *async_msg = req->async_data;
4516 struct io_sr_msg *sr = &req->sr_msg;
4517 int ret;
4518
4519 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4520 return -EINVAL;
4521
4522 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4523 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4524 sr->len = READ_ONCE(sqe->len);
4525
4526 #ifdef CONFIG_COMPAT
4527 if (req->ctx->compat)
4528 sr->msg_flags |= MSG_CMSG_COMPAT;
4529 #endif
4530
4531 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4532 return 0;
4533 ret = io_sendmsg_copy_hdr(req, async_msg);
4534 if (!ret)
4535 req->flags |= REQ_F_NEED_CLEANUP;
4536 return ret;
4537 }
4538
4539 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4540 struct io_comp_state *cs)
4541 {
4542 struct io_async_msghdr iomsg, *kmsg;
4543 struct socket *sock;
4544 unsigned flags;
4545 int ret;
4546
4547 sock = sock_from_file(req->file, &ret);
4548 if (unlikely(!sock))
4549 return ret;
4550
4551 if (req->async_data) {
4552 kmsg = req->async_data;
4553 kmsg->msg.msg_name = &kmsg->addr;
4554 /* if iov is set, it's allocated already */
4555 if (!kmsg->iov)
4556 kmsg->iov = kmsg->fast_iov;
4557 kmsg->msg.msg_iter.iov = kmsg->iov;
4558 } else {
4559 ret = io_sendmsg_copy_hdr(req, &iomsg);
4560 if (ret)
4561 return ret;
4562 kmsg = &iomsg;
4563 }
4564
4565 flags = req->sr_msg.msg_flags;
4566 if (flags & MSG_DONTWAIT)
4567 req->flags |= REQ_F_NOWAIT;
4568 else if (force_nonblock)
4569 flags |= MSG_DONTWAIT;
4570
4571 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4572 if (force_nonblock && ret == -EAGAIN)
4573 return io_setup_async_msg(req, kmsg);
4574 if (ret == -ERESTARTSYS)
4575 ret = -EINTR;
4576
4577 if (kmsg->iov != kmsg->fast_iov)
4578 kfree(kmsg->iov);
4579 req->flags &= ~REQ_F_NEED_CLEANUP;
4580 if (ret < 0)
4581 req_set_fail_links(req);
4582 __io_req_complete(req, ret, 0, cs);
4583 return 0;
4584 }
4585
4586 static int io_send(struct io_kiocb *req, bool force_nonblock,
4587 struct io_comp_state *cs)
4588 {
4589 struct io_sr_msg *sr = &req->sr_msg;
4590 struct msghdr msg;
4591 struct iovec iov;
4592 struct socket *sock;
4593 unsigned flags;
4594 int ret;
4595
4596 sock = sock_from_file(req->file, &ret);
4597 if (unlikely(!sock))
4598 return ret;
4599
4600 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4601 if (unlikely(ret))
4602 return ret;
4603
4604 msg.msg_name = NULL;
4605 msg.msg_control = NULL;
4606 msg.msg_controllen = 0;
4607 msg.msg_namelen = 0;
4608
4609 flags = req->sr_msg.msg_flags;
4610 if (flags & MSG_DONTWAIT)
4611 req->flags |= REQ_F_NOWAIT;
4612 else if (force_nonblock)
4613 flags |= MSG_DONTWAIT;
4614
4615 msg.msg_flags = flags;
4616 ret = sock_sendmsg(sock, &msg);
4617 if (force_nonblock && ret == -EAGAIN)
4618 return -EAGAIN;
4619 if (ret == -ERESTARTSYS)
4620 ret = -EINTR;
4621
4622 if (ret < 0)
4623 req_set_fail_links(req);
4624 __io_req_complete(req, ret, 0, cs);
4625 return 0;
4626 }
4627
4628 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4629 struct io_async_msghdr *iomsg)
4630 {
4631 struct io_sr_msg *sr = &req->sr_msg;
4632 struct iovec __user *uiov;
4633 size_t iov_len;
4634 int ret;
4635
4636 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4637 &iomsg->uaddr, &uiov, &iov_len);
4638 if (ret)
4639 return ret;
4640
4641 if (req->flags & REQ_F_BUFFER_SELECT) {
4642 if (iov_len > 1)
4643 return -EINVAL;
4644 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4645 return -EFAULT;
4646 sr->len = iomsg->iov[0].iov_len;
4647 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4648 sr->len);
4649 iomsg->iov = NULL;
4650 } else {
4651 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4652 &iomsg->iov, &iomsg->msg.msg_iter,
4653 false);
4654 if (ret > 0)
4655 ret = 0;
4656 }
4657
4658 return ret;
4659 }
4660
4661 #ifdef CONFIG_COMPAT
4662 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4663 struct io_async_msghdr *iomsg)
4664 {
4665 struct compat_msghdr __user *msg_compat;
4666 struct io_sr_msg *sr = &req->sr_msg;
4667 struct compat_iovec __user *uiov;
4668 compat_uptr_t ptr;
4669 compat_size_t len;
4670 int ret;
4671
4672 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4673 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4674 &ptr, &len);
4675 if (ret)
4676 return ret;
4677
4678 uiov = compat_ptr(ptr);
4679 if (req->flags & REQ_F_BUFFER_SELECT) {
4680 compat_ssize_t clen;
4681
4682 if (len > 1)
4683 return -EINVAL;
4684 if (!access_ok(uiov, sizeof(*uiov)))
4685 return -EFAULT;
4686 if (__get_user(clen, &uiov->iov_len))
4687 return -EFAULT;
4688 if (clen < 0)
4689 return -EINVAL;
4690 sr->len = iomsg->iov[0].iov_len;
4691 iomsg->iov = NULL;
4692 } else {
4693 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4694 UIO_FASTIOV, &iomsg->iov,
4695 &iomsg->msg.msg_iter, true);
4696 if (ret < 0)
4697 return ret;
4698 }
4699
4700 return 0;
4701 }
4702 #endif
4703
4704 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4705 struct io_async_msghdr *iomsg)
4706 {
4707 iomsg->msg.msg_name = &iomsg->addr;
4708 iomsg->iov = iomsg->fast_iov;
4709
4710 #ifdef CONFIG_COMPAT
4711 if (req->ctx->compat)
4712 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4713 #endif
4714
4715 return __io_recvmsg_copy_hdr(req, iomsg);
4716 }
4717
4718 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4719 bool needs_lock)
4720 {
4721 struct io_sr_msg *sr = &req->sr_msg;
4722 struct io_buffer *kbuf;
4723
4724 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4725 if (IS_ERR(kbuf))
4726 return kbuf;
4727
4728 sr->kbuf = kbuf;
4729 req->flags |= REQ_F_BUFFER_SELECTED;
4730 return kbuf;
4731 }
4732
4733 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4734 {
4735 return io_put_kbuf(req, req->sr_msg.kbuf);
4736 }
4737
4738 static int io_recvmsg_prep(struct io_kiocb *req,
4739 const struct io_uring_sqe *sqe)
4740 {
4741 struct io_async_msghdr *async_msg = req->async_data;
4742 struct io_sr_msg *sr = &req->sr_msg;
4743 int ret;
4744
4745 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4746 return -EINVAL;
4747
4748 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4749 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4750 sr->len = READ_ONCE(sqe->len);
4751 sr->bgid = READ_ONCE(sqe->buf_group);
4752
4753 #ifdef CONFIG_COMPAT
4754 if (req->ctx->compat)
4755 sr->msg_flags |= MSG_CMSG_COMPAT;
4756 #endif
4757
4758 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4759 return 0;
4760 ret = io_recvmsg_copy_hdr(req, async_msg);
4761 if (!ret)
4762 req->flags |= REQ_F_NEED_CLEANUP;
4763 return ret;
4764 }
4765
4766 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4767 struct io_comp_state *cs)
4768 {
4769 struct io_async_msghdr iomsg, *kmsg;
4770 struct socket *sock;
4771 struct io_buffer *kbuf;
4772 unsigned flags;
4773 int ret, cflags = 0;
4774
4775 sock = sock_from_file(req->file, &ret);
4776 if (unlikely(!sock))
4777 return ret;
4778
4779 if (req->async_data) {
4780 kmsg = req->async_data;
4781 kmsg->msg.msg_name = &kmsg->addr;
4782 /* if iov is set, it's allocated already */
4783 if (!kmsg->iov)
4784 kmsg->iov = kmsg->fast_iov;
4785 kmsg->msg.msg_iter.iov = kmsg->iov;
4786 } else {
4787 ret = io_recvmsg_copy_hdr(req, &iomsg);
4788 if (ret)
4789 return ret;
4790 kmsg = &iomsg;
4791 }
4792
4793 if (req->flags & REQ_F_BUFFER_SELECT) {
4794 kbuf = io_recv_buffer_select(req, !force_nonblock);
4795 if (IS_ERR(kbuf))
4796 return PTR_ERR(kbuf);
4797 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4798 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4799 1, req->sr_msg.len);
4800 }
4801
4802 flags = req->sr_msg.msg_flags;
4803 if (flags & MSG_DONTWAIT)
4804 req->flags |= REQ_F_NOWAIT;
4805 else if (force_nonblock)
4806 flags |= MSG_DONTWAIT;
4807
4808 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4809 kmsg->uaddr, flags);
4810 if (force_nonblock && ret == -EAGAIN)
4811 return io_setup_async_msg(req, kmsg);
4812 if (ret == -ERESTARTSYS)
4813 ret = -EINTR;
4814
4815 if (req->flags & REQ_F_BUFFER_SELECTED)
4816 cflags = io_put_recv_kbuf(req);
4817 if (kmsg->iov != kmsg->fast_iov)
4818 kfree(kmsg->iov);
4819 req->flags &= ~REQ_F_NEED_CLEANUP;
4820 if (ret < 0)
4821 req_set_fail_links(req);
4822 __io_req_complete(req, ret, cflags, cs);
4823 return 0;
4824 }
4825
4826 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4827 struct io_comp_state *cs)
4828 {
4829 struct io_buffer *kbuf;
4830 struct io_sr_msg *sr = &req->sr_msg;
4831 struct msghdr msg;
4832 void __user *buf = sr->buf;
4833 struct socket *sock;
4834 struct iovec iov;
4835 unsigned flags;
4836 int ret, cflags = 0;
4837
4838 sock = sock_from_file(req->file, &ret);
4839 if (unlikely(!sock))
4840 return ret;
4841
4842 if (req->flags & REQ_F_BUFFER_SELECT) {
4843 kbuf = io_recv_buffer_select(req, !force_nonblock);
4844 if (IS_ERR(kbuf))
4845 return PTR_ERR(kbuf);
4846 buf = u64_to_user_ptr(kbuf->addr);
4847 }
4848
4849 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4850 if (unlikely(ret))
4851 goto out_free;
4852
4853 msg.msg_name = NULL;
4854 msg.msg_control = NULL;
4855 msg.msg_controllen = 0;
4856 msg.msg_namelen = 0;
4857 msg.msg_iocb = NULL;
4858 msg.msg_flags = 0;
4859
4860 flags = req->sr_msg.msg_flags;
4861 if (flags & MSG_DONTWAIT)
4862 req->flags |= REQ_F_NOWAIT;
4863 else if (force_nonblock)
4864 flags |= MSG_DONTWAIT;
4865
4866 ret = sock_recvmsg(sock, &msg, flags);
4867 if (force_nonblock && ret == -EAGAIN)
4868 return -EAGAIN;
4869 if (ret == -ERESTARTSYS)
4870 ret = -EINTR;
4871 out_free:
4872 if (req->flags & REQ_F_BUFFER_SELECTED)
4873 cflags = io_put_recv_kbuf(req);
4874 if (ret < 0)
4875 req_set_fail_links(req);
4876 __io_req_complete(req, ret, cflags, cs);
4877 return 0;
4878 }
4879
4880 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4881 {
4882 struct io_accept *accept = &req->accept;
4883
4884 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4885 return -EINVAL;
4886 if (sqe->ioprio || sqe->len || sqe->buf_index)
4887 return -EINVAL;
4888
4889 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4890 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4891 accept->flags = READ_ONCE(sqe->accept_flags);
4892 accept->nofile = rlimit(RLIMIT_NOFILE);
4893 return 0;
4894 }
4895
4896 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4897 struct io_comp_state *cs)
4898 {
4899 struct io_accept *accept = &req->accept;
4900 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4901 int ret;
4902
4903 if (req->file->f_flags & O_NONBLOCK)
4904 req->flags |= REQ_F_NOWAIT;
4905
4906 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4907 accept->addr_len, accept->flags,
4908 accept->nofile);
4909 if (ret == -EAGAIN && force_nonblock)
4910 return -EAGAIN;
4911 if (ret < 0) {
4912 if (ret == -ERESTARTSYS)
4913 ret = -EINTR;
4914 req_set_fail_links(req);
4915 }
4916 __io_req_complete(req, ret, 0, cs);
4917 return 0;
4918 }
4919
4920 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4921 {
4922 struct io_connect *conn = &req->connect;
4923 struct io_async_connect *io = req->async_data;
4924
4925 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4926 return -EINVAL;
4927 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4928 return -EINVAL;
4929
4930 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4931 conn->addr_len = READ_ONCE(sqe->addr2);
4932
4933 if (!io)
4934 return 0;
4935
4936 return move_addr_to_kernel(conn->addr, conn->addr_len,
4937 &io->address);
4938 }
4939
4940 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4941 struct io_comp_state *cs)
4942 {
4943 struct io_async_connect __io, *io;
4944 unsigned file_flags;
4945 int ret;
4946
4947 if (req->async_data) {
4948 io = req->async_data;
4949 } else {
4950 ret = move_addr_to_kernel(req->connect.addr,
4951 req->connect.addr_len,
4952 &__io.address);
4953 if (ret)
4954 goto out;
4955 io = &__io;
4956 }
4957
4958 file_flags = force_nonblock ? O_NONBLOCK : 0;
4959
4960 ret = __sys_connect_file(req->file, &io->address,
4961 req->connect.addr_len, file_flags);
4962 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4963 if (req->async_data)
4964 return -EAGAIN;
4965 if (io_alloc_async_data(req)) {
4966 ret = -ENOMEM;
4967 goto out;
4968 }
4969 io = req->async_data;
4970 memcpy(req->async_data, &__io, sizeof(__io));
4971 return -EAGAIN;
4972 }
4973 if (ret == -ERESTARTSYS)
4974 ret = -EINTR;
4975 out:
4976 if (ret < 0)
4977 req_set_fail_links(req);
4978 __io_req_complete(req, ret, 0, cs);
4979 return 0;
4980 }
4981 #else /* !CONFIG_NET */
4982 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4983 {
4984 return -EOPNOTSUPP;
4985 }
4986
4987 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4988 struct io_comp_state *cs)
4989 {
4990 return -EOPNOTSUPP;
4991 }
4992
4993 static int io_send(struct io_kiocb *req, bool force_nonblock,
4994 struct io_comp_state *cs)
4995 {
4996 return -EOPNOTSUPP;
4997 }
4998
4999 static int io_recvmsg_prep(struct io_kiocb *req,
5000 const struct io_uring_sqe *sqe)
5001 {
5002 return -EOPNOTSUPP;
5003 }
5004
5005 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5006 struct io_comp_state *cs)
5007 {
5008 return -EOPNOTSUPP;
5009 }
5010
5011 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5012 struct io_comp_state *cs)
5013 {
5014 return -EOPNOTSUPP;
5015 }
5016
5017 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5018 {
5019 return -EOPNOTSUPP;
5020 }
5021
5022 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5023 struct io_comp_state *cs)
5024 {
5025 return -EOPNOTSUPP;
5026 }
5027
5028 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5029 {
5030 return -EOPNOTSUPP;
5031 }
5032
5033 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5034 struct io_comp_state *cs)
5035 {
5036 return -EOPNOTSUPP;
5037 }
5038 #endif /* CONFIG_NET */
5039
5040 struct io_poll_table {
5041 struct poll_table_struct pt;
5042 struct io_kiocb *req;
5043 int error;
5044 };
5045
5046 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5047 __poll_t mask, task_work_func_t func)
5048 {
5049 bool twa_signal_ok;
5050 int ret;
5051
5052 /* for instances that support it check for an event match first: */
5053 if (mask && !(mask & poll->events))
5054 return 0;
5055
5056 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5057
5058 list_del_init(&poll->wait.entry);
5059
5060 req->result = mask;
5061 init_task_work(&req->task_work, func);
5062 percpu_ref_get(&req->ctx->refs);
5063
5064 /*
5065 * If we using the signalfd wait_queue_head for this wakeup, then
5066 * it's not safe to use TWA_SIGNAL as we could be recursing on the
5067 * tsk->sighand->siglock on doing the wakeup. Should not be needed
5068 * either, as the normal wakeup will suffice.
5069 */
5070 twa_signal_ok = (poll->head != &req->task->sighand->signalfd_wqh);
5071
5072 /*
5073 * If this fails, then the task is exiting. When a task exits, the
5074 * work gets canceled, so just cancel this request as well instead
5075 * of executing it. We can't safely execute it anyway, as we may not
5076 * have the needed state needed for it anyway.
5077 */
5078 ret = io_req_task_work_add(req, twa_signal_ok);
5079 if (unlikely(ret)) {
5080 struct task_struct *tsk;
5081
5082 WRITE_ONCE(poll->canceled, true);
5083 tsk = io_wq_get_task(req->ctx->io_wq);
5084 task_work_add(tsk, &req->task_work, TWA_NONE);
5085 wake_up_process(tsk);
5086 }
5087 return 1;
5088 }
5089
5090 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5091 __acquires(&req->ctx->completion_lock)
5092 {
5093 struct io_ring_ctx *ctx = req->ctx;
5094
5095 if (!req->result && !READ_ONCE(poll->canceled)) {
5096 struct poll_table_struct pt = { ._key = poll->events };
5097
5098 req->result = vfs_poll(req->file, &pt) & poll->events;
5099 }
5100
5101 spin_lock_irq(&ctx->completion_lock);
5102 if (!req->result && !READ_ONCE(poll->canceled)) {
5103 add_wait_queue(poll->head, &poll->wait);
5104 return true;
5105 }
5106
5107 return false;
5108 }
5109
5110 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5111 {
5112 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5113 if (req->opcode == IORING_OP_POLL_ADD)
5114 return req->async_data;
5115 return req->apoll->double_poll;
5116 }
5117
5118 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5119 {
5120 if (req->opcode == IORING_OP_POLL_ADD)
5121 return &req->poll;
5122 return &req->apoll->poll;
5123 }
5124
5125 static void io_poll_remove_double(struct io_kiocb *req)
5126 {
5127 struct io_poll_iocb *poll = io_poll_get_double(req);
5128
5129 lockdep_assert_held(&req->ctx->completion_lock);
5130
5131 if (poll && poll->head) {
5132 struct wait_queue_head *head = poll->head;
5133
5134 spin_lock(&head->lock);
5135 list_del_init(&poll->wait.entry);
5136 if (poll->wait.private)
5137 refcount_dec(&req->refs);
5138 poll->head = NULL;
5139 spin_unlock(&head->lock);
5140 }
5141 }
5142
5143 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5144 {
5145 struct io_ring_ctx *ctx = req->ctx;
5146
5147 io_poll_remove_double(req);
5148 req->poll.done = true;
5149 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5150 io_commit_cqring(ctx);
5151 }
5152
5153 static void io_poll_task_func(struct callback_head *cb)
5154 {
5155 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5156 struct io_ring_ctx *ctx = req->ctx;
5157 struct io_kiocb *nxt;
5158
5159 if (io_poll_rewait(req, &req->poll)) {
5160 spin_unlock_irq(&ctx->completion_lock);
5161 } else {
5162 hash_del(&req->hash_node);
5163 io_poll_complete(req, req->result, 0);
5164 spin_unlock_irq(&ctx->completion_lock);
5165
5166 nxt = io_put_req_find_next(req);
5167 io_cqring_ev_posted(ctx);
5168 if (nxt)
5169 __io_req_task_submit(nxt);
5170 }
5171
5172 percpu_ref_put(&ctx->refs);
5173 }
5174
5175 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5176 int sync, void *key)
5177 {
5178 struct io_kiocb *req = wait->private;
5179 struct io_poll_iocb *poll = io_poll_get_single(req);
5180 __poll_t mask = key_to_poll(key);
5181
5182 /* for instances that support it check for an event match first: */
5183 if (mask && !(mask & poll->events))
5184 return 0;
5185
5186 list_del_init(&wait->entry);
5187
5188 if (poll && poll->head) {
5189 bool done;
5190
5191 spin_lock(&poll->head->lock);
5192 done = list_empty(&poll->wait.entry);
5193 if (!done)
5194 list_del_init(&poll->wait.entry);
5195 /* make sure double remove sees this as being gone */
5196 wait->private = NULL;
5197 spin_unlock(&poll->head->lock);
5198 if (!done) {
5199 /* use wait func handler, so it matches the rq type */
5200 poll->wait.func(&poll->wait, mode, sync, key);
5201 }
5202 }
5203 refcount_dec(&req->refs);
5204 return 1;
5205 }
5206
5207 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5208 wait_queue_func_t wake_func)
5209 {
5210 poll->head = NULL;
5211 poll->done = false;
5212 poll->canceled = false;
5213 poll->events = events;
5214 INIT_LIST_HEAD(&poll->wait.entry);
5215 init_waitqueue_func_entry(&poll->wait, wake_func);
5216 }
5217
5218 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5219 struct wait_queue_head *head,
5220 struct io_poll_iocb **poll_ptr)
5221 {
5222 struct io_kiocb *req = pt->req;
5223
5224 /*
5225 * If poll->head is already set, it's because the file being polled
5226 * uses multiple waitqueues for poll handling (eg one for read, one
5227 * for write). Setup a separate io_poll_iocb if this happens.
