]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: move io_init_req() into io_submit_sqe()
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
109 IOSQE_BUFFER_SELECT)
110
111 struct io_uring {
112 u32 head ____cacheline_aligned_in_smp;
113 u32 tail ____cacheline_aligned_in_smp;
114 };
115
116 /*
117 * This data is shared with the application through the mmap at offsets
118 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
119 *
120 * The offsets to the member fields are published through struct
121 * io_sqring_offsets when calling io_uring_setup.
122 */
123 struct io_rings {
124 /*
125 * Head and tail offsets into the ring; the offsets need to be
126 * masked to get valid indices.
127 *
128 * The kernel controls head of the sq ring and the tail of the cq ring,
129 * and the application controls tail of the sq ring and the head of the
130 * cq ring.
131 */
132 struct io_uring sq, cq;
133 /*
134 * Bitmasks to apply to head and tail offsets (constant, equals
135 * ring_entries - 1)
136 */
137 u32 sq_ring_mask, cq_ring_mask;
138 /* Ring sizes (constant, power of 2) */
139 u32 sq_ring_entries, cq_ring_entries;
140 /*
141 * Number of invalid entries dropped by the kernel due to
142 * invalid index stored in array
143 *
144 * Written by the kernel, shouldn't be modified by the
145 * application (i.e. get number of "new events" by comparing to
146 * cached value).
147 *
148 * After a new SQ head value was read by the application this
149 * counter includes all submissions that were dropped reaching
150 * the new SQ head (and possibly more).
151 */
152 u32 sq_dropped;
153 /*
154 * Runtime SQ flags
155 *
156 * Written by the kernel, shouldn't be modified by the
157 * application.
158 *
159 * The application needs a full memory barrier before checking
160 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
161 */
162 u32 sq_flags;
163 /*
164 * Runtime CQ flags
165 *
166 * Written by the application, shouldn't be modified by the
167 * kernel.
168 */
169 u32 cq_flags;
170 /*
171 * Number of completion events lost because the queue was full;
172 * this should be avoided by the application by making sure
173 * there are not more requests pending than there is space in
174 * the completion queue.
175 *
176 * Written by the kernel, shouldn't be modified by the
177 * application (i.e. get number of "new events" by comparing to
178 * cached value).
179 *
180 * As completion events come in out of order this counter is not
181 * ordered with any other data.
182 */
183 u32 cq_overflow;
184 /*
185 * Ring buffer of completion events.
186 *
187 * The kernel writes completion events fresh every time they are
188 * produced, so the application is allowed to modify pending
189 * entries.
190 */
191 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
192 };
193
194 enum io_uring_cmd_flags {
195 IO_URING_F_NONBLOCK = 1,
196 IO_URING_F_COMPLETE_DEFER = 2,
197 };
198
199 struct io_mapped_ubuf {
200 u64 ubuf;
201 size_t len;
202 struct bio_vec *bvec;
203 unsigned int nr_bvecs;
204 unsigned long acct_pages;
205 };
206
207 struct io_ring_ctx;
208
209 struct io_rsrc_put {
210 struct list_head list;
211 union {
212 void *rsrc;
213 struct file *file;
214 };
215 };
216
217 struct fixed_rsrc_table {
218 struct file **files;
219 };
220
221 struct fixed_rsrc_ref_node {
222 struct percpu_ref refs;
223 struct list_head node;
224 struct list_head rsrc_list;
225 struct fixed_rsrc_data *rsrc_data;
226 void (*rsrc_put)(struct io_ring_ctx *ctx,
227 struct io_rsrc_put *prsrc);
228 struct llist_node llist;
229 bool done;
230 };
231
232 struct fixed_rsrc_data {
233 struct fixed_rsrc_table *table;
234 struct io_ring_ctx *ctx;
235
236 struct fixed_rsrc_ref_node *node;
237 struct percpu_ref refs;
238 struct completion done;
239 };
240
241 struct io_buffer {
242 struct list_head list;
243 __u64 addr;
244 __s32 len;
245 __u16 bid;
246 };
247
248 struct io_restriction {
249 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
250 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
251 u8 sqe_flags_allowed;
252 u8 sqe_flags_required;
253 bool registered;
254 };
255
256 struct io_sq_data {
257 refcount_t refs;
258 struct mutex lock;
259
260 /* ctx's that are using this sqd */
261 struct list_head ctx_list;
262 struct list_head ctx_new_list;
263 struct mutex ctx_lock;
264
265 struct task_struct *thread;
266 struct wait_queue_head wait;
267
268 unsigned sq_thread_idle;
269 };
270
271 #define IO_IOPOLL_BATCH 8
272 #define IO_COMPL_BATCH 32
273 #define IO_REQ_CACHE_SIZE 32
274 #define IO_REQ_ALLOC_BATCH 8
275
276 struct io_comp_state {
277 struct io_kiocb *reqs[IO_COMPL_BATCH];
278 unsigned int nr;
279 unsigned int locked_free_nr;
280 /* inline/task_work completion list, under ->uring_lock */
281 struct list_head free_list;
282 /* IRQ completion list, under ->completion_lock */
283 struct list_head locked_free_list;
284 };
285
286 struct io_submit_state {
287 struct blk_plug plug;
288
289 /*
290 * io_kiocb alloc cache
291 */
292 void *reqs[IO_REQ_CACHE_SIZE];
293 unsigned int free_reqs;
294
295 bool plug_started;
296
297 /*
298 * Batch completion logic
299 */
300 struct io_comp_state comp;
301
302 /*
303 * File reference cache
304 */
305 struct file *file;
306 unsigned int fd;
307 unsigned int file_refs;
308 unsigned int ios_left;
309 };
310
311 struct io_ring_ctx {
312 struct {
313 struct percpu_ref refs;
314 } ____cacheline_aligned_in_smp;
315
316 struct {
317 unsigned int flags;
318 unsigned int compat: 1;
319 unsigned int limit_mem: 1;
320 unsigned int cq_overflow_flushed: 1;
321 unsigned int drain_next: 1;
322 unsigned int eventfd_async: 1;
323 unsigned int restricted: 1;
324 unsigned int sqo_dead: 1;
325
326 /*
327 * Ring buffer of indices into array of io_uring_sqe, which is
328 * mmapped by the application using the IORING_OFF_SQES offset.
329 *
330 * This indirection could e.g. be used to assign fixed
331 * io_uring_sqe entries to operations and only submit them to
332 * the queue when needed.
333 *
334 * The kernel modifies neither the indices array nor the entries
335 * array.
336 */
337 u32 *sq_array;
338 unsigned cached_sq_head;
339 unsigned sq_entries;
340 unsigned sq_mask;
341 unsigned sq_thread_idle;
342 unsigned cached_sq_dropped;
343 unsigned cached_cq_overflow;
344 unsigned long sq_check_overflow;
345
346 struct list_head defer_list;
347 struct list_head timeout_list;
348 struct list_head cq_overflow_list;
349
350 struct io_uring_sqe *sq_sqes;
351 } ____cacheline_aligned_in_smp;
352
353 struct {
354 struct mutex uring_lock;
355 wait_queue_head_t wait;
356 } ____cacheline_aligned_in_smp;
357
358 struct io_submit_state submit_state;
359
360 struct io_rings *rings;
361
362 /* IO offload */
363 struct io_wq *io_wq;
364
365 /*
366 * For SQPOLL usage - we hold a reference to the parent task, so we
367 * have access to the ->files
368 */
369 struct task_struct *sqo_task;
370
371 /* Only used for accounting purposes */
372 struct mm_struct *mm_account;
373
374 #ifdef CONFIG_BLK_CGROUP
375 struct cgroup_subsys_state *sqo_blkcg_css;
376 #endif
377
378 struct io_sq_data *sq_data; /* if using sq thread polling */
379
380 struct wait_queue_head sqo_sq_wait;
381 struct list_head sqd_list;
382
383 /*
384 * If used, fixed file set. Writers must ensure that ->refs is dead,
385 * readers must ensure that ->refs is alive as long as the file* is
386 * used. Only updated through io_uring_register(2).
387 */
388 struct fixed_rsrc_data *file_data;
389 unsigned nr_user_files;
390
391 /* if used, fixed mapped user buffers */
392 unsigned nr_user_bufs;
393 struct io_mapped_ubuf *user_bufs;
394
395 struct user_struct *user;
396
397 const struct cred *creds;
398
399 #ifdef CONFIG_AUDIT
400 kuid_t loginuid;
401 unsigned int sessionid;
402 #endif
403
404 struct completion ref_comp;
405 struct completion sq_thread_comp;
406
407 #if defined(CONFIG_UNIX)
408 struct socket *ring_sock;
409 #endif
410
411 struct idr io_buffer_idr;
412
413 struct idr personality_idr;
414
415 struct {
416 unsigned cached_cq_tail;
417 unsigned cq_entries;
418 unsigned cq_mask;
419 atomic_t cq_timeouts;
420 unsigned cq_last_tm_flush;
421 unsigned long cq_check_overflow;
422 struct wait_queue_head cq_wait;
423 struct fasync_struct *cq_fasync;
424 struct eventfd_ctx *cq_ev_fd;
425 } ____cacheline_aligned_in_smp;
426
427 struct {
428 spinlock_t completion_lock;
429
430 /*
431 * ->iopoll_list is protected by the ctx->uring_lock for
432 * io_uring instances that don't use IORING_SETUP_SQPOLL.
433 * For SQPOLL, only the single threaded io_sq_thread() will
434 * manipulate the list, hence no extra locking is needed there.
435 */
436 struct list_head iopoll_list;
437 struct hlist_head *cancel_hash;
438 unsigned cancel_hash_bits;
439 bool poll_multi_file;
440
441 spinlock_t inflight_lock;
442 struct list_head inflight_list;
443 } ____cacheline_aligned_in_smp;
444
445 struct delayed_work rsrc_put_work;
446 struct llist_head rsrc_put_llist;
447 struct list_head rsrc_ref_list;
448 spinlock_t rsrc_ref_lock;
449
450 struct io_restriction restrictions;
451
452 /* Keep this last, we don't need it for the fast path */
453 struct work_struct exit_work;
454 };
455
456 /*
457 * First field must be the file pointer in all the
458 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
459 */
460 struct io_poll_iocb {
461 struct file *file;
462 struct wait_queue_head *head;
463 __poll_t events;
464 bool done;
465 bool canceled;
466 struct wait_queue_entry wait;
467 };
468
469 struct io_poll_remove {
470 struct file *file;
471 u64 addr;
472 };
473
474 struct io_close {
475 struct file *file;
476 int fd;
477 };
478
479 struct io_timeout_data {
480 struct io_kiocb *req;
481 struct hrtimer timer;
482 struct timespec64 ts;
483 enum hrtimer_mode mode;
484 };
485
486 struct io_accept {
487 struct file *file;
488 struct sockaddr __user *addr;
489 int __user *addr_len;
490 int flags;
491 unsigned long nofile;
492 };
493
494 struct io_sync {
495 struct file *file;
496 loff_t len;
497 loff_t off;
498 int flags;
499 int mode;
500 };
501
502 struct io_cancel {
503 struct file *file;
504 u64 addr;
505 };
506
507 struct io_timeout {
508 struct file *file;
509 u32 off;
510 u32 target_seq;
511 struct list_head list;
512 /* head of the link, used by linked timeouts only */
513 struct io_kiocb *head;
514 };
515
516 struct io_timeout_rem {
517 struct file *file;
518 u64 addr;
519
520 /* timeout update */
521 struct timespec64 ts;
522 u32 flags;
523 };
524
525 struct io_rw {
526 /* NOTE: kiocb has the file as the first member, so don't do it here */
527 struct kiocb kiocb;
528 u64 addr;
529 u64 len;
530 };
531
532 struct io_connect {
533 struct file *file;
534 struct sockaddr __user *addr;
535 int addr_len;
536 };
537
538 struct io_sr_msg {
539 struct file *file;
540 union {
541 struct user_msghdr __user *umsg;
542 void __user *buf;
543 };
544 int msg_flags;
545 int bgid;
546 size_t len;
547 struct io_buffer *kbuf;
548 };
549
550 struct io_open {
551 struct file *file;
552 int dfd;
553 struct filename *filename;
554 struct open_how how;
555 unsigned long nofile;
556 };
557
558 struct io_rsrc_update {
559 struct file *file;
560 u64 arg;
561 u32 nr_args;
562 u32 offset;
563 };
564
565 struct io_fadvise {
566 struct file *file;
567 u64 offset;
568 u32 len;
569 u32 advice;
570 };
571
572 struct io_madvise {
573 struct file *file;
574 u64 addr;
575 u32 len;
576 u32 advice;
577 };
578
579 struct io_epoll {
580 struct file *file;
581 int epfd;
582 int op;
583 int fd;
584 struct epoll_event event;
585 };
586
587 struct io_splice {
588 struct file *file_out;
589 struct file *file_in;
590 loff_t off_out;
591 loff_t off_in;
592 u64 len;
593 unsigned int flags;
594 };
595
596 struct io_provide_buf {
597 struct file *file;
598 __u64 addr;
599 __s32 len;
600 __u32 bgid;
601 __u16 nbufs;
602 __u16 bid;
603 };
604
605 struct io_statx {
606 struct file *file;
607 int dfd;
608 unsigned int mask;
609 unsigned int flags;
610 const char __user *filename;
611 struct statx __user *buffer;
612 };
613
614 struct io_shutdown {
615 struct file *file;
616 int how;
617 };
618
619 struct io_rename {
620 struct file *file;
621 int old_dfd;
622 int new_dfd;
623 struct filename *oldpath;
624 struct filename *newpath;
625 int flags;
626 };
627
628 struct io_unlink {
629 struct file *file;
630 int dfd;
631 int flags;
632 struct filename *filename;
633 };
634
635 struct io_completion {
636 struct file *file;
637 struct list_head list;
638 int cflags;
639 };
640
641 struct io_async_connect {
642 struct sockaddr_storage address;
643 };
644
645 struct io_async_msghdr {
646 struct iovec fast_iov[UIO_FASTIOV];
647 /* points to an allocated iov, if NULL we use fast_iov instead */
648 struct iovec *free_iov;
649 struct sockaddr __user *uaddr;
650 struct msghdr msg;
651 struct sockaddr_storage addr;
652 };
653
654 struct io_async_rw {
655 struct iovec fast_iov[UIO_FASTIOV];
656 const struct iovec *free_iovec;
657 struct iov_iter iter;
658 size_t bytes_done;
659 struct wait_page_queue wpq;
660 };
661
662 enum {
663 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
664 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
665 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
666 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
667 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
668 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
669
670 REQ_F_FAIL_LINK_BIT,
671 REQ_F_INFLIGHT_BIT,
672 REQ_F_CUR_POS_BIT,
673 REQ_F_NOWAIT_BIT,
674 REQ_F_LINK_TIMEOUT_BIT,
675 REQ_F_ISREG_BIT,
676 REQ_F_NEED_CLEANUP_BIT,
677 REQ_F_POLLED_BIT,
678 REQ_F_BUFFER_SELECTED_BIT,
679 REQ_F_NO_FILE_TABLE_BIT,
680 REQ_F_WORK_INITIALIZED_BIT,
681 REQ_F_LTIMEOUT_ACTIVE_BIT,
682 REQ_F_COMPLETE_INLINE_BIT,
683
684 /* not a real bit, just to check we're not overflowing the space */
685 __REQ_F_LAST_BIT,
686 };
687
688 enum {
689 /* ctx owns file */
690 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
691 /* drain existing IO first */
692 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
693 /* linked sqes */
694 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
695 /* doesn't sever on completion < 0 */
696 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
697 /* IOSQE_ASYNC */
698 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
699 /* IOSQE_BUFFER_SELECT */
700 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
701
702 /* fail rest of links */
703 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
704 /* on inflight list */
705 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
706 /* read/write uses file position */
707 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
708 /* must not punt to workers */
709 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
710 /* has or had linked timeout */
711 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
712 /* regular file */
713 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
714 /* needs cleanup */
715 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
716 /* already went through poll handler */
717 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
718 /* buffer already selected */
719 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
720 /* doesn't need file table for this request */
721 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
722 /* io_wq_work is initialized */
723 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
724 /* linked timeout is active, i.e. prepared by link's head */
725 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
726 /* completion is deferred through io_comp_state */
727 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
728 };
729
730 struct async_poll {
731 struct io_poll_iocb poll;
732 struct io_poll_iocb *double_poll;
733 };
734
735 struct io_task_work {
736 struct io_wq_work_node node;
737 task_work_func_t func;
738 };
739
740 /*
741 * NOTE! Each of the iocb union members has the file pointer
742 * as the first entry in their struct definition. So you can
743 * access the file pointer through any of the sub-structs,
744 * or directly as just 'ki_filp' in this struct.
745 */
746 struct io_kiocb {
747 union {
748 struct file *file;
749 struct io_rw rw;
750 struct io_poll_iocb poll;
751 struct io_poll_remove poll_remove;
752 struct io_accept accept;
753 struct io_sync sync;
754 struct io_cancel cancel;
755 struct io_timeout timeout;
756 struct io_timeout_rem timeout_rem;
757 struct io_connect connect;
758 struct io_sr_msg sr_msg;
759 struct io_open open;
760 struct io_close close;
761 struct io_rsrc_update rsrc_update;
762 struct io_fadvise fadvise;
763 struct io_madvise madvise;
764 struct io_epoll epoll;
765 struct io_splice splice;
766 struct io_provide_buf pbuf;
767 struct io_statx statx;
768 struct io_shutdown shutdown;
769 struct io_rename rename;
770 struct io_unlink unlink;
771 /* use only after cleaning per-op data, see io_clean_op() */
772 struct io_completion compl;
773 };
774
775 /* opcode allocated if it needs to store data for async defer */
776 void *async_data;
777 u8 opcode;
778 /* polled IO has completed */
779 u8 iopoll_completed;
780
781 u16 buf_index;
782 u32 result;
783
784 struct io_ring_ctx *ctx;
785 unsigned int flags;
786 refcount_t refs;
787 struct task_struct *task;
788 u64 user_data;
789
790 struct io_kiocb *link;
791 struct percpu_ref *fixed_rsrc_refs;
792
793 /*
794 * 1. used with ctx->iopoll_list with reads/writes
795 * 2. to track reqs with ->files (see io_op_def::file_table)
796 */
797 struct list_head inflight_entry;
798 union {
799 struct io_task_work io_task_work;
800 struct callback_head task_work;
801 };
802 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
803 struct hlist_node hash_node;
804 struct async_poll *apoll;
805 struct io_wq_work work;
806 };
807
808 struct io_defer_entry {
809 struct list_head list;
810 struct io_kiocb *req;
811 u32 seq;
812 };
813
814 struct io_op_def {
815 /* needs req->file assigned */
816 unsigned needs_file : 1;
817 /* hash wq insertion if file is a regular file */
818 unsigned hash_reg_file : 1;
819 /* unbound wq insertion if file is a non-regular file */
820 unsigned unbound_nonreg_file : 1;
821 /* opcode is not supported by this kernel */
822 unsigned not_supported : 1;
823 /* set if opcode supports polled "wait" */
824 unsigned pollin : 1;
825 unsigned pollout : 1;
826 /* op supports buffer selection */
827 unsigned buffer_select : 1;
828 /* must always have async data allocated */
829 unsigned needs_async_data : 1;
830 /* should block plug */
831 unsigned plug : 1;
832 /* size of async data needed, if any */
833 unsigned short async_size;
834 unsigned work_flags;
835 };
836
837 static const struct io_op_def io_op_defs[] = {
838 [IORING_OP_NOP] = {},
839 [IORING_OP_READV] = {
840 .needs_file = 1,
841 .unbound_nonreg_file = 1,
842 .pollin = 1,
843 .buffer_select = 1,
844 .needs_async_data = 1,
845 .plug = 1,
846 .async_size = sizeof(struct io_async_rw),
847 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
848 },
849 [IORING_OP_WRITEV] = {
850 .needs_file = 1,
851 .hash_reg_file = 1,
852 .unbound_nonreg_file = 1,
853 .pollout = 1,
854 .needs_async_data = 1,
855 .plug = 1,
856 .async_size = sizeof(struct io_async_rw),
857 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
858 IO_WQ_WORK_FSIZE,
859 },
860 [IORING_OP_FSYNC] = {
861 .needs_file = 1,
862 .work_flags = IO_WQ_WORK_BLKCG,
863 },
864 [IORING_OP_READ_FIXED] = {
865 .needs_file = 1,
866 .unbound_nonreg_file = 1,
867 .pollin = 1,
868 .plug = 1,
869 .async_size = sizeof(struct io_async_rw),
870 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
871 },
872 [IORING_OP_WRITE_FIXED] = {
873 .needs_file = 1,
874 .hash_reg_file = 1,
875 .unbound_nonreg_file = 1,
876 .pollout = 1,
877 .plug = 1,
878 .async_size = sizeof(struct io_async_rw),
879 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
880 IO_WQ_WORK_MM,
881 },
882 [IORING_OP_POLL_ADD] = {
883 .needs_file = 1,
884 .unbound_nonreg_file = 1,
885 },
886 [IORING_OP_POLL_REMOVE] = {},
887 [IORING_OP_SYNC_FILE_RANGE] = {
888 .needs_file = 1,
889 .work_flags = IO_WQ_WORK_BLKCG,
890 },
891 [IORING_OP_SENDMSG] = {
892 .needs_file = 1,
893 .unbound_nonreg_file = 1,
894 .pollout = 1,
895 .needs_async_data = 1,
896 .async_size = sizeof(struct io_async_msghdr),
897 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
898 },
899 [IORING_OP_RECVMSG] = {
900 .needs_file = 1,
901 .unbound_nonreg_file = 1,
902 .pollin = 1,
903 .buffer_select = 1,
904 .needs_async_data = 1,
905 .async_size = sizeof(struct io_async_msghdr),
906 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
907 },
908 [IORING_OP_TIMEOUT] = {
909 .needs_async_data = 1,
910 .async_size = sizeof(struct io_timeout_data),
911 .work_flags = IO_WQ_WORK_MM,
912 },
913 [IORING_OP_TIMEOUT_REMOVE] = {
914 /* used by timeout updates' prep() */
915 .work_flags = IO_WQ_WORK_MM,
916 },
917 [IORING_OP_ACCEPT] = {
918 .needs_file = 1,
919 .unbound_nonreg_file = 1,
920 .pollin = 1,
921 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
922 },
923 [IORING_OP_ASYNC_CANCEL] = {},
924 [IORING_OP_LINK_TIMEOUT] = {
925 .needs_async_data = 1,
926 .async_size = sizeof(struct io_timeout_data),
927 .work_flags = IO_WQ_WORK_MM,
928 },
929 [IORING_OP_CONNECT] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .needs_async_data = 1,
934 .async_size = sizeof(struct io_async_connect),
935 .work_flags = IO_WQ_WORK_MM,
936 },
937 [IORING_OP_FALLOCATE] = {
938 .needs_file = 1,
939 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
940 },
941 [IORING_OP_OPENAT] = {
942 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
943 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
944 },
945 [IORING_OP_CLOSE] = {
946 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
947 },
948 [IORING_OP_FILES_UPDATE] = {
949 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
950 },
951 [IORING_OP_STATX] = {
952 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
953 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
954 },
955 [IORING_OP_READ] = {
956 .needs_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollin = 1,
959 .buffer_select = 1,
960 .plug = 1,
961 .async_size = sizeof(struct io_async_rw),
962 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
963 },
964 [IORING_OP_WRITE] = {
965 .needs_file = 1,
966 .unbound_nonreg_file = 1,
967 .pollout = 1,
968 .plug = 1,
969 .async_size = sizeof(struct io_async_rw),
970 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
971 IO_WQ_WORK_FSIZE,
972 },
973 [IORING_OP_FADVISE] = {
974 .needs_file = 1,
975 .work_flags = IO_WQ_WORK_BLKCG,
976 },
977 [IORING_OP_MADVISE] = {
978 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
979 },
980 [IORING_OP_SEND] = {
981 .needs_file = 1,
982 .unbound_nonreg_file = 1,
983 .pollout = 1,
984 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_RECV] = {
987 .needs_file = 1,
988 .unbound_nonreg_file = 1,
989 .pollin = 1,
990 .buffer_select = 1,
991 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
992 },
993 [IORING_OP_OPENAT2] = {
994 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
995 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
996 },
997 [IORING_OP_EPOLL_CTL] = {
998 .unbound_nonreg_file = 1,
999 .work_flags = IO_WQ_WORK_FILES,
1000 },
1001 [IORING_OP_SPLICE] = {
1002 .needs_file = 1,
1003 .hash_reg_file = 1,
1004 .unbound_nonreg_file = 1,
1005 .work_flags = IO_WQ_WORK_BLKCG,
1006 },
1007 [IORING_OP_PROVIDE_BUFFERS] = {},
1008 [IORING_OP_REMOVE_BUFFERS] = {},
1009 [IORING_OP_TEE] = {
1010 .needs_file = 1,
1011 .hash_reg_file = 1,
1012 .unbound_nonreg_file = 1,
1013 },
1014 [IORING_OP_SHUTDOWN] = {
1015 .needs_file = 1,
1016 },
1017 [IORING_OP_RENAMEAT] = {
1018 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1019 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1020 },
1021 [IORING_OP_UNLINKAT] = {
1022 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1023 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1024 },
1025 };
1026
1027 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1028 struct task_struct *task,
1029 struct files_struct *files);
1030 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
1031 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
1032 struct io_ring_ctx *ctx);
1033 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
1034 struct fixed_rsrc_ref_node *ref_node);
1035
1036 static bool io_rw_reissue(struct io_kiocb *req);
1037 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1038 static void io_put_req(struct io_kiocb *req);
1039 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1040 static void io_double_put_req(struct io_kiocb *req);
1041 static void io_dismantle_req(struct io_kiocb *req);
1042 static void io_put_task(struct task_struct *task, int nr);
1043 static void io_queue_next(struct io_kiocb *req);
1044 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1045 static void __io_queue_linked_timeout(struct io_kiocb *req);
1046 static void io_queue_linked_timeout(struct io_kiocb *req);
1047 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1048 struct io_uring_rsrc_update *ip,
1049 unsigned nr_args);
1050 static void __io_clean_op(struct io_kiocb *req);
1051 static struct file *io_file_get(struct io_submit_state *state,
1052 struct io_kiocb *req, int fd, bool fixed);
1053 static void __io_queue_sqe(struct io_kiocb *req);
1054 static void io_rsrc_put_work(struct work_struct *work);
1055
1056 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
1057 struct iov_iter *iter, bool needs_lock);
1058 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1059 const struct iovec *fast_iov,
1060 struct iov_iter *iter, bool force);
1061 static void io_req_task_queue(struct io_kiocb *req);
1062 static void io_submit_flush_completions(struct io_comp_state *cs,
1063 struct io_ring_ctx *ctx);
1064
1065 static struct kmem_cache *req_cachep;
1066
1067 static const struct file_operations io_uring_fops;
1068
1069 struct sock *io_uring_get_socket(struct file *file)
1070 {
1071 #if defined(CONFIG_UNIX)
1072 if (file->f_op == &io_uring_fops) {
1073 struct io_ring_ctx *ctx = file->private_data;
1074
1075 return ctx->ring_sock->sk;
1076 }
1077 #endif
1078 return NULL;
1079 }
1080 EXPORT_SYMBOL(io_uring_get_socket);
1081
1082 #define io_for_each_link(pos, head) \
1083 for (pos = (head); pos; pos = pos->link)
1084
1085 static inline void io_clean_op(struct io_kiocb *req)
1086 {
1087 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1088 __io_clean_op(req);
1089 }
1090
1091 static inline void io_set_resource_node(struct io_kiocb *req)
1092 {
1093 struct io_ring_ctx *ctx = req->ctx;
1094
1095 if (!req->fixed_rsrc_refs) {
1096 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1097 percpu_ref_get(req->fixed_rsrc_refs);
1098 }
1099 }
1100
1101 static bool io_match_task(struct io_kiocb *head,
1102 struct task_struct *task,
1103 struct files_struct *files)
1104 {
1105 struct io_kiocb *req;
1106
1107 if (task && head->task != task) {
1108 /* in terms of cancelation, always match if req task is dead */
1109 if (head->task->flags & PF_EXITING)
1110 return true;
1111 return false;
1112 }
1113 if (!files)
1114 return true;
1115
1116 io_for_each_link(req, head) {
1117 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1118 continue;
1119 if (req->file && req->file->f_op == &io_uring_fops)
1120 return true;
1121 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1122 req->work.identity->files == files)
1123 return true;
1124 }
1125 return false;
1126 }
1127
1128 static void io_sq_thread_drop_mm_files(void)
1129 {
1130 struct files_struct *files = current->files;
1131 struct mm_struct *mm = current->mm;
1132
1133 if (mm) {
1134 kthread_unuse_mm(mm);
1135 mmput(mm);
1136 current->mm = NULL;
1137 }
1138 if (files) {
1139 struct nsproxy *nsproxy = current->nsproxy;
1140
1141 task_lock(current);
1142 current->files = NULL;
1143 current->nsproxy = NULL;
1144 task_unlock(current);
1145 put_files_struct(files);
1146 put_nsproxy(nsproxy);
1147 }
1148 }
1149
1150 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1151 {
1152 if (!current->files) {
1153 struct files_struct *files;
1154 struct nsproxy *nsproxy;
1155
1156 task_lock(ctx->sqo_task);
1157 files = ctx->sqo_task->files;
1158 if (!files) {
1159 task_unlock(ctx->sqo_task);
1160 return -EOWNERDEAD;
1161 }
1162 atomic_inc(&files->count);
1163 get_nsproxy(ctx->sqo_task->nsproxy);
1164 nsproxy = ctx->sqo_task->nsproxy;
1165 task_unlock(ctx->sqo_task);
1166
1167 task_lock(current);
1168 current->files = files;
1169 current->nsproxy = nsproxy;
1170 task_unlock(current);
1171 }
1172 return 0;
1173 }
1174
1175 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1176 {
1177 struct mm_struct *mm;
1178
1179 if (current->mm)
1180 return 0;
1181
1182 task_lock(ctx->sqo_task);
1183 mm = ctx->sqo_task->mm;
1184 if (unlikely(!mm || !mmget_not_zero(mm)))
1185 mm = NULL;
1186 task_unlock(ctx->sqo_task);
1187
1188 if (mm) {
1189 kthread_use_mm(mm);
1190 return 0;
1191 }
1192
1193 return -EFAULT;
1194 }
1195
1196 static int __io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1197 struct io_kiocb *req)
1198 {
1199 const struct io_op_def *def = &io_op_defs[req->opcode];
1200 int ret;
1201
1202 if (def->work_flags & IO_WQ_WORK_MM) {
1203 ret = __io_sq_thread_acquire_mm(ctx);
1204 if (unlikely(ret))
1205 return ret;
1206 }
1207
1208 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1209 ret = __io_sq_thread_acquire_files(ctx);
1210 if (unlikely(ret))
1211 return ret;
1212 }
1213
1214 return 0;
1215 }
1216
1217 static inline int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1218 struct io_kiocb *req)
1219 {
1220 if (!(ctx->flags & IORING_SETUP_SQPOLL))
1221 return 0;
1222 return __io_sq_thread_acquire_mm_files(ctx, req);
1223 }
1224
1225 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1226 struct cgroup_subsys_state **cur_css)
1227
1228 {
1229 #ifdef CONFIG_BLK_CGROUP
1230 /* puts the old one when swapping */
1231 if (*cur_css != ctx->sqo_blkcg_css) {
1232 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1233 *cur_css = ctx->sqo_blkcg_css;
1234 }
1235 #endif
1236 }
1237
1238 static void io_sq_thread_unassociate_blkcg(void)
1239 {
1240 #ifdef CONFIG_BLK_CGROUP
1241 kthread_associate_blkcg(NULL);
1242 #endif
1243 }
1244
1245 static inline void req_set_fail_links(struct io_kiocb *req)
1246 {
1247 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1248 req->flags |= REQ_F_FAIL_LINK;
1249 }
1250
1251 /*
1252 * None of these are dereferenced, they are simply used to check if any of
1253 * them have changed. If we're under current and check they are still the
1254 * same, we're fine to grab references to them for actual out-of-line use.
1255 */
1256 static void io_init_identity(struct io_identity *id)
1257 {
1258 id->files = current->files;
1259 id->mm = current->mm;
1260 #ifdef CONFIG_BLK_CGROUP
1261 rcu_read_lock();
1262 id->blkcg_css = blkcg_css();
1263 rcu_read_unlock();
1264 #endif
1265 id->creds = current_cred();
1266 id->nsproxy = current->nsproxy;
1267 id->fs = current->fs;
1268 id->fsize = rlimit(RLIMIT_FSIZE);
1269 #ifdef CONFIG_AUDIT
1270 id->loginuid = current->loginuid;
1271 id->sessionid = current->sessionid;
1272 #endif
1273 refcount_set(&id->count, 1);
1274 }
1275
1276 static inline void __io_req_init_async(struct io_kiocb *req)
1277 {
1278 memset(&req->work, 0, sizeof(req->work));
1279 req->flags |= REQ_F_WORK_INITIALIZED;
1280 }
1281
1282 /*
1283 * Note: must call io_req_init_async() for the first time you
1284 * touch any members of io_wq_work.
1285 */
1286 static inline void io_req_init_async(struct io_kiocb *req)
1287 {
1288 struct io_uring_task *tctx = current->io_uring;
1289
1290 if (req->flags & REQ_F_WORK_INITIALIZED)
1291 return;
1292
1293 __io_req_init_async(req);
1294
1295 /* Grab a ref if this isn't our static identity */
1296 req->work.identity = tctx->identity;
1297 if (tctx->identity != &tctx->__identity)
1298 refcount_inc(&req->work.identity->count);
1299 }
1300
1301 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1302 {
1303 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1304
1305 complete(&ctx->ref_comp);
1306 }
1307
1308 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1309 {
1310 return !req->timeout.off;
1311 }
1312
1313 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1314 {
1315 struct io_ring_ctx *ctx;
1316 int hash_bits;
1317
1318 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1319 if (!ctx)
1320 return NULL;
1321
1322 /*
1323 * Use 5 bits less than the max cq entries, that should give us around
1324 * 32 entries per hash list if totally full and uniformly spread.
1325 */
1326 hash_bits = ilog2(p->cq_entries);
1327 hash_bits -= 5;
1328 if (hash_bits <= 0)
1329 hash_bits = 1;
1330 ctx->cancel_hash_bits = hash_bits;
1331 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1332 GFP_KERNEL);
1333 if (!ctx->cancel_hash)
1334 goto err;
1335 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1336
1337 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1338 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1339 goto err;
1340
1341 ctx->flags = p->flags;
1342 init_waitqueue_head(&ctx->sqo_sq_wait);
1343 INIT_LIST_HEAD(&ctx->sqd_list);
1344 init_waitqueue_head(&ctx->cq_wait);
1345 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1346 init_completion(&ctx->ref_comp);
1347 init_completion(&ctx->sq_thread_comp);
1348 idr_init(&ctx->io_buffer_idr);
1349 idr_init(&ctx->personality_idr);
1350 mutex_init(&ctx->uring_lock);
1351 init_waitqueue_head(&ctx->wait);
1352 spin_lock_init(&ctx->completion_lock);
1353 INIT_LIST_HEAD(&ctx->iopoll_list);
1354 INIT_LIST_HEAD(&ctx->defer_list);
1355 INIT_LIST_HEAD(&ctx->timeout_list);
1356 spin_lock_init(&ctx->inflight_lock);
1357 INIT_LIST_HEAD(&ctx->inflight_list);
1358 spin_lock_init(&ctx->rsrc_ref_lock);
1359 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1360 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1361 init_llist_head(&ctx->rsrc_put_llist);
1362 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1363 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1364 return ctx;
1365 err:
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1372 {
1373 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1374 struct io_ring_ctx *ctx = req->ctx;
1375
1376 return seq != ctx->cached_cq_tail
1377 + READ_ONCE(ctx->cached_cq_overflow);
1378 }
1379
1380 return false;
1381 }
1382
1383 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1384 {
1385 if (req->work.identity == &tctx->__identity)
1386 return;
1387 if (refcount_dec_and_test(&req->work.identity->count))
1388 kfree(req->work.identity);
1389 }
1390
1391 static void io_req_clean_work(struct io_kiocb *req)
1392 {
1393 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1394 return;
1395
1396 if (req->work.flags & IO_WQ_WORK_MM)
1397 mmdrop(req->work.identity->mm);
1398 #ifdef CONFIG_BLK_CGROUP
1399 if (req->work.flags & IO_WQ_WORK_BLKCG)
1400 css_put(req->work.identity->blkcg_css);
1401 #endif
1402 if (req->work.flags & IO_WQ_WORK_CREDS)
1403 put_cred(req->work.identity->creds);
1404 if (req->work.flags & IO_WQ_WORK_FS) {
1405 struct fs_struct *fs = req->work.identity->fs;
1406
1407 spin_lock(&req->work.identity->fs->lock);
1408 if (--fs->users)
1409 fs = NULL;
1410 spin_unlock(&req->work.identity->fs->lock);
1411 if (fs)
1412 free_fs_struct(fs);
1413 }
1414 if (req->work.flags & IO_WQ_WORK_FILES) {
1415 put_files_struct(req->work.identity->files);
1416 put_nsproxy(req->work.identity->nsproxy);
1417 }
1418 if (req->flags & REQ_F_INFLIGHT) {
1419 struct io_ring_ctx *ctx = req->ctx;
1420 struct io_uring_task *tctx = req->task->io_uring;
1421 unsigned long flags;
1422
1423 spin_lock_irqsave(&ctx->inflight_lock, flags);
1424 list_del(&req->inflight_entry);
1425 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1426 req->flags &= ~REQ_F_INFLIGHT;
1427 if (atomic_read(&tctx->in_idle))
1428 wake_up(&tctx->wait);
1429 }
1430
1431 req->flags &= ~REQ_F_WORK_INITIALIZED;
1432 req->work.flags &= ~(IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG | IO_WQ_WORK_FS |
1433 IO_WQ_WORK_CREDS | IO_WQ_WORK_FILES);
1434 io_put_identity(req->task->io_uring, req);
1435 }
1436
1437 /*
1438 * Create a private copy of io_identity, since some fields don't match
1439 * the current context.
1440 */
1441 static bool io_identity_cow(struct io_kiocb *req)
1442 {
1443 struct io_uring_task *tctx = current->io_uring;
1444 const struct cred *creds = NULL;
1445 struct io_identity *id;
1446
1447 if (req->work.flags & IO_WQ_WORK_CREDS)
1448 creds = req->work.identity->creds;
1449
1450 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1451 if (unlikely(!id)) {
1452 req->work.flags |= IO_WQ_WORK_CANCEL;
1453 return false;
1454 }
1455
1456 /*
1457 * We can safely just re-init the creds we copied Either the field
1458 * matches the current one, or we haven't grabbed it yet. The only
1459 * exception is ->creds, through registered personalities, so handle
1460 * that one separately.
1461 */
1462 io_init_identity(id);
1463 if (creds)
1464 id->creds = creds;
1465
1466 /* add one for this request */
1467 refcount_inc(&id->count);
1468
1469 /* drop tctx and req identity references, if needed */
1470 if (tctx->identity != &tctx->__identity &&
1471 refcount_dec_and_test(&tctx->identity->count))
1472 kfree(tctx->identity);
1473 if (req->work.identity != &tctx->__identity &&
1474 refcount_dec_and_test(&req->work.identity->count))
1475 kfree(req->work.identity);
1476
1477 req->work.identity = id;
1478 tctx->identity = id;
1479 return true;
1480 }
1481
1482 static void io_req_track_inflight(struct io_kiocb *req)
1483 {
1484 struct io_ring_ctx *ctx = req->ctx;
1485
1486 if (!(req->flags & REQ_F_INFLIGHT)) {
1487 io_req_init_async(req);
1488 req->flags |= REQ_F_INFLIGHT;
1489
1490 spin_lock_irq(&ctx->inflight_lock);
1491 list_add(&req->inflight_entry, &ctx->inflight_list);
1492 spin_unlock_irq(&ctx->inflight_lock);
1493 }
1494 }
1495
1496 static bool io_grab_identity(struct io_kiocb *req)
1497 {
1498 const struct io_op_def *def = &io_op_defs[req->opcode];
1499 struct io_identity *id = req->work.identity;
1500
1501 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1502 if (id->fsize != rlimit(RLIMIT_FSIZE))
1503 return false;
1504 req->work.flags |= IO_WQ_WORK_FSIZE;
1505 }
1506 #ifdef CONFIG_BLK_CGROUP
1507 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1508 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1509 rcu_read_lock();
1510 if (id->blkcg_css != blkcg_css()) {
1511 rcu_read_unlock();
1512 return false;
1513 }
1514 /*
1515 * This should be rare, either the cgroup is dying or the task
1516 * is moving cgroups. Just punt to root for the handful of ios.
1517 */
1518 if (css_tryget_online(id->blkcg_css))
1519 req->work.flags |= IO_WQ_WORK_BLKCG;
1520 rcu_read_unlock();
1521 }
1522 #endif
1523 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1524 if (id->creds != current_cred())
1525 return false;
1526 get_cred(id->creds);
1527 req->work.flags |= IO_WQ_WORK_CREDS;
1528 }
1529 #ifdef CONFIG_AUDIT
1530 if (!uid_eq(current->loginuid, id->loginuid) ||
1531 current->sessionid != id->sessionid)
1532 return false;
1533 #endif
1534 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1535 (def->work_flags & IO_WQ_WORK_FS)) {
1536 if (current->fs != id->fs)
1537 return false;
1538 spin_lock(&id->fs->lock);
1539 if (!id->fs->in_exec) {
1540 id->fs->users++;
1541 req->work.flags |= IO_WQ_WORK_FS;
1542 } else {
1543 req->work.flags |= IO_WQ_WORK_CANCEL;
1544 }
1545 spin_unlock(&current->fs->lock);
1546 }
1547 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1548 (def->work_flags & IO_WQ_WORK_FILES) &&
1549 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1550 if (id->files != current->files ||
1551 id->nsproxy != current->nsproxy)
1552 return false;
1553 atomic_inc(&id->files->count);
1554 get_nsproxy(id->nsproxy);
1555 req->work.flags |= IO_WQ_WORK_FILES;
1556 io_req_track_inflight(req);
1557 }
1558 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1559 (def->work_flags & IO_WQ_WORK_MM)) {
1560 if (id->mm != current->mm)
1561 return false;
1562 mmgrab(id->mm);
1563 req->work.flags |= IO_WQ_WORK_MM;
1564 }
1565
1566 return true;
1567 }
1568
1569 static void io_prep_async_work(struct io_kiocb *req)
1570 {
1571 const struct io_op_def *def = &io_op_defs[req->opcode];
1572 struct io_ring_ctx *ctx = req->ctx;
1573
1574 io_req_init_async(req);
1575
1576 if (req->flags & REQ_F_FORCE_ASYNC)
1577 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1578
1579 if (req->flags & REQ_F_ISREG) {
1580 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1581 io_wq_hash_work(&req->work, file_inode(req->file));
1582 } else {
1583 if (def->unbound_nonreg_file)
1584 req->work.flags |= IO_WQ_WORK_UNBOUND;
1585 }
1586
1587 /* if we fail grabbing identity, we must COW, regrab, and retry */
1588 if (io_grab_identity(req))
1589 return;
1590
1591 if (!io_identity_cow(req))
1592 return;
1593
1594 /* can't fail at this point */
1595 if (!io_grab_identity(req))
1596 WARN_ON(1);
1597 }
1598
1599 static void io_prep_async_link(struct io_kiocb *req)
1600 {
1601 struct io_kiocb *cur;
1602
1603 io_for_each_link(cur, req)
1604 io_prep_async_work(cur);
1605 }
1606
1607 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1608 {
1609 struct io_ring_ctx *ctx = req->ctx;
1610 struct io_kiocb *link = io_prep_linked_timeout(req);
1611
1612 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1613 &req->work, req->flags);
1614 io_wq_enqueue(ctx->io_wq, &req->work);
1615 return link;
1616 }
1617
1618 static void io_queue_async_work(struct io_kiocb *req)
1619 {
1620 struct io_kiocb *link;
1621
1622 /* init ->work of the whole link before punting */
1623 io_prep_async_link(req);
1624 link = __io_queue_async_work(req);
1625
1626 if (link)
1627 io_queue_linked_timeout(link);
1628 }
1629
1630 static void io_kill_timeout(struct io_kiocb *req)
1631 {
1632 struct io_timeout_data *io = req->async_data;
1633 int ret;
1634
1635 ret = hrtimer_try_to_cancel(&io->timer);
1636 if (ret != -1) {
1637 atomic_set(&req->ctx->cq_timeouts,
1638 atomic_read(&req->ctx->cq_timeouts) + 1);
1639 list_del_init(&req->timeout.list);
1640 io_cqring_fill_event(req, 0);
1641 io_put_req_deferred(req, 1);
1642 }
1643 }
1644
1645 /*
1646 * Returns true if we found and killed one or more timeouts
1647 */
1648 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1649 struct files_struct *files)
1650 {
1651 struct io_kiocb *req, *tmp;
1652 int canceled = 0;
1653
1654 spin_lock_irq(&ctx->completion_lock);
1655 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1656 if (io_match_task(req, tsk, files)) {
1657 io_kill_timeout(req);
1658 canceled++;
1659 }
1660 }
1661 spin_unlock_irq(&ctx->completion_lock);
1662 return canceled != 0;
1663 }
1664
1665 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1666 {
1667 do {
1668 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1669 struct io_defer_entry, list);
1670
1671 if (req_need_defer(de->req, de->seq))
1672 break;
1673 list_del_init(&de->list);
1674 io_req_task_queue(de->req);
1675 kfree(de);
1676 } while (!list_empty(&ctx->defer_list));
1677 }
1678
1679 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1680 {
1681 u32 seq;
1682
1683 if (list_empty(&ctx->timeout_list))
1684 return;
1685
1686 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1687
1688 do {
1689 u32 events_needed, events_got;
1690 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1691 struct io_kiocb, timeout.list);
1692
1693 if (io_is_timeout_noseq(req))
1694 break;
1695
1696 /*
1697 * Since seq can easily wrap around over time, subtract
1698 * the last seq at which timeouts were flushed before comparing.
1699 * Assuming not more than 2^31-1 events have happened since,
1700 * these subtractions won't have wrapped, so we can check if
1701 * target is in [last_seq, current_seq] by comparing the two.
1702 */
1703 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1704 events_got = seq - ctx->cq_last_tm_flush;
1705 if (events_got < events_needed)
1706 break;
1707
1708 list_del_init(&req->timeout.list);
1709 io_kill_timeout(req);
1710 } while (!list_empty(&ctx->timeout_list));
1711
1712 ctx->cq_last_tm_flush = seq;
1713 }
1714
1715 static void io_commit_cqring(struct io_ring_ctx *ctx)
1716 {
1717 io_flush_timeouts(ctx);
1718
1719 /* order cqe stores with ring update */
1720 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1721
1722 if (unlikely(!list_empty(&ctx->defer_list)))
1723 __io_queue_deferred(ctx);
1724 }
1725
1726 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1727 {
1728 struct io_rings *r = ctx->rings;
1729
1730 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1731 }
1732
1733 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1734 {
1735 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1736 }
1737
1738 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1739 {
1740 struct io_rings *rings = ctx->rings;
1741 unsigned tail;
1742
1743 /*
1744 * writes to the cq entry need to come after reading head; the
1745 * control dependency is enough as we're using WRITE_ONCE to
1746 * fill the cq entry
1747 */
1748 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1749 return NULL;
1750
1751 tail = ctx->cached_cq_tail++;
1752 return &rings->cqes[tail & ctx->cq_mask];
1753 }
1754
1755 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1756 {
1757 if (!ctx->cq_ev_fd)
1758 return false;
1759 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1760 return false;
1761 if (!ctx->eventfd_async)
1762 return true;
1763 return io_wq_current_is_worker();
1764 }
1765
1766 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1767 {
1768 /* see waitqueue_active() comment */
1769 smp_mb();
1770
1771 if (waitqueue_active(&ctx->wait))
1772 wake_up(&ctx->wait);
1773 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1774 wake_up(&ctx->sq_data->wait);
1775 if (io_should_trigger_evfd(ctx))
1776 eventfd_signal(ctx->cq_ev_fd, 1);
1777 if (waitqueue_active(&ctx->cq_wait)) {
1778 wake_up_interruptible(&ctx->cq_wait);
1779 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1780 }
1781 }
1782
1783 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1784 {
1785 /* see waitqueue_active() comment */
1786 smp_mb();
1787
1788 if (ctx->flags & IORING_SETUP_SQPOLL) {
1789 if (waitqueue_active(&ctx->wait))
1790 wake_up(&ctx->wait);
1791 }
1792 if (io_should_trigger_evfd(ctx))
1793 eventfd_signal(ctx->cq_ev_fd, 1);
1794 if (waitqueue_active(&ctx->cq_wait)) {
1795 wake_up_interruptible(&ctx->cq_wait);
1796 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1797 }
1798 }
1799
1800 /* Returns true if there are no backlogged entries after the flush */
1801 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1802 struct task_struct *tsk,
1803 struct files_struct *files)
1804 {
1805 struct io_rings *rings = ctx->rings;
1806 struct io_kiocb *req, *tmp;
1807 struct io_uring_cqe *cqe;
1808 unsigned long flags;
1809 bool all_flushed, posted;
1810 LIST_HEAD(list);
1811
1812 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1813 return false;
1814
1815 posted = false;
1816 spin_lock_irqsave(&ctx->completion_lock, flags);
1817 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1818 if (!io_match_task(req, tsk, files))
1819 continue;
1820
1821 cqe = io_get_cqring(ctx);
1822 if (!cqe && !force)
1823 break;
1824
1825 list_move(&req->compl.list, &list);
1826 if (cqe) {
1827 WRITE_ONCE(cqe->user_data, req->user_data);
1828 WRITE_ONCE(cqe->res, req->result);
1829 WRITE_ONCE(cqe->flags, req->compl.cflags);
1830 } else {
1831 ctx->cached_cq_overflow++;
1832 WRITE_ONCE(ctx->rings->cq_overflow,
1833 ctx->cached_cq_overflow);
1834 }
1835 posted = true;
1836 }
1837
1838 all_flushed = list_empty(&ctx->cq_overflow_list);
1839 if (all_flushed) {
1840 clear_bit(0, &ctx->sq_check_overflow);
1841 clear_bit(0, &ctx->cq_check_overflow);
1842 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1843 }
1844
1845 if (posted)
1846 io_commit_cqring(ctx);
1847 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1848 if (posted)
1849 io_cqring_ev_posted(ctx);
1850
1851 while (!list_empty(&list)) {
1852 req = list_first_entry(&list, struct io_kiocb, compl.list);
1853 list_del(&req->compl.list);
1854 io_put_req(req);
1855 }
1856
1857 return all_flushed;
1858 }
1859
1860 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1861 struct task_struct *tsk,
1862 struct files_struct *files)
1863 {
1864 if (test_bit(0, &ctx->cq_check_overflow)) {
1865 /* iopoll syncs against uring_lock, not completion_lock */
1866 if (ctx->flags & IORING_SETUP_IOPOLL)
1867 mutex_lock(&ctx->uring_lock);
1868 __io_cqring_overflow_flush(ctx, force, tsk, files);
1869 if (ctx->flags & IORING_SETUP_IOPOLL)
1870 mutex_unlock(&ctx->uring_lock);
1871 }
1872 }
1873
1874 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1875 {
1876 struct io_ring_ctx *ctx = req->ctx;
1877 struct io_uring_cqe *cqe;
1878
1879 trace_io_uring_complete(ctx, req->user_data, res);
1880
1881 /*
1882 * If we can't get a cq entry, userspace overflowed the
1883 * submission (by quite a lot). Increment the overflow count in
1884 * the ring.
1885 */
1886 cqe = io_get_cqring(ctx);
1887 if (likely(cqe)) {
1888 WRITE_ONCE(cqe->user_data, req->user_data);
1889 WRITE_ONCE(cqe->res, res);
1890 WRITE_ONCE(cqe->flags, cflags);
1891 } else if (ctx->cq_overflow_flushed ||
1892 atomic_read(&req->task->io_uring->in_idle)) {
1893 /*
1894 * If we're in ring overflow flush mode, or in task cancel mode,
1895 * then we cannot store the request for later flushing, we need
1896 * to drop it on the floor.
1897 */
1898 ctx->cached_cq_overflow++;
1899 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1900 } else {
1901 if (list_empty(&ctx->cq_overflow_list)) {
1902 set_bit(0, &ctx->sq_check_overflow);
1903 set_bit(0, &ctx->cq_check_overflow);
1904 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1905 }
1906 io_clean_op(req);
1907 req->result = res;
1908 req->compl.cflags = cflags;
1909 refcount_inc(&req->refs);
1910 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1911 }
1912 }
1913
1914 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1915 {
1916 __io_cqring_fill_event(req, res, 0);
1917 }
1918
1919 static inline void io_req_complete_post(struct io_kiocb *req, long res,
1920 unsigned int cflags)
1921 {
1922 struct io_ring_ctx *ctx = req->ctx;
1923 unsigned long flags;
1924
1925 spin_lock_irqsave(&ctx->completion_lock, flags);
1926 __io_cqring_fill_event(req, res, cflags);
1927 io_commit_cqring(ctx);
1928 /*
1929 * If we're the last reference to this request, add to our locked
1930 * free_list cache.
1931 */
1932 if (refcount_dec_and_test(&req->refs)) {
1933 struct io_comp_state *cs = &ctx->submit_state.comp;
1934
1935 io_dismantle_req(req);
1936 io_put_task(req->task, 1);
1937 list_add(&req->compl.list, &cs->locked_free_list);
1938 cs->locked_free_nr++;
1939 } else
1940 req = NULL;
1941 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1942
1943 io_cqring_ev_posted(ctx);
1944 if (req) {
1945 io_queue_next(req);
1946 percpu_ref_put(&ctx->refs);
1947 }
1948 }
1949
1950 static void io_req_complete_state(struct io_kiocb *req, long res,
1951 unsigned int cflags)
1952 {
1953 io_clean_op(req);
1954 req->result = res;
1955 req->compl.cflags = cflags;
1956 req->flags |= REQ_F_COMPLETE_INLINE;
1957 }
1958
1959 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1960 long res, unsigned cflags)
1961 {
1962 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1963 io_req_complete_state(req, res, cflags);
1964 else
1965 io_req_complete_post(req, res, cflags);
1966 }
1967
1968 static inline void io_req_complete(struct io_kiocb *req, long res)
1969 {
1970 __io_req_complete(req, 0, res, 0);
1971 }
1972
1973 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1974 {
1975 struct io_submit_state *state = &ctx->submit_state;
1976 struct io_comp_state *cs = &state->comp;
1977 struct io_kiocb *req = NULL;
1978
1979 /*
1980 * If we have more than a batch's worth of requests in our IRQ side
1981 * locked cache, grab the lock and move them over to our submission
1982 * side cache.
1983 */
1984 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
1985 spin_lock_irq(&ctx->completion_lock);
1986 list_splice_init(&cs->locked_free_list, &cs->free_list);
1987 cs->locked_free_nr = 0;
1988 spin_unlock_irq(&ctx->completion_lock);
1989 }
1990
1991 while (!list_empty(&cs->free_list)) {
1992 req = list_first_entry(&cs->free_list, struct io_kiocb,
1993 compl.list);
1994 list_del(&req->compl.list);
1995 state->reqs[state->free_reqs++] = req;
1996 if (state->free_reqs == ARRAY_SIZE(state->reqs))
1997 break;
1998 }
1999
2000 return req != NULL;
2001 }
2002
2003 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2004 {
2005 struct io_submit_state *state = &ctx->submit_state;
2006
2007 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
2008
2009 if (!state->free_reqs) {
2010 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2011 int ret;
2012
2013 if (io_flush_cached_reqs(ctx))
2014 goto got_req;
2015
2016 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
2017 state->reqs);
2018
2019 /*
2020 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2021 * retry single alloc to be on the safe side.
2022 */
2023 if (unlikely(ret <= 0)) {
2024 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2025 if (!state->reqs[0])
2026 return NULL;
2027 ret = 1;
2028 }
2029 state->free_reqs = ret;
2030 }
2031 got_req:
2032 state->free_reqs--;
2033 return state->reqs[state->free_reqs];
2034 }
2035
2036 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2037 bool fixed)
2038 {
2039 if (!fixed)
2040 fput(file);
2041 }
2042
2043 static void io_dismantle_req(struct io_kiocb *req)
2044 {
2045 io_clean_op(req);
2046
2047 if (req->async_data)
2048 kfree(req->async_data);
2049 if (req->file)
2050 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2051 if (req->fixed_rsrc_refs)
2052 percpu_ref_put(req->fixed_rsrc_refs);
2053 io_req_clean_work(req);
2054 }
2055
2056 static inline void io_put_task(struct task_struct *task, int nr)
2057 {
2058 struct io_uring_task *tctx = task->io_uring;
2059
2060 percpu_counter_sub(&tctx->inflight, nr);
2061 if (unlikely(atomic_read(&tctx->in_idle)))
2062 wake_up(&tctx->wait);
2063 put_task_struct_many(task, nr);
2064 }
2065
2066 static void __io_free_req(struct io_kiocb *req)
2067 {
2068 struct io_ring_ctx *ctx = req->ctx;
2069
2070 io_dismantle_req(req);
2071 io_put_task(req->task, 1);
2072
2073 kmem_cache_free(req_cachep, req);
2074 percpu_ref_put(&ctx->refs);
2075 }
2076
2077 static inline void io_remove_next_linked(struct io_kiocb *req)
2078 {
2079 struct io_kiocb *nxt = req->link;
2080
2081 req->link = nxt->link;
2082 nxt->link = NULL;
2083 }
2084
2085 static void io_kill_linked_timeout(struct io_kiocb *req)
2086 {
2087 struct io_ring_ctx *ctx = req->ctx;
2088 struct io_kiocb *link;
2089 bool cancelled = false;
2090 unsigned long flags;
2091
2092 spin_lock_irqsave(&ctx->completion_lock, flags);
2093 link = req->link;
2094
2095 /*
2096 * Can happen if a linked timeout fired and link had been like
2097 * req -> link t-out -> link t-out [-> ...]