5228 */
5229 if (unlikely(poll->head)) {
5230 struct io_poll_iocb *poll_one = poll;
5231
5232 /* already have a 2nd entry, fail a third attempt */
5233 if (*poll_ptr) {
5234 pt->error = -EINVAL;
5235 return;
5236 }
5237 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5238 if (!poll) {
5239 pt->error = -ENOMEM;
5240 return;
5241 }
5242 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5243 refcount_inc(&req->refs);
5244 poll->wait.private = req;
5245 *poll_ptr = poll;
5246 }
5247
5248 pt->error = 0;
5249 poll->head = head;
5250
5251 if (poll->events & EPOLLEXCLUSIVE)
5252 add_wait_queue_exclusive(head, &poll->wait);
5253 else
5254 add_wait_queue(head, &poll->wait);
5255 }
5256
5257 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5258 struct poll_table_struct *p)
5259 {
5260 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5261 struct async_poll *apoll = pt->req->apoll;
5262
5263 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5264 }
5265
5266 static void io_async_task_func(struct callback_head *cb)
5267 {
5268 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5269 struct async_poll *apoll = req->apoll;
5270 struct io_ring_ctx *ctx = req->ctx;
5271
5272 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5273
5274 if (io_poll_rewait(req, &apoll->poll)) {
5275 spin_unlock_irq(&ctx->completion_lock);
5276 percpu_ref_put(&ctx->refs);
5277 return;
5278 }
5279
5280 /* If req is still hashed, it cannot have been canceled. Don't check. */
5281 if (hash_hashed(&req->hash_node))
5282 hash_del(&req->hash_node);
5283
5284 io_poll_remove_double(req);
5285 spin_unlock_irq(&ctx->completion_lock);
5286
5287 if (!READ_ONCE(apoll->poll.canceled))
5288 __io_req_task_submit(req);
5289 else
5290 __io_req_task_cancel(req, -ECANCELED);
5291
5292 percpu_ref_put(&ctx->refs);
5293 kfree(apoll->double_poll);
5294 kfree(apoll);
5295 }
5296
5297 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5298 void *key)
5299 {
5300 struct io_kiocb *req = wait->private;
5301 struct io_poll_iocb *poll = &req->apoll->poll;
5302
5303 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5304 key_to_poll(key));
5305
5306 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5307 }
5308
5309 static void io_poll_req_insert(struct io_kiocb *req)
5310 {
5311 struct io_ring_ctx *ctx = req->ctx;
5312 struct hlist_head *list;
5313
5314 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5315 hlist_add_head(&req->hash_node, list);
5316 }
5317
5318 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5319 struct io_poll_iocb *poll,
5320 struct io_poll_table *ipt, __poll_t mask,
5321 wait_queue_func_t wake_func)
5322 __acquires(&ctx->completion_lock)
5323 {
5324 struct io_ring_ctx *ctx = req->ctx;
5325 bool cancel = false;
5326
5327 INIT_HLIST_NODE(&req->hash_node);
5328 io_init_poll_iocb(poll, mask, wake_func);
5329 poll->file = req->file;
5330 poll->wait.private = req;
5331
5332 ipt->pt._key = mask;
5333 ipt->req = req;
5334 ipt->error = -EINVAL;
5335
5336 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5337
5338 spin_lock_irq(&ctx->completion_lock);
5339 if (likely(poll->head)) {
5340 spin_lock(&poll->head->lock);
5341 if (unlikely(list_empty(&poll->wait.entry))) {
5342 if (ipt->error)
5343 cancel = true;
5344 ipt->error = 0;
5345 mask = 0;
5346 }
5347 if (mask || ipt->error)
5348 list_del_init(&poll->wait.entry);
5349 else if (cancel)
5350 WRITE_ONCE(poll->canceled, true);
5351 else if (!poll->done) /* actually waiting for an event */
5352 io_poll_req_insert(req);
5353 spin_unlock(&poll->head->lock);
5354 }
5355
5356 return mask;
5357 }
5358
5359 static bool io_arm_poll_handler(struct io_kiocb *req)
5360 {
5361 const struct io_op_def *def = &io_op_defs[req->opcode];
5362 struct io_ring_ctx *ctx = req->ctx;
5363 struct async_poll *apoll;
5364 struct io_poll_table ipt;
5365 __poll_t mask, ret;
5366 int rw;
5367
5368 if (!req->file || !file_can_poll(req->file))
5369 return false;
5370 if (req->flags & REQ_F_POLLED)
5371 return false;
5372 if (def->pollin)
5373 rw = READ;
5374 else if (def->pollout)
5375 rw = WRITE;
5376 else
5377 return false;
5378 /* if we can't nonblock try, then no point in arming a poll handler */
5379 if (!io_file_supports_async(req->file, rw))
5380 return false;
5381
5382 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5383 if (unlikely(!apoll))
5384 return false;
5385 apoll->double_poll = NULL;
5386
5387 req->flags |= REQ_F_POLLED;
5388 req->apoll = apoll;
5389
5390 mask = 0;
5391 if (def->pollin)
5392 mask |= POLLIN | POLLRDNORM;
5393 if (def->pollout)
5394 mask |= POLLOUT | POLLWRNORM;
5395
5396 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5397 if ((req->opcode == IORING_OP_RECVMSG) &&
5398 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5399 mask &= ~POLLIN;
5400
5401 mask |= POLLERR | POLLPRI;
5402
5403 ipt.pt._qproc = io_async_queue_proc;
5404
5405 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5406 io_async_wake);
5407 if (ret || ipt.error) {
5408 io_poll_remove_double(req);
5409 spin_unlock_irq(&ctx->completion_lock);
5410 kfree(apoll->double_poll);
5411 kfree(apoll);
5412 return false;
5413 }
5414 spin_unlock_irq(&ctx->completion_lock);
5415 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5416 apoll->poll.events);
5417 return true;
5418 }
5419
5420 static bool __io_poll_remove_one(struct io_kiocb *req,
5421 struct io_poll_iocb *poll)
5422 {
5423 bool do_complete = false;
5424
5425 spin_lock(&poll->head->lock);
5426 WRITE_ONCE(poll->canceled, true);
5427 if (!list_empty(&poll->wait.entry)) {
5428 list_del_init(&poll->wait.entry);
5429 do_complete = true;
5430 }
5431 spin_unlock(&poll->head->lock);
5432 hash_del(&req->hash_node);
5433 return do_complete;
5434 }
5435
5436 static bool io_poll_remove_one(struct io_kiocb *req)
5437 {
5438 bool do_complete;
5439
5440 io_poll_remove_double(req);
5441
5442 if (req->opcode == IORING_OP_POLL_ADD) {
5443 do_complete = __io_poll_remove_one(req, &req->poll);
5444 } else {
5445 struct async_poll *apoll = req->apoll;
5446
5447 /* non-poll requests have submit ref still */
5448 do_complete = __io_poll_remove_one(req, &apoll->poll);
5449 if (do_complete) {
5450 io_put_req(req);
5451 kfree(apoll->double_poll);
5452 kfree(apoll);
5453 }
5454 }
5455
5456 if (do_complete) {
5457 io_cqring_fill_event(req, -ECANCELED);
5458 io_commit_cqring(req->ctx);
5459 req_set_fail_links(req);
5460 io_put_req_deferred(req, 1);
5461 }
5462
5463 return do_complete;
5464 }
5465
5466 /*
5467 * Returns true if we found and killed one or more poll requests
5468 */
5469 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5470 struct files_struct *files)
5471 {
5472 struct hlist_node *tmp;
5473 struct io_kiocb *req;
5474 int posted = 0, i;
5475
5476 spin_lock_irq(&ctx->completion_lock);
5477 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5478 struct hlist_head *list;
5479
5480 list = &ctx->cancel_hash[i];
5481 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5482 if (io_match_task(req, tsk, files))
5483 posted += io_poll_remove_one(req);
5484 }
5485 }
5486 spin_unlock_irq(&ctx->completion_lock);
5487
5488 if (posted)
5489 io_cqring_ev_posted(ctx);
5490
5491 return posted != 0;
5492 }
5493
5494 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5495 {
5496 struct hlist_head *list;
5497 struct io_kiocb *req;
5498
5499 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5500 hlist_for_each_entry(req, list, hash_node) {
5501 if (sqe_addr != req->user_data)
5502 continue;
5503 if (io_poll_remove_one(req))
5504 return 0;
5505 return -EALREADY;
5506 }
5507
5508 return -ENOENT;
5509 }
5510
5511 static int io_poll_remove_prep(struct io_kiocb *req,
5512 const struct io_uring_sqe *sqe)
5513 {
5514 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5515 return -EINVAL;
5516 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5517 sqe->poll_events)
5518 return -EINVAL;
5519
5520 req->poll_remove.addr = READ_ONCE(sqe->addr);
5521 return 0;
5522 }
5523
5524 /*
5525 * Find a running poll command that matches one specified in sqe->addr,
5526 * and remove it if found.
5527 */
5528 static int io_poll_remove(struct io_kiocb *req)
5529 {
5530 struct io_ring_ctx *ctx = req->ctx;
5531 int ret;
5532
5533 spin_lock_irq(&ctx->completion_lock);
5534 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5535 spin_unlock_irq(&ctx->completion_lock);
5536
5537 if (ret < 0)
5538 req_set_fail_links(req);
5539 io_req_complete(req, ret);
5540 return 0;
5541 }
5542
5543 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5544 void *key)
5545 {
5546 struct io_kiocb *req = wait->private;
5547 struct io_poll_iocb *poll = &req->poll;
5548
5549 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5550 }
5551
5552 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5553 struct poll_table_struct *p)
5554 {
5555 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5556
5557 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5558 }
5559
5560 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5561 {
5562 struct io_poll_iocb *poll = &req->poll;
5563 u32 events;
5564
5565 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5566 return -EINVAL;
5567 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5568 return -EINVAL;
5569
5570 events = READ_ONCE(sqe->poll32_events);
5571 #ifdef __BIG_ENDIAN
5572 events = swahw32(events);
5573 #endif
5574 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5575 (events & EPOLLEXCLUSIVE);
5576 return 0;
5577 }
5578
5579 static int io_poll_add(struct io_kiocb *req)
5580 {
5581 struct io_poll_iocb *poll = &req->poll;
5582 struct io_ring_ctx *ctx = req->ctx;
5583 struct io_poll_table ipt;
5584 __poll_t mask;
5585
5586 ipt.pt._qproc = io_poll_queue_proc;
5587
5588 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5589 io_poll_wake);
5590
5591 if (mask) { /* no async, we'd stolen it */
5592 ipt.error = 0;
5593 io_poll_complete(req, mask, 0);
5594 }
5595 spin_unlock_irq(&ctx->completion_lock);
5596
5597 if (mask) {
5598 io_cqring_ev_posted(ctx);
5599 io_put_req(req);
5600 }
5601 return ipt.error;
5602 }
5603
5604 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5605 {
5606 struct io_timeout_data *data = container_of(timer,
5607 struct io_timeout_data, timer);
5608 struct io_kiocb *req = data->req;
5609 struct io_ring_ctx *ctx = req->ctx;
5610 unsigned long flags;
5611
5612 spin_lock_irqsave(&ctx->completion_lock, flags);
5613 list_del_init(&req->timeout.list);
5614 atomic_set(&req->ctx->cq_timeouts,
5615 atomic_read(&req->ctx->cq_timeouts) + 1);
5616
5617 io_cqring_fill_event(req, -ETIME);
5618 io_commit_cqring(ctx);
5619 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5620
5621 io_cqring_ev_posted(ctx);
5622 req_set_fail_links(req);
5623 io_put_req(req);
5624 return HRTIMER_NORESTART;
5625 }
5626
5627 static int __io_timeout_cancel(struct io_kiocb *req)
5628 {
5629 struct io_timeout_data *io = req->async_data;
5630 int ret;
5631
5632 ret = hrtimer_try_to_cancel(&io->timer);
5633 if (ret == -1)
5634 return -EALREADY;
5635 list_del_init(&req->timeout.list);
5636
5637 req_set_fail_links(req);
5638 io_cqring_fill_event(req, -ECANCELED);
5639 io_put_req_deferred(req, 1);
5640 return 0;
5641 }
5642
5643 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5644 {
5645 struct io_kiocb *req;
5646 int ret = -ENOENT;
5647
5648 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5649 if (user_data == req->user_data) {
5650 ret = 0;
5651 break;
5652 }
5653 }
5654
5655 if (ret == -ENOENT)
5656 return ret;
5657
5658 return __io_timeout_cancel(req);
5659 }
5660
5661 static int io_timeout_remove_prep(struct io_kiocb *req,
5662 const struct io_uring_sqe *sqe)
5663 {
5664 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5665 return -EINVAL;
5666 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5667 return -EINVAL;
5668 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->timeout_flags)
5669 return -EINVAL;
5670
5671 req->timeout_rem.addr = READ_ONCE(sqe->addr);
5672 return 0;
5673 }
5674
5675 /*
5676 * Remove or update an existing timeout command
5677 */
5678 static int io_timeout_remove(struct io_kiocb *req)
5679 {
5680 struct io_ring_ctx *ctx = req->ctx;
5681 int ret;
5682
5683 spin_lock_irq(&ctx->completion_lock);
5684 ret = io_timeout_cancel(ctx, req->timeout_rem.addr);
5685
5686 io_cqring_fill_event(req, ret);
5687 io_commit_cqring(ctx);
5688 spin_unlock_irq(&ctx->completion_lock);
5689 io_cqring_ev_posted(ctx);
5690 if (ret < 0)
5691 req_set_fail_links(req);
5692 io_put_req(req);
5693 return 0;
5694 }
5695
5696 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5697 bool is_timeout_link)
5698 {
5699 struct io_timeout_data *data;
5700 unsigned flags;
5701 u32 off = READ_ONCE(sqe->off);
5702
5703 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5704 return -EINVAL;
5705 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5706 return -EINVAL;
5707 if (off && is_timeout_link)
5708 return -EINVAL;
5709 flags = READ_ONCE(sqe->timeout_flags);
5710 if (flags & ~IORING_TIMEOUT_ABS)
5711 return -EINVAL;
5712
5713 req->timeout.off = off;
5714
5715 if (!req->async_data && io_alloc_async_data(req))
5716 return -ENOMEM;
5717
5718 data = req->async_data;
5719 data->req = req;
5720
5721 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5722 return -EFAULT;
5723
5724 if (flags & IORING_TIMEOUT_ABS)
5725 data->mode = HRTIMER_MODE_ABS;
5726 else
5727 data->mode = HRTIMER_MODE_REL;
5728
5729 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5730 return 0;
5731 }
5732
5733 static int io_timeout(struct io_kiocb *req)
5734 {
5735 struct io_ring_ctx *ctx = req->ctx;
5736 struct io_timeout_data *data = req->async_data;
5737 struct list_head *entry;
5738 u32 tail, off = req->timeout.off;
5739
5740 spin_lock_irq(&ctx->completion_lock);
5741
5742 /*
5743 * sqe->off holds how many events that need to occur for this
5744 * timeout event to be satisfied. If it isn't set, then this is
5745 * a pure timeout request, sequence isn't used.
5746 */
5747 if (io_is_timeout_noseq(req)) {
5748 entry = ctx->timeout_list.prev;
5749 goto add;
5750 }
5751
5752 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5753 req->timeout.target_seq = tail + off;
5754
5755 /*
5756 * Insertion sort, ensuring the first entry in the list is always
5757 * the one we need first.