2098 */
2099 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2100 struct io_timeout_data *io = link->async_data;
2101 int ret;
2102
2103 io_remove_next_linked(req);
2104 link->timeout.head = NULL;
2105 ret = hrtimer_try_to_cancel(&io->timer);
2106 if (ret != -1) {
2107 io_cqring_fill_event(link, -ECANCELED);
2108 io_commit_cqring(ctx);
2109 cancelled = true;
2110 }
2111 }
2112 req->flags &= ~REQ_F_LINK_TIMEOUT;
2113 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2114
2115 if (cancelled) {
2116 io_cqring_ev_posted(ctx);
2117 io_put_req(link);
2118 }
2119 }
2120
2121
2122 static void io_fail_links(struct io_kiocb *req)
2123 {
2124 struct io_kiocb *link, *nxt;
2125 struct io_ring_ctx *ctx = req->ctx;
2126 unsigned long flags;
2127
2128 spin_lock_irqsave(&ctx->completion_lock, flags);
2129 link = req->link;
2130 req->link = NULL;
2131
2132 while (link) {
2133 nxt = link->link;
2134 link->link = NULL;
2135
2136 trace_io_uring_fail_link(req, link);
2137 io_cqring_fill_event(link, -ECANCELED);
2138
2139 /*
2140 * It's ok to free under spinlock as they're not linked anymore,
2141 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2142 * work.fs->lock.
2143 */
2144 if (link->flags & REQ_F_WORK_INITIALIZED)
2145 io_put_req_deferred(link, 2);
2146 else
2147 io_double_put_req(link);
2148 link = nxt;
2149 }
2150 io_commit_cqring(ctx);
2151 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2152
2153 io_cqring_ev_posted(ctx);
2154 }
2155
2156 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2157 {
2158 if (req->flags & REQ_F_LINK_TIMEOUT)
2159 io_kill_linked_timeout(req);
2160
2161 /*
2162 * If LINK is set, we have dependent requests in this chain. If we
2163 * didn't fail this request, queue the first one up, moving any other
2164 * dependencies to the next request. In case of failure, fail the rest
2165 * of the chain.
2166 */
2167 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2168 struct io_kiocb *nxt = req->link;
2169
2170 req->link = NULL;
2171 return nxt;
2172 }
2173 io_fail_links(req);
2174 return NULL;
2175 }
2176
2177 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2178 {
2179 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2180 return NULL;
2181 return __io_req_find_next(req);
2182 }
2183
2184 static bool __tctx_task_work(struct io_uring_task *tctx)
2185 {
2186 struct io_ring_ctx *ctx = NULL;
2187 struct io_wq_work_list list;
2188 struct io_wq_work_node *node;
2189
2190 if (wq_list_empty(&tctx->task_list))
2191 return false;
2192
2193 spin_lock_irq(&tctx->task_lock);
2194 list = tctx->task_list;
2195 INIT_WQ_LIST(&tctx->task_list);
2196 spin_unlock_irq(&tctx->task_lock);
2197
2198 node = list.first;
2199 while (node) {
2200 struct io_wq_work_node *next = node->next;
2201 struct io_ring_ctx *this_ctx;
2202 struct io_kiocb *req;
2203
2204 req = container_of(node, struct io_kiocb, io_task_work.node);
2205 this_ctx = req->ctx;
2206 req->task_work.func(&req->task_work);
2207 node = next;
2208
2209 if (!ctx) {
2210 ctx = this_ctx;
2211 } else if (ctx != this_ctx) {
2212 mutex_lock(&ctx->uring_lock);
2213 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2214 mutex_unlock(&ctx->uring_lock);
2215 ctx = this_ctx;
2216 }
2217 }
2218
2219 if (ctx && ctx->submit_state.comp.nr) {
2220 mutex_lock(&ctx->uring_lock);
2221 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2222 mutex_unlock(&ctx->uring_lock);
2223 }
2224
2225 return list.first != NULL;
2226 }
2227
2228 static void tctx_task_work(struct callback_head *cb)
2229 {
2230 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
2231
2232 while (__tctx_task_work(tctx))
2233 cond_resched();
2234
2235 clear_bit(0, &tctx->task_state);
2236 }
2237
2238 static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
2239 enum task_work_notify_mode notify)
2240 {
2241 struct io_uring_task *tctx = tsk->io_uring;
2242 struct io_wq_work_node *node, *prev;
2243 unsigned long flags;
2244 int ret;
2245
2246 WARN_ON_ONCE(!tctx);
2247
2248 spin_lock_irqsave(&tctx->task_lock, flags);
2249 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2250 spin_unlock_irqrestore(&tctx->task_lock, flags);
2251
2252 /* task_work already pending, we're done */
2253 if (test_bit(0, &tctx->task_state) ||
2254 test_and_set_bit(0, &tctx->task_state))
2255 return 0;
2256
2257 if (!task_work_add(tsk, &tctx->task_work, notify))
2258 return 0;
2259
2260 /*
2261 * Slow path - we failed, find and delete work. if the work is not
2262 * in the list, it got run and we're fine.
2263 */
2264 ret = 0;
2265 spin_lock_irqsave(&tctx->task_lock, flags);
2266 wq_list_for_each(node, prev, &tctx->task_list) {
2267 if (&req->io_task_work.node == node) {
2268 wq_list_del(&tctx->task_list, node, prev);
2269 ret = 1;
2270 break;
2271 }
2272 }
2273 spin_unlock_irqrestore(&tctx->task_lock, flags);
2274 clear_bit(0, &tctx->task_state);
2275 return ret;
2276 }
2277
2278 static int io_req_task_work_add(struct io_kiocb *req)
2279 {
2280 struct task_struct *tsk = req->task;
2281 struct io_ring_ctx *ctx = req->ctx;
2282 enum task_work_notify_mode notify;
2283 int ret;
2284
2285 if (tsk->flags & PF_EXITING)
2286 return -ESRCH;
2287
2288 /*
2289 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2290 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2291 * processing task_work. There's no reliable way to tell if TWA_RESUME
2292 * will do the job.
2293 */
2294 notify = TWA_NONE;
2295 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2296 notify = TWA_SIGNAL;
2297
2298 ret = io_task_work_add(tsk, req, notify);
2299 if (!ret)
2300 wake_up_process(tsk);
2301
2302 return ret;
2303 }
2304
2305 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2306 task_work_func_t cb)
2307 {
2308 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2309
2310 init_task_work(&req->task_work, cb);
2311 task_work_add(tsk, &req->task_work, TWA_NONE);
2312 wake_up_process(tsk);
2313 }
2314
2315 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2316 {
2317 struct io_ring_ctx *ctx = req->ctx;
2318
2319 spin_lock_irq(&ctx->completion_lock);
2320 io_cqring_fill_event(req, error);
2321 io_commit_cqring(ctx);
2322 spin_unlock_irq(&ctx->completion_lock);
2323
2324 io_cqring_ev_posted(ctx);
2325 req_set_fail_links(req);
2326 io_double_put_req(req);
2327 }
2328
2329 static void io_req_task_cancel(struct callback_head *cb)
2330 {
2331 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2332 struct io_ring_ctx *ctx = req->ctx;
2333
2334 __io_req_task_cancel(req, -ECANCELED);
2335 percpu_ref_put(&ctx->refs);
2336 }
2337
2338 static void __io_req_task_submit(struct io_kiocb *req)
2339 {
2340 struct io_ring_ctx *ctx = req->ctx;
2341
2342 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2343 mutex_lock(&ctx->uring_lock);
2344 if (!ctx->sqo_dead && !(current->flags & PF_EXITING) &&
2345 !io_sq_thread_acquire_mm_files(ctx, req))
2346 __io_queue_sqe(req);
2347 else
2348 __io_req_task_cancel(req, -EFAULT);
2349 mutex_unlock(&ctx->uring_lock);
2350 }
2351
2352 static void io_req_task_submit(struct callback_head *cb)
2353 {
2354 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2355
2356 __io_req_task_submit(req);
2357 }
2358
2359 static void io_req_task_queue(struct io_kiocb *req)
2360 {
2361 int ret;
2362
2363 req->task_work.func = io_req_task_submit;
2364 ret = io_req_task_work_add(req);
2365 if (unlikely(ret)) {
2366 percpu_ref_get(&req->ctx->refs);
2367 io_req_task_work_add_fallback(req, io_req_task_cancel);
2368 }
2369 }
2370
2371 static inline void io_queue_next(struct io_kiocb *req)
2372 {
2373 struct io_kiocb *nxt = io_req_find_next(req);
2374
2375 if (nxt)
2376 io_req_task_queue(nxt);
2377 }
2378
2379 static void io_free_req(struct io_kiocb *req)
2380 {
2381 io_queue_next(req);
2382 __io_free_req(req);
2383 }
2384
2385 struct req_batch {
2386 struct task_struct *task;
2387 int task_refs;
2388 int ctx_refs;
2389 };
2390
2391 static inline void io_init_req_batch(struct req_batch *rb)
2392 {
2393 rb->task_refs = 0;
2394 rb->ctx_refs = 0;
2395 rb->task = NULL;
2396 }
2397
2398 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2399 struct req_batch *rb)
2400 {
2401 if (rb->task)
2402 io_put_task(rb->task, rb->task_refs);
2403 if (rb->ctx_refs)
2404 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2405 }
2406
2407 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2408 struct io_submit_state *state)
2409 {
2410 io_queue_next(req);
2411
2412 if (req->task != rb->task) {
2413 if (rb->task)
2414 io_put_task(rb->task, rb->task_refs);
2415 rb->task = req->task;
2416 rb->task_refs = 0;
2417 }
2418 rb->task_refs++;
2419 rb->ctx_refs++;
2420
2421 io_dismantle_req(req);
2422 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2423 state->reqs[state->free_reqs++] = req;
2424 else
2425 list_add(&req->compl.list, &state->comp.free_list);
2426 }
2427
2428 static void io_submit_flush_completions(struct io_comp_state *cs,
2429 struct io_ring_ctx *ctx)
2430 {
2431 int i, nr = cs->nr;
2432 struct io_kiocb *req;
2433 struct req_batch rb;
2434
2435 io_init_req_batch(&rb);
2436 spin_lock_irq(&ctx->completion_lock);
2437 for (i = 0; i < nr; i++) {
2438 req = cs->reqs[i];
2439 __io_cqring_fill_event(req, req->result, req->compl.cflags);
2440 }
2441 io_commit_cqring(ctx);
2442 spin_unlock_irq(&ctx->completion_lock);
2443
2444 io_cqring_ev_posted(ctx);
2445 for (i = 0; i < nr; i++) {
2446 req = cs->reqs[i];
2447
2448 /* submission and completion refs */
2449 if (refcount_sub_and_test(2, &req->refs))
2450 io_req_free_batch(&rb, req, &ctx->submit_state);
2451 }
2452
2453 io_req_free_batch_finish(ctx, &rb);
2454 cs->nr = 0;
2455 }
2456
2457 /*
2458 * Drop reference to request, return next in chain (if there is one) if this
2459 * was the last reference to this request.
2460 */
2461 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2462 {
2463 struct io_kiocb *nxt = NULL;
2464
2465 if (refcount_dec_and_test(&req->refs)) {
2466 nxt = io_req_find_next(req);
2467 __io_free_req(req);
2468 }
2469 return nxt;
2470 }
2471
2472 static void io_put_req(struct io_kiocb *req)
2473 {
2474 if (refcount_dec_and_test(&req->refs))
2475 io_free_req(req);
2476 }
2477
2478 static void io_put_req_deferred_cb(struct callback_head *cb)
2479 {
2480 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2481
2482 io_free_req(req);
2483 }
2484
2485 static void io_free_req_deferred(struct io_kiocb *req)
2486 {
2487 int ret;
2488
2489 req->task_work.func = io_put_req_deferred_cb;
2490 ret = io_req_task_work_add(req);
2491 if (unlikely(ret))
2492 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2493 }
2494
2495 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2496 {
2497 if (refcount_sub_and_test(refs, &req->refs))
2498 io_free_req_deferred(req);
2499 }
2500
2501 static void io_double_put_req(struct io_kiocb *req)
2502 {
2503 /* drop both submit and complete references */
2504 if (refcount_sub_and_test(2, &req->refs))
2505 io_free_req(req);
2506 }
2507
2508 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2509 {
2510 /* See comment at the top of this file */
2511 smp_rmb();
2512 return __io_cqring_events(ctx);
2513 }
2514
2515 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2516 {
2517 struct io_rings *rings = ctx->rings;
2518
2519 /* make sure SQ entry isn't read before tail */
2520 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2521 }
2522
2523 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2524 {
2525 unsigned int cflags;
2526
2527 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2528 cflags |= IORING_CQE_F_BUFFER;
2529 req->flags &= ~REQ_F_BUFFER_SELECTED;
2530 kfree(kbuf);
2531 return cflags;
2532 }
2533
2534 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2535 {
2536 struct io_buffer *kbuf;
2537
2538 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2539 return io_put_kbuf(req, kbuf);
2540 }
2541
2542 static inline bool io_run_task_work(void)
2543 {
2544 /*
2545 * Not safe to run on exiting task, and the task_work handling will
2546 * not add work to such a task.
2547 */
2548 if (unlikely(current->flags & PF_EXITING))
2549 return false;
2550 if (current->task_works) {
2551 __set_current_state(TASK_RUNNING);
2552 task_work_run();
2553 return true;
2554 }
2555
2556 return false;
2557 }
2558
2559 /*
2560 * Find and free completed poll iocbs
2561 */
2562 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2563 struct list_head *done)
2564 {
2565 struct req_batch rb;
2566 struct io_kiocb *req;
2567
2568 /* order with ->result store in io_complete_rw_iopoll() */
2569 smp_rmb();
2570
2571 io_init_req_batch(&rb);
2572 while (!list_empty(done)) {
2573 int cflags = 0;
2574
2575 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2576 list_del(&req->inflight_entry);
2577
2578 if (READ_ONCE(req->result) == -EAGAIN) {
2579 req->iopoll_completed = 0;
2580 if (io_rw_reissue(req))
2581 continue;
2582 }
2583
2584 if (req->flags & REQ_F_BUFFER_SELECTED)
2585 cflags = io_put_rw_kbuf(req);
2586
2587 __io_cqring_fill_event(req, req->result, cflags);
2588 (*nr_events)++;
2589
2590 if (refcount_dec_and_test(&req->refs))
2591 io_req_free_batch(&rb, req, &ctx->submit_state);
2592 }
2593
2594 io_commit_cqring(ctx);
2595 io_cqring_ev_posted_iopoll(ctx);
2596 io_req_free_batch_finish(ctx, &rb);
2597 }
2598
2599 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2600 long min)
2601 {
2602 struct io_kiocb *req, *tmp;
2603 LIST_HEAD(done);
2604 bool spin;
2605 int ret;
2606
2607 /*
2608 * Only spin for completions if we don't have multiple devices hanging
2609 * off our complete list, and we're under the requested amount.
2610 */
2611 spin = !ctx->poll_multi_file && *nr_events < min;
2612
2613 ret = 0;
2614 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2615 struct kiocb *kiocb = &req->rw.kiocb;
2616
2617 /*
2618 * Move completed and retryable entries to our local lists.
2619 * If we find a request that requires polling, break out
2620 * and complete those lists first, if we have entries there.
2621 */
2622 if (READ_ONCE(req->iopoll_completed)) {
2623 list_move_tail(&req->inflight_entry, &done);
2624 continue;
2625 }
2626 if (!list_empty(&done))
2627 break;
2628
2629 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2630 if (ret < 0)
2631 break;
2632
2633 /* iopoll may have completed current req */
2634 if (READ_ONCE(req->iopoll_completed))
2635 list_move_tail(&req->inflight_entry, &done);
2636
2637 if (ret && spin)
2638 spin = false;
2639 ret = 0;
2640 }
2641
2642 if (!list_empty(&done))
2643 io_iopoll_complete(ctx, nr_events, &done);
2644
2645 return ret;
2646 }
2647
2648 /*
2649 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2650 * non-spinning poll check - we'll still enter the driver poll loop, but only
2651 * as a non-spinning completion check.
2652 */
2653 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2654 long min)
2655 {
2656 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2657 int ret;
2658
2659 ret = io_do_iopoll(ctx, nr_events, min);
2660 if (ret < 0)
2661 return ret;
2662 if (*nr_events >= min)
2663 return 0;
2664 }
2665
2666 return 1;
2667 }
2668
2669 /*
2670 * We can't just wait for polled events to come to us, we have to actively
2671 * find and complete them.
2672 */
2673 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2674 {
2675 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2676 return;
2677
2678 mutex_lock(&ctx->uring_lock);
2679 while (!list_empty(&ctx->iopoll_list)) {
2680 unsigned int nr_events = 0;
2681
2682 io_do_iopoll(ctx, &nr_events, 0);
2683
2684 /* let it sleep and repeat later if can't complete a request */
2685 if (nr_events == 0)
2686 break;
2687 /*
2688 * Ensure we allow local-to-the-cpu processing to take place,
2689 * in this case we need to ensure that we reap all events.
2690 * Also let task_work, etc. to progress by releasing the mutex
2691 */
2692 if (need_resched()) {
2693 mutex_unlock(&ctx->uring_lock);
2694 cond_resched();
2695 mutex_lock(&ctx->uring_lock);
2696 }
2697 }
2698 mutex_unlock(&ctx->uring_lock);
2699 }
2700
2701 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2702 {
2703 unsigned int nr_events = 0;
2704 int iters = 0, ret = 0;
2705
2706 /*
2707 * We disallow the app entering submit/complete with polling, but we
2708 * still need to lock the ring to prevent racing with polled issue
2709 * that got punted to a workqueue.
2710 */
2711 mutex_lock(&ctx->uring_lock);
2712 do {
2713 /*
2714 * Don't enter poll loop if we already have events pending.
2715 * If we do, we can potentially be spinning for commands that
2716 * already triggered a CQE (eg in error).
2717 */
2718 if (test_bit(0, &ctx->cq_check_overflow))
2719 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2720 if (io_cqring_events(ctx))
2721 break;
2722
2723 /*
2724 * If a submit got punted to a workqueue, we can have the
2725 * application entering polling for a command before it gets
2726 * issued. That app will hold the uring_lock for the duration
2727 * of the poll right here, so we need to take a breather every
2728 * now and then to ensure that the issue has a chance to add
2729 * the poll to the issued list. Otherwise we can spin here
2730 * forever, while the workqueue is stuck trying to acquire the
2731 * very same mutex.
2732 */
2733 if (!(++iters & 7)) {
2734 mutex_unlock(&ctx->uring_lock);
2735 io_run_task_work();
2736 mutex_lock(&ctx->uring_lock);
2737 }
2738
2739 ret = io_iopoll_getevents(ctx, &nr_events, min);
2740 if (ret <= 0)
2741 break;
2742 ret = 0;
2743 } while (min && !nr_events && !need_resched());
2744
2745 mutex_unlock(&ctx->uring_lock);
2746 return ret;
2747 }
2748
2749 static void kiocb_end_write(struct io_kiocb *req)
2750 {
2751 /*
2752 * Tell lockdep we inherited freeze protection from submission
2753 * thread.
2754 */
2755 if (req->flags & REQ_F_ISREG) {
2756 struct inode *inode = file_inode(req->file);
2757
2758 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2759 }
2760 file_end_write(req->file);
2761 }
2762
2763 #ifdef CONFIG_BLOCK
2764 static bool io_resubmit_prep(struct io_kiocb *req)
2765 {
2766 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2767 int rw, ret;
2768 struct iov_iter iter;
2769
2770 /* already prepared */
2771 if (req->async_data)
2772 return true;
2773
2774 switch (req->opcode) {
2775 case IORING_OP_READV:
2776 case IORING_OP_READ_FIXED:
2777 case IORING_OP_READ:
2778 rw = READ;
2779 break;
2780 case IORING_OP_WRITEV:
2781 case IORING_OP_WRITE_FIXED:
2782 case IORING_OP_WRITE:
2783 rw = WRITE;
2784 break;
2785 default:
2786 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2787 req->opcode);
2788 return false;
2789 }
2790
2791 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2792 if (ret < 0)
2793 return false;
2794 return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2795 }
2796 #endif
2797
2798 static bool io_rw_reissue(struct io_kiocb *req)
2799 {
2800 #ifdef CONFIG_BLOCK
2801 umode_t mode = file_inode(req->file)->i_mode;
2802 int ret;
2803
2804 if (!S_ISBLK(mode) && !S_ISREG(mode))
2805 return false;
2806 if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
2807 return false;
2808
2809 lockdep_assert_held(&req->ctx->uring_lock);
2810
2811 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2812
2813 if (!ret && io_resubmit_prep(req)) {
2814 refcount_inc(&req->refs);
2815 io_queue_async_work(req);
2816 return true;
2817 }
2818 req_set_fail_links(req);
2819 #endif
2820 return false;
2821 }
2822
2823 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2824 unsigned int issue_flags)
2825 {
2826 int cflags = 0;
2827
2828 if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
2829 return;
2830 if (res != req->result)
2831 req_set_fail_links(req);
2832
2833 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2834 kiocb_end_write(req);
2835 if (req->flags & REQ_F_BUFFER_SELECTED)
2836 cflags = io_put_rw_kbuf(req);
2837 __io_req_complete(req, issue_flags, res, cflags);
2838 }
2839
2840 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2841 {
2842 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2843
2844 __io_complete_rw(req, res, res2, 0);
2845 }
2846
2847 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2848 {
2849 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2850
2851 if (kiocb->ki_flags & IOCB_WRITE)
2852 kiocb_end_write(req);
2853
2854 if (res != -EAGAIN && res != req->result)
2855 req_set_fail_links(req);
2856
2857 WRITE_ONCE(req->result, res);
2858 /* order with io_poll_complete() checking ->result */
2859 smp_wmb();
2860 WRITE_ONCE(req->iopoll_completed, 1);
2861 }
2862
2863 /*
2864 * After the iocb has been issued, it's safe to be found on the poll list.
2865 * Adding the kiocb to the list AFTER submission ensures that we don't
2866 * find it from a io_iopoll_getevents() thread before the issuer is done
2867 * accessing the kiocb cookie.
2868 */
2869 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2870 {
2871 struct io_ring_ctx *ctx = req->ctx;
2872
2873 /*
2874 * Track whether we have multiple files in our lists. This will impact
2875 * how we do polling eventually, not spinning if we're on potentially
2876 * different devices.
2877 */
2878 if (list_empty(&ctx->iopoll_list)) {
2879 ctx->poll_multi_file = false;
2880 } else if (!ctx->poll_multi_file) {
2881 struct io_kiocb *list_req;
2882
2883 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2884 inflight_entry);
2885 if (list_req->file != req->file)
2886 ctx->poll_multi_file = true;
2887 }
2888
2889 /*
2890 * For fast devices, IO may have already completed. If it has, add
2891 * it to the front so we find it first.
2892 */
2893 if (READ_ONCE(req->iopoll_completed))
2894 list_add(&req->inflight_entry, &ctx->iopoll_list);
2895 else
2896 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2897
2898 /*
2899 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2900 * task context or in io worker task context. If current task context is
2901 * sq thread, we don't need to check whether should wake up sq thread.
2902 */
2903 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2904 wq_has_sleeper(&ctx->sq_data->wait))
2905 wake_up(&ctx->sq_data->wait);
2906 }
2907
2908 static inline void io_state_file_put(struct io_submit_state *state)
2909 {
2910 if (state->file_refs) {
2911 fput_many(state->file, state->file_refs);
2912 state->file_refs = 0;
2913 }
2914 }
2915
2916 /*
2917 * Get as many references to a file as we have IOs left in this submission,
2918 * assuming most submissions are for one file, or at least that each file
2919 * has more than one submission.
2920 */
2921 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2922 {
2923 if (!state)
2924 return fget(fd);
2925
2926 if (state->file_refs) {
2927 if (state->fd == fd) {
2928 state->file_refs--;
2929 return state->file;
2930 }
2931 io_state_file_put(state);
2932 }
2933 state->file = fget_many(fd, state->ios_left);
2934 if (unlikely(!state->file))
2935 return NULL;
2936
2937 state->fd = fd;
2938 state->file_refs = state->ios_left - 1;
2939 return state->file;
2940 }
2941
2942 static bool io_bdev_nowait(struct block_device *bdev)
2943 {
2944 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2945 }
2946
2947 /*
2948 * If we tracked the file through the SCM inflight mechanism, we could support
2949 * any file. For now, just ensure that anything potentially problematic is done
2950 * inline.
2951 */
2952 static bool io_file_supports_async(struct file *file, int rw)
2953 {
2954 umode_t mode = file_inode(file)->i_mode;
2955
2956 if (S_ISBLK(mode)) {
2957 if (IS_ENABLED(CONFIG_BLOCK) &&
2958 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2959 return true;
2960 return false;
2961 }
2962 if (S_ISCHR(mode) || S_ISSOCK(mode))
2963 return true;
2964 if (S_ISREG(mode)) {
2965 if (IS_ENABLED(CONFIG_BLOCK) &&
2966 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2967 file->f_op != &io_uring_fops)
2968 return true;
2969 return false;
2970 }
2971
2972 /* any ->read/write should understand O_NONBLOCK */
2973 if (file->f_flags & O_NONBLOCK)
2974 return true;
2975
2976 if (!(file->f_mode & FMODE_NOWAIT))
2977 return false;
2978
2979 if (rw == READ)
2980 return file->f_op->read_iter != NULL;
2981
2982 return file->f_op->write_iter != NULL;
2983 }
2984
2985 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2986 {
2987 struct io_ring_ctx *ctx = req->ctx;
2988 struct kiocb *kiocb = &req->rw.kiocb;
2989 struct file *file = req->file;
2990 unsigned ioprio;
2991 int ret;
2992
2993 if (S_ISREG(file_inode(file)->i_mode))
2994 req->flags |= REQ_F_ISREG;
2995
2996 kiocb->ki_pos = READ_ONCE(sqe->off);
2997 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2998 req->flags |= REQ_F_CUR_POS;
2999 kiocb->ki_pos = file->f_pos;
3000 }
3001 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
3002 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
3003 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
3004 if (unlikely(ret))
3005 return ret;
3006
3007 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
3008 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
3009 req->flags |= REQ_F_NOWAIT;
3010
3011 ioprio = READ_ONCE(sqe->ioprio);
3012 if (ioprio) {
3013 ret = ioprio_check_cap(ioprio);
3014 if (ret)
3015 return ret;
3016
3017 kiocb->ki_ioprio = ioprio;
3018 } else
3019 kiocb->ki_ioprio = get_current_ioprio();
3020
3021 if (ctx->flags & IORING_SETUP_IOPOLL) {
3022 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3023 !kiocb->ki_filp->f_op->iopoll)
3024 return -EOPNOTSUPP;
3025
3026 kiocb->ki_flags |= IOCB_HIPRI;
3027 kiocb->ki_complete = io_complete_rw_iopoll;
3028 req->iopoll_completed = 0;
3029 } else {
3030 if (kiocb->ki_flags & IOCB_HIPRI)
3031 return -EINVAL;
3032 kiocb->ki_complete = io_complete_rw;
3033 }
3034
3035 req->rw.addr = READ_ONCE(sqe->addr);
3036 req->rw.len = READ_ONCE(sqe->len);
3037 req->buf_index = READ_ONCE(sqe->buf_index);
3038 return 0;
3039 }
3040
3041 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3042 {
3043 switch (ret) {
3044 case -EIOCBQUEUED:
3045 break;
3046 case -ERESTARTSYS:
3047 case -ERESTARTNOINTR:
3048 case -ERESTARTNOHAND:
3049 case -ERESTART_RESTARTBLOCK:
3050 /*
3051 * We can't just restart the syscall, since previously
3052 * submitted sqes may already be in progress. Just fail this
3053 * IO with EINTR.