5758 */
5759 list_for_each_prev(entry, &ctx->timeout_list) {
5760 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5761 timeout.list);
5762
5763 if (io_is_timeout_noseq(nxt))
5764 continue;
5765 /* nxt.seq is behind @tail, otherwise would've been completed */
5766 if (off >= nxt->timeout.target_seq - tail)
5767 break;
5768 }
5769 add:
5770 list_add(&req->timeout.list, entry);
5771 data->timer.function = io_timeout_fn;
5772 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5773 spin_unlock_irq(&ctx->completion_lock);
5774 return 0;
5775 }
5776
5777 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5778 {
5779 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5780
5781 return req->user_data == (unsigned long) data;
5782 }
5783
5784 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5785 {
5786 enum io_wq_cancel cancel_ret;
5787 int ret = 0;
5788
5789 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5790 switch (cancel_ret) {
5791 case IO_WQ_CANCEL_OK:
5792 ret = 0;
5793 break;
5794 case IO_WQ_CANCEL_RUNNING:
5795 ret = -EALREADY;
5796 break;
5797 case IO_WQ_CANCEL_NOTFOUND:
5798 ret = -ENOENT;
5799 break;
5800 }
5801
5802 return ret;
5803 }
5804
5805 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5806 struct io_kiocb *req, __u64 sqe_addr,
5807 int success_ret)
5808 {
5809 unsigned long flags;
5810 int ret;
5811
5812 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5813 if (ret != -ENOENT) {
5814 spin_lock_irqsave(&ctx->completion_lock, flags);
5815 goto done;
5816 }
5817
5818 spin_lock_irqsave(&ctx->completion_lock, flags);
5819 ret = io_timeout_cancel(ctx, sqe_addr);
5820 if (ret != -ENOENT)
5821 goto done;
5822 ret = io_poll_cancel(ctx, sqe_addr);
5823 done:
5824 if (!ret)
5825 ret = success_ret;
5826 io_cqring_fill_event(req, ret);
5827 io_commit_cqring(ctx);
5828 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5829 io_cqring_ev_posted(ctx);
5830
5831 if (ret < 0)
5832 req_set_fail_links(req);
5833 io_put_req(req);
5834 }
5835
5836 static int io_async_cancel_prep(struct io_kiocb *req,
5837 const struct io_uring_sqe *sqe)
5838 {
5839 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5840 return -EINVAL;
5841 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5842 return -EINVAL;
5843 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5844 return -EINVAL;
5845
5846 req->cancel.addr = READ_ONCE(sqe->addr);
5847 return 0;
5848 }
5849
5850 static int io_async_cancel(struct io_kiocb *req)
5851 {
5852 struct io_ring_ctx *ctx = req->ctx;
5853
5854 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5855 return 0;
5856 }
5857
5858 static int io_files_update_prep(struct io_kiocb *req,
5859 const struct io_uring_sqe *sqe)
5860 {
5861 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5862 return -EINVAL;
5863 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5864 return -EINVAL;
5865 if (sqe->ioprio || sqe->rw_flags)
5866 return -EINVAL;
5867
5868 req->files_update.offset = READ_ONCE(sqe->off);
5869 req->files_update.nr_args = READ_ONCE(sqe->len);
5870 if (!req->files_update.nr_args)
5871 return -EINVAL;
5872 req->files_update.arg = READ_ONCE(sqe->addr);
5873 return 0;
5874 }
5875
5876 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5877 struct io_comp_state *cs)
5878 {
5879 struct io_ring_ctx *ctx = req->ctx;
5880 struct io_uring_files_update up;
5881 int ret;
5882
5883 if (force_nonblock)
5884 return -EAGAIN;
5885
5886 up.offset = req->files_update.offset;
5887 up.fds = req->files_update.arg;
5888
5889 mutex_lock(&ctx->uring_lock);
5890 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5891 mutex_unlock(&ctx->uring_lock);
5892
5893 if (ret < 0)
5894 req_set_fail_links(req);
5895 __io_req_complete(req, ret, 0, cs);
5896 return 0;
5897 }
5898
5899 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5900 {
5901 switch (req->opcode) {
5902 case IORING_OP_NOP:
5903 return 0;
5904 case IORING_OP_READV:
5905 case IORING_OP_READ_FIXED:
5906 case IORING_OP_READ:
5907 return io_read_prep(req, sqe);
5908 case IORING_OP_WRITEV:
5909 case IORING_OP_WRITE_FIXED:
5910 case IORING_OP_WRITE:
5911 return io_write_prep(req, sqe);
5912 case IORING_OP_POLL_ADD:
5913 return io_poll_add_prep(req, sqe);
5914 case IORING_OP_POLL_REMOVE:
5915 return io_poll_remove_prep(req, sqe);
5916 case IORING_OP_FSYNC:
5917 return io_prep_fsync(req, sqe);
5918 case IORING_OP_SYNC_FILE_RANGE:
5919 return io_prep_sfr(req, sqe);
5920 case IORING_OP_SENDMSG:
5921 case IORING_OP_SEND:
5922 return io_sendmsg_prep(req, sqe);
5923 case IORING_OP_RECVMSG:
5924 case IORING_OP_RECV:
5925 return io_recvmsg_prep(req, sqe);
5926 case IORING_OP_CONNECT:
5927 return io_connect_prep(req, sqe);
5928 case IORING_OP_TIMEOUT:
5929 return io_timeout_prep(req, sqe, false);
5930 case IORING_OP_TIMEOUT_REMOVE:
5931 return io_timeout_remove_prep(req, sqe);
5932 case IORING_OP_ASYNC_CANCEL:
5933 return io_async_cancel_prep(req, sqe);
5934 case IORING_OP_LINK_TIMEOUT:
5935 return io_timeout_prep(req, sqe, true);
5936 case IORING_OP_ACCEPT:
5937 return io_accept_prep(req, sqe);
5938 case IORING_OP_FALLOCATE:
5939 return io_fallocate_prep(req, sqe);
5940 case IORING_OP_OPENAT:
5941 return io_openat_prep(req, sqe);
5942 case IORING_OP_CLOSE:
5943 return io_close_prep(req, sqe);
5944 case IORING_OP_FILES_UPDATE:
5945 return io_files_update_prep(req, sqe);
5946 case IORING_OP_STATX:
5947 return io_statx_prep(req, sqe);
5948 case IORING_OP_FADVISE:
5949 return io_fadvise_prep(req, sqe);
5950 case IORING_OP_MADVISE:
5951 return io_madvise_prep(req, sqe);
5952 case IORING_OP_OPENAT2:
5953 return io_openat2_prep(req, sqe);
5954 case IORING_OP_EPOLL_CTL:
5955 return io_epoll_ctl_prep(req, sqe);
5956 case IORING_OP_SPLICE:
5957 return io_splice_prep(req, sqe);
5958 case IORING_OP_PROVIDE_BUFFERS:
5959 return io_provide_buffers_prep(req, sqe);
5960 case IORING_OP_REMOVE_BUFFERS:
5961 return io_remove_buffers_prep(req, sqe);
5962 case IORING_OP_TEE:
5963 return io_tee_prep(req, sqe);
5964 case IORING_OP_SHUTDOWN:
5965 return io_shutdown_prep(req, sqe);
5966 case IORING_OP_RENAMEAT:
5967 return io_renameat_prep(req, sqe);
5968 case IORING_OP_UNLINKAT:
5969 return io_unlinkat_prep(req, sqe);
5970 }
5971
5972 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5973 req->opcode);
5974 return-EINVAL;
5975 }
5976
5977 static int io_req_defer_prep(struct io_kiocb *req,
5978 const struct io_uring_sqe *sqe)
5979 {
5980 if (!sqe)
5981 return 0;
5982 if (io_alloc_async_data(req))
5983 return -EAGAIN;
5984 return io_req_prep(req, sqe);
5985 }
5986
5987 static u32 io_get_sequence(struct io_kiocb *req)
5988 {
5989 struct io_kiocb *pos;
5990 struct io_ring_ctx *ctx = req->ctx;
5991 u32 total_submitted, nr_reqs = 0;
5992
5993 io_for_each_link(pos, req)
5994 nr_reqs++;
5995
5996 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5997 return total_submitted - nr_reqs;
5998 }
5999
6000 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6001 {
6002 struct io_ring_ctx *ctx = req->ctx;
6003 struct io_defer_entry *de;
6004 int ret;
6005 u32 seq;
6006
6007 /* Still need defer if there is pending req in defer list. */
6008 if (likely(list_empty_careful(&ctx->defer_list) &&
6009 !(req->flags & REQ_F_IO_DRAIN)))
6010 return 0;
6011
6012 seq = io_get_sequence(req);
6013 /* Still a chance to pass the sequence check */
6014 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6015 return 0;
6016
6017 if (!req->async_data) {
6018 ret = io_req_defer_prep(req, sqe);
6019 if (ret)
6020 return ret;
6021 }
6022 io_prep_async_link(req);
6023 de = kmalloc(sizeof(*de), GFP_KERNEL);
6024 if (!de)
6025 return -ENOMEM;
6026
6027 spin_lock_irq(&ctx->completion_lock);
6028 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6029 spin_unlock_irq(&ctx->completion_lock);
6030 kfree(de);
6031 io_queue_async_work(req);
6032 return -EIOCBQUEUED;
6033 }
6034
6035 trace_io_uring_defer(ctx, req, req->user_data);
6036 de->req = req;
6037 de->seq = seq;
6038 list_add_tail(&de->list, &ctx->defer_list);
6039 spin_unlock_irq(&ctx->completion_lock);
6040 return -EIOCBQUEUED;
6041 }
6042
6043 static void io_req_drop_files(struct io_kiocb *req)
6044 {
6045 struct io_ring_ctx *ctx = req->ctx;
6046 unsigned long flags;
6047
6048 spin_lock_irqsave(&ctx->inflight_lock, flags);
6049 list_del(&req->inflight_entry);
6050 if (waitqueue_active(&ctx->inflight_wait))
6051 wake_up(&ctx->inflight_wait);
6052 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6053 req->flags &= ~REQ_F_INFLIGHT;
6054 put_files_struct(req->work.identity->files);
6055 put_nsproxy(req->work.identity->nsproxy);
6056 req->work.flags &= ~IO_WQ_WORK_FILES;
6057 }
6058
6059 static void __io_clean_op(struct io_kiocb *req)
6060 {
6061 if (req->flags & REQ_F_BUFFER_SELECTED) {
6062 switch (req->opcode) {
6063 case IORING_OP_READV:
6064 case IORING_OP_READ_FIXED:
6065 case IORING_OP_READ:
6066 kfree((void *)(unsigned long)req->rw.addr);
6067 break;
6068 case IORING_OP_RECVMSG:
6069 case IORING_OP_RECV:
6070 kfree(req->sr_msg.kbuf);
6071 break;
6072 }
6073 req->flags &= ~REQ_F_BUFFER_SELECTED;
6074 }
6075
6076 if (req->flags & REQ_F_NEED_CLEANUP) {
6077 switch (req->opcode) {
6078 case IORING_OP_READV:
6079 case IORING_OP_READ_FIXED:
6080 case IORING_OP_READ:
6081 case IORING_OP_WRITEV:
6082 case IORING_OP_WRITE_FIXED:
6083 case IORING_OP_WRITE: {
6084 struct io_async_rw *io = req->async_data;
6085 if (io->free_iovec)
6086 kfree(io->free_iovec);
6087 break;
6088 }
6089 case IORING_OP_RECVMSG:
6090 case IORING_OP_SENDMSG: {
6091 struct io_async_msghdr *io = req->async_data;
6092 if (io->iov != io->fast_iov)
6093 kfree(io->iov);
6094 break;
6095 }
6096 case IORING_OP_SPLICE:
6097 case IORING_OP_TEE:
6098 io_put_file(req, req->splice.file_in,
6099 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6100 break;
6101 case IORING_OP_OPENAT:
6102 case IORING_OP_OPENAT2:
6103 if (req->open.filename)
6104 putname(req->open.filename);
6105 break;
6106 case IORING_OP_RENAMEAT:
6107 putname(req->rename.oldpath);
6108 putname(req->rename.newpath);
6109 break;
6110 case IORING_OP_UNLINKAT:
6111 putname(req->unlink.filename);
6112 break;
6113 }
6114 req->flags &= ~REQ_F_NEED_CLEANUP;
6115 }
6116
6117 if (req->flags & REQ_F_INFLIGHT)
6118 io_req_drop_files(req);
6119 }
6120
6121 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6122 struct io_comp_state *cs)
6123 {
6124 struct io_ring_ctx *ctx = req->ctx;
6125 int ret;
6126
6127 switch (req->opcode) {
6128 case IORING_OP_NOP:
6129 ret = io_nop(req, cs);
6130 break;
6131 case IORING_OP_READV:
6132 case IORING_OP_READ_FIXED:
6133 case IORING_OP_READ:
6134 ret = io_read(req, force_nonblock, cs);
6135 break;
6136 case IORING_OP_WRITEV:
6137 case IORING_OP_WRITE_FIXED:
6138 case IORING_OP_WRITE:
6139 ret = io_write(req, force_nonblock, cs);
6140 break;
6141 case IORING_OP_FSYNC:
6142 ret = io_fsync(req, force_nonblock);
6143 break;
6144 case IORING_OP_POLL_ADD:
6145 ret = io_poll_add(req);
6146 break;
6147 case IORING_OP_POLL_REMOVE:
6148 ret = io_poll_remove(req);
6149 break;
6150 case IORING_OP_SYNC_FILE_RANGE:
6151 ret = io_sync_file_range(req, force_nonblock);
6152 break;
6153 case IORING_OP_SENDMSG:
6154 ret = io_sendmsg(req, force_nonblock, cs);
6155 break;
6156 case IORING_OP_SEND:
6157 ret = io_send(req, force_nonblock, cs);
6158 break;
6159 case IORING_OP_RECVMSG:
6160 ret = io_recvmsg(req, force_nonblock, cs);
6161 break;
6162 case IORING_OP_RECV:
6163 ret = io_recv(req, force_nonblock, cs);
6164 break;
6165 case IORING_OP_TIMEOUT:
6166 ret = io_timeout(req);
6167 break;
6168 case IORING_OP_TIMEOUT_REMOVE:
6169 ret = io_timeout_remove(req);
6170 break;
6171 case IORING_OP_ACCEPT:
6172 ret = io_accept(req, force_nonblock, cs);
6173 break;
6174 case IORING_OP_CONNECT:
6175 ret = io_connect(req, force_nonblock, cs);
6176 break;
6177 case IORING_OP_ASYNC_CANCEL:
6178 ret = io_async_cancel(req);
6179 break;
6180 case IORING_OP_FALLOCATE:
6181 ret = io_fallocate(req, force_nonblock);
6182 break;
6183 case IORING_OP_OPENAT:
6184 ret = io_openat(req, force_nonblock);
6185 break;
6186 case IORING_OP_CLOSE:
6187 ret = io_close(req, force_nonblock, cs);
6188 break;
6189 case IORING_OP_FILES_UPDATE:
6190 ret = io_files_update(req, force_nonblock, cs);
6191 break;
6192 case IORING_OP_STATX:
6193 ret = io_statx(req, force_nonblock);
6194 break;
6195 case IORING_OP_FADVISE:
6196 ret = io_fadvise(req, force_nonblock);
6197 break;
6198 case IORING_OP_MADVISE:
6199 ret = io_madvise(req, force_nonblock);
6200 break;
6201 case IORING_OP_OPENAT2:
6202 ret = io_openat2(req, force_nonblock);
6203 break;
6204 case IORING_OP_EPOLL_CTL:
6205 ret = io_epoll_ctl(req, force_nonblock, cs);
6206 break;
6207 case IORING_OP_SPLICE:
6208 ret = io_splice(req, force_nonblock);
6209 break;
6210 case IORING_OP_PROVIDE_BUFFERS:
6211 ret = io_provide_buffers(req, force_nonblock, cs);
6212 break;
6213 case IORING_OP_REMOVE_BUFFERS:
6214 ret = io_remove_buffers(req, force_nonblock, cs);
6215 break;
6216 case IORING_OP_TEE:
6217 ret = io_tee(req, force_nonblock);
6218 break;
6219 case IORING_OP_SHUTDOWN:
6220 ret = io_shutdown(req, force_nonblock);
6221 break;
6222 case IORING_OP_RENAMEAT:
6223 ret = io_renameat(req, force_nonblock);
6224 break;
6225 case IORING_OP_UNLINKAT:
6226 ret = io_unlinkat(req, force_nonblock);
6227 break;
6228 default:
6229 ret = -EINVAL;
6230 break;
6231 }
6232
6233 if (ret)
6234 return ret;
6235
6236 /* If the op doesn't have a file, we're not polling for it */
6237 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6238 const bool in_async = io_wq_current_is_worker();
6239
6240 /* workqueue context doesn't hold uring_lock, grab it now */
6241 if (in_async)
6242 mutex_lock(&ctx->uring_lock);
6243
6244 io_iopoll_req_issued(req);
6245
6246 if (in_async)
6247 mutex_unlock(&ctx->uring_lock);
6248 }
6249
6250 return 0;
6251 }
6252
6253 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6254 {
6255 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6256 struct io_kiocb *timeout;
6257 int ret = 0;
6258
6259 timeout = io_prep_linked_timeout(req);
6260 if (timeout)
6261 io_queue_linked_timeout(timeout);
6262
6263 /* if NO_CANCEL is set, we must still run the work */
6264 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6265 IO_WQ_WORK_CANCEL) {
6266 ret = -ECANCELED;
6267 }
6268
6269 if (!ret) {
6270 do {
6271 ret = io_issue_sqe(req, false, NULL);
6272 /*
6273 * We can get EAGAIN for polled IO even though we're
6274 * forcing a sync submission from here, since we can't
6275 * wait for request slots on the block side.
6276 */
6277 if (ret != -EAGAIN)
6278 break;
6279 cond_resched();
6280 } while (1);
6281 }
6282
6283 if (ret) {
6284 req_set_fail_links(req);
6285 io_req_complete(req, ret);
6286 }
6287
6288 return io_steal_work(req);
6289 }
6290
6291 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6292 int index)
6293 {
6294 struct fixed_file_table *table;
6295
6296 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6297 return table->files[index & IORING_FILE_TABLE_MASK];
6298 }
6299
6300 static struct file *io_file_get(struct io_submit_state *state,
6301 struct io_kiocb *req, int fd, bool fixed)
6302 {
6303 struct io_ring_ctx *ctx = req->ctx;
6304 struct file *file;
6305
6306 if (fixed) {
6307 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6308 return NULL;
6309 fd = array_index_nospec(fd, ctx->nr_user_files);
6310 file = io_file_from_index(ctx, fd);
6311 if (file) {
6312 req->fixed_file_refs = &ctx->file_data->node->refs;
6313 percpu_ref_get(req->fixed_file_refs);
6314 }
6315 } else {
6316 trace_io_uring_file_get(ctx, fd);
6317 file = __io_file_get(state, fd);
6318 }
6319
6320 return file;
6321 }
6322
6323 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
6324 int fd)
6325 {
6326 req->file = io_file_get(state, req, fd, req->flags & REQ_F_FIXED_FILE);
6327 if (req->file || io_op_defs[req->opcode].needs_file_no_error)
6328 return 0;
6329 return -EBADF;
6330 }
6331
6332 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6333 {
6334 struct io_timeout_data *data = container_of(timer,
6335 struct io_timeout_data, timer);
6336 struct io_kiocb *prev, *req = data->req;
6337 struct io_ring_ctx *ctx = req->ctx;
6338 unsigned long flags;
6339
6340 spin_lock_irqsave(&ctx->completion_lock, flags);
6341 prev = req->timeout.head;
6342 req->timeout.head = NULL;
6343
6344 /*
6345 * We don't expect the list to be empty, that will only happen if we
6346 * race with the completion of the linked work.
6347 */
6348 if (prev && refcount_inc_not_zero(&prev->refs))
6349 io_remove_next_linked(prev);
6350 else
6351 prev = NULL;
6352 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6353
6354 if (prev) {
6355 req_set_fail_links(prev);
6356 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6357 io_put_req(prev);
6358 } else {
6359 io_req_complete(req, -ETIME);
6360 }
6361 return HRTIMER_NORESTART;
6362 }
6363
6364 static void __io_queue_linked_timeout(struct io_kiocb *req)
6365 {
6366 /*
6367 * If the back reference is NULL, then our linked request finished
6368 * before we got a chance to setup the timer
6369 */
6370 if (req->timeout.head) {
6371 struct io_timeout_data *data = req->async_data;
6372
6373 data->timer.function = io_link_timeout_fn;
6374 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6375 data->mode);
6376 }
6377 }
6378
6379 static void io_queue_linked_timeout(struct io_kiocb *req)
6380 {
6381 struct io_ring_ctx *ctx = req->ctx;
6382
6383 spin_lock_irq(&ctx->completion_lock);
6384 __io_queue_linked_timeout(req);
6385 spin_unlock_irq(&ctx->completion_lock);
6386
6387 /* drop submission reference */
6388 io_put_req(req);
6389 }
6390
6391 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6392 {
6393 struct io_kiocb *nxt = req->link;
6394
6395 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6396 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6397 return NULL;
6398
6399 nxt->timeout.head = req;
6400 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6401 req->flags |= REQ_F_LINK_TIMEOUT;
6402 return nxt;
6403 }
6404
6405 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6406 {
6407 struct io_kiocb *linked_timeout;
6408 const struct cred *old_creds = NULL;
6409 int ret;
6410
6411 again:
6412 linked_timeout = io_prep_linked_timeout(req);
6413
6414 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6415 (req->work.flags & IO_WQ_WORK_CREDS) &&
6416 req->work.identity->creds != current_cred()) {
6417 if (old_creds)
6418 revert_creds(old_creds);
6419 if (old_creds == req->work.identity->creds)
6420 old_creds = NULL; /* restored original creds */
6421 else
6422 old_creds = override_creds(req->work.identity->creds);
6423 }
6424
6425 ret = io_issue_sqe(req, true, cs);
6426
6427 /*
6428 * We async punt it if the file wasn't marked NOWAIT, or if the file
6429 * doesn't support non-blocking read/write attempts
6430 */
6431 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6432 if (!io_arm_poll_handler(req)) {
6433 /*
6434 * Queued up for async execution, worker will release
6435 * submit reference when the iocb is actually submitted.