3054 */
3055 ret = -EINTR;
3056 fallthrough;
3057 default:
3058 kiocb->ki_complete(kiocb, ret, 0);
3059 }
3060 }
3061
3062 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3063 unsigned int issue_flags)
3064 {
3065 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3066 struct io_async_rw *io = req->async_data;
3067
3068 /* add previously done IO, if any */
3069 if (io && io->bytes_done > 0) {
3070 if (ret < 0)
3071 ret = io->bytes_done;
3072 else
3073 ret += io->bytes_done;
3074 }
3075
3076 if (req->flags & REQ_F_CUR_POS)
3077 req->file->f_pos = kiocb->ki_pos;
3078 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3079 __io_complete_rw(req, ret, 0, issue_flags);
3080 else
3081 io_rw_done(kiocb, ret);
3082 }
3083
3084 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3085 {
3086 struct io_ring_ctx *ctx = req->ctx;
3087 size_t len = req->rw.len;
3088 struct io_mapped_ubuf *imu;
3089 u16 index, buf_index = req->buf_index;
3090 size_t offset;
3091 u64 buf_addr;
3092
3093 if (unlikely(buf_index >= ctx->nr_user_bufs))
3094 return -EFAULT;
3095 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3096 imu = &ctx->user_bufs[index];
3097 buf_addr = req->rw.addr;
3098
3099 /* overflow */
3100 if (buf_addr + len < buf_addr)
3101 return -EFAULT;
3102 /* not inside the mapped region */
3103 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3104 return -EFAULT;
3105
3106 /*
3107 * May not be a start of buffer, set size appropriately
3108 * and advance us to the beginning.
3109 */
3110 offset = buf_addr - imu->ubuf;
3111 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3112
3113 if (offset) {
3114 /*
3115 * Don't use iov_iter_advance() here, as it's really slow for
3116 * using the latter parts of a big fixed buffer - it iterates
3117 * over each segment manually. We can cheat a bit here, because
3118 * we know that:
3119 *
3120 * 1) it's a BVEC iter, we set it up
3121 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3122 * first and last bvec
3123 *
3124 * So just find our index, and adjust the iterator afterwards.
3125 * If the offset is within the first bvec (or the whole first
3126 * bvec, just use iov_iter_advance(). This makes it easier
3127 * since we can just skip the first segment, which may not
3128 * be PAGE_SIZE aligned.
3129 */
3130 const struct bio_vec *bvec = imu->bvec;
3131
3132 if (offset <= bvec->bv_len) {
3133 iov_iter_advance(iter, offset);
3134 } else {
3135 unsigned long seg_skip;
3136
3137 /* skip first vec */
3138 offset -= bvec->bv_len;
3139 seg_skip = 1 + (offset >> PAGE_SHIFT);
3140
3141 iter->bvec = bvec + seg_skip;
3142 iter->nr_segs -= seg_skip;
3143 iter->count -= bvec->bv_len + offset;
3144 iter->iov_offset = offset & ~PAGE_MASK;
3145 }
3146 }
3147
3148 return 0;
3149 }
3150
3151 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3152 {
3153 if (needs_lock)
3154 mutex_unlock(&ctx->uring_lock);
3155 }
3156
3157 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3158 {
3159 /*
3160 * "Normal" inline submissions always hold the uring_lock, since we
3161 * grab it from the system call. Same is true for the SQPOLL offload.
3162 * The only exception is when we've detached the request and issue it
3163 * from an async worker thread, grab the lock for that case.
3164 */
3165 if (needs_lock)
3166 mutex_lock(&ctx->uring_lock);
3167 }
3168
3169 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3170 int bgid, struct io_buffer *kbuf,
3171 bool needs_lock)
3172 {
3173 struct io_buffer *head;
3174
3175 if (req->flags & REQ_F_BUFFER_SELECTED)
3176 return kbuf;
3177
3178 io_ring_submit_lock(req->ctx, needs_lock);
3179
3180 lockdep_assert_held(&req->ctx->uring_lock);
3181
3182 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3183 if (head) {
3184 if (!list_empty(&head->list)) {
3185 kbuf = list_last_entry(&head->list, struct io_buffer,
3186 list);
3187 list_del(&kbuf->list);
3188 } else {
3189 kbuf = head;
3190 idr_remove(&req->ctx->io_buffer_idr, bgid);
3191 }
3192 if (*len > kbuf->len)
3193 *len = kbuf->len;
3194 } else {
3195 kbuf = ERR_PTR(-ENOBUFS);
3196 }
3197
3198 io_ring_submit_unlock(req->ctx, needs_lock);
3199
3200 return kbuf;
3201 }
3202
3203 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3204 bool needs_lock)
3205 {
3206 struct io_buffer *kbuf;
3207 u16 bgid;
3208
3209 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3210 bgid = req->buf_index;
3211 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3212 if (IS_ERR(kbuf))
3213 return kbuf;
3214 req->rw.addr = (u64) (unsigned long) kbuf;
3215 req->flags |= REQ_F_BUFFER_SELECTED;
3216 return u64_to_user_ptr(kbuf->addr);
3217 }
3218
3219 #ifdef CONFIG_COMPAT
3220 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3221 bool needs_lock)
3222 {
3223 struct compat_iovec __user *uiov;
3224 compat_ssize_t clen;
3225 void __user *buf;
3226 ssize_t len;
3227
3228 uiov = u64_to_user_ptr(req->rw.addr);
3229 if (!access_ok(uiov, sizeof(*uiov)))
3230 return -EFAULT;
3231 if (__get_user(clen, &uiov->iov_len))
3232 return -EFAULT;
3233 if (clen < 0)
3234 return -EINVAL;
3235
3236 len = clen;
3237 buf = io_rw_buffer_select(req, &len, needs_lock);
3238 if (IS_ERR(buf))
3239 return PTR_ERR(buf);
3240 iov[0].iov_base = buf;
3241 iov[0].iov_len = (compat_size_t) len;
3242 return 0;
3243 }
3244 #endif
3245
3246 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3247 bool needs_lock)
3248 {
3249 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3250 void __user *buf;
3251 ssize_t len;
3252
3253 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3254 return -EFAULT;
3255
3256 len = iov[0].iov_len;
3257 if (len < 0)
3258 return -EINVAL;
3259 buf = io_rw_buffer_select(req, &len, needs_lock);
3260 if (IS_ERR(buf))
3261 return PTR_ERR(buf);
3262 iov[0].iov_base = buf;
3263 iov[0].iov_len = len;
3264 return 0;
3265 }
3266
3267 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3268 bool needs_lock)
3269 {
3270 if (req->flags & REQ_F_BUFFER_SELECTED) {
3271 struct io_buffer *kbuf;
3272
3273 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3274 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3275 iov[0].iov_len = kbuf->len;
3276 return 0;
3277 }
3278 if (req->rw.len != 1)
3279 return -EINVAL;
3280
3281 #ifdef CONFIG_COMPAT
3282 if (req->ctx->compat)
3283 return io_compat_import(req, iov, needs_lock);
3284 #endif
3285
3286 return __io_iov_buffer_select(req, iov, needs_lock);
3287 }
3288
3289 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3290 struct iov_iter *iter, bool needs_lock)
3291 {
3292 void __user *buf = u64_to_user_ptr(req->rw.addr);
3293 size_t sqe_len = req->rw.len;
3294 u8 opcode = req->opcode;
3295 ssize_t ret;
3296
3297 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3298 *iovec = NULL;
3299 return io_import_fixed(req, rw, iter);
3300 }
3301
3302 /* buffer index only valid with fixed read/write, or buffer select */
3303 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3304 return -EINVAL;
3305
3306 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3307 if (req->flags & REQ_F_BUFFER_SELECT) {
3308 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3309 if (IS_ERR(buf))
3310 return PTR_ERR(buf);
3311 req->rw.len = sqe_len;
3312 }
3313
3314 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3315 *iovec = NULL;
3316 return ret;
3317 }
3318
3319 if (req->flags & REQ_F_BUFFER_SELECT) {
3320 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3321 if (!ret)
3322 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3323 *iovec = NULL;
3324 return ret;
3325 }
3326
3327 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3328 req->ctx->compat);
3329 }
3330
3331 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3332 {
3333 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3334 }
3335
3336 /*
3337 * For files that don't have ->read_iter() and ->write_iter(), handle them
3338 * by looping over ->read() or ->write() manually.
3339 */
3340 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3341 {
3342 struct kiocb *kiocb = &req->rw.kiocb;
3343 struct file *file = req->file;
3344 ssize_t ret = 0;
3345
3346 /*
3347 * Don't support polled IO through this interface, and we can't
3348 * support non-blocking either. For the latter, this just causes
3349 * the kiocb to be handled from an async context.
3350 */
3351 if (kiocb->ki_flags & IOCB_HIPRI)
3352 return -EOPNOTSUPP;
3353 if (kiocb->ki_flags & IOCB_NOWAIT)
3354 return -EAGAIN;
3355
3356 while (iov_iter_count(iter)) {
3357 struct iovec iovec;
3358 ssize_t nr;
3359
3360 if (!iov_iter_is_bvec(iter)) {
3361 iovec = iov_iter_iovec(iter);
3362 } else {
3363 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3364 iovec.iov_len = req->rw.len;
3365 }
3366
3367 if (rw == READ) {
3368 nr = file->f_op->read(file, iovec.iov_base,
3369 iovec.iov_len, io_kiocb_ppos(kiocb));
3370 } else {
3371 nr = file->f_op->write(file, iovec.iov_base,
3372 iovec.iov_len, io_kiocb_ppos(kiocb));
3373 }
3374
3375 if (nr < 0) {
3376 if (!ret)
3377 ret = nr;
3378 break;
3379 }
3380 ret += nr;
3381 if (nr != iovec.iov_len)
3382 break;
3383 req->rw.len -= nr;
3384 req->rw.addr += nr;
3385 iov_iter_advance(iter, nr);
3386 }
3387
3388 return ret;
3389 }
3390
3391 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3392 const struct iovec *fast_iov, struct iov_iter *iter)
3393 {
3394 struct io_async_rw *rw = req->async_data;
3395
3396 memcpy(&rw->iter, iter, sizeof(*iter));
3397 rw->free_iovec = iovec;
3398 rw->bytes_done = 0;
3399 /* can only be fixed buffers, no need to do anything */
3400 if (iov_iter_is_bvec(iter))
3401 return;
3402 if (!iovec) {
3403 unsigned iov_off = 0;
3404
3405 rw->iter.iov = rw->fast_iov;
3406 if (iter->iov != fast_iov) {
3407 iov_off = iter->iov - fast_iov;
3408 rw->iter.iov += iov_off;
3409 }
3410 if (rw->fast_iov != fast_iov)
3411 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3412 sizeof(struct iovec) * iter->nr_segs);
3413 } else {
3414 req->flags |= REQ_F_NEED_CLEANUP;
3415 }
3416 }
3417
3418 static inline int __io_alloc_async_data(struct io_kiocb *req)
3419 {
3420 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3421 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3422 return req->async_data == NULL;
3423 }
3424
3425 static int io_alloc_async_data(struct io_kiocb *req)
3426 {
3427 if (!io_op_defs[req->opcode].needs_async_data)
3428 return 0;
3429
3430 return __io_alloc_async_data(req);
3431 }
3432
3433 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3434 const struct iovec *fast_iov,
3435 struct iov_iter *iter, bool force)
3436 {
3437 if (!force && !io_op_defs[req->opcode].needs_async_data)
3438 return 0;
3439 if (!req->async_data) {
3440 if (__io_alloc_async_data(req)) {
3441 kfree(iovec);
3442 return -ENOMEM;
3443 }
3444
3445 io_req_map_rw(req, iovec, fast_iov, iter);
3446 }
3447 return 0;
3448 }
3449
3450 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3451 {
3452 struct io_async_rw *iorw = req->async_data;
3453 struct iovec *iov = iorw->fast_iov;
3454 int ret;
3455
3456 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3457 if (unlikely(ret < 0))
3458 return ret;
3459
3460 iorw->bytes_done = 0;
3461 iorw->free_iovec = iov;
3462 if (iov)
3463 req->flags |= REQ_F_NEED_CLEANUP;
3464 return 0;
3465 }
3466
3467 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3468 {
3469 ssize_t ret;
3470
3471 ret = io_prep_rw(req, sqe);
3472 if (ret)
3473 return ret;
3474
3475 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3476 return -EBADF;
3477
3478 /* either don't need iovec imported or already have it */
3479 if (!req->async_data)
3480 return 0;
3481 return io_rw_prep_async(req, READ);
3482 }
3483
3484 /*
3485 * This is our waitqueue callback handler, registered through lock_page_async()
3486 * when we initially tried to do the IO with the iocb armed our waitqueue.
3487 * This gets called when the page is unlocked, and we generally expect that to
3488 * happen when the page IO is completed and the page is now uptodate. This will
3489 * queue a task_work based retry of the operation, attempting to copy the data
3490 * again. If the latter fails because the page was NOT uptodate, then we will
3491 * do a thread based blocking retry of the operation. That's the unexpected
3492 * slow path.
3493 */
3494 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3495 int sync, void *arg)
3496 {
3497 struct wait_page_queue *wpq;
3498 struct io_kiocb *req = wait->private;
3499 struct wait_page_key *key = arg;
3500
3501 wpq = container_of(wait, struct wait_page_queue, wait);
3502
3503 if (!wake_page_match(wpq, key))
3504 return 0;
3505
3506 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3507 list_del_init(&wait->entry);
3508
3509 /* submit ref gets dropped, acquire a new one */
3510 refcount_inc(&req->refs);
3511 io_req_task_queue(req);
3512 return 1;
3513 }
3514
3515 /*
3516 * This controls whether a given IO request should be armed for async page
3517 * based retry. If we return false here, the request is handed to the async
3518 * worker threads for retry. If we're doing buffered reads on a regular file,
3519 * we prepare a private wait_page_queue entry and retry the operation. This
3520 * will either succeed because the page is now uptodate and unlocked, or it
3521 * will register a callback when the page is unlocked at IO completion. Through
3522 * that callback, io_uring uses task_work to setup a retry of the operation.
3523 * That retry will attempt the buffered read again. The retry will generally
3524 * succeed, or in rare cases where it fails, we then fall back to using the
3525 * async worker threads for a blocking retry.
3526 */
3527 static bool io_rw_should_retry(struct io_kiocb *req)
3528 {
3529 struct io_async_rw *rw = req->async_data;
3530 struct wait_page_queue *wait = &rw->wpq;
3531 struct kiocb *kiocb = &req->rw.kiocb;
3532
3533 /* never retry for NOWAIT, we just complete with -EAGAIN */
3534 if (req->flags & REQ_F_NOWAIT)
3535 return false;
3536
3537 /* Only for buffered IO */
3538 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3539 return false;
3540
3541 /*
3542 * just use poll if we can, and don't attempt if the fs doesn't
3543 * support callback based unlocks
3544 */
3545 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3546 return false;
3547
3548 wait->wait.func = io_async_buf_func;
3549 wait->wait.private = req;
3550 wait->wait.flags = 0;
3551 INIT_LIST_HEAD(&wait->wait.entry);
3552 kiocb->ki_flags |= IOCB_WAITQ;
3553 kiocb->ki_flags &= ~IOCB_NOWAIT;
3554 kiocb->ki_waitq = wait;
3555 return true;
3556 }
3557
3558 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3559 {
3560 if (req->file->f_op->read_iter)
3561 return call_read_iter(req->file, &req->rw.kiocb, iter);
3562 else if (req->file->f_op->read)
3563 return loop_rw_iter(READ, req, iter);
3564 else
3565 return -EINVAL;
3566 }
3567
3568 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3569 {
3570 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3571 struct kiocb *kiocb = &req->rw.kiocb;
3572 struct iov_iter __iter, *iter = &__iter;
3573 struct io_async_rw *rw = req->async_data;
3574 ssize_t io_size, ret, ret2;
3575 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3576
3577 if (rw) {
3578 iter = &rw->iter;
3579 iovec = NULL;
3580 } else {
3581 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3582 if (ret < 0)
3583 return ret;
3584 }
3585 io_size = iov_iter_count(iter);
3586 req->result = io_size;
3587
3588 /* Ensure we clear previously set non-block flag */
3589 if (!force_nonblock)
3590 kiocb->ki_flags &= ~IOCB_NOWAIT;
3591 else
3592 kiocb->ki_flags |= IOCB_NOWAIT;
3593
3594 /* If the file doesn't support async, just async punt */
3595 if (force_nonblock && !io_file_supports_async(req->file, READ)) {
3596 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3597 return ret ?: -EAGAIN;
3598 }
3599
3600 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3601 if (unlikely(ret)) {
3602 kfree(iovec);
3603 return ret;
3604 }
3605
3606 ret = io_iter_do_read(req, iter);
3607
3608 if (ret == -EIOCBQUEUED) {
3609 goto out_free;
3610 } else if (ret == -EAGAIN) {
3611 /* IOPOLL retry should happen for io-wq threads */
3612 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3613 goto done;
3614 /* no retry on NONBLOCK nor RWF_NOWAIT */
3615 if (req->flags & REQ_F_NOWAIT)
3616 goto done;
3617 /* some cases will consume bytes even on error returns */
3618 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3619 ret = 0;
3620 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3621 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3622 /* read all, failed, already did sync or don't want to retry */
3623 goto done;
3624 }
3625
3626 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3627 if (ret2)
3628 return ret2;
3629
3630 iovec = NULL;
3631 rw = req->async_data;
3632 /* now use our persistent iterator, if we aren't already */
3633 iter = &rw->iter;
3634
3635 do {
3636 io_size -= ret;
3637 rw->bytes_done += ret;
3638 /* if we can retry, do so with the callbacks armed */
3639 if (!io_rw_should_retry(req)) {
3640 kiocb->ki_flags &= ~IOCB_WAITQ;
3641 return -EAGAIN;
3642 }
3643
3644 /*
3645 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3646 * we get -EIOCBQUEUED, then we'll get a notification when the
3647 * desired page gets unlocked. We can also get a partial read
3648 * here, and if we do, then just retry at the new offset.
3649 */
3650 ret = io_iter_do_read(req, iter);
3651 if (ret == -EIOCBQUEUED)
3652 return 0;
3653 /* we got some bytes, but not all. retry. */
3654 } while (ret > 0 && ret < io_size);
3655 done:
3656 kiocb_done(kiocb, ret, issue_flags);
3657 out_free:
3658 /* it's faster to check here then delegate to kfree */
3659 if (iovec)
3660 kfree(iovec);
3661 return 0;
3662 }
3663
3664 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3665 {
3666 ssize_t ret;
3667
3668 ret = io_prep_rw(req, sqe);
3669 if (ret)
3670 return ret;
3671
3672 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3673 return -EBADF;
3674
3675 /* either don't need iovec imported or already have it */
3676 if (!req->async_data)
3677 return 0;
3678 return io_rw_prep_async(req, WRITE);
3679 }
3680
3681 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3682 {
3683 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3684 struct kiocb *kiocb = &req->rw.kiocb;
3685 struct iov_iter __iter, *iter = &__iter;
3686 struct io_async_rw *rw = req->async_data;
3687 ssize_t ret, ret2, io_size;
3688 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3689
3690 if (rw) {
3691 iter = &rw->iter;
3692 iovec = NULL;
3693 } else {
3694 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3695 if (ret < 0)
3696 return ret;
3697 }
3698 io_size = iov_iter_count(iter);
3699 req->result = io_size;
3700
3701 /* Ensure we clear previously set non-block flag */
3702 if (!force_nonblock)
3703 kiocb->ki_flags &= ~IOCB_NOWAIT;
3704 else
3705 kiocb->ki_flags |= IOCB_NOWAIT;
3706
3707 /* If the file doesn't support async, just async punt */
3708 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3709 goto copy_iov;
3710
3711 /* file path doesn't support NOWAIT for non-direct_IO */
3712 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3713 (req->flags & REQ_F_ISREG))
3714 goto copy_iov;
3715
3716 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3717 if (unlikely(ret))
3718 goto out_free;
3719
3720 /*
3721 * Open-code file_start_write here to grab freeze protection,
3722 * which will be released by another thread in
3723 * io_complete_rw(). Fool lockdep by telling it the lock got
3724 * released so that it doesn't complain about the held lock when
3725 * we return to userspace.
3726 */
3727 if (req->flags & REQ_F_ISREG) {
3728 sb_start_write(file_inode(req->file)->i_sb);
3729 __sb_writers_release(file_inode(req->file)->i_sb,
3730 SB_FREEZE_WRITE);
3731 }
3732 kiocb->ki_flags |= IOCB_WRITE;
3733
3734 if (req->file->f_op->write_iter)
3735 ret2 = call_write_iter(req->file, kiocb, iter);
3736 else if (req->file->f_op->write)
3737 ret2 = loop_rw_iter(WRITE, req, iter);
3738 else
3739 ret2 = -EINVAL;
3740
3741 /*
3742 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3743 * retry them without IOCB_NOWAIT.
3744 */
3745 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3746 ret2 = -EAGAIN;
3747 /* no retry on NONBLOCK nor RWF_NOWAIT */
3748 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3749 goto done;
3750 if (!force_nonblock || ret2 != -EAGAIN) {
3751 /* IOPOLL retry should happen for io-wq threads */
3752 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3753 goto copy_iov;
3754 done:
3755 kiocb_done(kiocb, ret2, issue_flags);
3756 } else {
3757 copy_iov:
3758 /* some cases will consume bytes even on error returns */
3759 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3760 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3761 return ret ?: -EAGAIN;
3762 }
3763 out_free:
3764 /* it's reportedly faster than delegating the null check to kfree() */
3765 if (iovec)
3766 kfree(iovec);
3767 return ret;
3768 }
3769
3770 static int io_renameat_prep(struct io_kiocb *req,
3771 const struct io_uring_sqe *sqe)
3772 {
3773 struct io_rename *ren = &req->rename;
3774 const char __user *oldf, *newf;
3775
3776 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3777 return -EBADF;
3778
3779 ren->old_dfd = READ_ONCE(sqe->fd);
3780 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3781 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3782 ren->new_dfd = READ_ONCE(sqe->len);
3783 ren->flags = READ_ONCE(sqe->rename_flags);
3784
3785 ren->oldpath = getname(oldf);
3786 if (IS_ERR(ren->oldpath))
3787 return PTR_ERR(ren->oldpath);
3788
3789 ren->newpath = getname(newf);
3790 if (IS_ERR(ren->newpath)) {
3791 putname(ren->oldpath);
3792 return PTR_ERR(ren->newpath);
3793 }
3794
3795 req->flags |= REQ_F_NEED_CLEANUP;
3796 return 0;
3797 }
3798
3799 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3800 {
3801 struct io_rename *ren = &req->rename;
3802 int ret;
3803
3804 if (issue_flags & IO_URING_F_NONBLOCK)
3805 return -EAGAIN;
3806
3807 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3808 ren->newpath, ren->flags);
3809
3810 req->flags &= ~REQ_F_NEED_CLEANUP;
3811 if (ret < 0)
3812 req_set_fail_links(req);
3813 io_req_complete(req, ret);
3814 return 0;
3815 }
3816
3817 static int io_unlinkat_prep(struct io_kiocb *req,
3818 const struct io_uring_sqe *sqe)
3819 {
3820 struct io_unlink *un = &req->unlink;
3821 const char __user *fname;
3822
3823 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3824 return -EBADF;
3825
3826 un->dfd = READ_ONCE(sqe->fd);
3827
3828 un->flags = READ_ONCE(sqe->unlink_flags);
3829 if (un->flags & ~AT_REMOVEDIR)
3830 return -EINVAL;
3831
3832 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3833 un->filename = getname(fname);
3834 if (IS_ERR(un->filename))
3835 return PTR_ERR(un->filename);
3836
3837 req->flags |= REQ_F_NEED_CLEANUP;
3838 return 0;
3839 }
3840
3841 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3842 {
3843 struct io_unlink *un = &req->unlink;
3844 int ret;
3845
3846 if (issue_flags & IO_URING_F_NONBLOCK)
3847 return -EAGAIN;
3848
3849 if (un->flags & AT_REMOVEDIR)
3850 ret = do_rmdir(un->dfd, un->filename);
3851 else
3852 ret = do_unlinkat(un->dfd, un->filename);
3853
3854 req->flags &= ~REQ_F_NEED_CLEANUP;
3855 if (ret < 0)
3856 req_set_fail_links(req);
3857 io_req_complete(req, ret);
3858 return 0;
3859 }
3860
3861 static int io_shutdown_prep(struct io_kiocb *req,
3862 const struct io_uring_sqe *sqe)
3863 {
3864 #if defined(CONFIG_NET)
3865 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3866 return -EINVAL;
3867 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3868 sqe->buf_index)
3869 return -EINVAL;
3870
3871 req->shutdown.how = READ_ONCE(sqe->len);
3872 return 0;
3873 #else
3874 return -EOPNOTSUPP;
3875 #endif
3876 }
3877
3878 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3879 {
3880 #if defined(CONFIG_NET)
3881 struct socket *sock;
3882 int ret;
3883
3884 if (issue_flags & IO_URING_F_NONBLOCK)
3885 return -EAGAIN;
3886
3887 sock = sock_from_file(req->file);
3888 if (unlikely(!sock))
3889 return -ENOTSOCK;
3890
3891 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3892 if (ret < 0)
3893 req_set_fail_links(req);
3894 io_req_complete(req, ret);
3895 return 0;
3896 #else
3897 return -EOPNOTSUPP;
3898 #endif
3899 }
3900
3901 static int __io_splice_prep(struct io_kiocb *req,
3902 const struct io_uring_sqe *sqe)
3903 {
3904 struct io_splice* sp = &req->splice;
3905 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3906
3907 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3908 return -EINVAL;
3909
3910 sp->file_in = NULL;
3911 sp->len = READ_ONCE(sqe->len);
3912 sp->flags = READ_ONCE(sqe->splice_flags);
3913
3914 if (unlikely(sp->flags & ~valid_flags))
3915 return -EINVAL;
3916
3917 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3918 (sp->flags & SPLICE_F_FD_IN_FIXED));
3919 if (!sp->file_in)
3920 return -EBADF;
3921 req->flags |= REQ_F_NEED_CLEANUP;
3922
3923 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3924 /*
3925 * Splice operation will be punted aync, and here need to
3926 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3927 */
3928 io_req_init_async(req);
3929 req->work.flags |= IO_WQ_WORK_UNBOUND;
3930 }
3931
3932 return 0;
3933 }
3934
3935 static int io_tee_prep(struct io_kiocb *req,
3936 const struct io_uring_sqe *sqe)
3937 {
3938 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3939 return -EINVAL;
3940 return __io_splice_prep(req, sqe);
3941 }
3942
3943 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3944 {
3945 struct io_splice *sp = &req->splice;
3946 struct file *in = sp->file_in;
3947 struct file *out = sp->file_out;
3948 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3949 long ret = 0;
3950
3951 if (issue_flags & IO_URING_F_NONBLOCK)
3952 return -EAGAIN;
3953 if (sp->len)
3954 ret = do_tee(in, out, sp->len, flags);
3955
3956 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3957 req->flags &= ~REQ_F_NEED_CLEANUP;
3958
3959 if (ret != sp->len)
3960 req_set_fail_links(req);
3961 io_req_complete(req, ret);
3962 return 0;
3963 }
3964
3965 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3966 {
3967 struct io_splice* sp = &req->splice;
3968
3969 sp->off_in = READ_ONCE(sqe->splice_off_in);
3970 sp->off_out = READ_ONCE(sqe->off);
3971 return __io_splice_prep(req, sqe);
3972 }
3973
3974 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3975 {
3976 struct io_splice *sp = &req->splice;
3977 struct file *in = sp->file_in;
3978 struct file *out = sp->file_out;
3979 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3980 loff_t *poff_in, *poff_out;
3981 long ret = 0;
3982
3983 if (issue_flags & IO_URING_F_NONBLOCK)
3984 return -EAGAIN;
3985
3986 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3987 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3988
3989 if (sp->len)
3990 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3991
3992 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3993 req->flags &= ~REQ_F_NEED_CLEANUP;
3994
3995 if (ret != sp->len)
3996 req_set_fail_links(req);
3997 io_req_complete(req, ret);
3998 return 0;
3999 }
4000
4001 /*
4002 * IORING_OP_NOP just posts a completion event, nothing else.
4003 */
4004 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4005 {
4006 struct io_ring_ctx *ctx = req->ctx;
4007
4008 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4009 return -EINVAL;
4010
4011 __io_req_complete(req, issue_flags, 0, 0);
4012 return 0;
4013 }
4014
4015 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 {
4017 struct io_ring_ctx *ctx = req->ctx;
4018
4019 if (!req->file)
4020 return -EBADF;
4021
4022 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4023 return -EINVAL;
4024 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4025 return -EINVAL;
4026
4027 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4028 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4029 return -EINVAL;
4030
4031 req->sync.off = READ_ONCE(sqe->off);
4032 req->sync.len = READ_ONCE(sqe->len);
4033 return 0;
4034 }
4035
4036 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4037 {
4038 loff_t end = req->sync.off + req->sync.len;
4039 int ret;
4040
4041 /* fsync always requires a blocking context */
4042 if (issue_flags & IO_URING_F_NONBLOCK)
4043 return -EAGAIN;
4044
4045 ret = vfs_fsync_range(req->file, req->sync.off,
4046 end > 0 ? end : LLONG_MAX,
4047 req->sync.flags & IORING_FSYNC_DATASYNC);
4048 if (ret < 0)
4049 req_set_fail_links(req);
4050 io_req_complete(req, ret);
4051 return 0;
4052 }
4053
4054 static int io_fallocate_prep(struct io_kiocb *req,
4055 const struct io_uring_sqe *sqe)
4056 {
4057 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4058 return -EINVAL;
4059 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4060 return -EINVAL;
4061
4062 req->sync.off = READ_ONCE(sqe->off);
4063 req->sync.len = READ_ONCE(sqe->addr);
4064 req->sync.mode = READ_ONCE(sqe->len);
4065 return 0;
4066 }
4067
4068 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4069 {
4070 int ret;
4071
4072 /* fallocate always requiring blocking context */
4073 if (issue_flags & IO_URING_F_NONBLOCK)
4074 return -EAGAIN;
4075 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4076 req->sync.len);
4077 if (ret < 0)
4078 req_set_fail_links(req);
4079 io_req_complete(req, ret);
4080 return 0;
4081 }
4082
4083 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4084 {
4085 const char __user *fname;
4086 int ret;
4087
4088 if (unlikely(sqe->ioprio || sqe->buf_index))
4089 return -EINVAL;
4090 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4091 return -EBADF;
4092
4093 /* open.how should be already initialised */
4094 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4095 req->open.how.flags |= O_LARGEFILE;
4096
4097 req->open.dfd = READ_ONCE(sqe->fd);
4098 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4099 req->open.filename = getname(fname);
4100 if (IS_ERR(req->open.filename)) {
4101 ret = PTR_ERR(req->open.filename);
4102 req->open.filename = NULL;
4103 return ret;
4104 }
4105 req->open.nofile = rlimit(RLIMIT_NOFILE);
4106 req->flags |= REQ_F_NEED_CLEANUP;
4107 return 0;
4108 }
4109
4110 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4111 {
4112 u64 flags, mode;
4113
4114 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4115 return -EINVAL;
4116 mode = READ_ONCE(sqe->len);
4117 flags = READ_ONCE(sqe->open_flags);
4118 req->open.how = build_open_how(flags, mode);
4119 return __io_openat_prep(req, sqe);
4120 }
4121
4122 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4123 {
4124 struct open_how __user *how;
4125 size_t len;
4126 int ret;
4127
4128 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4129 return -EINVAL;
4130 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4131 len = READ_ONCE(sqe->len);
4132 if (len < OPEN_HOW_SIZE_VER0)
4133 return -EINVAL;
4134
4135 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4136 len);
4137 if (ret)
4138 return ret;
4139
4140 return __io_openat_prep(req, sqe);
4141 }
4142
4143 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4144 {
4145 struct open_flags op;
4146 struct file *file;
4147 bool nonblock_set;
4148 bool resolve_nonblock;
4149 int ret;
4150
4151 ret = build_open_flags(&req->open.how, &op);
4152 if (ret)
4153 goto err;
4154 nonblock_set = op.open_flag & O_NONBLOCK;
4155 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4156 if (issue_flags & IO_URING_F_NONBLOCK) {
4157 /*
4158 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4159 * it'll always -EAGAIN
4160 */
4161 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4162 return -EAGAIN;
4163 op.lookup_flags |= LOOKUP_CACHED;
4164 op.open_flag |= O_NONBLOCK;
4165 }
4166
4167 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4168 if (ret < 0)
4169 goto err;
4170
4171 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4172 /* only retry if RESOLVE_CACHED wasn't already set by application */
4173 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
4174 file == ERR_PTR(-EAGAIN)) {
4175 /*
4176 * We could hang on to this 'fd', but seems like marginal
4177 * gain for something that is now known to be a slower path.
4178 * So just put it, and we'll get a new one when we retry.
4179 */
4180 put_unused_fd(ret);
4181 return -EAGAIN;
4182 }
4183
4184 if (IS_ERR(file)) {
4185 put_unused_fd(ret);
4186 ret = PTR_ERR(file);
4187 } else {
4188 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4189 file->f_flags &= ~O_NONBLOCK;
4190 fsnotify_open(file);
4191 fd_install(ret, file);
4192 }
4193 err:
4194 putname(req->open.filename);
4195 req->flags &= ~REQ_F_NEED_CLEANUP;
4196 if (ret < 0)
4197 req_set_fail_links(req);
4198 io_req_complete(req, ret);
4199 return 0;
4200 }
4201
4202 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4203 {
4204 return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
4205 }
4206
4207 static int io_remove_buffers_prep(struct io_kiocb *req,
4208 const struct io_uring_sqe *sqe)
4209 {
4210 struct io_provide_buf *p = &req->pbuf;
4211 u64 tmp;
4212
4213 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4214 return -EINVAL;
4215
4216 tmp = READ_ONCE(sqe->fd);
4217 if (!tmp || tmp > USHRT_MAX)
4218 return -EINVAL;
4219
4220 memset(p, 0, sizeof(*p));
4221 p->nbufs = tmp;
4222 p->bgid = READ_ONCE(sqe->buf_group);
4223 return 0;
4224 }
4225
4226 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4227 int bgid, unsigned nbufs)
4228 {
4229 unsigned i = 0;
4230
4231 /* shouldn't happen */
4232 if (!nbufs)
4233 return 0;
4234
4235 /* the head kbuf is the list itself */
4236 while (!list_empty(&buf->list)) {
4237 struct io_buffer *nxt;
4238
4239 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4240 list_del(&nxt->list);
4241 kfree(nxt);
4242 if (++i == nbufs)
4243 return i;
4244 }
4245 i++;
4246 kfree(buf);
4247 idr_remove(&ctx->io_buffer_idr, bgid);
4248
4249 return i;
4250 }
4251
4252 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4253 {
4254 struct io_provide_buf *p = &req->pbuf;
4255 struct io_ring_ctx *ctx = req->ctx;
4256 struct io_buffer *head;
4257 int ret = 0;
4258 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4259
4260 io_ring_submit_lock(ctx, !force_nonblock);
4261
4262 lockdep_assert_held(&ctx->uring_lock);
4263
4264 ret = -ENOENT;
4265 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4266 if (head)
4267 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4268 if (ret < 0)
4269 req_set_fail_links(req);
4270
4271 /* need to hold the lock to complete IOPOLL requests */
4272 if (ctx->flags & IORING_SETUP_IOPOLL) {
4273 __io_req_complete(req, issue_flags, ret, 0);
4274 io_ring_submit_unlock(ctx, !force_nonblock);
4275 } else {
4276 io_ring_submit_unlock(ctx, !force_nonblock);
4277 __io_req_complete(req, issue_flags, ret, 0);
4278 }
4279 return 0;
4280 }
4281
4282 static int io_provide_buffers_prep(struct io_kiocb *req,
4283 const struct io_uring_sqe *sqe)
4284 {
4285 struct io_provide_buf *p = &req->pbuf;
4286 u64 tmp;
4287
4288 if (sqe->ioprio || sqe->rw_flags)
4289 return -EINVAL;
4290
4291 tmp = READ_ONCE(sqe->fd);
4292 if (!tmp || tmp > USHRT_MAX)
4293 return -E2BIG;
4294 p->nbufs = tmp;
4295 p->addr = READ_ONCE(sqe->addr);
4296 p->len = READ_ONCE(sqe->len);
4297
4298 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4299 return -EFAULT;
4300
4301 p->bgid = READ_ONCE(sqe->buf_group);
4302 tmp = READ_ONCE(sqe->off);
4303 if (tmp > USHRT_MAX)
4304 return -E2BIG;
4305 p->bid = tmp;
4306 return 0;
4307 }
4308
4309 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4310 {
4311 struct io_buffer *buf;
4312 u64 addr = pbuf->addr;
4313 int i, bid = pbuf->bid;
4314
4315 for (i = 0; i < pbuf->nbufs; i++) {
4316 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4317 if (!buf)
4318 break;
4319
4320 buf->addr = addr;
4321 buf->len = pbuf->len;
4322 buf->bid = bid;
4323 addr += pbuf->len;
4324 bid++;
4325 if (!*head) {
4326 INIT_LIST_HEAD(&buf->list);
4327 *head = buf;
4328 } else {
4329 list_add_tail(&buf->list, &(*head)->list);
4330 }
4331 }
4332
4333 return i ? i : -ENOMEM;
4334 }
4335
4336 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4337 {
4338 struct io_provide_buf *p = &req->pbuf;
4339 struct io_ring_ctx *ctx = req->ctx;
4340 struct io_buffer *head, *list;
4341 int ret = 0;
4342 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4343
4344 io_ring_submit_lock(ctx, !force_nonblock);
4345
4346 lockdep_assert_held(&ctx->uring_lock);
4347
4348 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4349
4350 ret = io_add_buffers(p, &head);
4351 if (ret < 0)
4352 goto out;
4353
4354 if (!list) {
4355 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4356 GFP_KERNEL);
4357 if (ret < 0) {
4358 __io_remove_buffers(ctx, head, p->bgid, -1U);
4359 goto out;
4360 }
4361 }
4362 out:
4363 if (ret < 0)
4364 req_set_fail_links(req);
4365
4366 /* need to hold the lock to complete IOPOLL requests */
4367 if (ctx->flags & IORING_SETUP_IOPOLL) {
4368 __io_req_complete(req, issue_flags, ret, 0);
4369 io_ring_submit_unlock(ctx, !force_nonblock);
4370 } else {
4371 io_ring_submit_unlock(ctx, !force_nonblock);
4372 __io_req_complete(req, issue_flags, ret, 0);
4373 }
4374 return 0;
4375 }
4376
4377 static int io_epoll_ctl_prep(struct io_kiocb *req,
4378 const struct io_uring_sqe *sqe)
4379 {
4380 #if defined(CONFIG_EPOLL)
4381 if (sqe->ioprio || sqe->buf_index)
4382 return -EINVAL;
4383 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4384 return -EINVAL;
4385
4386 req->epoll.epfd = READ_ONCE(sqe->fd);
4387 req->epoll.op = READ_ONCE(sqe->len);
4388 req->epoll.fd = READ_ONCE(sqe->off);
4389
4390 if (ep_op_has_event(req->epoll.op)) {
4391 struct epoll_event __user *ev;
4392
4393 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4394 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4395 return -EFAULT;
4396 }
4397
4398 return 0;
4399 #else
4400 return -EOPNOTSUPP;
4401 #endif
4402 }
4403
4404 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4405 {
4406 #if defined(CONFIG_EPOLL)
4407 struct io_epoll *ie = &req->epoll;
4408 int ret;
4409 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4410
4411 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4412 if (force_nonblock && ret == -EAGAIN)
4413 return -EAGAIN;
4414
4415 if (ret < 0)
4416 req_set_fail_links(req);
4417 __io_req_complete(req, issue_flags, ret, 0);
4418 return 0;
4419 #else
4420 return -EOPNOTSUPP;
4421 #endif
4422 }
4423
4424 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4425 {
4426 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4427 if (sqe->ioprio || sqe->buf_index || sqe->off)
4428 return -EINVAL;
4429 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4430 return -EINVAL;
4431
4432 req->madvise.addr = READ_ONCE(sqe->addr);
4433 req->madvise.len = READ_ONCE(sqe->len);
4434 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4435 return 0;
4436 #else
4437 return -EOPNOTSUPP;
4438 #endif
4439 }
4440
4441 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4442 {
4443 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4444 struct io_madvise *ma = &req->madvise;
4445 int ret;
4446
4447 if (issue_flags & IO_URING_F_NONBLOCK)
4448 return -EAGAIN;
4449
4450 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4451 if (ret < 0)
4452 req_set_fail_links(req);
4453 io_req_complete(req, ret);
4454 return 0;
4455 #else
4456 return -EOPNOTSUPP;
4457 #endif
4458 }
4459
4460 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4461 {
4462 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4463 return -EINVAL;
4464 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4465 return -EINVAL;
4466
4467 req->fadvise.offset = READ_ONCE(sqe->off);
4468 req->fadvise.len = READ_ONCE(sqe->len);
4469 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4470 return 0;
4471 }
4472
4473 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4474 {
4475 struct io_fadvise *fa = &req->fadvise;
4476 int ret;
4477
4478 if (issue_flags & IO_URING_F_NONBLOCK) {
4479 switch (fa->advice) {
4480 case POSIX_FADV_NORMAL:
4481 case POSIX_FADV_RANDOM:
4482 case POSIX_FADV_SEQUENTIAL:
4483 break;
4484 default:
4485 return -EAGAIN;
4486 }
4487 }
4488
4489 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4490 if (ret < 0)
4491 req_set_fail_links(req);
4492 io_req_complete(req, ret);
4493 return 0;
4494 }
4495
4496 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4497 {
4498 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4499 return -EINVAL;
4500 if (sqe->ioprio || sqe->buf_index)
4501 return -EINVAL;
4502 if (req->flags & REQ_F_FIXED_FILE)
4503 return -EBADF;
4504
4505 req->statx.dfd = READ_ONCE(sqe->fd);
4506 req->statx.mask = READ_ONCE(sqe->len);
4507 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4508 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4509 req->statx.flags = READ_ONCE(sqe->statx_flags);
4510
4511 return 0;
4512 }
4513
4514 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4515 {
4516 struct io_statx *ctx = &req->statx;
4517 int ret;
4518
4519 if (issue_flags & IO_URING_F_NONBLOCK) {
4520 /* only need file table for an actual valid fd */
4521 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4522 req->flags |= REQ_F_NO_FILE_TABLE;
4523 return -EAGAIN;
4524 }
4525
4526 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4527 ctx->buffer);
4528
4529 if (ret < 0)
4530 req_set_fail_links(req);
4531 io_req_complete(req, ret);
4532 return 0;
4533 }
4534
4535 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4536 {
4537 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4538 return -EINVAL;
4539 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4540 sqe->rw_flags || sqe->buf_index)
4541 return -EINVAL;
4542 if (req->flags & REQ_F_FIXED_FILE)
4543 return -EBADF;
4544
4545 req->close.fd = READ_ONCE(sqe->fd);
4546 return 0;
4547 }
4548
4549 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4550 {
4551 struct files_struct *files = current->files;
4552 struct io_close *close = &req->close;
4553 struct fdtable *fdt;
4554 struct file *file;
4555 int ret;
4556
4557 file = NULL;
4558 ret = -EBADF;
4559 spin_lock(&files->file_lock);
4560 fdt = files_fdtable(files);
4561 if (close->fd >= fdt->max_fds) {
4562 spin_unlock(&files->file_lock);
4563 goto err;
4564 }
4565 file = fdt->fd[close->fd];
4566 if (!file) {
4567 spin_unlock(&files->file_lock);
4568 goto err;
4569 }
4570
4571 if (file->f_op == &io_uring_fops) {
4572 spin_unlock(&files->file_lock);
4573 file = NULL;
4574 goto err;
4575 }
4576
4577 /* if the file has a flush method, be safe and punt to async */
4578 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4579 spin_unlock(&files->file_lock);
4580 return -EAGAIN;
4581 }
4582
4583 ret = __close_fd_get_file(close->fd, &file);
4584 spin_unlock(&files->file_lock);
4585 if (ret < 0) {
4586 if (ret == -ENOENT)
4587 ret = -EBADF;
4588 goto err;
4589 }
4590
4591 /* No ->flush() or already async, safely close from here */
4592 ret = filp_close(file, current->files);
4593 err:
4594 if (ret < 0)
4595 req_set_fail_links(req);
4596 if (file)
4597 fput(file);
4598 __io_req_complete(req, issue_flags, ret, 0);
4599 return 0;
4600 }
4601
4602 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4603 {
4604 struct io_ring_ctx *ctx = req->ctx;
4605
4606 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4607 return -EINVAL;
4608 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4609 return -EINVAL;
4610
4611 req->sync.off = READ_ONCE(sqe->off);
4612 req->sync.len = READ_ONCE(sqe->len);
4613 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4614 return 0;
4615 }
4616
4617 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4618 {
4619 int ret;
4620
4621 /* sync_file_range always requires a blocking context */
4622 if (issue_flags & IO_URING_F_NONBLOCK)
4623 return -EAGAIN;
4624
4625 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4626 req->sync.flags);
4627 if (ret < 0)
4628 req_set_fail_links(req);
4629 io_req_complete(req, ret);
4630 return 0;
4631 }
4632
4633 #if defined(CONFIG_NET)
4634 static int io_setup_async_msg(struct io_kiocb *req,
4635 struct io_async_msghdr *kmsg)
4636 {
4637 struct io_async_msghdr *async_msg = req->async_data;
4638
4639 if (async_msg)
4640 return -EAGAIN;
4641 if (io_alloc_async_data(req)) {
4642 kfree(kmsg->free_iov);
4643 return -ENOMEM;
4644 }
4645 async_msg = req->async_data;
4646 req->flags |= REQ_F_NEED_CLEANUP;
4647 memcpy(async_msg, kmsg, sizeof(*kmsg));
4648 async_msg->msg.msg_name = &async_msg->addr;
4649 /* if were using fast_iov, set it to the new one */
4650 if (!async_msg->free_iov)
4651 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4652
4653 return -EAGAIN;
4654 }
4655
4656 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4657 struct io_async_msghdr *iomsg)
4658 {
4659 iomsg->msg.msg_name = &iomsg->addr;
4660 iomsg->free_iov = iomsg->fast_iov;
4661 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4662 req->sr_msg.msg_flags, &iomsg->free_iov);
4663 }
4664
4665 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4666 {
4667 struct io_async_msghdr *async_msg = req->async_data;
4668 struct io_sr_msg *sr = &req->sr_msg;
4669 int ret;
4670
4671 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4672 return -EINVAL;
4673
4674 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4675 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4676 sr->len = READ_ONCE(sqe->len);
4677
4678 #ifdef CONFIG_COMPAT
4679 if (req->ctx->compat)
4680 sr->msg_flags |= MSG_CMSG_COMPAT;
4681 #endif
4682
4683 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4684 return 0;
4685 ret = io_sendmsg_copy_hdr(req, async_msg);
4686 if (!ret)
4687 req->flags |= REQ_F_NEED_CLEANUP;
4688 return ret;
4689 }
4690
4691 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4692 {
4693 struct io_async_msghdr iomsg, *kmsg;
4694 struct socket *sock;
4695 unsigned flags;
4696 int ret;
4697
4698 sock = sock_from_file(req->file);
4699 if (unlikely(!sock))
4700 return -ENOTSOCK;
4701
4702 kmsg = req->async_data;
4703 if (!kmsg) {
4704 ret = io_sendmsg_copy_hdr(req, &iomsg);
4705 if (ret)
4706 return ret;
4707 kmsg = &iomsg;
4708 }
4709
4710 flags = req->sr_msg.msg_flags;
4711 if (flags & MSG_DONTWAIT)
4712 req->flags |= REQ_F_NOWAIT;
4713 else if (issue_flags & IO_URING_F_NONBLOCK)
4714 flags |= MSG_DONTWAIT;
4715
4716 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4717 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4718 return io_setup_async_msg(req, kmsg);
4719 if (ret == -ERESTARTSYS)
4720 ret = -EINTR;
4721
4722 /* fast path, check for non-NULL to avoid function call */
4723 if (kmsg->free_iov)
4724 kfree(kmsg->free_iov);
4725 req->flags &= ~REQ_F_NEED_CLEANUP;
4726 if (ret < 0)
4727 req_set_fail_links(req);
4728 __io_req_complete(req, issue_flags, ret, 0);
4729 return 0;
4730 }
4731
4732 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4733 {
4734 struct io_sr_msg *sr = &req->sr_msg;
4735 struct msghdr msg;
4736 struct iovec iov;
4737 struct socket *sock;
4738 unsigned flags;
4739 int ret;
4740
4741 sock = sock_from_file(req->file);
4742 if (unlikely(!sock))
4743 return -ENOTSOCK;
4744
4745 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4746 if (unlikely(ret))
4747 return ret;
4748
4749 msg.msg_name = NULL;
4750 msg.msg_control = NULL;
4751 msg.msg_controllen = 0;
4752 msg.msg_namelen = 0;
4753
4754 flags = req->sr_msg.msg_flags;
4755 if (flags & MSG_DONTWAIT)
4756 req->flags |= REQ_F_NOWAIT;
4757 else if (issue_flags & IO_URING_F_NONBLOCK)
4758 flags |= MSG_DONTWAIT;
4759
4760 msg.msg_flags = flags;
4761 ret = sock_sendmsg(sock, &msg);
4762 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4763 return -EAGAIN;
4764 if (ret == -ERESTARTSYS)
4765 ret = -EINTR;
4766
4767 if (ret < 0)
4768 req_set_fail_links(req);
4769 __io_req_complete(req, issue_flags, ret, 0);
4770 return 0;
4771 }
4772
4773 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4774 struct io_async_msghdr *iomsg)
4775 {
4776 struct io_sr_msg *sr = &req->sr_msg;
4777 struct iovec __user *uiov;
4778 size_t iov_len;
4779 int ret;
4780
4781 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4782 &iomsg->uaddr, &uiov, &iov_len);
4783 if (ret)
4784 return ret;
4785
4786 if (req->flags & REQ_F_BUFFER_SELECT) {
4787 if (iov_len > 1)
4788 return -EINVAL;
4789 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4790 return -EFAULT;
4791 sr->len = iomsg->fast_iov[0].iov_len;
4792 iomsg->free_iov = NULL;
4793 } else {
4794 iomsg->free_iov = iomsg->fast_iov;
4795 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4796 &iomsg->free_iov, &iomsg->msg.msg_iter,
4797 false);
4798 if (ret > 0)
4799 ret = 0;
4800 }
4801
4802 return ret;
4803 }
4804
4805 #ifdef CONFIG_COMPAT
4806 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4807 struct io_async_msghdr *iomsg)
4808 {
4809 struct compat_msghdr __user *msg_compat;
4810 struct io_sr_msg *sr = &req->sr_msg;
4811 struct compat_iovec __user *uiov;
4812 compat_uptr_t ptr;
4813 compat_size_t len;
4814 int ret;
4815
4816 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4817 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4818 &ptr, &len);
4819 if (ret)
4820 return ret;
4821
4822 uiov = compat_ptr(ptr);
4823 if (req->flags & REQ_F_BUFFER_SELECT) {
4824 compat_ssize_t clen;
4825
4826 if (len > 1)
4827 return -EINVAL;
4828 if (!access_ok(uiov, sizeof(*uiov)))
4829 return -EFAULT;
4830 if (__get_user(clen, &uiov->iov_len))
4831 return -EFAULT;
4832 if (clen < 0)
4833 return -EINVAL;
4834 sr->len = clen;
4835 iomsg->free_iov = NULL;
4836 } else {
4837 iomsg->free_iov = iomsg->fast_iov;
4838 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4839 UIO_FASTIOV, &iomsg->free_iov,
4840 &iomsg->msg.msg_iter, true);
4841 if (ret < 0)
4842 return ret;
4843 }
4844
4845 return 0;
4846 }
4847 #endif
4848
4849 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4850 struct io_async_msghdr *iomsg)
4851 {
4852 iomsg->msg.msg_name = &iomsg->addr;
4853
4854 #ifdef CONFIG_COMPAT
4855 if (req->ctx->compat)
4856 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4857 #endif
4858
4859 return __io_recvmsg_copy_hdr(req, iomsg);
4860 }
4861
4862 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4863 bool needs_lock)
4864 {
4865 struct io_sr_msg *sr = &req->sr_msg;
4866 struct io_buffer *kbuf;
4867
4868 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4869 if (IS_ERR(kbuf))
4870 return kbuf;
4871
4872 sr->kbuf = kbuf;
4873 req->flags |= REQ_F_BUFFER_SELECTED;
4874 return kbuf;
4875 }
4876
4877 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4878 {
4879 return io_put_kbuf(req, req->sr_msg.kbuf);
4880 }
4881
4882 static int io_recvmsg_prep(struct io_kiocb *req,
4883 const struct io_uring_sqe *sqe)
4884 {
4885 struct io_async_msghdr *async_msg = req->async_data;
4886 struct io_sr_msg *sr = &req->sr_msg;
4887 int ret;
4888
4889 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4890 return -EINVAL;
4891
4892 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4893 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4894 sr->len = READ_ONCE(sqe->len);
4895 sr->bgid = READ_ONCE(sqe->buf_group);
4896
4897 #ifdef CONFIG_COMPAT
4898 if (req->ctx->compat)
4899 sr->msg_flags |= MSG_CMSG_COMPAT;
4900 #endif
4901
4902 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4903 return 0;
4904 ret = io_recvmsg_copy_hdr(req, async_msg);
4905 if (!ret)
4906 req->flags |= REQ_F_NEED_CLEANUP;
4907 return ret;
4908 }
4909
4910 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4911 {
4912 struct io_async_msghdr iomsg, *kmsg;
4913 struct socket *sock;
4914 struct io_buffer *kbuf;
4915 unsigned flags;
4916 int ret, cflags = 0;
4917 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4918
4919 sock = sock_from_file(req->file);
4920 if (unlikely(!sock))
4921 return -ENOTSOCK;
4922
4923 kmsg = req->async_data;
4924 if (!kmsg) {
4925 ret = io_recvmsg_copy_hdr(req, &iomsg);
4926 if (ret)
4927 return ret;
4928 kmsg = &iomsg;
4929 }
4930
4931 if (req->flags & REQ_F_BUFFER_SELECT) {
4932 kbuf = io_recv_buffer_select(req, !force_nonblock);
4933 if (IS_ERR(kbuf))
4934 return PTR_ERR(kbuf);
4935 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4936 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4937 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4938 1, req->sr_msg.len);
4939 }
4940
4941 flags = req->sr_msg.msg_flags;
4942 if (flags & MSG_DONTWAIT)
4943 req->flags |= REQ_F_NOWAIT;
4944 else if (force_nonblock)
4945 flags |= MSG_DONTWAIT;
4946
4947 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4948 kmsg->uaddr, flags);
4949 if (force_nonblock && ret == -EAGAIN)
4950 return io_setup_async_msg(req, kmsg);
4951 if (ret == -ERESTARTSYS)
4952 ret = -EINTR;
4953
4954 if (req->flags & REQ_F_BUFFER_SELECTED)
4955 cflags = io_put_recv_kbuf(req);
4956 /* fast path, check for non-NULL to avoid function call */
4957 if (kmsg->free_iov)
4958 kfree(kmsg->free_iov);
4959 req->flags &= ~REQ_F_NEED_CLEANUP;
4960 if (ret < 0)
4961 req_set_fail_links(req);
4962 __io_req_complete(req, issue_flags, ret, cflags);
4963 return 0;
4964 }
4965
4966 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4967 {
4968 struct io_buffer *kbuf;
4969 struct io_sr_msg *sr = &req->sr_msg;
4970 struct msghdr msg;
4971 void __user *buf = sr->buf;
4972 struct socket *sock;
4973 struct iovec iov;
4974 unsigned flags;
4975 int ret, cflags = 0;
4976 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4977
4978 sock = sock_from_file(req->file);
4979 if (unlikely(!sock))
4980 return -ENOTSOCK;
4981
4982 if (req->flags & REQ_F_BUFFER_SELECT) {
4983 kbuf = io_recv_buffer_select(req, !force_nonblock);
4984 if (IS_ERR(kbuf))
4985 return PTR_ERR(kbuf);
4986 buf = u64_to_user_ptr(kbuf->addr);
4987 }
4988
4989 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4990 if (unlikely(ret))
4991 goto out_free;
4992
4993 msg.msg_name = NULL;
4994 msg.msg_control = NULL;
4995 msg.msg_controllen = 0;
4996 msg.msg_namelen = 0;
4997 msg.msg_iocb = NULL;
4998 msg.msg_flags = 0;
4999
5000 flags = req->sr_msg.msg_flags;
5001 if (flags & MSG_DONTWAIT)
5002 req->flags |= REQ_F_NOWAIT;
5003 else if (force_nonblock)
5004 flags |= MSG_DONTWAIT;
5005
5006 ret = sock_recvmsg(sock, &msg, flags);
5007 if (force_nonblock && ret == -EAGAIN)
5008 return -EAGAIN;
5009 if (ret == -ERESTARTSYS)
5010 ret = -EINTR;
5011 out_free:
5012 if (req->flags & REQ_F_BUFFER_SELECTED)
5013 cflags = io_put_recv_kbuf(req);
5014 if (ret < 0)
5015 req_set_fail_links(req);
5016 __io_req_complete(req, issue_flags, ret, cflags);
5017 return 0;
5018 }
5019
5020 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5021 {
5022 struct io_accept *accept = &req->accept;
5023
5024 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5025 return -EINVAL;
5026 if (sqe->ioprio || sqe->len || sqe->buf_index)
5027 return -EINVAL;
5028
5029 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5030 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5031 accept->flags = READ_ONCE(sqe->accept_flags);
5032 accept->nofile = rlimit(RLIMIT_NOFILE);
5033 return 0;
5034 }
5035
5036 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5037 {
5038 struct io_accept *accept = &req->accept;
5039 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5040 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5041 int ret;
5042
5043 if (req->file->f_flags & O_NONBLOCK)
5044 req->flags |= REQ_F_NOWAIT;
5045
5046 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5047 accept->addr_len, accept->flags,
5048 accept->nofile);
5049 if (ret == -EAGAIN && force_nonblock)
5050 return -EAGAIN;
5051 if (ret < 0) {
5052 if (ret == -ERESTARTSYS)
5053 ret = -EINTR;
5054 req_set_fail_links(req);
5055 }
5056 __io_req_complete(req, issue_flags, ret, 0);
5057 return 0;
5058 }
5059
5060 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5061 {
5062 struct io_connect *conn = &req->connect;
5063 struct io_async_connect *io = req->async_data;
5064
5065 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5066 return -EINVAL;
5067 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5068 return -EINVAL;
5069
5070 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5071 conn->addr_len = READ_ONCE(sqe->addr2);
5072
5073 if (!io)
5074 return 0;
5075
5076 return move_addr_to_kernel(conn->addr, conn->addr_len,
5077 &io->address);
5078 }
5079
5080 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5081 {
5082 struct io_async_connect __io, *io;
5083 unsigned file_flags;
5084 int ret;
5085 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5086
5087 if (req->async_data) {
5088 io = req->async_data;
5089 } else {
5090 ret = move_addr_to_kernel(req->connect.addr,
5091 req->connect.addr_len,
5092 &__io.address);
5093 if (ret)
5094 goto out;
5095 io = &__io;
5096 }
5097
5098 file_flags = force_nonblock ? O_NONBLOCK : 0;
5099
5100 ret = __sys_connect_file(req->file, &io->address,
5101 req->connect.addr_len, file_flags);
5102 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5103 if (req->async_data)
5104 return -EAGAIN;
5105 if (io_alloc_async_data(req)) {
5106 ret = -ENOMEM;
5107 goto out;
5108 }
5109 io = req->async_data;
5110 memcpy(req->async_data, &__io, sizeof(__io));
5111 return -EAGAIN;
5112 }
5113 if (ret == -ERESTARTSYS)
5114 ret = -EINTR;
5115 out:
5116 if (ret < 0)
5117 req_set_fail_links(req);
5118 __io_req_complete(req, issue_flags, ret, 0);
5119 return 0;
5120 }
5121 #else /* !CONFIG_NET */
5122 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5123 {
5124 return -EOPNOTSUPP;
5125 }
5126
5127 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
5128 {
5129 return -EOPNOTSUPP;
5130 }
5131
5132 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5133 {
5134 return -EOPNOTSUPP;
5135 }
5136
5137 static int io_recvmsg_prep(struct io_kiocb *req,
5138 const struct io_uring_sqe *sqe)
5139 {
5140 return -EOPNOTSUPP;
5141 }
5142
5143 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5144 {
5145 return -EOPNOTSUPP;
5146 }
5147
5148 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5149 {
5150 return -EOPNOTSUPP;
5151 }
5152
5153 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5154 {
5155 return -EOPNOTSUPP;
5156 }
5157
5158 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5159 {
5160 return -EOPNOTSUPP;
5161 }
5162
5163 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5164 {
5165 return -EOPNOTSUPP;
5166 }
5167
5168 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5169 {
5170 return -EOPNOTSUPP;
5171 }
5172 #endif /* CONFIG_NET */
5173
5174 struct io_poll_table {
5175 struct poll_table_struct pt;
5176 struct io_kiocb *req;
5177 int error;
5178 };
5179
5180 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5181 __poll_t mask, task_work_func_t func)
5182 {
5183 int ret;
5184
5185 /* for instances that support it check for an event match first: */
5186 if (mask && !(mask & poll->events))
5187 return 0;
5188
5189 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5190
5191 list_del_init(&poll->wait.entry);
5192
5193 req->result = mask;
5194 req->task_work.func = func;
5195 percpu_ref_get(&req->ctx->refs);
5196
5197 /*
5198 * If this fails, then the task is exiting. When a task exits, the
5199 * work gets canceled, so just cancel this request as well instead
5200 * of executing it. We can't safely execute it anyway, as we may not
5201 * have the needed state needed for it anyway.