6436 */
6437 io_queue_async_work(req);
6438 }
6439
6440 if (linked_timeout)
6441 io_queue_linked_timeout(linked_timeout);
6442 } else if (likely(!ret)) {
6443 /* drop submission reference */
6444 req = io_put_req_find_next(req);
6445 if (linked_timeout)
6446 io_queue_linked_timeout(linked_timeout);
6447
6448 if (req) {
6449 if (!(req->flags & REQ_F_FORCE_ASYNC))
6450 goto again;
6451 io_queue_async_work(req);
6452 }
6453 } else {
6454 /* un-prep timeout, so it'll be killed as any other linked */
6455 req->flags &= ~REQ_F_LINK_TIMEOUT;
6456 req_set_fail_links(req);
6457 io_put_req(req);
6458 io_req_complete(req, ret);
6459 }
6460
6461 if (old_creds)
6462 revert_creds(old_creds);
6463 }
6464
6465 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6466 struct io_comp_state *cs)
6467 {
6468 int ret;
6469
6470 ret = io_req_defer(req, sqe);
6471 if (ret) {
6472 if (ret != -EIOCBQUEUED) {
6473 fail_req:
6474 req_set_fail_links(req);
6475 io_put_req(req);
6476 io_req_complete(req, ret);
6477 }
6478 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6479 if (!req->async_data) {
6480 ret = io_req_defer_prep(req, sqe);
6481 if (unlikely(ret))
6482 goto fail_req;
6483 }
6484 io_queue_async_work(req);
6485 } else {
6486 if (sqe) {
6487 ret = io_req_prep(req, sqe);
6488 if (unlikely(ret))
6489 goto fail_req;
6490 }
6491 __io_queue_sqe(req, cs);
6492 }
6493 }
6494
6495 static inline void io_queue_link_head(struct io_kiocb *req,
6496 struct io_comp_state *cs)
6497 {
6498 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6499 io_put_req(req);
6500 io_req_complete(req, -ECANCELED);
6501 } else
6502 io_queue_sqe(req, NULL, cs);
6503 }
6504
6505 struct io_submit_link {
6506 struct io_kiocb *head;
6507 struct io_kiocb *last;
6508 };
6509
6510 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6511 struct io_submit_link *link, struct io_comp_state *cs)
6512 {
6513 struct io_ring_ctx *ctx = req->ctx;
6514 int ret;
6515
6516 /*
6517 * If we already have a head request, queue this one for async
6518 * submittal once the head completes. If we don't have a head but
6519 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6520 * submitted sync once the chain is complete. If none of those
6521 * conditions are true (normal request), then just queue it.
6522 */
6523 if (link->head) {
6524 struct io_kiocb *head = link->head;
6525
6526 /*
6527 * Taking sequential execution of a link, draining both sides
6528 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6529 * requests in the link. So, it drains the head and the
6530 * next after the link request. The last one is done via
6531 * drain_next flag to persist the effect across calls.
6532 */
6533 if (req->flags & REQ_F_IO_DRAIN) {
6534 head->flags |= REQ_F_IO_DRAIN;
6535 ctx->drain_next = 1;
6536 }
6537 ret = io_req_defer_prep(req, sqe);
6538 if (unlikely(ret)) {
6539 /* fail even hard links since we don't submit */
6540 head->flags |= REQ_F_FAIL_LINK;
6541 return ret;
6542 }
6543 trace_io_uring_link(ctx, req, head);
6544 link->last->link = req;
6545 link->last = req;
6546
6547 /* last request of a link, enqueue the link */
6548 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6549 io_queue_link_head(head, cs);
6550 link->head = NULL;
6551 }
6552 } else {
6553 if (unlikely(ctx->drain_next)) {
6554 req->flags |= REQ_F_IO_DRAIN;
6555 ctx->drain_next = 0;
6556 }
6557 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6558 ret = io_req_defer_prep(req, sqe);
6559 if (unlikely(ret))
6560 req->flags |= REQ_F_FAIL_LINK;
6561 link->head = req;
6562 link->last = req;
6563 } else {
6564 io_queue_sqe(req, sqe, cs);
6565 }
6566 }
6567
6568 return 0;
6569 }
6570
6571 /*
6572 * Batched submission is done, ensure local IO is flushed out.
6573 */
6574 static void io_submit_state_end(struct io_submit_state *state)
6575 {
6576 if (!list_empty(&state->comp.list))
6577 io_submit_flush_completions(&state->comp);
6578 if (state->plug_started)
6579 blk_finish_plug(&state->plug);
6580 io_state_file_put(state);
6581 if (state->free_reqs)
6582 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6583 }
6584
6585 /*
6586 * Start submission side cache.
6587 */
6588 static void io_submit_state_start(struct io_submit_state *state,
6589 struct io_ring_ctx *ctx, unsigned int max_ios)
6590 {
6591 state->plug_started = false;
6592 state->comp.nr = 0;
6593 INIT_LIST_HEAD(&state->comp.list);
6594 state->comp.ctx = ctx;
6595 state->free_reqs = 0;
6596 state->file = NULL;
6597 state->ios_left = max_ios;
6598 }
6599
6600 static void io_commit_sqring(struct io_ring_ctx *ctx)
6601 {
6602 struct io_rings *rings = ctx->rings;
6603
6604 /*
6605 * Ensure any loads from the SQEs are done at this point,
6606 * since once we write the new head, the application could
6607 * write new data to them.
6608 */
6609 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6610 }
6611
6612 /*
6613 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6614 * that is mapped by userspace. This means that care needs to be taken to
6615 * ensure that reads are stable, as we cannot rely on userspace always
6616 * being a good citizen. If members of the sqe are validated and then later
6617 * used, it's important that those reads are done through READ_ONCE() to
6618 * prevent a re-load down the line.
6619 */
6620 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6621 {
6622 u32 *sq_array = ctx->sq_array;
6623 unsigned head;
6624
6625 /*
6626 * The cached sq head (or cq tail) serves two purposes:
6627 *
6628 * 1) allows us to batch the cost of updating the user visible
6629 * head updates.
6630 * 2) allows the kernel side to track the head on its own, even
6631 * though the application is the one updating it.
6632 */
6633 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6634 if (likely(head < ctx->sq_entries))
6635 return &ctx->sq_sqes[head];
6636
6637 /* drop invalid entries */
6638 ctx->cached_sq_dropped++;
6639 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6640 return NULL;
6641 }
6642
6643 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6644 {
6645 ctx->cached_sq_head++;
6646 }
6647
6648 /*
6649 * Check SQE restrictions (opcode and flags).
6650 *
6651 * Returns 'true' if SQE is allowed, 'false' otherwise.
6652 */
6653 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6654 struct io_kiocb *req,
6655 unsigned int sqe_flags)
6656 {
6657 if (!ctx->restricted)
6658 return true;
6659
6660 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6661 return false;
6662
6663 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6664 ctx->restrictions.sqe_flags_required)
6665 return false;
6666
6667 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6668 ctx->restrictions.sqe_flags_required))
6669 return false;
6670
6671 return true;
6672 }
6673
6674 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6675 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6676 IOSQE_BUFFER_SELECT)
6677
6678 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6679 const struct io_uring_sqe *sqe,
6680 struct io_submit_state *state)
6681 {
6682 unsigned int sqe_flags;
6683 int id, ret;
6684
6685 req->opcode = READ_ONCE(sqe->opcode);
6686 req->user_data = READ_ONCE(sqe->user_data);
6687 req->async_data = NULL;
6688 req->file = NULL;
6689 req->ctx = ctx;
6690 req->flags = 0;
6691 req->link = NULL;
6692 /* one is dropped after submission, the other at completion */
6693 refcount_set(&req->refs, 2);
6694 req->task = current;
6695 req->result = 0;
6696
6697 if (unlikely(req->opcode >= IORING_OP_LAST))
6698 return -EINVAL;
6699
6700 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6701 return -EFAULT;
6702
6703 sqe_flags = READ_ONCE(sqe->flags);
6704 /* enforce forwards compatibility on users */
6705 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6706 return -EINVAL;
6707
6708 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6709 return -EACCES;
6710
6711 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6712 !io_op_defs[req->opcode].buffer_select)
6713 return -EOPNOTSUPP;
6714
6715 id = READ_ONCE(sqe->personality);
6716 if (id) {
6717 struct io_identity *iod;
6718
6719 iod = idr_find(&ctx->personality_idr, id);
6720 if (unlikely(!iod))
6721 return -EINVAL;
6722 refcount_inc(&iod->count);
6723
6724 __io_req_init_async(req);
6725 get_cred(iod->creds);
6726 req->work.identity = iod;
6727 req->work.flags |= IO_WQ_WORK_CREDS;
6728 }
6729
6730 /* same numerical values with corresponding REQ_F_*, safe to copy */
6731 req->flags |= sqe_flags;
6732
6733 /*
6734 * Plug now if we have more than 1 IO left after this, and the target
6735 * is potentially a read/write to block based storage.
6736 */
6737 if (!state->plug_started && state->ios_left > 1 &&
6738 io_op_defs[req->opcode].plug) {
6739 blk_start_plug(&state->plug);
6740 state->plug_started = true;
6741 }
6742
6743 if (!io_op_defs[req->opcode].needs_file)
6744 return 0;
6745
6746 ret = io_req_set_file(state, req, READ_ONCE(sqe->fd));
6747 state->ios_left--;
6748 return ret;
6749 }
6750
6751 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6752 {
6753 struct io_submit_state state;
6754 struct io_submit_link link;
6755 int i, submitted = 0;
6756
6757 /* if we have a backlog and couldn't flush it all, return BUSY */
6758 if (test_bit(0, &ctx->sq_check_overflow)) {
6759 if (!list_empty(&ctx->cq_overflow_list) &&
6760 !io_cqring_overflow_flush(ctx, false, NULL, NULL))
6761 return -EBUSY;
6762 }
6763
6764 /* make sure SQ entry isn't read before tail */
6765 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6766
6767 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6768 return -EAGAIN;
6769
6770 percpu_counter_add(&current->io_uring->inflight, nr);
6771 refcount_add(nr, &current->usage);
6772
6773 io_submit_state_start(&state, ctx, nr);
6774 link.head = NULL;
6775
6776 for (i = 0; i < nr; i++) {
6777 const struct io_uring_sqe *sqe;
6778 struct io_kiocb *req;
6779 int err;
6780
6781 sqe = io_get_sqe(ctx);
6782 if (unlikely(!sqe)) {
6783 io_consume_sqe(ctx);
6784 break;
6785 }
6786 req = io_alloc_req(ctx, &state);
6787 if (unlikely(!req)) {
6788 if (!submitted)
6789 submitted = -EAGAIN;
6790 break;
6791 }
6792 io_consume_sqe(ctx);
6793 /* will complete beyond this point, count as submitted */
6794 submitted++;
6795
6796 err = io_init_req(ctx, req, sqe, &state);
6797 if (unlikely(err)) {
6798 fail_req:
6799 io_put_req(req);
6800 io_req_complete(req, err);
6801 break;
6802 }
6803
6804 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6805 true, io_async_submit(ctx));
6806 err = io_submit_sqe(req, sqe, &link, &state.comp);
6807 if (err)
6808 goto fail_req;
6809 }
6810
6811 if (unlikely(submitted != nr)) {
6812 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6813 struct io_uring_task *tctx = current->io_uring;
6814 int unused = nr - ref_used;
6815
6816 percpu_ref_put_many(&ctx->refs, unused);
6817 percpu_counter_sub(&tctx->inflight, unused);
6818 put_task_struct_many(current, unused);
6819 }
6820 if (link.head)
6821 io_queue_link_head(link.head, &state.comp);
6822 io_submit_state_end(&state);
6823
6824 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6825 io_commit_sqring(ctx);
6826
6827 return submitted;
6828 }
6829
6830 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6831 {
6832 /* Tell userspace we may need a wakeup call */
6833 spin_lock_irq(&ctx->completion_lock);
6834 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6835 spin_unlock_irq(&ctx->completion_lock);
6836 }
6837
6838 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6839 {
6840 spin_lock_irq(&ctx->completion_lock);
6841 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6842 spin_unlock_irq(&ctx->completion_lock);
6843 }
6844
6845 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6846 {
6847 unsigned int to_submit;
6848 int ret = 0;
6849
6850 if (!list_empty(&ctx->iopoll_list)) {
6851 unsigned nr_events = 0;
6852
6853 mutex_lock(&ctx->uring_lock);
6854 if (!list_empty(&ctx->iopoll_list))
6855 io_do_iopoll(ctx, &nr_events, 0);
6856 mutex_unlock(&ctx->uring_lock);
6857 }
6858
6859 to_submit = io_sqring_entries(ctx);
6860 /* if we're handling multiple rings, cap submit size for fairness */
6861 if (cap_entries && to_submit > 8)
6862 to_submit = 8;
6863
6864 if (to_submit) {
6865 mutex_lock(&ctx->uring_lock);
6866 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6867 ret = io_submit_sqes(ctx, to_submit);
6868 mutex_unlock(&ctx->uring_lock);
6869 }
6870
6871 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6872 wake_up(&ctx->sqo_sq_wait);
6873
6874 return ret;
6875 }
6876
6877 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6878 {
6879 struct io_ring_ctx *ctx;
6880 unsigned sq_thread_idle = 0;
6881
6882 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6883 if (sq_thread_idle < ctx->sq_thread_idle)
6884 sq_thread_idle = ctx->sq_thread_idle;
6885 }
6886
6887 sqd->sq_thread_idle = sq_thread_idle;
6888 }
6889
6890 static void io_sqd_init_new(struct io_sq_data *sqd)
6891 {
6892 struct io_ring_ctx *ctx;
6893
6894 while (!list_empty(&sqd->ctx_new_list)) {
6895 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6896 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6897 complete(&ctx->sq_thread_comp);
6898 }
6899
6900 io_sqd_update_thread_idle(sqd);
6901 }
6902
6903 static int io_sq_thread(void *data)
6904 {
6905 struct cgroup_subsys_state *cur_css = NULL;
6906 struct files_struct *old_files = current->files;
6907 struct nsproxy *old_nsproxy = current->nsproxy;
6908 const struct cred *old_cred = NULL;
6909 struct io_sq_data *sqd = data;
6910 struct io_ring_ctx *ctx;
6911 unsigned long timeout = 0;
6912 DEFINE_WAIT(wait);
6913
6914 task_lock(current);
6915 current->files = NULL;
6916 current->nsproxy = NULL;
6917 task_unlock(current);
6918
6919 while (!kthread_should_stop()) {
6920 int ret;
6921 bool cap_entries, sqt_spin, needs_sched;
6922
6923 /*
6924 * Any changes to the sqd lists are synchronized through the
6925 * kthread parking. This synchronizes the thread vs users,
6926 * the users are synchronized on the sqd->ctx_lock.
6927 */
6928 if (kthread_should_park())
6929 kthread_parkme();
6930
6931 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
6932 io_sqd_init_new(sqd);
6933 timeout = jiffies + sqd->sq_thread_idle;
6934 }
6935
6936 sqt_spin = false;
6937 cap_entries = !list_is_singular(&sqd->ctx_list);
6938 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6939 if (current->cred != ctx->creds) {
6940 if (old_cred)
6941 revert_creds(old_cred);
6942 old_cred = override_creds(ctx->creds);
6943 }
6944 io_sq_thread_associate_blkcg(ctx, &cur_css);
6945 #ifdef CONFIG_AUDIT
6946 current->loginuid = ctx->loginuid;
6947 current->sessionid = ctx->sessionid;
6948 #endif
6949
6950 ret = __io_sq_thread(ctx, cap_entries);
6951 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6952 sqt_spin = true;
6953
6954 io_sq_thread_drop_mm_files();
6955 }
6956
6957 if (sqt_spin || !time_after(jiffies, timeout)) {
6958 io_run_task_work();
6959 cond_resched();
6960 if (sqt_spin)
6961 timeout = jiffies + sqd->sq_thread_idle;
6962 continue;
6963 }
6964
6965 if (kthread_should_park())
6966 continue;
6967
6968 needs_sched = true;
6969 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6970 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6971 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6972 !list_empty_careful(&ctx->iopoll_list)) {
6973 needs_sched = false;
6974 break;
6975 }
6976 if (io_sqring_entries(ctx)) {
6977 needs_sched = false;
6978 break;
6979 }
6980 }
6981
6982 if (needs_sched) {
6983 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6984 io_ring_set_wakeup_flag(ctx);
6985
6986 schedule();
6987 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6988 io_ring_clear_wakeup_flag(ctx);
6989 }
6990
6991 finish_wait(&sqd->wait, &wait);
6992 timeout = jiffies + sqd->sq_thread_idle;
6993 }
6994
6995 io_run_task_work();
6996
6997 if (cur_css)
6998 io_sq_thread_unassociate_blkcg();
6999 if (old_cred)
7000 revert_creds(old_cred);
7001
7002 task_lock(current);
7003 current->files = old_files;
7004 current->nsproxy = old_nsproxy;
7005 task_unlock(current);
7006
7007 kthread_parkme();
7008
7009 return 0;
7010 }
7011
7012 struct io_wait_queue {
7013 struct wait_queue_entry wq;
7014 struct io_ring_ctx *ctx;
7015 unsigned to_wait;
7016 unsigned nr_timeouts;
7017 };
7018
7019 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
7020 {
7021 struct io_ring_ctx *ctx = iowq->ctx;
7022
7023 /*
7024 * Wake up if we have enough events, or if a timeout occurred since we
7025 * started waiting. For timeouts, we always want to return to userspace,
7026 * regardless of event count.
7027 */
7028 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
7029 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7030 }
7031
7032 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7033 int wake_flags, void *key)
7034 {
7035 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7036 wq);
7037
7038 /* use noflush == true, as we can't safely rely on locking context */
7039 if (!io_should_wake(iowq, true))
7040 return -1;
7041
7042 return autoremove_wake_function(curr, mode, wake_flags, key);
7043 }
7044
7045 static int io_run_task_work_sig(void)
7046 {
7047 if (io_run_task_work())
7048 return 1;
7049 if (!signal_pending(current))
7050 return 0;
7051 if (current->jobctl & JOBCTL_TASK_WORK) {
7052 spin_lock_irq(&current->sighand->siglock);
7053 current->jobctl &= ~JOBCTL_TASK_WORK;
7054 recalc_sigpending();
7055 spin_unlock_irq(&current->sighand->siglock);
7056 return 1;
7057 }
7058 return -EINTR;
7059 }
7060
7061 /*
7062 * Wait until events become available, if we don't already have some. The
7063 * application must reap them itself, as they reside on the shared cq ring.
7064 */
7065 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7066 const sigset_t __user *sig, size_t sigsz,
7067 struct __kernel_timespec __user *uts)
7068 {
7069 struct io_wait_queue iowq = {
7070 .wq = {
7071 .private = current,
7072 .func = io_wake_function,
7073 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7074 },
7075 .ctx = ctx,
7076 .to_wait = min_events,
7077 };
7078 struct io_rings *rings = ctx->rings;
7079 struct timespec64 ts;
7080 signed long timeout = 0;
7081 int ret = 0;
7082
7083 do {
7084 if (io_cqring_events(ctx, false) >= min_events)
7085 return 0;
7086 if (!io_run_task_work())
7087 break;
7088 } while (1);
7089
7090 if (sig) {
7091 #ifdef CONFIG_COMPAT
7092 if (in_compat_syscall())
7093 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7094 sigsz);
7095 else
7096 #endif
7097 ret = set_user_sigmask(sig, sigsz);
7098
7099 if (ret)
7100 return ret;
7101 }
7102
7103 if (uts) {
7104 if (get_timespec64(&ts, uts))
7105 return -EFAULT;
7106 timeout = timespec64_to_jiffies(&ts);
7107 }
7108
7109 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7110 trace_io_uring_cqring_wait(ctx, min_events);
7111 do {
7112 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7113 TASK_INTERRUPTIBLE);
7114 /* make sure we run task_work before checking for signals */
7115 ret = io_run_task_work_sig();
7116 if (ret > 0)
7117 continue;
7118 else if (ret < 0)
7119 break;
7120 if (io_should_wake(&iowq, false))
7121 break;
7122 if (uts) {
7123 timeout = schedule_timeout(timeout);
7124 if (timeout == 0) {
7125 ret = -ETIME;
7126 break;
7127 }
7128 } else {
7129 schedule();
7130 }
7131 } while (1);
7132 finish_wait(&ctx->wait, &iowq.wq);
7133
7134 restore_saved_sigmask_unless(ret == -EINTR);
7135
7136 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7137 }
7138
7139 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7140 {
7141 #if defined(CONFIG_UNIX)
7142 if (ctx->ring_sock) {
7143 struct sock *sock = ctx->ring_sock->sk;
7144 struct sk_buff *skb;
7145
7146 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7147 kfree_skb(skb);
7148 }
7149 #else
7150 int i;
7151
7152 for (i = 0; i < ctx->nr_user_files; i++) {
7153 struct file *file;
7154
7155 file = io_file_from_index(ctx, i);
7156 if (file)
7157 fput(file);
7158 }
7159 #endif
7160 }
7161
7162 static void io_file_ref_kill(struct percpu_ref *ref)
7163 {
7164 struct fixed_file_data *data;
7165
7166 data = container_of(ref, struct fixed_file_data, refs);
7167 complete(&data->done);
7168 }
7169
7170 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7171 {
7172 struct fixed_file_data *data = ctx->file_data;
7173 struct fixed_file_ref_node *ref_node = NULL;
7174 unsigned nr_tables, i;
7175
7176 if (!data)
7177 return -ENXIO;
7178
7179 spin_lock(&data->lock);
7180 ref_node = data->node;
7181 spin_unlock(&data->lock);
7182 if (ref_node)
7183 percpu_ref_kill(&ref_node->refs);
7184
7185 percpu_ref_kill(&data->refs);
7186
7187 /* wait for all refs nodes to complete */
7188 flush_delayed_work(&ctx->file_put_work);
7189 wait_for_completion(&data->done);
7190
7191 __io_sqe_files_unregister(ctx);
7192 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7193 for (i = 0; i < nr_tables; i++)
7194 kfree(data->table[i].files);
7195 kfree(data->table);
7196 percpu_ref_exit(&data->refs);
7197 kfree(data);
7198 ctx->file_data = NULL;
7199 ctx->nr_user_files = 0;
7200 return 0;
7201 }
7202
7203 static void io_put_sq_data(struct io_sq_data *sqd)
7204 {
7205 if (refcount_dec_and_test(&sqd->refs)) {
7206 /*
7207 * The park is a bit of a work-around, without it we get
7208 * warning spews on shutdown with SQPOLL set and affinity
7209 * set to a single CPU.
7210 */
7211 if (sqd->thread) {
7212 kthread_park(sqd->thread);
7213 kthread_stop(sqd->thread);
7214 }
7215
7216 kfree(sqd);
7217 }
7218 }
7219
7220 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7221 {
7222 struct io_ring_ctx *ctx_attach;
7223 struct io_sq_data *sqd;
7224 struct fd f;
7225
7226 f = fdget(p->wq_fd);
7227 if (!f.file)
7228 return ERR_PTR(-ENXIO);
7229 if (f.file->f_op != &io_uring_fops) {
7230 fdput(f);
7231 return ERR_PTR(-EINVAL);
7232 }
7233
7234 ctx_attach = f.file->private_data;
7235 sqd = ctx_attach->sq_data;
7236 if (!sqd) {
7237 fdput(f);
7238 return ERR_PTR(-EINVAL);
7239 }
7240
7241 refcount_inc(&sqd->refs);
7242 fdput(f);
7243 return sqd;
7244 }
7245
7246 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7247 {
7248 struct io_sq_data *sqd;
7249
7250 if (p->flags & IORING_SETUP_ATTACH_WQ)
7251 return io_attach_sq_data(p);
7252
7253 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7254 if (!sqd)
7255 return ERR_PTR(-ENOMEM);
7256
7257 refcount_set(&sqd->refs, 1);
7258 INIT_LIST_HEAD(&sqd->ctx_list);
7259 INIT_LIST_HEAD(&sqd->ctx_new_list);
7260 mutex_init(&sqd->ctx_lock);
7261 mutex_init(&sqd->lock);
7262 init_waitqueue_head(&sqd->wait);
7263 return sqd;
7264 }
7265
7266 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7267 __releases(&sqd->lock)
7268 {
7269 if (!sqd->thread)
7270 return;
7271 kthread_unpark(sqd->thread);
7272 mutex_unlock(&sqd->lock);
7273 }
7274
7275 static void io_sq_thread_park(struct io_sq_data *sqd)
7276 __acquires(&sqd->lock)
7277 {
7278 if (!sqd->thread)
7279 return;
7280 mutex_lock(&sqd->lock);
7281 kthread_park(sqd->thread);
7282 }
7283
7284 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7285 {
7286 struct io_sq_data *sqd = ctx->sq_data;
7287
7288 if (sqd) {
7289 if (sqd->thread) {
7290 /*
7291 * We may arrive here from the error branch in
7292 * io_sq_offload_create() where the kthread is created
7293 * without being waked up, thus wake it up now to make
7294 * sure the wait will complete.
7295 */
7296 wake_up_process(sqd->thread);
7297 wait_for_completion(&ctx->sq_thread_comp);
7298
7299 io_sq_thread_park(sqd);
7300 }
7301
7302 mutex_lock(&sqd->ctx_lock);
7303 list_del(&ctx->sqd_list);
7304 io_sqd_update_thread_idle(sqd);
7305 mutex_unlock(&sqd->ctx_lock);
7306
7307 if (sqd->thread)
7308 io_sq_thread_unpark(sqd);
7309
7310 io_put_sq_data(sqd);
7311 ctx->sq_data = NULL;
7312 }
7313 }
7314
7315 static void io_finish_async(struct io_ring_ctx *ctx)
7316 {
7317 io_sq_thread_stop(ctx);
7318
7319 if (ctx->io_wq) {
7320 io_wq_destroy(ctx->io_wq);
7321 ctx->io_wq = NULL;
7322 }
7323 }
7324
7325 #if defined(CONFIG_UNIX)
7326 /*
7327 * Ensure the UNIX gc is aware of our file set, so we are certain that
7328 * the io_uring can be safely unregistered on process exit, even if we have
7329 * loops in the file referencing.
7330 */
7331 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7332 {
7333 struct sock *sk = ctx->ring_sock->sk;
7334 struct scm_fp_list *fpl;
7335 struct sk_buff *skb;
7336 int i, nr_files;
7337
7338 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7339 if (!fpl)
7340 return -ENOMEM;
7341
7342 skb = alloc_skb(0, GFP_KERNEL);
7343 if (!skb) {
7344 kfree(fpl);
7345 return -ENOMEM;
7346 }
7347
7348 skb->sk = sk;
7349
7350 nr_files = 0;
7351 fpl->user = get_uid(ctx->user);
7352 for (i = 0; i < nr; i++) {
7353 struct file *file = io_file_from_index(ctx, i + offset);
7354
7355 if (!file)
7356 continue;
7357 fpl->fp[nr_files] = get_file(file);
7358 unix_inflight(fpl->user, fpl->fp[nr_files]);
7359 nr_files++;
7360 }
7361
7362 if (nr_files) {
7363 fpl->max = SCM_MAX_FD;
7364 fpl->count = nr_files;
7365 UNIXCB(skb).fp = fpl;
7366 skb->destructor = unix_destruct_scm;
7367 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7368 skb_queue_head(&sk->sk_receive_queue, skb);
7369
7370 for (i = 0; i < nr_files; i++)
7371 fput(fpl->fp[i]);
7372 } else {
7373 kfree_skb(skb);
7374 kfree(fpl);
7375 }
7376
7377 return 0;
7378 }
7379
7380 /*
7381 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7382 * causes regular reference counting to break down. We rely on the UNIX
7383 * garbage collection to take care of this problem for us.
7384 */
7385 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7386 {
7387 unsigned left, total;
7388 int ret = 0;
7389
7390 total = 0;
7391 left = ctx->nr_user_files;
7392 while (left) {
7393 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7394
7395 ret = __io_sqe_files_scm(ctx, this_files, total);
7396 if (ret)
7397 break;
7398 left -= this_files;
7399 total += this_files;
7400 }
7401
7402 if (!ret)
7403 return 0;
7404
7405 while (total < ctx->nr_user_files) {
7406 struct file *file = io_file_from_index(ctx, total);
7407
7408 if (file)
7409 fput(file);
7410 total++;
7411 }
7412
7413 return ret;
7414 }
7415 #else
7416 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7417 {
7418 return 0;
7419 }
7420 #endif
7421
7422 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7423 unsigned nr_tables, unsigned nr_files)
7424 {
7425 int i;
7426
7427 for (i = 0; i < nr_tables; i++) {
7428 struct fixed_file_table *table = &file_data->table[i];
7429 unsigned this_files;
7430
7431 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7432 table->files = kcalloc(this_files, sizeof(struct file *),
7433 GFP_KERNEL);
7434 if (!table->files)
7435 break;
7436 nr_files -= this_files;
7437 }
7438
7439 if (i == nr_tables)
7440 return 0;
7441
7442 for (i = 0; i < nr_tables; i++) {
7443 struct fixed_file_table *table = &file_data->table[i];
7444 kfree(table->files);
7445 }
7446 return 1;
7447 }
7448
7449 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7450 {
7451 #if defined(CONFIG_UNIX)
7452 struct sock *sock = ctx->ring_sock->sk;
7453 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7454 struct sk_buff *skb;
7455 int i;
7456
7457 __skb_queue_head_init(&list);
7458
7459 /*
7460 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7461 * remove this entry and rearrange the file array.
7462 */
7463 skb = skb_dequeue(head);
7464 while (skb) {
7465 struct scm_fp_list *fp;
7466
7467 fp = UNIXCB(skb).fp;
7468 for (i = 0; i < fp->count; i++) {
7469 int left;
7470
7471 if (fp->fp[i] != file)
7472 continue;
7473
7474 unix_notinflight(fp->user, fp->fp[i]);
7475 left = fp->count - 1 - i;
7476 if (left) {
7477 memmove(&fp->fp[i], &fp->fp[i + 1],
7478 left * sizeof(struct file *));
7479 }
7480 fp->count--;
7481 if (!fp->count) {
7482 kfree_skb(skb);
7483 skb = NULL;
7484 } else {
7485 __skb_queue_tail(&list, skb);
7486 }
7487 fput(file);
7488 file = NULL;
7489 break;
7490 }
7491
7492 if (!file)
7493 break;
7494
7495 __skb_queue_tail(&list, skb);
7496
7497 skb = skb_dequeue(head);
7498 }
7499
7500 if (skb_peek(&list)) {
7501 spin_lock_irq(&head->lock);
7502 while ((skb = __skb_dequeue(&list)) != NULL)
7503 __skb_queue_tail(head, skb);
7504 spin_unlock_irq(&head->lock);
7505 }
7506 #else
7507 fput(file);
7508 #endif
7509 }
7510
7511 struct io_file_put {
7512 struct list_head list;
7513 struct file *file;
7514 };
7515
7516 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7517 {
7518 struct fixed_file_data *file_data = ref_node->file_data;
7519 struct io_ring_ctx *ctx = file_data->ctx;
7520 struct io_file_put *pfile, *tmp;
7521
7522 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7523 list_del(&pfile->list);
7524 io_ring_file_put(ctx, pfile->file);
7525 kfree(pfile);
7526 }
7527
7528 percpu_ref_exit(&ref_node->refs);
7529 kfree(ref_node);
7530 percpu_ref_put(&file_data->refs);
7531 }
7532
7533 static void io_file_put_work(struct work_struct *work)
7534 {
7535 struct io_ring_ctx *ctx;
7536 struct llist_node *node;
7537
7538 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7539 node = llist_del_all(&ctx->file_put_llist);
7540
7541 while (node) {
7542 struct fixed_file_ref_node *ref_node;
7543 struct llist_node *next = node->next;
7544
7545 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7546 __io_file_put_work(ref_node);
7547 node = next;
7548 }
7549 }
7550
7551 static void io_file_data_ref_zero(struct percpu_ref *ref)
7552 {
7553 struct fixed_file_ref_node *ref_node;
7554 struct fixed_file_data *data;
7555 struct io_ring_ctx *ctx;
7556 bool first_add = false;
7557 int delay = HZ;
7558
7559 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7560 data = ref_node->file_data;
7561 ctx = data->ctx;
7562
7563 spin_lock(&data->lock);
7564 ref_node->done = true;
7565
7566 while (!list_empty(&data->ref_list)) {
7567 ref_node = list_first_entry(&data->ref_list,
7568 struct fixed_file_ref_node, node);
7569 /* recycle ref nodes in order */
7570 if (!ref_node->done)
7571 break;
7572 list_del(&ref_node->node);
7573 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7574 }
7575 spin_unlock(&data->lock);
7576
7577 if (percpu_ref_is_dying(&data->refs))
7578 delay = 0;
7579
7580 if (!delay)
7581 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7582 else if (first_add)
7583 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7584 }
7585
7586 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7587 struct io_ring_ctx *ctx)
7588 {
7589 struct fixed_file_ref_node *ref_node;
7590
7591 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7592 if (!ref_node)
7593 return ERR_PTR(-ENOMEM);
7594
7595 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7596 0, GFP_KERNEL)) {
7597 kfree(ref_node);
7598 return ERR_PTR(-ENOMEM);
7599 }
7600 INIT_LIST_HEAD(&ref_node->node);
7601 INIT_LIST_HEAD(&ref_node->file_list);
7602 ref_node->file_data = ctx->file_data;
7603 ref_node->done = false;
7604 return ref_node;
7605 }
7606
7607 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7608 {
7609 percpu_ref_exit(&ref_node->refs);
7610 kfree(ref_node);
7611 }
7612
7613 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7614 unsigned nr_args)
7615 {
7616 __s32 __user *fds = (__s32 __user *) arg;
7617 unsigned nr_tables, i;
7618 struct file *file;
7619 int fd, ret = -ENOMEM;
7620 struct fixed_file_ref_node *ref_node;
7621 struct fixed_file_data *file_data;
7622
7623 if (ctx->file_data)
7624 return -EBUSY;
7625 if (!nr_args)
7626 return -EINVAL;
7627 if (nr_args > IORING_MAX_FIXED_FILES)
7628 return -EMFILE;
7629
7630 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7631 if (!file_data)
7632 return -ENOMEM;
7633 file_data->ctx = ctx;
7634 init_completion(&file_data->done);
7635 INIT_LIST_HEAD(&file_data->ref_list);
7636 spin_lock_init(&file_data->lock);
7637
7638 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7639 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7640 GFP_KERNEL);
7641 if (!file_data->table)
7642 goto out_free;
7643
7644 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7645 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7646 goto out_free;
7647
7648 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7649 goto out_ref;
7650 ctx->file_data = file_data;
7651
7652 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7653 struct fixed_file_table *table;
7654 unsigned index;
7655
7656 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7657 ret = -EFAULT;
7658 goto out_fput;
7659 }
7660 /* allow sparse sets */
7661 if (fd == -1)
7662 continue;
7663
7664 file = fget(fd);
7665 ret = -EBADF;
7666 if (!file)
7667 goto out_fput;
7668
7669 /*
7670 * Don't allow io_uring instances to be registered. If UNIX
7671 * isn't enabled, then this causes a reference cycle and this
7672 * instance can never get freed. If UNIX is enabled we'll
7673 * handle it just fine, but there's still no point in allowing
7674 * a ring fd as it doesn't support regular read/write anyway.
7675 */
7676 if (file->f_op == &io_uring_fops) {
7677 fput(file);
7678 goto out_fput;
7679 }
7680 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7681 index = i & IORING_FILE_TABLE_MASK;
7682 table->files[index] = file;
7683 }
7684
7685 ret = io_sqe_files_scm(ctx);
7686 if (ret) {
7687 io_sqe_files_unregister(ctx);
7688 return ret;
7689 }
7690
7691 ref_node = alloc_fixed_file_ref_node(ctx);
7692 if (IS_ERR(ref_node)) {
7693 io_sqe_files_unregister(ctx);
7694 return PTR_ERR(ref_node);
7695 }
7696
7697 file_data->node = ref_node;
7698 spin_lock(&file_data->lock);
7699 list_add_tail(&ref_node->node, &file_data->ref_list);
7700 spin_unlock(&file_data->lock);
7701 percpu_ref_get(&file_data->refs);
7702 return ret;
7703 out_fput:
7704 for (i = 0; i < ctx->nr_user_files; i++) {
7705 file = io_file_from_index(ctx, i);
7706 if (file)
7707 fput(file);
7708 }
7709 for (i = 0; i < nr_tables; i++)
7710 kfree(file_data->table[i].files);
7711 ctx->nr_user_files = 0;
7712 out_ref:
7713 percpu_ref_exit(&file_data->refs);
7714 out_free:
7715 kfree(file_data->table);
7716 kfree(file_data);
7717 ctx->file_data = NULL;
7718 return ret;
7719 }
7720
7721 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7722 int index)
7723 {
7724 #if defined(CONFIG_UNIX)
7725 struct sock *sock = ctx->ring_sock->sk;
7726 struct sk_buff_head *head = &sock->sk_receive_queue;
7727 struct sk_buff *skb;
7728
7729 /*
7730 * See if we can merge this file into an existing skb SCM_RIGHTS
7731 * file set. If there's no room, fall back to allocating a new skb
7732 * and filling it in.
7733 */
7734 spin_lock_irq(&head->lock);
7735 skb = skb_peek(head);
7736 if (skb) {
7737 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7738
7739 if (fpl->count < SCM_MAX_FD) {
7740 __skb_unlink(skb, head);
7741 spin_unlock_irq(&head->lock);
7742 fpl->fp[fpl->count] = get_file(file);
7743 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7744 fpl->count++;
7745 spin_lock_irq(&head->lock);
7746 __skb_queue_head(head, skb);
7747 } else {
7748 skb = NULL;
7749 }
7750 }
7751 spin_unlock_irq(&head->lock);
7752
7753 if (skb) {
7754 fput(file);
7755 return 0;
7756 }
7757
7758 return __io_sqe_files_scm(ctx, 1, index);
7759 #else
7760 return 0;
7761 #endif
7762 }
7763
7764 static int io_queue_file_removal(struct fixed_file_data *data,
7765 struct file *file)
7766 {
7767 struct io_file_put *pfile;
7768 struct fixed_file_ref_node *ref_node = data->node;
7769
7770 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7771 if (!pfile)
7772 return -ENOMEM;
7773
7774 pfile->file = file;
7775 list_add(&pfile->list, &ref_node->file_list);
7776
7777 return 0;
7778 }
7779
7780 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7781 struct io_uring_files_update *up,
7782 unsigned nr_args)
7783 {
7784 struct fixed_file_data *data = ctx->file_data;
7785 struct fixed_file_ref_node *ref_node;
7786 struct file *file;
7787 __s32 __user *fds;
7788 int fd, i, err;
7789 __u32 done;
7790 bool needs_switch = false;
7791
7792 if (check_add_overflow(up->offset, nr_args, &done))
7793 return -EOVERFLOW;
7794 if (done > ctx->nr_user_files)
7795 return -EINVAL;
7796
7797 ref_node = alloc_fixed_file_ref_node(ctx);
7798 if (IS_ERR(ref_node))
7799 return PTR_ERR(ref_node);
7800
7801 done = 0;
7802 fds = u64_to_user_ptr(up->fds);
7803 while (nr_args) {
7804 struct fixed_file_table *table;
7805 unsigned index;
7806
7807 err = 0;
7808 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7809 err = -EFAULT;
7810 break;
7811 }
7812 i = array_index_nospec(up->offset, ctx->nr_user_files);
7813 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7814 index = i & IORING_FILE_TABLE_MASK;
7815 if (table->files[index]) {
7816 file = table->files[index];
7817 err = io_queue_file_removal(data, file);
7818 if (err)
7819 break;
7820 table->files[index] = NULL;
7821 needs_switch = true;
7822 }
7823 if (fd != -1) {
7824 file = fget(fd);
7825 if (!file) {
7826 err = -EBADF;
7827 break;
7828 }
7829 /*
7830 * Don't allow io_uring instances to be registered. If
7831 * UNIX isn't enabled, then this causes a reference
7832 * cycle and this instance can never get freed. If UNIX
7833 * is enabled we'll handle it just fine, but there's
7834 * still no point in allowing a ring fd as it doesn't
7835 * support regular read/write anyway.