5202 */
5203 ret = io_req_task_work_add(req);
5204 if (unlikely(ret)) {
5205 WRITE_ONCE(poll->canceled, true);
5206 io_req_task_work_add_fallback(req, func);
5207 }
5208 return 1;
5209 }
5210
5211 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5212 __acquires(&req->ctx->completion_lock)
5213 {
5214 struct io_ring_ctx *ctx = req->ctx;
5215
5216 if (!req->result && !READ_ONCE(poll->canceled)) {
5217 struct poll_table_struct pt = { ._key = poll->events };
5218
5219 req->result = vfs_poll(req->file, &pt) & poll->events;
5220 }
5221
5222 spin_lock_irq(&ctx->completion_lock);
5223 if (!req->result && !READ_ONCE(poll->canceled)) {
5224 add_wait_queue(poll->head, &poll->wait);
5225 return true;
5226 }
5227
5228 return false;
5229 }
5230
5231 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5232 {
5233 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5234 if (req->opcode == IORING_OP_POLL_ADD)
5235 return req->async_data;
5236 return req->apoll->double_poll;
5237 }
5238
5239 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5240 {
5241 if (req->opcode == IORING_OP_POLL_ADD)
5242 return &req->poll;
5243 return &req->apoll->poll;
5244 }
5245
5246 static void io_poll_remove_double(struct io_kiocb *req)
5247 {
5248 struct io_poll_iocb *poll = io_poll_get_double(req);
5249
5250 lockdep_assert_held(&req->ctx->completion_lock);
5251
5252 if (poll && poll->head) {
5253 struct wait_queue_head *head = poll->head;
5254
5255 spin_lock(&head->lock);
5256 list_del_init(&poll->wait.entry);
5257 if (poll->wait.private)
5258 refcount_dec(&req->refs);
5259 poll->head = NULL;
5260 spin_unlock(&head->lock);
5261 }
5262 }
5263
5264 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5265 {
5266 struct io_ring_ctx *ctx = req->ctx;
5267
5268 io_poll_remove_double(req);
5269 req->poll.done = true;
5270 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5271 io_commit_cqring(ctx);
5272 }
5273
5274 static void io_poll_task_func(struct callback_head *cb)
5275 {
5276 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5277 struct io_ring_ctx *ctx = req->ctx;
5278 struct io_kiocb *nxt;
5279
5280 if (io_poll_rewait(req, &req->poll)) {
5281 spin_unlock_irq(&ctx->completion_lock);
5282 } else {
5283 hash_del(&req->hash_node);
5284 io_poll_complete(req, req->result, 0);
5285 spin_unlock_irq(&ctx->completion_lock);
5286
5287 nxt = io_put_req_find_next(req);
5288 io_cqring_ev_posted(ctx);
5289 if (nxt)
5290 __io_req_task_submit(nxt);
5291 }
5292
5293 percpu_ref_put(&ctx->refs);
5294 }
5295
5296 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5297 int sync, void *key)
5298 {
5299 struct io_kiocb *req = wait->private;
5300 struct io_poll_iocb *poll = io_poll_get_single(req);
5301 __poll_t mask = key_to_poll(key);
5302
5303 /* for instances that support it check for an event match first: */
5304 if (mask && !(mask & poll->events))
5305 return 0;
5306
5307 list_del_init(&wait->entry);
5308
5309 if (poll && poll->head) {
5310 bool done;
5311
5312 spin_lock(&poll->head->lock);
5313 done = list_empty(&poll->wait.entry);
5314 if (!done)
5315 list_del_init(&poll->wait.entry);
5316 /* make sure double remove sees this as being gone */
5317 wait->private = NULL;
5318 spin_unlock(&poll->head->lock);
5319 if (!done) {
5320 /* use wait func handler, so it matches the rq type */
5321 poll->wait.func(&poll->wait, mode, sync, key);
5322 }
5323 }
5324 refcount_dec(&req->refs);
5325 return 1;
5326 }
5327
5328 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5329 wait_queue_func_t wake_func)
5330 {
5331 poll->head = NULL;
5332 poll->done = false;
5333 poll->canceled = false;
5334 poll->events = events;
5335 INIT_LIST_HEAD(&poll->wait.entry);
5336 init_waitqueue_func_entry(&poll->wait, wake_func);
5337 }
5338
5339 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5340 struct wait_queue_head *head,
5341 struct io_poll_iocb **poll_ptr)
5342 {
5343 struct io_kiocb *req = pt->req;
5344
5345 /*
5346 * If poll->head is already set, it's because the file being polled
5347 * uses multiple waitqueues for poll handling (eg one for read, one
5348 * for write). Setup a separate io_poll_iocb if this happens.
5349 */
5350 if (unlikely(poll->head)) {
5351 struct io_poll_iocb *poll_one = poll;
5352
5353 /* already have a 2nd entry, fail a third attempt */
5354 if (*poll_ptr) {
5355 pt->error = -EINVAL;
5356 return;
5357 }
5358 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5359 if (!poll) {
5360 pt->error = -ENOMEM;
5361 return;
5362 }
5363 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5364 refcount_inc(&req->refs);
5365 poll->wait.private = req;
5366 *poll_ptr = poll;
5367 }
5368
5369 pt->error = 0;
5370 poll->head = head;
5371
5372 if (poll->events & EPOLLEXCLUSIVE)
5373 add_wait_queue_exclusive(head, &poll->wait);
5374 else
5375 add_wait_queue(head, &poll->wait);
5376 }
5377
5378 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5379 struct poll_table_struct *p)
5380 {
5381 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5382 struct async_poll *apoll = pt->req->apoll;
5383
5384 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5385 }
5386
5387 static void io_async_task_func(struct callback_head *cb)
5388 {
5389 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5390 struct async_poll *apoll = req->apoll;
5391 struct io_ring_ctx *ctx = req->ctx;
5392
5393 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5394
5395 if (io_poll_rewait(req, &apoll->poll)) {
5396 spin_unlock_irq(&ctx->completion_lock);
5397 percpu_ref_put(&ctx->refs);
5398 return;
5399 }
5400
5401 /* If req is still hashed, it cannot have been canceled. Don't check. */
5402 if (hash_hashed(&req->hash_node))
5403 hash_del(&req->hash_node);
5404
5405 io_poll_remove_double(req);
5406 spin_unlock_irq(&ctx->completion_lock);
5407
5408 if (!READ_ONCE(apoll->poll.canceled))
5409 __io_req_task_submit(req);
5410 else
5411 __io_req_task_cancel(req, -ECANCELED);
5412
5413 percpu_ref_put(&ctx->refs);
5414 kfree(apoll->double_poll);
5415 kfree(apoll);
5416 }
5417
5418 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5419 void *key)
5420 {
5421 struct io_kiocb *req = wait->private;
5422 struct io_poll_iocb *poll = &req->apoll->poll;
5423
5424 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5425 key_to_poll(key));
5426
5427 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5428 }
5429
5430 static void io_poll_req_insert(struct io_kiocb *req)
5431 {
5432 struct io_ring_ctx *ctx = req->ctx;
5433 struct hlist_head *list;
5434
5435 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5436 hlist_add_head(&req->hash_node, list);
5437 }
5438
5439 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5440 struct io_poll_iocb *poll,
5441 struct io_poll_table *ipt, __poll_t mask,
5442 wait_queue_func_t wake_func)
5443 __acquires(&ctx->completion_lock)
5444 {
5445 struct io_ring_ctx *ctx = req->ctx;
5446 bool cancel = false;
5447
5448 INIT_HLIST_NODE(&req->hash_node);
5449 io_init_poll_iocb(poll, mask, wake_func);
5450 poll->file = req->file;
5451 poll->wait.private = req;
5452
5453 ipt->pt._key = mask;
5454 ipt->req = req;
5455 ipt->error = -EINVAL;
5456
5457 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5458
5459 spin_lock_irq(&ctx->completion_lock);
5460 if (likely(poll->head)) {
5461 spin_lock(&poll->head->lock);
5462 if (unlikely(list_empty(&poll->wait.entry))) {
5463 if (ipt->error)
5464 cancel = true;
5465 ipt->error = 0;
5466 mask = 0;
5467 }
5468 if (mask || ipt->error)
5469 list_del_init(&poll->wait.entry);
5470 else if (cancel)
5471 WRITE_ONCE(poll->canceled, true);
5472 else if (!poll->done) /* actually waiting for an event */
5473 io_poll_req_insert(req);
5474 spin_unlock(&poll->head->lock);
5475 }
5476
5477 return mask;
5478 }
5479
5480 static bool io_arm_poll_handler(struct io_kiocb *req)
5481 {
5482 const struct io_op_def *def = &io_op_defs[req->opcode];
5483 struct io_ring_ctx *ctx = req->ctx;
5484 struct async_poll *apoll;
5485 struct io_poll_table ipt;
5486 __poll_t mask, ret;
5487 int rw;
5488
5489 if (!req->file || !file_can_poll(req->file))
5490 return false;
5491 if (req->flags & REQ_F_POLLED)
5492 return false;
5493 if (def->pollin)
5494 rw = READ;
5495 else if (def->pollout)
5496 rw = WRITE;
5497 else
5498 return false;
5499 /* if we can't nonblock try, then no point in arming a poll handler */
5500 if (!io_file_supports_async(req->file, rw))
5501 return false;
5502
5503 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5504 if (unlikely(!apoll))
5505 return false;
5506 apoll->double_poll = NULL;
5507
5508 req->flags |= REQ_F_POLLED;
5509 req->apoll = apoll;
5510
5511 mask = 0;
5512 if (def->pollin)
5513 mask |= POLLIN | POLLRDNORM;
5514 if (def->pollout)
5515 mask |= POLLOUT | POLLWRNORM;
5516
5517 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5518 if ((req->opcode == IORING_OP_RECVMSG) &&
5519 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5520 mask &= ~POLLIN;
5521
5522 mask |= POLLERR | POLLPRI;
5523
5524 ipt.pt._qproc = io_async_queue_proc;
5525
5526 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5527 io_async_wake);
5528 if (ret || ipt.error) {
5529 io_poll_remove_double(req);
5530 spin_unlock_irq(&ctx->completion_lock);
5531 kfree(apoll->double_poll);
5532 kfree(apoll);
5533 return false;
5534 }
5535 spin_unlock_irq(&ctx->completion_lock);
5536 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5537 apoll->poll.events);
5538 return true;
5539 }
5540
5541 static bool __io_poll_remove_one(struct io_kiocb *req,
5542 struct io_poll_iocb *poll)
5543 {
5544 bool do_complete = false;
5545
5546 spin_lock(&poll->head->lock);
5547 WRITE_ONCE(poll->canceled, true);
5548 if (!list_empty(&poll->wait.entry)) {
5549 list_del_init(&poll->wait.entry);
5550 do_complete = true;
5551 }
5552 spin_unlock(&poll->head->lock);
5553 hash_del(&req->hash_node);
5554 return do_complete;
5555 }
5556
5557 static bool io_poll_remove_one(struct io_kiocb *req)
5558 {
5559 bool do_complete;
5560
5561 io_poll_remove_double(req);
5562
5563 if (req->opcode == IORING_OP_POLL_ADD) {
5564 do_complete = __io_poll_remove_one(req, &req->poll);
5565 } else {
5566 struct async_poll *apoll = req->apoll;
5567
5568 /* non-poll requests have submit ref still */
5569 do_complete = __io_poll_remove_one(req, &apoll->poll);
5570 if (do_complete) {
5571 io_put_req(req);
5572 kfree(apoll->double_poll);
5573 kfree(apoll);
5574 }
5575 }
5576
5577 if (do_complete) {
5578 io_cqring_fill_event(req, -ECANCELED);
5579 io_commit_cqring(req->ctx);
5580 req_set_fail_links(req);
5581 io_put_req_deferred(req, 1);
5582 }
5583
5584 return do_complete;
5585 }
5586
5587 /*
5588 * Returns true if we found and killed one or more poll requests
5589 */
5590 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5591 struct files_struct *files)
5592 {
5593 struct hlist_node *tmp;
5594 struct io_kiocb *req;
5595 int posted = 0, i;
5596
5597 spin_lock_irq(&ctx->completion_lock);
5598 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5599 struct hlist_head *list;
5600
5601 list = &ctx->cancel_hash[i];
5602 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5603 if (io_match_task(req, tsk, files))
5604 posted += io_poll_remove_one(req);
5605 }
5606 }
5607 spin_unlock_irq(&ctx->completion_lock);
5608
5609 if (posted)
5610 io_cqring_ev_posted(ctx);
5611
5612 return posted != 0;
5613 }
5614
5615 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5616 {
5617 struct hlist_head *list;
5618 struct io_kiocb *req;
5619
5620 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5621 hlist_for_each_entry(req, list, hash_node) {
5622 if (sqe_addr != req->user_data)
5623 continue;
5624 if (io_poll_remove_one(req))
5625 return 0;
5626 return -EALREADY;
5627 }
5628
5629 return -ENOENT;
5630 }
5631
5632 static int io_poll_remove_prep(struct io_kiocb *req,
5633 const struct io_uring_sqe *sqe)
5634 {
5635 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5636 return -EINVAL;
5637 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5638 sqe->poll_events)
5639 return -EINVAL;
5640
5641 req->poll_remove.addr = READ_ONCE(sqe->addr);
5642 return 0;
5643 }
5644
5645 /*
5646 * Find a running poll command that matches one specified in sqe->addr,
5647 * and remove it if found.
5648 */
5649 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
5650 {
5651 struct io_ring_ctx *ctx = req->ctx;
5652 int ret;
5653
5654 spin_lock_irq(&ctx->completion_lock);
5655 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5656 spin_unlock_irq(&ctx->completion_lock);
5657
5658 if (ret < 0)
5659 req_set_fail_links(req);
5660 io_req_complete(req, ret);
5661 return 0;
5662 }
5663
5664 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5665 void *key)
5666 {
5667 struct io_kiocb *req = wait->private;
5668 struct io_poll_iocb *poll = &req->poll;
5669
5670 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5671 }
5672
5673 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5674 struct poll_table_struct *p)
5675 {
5676 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5677
5678 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5679 }
5680
5681 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5682 {
5683 struct io_poll_iocb *poll = &req->poll;
5684 u32 events;
5685
5686 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5687 return -EINVAL;
5688 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5689 return -EINVAL;
5690
5691 events = READ_ONCE(sqe->poll32_events);
5692 #ifdef __BIG_ENDIAN
5693 events = swahw32(events);
5694 #endif
5695 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5696 (events & EPOLLEXCLUSIVE);
5697 return 0;
5698 }
5699
5700 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5701 {
5702 struct io_poll_iocb *poll = &req->poll;
5703 struct io_ring_ctx *ctx = req->ctx;
5704 struct io_poll_table ipt;
5705 __poll_t mask;
5706
5707 ipt.pt._qproc = io_poll_queue_proc;
5708
5709 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5710 io_poll_wake);
5711
5712 if (mask) { /* no async, we'd stolen it */
5713 ipt.error = 0;
5714 io_poll_complete(req, mask, 0);
5715 }
5716 spin_unlock_irq(&ctx->completion_lock);
5717
5718 if (mask) {
5719 io_cqring_ev_posted(ctx);
5720 io_put_req(req);
5721 }
5722 return ipt.error;
5723 }
5724
5725 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5726 {
5727 struct io_timeout_data *data = container_of(timer,
5728 struct io_timeout_data, timer);
5729 struct io_kiocb *req = data->req;
5730 struct io_ring_ctx *ctx = req->ctx;
5731 unsigned long flags;
5732
5733 spin_lock_irqsave(&ctx->completion_lock, flags);
5734 list_del_init(&req->timeout.list);
5735 atomic_set(&req->ctx->cq_timeouts,
5736 atomic_read(&req->ctx->cq_timeouts) + 1);
5737
5738 io_cqring_fill_event(req, -ETIME);
5739 io_commit_cqring(ctx);
5740 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5741
5742 io_cqring_ev_posted(ctx);
5743 req_set_fail_links(req);
5744 io_put_req(req);
5745 return HRTIMER_NORESTART;
5746 }
5747
5748 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5749 __u64 user_data)
5750 {
5751 struct io_timeout_data *io;
5752 struct io_kiocb *req;
5753 int ret = -ENOENT;
5754
5755 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5756 if (user_data == req->user_data) {
5757 ret = 0;
5758 break;
5759 }
5760 }
5761
5762 if (ret == -ENOENT)
5763 return ERR_PTR(ret);
5764
5765 io = req->async_data;
5766 ret = hrtimer_try_to_cancel(&io->timer);
5767 if (ret == -1)
5768 return ERR_PTR(-EALREADY);
5769 list_del_init(&req->timeout.list);
5770 return req;
5771 }
5772
5773 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5774 {
5775 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5776
5777 if (IS_ERR(req))
5778 return PTR_ERR(req);
5779
5780 req_set_fail_links(req);
5781 io_cqring_fill_event(req, -ECANCELED);
5782 io_put_req_deferred(req, 1);
5783 return 0;
5784 }
5785
5786 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5787 struct timespec64 *ts, enum hrtimer_mode mode)
5788 {
5789 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5790 struct io_timeout_data *data;
5791
5792 if (IS_ERR(req))
5793 return PTR_ERR(req);
5794
5795 req->timeout.off = 0; /* noseq */
5796 data = req->async_data;
5797 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5798 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5799 data->timer.function = io_timeout_fn;
5800 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5801 return 0;
5802 }
5803
5804 static int io_timeout_remove_prep(struct io_kiocb *req,
5805 const struct io_uring_sqe *sqe)
5806 {
5807 struct io_timeout_rem *tr = &req->timeout_rem;
5808
5809 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5810 return -EINVAL;
5811 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5812 return -EINVAL;
5813 if (sqe->ioprio || sqe->buf_index || sqe->len)
5814 return -EINVAL;
5815
5816 tr->addr = READ_ONCE(sqe->addr);
5817 tr->flags = READ_ONCE(sqe->timeout_flags);
5818 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5819 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5820 return -EINVAL;
5821 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5822 return -EFAULT;
5823 } else if (tr->flags) {
5824 /* timeout removal doesn't support flags */
5825 return -EINVAL;
5826 }
5827
5828 return 0;
5829 }
5830
5831 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5832 {
5833 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5834 : HRTIMER_MODE_REL;
5835 }
5836
5837 /*
5838 * Remove or update an existing timeout command
5839 */
5840 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5841 {
5842 struct io_timeout_rem *tr = &req->timeout_rem;
5843 struct io_ring_ctx *ctx = req->ctx;
5844 int ret;
5845
5846 spin_lock_irq(&ctx->completion_lock);
5847 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5848 ret = io_timeout_cancel(ctx, tr->addr);
5849 else
5850 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5851 io_translate_timeout_mode(tr->flags));
5852
5853 io_cqring_fill_event(req, ret);
5854 io_commit_cqring(ctx);
5855 spin_unlock_irq(&ctx->completion_lock);
5856 io_cqring_ev_posted(ctx);
5857 if (ret < 0)
5858 req_set_fail_links(req);
5859 io_put_req(req);
5860 return 0;
5861 }
5862
5863 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5864 bool is_timeout_link)
5865 {
5866 struct io_timeout_data *data;
5867 unsigned flags;
5868 u32 off = READ_ONCE(sqe->off);
5869
5870 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5871 return -EINVAL;
5872 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5873 return -EINVAL;
5874 if (off && is_timeout_link)
5875 return -EINVAL;
5876 flags = READ_ONCE(sqe->timeout_flags);
5877 if (flags & ~IORING_TIMEOUT_ABS)
5878 return -EINVAL;
5879
5880 req->timeout.off = off;
5881
5882 if (!req->async_data && io_alloc_async_data(req))
5883 return -ENOMEM;
5884
5885 data = req->async_data;
5886 data->req = req;
5887
5888 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5889 return -EFAULT;
5890
5891 data->mode = io_translate_timeout_mode(flags);
5892 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5893 return 0;
5894 }
5895
5896 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5897 {
5898 struct io_ring_ctx *ctx = req->ctx;
5899 struct io_timeout_data *data = req->async_data;
5900 struct list_head *entry;
5901 u32 tail, off = req->timeout.off;
5902
5903 spin_lock_irq(&ctx->completion_lock);
5904
5905 /*
5906 * sqe->off holds how many events that need to occur for this
5907 * timeout event to be satisfied. If it isn't set, then this is
5908 * a pure timeout request, sequence isn't used.
5909 */
5910 if (io_is_timeout_noseq(req)) {
5911 entry = ctx->timeout_list.prev;
5912 goto add;
5913 }
5914
5915 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5916 req->timeout.target_seq = tail + off;
5917
5918 /* Update the last seq here in case io_flush_timeouts() hasn't.
5919 * This is safe because ->completion_lock is held, and submissions
5920 * and completions are never mixed in the same ->completion_lock section.
5921 */
5922 ctx->cq_last_tm_flush = tail;
5923
5924 /*
5925 * Insertion sort, ensuring the first entry in the list is always
5926 * the one we need first.