7836 */
7837 if (file->f_op == &io_uring_fops) {
7838 fput(file);
7839 err = -EBADF;
7840 break;
7841 }
7842 table->files[index] = file;
7843 err = io_sqe_file_register(ctx, file, i);
7844 if (err) {
7845 table->files[index] = NULL;
7846 fput(file);
7847 break;
7848 }
7849 }
7850 nr_args--;
7851 done++;
7852 up->offset++;
7853 }
7854
7855 if (needs_switch) {
7856 percpu_ref_kill(&data->node->refs);
7857 spin_lock(&data->lock);
7858 list_add_tail(&ref_node->node, &data->ref_list);
7859 data->node = ref_node;
7860 spin_unlock(&data->lock);
7861 percpu_ref_get(&ctx->file_data->refs);
7862 } else
7863 destroy_fixed_file_ref_node(ref_node);
7864
7865 return done ? done : err;
7866 }
7867
7868 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7869 unsigned nr_args)
7870 {
7871 struct io_uring_files_update up;
7872
7873 if (!ctx->file_data)
7874 return -ENXIO;
7875 if (!nr_args)
7876 return -EINVAL;
7877 if (copy_from_user(&up, arg, sizeof(up)))
7878 return -EFAULT;
7879 if (up.resv)
7880 return -EINVAL;
7881
7882 return __io_sqe_files_update(ctx, &up, nr_args);
7883 }
7884
7885 static void io_free_work(struct io_wq_work *work)
7886 {
7887 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7888
7889 /* Consider that io_steal_work() relies on this ref */
7890 io_put_req(req);
7891 }
7892
7893 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7894 struct io_uring_params *p)
7895 {
7896 struct io_wq_data data;
7897 struct fd f;
7898 struct io_ring_ctx *ctx_attach;
7899 unsigned int concurrency;
7900 int ret = 0;
7901
7902 data.user = ctx->user;
7903 data.free_work = io_free_work;
7904 data.do_work = io_wq_submit_work;
7905
7906 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7907 /* Do QD, or 4 * CPUS, whatever is smallest */
7908 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7909
7910 ctx->io_wq = io_wq_create(concurrency, &data);
7911 if (IS_ERR(ctx->io_wq)) {
7912 ret = PTR_ERR(ctx->io_wq);
7913 ctx->io_wq = NULL;
7914 }
7915 return ret;
7916 }
7917
7918 f = fdget(p->wq_fd);
7919 if (!f.file)
7920 return -EBADF;
7921
7922 if (f.file->f_op != &io_uring_fops) {
7923 ret = -EINVAL;
7924 goto out_fput;
7925 }
7926
7927 ctx_attach = f.file->private_data;
7928 /* @io_wq is protected by holding the fd */
7929 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7930 ret = -EINVAL;
7931 goto out_fput;
7932 }
7933
7934 ctx->io_wq = ctx_attach->io_wq;
7935 out_fput:
7936 fdput(f);
7937 return ret;
7938 }
7939
7940 static int io_uring_alloc_task_context(struct task_struct *task)
7941 {
7942 struct io_uring_task *tctx;
7943 int ret;
7944
7945 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7946 if (unlikely(!tctx))
7947 return -ENOMEM;
7948
7949 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7950 if (unlikely(ret)) {
7951 kfree(tctx);
7952 return ret;
7953 }
7954
7955 xa_init(&tctx->xa);
7956 init_waitqueue_head(&tctx->wait);
7957 tctx->last = NULL;
7958 atomic_set(&tctx->in_idle, 0);
7959 tctx->sqpoll = false;
7960 io_init_identity(&tctx->__identity);
7961 tctx->identity = &tctx->__identity;
7962 task->io_uring = tctx;
7963 return 0;
7964 }
7965
7966 void __io_uring_free(struct task_struct *tsk)
7967 {
7968 struct io_uring_task *tctx = tsk->io_uring;
7969
7970 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7971 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
7972 if (tctx->identity != &tctx->__identity)
7973 kfree(tctx->identity);
7974 percpu_counter_destroy(&tctx->inflight);
7975 kfree(tctx);
7976 tsk->io_uring = NULL;
7977 }
7978
7979 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7980 struct io_uring_params *p)
7981 {
7982 int ret;
7983
7984 if (ctx->flags & IORING_SETUP_SQPOLL) {
7985 struct io_sq_data *sqd;
7986
7987 ret = -EPERM;
7988 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
7989 goto err;
7990
7991 sqd = io_get_sq_data(p);
7992 if (IS_ERR(sqd)) {
7993 ret = PTR_ERR(sqd);
7994 goto err;
7995 }
7996
7997 ctx->sq_data = sqd;
7998 io_sq_thread_park(sqd);
7999 mutex_lock(&sqd->ctx_lock);
8000 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8001 mutex_unlock(&sqd->ctx_lock);
8002 io_sq_thread_unpark(sqd);
8003
8004 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8005 if (!ctx->sq_thread_idle)
8006 ctx->sq_thread_idle = HZ;
8007
8008 if (sqd->thread)
8009 goto done;
8010
8011 if (p->flags & IORING_SETUP_SQ_AFF) {
8012 int cpu = p->sq_thread_cpu;
8013
8014 ret = -EINVAL;
8015 if (cpu >= nr_cpu_ids)
8016 goto err;
8017 if (!cpu_online(cpu))
8018 goto err;
8019
8020 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8021 cpu, "io_uring-sq");
8022 } else {
8023 sqd->thread = kthread_create(io_sq_thread, sqd,
8024 "io_uring-sq");
8025 }
8026 if (IS_ERR(sqd->thread)) {
8027 ret = PTR_ERR(sqd->thread);
8028 sqd->thread = NULL;
8029 goto err;
8030 }
8031 ret = io_uring_alloc_task_context(sqd->thread);
8032 if (ret)
8033 goto err;
8034 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8035 /* Can't have SQ_AFF without SQPOLL */
8036 ret = -EINVAL;
8037 goto err;
8038 }
8039
8040 done:
8041 ret = io_init_wq_offload(ctx, p);
8042 if (ret)
8043 goto err;
8044
8045 return 0;
8046 err:
8047 io_finish_async(ctx);
8048 return ret;
8049 }
8050
8051 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8052 {
8053 struct io_sq_data *sqd = ctx->sq_data;
8054
8055 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8056 wake_up_process(sqd->thread);
8057 }
8058
8059 static inline void __io_unaccount_mem(struct user_struct *user,
8060 unsigned long nr_pages)
8061 {
8062 atomic_long_sub(nr_pages, &user->locked_vm);
8063 }
8064
8065 static inline int __io_account_mem(struct user_struct *user,
8066 unsigned long nr_pages)
8067 {
8068 unsigned long page_limit, cur_pages, new_pages;
8069
8070 /* Don't allow more pages than we can safely lock */
8071 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8072
8073 do {
8074 cur_pages = atomic_long_read(&user->locked_vm);
8075 new_pages = cur_pages + nr_pages;
8076 if (new_pages > page_limit)
8077 return -ENOMEM;
8078 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8079 new_pages) != cur_pages);
8080
8081 return 0;
8082 }
8083
8084 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8085 enum io_mem_account acct)
8086 {
8087 if (ctx->limit_mem)
8088 __io_unaccount_mem(ctx->user, nr_pages);
8089
8090 if (ctx->mm_account) {
8091 if (acct == ACCT_LOCKED)
8092 ctx->mm_account->locked_vm -= nr_pages;
8093 else if (acct == ACCT_PINNED)
8094 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8095 }
8096 }
8097
8098 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8099 enum io_mem_account acct)
8100 {
8101 int ret;
8102
8103 if (ctx->limit_mem) {
8104 ret = __io_account_mem(ctx->user, nr_pages);
8105 if (ret)
8106 return ret;
8107 }
8108
8109 if (ctx->mm_account) {
8110 if (acct == ACCT_LOCKED)
8111 ctx->mm_account->locked_vm += nr_pages;
8112 else if (acct == ACCT_PINNED)
8113 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8114 }
8115
8116 return 0;
8117 }
8118
8119 static void io_mem_free(void *ptr)
8120 {
8121 struct page *page;
8122
8123 if (!ptr)
8124 return;
8125
8126 page = virt_to_head_page(ptr);
8127 if (put_page_testzero(page))
8128 free_compound_page(page);
8129 }
8130
8131 static void *io_mem_alloc(size_t size)
8132 {
8133 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8134 __GFP_NORETRY;
8135
8136 return (void *) __get_free_pages(gfp_flags, get_order(size));
8137 }
8138
8139 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8140 size_t *sq_offset)
8141 {
8142 struct io_rings *rings;
8143 size_t off, sq_array_size;
8144
8145 off = struct_size(rings, cqes, cq_entries);
8146 if (off == SIZE_MAX)
8147 return SIZE_MAX;
8148
8149 #ifdef CONFIG_SMP
8150 off = ALIGN(off, SMP_CACHE_BYTES);
8151 if (off == 0)
8152 return SIZE_MAX;
8153 #endif
8154
8155 if (sq_offset)
8156 *sq_offset = off;
8157
8158 sq_array_size = array_size(sizeof(u32), sq_entries);
8159 if (sq_array_size == SIZE_MAX)
8160 return SIZE_MAX;
8161
8162 if (check_add_overflow(off, sq_array_size, &off))
8163 return SIZE_MAX;
8164
8165 return off;
8166 }
8167
8168 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8169 {
8170 size_t pages;
8171
8172 pages = (size_t)1 << get_order(
8173 rings_size(sq_entries, cq_entries, NULL));
8174 pages += (size_t)1 << get_order(
8175 array_size(sizeof(struct io_uring_sqe), sq_entries));
8176
8177 return pages;
8178 }
8179
8180 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8181 {
8182 int i, j;
8183
8184 if (!ctx->user_bufs)
8185 return -ENXIO;
8186
8187 for (i = 0; i < ctx->nr_user_bufs; i++) {
8188 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8189
8190 for (j = 0; j < imu->nr_bvecs; j++)
8191 unpin_user_page(imu->bvec[j].bv_page);
8192
8193 if (imu->acct_pages)
8194 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8195 kvfree(imu->bvec);
8196 imu->nr_bvecs = 0;
8197 }
8198
8199 kfree(ctx->user_bufs);
8200 ctx->user_bufs = NULL;
8201 ctx->nr_user_bufs = 0;
8202 return 0;
8203 }
8204
8205 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8206 void __user *arg, unsigned index)
8207 {
8208 struct iovec __user *src;
8209
8210 #ifdef CONFIG_COMPAT
8211 if (ctx->compat) {
8212 struct compat_iovec __user *ciovs;
8213 struct compat_iovec ciov;
8214
8215 ciovs = (struct compat_iovec __user *) arg;
8216 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8217 return -EFAULT;
8218
8219 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8220 dst->iov_len = ciov.iov_len;
8221 return 0;
8222 }
8223 #endif
8224 src = (struct iovec __user *) arg;
8225 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8226 return -EFAULT;
8227 return 0;
8228 }
8229
8230 /*
8231 * Not super efficient, but this is just a registration time. And we do cache
8232 * the last compound head, so generally we'll only do a full search if we don't
8233 * match that one.
8234 *
8235 * We check if the given compound head page has already been accounted, to
8236 * avoid double accounting it. This allows us to account the full size of the
8237 * page, not just the constituent pages of a huge page.
8238 */
8239 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8240 int nr_pages, struct page *hpage)
8241 {
8242 int i, j;
8243
8244 /* check current page array */
8245 for (i = 0; i < nr_pages; i++) {
8246 if (!PageCompound(pages[i]))
8247 continue;
8248 if (compound_head(pages[i]) == hpage)
8249 return true;
8250 }
8251
8252 /* check previously registered pages */
8253 for (i = 0; i < ctx->nr_user_bufs; i++) {
8254 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8255
8256 for (j = 0; j < imu->nr_bvecs; j++) {
8257 if (!PageCompound(imu->bvec[j].bv_page))
8258 continue;
8259 if (compound_head(imu->bvec[j].bv_page) == hpage)
8260 return true;
8261 }
8262 }
8263
8264 return false;
8265 }
8266
8267 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8268 int nr_pages, struct io_mapped_ubuf *imu,
8269 struct page **last_hpage)
8270 {
8271 int i, ret;
8272
8273 for (i = 0; i < nr_pages; i++) {
8274 if (!PageCompound(pages[i])) {
8275 imu->acct_pages++;
8276 } else {
8277 struct page *hpage;
8278
8279 hpage = compound_head(pages[i]);
8280 if (hpage == *last_hpage)
8281 continue;
8282 *last_hpage = hpage;
8283 if (headpage_already_acct(ctx, pages, i, hpage))
8284 continue;
8285 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8286 }
8287 }
8288
8289 if (!imu->acct_pages)
8290 return 0;
8291
8292 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8293 if (ret)
8294 imu->acct_pages = 0;
8295 return ret;
8296 }
8297
8298 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8299 unsigned nr_args)
8300 {
8301 struct vm_area_struct **vmas = NULL;
8302 struct page **pages = NULL;
8303 struct page *last_hpage = NULL;
8304 int i, j, got_pages = 0;
8305 int ret = -EINVAL;
8306
8307 if (ctx->user_bufs)
8308 return -EBUSY;
8309 if (!nr_args || nr_args > UIO_MAXIOV)
8310 return -EINVAL;
8311
8312 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8313 GFP_KERNEL);
8314 if (!ctx->user_bufs)
8315 return -ENOMEM;
8316
8317 for (i = 0; i < nr_args; i++) {
8318 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8319 unsigned long off, start, end, ubuf;
8320 int pret, nr_pages;
8321 struct iovec iov;
8322 size_t size;
8323
8324 ret = io_copy_iov(ctx, &iov, arg, i);
8325 if (ret)
8326 goto err;
8327
8328 /*
8329 * Don't impose further limits on the size and buffer
8330 * constraints here, we'll -EINVAL later when IO is
8331 * submitted if they are wrong.
8332 */
8333 ret = -EFAULT;
8334 if (!iov.iov_base || !iov.iov_len)
8335 goto err;
8336
8337 /* arbitrary limit, but we need something */
8338 if (iov.iov_len > SZ_1G)
8339 goto err;
8340
8341 ubuf = (unsigned long) iov.iov_base;
8342 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8343 start = ubuf >> PAGE_SHIFT;
8344 nr_pages = end - start;
8345
8346 ret = 0;
8347 if (!pages || nr_pages > got_pages) {
8348 kvfree(vmas);
8349 kvfree(pages);
8350 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8351 GFP_KERNEL);
8352 vmas = kvmalloc_array(nr_pages,
8353 sizeof(struct vm_area_struct *),
8354 GFP_KERNEL);
8355 if (!pages || !vmas) {
8356 ret = -ENOMEM;
8357 goto err;
8358 }
8359 got_pages = nr_pages;
8360 }
8361
8362 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8363 GFP_KERNEL);
8364 ret = -ENOMEM;
8365 if (!imu->bvec)
8366 goto err;
8367
8368 ret = 0;
8369 mmap_read_lock(current->mm);
8370 pret = pin_user_pages(ubuf, nr_pages,
8371 FOLL_WRITE | FOLL_LONGTERM,
8372 pages, vmas);
8373 if (pret == nr_pages) {
8374 /* don't support file backed memory */
8375 for (j = 0; j < nr_pages; j++) {
8376 struct vm_area_struct *vma = vmas[j];
8377
8378 if (vma->vm_file &&
8379 !is_file_hugepages(vma->vm_file)) {
8380 ret = -EOPNOTSUPP;
8381 break;
8382 }
8383 }
8384 } else {
8385 ret = pret < 0 ? pret : -EFAULT;
8386 }
8387 mmap_read_unlock(current->mm);
8388 if (ret) {
8389 /*
8390 * if we did partial map, or found file backed vmas,
8391 * release any pages we did get
8392 */
8393 if (pret > 0)
8394 unpin_user_pages(pages, pret);
8395 kvfree(imu->bvec);
8396 goto err;
8397 }
8398
8399 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8400 if (ret) {
8401 unpin_user_pages(pages, pret);
8402 kvfree(imu->bvec);
8403 goto err;
8404 }
8405
8406 off = ubuf & ~PAGE_MASK;
8407 size = iov.iov_len;
8408 for (j = 0; j < nr_pages; j++) {
8409 size_t vec_len;
8410
8411 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8412 imu->bvec[j].bv_page = pages[j];
8413 imu->bvec[j].bv_len = vec_len;
8414 imu->bvec[j].bv_offset = off;
8415 off = 0;
8416 size -= vec_len;
8417 }
8418 /* store original address for later verification */
8419 imu->ubuf = ubuf;
8420 imu->len = iov.iov_len;
8421 imu->nr_bvecs = nr_pages;
8422
8423 ctx->nr_user_bufs++;
8424 }
8425 kvfree(pages);
8426 kvfree(vmas);
8427 return 0;
8428 err:
8429 kvfree(pages);
8430 kvfree(vmas);
8431 io_sqe_buffer_unregister(ctx);
8432 return ret;
8433 }
8434
8435 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8436 {
8437 __s32 __user *fds = arg;
8438 int fd;
8439
8440 if (ctx->cq_ev_fd)
8441 return -EBUSY;
8442
8443 if (copy_from_user(&fd, fds, sizeof(*fds)))
8444 return -EFAULT;
8445
8446 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8447 if (IS_ERR(ctx->cq_ev_fd)) {
8448 int ret = PTR_ERR(ctx->cq_ev_fd);
8449 ctx->cq_ev_fd = NULL;
8450 return ret;
8451 }
8452
8453 return 0;
8454 }
8455
8456 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8457 {
8458 if (ctx->cq_ev_fd) {
8459 eventfd_ctx_put(ctx->cq_ev_fd);
8460 ctx->cq_ev_fd = NULL;
8461 return 0;
8462 }
8463
8464 return -ENXIO;
8465 }
8466
8467 static int __io_destroy_buffers(int id, void *p, void *data)
8468 {
8469 struct io_ring_ctx *ctx = data;
8470 struct io_buffer *buf = p;
8471
8472 __io_remove_buffers(ctx, buf, id, -1U);
8473 return 0;
8474 }
8475
8476 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8477 {
8478 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8479 idr_destroy(&ctx->io_buffer_idr);
8480 }
8481
8482 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8483 {
8484 io_finish_async(ctx);
8485 io_sqe_buffer_unregister(ctx);
8486
8487 if (ctx->sqo_task) {
8488 put_task_struct(ctx->sqo_task);
8489 ctx->sqo_task = NULL;
8490 mmdrop(ctx->mm_account);
8491 ctx->mm_account = NULL;
8492 }
8493
8494 #ifdef CONFIG_BLK_CGROUP
8495 if (ctx->sqo_blkcg_css)
8496 css_put(ctx->sqo_blkcg_css);
8497 #endif
8498
8499 io_sqe_files_unregister(ctx);
8500 io_eventfd_unregister(ctx);
8501 io_destroy_buffers(ctx);
8502 idr_destroy(&ctx->personality_idr);
8503
8504 #if defined(CONFIG_UNIX)
8505 if (ctx->ring_sock) {
8506 ctx->ring_sock->file = NULL; /* so that iput() is called */
8507 sock_release(ctx->ring_sock);
8508 }
8509 #endif
8510
8511 io_mem_free(ctx->rings);
8512 io_mem_free(ctx->sq_sqes);
8513
8514 percpu_ref_exit(&ctx->refs);
8515 free_uid(ctx->user);
8516 put_cred(ctx->creds);
8517 kfree(ctx->cancel_hash);
8518 kmem_cache_free(req_cachep, ctx->fallback_req);
8519 kfree(ctx);
8520 }
8521
8522 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8523 {
8524 struct io_ring_ctx *ctx = file->private_data;
8525 __poll_t mask = 0;
8526
8527 poll_wait(file, &ctx->cq_wait, wait);
8528 /*
8529 * synchronizes with barrier from wq_has_sleeper call in
8530 * io_commit_cqring
8531 */
8532 smp_rmb();
8533 if (!io_sqring_full(ctx))
8534 mask |= EPOLLOUT | EPOLLWRNORM;
8535 if (io_cqring_events(ctx, false))
8536 mask |= EPOLLIN | EPOLLRDNORM;
8537
8538 return mask;
8539 }
8540
8541 static int io_uring_fasync(int fd, struct file *file, int on)
8542 {
8543 struct io_ring_ctx *ctx = file->private_data;
8544
8545 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8546 }
8547
8548 static int io_remove_personalities(int id, void *p, void *data)
8549 {
8550 struct io_ring_ctx *ctx = data;
8551 struct io_identity *iod;
8552
8553 iod = idr_remove(&ctx->personality_idr, id);
8554 if (iod) {
8555 put_cred(iod->creds);
8556 if (refcount_dec_and_test(&iod->count))
8557 kfree(iod);
8558 }
8559 return 0;
8560 }
8561
8562 static void io_ring_exit_work(struct work_struct *work)
8563 {
8564 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8565 exit_work);
8566
8567 /*
8568 * If we're doing polled IO and end up having requests being
8569 * submitted async (out-of-line), then completions can come in while
8570 * we're waiting for refs to drop. We need to reap these manually,
8571 * as nobody else will be looking for them.
8572 */
8573 do {
8574 if (ctx->rings)
8575 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8576 io_iopoll_try_reap_events(ctx);
8577 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8578 io_ring_ctx_free(ctx);
8579 }
8580
8581 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8582 {
8583 mutex_lock(&ctx->uring_lock);
8584 percpu_ref_kill(&ctx->refs);
8585 mutex_unlock(&ctx->uring_lock);
8586
8587 io_kill_timeouts(ctx, NULL, NULL);
8588 io_poll_remove_all(ctx, NULL, NULL);
8589
8590 if (ctx->io_wq)
8591 io_wq_cancel_all(ctx->io_wq);
8592
8593 /* if we failed setting up the ctx, we might not have any rings */
8594 if (ctx->rings)
8595 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8596 io_iopoll_try_reap_events(ctx);
8597 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8598
8599 /*
8600 * Do this upfront, so we won't have a grace period where the ring
8601 * is closed but resources aren't reaped yet. This can cause
8602 * spurious failure in setting up a new ring.
8603 */
8604 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8605 ACCT_LOCKED);
8606
8607 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8608 /*
8609 * Use system_unbound_wq to avoid spawning tons of event kworkers
8610 * if we're exiting a ton of rings at the same time. It just adds
8611 * noise and overhead, there's no discernable change in runtime
8612 * over using system_wq.
8613 */
8614 queue_work(system_unbound_wq, &ctx->exit_work);
8615 }
8616
8617 static int io_uring_release(struct inode *inode, struct file *file)
8618 {
8619 struct io_ring_ctx *ctx = file->private_data;
8620
8621 file->private_data = NULL;
8622 io_ring_ctx_wait_and_kill(ctx);
8623 return 0;
8624 }
8625
8626 struct io_task_cancel {
8627 struct task_struct *task;
8628 struct files_struct *files;
8629 };
8630
8631 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8632 {
8633 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8634 struct io_task_cancel *cancel = data;
8635 bool ret;
8636
8637 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8638 unsigned long flags;
8639 struct io_ring_ctx *ctx = req->ctx;
8640
8641 /* protect against races with linked timeouts */
8642 spin_lock_irqsave(&ctx->completion_lock, flags);
8643 ret = io_match_task(req, cancel->task, cancel->files);
8644 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8645 } else {
8646 ret = io_match_task(req, cancel->task, cancel->files);
8647 }
8648 return ret;
8649 }
8650
8651 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8652 struct task_struct *task,
8653 struct files_struct *files)
8654 {
8655 struct io_defer_entry *de = NULL;
8656 LIST_HEAD(list);
8657
8658 spin_lock_irq(&ctx->completion_lock);
8659 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8660 if (io_match_task(de->req, task, files)) {
8661 list_cut_position(&list, &ctx->defer_list, &de->list);
8662 break;
8663 }
8664 }
8665 spin_unlock_irq(&ctx->completion_lock);
8666
8667 while (!list_empty(&list)) {
8668 de = list_first_entry(&list, struct io_defer_entry, list);
8669 list_del_init(&de->list);
8670 req_set_fail_links(de->req);
8671 io_put_req(de->req);
8672 io_req_complete(de->req, -ECANCELED);
8673 kfree(de);
8674 }
8675 }
8676
8677 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8678 struct task_struct *task,
8679 struct files_struct *files)
8680 {
8681 while (!list_empty_careful(&ctx->inflight_list)) {
8682 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8683 struct io_kiocb *req;
8684 DEFINE_WAIT(wait);
8685 bool found = false;
8686
8687 spin_lock_irq(&ctx->inflight_lock);
8688 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8689 if (req->task == task &&
8690 (req->work.flags & IO_WQ_WORK_FILES) &&
8691 req->work.identity->files != files)
8692 continue;
8693 found = true;
8694 break;
8695 }
8696 if (found)
8697 prepare_to_wait(&ctx->inflight_wait, &wait,
8698 TASK_UNINTERRUPTIBLE);
8699 spin_unlock_irq(&ctx->inflight_lock);
8700
8701 /* We need to keep going until we don't find a matching req */
8702 if (!found)
8703 break;
8704
8705 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8706 io_poll_remove_all(ctx, task, files);
8707 io_kill_timeouts(ctx, task, files);
8708 /* cancellations _may_ trigger task work */
8709 io_run_task_work();
8710 schedule();
8711 finish_wait(&ctx->inflight_wait, &wait);
8712 }
8713 }
8714
8715 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8716 struct task_struct *task)
8717 {
8718 while (1) {
8719 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8720 enum io_wq_cancel cret;
8721 bool ret = false;
8722
8723 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8724 if (cret != IO_WQ_CANCEL_NOTFOUND)
8725 ret = true;
8726
8727 /* SQPOLL thread does its own polling */
8728 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8729 while (!list_empty_careful(&ctx->iopoll_list)) {
8730 io_iopoll_try_reap_events(ctx);
8731 ret = true;
8732 }
8733 }
8734
8735 ret |= io_poll_remove_all(ctx, task, NULL);
8736 ret |= io_kill_timeouts(ctx, task, NULL);
8737 if (!ret)
8738 break;
8739 io_run_task_work();
8740 cond_resched();
8741 }
8742 }
8743
8744 /*
8745 * We need to iteratively cancel requests, in case a request has dependent
8746 * hard links. These persist even for failure of cancelations, hence keep
8747 * looping until none are found.
8748 */
8749 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8750 struct files_struct *files)
8751 {
8752 struct task_struct *task = current;
8753
8754 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8755 task = ctx->sq_data->thread;
8756 atomic_inc(&task->io_uring->in_idle);
8757 io_sq_thread_park(ctx->sq_data);
8758 }
8759
8760 io_cancel_defer_files(ctx, task, files);
8761 io_cqring_overflow_flush(ctx, true, task, files);
8762 io_uring_cancel_files(ctx, task, files);
8763
8764 if (!files)
8765 __io_uring_cancel_task_requests(ctx, task);
8766
8767 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8768 atomic_dec(&task->io_uring->in_idle);
8769 /*
8770 * If the files that are going away are the ones in the thread
8771 * identity, clear them out.
8772 */
8773 if (task->io_uring->identity->files == files)
8774 task->io_uring->identity->files = NULL;
8775 io_sq_thread_unpark(ctx->sq_data);
8776 }
8777 }
8778
8779 /*
8780 * Note that this task has used io_uring. We use it for cancelation purposes.
8781 */
8782 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8783 {
8784 struct io_uring_task *tctx = current->io_uring;
8785
8786 if (unlikely(!tctx)) {
8787 int ret;
8788
8789 ret = io_uring_alloc_task_context(current);
8790 if (unlikely(ret))
8791 return ret;
8792 tctx = current->io_uring;
8793 }
8794 if (tctx->last != file) {
8795 void *old = xa_load(&tctx->xa, (unsigned long)file);
8796
8797 if (!old) {
8798 get_file(file);
8799 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8800 }
8801 tctx->last = file;
8802 }
8803
8804 /*
8805 * This is race safe in that the task itself is doing this, hence it
8806 * cannot be going through the exit/cancel paths at the same time.
8807 * This cannot be modified while exit/cancel is running.
8808 */
8809 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8810 tctx->sqpoll = true;
8811
8812 return 0;
8813 }
8814
8815 /*
8816 * Remove this io_uring_file -> task mapping.
8817 */
8818 static void io_uring_del_task_file(struct file *file)
8819 {
8820 struct io_uring_task *tctx = current->io_uring;
8821
8822 if (tctx->last == file)
8823 tctx->last = NULL;
8824 file = xa_erase(&tctx->xa, (unsigned long)file);
8825 if (file)
8826 fput(file);
8827 }
8828
8829 /*
8830 * Drop task note for this file if we're the only ones that hold it after
8831 * pending fput()
8832 */
8833 static void io_uring_attempt_task_drop(struct file *file)
8834 {
8835 if (!current->io_uring)
8836 return;
8837 /*
8838 * fput() is pending, will be 2 if the only other ref is our potential
8839 * task file note. If the task is exiting, drop regardless of count.
8840 */
8841 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8842 atomic_long_read(&file->f_count) == 2)
8843 io_uring_del_task_file(file);
8844 }
8845
8846 void __io_uring_files_cancel(struct files_struct *files)
8847 {
8848 struct io_uring_task *tctx = current->io_uring;
8849 struct file *file;
8850 unsigned long index;
8851
8852 /* make sure overflow events are dropped */
8853 atomic_inc(&tctx->in_idle);
8854
8855 xa_for_each(&tctx->xa, index, file) {
8856 struct io_ring_ctx *ctx = file->private_data;
8857
8858 io_uring_cancel_task_requests(ctx, files);
8859 if (files)
8860 io_uring_del_task_file(file);
8861 }
8862
8863 atomic_dec(&tctx->in_idle);
8864 }
8865
8866 static s64 tctx_inflight(struct io_uring_task *tctx)
8867 {
8868 unsigned long index;
8869 struct file *file;
8870 s64 inflight;
8871
8872 inflight = percpu_counter_sum(&tctx->inflight);
8873 if (!tctx->sqpoll)
8874 return inflight;
8875
8876 /*
8877 * If we have SQPOLL rings, then we need to iterate and find them, and
8878 * add the pending count for those.
8879 */
8880 xa_for_each(&tctx->xa, index, file) {
8881 struct io_ring_ctx *ctx = file->private_data;
8882
8883 if (ctx->flags & IORING_SETUP_SQPOLL) {
8884 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
8885
8886 inflight += percpu_counter_sum(&__tctx->inflight);
8887 }
8888 }
8889
8890 return inflight;
8891 }
8892
8893 /*
8894 * Find any io_uring fd that this task has registered or done IO on, and cancel
8895 * requests.
8896 */
8897 void __io_uring_task_cancel(void)
8898 {
8899 struct io_uring_task *tctx = current->io_uring;
8900 DEFINE_WAIT(wait);
8901 s64 inflight;
8902
8903 /* make sure overflow events are dropped */
8904 atomic_inc(&tctx->in_idle);
8905
8906 do {
8907 /* read completions before cancelations */
8908 inflight = tctx_inflight(tctx);
8909 if (!inflight)
8910 break;
8911 __io_uring_files_cancel(NULL);
8912
8913 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8914
8915 /*
8916 * If we've seen completions, retry. This avoids a race where
8917 * a completion comes in before we did prepare_to_wait().
8918 */
8919 if (inflight != tctx_inflight(tctx))
8920 continue;
8921 schedule();
8922 } while (1);
8923
8924 finish_wait(&tctx->wait, &wait);
8925 atomic_dec(&tctx->in_idle);
8926 }
8927
8928 static int io_uring_flush(struct file *file, void *data)
8929 {
8930 io_uring_attempt_task_drop(file);
8931 return 0;
8932 }
8933
8934 static void *io_uring_validate_mmap_request(struct file *file,
8935 loff_t pgoff, size_t sz)
8936 {
8937 struct io_ring_ctx *ctx = file->private_data;
8938 loff_t offset = pgoff << PAGE_SHIFT;
8939 struct page *page;
8940 void *ptr;
8941
8942 switch (offset) {
8943 case IORING_OFF_SQ_RING:
8944 case IORING_OFF_CQ_RING:
8945 ptr = ctx->rings;
8946 break;
8947 case IORING_OFF_SQES:
8948 ptr = ctx->sq_sqes;
8949 break;
8950 default:
8951 return ERR_PTR(-EINVAL);
8952 }
8953
8954 page = virt_to_head_page(ptr);
8955 if (sz > page_size(page))
8956 return ERR_PTR(-EINVAL);
8957
8958 return ptr;
8959 }
8960
8961 #ifdef CONFIG_MMU
8962
8963 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8964 {
8965 size_t sz = vma->vm_end - vma->vm_start;
8966 unsigned long pfn;
8967 void *ptr;
8968
8969 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
8970 if (IS_ERR(ptr))
8971 return PTR_ERR(ptr);
8972
8973 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
8974 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
8975 }
8976
8977 #else /* !CONFIG_MMU */
8978
8979 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8980 {
8981 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
8982 }
8983
8984 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
8985 {
8986 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
8987 }
8988
8989 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
8990 unsigned long addr, unsigned long len,
8991 unsigned long pgoff, unsigned long flags)
8992 {
8993 void *ptr;
8994
8995 ptr = io_uring_validate_mmap_request(file, pgoff, len);
8996 if (IS_ERR(ptr))
8997 return PTR_ERR(ptr);
8998
8999 return (unsigned long) ptr;
9000 }
9001
9002 #endif /* !CONFIG_MMU */
9003
9004 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9005 {
9006 DEFINE_WAIT(wait);
9007
9008 do {
9009 if (!io_sqring_full(ctx))
9010 break;
9011
9012 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9013
9014 if (!io_sqring_full(ctx))
9015 break;
9016
9017 schedule();
9018 } while (!signal_pending(current));
9019
9020 finish_wait(&ctx->sqo_sq_wait, &wait);
9021 }
9022
9023 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9024 struct __kernel_timespec __user **ts,
9025 const sigset_t __user **sig)
9026 {
9027 struct io_uring_getevents_arg arg;
9028
9029 /*
9030 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9031 * is just a pointer to the sigset_t.
9032 */
9033 if (!(flags & IORING_ENTER_EXT_ARG)) {
9034 *sig = (const sigset_t __user *) argp;
9035 *ts = NULL;
9036 return 0;
9037 }
9038
9039 /*
9040 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9041 * timespec and sigset_t pointers if good.
9042 */
9043 if (*argsz != sizeof(arg))
9044 return -EINVAL;
9045 if (copy_from_user(&arg, argp, sizeof(arg)))
9046 return -EFAULT;
9047 *sig = u64_to_user_ptr(arg.sigmask);
9048 *argsz = arg.sigmask_sz;
9049 *ts = u64_to_user_ptr(arg.ts);
9050 return 0;
9051 }
9052
9053 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9054 u32, min_complete, u32, flags, const void __user *, argp,
9055 size_t, argsz)
9056 {
9057 struct io_ring_ctx *ctx;
9058 long ret = -EBADF;
9059 int submitted = 0;
9060 struct fd f;
9061
9062 io_run_task_work();
9063
9064 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9065 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9066 return -EINVAL;
9067
9068 f = fdget(fd);
9069 if (!f.file)
9070 return -EBADF;
9071
9072 ret = -EOPNOTSUPP;
9073 if (f.file->f_op != &io_uring_fops)
9074 goto out_fput;
9075
9076 ret = -ENXIO;
9077 ctx = f.file->private_data;
9078 if (!percpu_ref_tryget(&ctx->refs))
9079 goto out_fput;
9080
9081 ret = -EBADFD;
9082 if (ctx->flags & IORING_SETUP_R_DISABLED)
9083 goto out;
9084
9085 /*
9086 * For SQ polling, the thread will do all submissions and completions.
9087 * Just return the requested submit count, and wake the thread if
9088 * we were asked to.
9089 */
9090 ret = 0;
9091 if (ctx->flags & IORING_SETUP_SQPOLL) {
9092 if (!list_empty_careful(&ctx->cq_overflow_list))
9093 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9094 if (flags & IORING_ENTER_SQ_WAKEUP)
9095 wake_up(&ctx->sq_data->wait);
9096 if (flags & IORING_ENTER_SQ_WAIT)
9097 io_sqpoll_wait_sq(ctx);
9098 submitted = to_submit;
9099 } else if (to_submit) {
9100 ret = io_uring_add_task_file(ctx, f.file);
9101 if (unlikely(ret))
9102 goto out;
9103 mutex_lock(&ctx->uring_lock);
9104 submitted = io_submit_sqes(ctx, to_submit);
9105 mutex_unlock(&ctx->uring_lock);
9106
9107 if (submitted != to_submit)
9108 goto out;
9109 }
9110 if (flags & IORING_ENTER_GETEVENTS) {
9111 const sigset_t __user *sig;
9112 struct __kernel_timespec __user *ts;
9113
9114 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9115 if (unlikely(ret))
9116 goto out;
9117
9118 min_complete = min(min_complete, ctx->cq_entries);
9119
9120 /*
9121 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9122 * space applications don't need to do io completion events
9123 * polling again, they can rely on io_sq_thread to do polling
9124 * work, which can reduce cpu usage and uring_lock contention.
9125 */
9126 if (ctx->flags & IORING_SETUP_IOPOLL &&
9127 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9128 ret = io_iopoll_check(ctx, min_complete);
9129 } else {
9130 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9131 }
9132 }
9133
9134 out:
9135 percpu_ref_put(&ctx->refs);
9136 out_fput:
9137 fdput(f);
9138 return submitted ? submitted : ret;
9139 }
9140
9141 #ifdef CONFIG_PROC_FS
9142 static int io_uring_show_cred(int id, void *p, void *data)
9143 {
9144 struct io_identity *iod = p;
9145 const struct cred *cred = iod->creds;
9146 struct seq_file *m = data;
9147 struct user_namespace *uns = seq_user_ns(m);
9148 struct group_info *gi;
9149 kernel_cap_t cap;
9150 unsigned __capi;
9151 int g;
9152
9153 seq_printf(m, "%5d\n", id);
9154 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9155 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9156 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9157 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9158 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9159 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9160 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9161 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9162 seq_puts(m, "\n\tGroups:\t");
9163 gi = cred->group_info;
9164 for (g = 0; g < gi->ngroups; g++) {
9165 seq_put_decimal_ull(m, g ? " " : "",
9166 from_kgid_munged(uns, gi->gid[g]));
9167 }
9168 seq_puts(m, "\n\tCapEff:\t");
9169 cap = cred->cap_effective;
9170 CAP_FOR_EACH_U32(__capi)
9171 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9172 seq_putc(m, '\n');
9173 return 0;
9174 }
9175
9176 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9177 {
9178 struct io_sq_data *sq = NULL;
9179 bool has_lock;
9180 int i;
9181
9182 /*
9183 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9184 * since fdinfo case grabs it in the opposite direction of normal use
9185 * cases. If we fail to get the lock, we just don't iterate any
9186 * structures that could be going away outside the io_uring mutex.