5927 */
5928 list_for_each_prev(entry, &ctx->timeout_list) {
5929 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5930 timeout.list);
5931
5932 if (io_is_timeout_noseq(nxt))
5933 continue;
5934 /* nxt.seq is behind @tail, otherwise would've been completed */
5935 if (off >= nxt->timeout.target_seq - tail)
5936 break;
5937 }
5938 add:
5939 list_add(&req->timeout.list, entry);
5940 data->timer.function = io_timeout_fn;
5941 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5942 spin_unlock_irq(&ctx->completion_lock);
5943 return 0;
5944 }
5945
5946 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5947 {
5948 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5949
5950 return req->user_data == (unsigned long) data;
5951 }
5952
5953 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5954 {
5955 enum io_wq_cancel cancel_ret;
5956 int ret = 0;
5957
5958 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5959 switch (cancel_ret) {
5960 case IO_WQ_CANCEL_OK:
5961 ret = 0;
5962 break;
5963 case IO_WQ_CANCEL_RUNNING:
5964 ret = -EALREADY;
5965 break;
5966 case IO_WQ_CANCEL_NOTFOUND:
5967 ret = -ENOENT;
5968 break;
5969 }
5970
5971 return ret;
5972 }
5973
5974 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5975 struct io_kiocb *req, __u64 sqe_addr,
5976 int success_ret)
5977 {
5978 unsigned long flags;
5979 int ret;
5980
5981 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5982 if (ret != -ENOENT) {
5983 spin_lock_irqsave(&ctx->completion_lock, flags);
5984 goto done;
5985 }
5986
5987 spin_lock_irqsave(&ctx->completion_lock, flags);
5988 ret = io_timeout_cancel(ctx, sqe_addr);
5989 if (ret != -ENOENT)
5990 goto done;
5991 ret = io_poll_cancel(ctx, sqe_addr);
5992 done:
5993 if (!ret)
5994 ret = success_ret;
5995 io_cqring_fill_event(req, ret);
5996 io_commit_cqring(ctx);
5997 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5998 io_cqring_ev_posted(ctx);
5999
6000 if (ret < 0)
6001 req_set_fail_links(req);
6002 io_put_req(req);
6003 }
6004
6005 static int io_async_cancel_prep(struct io_kiocb *req,
6006 const struct io_uring_sqe *sqe)
6007 {
6008 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6009 return -EINVAL;
6010 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6011 return -EINVAL;
6012 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
6013 return -EINVAL;
6014
6015 req->cancel.addr = READ_ONCE(sqe->addr);
6016 return 0;
6017 }
6018
6019 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6020 {
6021 struct io_ring_ctx *ctx = req->ctx;
6022
6023 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6024 return 0;
6025 }
6026
6027 static int io_rsrc_update_prep(struct io_kiocb *req,
6028 const struct io_uring_sqe *sqe)
6029 {
6030 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6031 return -EINVAL;
6032 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6033 return -EINVAL;
6034 if (sqe->ioprio || sqe->rw_flags)
6035 return -EINVAL;
6036
6037 req->rsrc_update.offset = READ_ONCE(sqe->off);
6038 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6039 if (!req->rsrc_update.nr_args)
6040 return -EINVAL;
6041 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6042 return 0;
6043 }
6044
6045 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6046 {
6047 struct io_ring_ctx *ctx = req->ctx;
6048 struct io_uring_rsrc_update up;
6049 int ret;
6050
6051 if (issue_flags & IO_URING_F_NONBLOCK)
6052 return -EAGAIN;
6053
6054 up.offset = req->rsrc_update.offset;
6055 up.data = req->rsrc_update.arg;
6056
6057 mutex_lock(&ctx->uring_lock);
6058 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
6059 mutex_unlock(&ctx->uring_lock);
6060
6061 if (ret < 0)
6062 req_set_fail_links(req);
6063 __io_req_complete(req, issue_flags, ret, 0);
6064 return 0;
6065 }
6066
6067 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6068 {
6069 switch (req->opcode) {
6070 case IORING_OP_NOP:
6071 return 0;
6072 case IORING_OP_READV:
6073 case IORING_OP_READ_FIXED:
6074 case IORING_OP_READ:
6075 return io_read_prep(req, sqe);
6076 case IORING_OP_WRITEV:
6077 case IORING_OP_WRITE_FIXED:
6078 case IORING_OP_WRITE:
6079 return io_write_prep(req, sqe);
6080 case IORING_OP_POLL_ADD:
6081 return io_poll_add_prep(req, sqe);
6082 case IORING_OP_POLL_REMOVE:
6083 return io_poll_remove_prep(req, sqe);
6084 case IORING_OP_FSYNC:
6085 return io_fsync_prep(req, sqe);
6086 case IORING_OP_SYNC_FILE_RANGE:
6087 return io_sfr_prep(req, sqe);
6088 case IORING_OP_SENDMSG:
6089 case IORING_OP_SEND:
6090 return io_sendmsg_prep(req, sqe);
6091 case IORING_OP_RECVMSG:
6092 case IORING_OP_RECV:
6093 return io_recvmsg_prep(req, sqe);
6094 case IORING_OP_CONNECT:
6095 return io_connect_prep(req, sqe);
6096 case IORING_OP_TIMEOUT:
6097 return io_timeout_prep(req, sqe, false);
6098 case IORING_OP_TIMEOUT_REMOVE:
6099 return io_timeout_remove_prep(req, sqe);
6100 case IORING_OP_ASYNC_CANCEL:
6101 return io_async_cancel_prep(req, sqe);
6102 case IORING_OP_LINK_TIMEOUT:
6103 return io_timeout_prep(req, sqe, true);
6104 case IORING_OP_ACCEPT:
6105 return io_accept_prep(req, sqe);
6106 case IORING_OP_FALLOCATE:
6107 return io_fallocate_prep(req, sqe);
6108 case IORING_OP_OPENAT:
6109 return io_openat_prep(req, sqe);
6110 case IORING_OP_CLOSE:
6111 return io_close_prep(req, sqe);
6112 case IORING_OP_FILES_UPDATE:
6113 return io_rsrc_update_prep(req, sqe);
6114 case IORING_OP_STATX:
6115 return io_statx_prep(req, sqe);
6116 case IORING_OP_FADVISE:
6117 return io_fadvise_prep(req, sqe);
6118 case IORING_OP_MADVISE:
6119 return io_madvise_prep(req, sqe);
6120 case IORING_OP_OPENAT2:
6121 return io_openat2_prep(req, sqe);
6122 case IORING_OP_EPOLL_CTL:
6123 return io_epoll_ctl_prep(req, sqe);
6124 case IORING_OP_SPLICE:
6125 return io_splice_prep(req, sqe);
6126 case IORING_OP_PROVIDE_BUFFERS:
6127 return io_provide_buffers_prep(req, sqe);
6128 case IORING_OP_REMOVE_BUFFERS:
6129 return io_remove_buffers_prep(req, sqe);
6130 case IORING_OP_TEE:
6131 return io_tee_prep(req, sqe);
6132 case IORING_OP_SHUTDOWN:
6133 return io_shutdown_prep(req, sqe);
6134 case IORING_OP_RENAMEAT:
6135 return io_renameat_prep(req, sqe);
6136 case IORING_OP_UNLINKAT:
6137 return io_unlinkat_prep(req, sqe);
6138 }
6139
6140 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6141 req->opcode);
6142 return-EINVAL;
6143 }
6144
6145 static int io_req_defer_prep(struct io_kiocb *req,
6146 const struct io_uring_sqe *sqe)
6147 {
6148 if (!sqe)
6149 return 0;
6150 if (io_alloc_async_data(req))
6151 return -EAGAIN;
6152 return io_req_prep(req, sqe);
6153 }
6154
6155 static u32 io_get_sequence(struct io_kiocb *req)
6156 {
6157 struct io_kiocb *pos;
6158 struct io_ring_ctx *ctx = req->ctx;
6159 u32 total_submitted, nr_reqs = 0;
6160
6161 io_for_each_link(pos, req)
6162 nr_reqs++;
6163
6164 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6165 return total_submitted - nr_reqs;
6166 }
6167
6168 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6169 {
6170 struct io_ring_ctx *ctx = req->ctx;
6171 struct io_defer_entry *de;
6172 int ret;
6173 u32 seq;
6174
6175 /* Still need defer if there is pending req in defer list. */
6176 if (likely(list_empty_careful(&ctx->defer_list) &&
6177 !(req->flags & REQ_F_IO_DRAIN)))
6178 return 0;
6179
6180 seq = io_get_sequence(req);
6181 /* Still a chance to pass the sequence check */
6182 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6183 return 0;
6184
6185 if (!req->async_data) {
6186 ret = io_req_defer_prep(req, sqe);
6187 if (ret)
6188 return ret;
6189 }
6190 io_prep_async_link(req);
6191 de = kmalloc(sizeof(*de), GFP_KERNEL);
6192 if (!de)
6193 return -ENOMEM;
6194
6195 spin_lock_irq(&ctx->completion_lock);
6196 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6197 spin_unlock_irq(&ctx->completion_lock);
6198 kfree(de);
6199 io_queue_async_work(req);
6200 return -EIOCBQUEUED;
6201 }
6202
6203 trace_io_uring_defer(ctx, req, req->user_data);
6204 de->req = req;
6205 de->seq = seq;
6206 list_add_tail(&de->list, &ctx->defer_list);
6207 spin_unlock_irq(&ctx->completion_lock);
6208 return -EIOCBQUEUED;
6209 }
6210
6211 static void __io_clean_op(struct io_kiocb *req)
6212 {
6213 if (req->flags & REQ_F_BUFFER_SELECTED) {
6214 switch (req->opcode) {
6215 case IORING_OP_READV:
6216 case IORING_OP_READ_FIXED:
6217 case IORING_OP_READ:
6218 kfree((void *)(unsigned long)req->rw.addr);
6219 break;
6220 case IORING_OP_RECVMSG:
6221 case IORING_OP_RECV:
6222 kfree(req->sr_msg.kbuf);
6223 break;
6224 }
6225 req->flags &= ~REQ_F_BUFFER_SELECTED;
6226 }
6227
6228 if (req->flags & REQ_F_NEED_CLEANUP) {
6229 switch (req->opcode) {
6230 case IORING_OP_READV:
6231 case IORING_OP_READ_FIXED:
6232 case IORING_OP_READ:
6233 case IORING_OP_WRITEV:
6234 case IORING_OP_WRITE_FIXED:
6235 case IORING_OP_WRITE: {
6236 struct io_async_rw *io = req->async_data;
6237 if (io->free_iovec)
6238 kfree(io->free_iovec);
6239 break;
6240 }
6241 case IORING_OP_RECVMSG:
6242 case IORING_OP_SENDMSG: {
6243 struct io_async_msghdr *io = req->async_data;
6244
6245 kfree(io->free_iov);
6246 break;
6247 }
6248 case IORING_OP_SPLICE:
6249 case IORING_OP_TEE:
6250 io_put_file(req, req->splice.file_in,
6251 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6252 break;
6253 case IORING_OP_OPENAT:
6254 case IORING_OP_OPENAT2:
6255 if (req->open.filename)
6256 putname(req->open.filename);
6257 break;
6258 case IORING_OP_RENAMEAT:
6259 putname(req->rename.oldpath);
6260 putname(req->rename.newpath);
6261 break;
6262 case IORING_OP_UNLINKAT:
6263 putname(req->unlink.filename);
6264 break;
6265 }
6266 req->flags &= ~REQ_F_NEED_CLEANUP;
6267 }
6268 }
6269
6270 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6271 {
6272 struct io_ring_ctx *ctx = req->ctx;
6273 int ret;
6274
6275 switch (req->opcode) {
6276 case IORING_OP_NOP:
6277 ret = io_nop(req, issue_flags);
6278 break;
6279 case IORING_OP_READV:
6280 case IORING_OP_READ_FIXED:
6281 case IORING_OP_READ:
6282 ret = io_read(req, issue_flags);
6283 break;
6284 case IORING_OP_WRITEV:
6285 case IORING_OP_WRITE_FIXED:
6286 case IORING_OP_WRITE:
6287 ret = io_write(req, issue_flags);
6288 break;
6289 case IORING_OP_FSYNC:
6290 ret = io_fsync(req, issue_flags);
6291 break;
6292 case IORING_OP_POLL_ADD:
6293 ret = io_poll_add(req, issue_flags);
6294 break;
6295 case IORING_OP_POLL_REMOVE:
6296 ret = io_poll_remove(req, issue_flags);
6297 break;
6298 case IORING_OP_SYNC_FILE_RANGE:
6299 ret = io_sync_file_range(req, issue_flags);
6300 break;
6301 case IORING_OP_SENDMSG:
6302 ret = io_sendmsg(req, issue_flags);
6303 break;
6304 case IORING_OP_SEND:
6305 ret = io_send(req, issue_flags);
6306 break;
6307 case IORING_OP_RECVMSG:
6308 ret = io_recvmsg(req, issue_flags);
6309 break;
6310 case IORING_OP_RECV:
6311 ret = io_recv(req, issue_flags);
6312 break;
6313 case IORING_OP_TIMEOUT:
6314 ret = io_timeout(req, issue_flags);
6315 break;
6316 case IORING_OP_TIMEOUT_REMOVE:
6317 ret = io_timeout_remove(req, issue_flags);
6318 break;
6319 case IORING_OP_ACCEPT:
6320 ret = io_accept(req, issue_flags);
6321 break;
6322 case IORING_OP_CONNECT:
6323 ret = io_connect(req, issue_flags);
6324 break;
6325 case IORING_OP_ASYNC_CANCEL:
6326 ret = io_async_cancel(req, issue_flags);
6327 break;
6328 case IORING_OP_FALLOCATE:
6329 ret = io_fallocate(req, issue_flags);
6330 break;
6331 case IORING_OP_OPENAT:
6332 ret = io_openat(req, issue_flags);
6333 break;
6334 case IORING_OP_CLOSE:
6335 ret = io_close(req, issue_flags);
6336 break;
6337 case IORING_OP_FILES_UPDATE:
6338 ret = io_files_update(req, issue_flags);
6339 break;
6340 case IORING_OP_STATX:
6341 ret = io_statx(req, issue_flags);
6342 break;
6343 case IORING_OP_FADVISE:
6344 ret = io_fadvise(req, issue_flags);
6345 break;
6346 case IORING_OP_MADVISE:
6347 ret = io_madvise(req, issue_flags);
6348 break;
6349 case IORING_OP_OPENAT2:
6350 ret = io_openat2(req, issue_flags);
6351 break;
6352 case IORING_OP_EPOLL_CTL:
6353 ret = io_epoll_ctl(req, issue_flags);
6354 break;
6355 case IORING_OP_SPLICE:
6356 ret = io_splice(req, issue_flags);
6357 break;
6358 case IORING_OP_PROVIDE_BUFFERS:
6359 ret = io_provide_buffers(req, issue_flags);
6360 break;
6361 case IORING_OP_REMOVE_BUFFERS:
6362 ret = io_remove_buffers(req, issue_flags);
6363 break;
6364 case IORING_OP_TEE:
6365 ret = io_tee(req, issue_flags);
6366 break;
6367 case IORING_OP_SHUTDOWN:
6368 ret = io_shutdown(req, issue_flags);
6369 break;
6370 case IORING_OP_RENAMEAT:
6371 ret = io_renameat(req, issue_flags);
6372 break;
6373 case IORING_OP_UNLINKAT:
6374 ret = io_unlinkat(req, issue_flags);
6375 break;
6376 default:
6377 ret = -EINVAL;
6378 break;
6379 }
6380
6381 if (ret)
6382 return ret;
6383
6384 /* If the op doesn't have a file, we're not polling for it */
6385 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6386 const bool in_async = io_wq_current_is_worker();
6387
6388 /* workqueue context doesn't hold uring_lock, grab it now */
6389 if (in_async)
6390 mutex_lock(&ctx->uring_lock);
6391
6392 io_iopoll_req_issued(req, in_async);
6393
6394 if (in_async)
6395 mutex_unlock(&ctx->uring_lock);
6396 }
6397
6398 return 0;
6399 }
6400
6401 static void io_wq_submit_work(struct io_wq_work *work)
6402 {
6403 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6404 struct io_kiocb *timeout;
6405 int ret = 0;
6406
6407 timeout = io_prep_linked_timeout(req);
6408 if (timeout)
6409 io_queue_linked_timeout(timeout);
6410
6411 if (work->flags & IO_WQ_WORK_CANCEL)
6412 ret = -ECANCELED;
6413
6414 if (!ret) {
6415 do {
6416 ret = io_issue_sqe(req, 0);
6417 /*
6418 * We can get EAGAIN for polled IO even though we're
6419 * forcing a sync submission from here, since we can't
6420 * wait for request slots on the block side.
6421 */
6422 if (ret != -EAGAIN)
6423 break;
6424 cond_resched();
6425 } while (1);
6426 }
6427
6428 if (ret) {
6429 struct io_ring_ctx *lock_ctx = NULL;
6430
6431 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6432 lock_ctx = req->ctx;
6433
6434 /*
6435 * io_iopoll_complete() does not hold completion_lock to
6436 * complete polled io, so here for polled io, we can not call
6437 * io_req_complete() directly, otherwise there maybe concurrent
6438 * access to cqring, defer_list, etc, which is not safe. Given
6439 * that io_iopoll_complete() is always called under uring_lock,
6440 * so here for polled io, we also get uring_lock to complete
6441 * it.
6442 */
6443 if (lock_ctx)
6444 mutex_lock(&lock_ctx->uring_lock);
6445
6446 req_set_fail_links(req);
6447 io_req_complete(req, ret);
6448
6449 if (lock_ctx)
6450 mutex_unlock(&lock_ctx->uring_lock);
6451 }
6452 }
6453
6454 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6455 int index)
6456 {
6457 struct fixed_rsrc_table *table;
6458
6459 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6460 return table->files[index & IORING_FILE_TABLE_MASK];
6461 }
6462
6463 static struct file *io_file_get(struct io_submit_state *state,
6464 struct io_kiocb *req, int fd, bool fixed)
6465 {
6466 struct io_ring_ctx *ctx = req->ctx;
6467 struct file *file;
6468
6469 if (fixed) {
6470 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6471 return NULL;
6472 fd = array_index_nospec(fd, ctx->nr_user_files);
6473 file = io_file_from_index(ctx, fd);
6474 io_set_resource_node(req);
6475 } else {
6476 trace_io_uring_file_get(ctx, fd);
6477 file = __io_file_get(state, fd);
6478 }
6479
6480 if (file && unlikely(file->f_op == &io_uring_fops))
6481 io_req_track_inflight(req);
6482 return file;
6483 }
6484
6485 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6486 {
6487 struct io_timeout_data *data = container_of(timer,
6488 struct io_timeout_data, timer);
6489 struct io_kiocb *prev, *req = data->req;
6490 struct io_ring_ctx *ctx = req->ctx;
6491 unsigned long flags;
6492
6493 spin_lock_irqsave(&ctx->completion_lock, flags);
6494 prev = req->timeout.head;
6495 req->timeout.head = NULL;
6496
6497 /*
6498 * We don't expect the list to be empty, that will only happen if we
6499 * race with the completion of the linked work.
6500 */
6501 if (prev && refcount_inc_not_zero(&prev->refs))
6502 io_remove_next_linked(prev);
6503 else
6504 prev = NULL;
6505 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6506
6507 if (prev) {
6508 req_set_fail_links(prev);
6509 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6510 io_put_req_deferred(prev, 1);
6511 } else {
6512 io_req_complete_post(req, -ETIME, 0);
6513 io_put_req_deferred(req, 1);
6514 }
6515 return HRTIMER_NORESTART;
6516 }
6517
6518 static void __io_queue_linked_timeout(struct io_kiocb *req)
6519 {
6520 /*
6521 * If the back reference is NULL, then our linked request finished
6522 * before we got a chance to setup the timer
6523 */
6524 if (req->timeout.head) {
6525 struct io_timeout_data *data = req->async_data;
6526
6527 data->timer.function = io_link_timeout_fn;
6528 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6529 data->mode);
6530 }
6531 }
6532
6533 static void io_queue_linked_timeout(struct io_kiocb *req)
6534 {
6535 struct io_ring_ctx *ctx = req->ctx;
6536
6537 spin_lock_irq(&ctx->completion_lock);
6538 __io_queue_linked_timeout(req);
6539 spin_unlock_irq(&ctx->completion_lock);
6540
6541 /* drop submission reference */
6542 io_put_req(req);
6543 }
6544
6545 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6546 {
6547 struct io_kiocb *nxt = req->link;
6548
6549 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6550 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6551 return NULL;
6552
6553 nxt->timeout.head = req;
6554 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6555 req->flags |= REQ_F_LINK_TIMEOUT;
6556 return nxt;
6557 }
6558
6559 static void __io_queue_sqe(struct io_kiocb *req)
6560 {
6561 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6562 const struct cred *old_creds = NULL;
6563 int ret;
6564
6565 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6566 (req->work.flags & IO_WQ_WORK_CREDS) &&
6567 req->work.identity->creds != current_cred())
6568 old_creds = override_creds(req->work.identity->creds);
6569
6570 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6571
6572 if (old_creds)
6573 revert_creds(old_creds);
6574
6575 /*
6576 * We async punt it if the file wasn't marked NOWAIT, or if the file
6577 * doesn't support non-blocking read/write attempts
6578 */
6579 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6580 if (!io_arm_poll_handler(req)) {
6581 /*
6582 * Queued up for async execution, worker will release
6583 * submit reference when the iocb is actually submitted.
6584 */
6585 io_queue_async_work(req);
6586 }
6587 } else if (likely(!ret)) {
6588 /* drop submission reference */
6589 if (req->flags & REQ_F_COMPLETE_INLINE) {
6590 struct io_ring_ctx *ctx = req->ctx;
6591 struct io_comp_state *cs = &ctx->submit_state.comp;
6592
6593 cs->reqs[cs->nr++] = req;
6594 if (cs->nr == ARRAY_SIZE(cs->reqs))
6595 io_submit_flush_completions(cs, ctx);
6596 } else {
6597 io_put_req(req);
6598 }
6599 } else {
6600 req_set_fail_links(req);
6601 io_put_req(req);
6602 io_req_complete(req, ret);
6603 }
6604 if (linked_timeout)
6605 io_queue_linked_timeout(linked_timeout);
6606 }
6607
6608 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6609 {
6610 int ret;
6611
6612 ret = io_req_defer(req, sqe);
6613 if (ret) {
6614 if (ret != -EIOCBQUEUED) {
6615 fail_req:
6616 req_set_fail_links(req);
6617 io_put_req(req);
6618 io_req_complete(req, ret);
6619 }
6620 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6621 if (!req->async_data) {
6622 ret = io_req_defer_prep(req, sqe);
6623 if (unlikely(ret))
6624 goto fail_req;
6625 }
6626 io_queue_async_work(req);
6627 } else {
6628 if (sqe) {
6629 ret = io_req_prep(req, sqe);
6630 if (unlikely(ret))
6631 goto fail_req;
6632 }
6633 __io_queue_sqe(req);
6634 }
6635 }
6636
6637 static inline void io_queue_link_head(struct io_kiocb *req)
6638 {
6639 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6640 io_put_req(req);
6641 io_req_complete(req, -ECANCELED);
6642 } else
6643 io_queue_sqe(req, NULL);
6644 }
6645
6646 /*
6647 * Check SQE restrictions (opcode and flags).
6648 *
6649 * Returns 'true' if SQE is allowed, 'false' otherwise.
6650 */
6651 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6652 struct io_kiocb *req,
6653 unsigned int sqe_flags)
6654 {
6655 if (!ctx->restricted)
6656 return true;
6657
6658 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6659 return false;
6660
6661 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6662 ctx->restrictions.sqe_flags_required)
6663 return false;
6664
6665 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6666 ctx->restrictions.sqe_flags_required))
6667 return false;
6668
6669 return true;
6670 }
6671
6672 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6673 const struct io_uring_sqe *sqe)
6674 {
6675 struct io_submit_state *state;
6676 unsigned int sqe_flags;
6677 int id, ret = 0;
6678
6679 req->opcode = READ_ONCE(sqe->opcode);
6680 /* same numerical values with corresponding REQ_F_*, safe to copy */
6681 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6682 req->user_data = READ_ONCE(sqe->user_data);
6683 req->async_data = NULL;
6684 req->file = NULL;
6685 req->ctx = ctx;
6686 req->link = NULL;
6687 req->fixed_rsrc_refs = NULL;
6688 /* one is dropped after submission, the other at completion */
6689 refcount_set(&req->refs, 2);
6690 req->task = current;
6691 req->result = 0;
6692
6693 /* enforce forwards compatibility on users */
6694 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6695 return -EINVAL;
6696
6697 if (unlikely(req->opcode >= IORING_OP_LAST))
6698 return -EINVAL;
6699
6700 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6701 return -EFAULT;
6702
6703 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6704 return -EACCES;
6705
6706 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6707 !io_op_defs[req->opcode].buffer_select)
6708 return -EOPNOTSUPP;
6709
6710 id = READ_ONCE(sqe->personality);
6711 if (id) {
6712 struct io_identity *iod;
6713
6714 iod = idr_find(&ctx->personality_idr, id);
6715 if (unlikely(!iod))
6716 return -EINVAL;
6717 refcount_inc(&iod->count);
6718
6719 __io_req_init_async(req);
6720 get_cred(iod->creds);
6721 req->work.identity = iod;
6722 req->work.flags |= IO_WQ_WORK_CREDS;
6723 }
6724
6725 state = &ctx->submit_state;
6726
6727 /*
6728 * Plug now if we have more than 1 IO left after this, and the target
6729 * is potentially a read/write to block based storage.
6730 */
6731 if (!state->plug_started && state->ios_left > 1 &&
6732 io_op_defs[req->opcode].plug) {
6733 blk_start_plug(&state->plug);
6734 state->plug_started = true;
6735 }
6736
6737 if (io_op_defs[req->opcode].needs_file) {
6738 bool fixed = req->flags & REQ_F_FIXED_FILE;
6739
6740 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6741 if (unlikely(!req->file))
6742 ret = -EBADF;
6743 }
6744
6745 state->ios_left--;
6746 return ret;
6747 }
6748
6749 struct io_submit_link {
6750 struct io_kiocb *head;
6751 struct io_kiocb *last;
6752 };
6753
6754 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6755 const struct io_uring_sqe *sqe,
6756 struct io_submit_link *link)
6757 {
6758 int ret;
6759
6760 ret = io_init_req(ctx, req, sqe);
6761 if (unlikely(ret)) {
6762 fail_req:
6763 io_put_req(req);
6764 io_req_complete(req, ret);
6765 return ret;
6766 }
6767
6768 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6769 true, ctx->flags & IORING_SETUP_SQPOLL);
6770
6771 /*
6772 * If we already have a head request, queue this one for async
6773 * submittal once the head completes. If we don't have a head but
6774 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6775 * submitted sync once the chain is complete. If none of those
6776 * conditions are true (normal request), then just queue it.
6777 */
6778 if (link->head) {
6779 struct io_kiocb *head = link->head;
6780
6781 /*
6782 * Taking sequential execution of a link, draining both sides
6783 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6784 * requests in the link. So, it drains the head and the
6785 * next after the link request. The last one is done via
6786 * drain_next flag to persist the effect across calls.
6787 */
6788 if (req->flags & REQ_F_IO_DRAIN) {
6789 head->flags |= REQ_F_IO_DRAIN;
6790 ctx->drain_next = 1;
6791 }
6792 ret = io_req_defer_prep(req, sqe);
6793 if (unlikely(ret)) {
6794 /* fail even hard links since we don't submit */
6795 head->flags |= REQ_F_FAIL_LINK;
6796 goto fail_req;
6797 }
6798 trace_io_uring_link(ctx, req, head);
6799 link->last->link = req;
6800 link->last = req;
6801
6802 /* last request of a link, enqueue the link */
6803 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6804 io_queue_link_head(head);
6805 link->head = NULL;
6806 }
6807 } else {
6808 if (unlikely(ctx->drain_next)) {
6809 req->flags |= REQ_F_IO_DRAIN;
6810 ctx->drain_next = 0;
6811 }
6812 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6813 ret = io_req_defer_prep(req, sqe);
6814 if (unlikely(ret))
6815 req->flags |= REQ_F_FAIL_LINK;
6816 link->head = req;
6817 link->last = req;
6818 } else {
6819 io_queue_sqe(req, sqe);
6820 }
6821 }
6822
6823 return 0;
6824 }
6825
6826 /*
6827 * Batched submission is done, ensure local IO is flushed out.
6828 */
6829 static void io_submit_state_end(struct io_submit_state *state,
6830 struct io_ring_ctx *ctx)
6831 {
6832 if (state->comp.nr)
6833 io_submit_flush_completions(&state->comp, ctx);
6834 if (state->plug_started)
6835 blk_finish_plug(&state->plug);
6836 io_state_file_put(state);
6837 }
6838
6839 /*
6840 * Start submission side cache.
6841 */
6842 static void io_submit_state_start(struct io_submit_state *state,
6843 unsigned int max_ios)
6844 {
6845 state->plug_started = false;
6846 state->ios_left = max_ios;
6847 }
6848
6849 static void io_commit_sqring(struct io_ring_ctx *ctx)
6850 {
6851 struct io_rings *rings = ctx->rings;
6852
6853 /*
6854 * Ensure any loads from the SQEs are done at this point,
6855 * since once we write the new head, the application could
6856 * write new data to them.
6857 */
6858 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6859 }
6860
6861 /*
6862 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6863 * that is mapped by userspace. This means that care needs to be taken to
6864 * ensure that reads are stable, as we cannot rely on userspace always
6865 * being a good citizen. If members of the sqe are validated and then later
6866 * used, it's important that those reads are done through READ_ONCE() to
6867 * prevent a re-load down the line.
6868 */
6869 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6870 {
6871 u32 *sq_array = ctx->sq_array;
6872 unsigned head;
6873
6874 /*
6875 * The cached sq head (or cq tail) serves two purposes:
6876 *
6877 * 1) allows us to batch the cost of updating the user visible
6878 * head updates.
6879 * 2) allows the kernel side to track the head on its own, even
6880 * though the application is the one updating it.