9187 */
9188 has_lock = mutex_trylock(&ctx->uring_lock);
9189
9190 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9191 sq = ctx->sq_data;
9192
9193 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9194 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9195 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9196 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9197 struct fixed_file_table *table;
9198 struct file *f;
9199
9200 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9201 f = table->files[i & IORING_FILE_TABLE_MASK];
9202 if (f)
9203 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9204 else
9205 seq_printf(m, "%5u: <none>\n", i);
9206 }
9207 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9208 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9209 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9210
9211 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9212 (unsigned int) buf->len);
9213 }
9214 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9215 seq_printf(m, "Personalities:\n");
9216 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9217 }
9218 seq_printf(m, "PollList:\n");
9219 spin_lock_irq(&ctx->completion_lock);
9220 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9221 struct hlist_head *list = &ctx->cancel_hash[i];
9222 struct io_kiocb *req;
9223
9224 hlist_for_each_entry(req, list, hash_node)
9225 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9226 req->task->task_works != NULL);
9227 }
9228 spin_unlock_irq(&ctx->completion_lock);
9229 if (has_lock)
9230 mutex_unlock(&ctx->uring_lock);
9231 }
9232
9233 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9234 {
9235 struct io_ring_ctx *ctx = f->private_data;
9236
9237 if (percpu_ref_tryget(&ctx->refs)) {
9238 __io_uring_show_fdinfo(ctx, m);
9239 percpu_ref_put(&ctx->refs);
9240 }
9241 }
9242 #endif
9243
9244 static const struct file_operations io_uring_fops = {
9245 .release = io_uring_release,
9246 .flush = io_uring_flush,
9247 .mmap = io_uring_mmap,
9248 #ifndef CONFIG_MMU
9249 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9250 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9251 #endif
9252 .poll = io_uring_poll,
9253 .fasync = io_uring_fasync,
9254 #ifdef CONFIG_PROC_FS
9255 .show_fdinfo = io_uring_show_fdinfo,
9256 #endif
9257 };
9258
9259 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9260 struct io_uring_params *p)
9261 {
9262 struct io_rings *rings;
9263 size_t size, sq_array_offset;
9264
9265 /* make sure these are sane, as we already accounted them */
9266 ctx->sq_entries = p->sq_entries;
9267 ctx->cq_entries = p->cq_entries;
9268
9269 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9270 if (size == SIZE_MAX)
9271 return -EOVERFLOW;
9272
9273 rings = io_mem_alloc(size);
9274 if (!rings)
9275 return -ENOMEM;
9276
9277 ctx->rings = rings;
9278 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9279 rings->sq_ring_mask = p->sq_entries - 1;
9280 rings->cq_ring_mask = p->cq_entries - 1;
9281 rings->sq_ring_entries = p->sq_entries;
9282 rings->cq_ring_entries = p->cq_entries;
9283 ctx->sq_mask = rings->sq_ring_mask;
9284 ctx->cq_mask = rings->cq_ring_mask;
9285
9286 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9287 if (size == SIZE_MAX) {
9288 io_mem_free(ctx->rings);
9289 ctx->rings = NULL;
9290 return -EOVERFLOW;
9291 }
9292
9293 ctx->sq_sqes = io_mem_alloc(size);
9294 if (!ctx->sq_sqes) {
9295 io_mem_free(ctx->rings);
9296 ctx->rings = NULL;
9297 return -ENOMEM;
9298 }
9299
9300 return 0;
9301 }
9302
9303 /*
9304 * Allocate an anonymous fd, this is what constitutes the application
9305 * visible backing of an io_uring instance. The application mmaps this
9306 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9307 * we have to tie this fd to a socket for file garbage collection purposes.
9308 */
9309 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9310 {
9311 struct file *file;
9312 int ret;
9313
9314 #if defined(CONFIG_UNIX)
9315 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9316 &ctx->ring_sock);
9317 if (ret)
9318 return ret;
9319 #endif
9320
9321 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9322 if (ret < 0)
9323 goto err;
9324
9325 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9326 O_RDWR | O_CLOEXEC);
9327 if (IS_ERR(file)) {
9328 err_fd:
9329 put_unused_fd(ret);
9330 ret = PTR_ERR(file);
9331 goto err;
9332 }
9333
9334 #if defined(CONFIG_UNIX)
9335 ctx->ring_sock->file = file;
9336 #endif
9337 if (unlikely(io_uring_add_task_file(ctx, file))) {
9338 file = ERR_PTR(-ENOMEM);
9339 goto err_fd;
9340 }
9341 fd_install(ret, file);
9342 return ret;
9343 err:
9344 #if defined(CONFIG_UNIX)
9345 sock_release(ctx->ring_sock);
9346 ctx->ring_sock = NULL;
9347 #endif
9348 return ret;
9349 }
9350
9351 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9352 struct io_uring_params __user *params)
9353 {
9354 struct user_struct *user = NULL;
9355 struct io_ring_ctx *ctx;
9356 bool limit_mem;
9357 int ret;
9358
9359 if (!entries)
9360 return -EINVAL;
9361 if (entries > IORING_MAX_ENTRIES) {
9362 if (!(p->flags & IORING_SETUP_CLAMP))
9363 return -EINVAL;
9364 entries = IORING_MAX_ENTRIES;
9365 }
9366
9367 /*
9368 * Use twice as many entries for the CQ ring. It's possible for the
9369 * application to drive a higher depth than the size of the SQ ring,
9370 * since the sqes are only used at submission time. This allows for
9371 * some flexibility in overcommitting a bit. If the application has
9372 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9373 * of CQ ring entries manually.
9374 */
9375 p->sq_entries = roundup_pow_of_two(entries);
9376 if (p->flags & IORING_SETUP_CQSIZE) {
9377 /*
9378 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9379 * to a power-of-two, if it isn't already. We do NOT impose
9380 * any cq vs sq ring sizing.
9381 */
9382 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9383 if (p->cq_entries < p->sq_entries)
9384 return -EINVAL;
9385 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9386 if (!(p->flags & IORING_SETUP_CLAMP))
9387 return -EINVAL;
9388 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9389 }
9390 } else {
9391 p->cq_entries = 2 * p->sq_entries;
9392 }
9393
9394 user = get_uid(current_user());
9395 limit_mem = !capable(CAP_IPC_LOCK);
9396
9397 if (limit_mem) {
9398 ret = __io_account_mem(user,
9399 ring_pages(p->sq_entries, p->cq_entries));
9400 if (ret) {
9401 free_uid(user);
9402 return ret;
9403 }
9404 }
9405
9406 ctx = io_ring_ctx_alloc(p);
9407 if (!ctx) {
9408 if (limit_mem)
9409 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9410 p->cq_entries));
9411 free_uid(user);
9412 return -ENOMEM;
9413 }
9414 ctx->compat = in_compat_syscall();
9415 ctx->user = user;
9416 ctx->creds = get_current_cred();
9417 #ifdef CONFIG_AUDIT
9418 ctx->loginuid = current->loginuid;
9419 ctx->sessionid = current->sessionid;
9420 #endif
9421 ctx->sqo_task = get_task_struct(current);
9422
9423 /*
9424 * This is just grabbed for accounting purposes. When a process exits,
9425 * the mm is exited and dropped before the files, hence we need to hang
9426 * on to this mm purely for the purposes of being able to unaccount
9427 * memory (locked/pinned vm). It's not used for anything else.
9428 */
9429 mmgrab(current->mm);
9430 ctx->mm_account = current->mm;
9431
9432 #ifdef CONFIG_BLK_CGROUP
9433 /*
9434 * The sq thread will belong to the original cgroup it was inited in.
9435 * If the cgroup goes offline (e.g. disabling the io controller), then
9436 * issued bios will be associated with the closest cgroup later in the
9437 * block layer.
9438 */
9439 rcu_read_lock();
9440 ctx->sqo_blkcg_css = blkcg_css();
9441 ret = css_tryget_online(ctx->sqo_blkcg_css);
9442 rcu_read_unlock();
9443 if (!ret) {
9444 /* don't init against a dying cgroup, have the user try again */
9445 ctx->sqo_blkcg_css = NULL;
9446 ret = -ENODEV;
9447 goto err;
9448 }
9449 #endif
9450
9451 /*
9452 * Account memory _before_ installing the file descriptor. Once
9453 * the descriptor is installed, it can get closed at any time. Also
9454 * do this before hitting the general error path, as ring freeing
9455 * will un-account as well.
9456 */
9457 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9458 ACCT_LOCKED);
9459 ctx->limit_mem = limit_mem;
9460
9461 ret = io_allocate_scq_urings(ctx, p);
9462 if (ret)
9463 goto err;
9464
9465 ret = io_sq_offload_create(ctx, p);
9466 if (ret)
9467 goto err;
9468
9469 if (!(p->flags & IORING_SETUP_R_DISABLED))
9470 io_sq_offload_start(ctx);
9471
9472 memset(&p->sq_off, 0, sizeof(p->sq_off));
9473 p->sq_off.head = offsetof(struct io_rings, sq.head);
9474 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9475 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9476 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9477 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9478 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9479 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9480
9481 memset(&p->cq_off, 0, sizeof(p->cq_off));
9482 p->cq_off.head = offsetof(struct io_rings, cq.head);
9483 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9484 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9485 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9486 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9487 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9488 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9489
9490 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9491 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9492 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9493 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9494 IORING_FEAT_EXT_ARG;
9495
9496 if (copy_to_user(params, p, sizeof(*p))) {
9497 ret = -EFAULT;
9498 goto err;
9499 }
9500
9501 /*
9502 * Install ring fd as the very last thing, so we don't risk someone
9503 * having closed it before we finish setup
9504 */
9505 ret = io_uring_get_fd(ctx);
9506 if (ret < 0)
9507 goto err;
9508
9509 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9510 return ret;
9511 err:
9512 io_ring_ctx_wait_and_kill(ctx);
9513 return ret;
9514 }
9515
9516 /*
9517 * Sets up an aio uring context, and returns the fd. Applications asks for a
9518 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9519 * params structure passed in.
9520 */
9521 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9522 {
9523 struct io_uring_params p;
9524 int i;
9525
9526 if (copy_from_user(&p, params, sizeof(p)))
9527 return -EFAULT;
9528 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9529 if (p.resv[i])
9530 return -EINVAL;
9531 }
9532
9533 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9534 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9535 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9536 IORING_SETUP_R_DISABLED))
9537 return -EINVAL;
9538
9539 return io_uring_create(entries, &p, params);
9540 }
9541
9542 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9543 struct io_uring_params __user *, params)
9544 {
9545 return io_uring_setup(entries, params);
9546 }
9547
9548 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9549 {
9550 struct io_uring_probe *p;
9551 size_t size;
9552 int i, ret;
9553
9554 size = struct_size(p, ops, nr_args);
9555 if (size == SIZE_MAX)
9556 return -EOVERFLOW;
9557 p = kzalloc(size, GFP_KERNEL);
9558 if (!p)
9559 return -ENOMEM;
9560
9561 ret = -EFAULT;
9562 if (copy_from_user(p, arg, size))
9563 goto out;
9564 ret = -EINVAL;
9565 if (memchr_inv(p, 0, size))
9566 goto out;
9567
9568 p->last_op = IORING_OP_LAST - 1;
9569 if (nr_args > IORING_OP_LAST)
9570 nr_args = IORING_OP_LAST;
9571
9572 for (i = 0; i < nr_args; i++) {
9573 p->ops[i].op = i;
9574 if (!io_op_defs[i].not_supported)
9575 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9576 }
9577 p->ops_len = i;
9578
9579 ret = 0;
9580 if (copy_to_user(arg, p, size))
9581 ret = -EFAULT;
9582 out:
9583 kfree(p);
9584 return ret;
9585 }
9586
9587 static int io_register_personality(struct io_ring_ctx *ctx)
9588 {
9589 struct io_identity *id;
9590 int ret;
9591
9592 id = kmalloc(sizeof(*id), GFP_KERNEL);
9593 if (unlikely(!id))
9594 return -ENOMEM;
9595
9596 io_init_identity(id);
9597 id->creds = get_current_cred();
9598
9599 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9600 if (ret < 0) {
9601 put_cred(id->creds);
9602 kfree(id);
9603 }
9604 return ret;
9605 }
9606
9607 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9608 {
9609 struct io_identity *iod;
9610
9611 iod = idr_remove(&ctx->personality_idr, id);
9612 if (iod) {
9613 put_cred(iod->creds);
9614 if (refcount_dec_and_test(&iod->count))
9615 kfree(iod);
9616 return 0;
9617 }
9618
9619 return -EINVAL;
9620 }
9621
9622 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9623 unsigned int nr_args)
9624 {
9625 struct io_uring_restriction *res;
9626 size_t size;
9627 int i, ret;
9628
9629 /* Restrictions allowed only if rings started disabled */
9630 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9631 return -EBADFD;
9632
9633 /* We allow only a single restrictions registration */
9634 if (ctx->restrictions.registered)
9635 return -EBUSY;
9636
9637 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9638 return -EINVAL;
9639
9640 size = array_size(nr_args, sizeof(*res));
9641 if (size == SIZE_MAX)
9642 return -EOVERFLOW;
9643
9644 res = memdup_user(arg, size);
9645 if (IS_ERR(res))
9646 return PTR_ERR(res);
9647
9648 ret = 0;
9649
9650 for (i = 0; i < nr_args; i++) {
9651 switch (res[i].opcode) {
9652 case IORING_RESTRICTION_REGISTER_OP:
9653 if (res[i].register_op >= IORING_REGISTER_LAST) {
9654 ret = -EINVAL;
9655 goto out;
9656 }
9657
9658 __set_bit(res[i].register_op,
9659 ctx->restrictions.register_op);
9660 break;
9661 case IORING_RESTRICTION_SQE_OP:
9662 if (res[i].sqe_op >= IORING_OP_LAST) {
9663 ret = -EINVAL;
9664 goto out;
9665 }
9666
9667 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9668 break;
9669 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9670 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9671 break;
9672 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9673 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9674 break;
9675 default:
9676 ret = -EINVAL;
9677 goto out;
9678 }
9679 }
9680
9681 out:
9682 /* Reset all restrictions if an error happened */
9683 if (ret != 0)
9684 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9685 else
9686 ctx->restrictions.registered = true;
9687
9688 kfree(res);
9689 return ret;
9690 }
9691
9692 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9693 {
9694 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9695 return -EBADFD;
9696
9697 if (ctx->restrictions.registered)
9698 ctx->restricted = 1;
9699
9700 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9701
9702 io_sq_offload_start(ctx);
9703
9704 return 0;
9705 }
9706
9707 static bool io_register_op_must_quiesce(int op)
9708 {
9709 switch (op) {
9710 case IORING_UNREGISTER_FILES:
9711 case IORING_REGISTER_FILES_UPDATE:
9712 case IORING_REGISTER_PROBE:
9713 case IORING_REGISTER_PERSONALITY:
9714 case IORING_UNREGISTER_PERSONALITY:
9715 return false;
9716 default:
9717 return true;
9718 }
9719 }
9720
9721 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9722 void __user *arg, unsigned nr_args)
9723 __releases(ctx->uring_lock)
9724 __acquires(ctx->uring_lock)
9725 {
9726 int ret;
9727
9728 /*
9729 * We're inside the ring mutex, if the ref is already dying, then
9730 * someone else killed the ctx or is already going through
9731 * io_uring_register().
9732 */
9733 if (percpu_ref_is_dying(&ctx->refs))
9734 return -ENXIO;
9735
9736 if (io_register_op_must_quiesce(opcode)) {
9737 percpu_ref_kill(&ctx->refs);
9738
9739 /*
9740 * Drop uring mutex before waiting for references to exit. If
9741 * another thread is currently inside io_uring_enter() it might
9742 * need to grab the uring_lock to make progress. If we hold it
9743 * here across the drain wait, then we can deadlock. It's safe
9744 * to drop the mutex here, since no new references will come in
9745 * after we've killed the percpu ref.
9746 */
9747 mutex_unlock(&ctx->uring_lock);
9748 do {
9749 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9750 if (!ret)
9751 break;
9752 ret = io_run_task_work_sig();
9753 if (ret < 0)
9754 break;
9755 } while (1);
9756
9757 mutex_lock(&ctx->uring_lock);
9758
9759 if (ret) {
9760 percpu_ref_resurrect(&ctx->refs);
9761 goto out_quiesce;
9762 }
9763 }
9764
9765 if (ctx->restricted) {
9766 if (opcode >= IORING_REGISTER_LAST) {
9767 ret = -EINVAL;
9768 goto out;
9769 }
9770
9771 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9772 ret = -EACCES;
9773 goto out;
9774 }
9775 }
9776
9777 switch (opcode) {
9778 case IORING_REGISTER_BUFFERS:
9779 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9780 break;
9781 case IORING_UNREGISTER_BUFFERS:
9782 ret = -EINVAL;
9783 if (arg || nr_args)
9784 break;
9785 ret = io_sqe_buffer_unregister(ctx);
9786 break;
9787 case IORING_REGISTER_FILES:
9788 ret = io_sqe_files_register(ctx, arg, nr_args);
9789 break;
9790 case IORING_UNREGISTER_FILES:
9791 ret = -EINVAL;
9792 if (arg || nr_args)
9793 break;
9794 ret = io_sqe_files_unregister(ctx);
9795 break;
9796 case IORING_REGISTER_FILES_UPDATE:
9797 ret = io_sqe_files_update(ctx, arg, nr_args);
9798 break;
9799 case IORING_REGISTER_EVENTFD:
9800 case IORING_REGISTER_EVENTFD_ASYNC:
9801 ret = -EINVAL;
9802 if (nr_args != 1)
9803 break;
9804 ret = io_eventfd_register(ctx, arg);
9805 if (ret)
9806 break;
9807 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9808 ctx->eventfd_async = 1;
9809 else
9810 ctx->eventfd_async = 0;
9811 break;
9812 case IORING_UNREGISTER_EVENTFD:
9813 ret = -EINVAL;
9814 if (arg || nr_args)
9815 break;
9816 ret = io_eventfd_unregister(ctx);
9817 break;
9818 case IORING_REGISTER_PROBE:
9819 ret = -EINVAL;
9820 if (!arg || nr_args > 256)
9821 break;
9822 ret = io_probe(ctx, arg, nr_args);
9823 break;
9824 case IORING_REGISTER_PERSONALITY:
9825 ret = -EINVAL;
9826 if (arg || nr_args)
9827 break;
9828 ret = io_register_personality(ctx);
9829 break;
9830 case IORING_UNREGISTER_PERSONALITY:
9831 ret = -EINVAL;
9832 if (arg)
9833 break;
9834 ret = io_unregister_personality(ctx, nr_args);
9835 break;
9836 case IORING_REGISTER_ENABLE_RINGS:
9837 ret = -EINVAL;
9838 if (arg || nr_args)
9839 break;
9840 ret = io_register_enable_rings(ctx);
9841 break;
9842 case IORING_REGISTER_RESTRICTIONS:
9843 ret = io_register_restrictions(ctx, arg, nr_args);
9844 break;
9845 default:
9846 ret = -EINVAL;
9847 break;
9848 }
9849
9850 out:
9851 if (io_register_op_must_quiesce(opcode)) {
9852 /* bring the ctx back to life */
9853 percpu_ref_reinit(&ctx->refs);
9854 out_quiesce:
9855 reinit_completion(&ctx->ref_comp);
9856 }
9857 return ret;
9858 }
9859
9860 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9861 void __user *, arg, unsigned int, nr_args)
9862 {
9863 struct io_ring_ctx *ctx;
9864 long ret = -EBADF;
9865 struct fd f;
9866
9867 f = fdget(fd);
9868 if (!f.file)
9869 return -EBADF;
9870
9871 ret = -EOPNOTSUPP;
9872 if (f.file->f_op != &io_uring_fops)
9873 goto out_fput;
9874
9875 ctx = f.file->private_data;
9876
9877 mutex_lock(&ctx->uring_lock);
9878 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9879 mutex_unlock(&ctx->uring_lock);
9880 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9881 ctx->cq_ev_fd != NULL, ret);
9882 out_fput:
9883 fdput(f);
9884 return ret;
9885 }
9886
9887 static int __init io_uring_init(void)
9888 {
9889 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9890 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9891 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9892 } while (0)
9893
9894 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9895 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9896 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9897 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9898 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9899 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9900 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9901 BUILD_BUG_SQE_ELEM(8, __u64, off);
9902 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9903 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9904 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9905 BUILD_BUG_SQE_ELEM(24, __u32, len);
9906 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9907 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9908 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9909 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9910 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9911 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9912 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9913 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9914 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9915 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9916 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9917 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9918 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9919 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
9920 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
9921 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
9922 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
9923 BUILD_BUG_SQE_ELEM(42, __u16, personality);
9924 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
9925
9926 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
9927 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
9928 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
9929 return 0;
9930 };
9931 __initcall(io_uring_init);