6881 */
6882 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6883 if (likely(head < ctx->sq_entries))
6884 return &ctx->sq_sqes[head];
6885
6886 /* drop invalid entries */
6887 ctx->cached_sq_dropped++;
6888 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6889 return NULL;
6890 }
6891
6892 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6893 {
6894 struct io_submit_link link;
6895 int submitted = 0;
6896
6897 /* if we have a backlog and couldn't flush it all, return BUSY */
6898 if (test_bit(0, &ctx->sq_check_overflow)) {
6899 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6900 return -EBUSY;
6901 }
6902
6903 /* make sure SQ entry isn't read before tail */
6904 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6905
6906 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6907 return -EAGAIN;
6908
6909 percpu_counter_add(&current->io_uring->inflight, nr);
6910 refcount_add(nr, &current->usage);
6911
6912 io_submit_state_start(&ctx->submit_state, nr);
6913 link.head = NULL;
6914
6915 while (submitted < nr) {
6916 const struct io_uring_sqe *sqe;
6917 struct io_kiocb *req;
6918
6919 req = io_alloc_req(ctx);
6920 if (unlikely(!req)) {
6921 if (!submitted)
6922 submitted = -EAGAIN;
6923 break;
6924 }
6925 sqe = io_get_sqe(ctx);
6926 if (unlikely(!sqe)) {
6927 kmem_cache_free(req_cachep, req);
6928 break;
6929 }
6930 /* will complete beyond this point, count as submitted */
6931 submitted++;
6932 if (io_submit_sqe(ctx, req, sqe, &link))
6933 break;
6934 }
6935
6936 if (unlikely(submitted != nr)) {
6937 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6938 struct io_uring_task *tctx = current->io_uring;
6939 int unused = nr - ref_used;
6940
6941 percpu_ref_put_many(&ctx->refs, unused);
6942 percpu_counter_sub(&tctx->inflight, unused);
6943 put_task_struct_many(current, unused);
6944 }
6945 if (link.head)
6946 io_queue_link_head(link.head);
6947 io_submit_state_end(&ctx->submit_state, ctx);
6948
6949 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6950 io_commit_sqring(ctx);
6951
6952 return submitted;
6953 }
6954
6955 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6956 {
6957 /* Tell userspace we may need a wakeup call */
6958 spin_lock_irq(&ctx->completion_lock);
6959 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6960 spin_unlock_irq(&ctx->completion_lock);
6961 }
6962
6963 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6964 {
6965 spin_lock_irq(&ctx->completion_lock);
6966 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6967 spin_unlock_irq(&ctx->completion_lock);
6968 }
6969
6970 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6971 {
6972 unsigned int to_submit;
6973 int ret = 0;
6974
6975 to_submit = io_sqring_entries(ctx);
6976 /* if we're handling multiple rings, cap submit size for fairness */
6977 if (cap_entries && to_submit > 8)
6978 to_submit = 8;
6979
6980 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6981 unsigned nr_events = 0;
6982
6983 mutex_lock(&ctx->uring_lock);
6984 if (!list_empty(&ctx->iopoll_list))
6985 io_do_iopoll(ctx, &nr_events, 0);
6986
6987 if (to_submit && !ctx->sqo_dead &&
6988 likely(!percpu_ref_is_dying(&ctx->refs)))
6989 ret = io_submit_sqes(ctx, to_submit);
6990 mutex_unlock(&ctx->uring_lock);
6991 }
6992
6993 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6994 wake_up(&ctx->sqo_sq_wait);
6995
6996 return ret;
6997 }
6998
6999 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7000 {
7001 struct io_ring_ctx *ctx;
7002 unsigned sq_thread_idle = 0;
7003
7004 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7005 if (sq_thread_idle < ctx->sq_thread_idle)
7006 sq_thread_idle = ctx->sq_thread_idle;
7007 }
7008
7009 sqd->sq_thread_idle = sq_thread_idle;
7010 }
7011
7012 static void io_sqd_init_new(struct io_sq_data *sqd)
7013 {
7014 struct io_ring_ctx *ctx;
7015
7016 while (!list_empty(&sqd->ctx_new_list)) {
7017 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7018 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7019 complete(&ctx->sq_thread_comp);
7020 }
7021
7022 io_sqd_update_thread_idle(sqd);
7023 }
7024
7025 static int io_sq_thread(void *data)
7026 {
7027 struct cgroup_subsys_state *cur_css = NULL;
7028 struct files_struct *old_files = current->files;
7029 struct nsproxy *old_nsproxy = current->nsproxy;
7030 const struct cred *old_cred = NULL;
7031 struct io_sq_data *sqd = data;
7032 struct io_ring_ctx *ctx;
7033 unsigned long timeout = 0;
7034 DEFINE_WAIT(wait);
7035
7036 task_lock(current);
7037 current->files = NULL;
7038 current->nsproxy = NULL;
7039 task_unlock(current);
7040
7041 while (!kthread_should_stop()) {
7042 int ret;
7043 bool cap_entries, sqt_spin, needs_sched;
7044
7045 /*
7046 * Any changes to the sqd lists are synchronized through the
7047 * kthread parking. This synchronizes the thread vs users,
7048 * the users are synchronized on the sqd->ctx_lock.
7049 */
7050 if (kthread_should_park()) {
7051 kthread_parkme();
7052 /*
7053 * When sq thread is unparked, in case the previous park operation
7054 * comes from io_put_sq_data(), which means that sq thread is going
7055 * to be stopped, so here needs to have a check.
7056 */
7057 if (kthread_should_stop())
7058 break;
7059 }
7060
7061 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7062 io_sqd_init_new(sqd);
7063 timeout = jiffies + sqd->sq_thread_idle;
7064 }
7065
7066 sqt_spin = false;
7067 cap_entries = !list_is_singular(&sqd->ctx_list);
7068 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7069 if (current->cred != ctx->creds) {
7070 if (old_cred)
7071 revert_creds(old_cred);
7072 old_cred = override_creds(ctx->creds);
7073 }
7074 io_sq_thread_associate_blkcg(ctx, &cur_css);
7075 #ifdef CONFIG_AUDIT
7076 current->loginuid = ctx->loginuid;
7077 current->sessionid = ctx->sessionid;
7078 #endif
7079
7080 ret = __io_sq_thread(ctx, cap_entries);
7081 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7082 sqt_spin = true;
7083
7084 io_sq_thread_drop_mm_files();
7085 }
7086
7087 if (sqt_spin || !time_after(jiffies, timeout)) {
7088 io_run_task_work();
7089 io_sq_thread_drop_mm_files();
7090 cond_resched();
7091 if (sqt_spin)
7092 timeout = jiffies + sqd->sq_thread_idle;
7093 continue;
7094 }
7095
7096 needs_sched = true;
7097 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7098 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7099 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7100 !list_empty_careful(&ctx->iopoll_list)) {
7101 needs_sched = false;
7102 break;
7103 }
7104 if (io_sqring_entries(ctx)) {
7105 needs_sched = false;
7106 break;
7107 }
7108 }
7109
7110 if (needs_sched && !kthread_should_park()) {
7111 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7112 io_ring_set_wakeup_flag(ctx);
7113
7114 schedule();
7115 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7116 io_ring_clear_wakeup_flag(ctx);
7117 }
7118
7119 finish_wait(&sqd->wait, &wait);
7120 timeout = jiffies + sqd->sq_thread_idle;
7121 }
7122
7123 io_run_task_work();
7124 io_sq_thread_drop_mm_files();
7125
7126 if (cur_css)
7127 io_sq_thread_unassociate_blkcg();
7128 if (old_cred)
7129 revert_creds(old_cred);
7130
7131 task_lock(current);
7132 current->files = old_files;
7133 current->nsproxy = old_nsproxy;
7134 task_unlock(current);
7135
7136 kthread_parkme();
7137
7138 return 0;
7139 }
7140
7141 struct io_wait_queue {
7142 struct wait_queue_entry wq;
7143 struct io_ring_ctx *ctx;
7144 unsigned to_wait;
7145 unsigned nr_timeouts;
7146 };
7147
7148 static inline bool io_should_wake(struct io_wait_queue *iowq)
7149 {
7150 struct io_ring_ctx *ctx = iowq->ctx;
7151
7152 /*
7153 * Wake up if we have enough events, or if a timeout occurred since we
7154 * started waiting. For timeouts, we always want to return to userspace,
7155 * regardless of event count.
7156 */
7157 return io_cqring_events(ctx) >= iowq->to_wait ||
7158 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7159 }
7160
7161 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7162 int wake_flags, void *key)
7163 {
7164 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7165 wq);
7166
7167 /*
7168 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7169 * the task, and the next invocation will do it.
7170 */
7171 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7172 return autoremove_wake_function(curr, mode, wake_flags, key);
7173 return -1;
7174 }
7175
7176 static int io_run_task_work_sig(void)
7177 {
7178 if (io_run_task_work())
7179 return 1;
7180 if (!signal_pending(current))
7181 return 0;
7182 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7183 return -ERESTARTSYS;
7184 return -EINTR;
7185 }
7186
7187 /* when returns >0, the caller should retry */
7188 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7189 struct io_wait_queue *iowq,
7190 signed long *timeout)
7191 {
7192 int ret;
7193
7194 /* make sure we run task_work before checking for signals */
7195 ret = io_run_task_work_sig();
7196 if (ret || io_should_wake(iowq))
7197 return ret;
7198 /* let the caller flush overflows, retry */
7199 if (test_bit(0, &ctx->cq_check_overflow))
7200 return 1;
7201
7202 *timeout = schedule_timeout(*timeout);
7203 return !*timeout ? -ETIME : 1;
7204 }
7205
7206 /*
7207 * Wait until events become available, if we don't already have some. The
7208 * application must reap them itself, as they reside on the shared cq ring.
7209 */
7210 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7211 const sigset_t __user *sig, size_t sigsz,
7212 struct __kernel_timespec __user *uts)
7213 {
7214 struct io_wait_queue iowq = {
7215 .wq = {
7216 .private = current,
7217 .func = io_wake_function,
7218 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7219 },
7220 .ctx = ctx,
7221 .to_wait = min_events,
7222 };
7223 struct io_rings *rings = ctx->rings;
7224 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7225 int ret;
7226
7227 do {
7228 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7229 if (io_cqring_events(ctx) >= min_events)
7230 return 0;
7231 if (!io_run_task_work())
7232 break;
7233 } while (1);
7234
7235 if (sig) {
7236 #ifdef CONFIG_COMPAT
7237 if (in_compat_syscall())
7238 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7239 sigsz);
7240 else
7241 #endif
7242 ret = set_user_sigmask(sig, sigsz);
7243
7244 if (ret)
7245 return ret;
7246 }
7247
7248 if (uts) {
7249 struct timespec64 ts;
7250
7251 if (get_timespec64(&ts, uts))
7252 return -EFAULT;
7253 timeout = timespec64_to_jiffies(&ts);
7254 }
7255
7256 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7257 trace_io_uring_cqring_wait(ctx, min_events);
7258 do {
7259 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7260 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7261 TASK_INTERRUPTIBLE);
7262 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7263 finish_wait(&ctx->wait, &iowq.wq);
7264 } while (ret > 0);
7265
7266 restore_saved_sigmask_unless(ret == -EINTR);
7267
7268 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7269 }
7270
7271 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7272 {
7273 #if defined(CONFIG_UNIX)
7274 if (ctx->ring_sock) {
7275 struct sock *sock = ctx->ring_sock->sk;
7276 struct sk_buff *skb;
7277
7278 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7279 kfree_skb(skb);
7280 }
7281 #else
7282 int i;
7283
7284 for (i = 0; i < ctx->nr_user_files; i++) {
7285 struct file *file;
7286
7287 file = io_file_from_index(ctx, i);
7288 if (file)
7289 fput(file);
7290 }
7291 #endif
7292 }
7293
7294 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7295 {
7296 struct fixed_rsrc_data *data;
7297
7298 data = container_of(ref, struct fixed_rsrc_data, refs);
7299 complete(&data->done);
7300 }
7301
7302 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7303 {
7304 spin_lock_bh(&ctx->rsrc_ref_lock);
7305 }
7306
7307 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7308 {
7309 spin_unlock_bh(&ctx->rsrc_ref_lock);
7310 }
7311
7312 static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
7313 struct fixed_rsrc_data *rsrc_data,
7314 struct fixed_rsrc_ref_node *ref_node)
7315 {
7316 io_rsrc_ref_lock(ctx);
7317 rsrc_data->node = ref_node;
7318 list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
7319 io_rsrc_ref_unlock(ctx);
7320 percpu_ref_get(&rsrc_data->refs);
7321 }
7322
7323 static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
7324 struct io_ring_ctx *ctx,
7325 struct fixed_rsrc_ref_node *backup_node)
7326 {
7327 struct fixed_rsrc_ref_node *ref_node;
7328 int ret;
7329
7330 io_rsrc_ref_lock(ctx);
7331 ref_node = data->node;
7332 io_rsrc_ref_unlock(ctx);
7333 if (ref_node)
7334 percpu_ref_kill(&ref_node->refs);
7335
7336 percpu_ref_kill(&data->refs);
7337
7338 /* wait for all refs nodes to complete */
7339 flush_delayed_work(&ctx->rsrc_put_work);
7340 do {
7341 ret = wait_for_completion_interruptible(&data->done);
7342 if (!ret)
7343 break;
7344 ret = io_run_task_work_sig();
7345 if (ret < 0) {
7346 percpu_ref_resurrect(&data->refs);
7347 reinit_completion(&data->done);
7348 io_sqe_rsrc_set_node(ctx, data, backup_node);
7349 return ret;
7350 }
7351 } while (1);
7352
7353 destroy_fixed_rsrc_ref_node(backup_node);
7354 return 0;
7355 }
7356
7357 static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
7358 {
7359 struct fixed_rsrc_data *data;
7360
7361 data = kzalloc(sizeof(*data), GFP_KERNEL);
7362 if (!data)
7363 return NULL;
7364
7365 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7366 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7367 kfree(data);
7368 return NULL;
7369 }
7370 data->ctx = ctx;
7371 init_completion(&data->done);
7372 return data;
7373 }
7374
7375 static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
7376 {
7377 percpu_ref_exit(&data->refs);
7378 kfree(data->table);
7379 kfree(data);
7380 }
7381
7382 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7383 {
7384 struct fixed_rsrc_data *data = ctx->file_data;
7385 struct fixed_rsrc_ref_node *backup_node;
7386 unsigned nr_tables, i;
7387 int ret;
7388
7389 if (!data)
7390 return -ENXIO;
7391 backup_node = alloc_fixed_rsrc_ref_node(ctx);
7392 if (!backup_node)
7393 return -ENOMEM;
7394 init_fixed_file_ref_node(ctx, backup_node);
7395
7396 ret = io_rsrc_ref_quiesce(data, ctx, backup_node);
7397 if (ret)
7398 return ret;
7399
7400 __io_sqe_files_unregister(ctx);
7401 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7402 for (i = 0; i < nr_tables; i++)
7403 kfree(data->table[i].files);
7404 free_fixed_rsrc_data(data);
7405 ctx->file_data = NULL;
7406 ctx->nr_user_files = 0;
7407 return 0;
7408 }
7409
7410 static void io_put_sq_data(struct io_sq_data *sqd)
7411 {
7412 if (refcount_dec_and_test(&sqd->refs)) {
7413 /*
7414 * The park is a bit of a work-around, without it we get
7415 * warning spews on shutdown with SQPOLL set and affinity
7416 * set to a single CPU.
7417 */
7418 if (sqd->thread) {
7419 kthread_park(sqd->thread);
7420 kthread_stop(sqd->thread);
7421 }
7422
7423 kfree(sqd);
7424 }
7425 }
7426
7427 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7428 {
7429 struct io_ring_ctx *ctx_attach;
7430 struct io_sq_data *sqd;
7431 struct fd f;
7432
7433 f = fdget(p->wq_fd);
7434 if (!f.file)
7435 return ERR_PTR(-ENXIO);
7436 if (f.file->f_op != &io_uring_fops) {
7437 fdput(f);
7438 return ERR_PTR(-EINVAL);
7439 }
7440
7441 ctx_attach = f.file->private_data;
7442 sqd = ctx_attach->sq_data;
7443 if (!sqd) {
7444 fdput(f);
7445 return ERR_PTR(-EINVAL);
7446 }
7447
7448 refcount_inc(&sqd->refs);
7449 fdput(f);
7450 return sqd;
7451 }
7452
7453 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7454 {
7455 struct io_sq_data *sqd;
7456
7457 if (p->flags & IORING_SETUP_ATTACH_WQ)
7458 return io_attach_sq_data(p);
7459
7460 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7461 if (!sqd)
7462 return ERR_PTR(-ENOMEM);
7463
7464 refcount_set(&sqd->refs, 1);
7465 INIT_LIST_HEAD(&sqd->ctx_list);
7466 INIT_LIST_HEAD(&sqd->ctx_new_list);
7467 mutex_init(&sqd->ctx_lock);
7468 mutex_init(&sqd->lock);
7469 init_waitqueue_head(&sqd->wait);
7470 return sqd;
7471 }
7472
7473 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7474 __releases(&sqd->lock)
7475 {
7476 if (!sqd->thread)
7477 return;
7478 kthread_unpark(sqd->thread);
7479 mutex_unlock(&sqd->lock);
7480 }
7481
7482 static void io_sq_thread_park(struct io_sq_data *sqd)
7483 __acquires(&sqd->lock)
7484 {
7485 if (!sqd->thread)
7486 return;
7487 mutex_lock(&sqd->lock);
7488 kthread_park(sqd->thread);
7489 }
7490
7491 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7492 {
7493 struct io_sq_data *sqd = ctx->sq_data;
7494
7495 if (sqd) {
7496 if (sqd->thread) {
7497 /*
7498 * We may arrive here from the error branch in
7499 * io_sq_offload_create() where the kthread is created
7500 * without being waked up, thus wake it up now to make
7501 * sure the wait will complete.
7502 */
7503 wake_up_process(sqd->thread);
7504 wait_for_completion(&ctx->sq_thread_comp);
7505
7506 io_sq_thread_park(sqd);
7507 }
7508
7509 mutex_lock(&sqd->ctx_lock);
7510 list_del(&ctx->sqd_list);
7511 io_sqd_update_thread_idle(sqd);
7512 mutex_unlock(&sqd->ctx_lock);
7513
7514 if (sqd->thread)
7515 io_sq_thread_unpark(sqd);
7516
7517 io_put_sq_data(sqd);
7518 ctx->sq_data = NULL;
7519 }
7520 }
7521
7522 static void io_finish_async(struct io_ring_ctx *ctx)
7523 {
7524 io_sq_thread_stop(ctx);
7525
7526 if (ctx->io_wq) {
7527 io_wq_destroy(ctx->io_wq);
7528 ctx->io_wq = NULL;
7529 }
7530 }
7531
7532 #if defined(CONFIG_UNIX)
7533 /*
7534 * Ensure the UNIX gc is aware of our file set, so we are certain that
7535 * the io_uring can be safely unregistered on process exit, even if we have
7536 * loops in the file referencing.
7537 */
7538 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7539 {
7540 struct sock *sk = ctx->ring_sock->sk;
7541 struct scm_fp_list *fpl;
7542 struct sk_buff *skb;
7543 int i, nr_files;
7544
7545 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7546 if (!fpl)
7547 return -ENOMEM;
7548
7549 skb = alloc_skb(0, GFP_KERNEL);
7550 if (!skb) {
7551 kfree(fpl);
7552 return -ENOMEM;
7553 }
7554
7555 skb->sk = sk;
7556
7557 nr_files = 0;
7558 fpl->user = get_uid(ctx->user);
7559 for (i = 0; i < nr; i++) {
7560 struct file *file = io_file_from_index(ctx, i + offset);
7561
7562 if (!file)
7563 continue;
7564 fpl->fp[nr_files] = get_file(file);
7565 unix_inflight(fpl->user, fpl->fp[nr_files]);
7566 nr_files++;
7567 }
7568
7569 if (nr_files) {
7570 fpl->max = SCM_MAX_FD;
7571 fpl->count = nr_files;
7572 UNIXCB(skb).fp = fpl;
7573 skb->destructor = unix_destruct_scm;
7574 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7575 skb_queue_head(&sk->sk_receive_queue, skb);
7576
7577 for (i = 0; i < nr_files; i++)
7578 fput(fpl->fp[i]);
7579 } else {
7580 kfree_skb(skb);
7581 kfree(fpl);
7582 }
7583
7584 return 0;
7585 }
7586
7587 /*
7588 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7589 * causes regular reference counting to break down. We rely on the UNIX
7590 * garbage collection to take care of this problem for us.
7591 */
7592 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7593 {
7594 unsigned left, total;
7595 int ret = 0;
7596
7597 total = 0;
7598 left = ctx->nr_user_files;
7599 while (left) {
7600 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7601
7602 ret = __io_sqe_files_scm(ctx, this_files, total);
7603 if (ret)
7604 break;
7605 left -= this_files;
7606 total += this_files;
7607 }
7608
7609 if (!ret)
7610 return 0;
7611
7612 while (total < ctx->nr_user_files) {
7613 struct file *file = io_file_from_index(ctx, total);
7614
7615 if (file)
7616 fput(file);
7617 total++;
7618 }
7619
7620 return ret;
7621 }
7622 #else
7623 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7624 {
7625 return 0;
7626 }
7627 #endif
7628
7629 static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
7630 unsigned nr_tables, unsigned nr_files)
7631 {
7632 int i;
7633
7634 for (i = 0; i < nr_tables; i++) {
7635 struct fixed_rsrc_table *table = &file_data->table[i];
7636 unsigned this_files;
7637
7638 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7639 table->files = kcalloc(this_files, sizeof(struct file *),
7640 GFP_KERNEL);
7641 if (!table->files)
7642 break;
7643 nr_files -= this_files;
7644 }
7645
7646 if (i == nr_tables)
7647 return 0;
7648
7649 for (i = 0; i < nr_tables; i++) {
7650 struct fixed_rsrc_table *table = &file_data->table[i];
7651 kfree(table->files);
7652 }
7653 return 1;
7654 }
7655
7656 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7657 {
7658 struct file *file = prsrc->file;
7659 #if defined(CONFIG_UNIX)
7660 struct sock *sock = ctx->ring_sock->sk;
7661 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7662 struct sk_buff *skb;
7663 int i;
7664
7665 __skb_queue_head_init(&list);
7666
7667 /*
7668 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7669 * remove this entry and rearrange the file array.
7670 */
7671 skb = skb_dequeue(head);
7672 while (skb) {
7673 struct scm_fp_list *fp;
7674
7675 fp = UNIXCB(skb).fp;
7676 for (i = 0; i < fp->count; i++) {
7677 int left;
7678
7679 if (fp->fp[i] != file)
7680 continue;
7681
7682 unix_notinflight(fp->user, fp->fp[i]);
7683 left = fp->count - 1 - i;
7684 if (left) {
7685 memmove(&fp->fp[i], &fp->fp[i + 1],
7686 left * sizeof(struct file *));
7687 }
7688 fp->count--;
7689 if (!fp->count) {
7690 kfree_skb(skb);
7691 skb = NULL;
7692 } else {
7693 __skb_queue_tail(&list, skb);
7694 }
7695 fput(file);
7696 file = NULL;
7697 break;
7698 }
7699
7700 if (!file)
7701 break;
7702
7703 __skb_queue_tail(&list, skb);
7704
7705 skb = skb_dequeue(head);
7706 }
7707
7708 if (skb_peek(&list)) {
7709 spin_lock_irq(&head->lock);
7710 while ((skb = __skb_dequeue(&list)) != NULL)
7711 __skb_queue_tail(head, skb);
7712 spin_unlock_irq(&head->lock);
7713 }
7714 #else
7715 fput(file);
7716 #endif
7717 }
7718
7719 static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
7720 {
7721 struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
7722 struct io_ring_ctx *ctx = rsrc_data->ctx;
7723 struct io_rsrc_put *prsrc, *tmp;
7724
7725 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7726 list_del(&prsrc->list);
7727 ref_node->rsrc_put(ctx, prsrc);
7728 kfree(prsrc);
7729 }
7730
7731 percpu_ref_exit(&ref_node->refs);
7732 kfree(ref_node);
7733 percpu_ref_put(&rsrc_data->refs);
7734 }
7735
7736 static void io_rsrc_put_work(struct work_struct *work)
7737 {
7738 struct io_ring_ctx *ctx;
7739 struct llist_node *node;
7740
7741 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7742 node = llist_del_all(&ctx->rsrc_put_llist);
7743
7744 while (node) {
7745 struct fixed_rsrc_ref_node *ref_node;
7746 struct llist_node *next = node->next;
7747
7748 ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
7749 __io_rsrc_put_work(ref_node);
7750 node = next;
7751 }
7752 }
7753
7754 static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
7755 unsigned i)
7756 {
7757 struct fixed_rsrc_table *table;
7758
7759 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7760 return &table->files[i & IORING_FILE_TABLE_MASK];
7761 }
7762
7763 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7764 {
7765 struct fixed_rsrc_ref_node *ref_node;
7766 struct fixed_rsrc_data *data;
7767 struct io_ring_ctx *ctx;
7768 bool first_add = false;
7769 int delay = HZ;
7770
7771 ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
7772 data = ref_node->rsrc_data;
7773 ctx = data->ctx;
7774
7775 io_rsrc_ref_lock(ctx);
7776 ref_node->done = true;
7777
7778 while (!list_empty(&ctx->rsrc_ref_list)) {
7779 ref_node = list_first_entry(&ctx->rsrc_ref_list,
7780 struct fixed_rsrc_ref_node, node);
7781 /* recycle ref nodes in order */
7782 if (!ref_node->done)
7783 break;
7784 list_del(&ref_node->node);
7785 first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
7786 }
7787 io_rsrc_ref_unlock(ctx);
7788
7789 if (percpu_ref_is_dying(&data->refs))
7790 delay = 0;
7791
7792 if (!delay)
7793 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7794 else if (first_add)
7795 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7796 }
7797
7798 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
7799 struct io_ring_ctx *ctx)
7800 {
7801 struct fixed_rsrc_ref_node *ref_node;
7802
7803 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7804 if (!ref_node)
7805 return NULL;
7806
7807 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7808 0, GFP_KERNEL)) {
7809 kfree(ref_node);
7810 return NULL;
7811 }
7812 INIT_LIST_HEAD(&ref_node->node);
7813 INIT_LIST_HEAD(&ref_node->rsrc_list);
7814 ref_node->done = false;
7815 return ref_node;
7816 }
7817
7818 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7819 struct fixed_rsrc_ref_node *ref_node)
7820 {
7821 ref_node->rsrc_data = ctx->file_data;
7822 ref_node->rsrc_put = io_ring_file_put;
7823 }
7824
7825 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
7826 {
7827 percpu_ref_exit(&ref_node->refs);
7828 kfree(ref_node);
7829 }
7830
7831
7832 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7833 unsigned nr_args)
7834 {
7835 __s32 __user *fds = (__s32 __user *) arg;
7836 unsigned nr_tables, i;
7837 struct file *file;
7838 int fd, ret = -ENOMEM;
7839 struct fixed_rsrc_ref_node *ref_node;
7840 struct fixed_rsrc_data *file_data;
7841
7842 if (ctx->file_data)
7843 return -EBUSY;
7844 if (!nr_args)
7845 return -EINVAL;
7846 if (nr_args > IORING_MAX_FIXED_FILES)
7847 return -EMFILE;
7848
7849 file_data = alloc_fixed_rsrc_data(ctx);
7850 if (!file_data)
7851 return -ENOMEM;
7852 ctx->file_data = file_data;
7853
7854 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7855 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7856 GFP_KERNEL);
7857 if (!file_data->table)
7858 goto out_free;
7859
7860 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7861 goto out_free;
7862
7863 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7864 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7865 ret = -EFAULT;
7866 goto out_fput;
7867 }
7868 /* allow sparse sets */
7869 if (fd == -1)
7870 continue;
7871
7872 file = fget(fd);
7873 ret = -EBADF;
7874 if (!file)
7875 goto out_fput;
7876
7877 /*
7878 * Don't allow io_uring instances to be registered. If UNIX
7879 * isn't enabled, then this causes a reference cycle and this
7880 * instance can never get freed. If UNIX is enabled we'll
7881 * handle it just fine, but there's still no point in allowing
7882 * a ring fd as it doesn't support regular read/write anyway.
7883 */
7884 if (file->f_op == &io_uring_fops) {
7885 fput(file);
7886 goto out_fput;
7887 }
7888 *io_fixed_file_slot(file_data, i) = file;
7889 }
7890
7891 ret = io_sqe_files_scm(ctx);
7892 if (ret) {
7893 io_sqe_files_unregister(ctx);
7894 return ret;
7895 }
7896
7897 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7898 if (!ref_node) {
7899 io_sqe_files_unregister(ctx);
7900 return -ENOMEM;
7901 }
7902 init_fixed_file_ref_node(ctx, ref_node);
7903
7904 io_sqe_rsrc_set_node(ctx, file_data, ref_node);
7905 return ret;
7906 out_fput:
7907 for (i = 0; i < ctx->nr_user_files; i++) {
7908 file = io_file_from_index(ctx, i);
7909 if (file)
7910 fput(file);
7911 }
7912 for (i = 0; i < nr_tables; i++)
7913 kfree(file_data->table[i].files);
7914 ctx->nr_user_files = 0;
7915 out_free:
7916 free_fixed_rsrc_data(ctx->file_data);
7917 ctx->file_data = NULL;
7918 return ret;
7919 }
7920
7921 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7922 int index)
7923 {
7924 #if defined(CONFIG_UNIX)
7925 struct sock *sock = ctx->ring_sock->sk;
7926 struct sk_buff_head *head = &sock->sk_receive_queue;
7927 struct sk_buff *skb;
7928
7929 /*
7930 * See if we can merge this file into an existing skb SCM_RIGHTS
7931 * file set. If there's no room, fall back to allocating a new skb
7932 * and filling it in.
7933 */
7934 spin_lock_irq(&head->lock);
7935 skb = skb_peek(head);
7936 if (skb) {
7937 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7938
7939 if (fpl->count < SCM_MAX_FD) {
7940 __skb_unlink(skb, head);
7941 spin_unlock_irq(&head->lock);
7942 fpl->fp[fpl->count] = get_file(file);
7943 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7944 fpl->count++;
7945 spin_lock_irq(&head->lock);
7946 __skb_queue_head(head, skb);
7947 } else {
7948 skb = NULL;
7949 }
7950 }
7951 spin_unlock_irq(&head->lock);
7952
7953 if (skb) {
7954 fput(file);
7955 return 0;
7956 }
7957
7958 return __io_sqe_files_scm(ctx, 1, index);
7959 #else
7960 return 0;
7961 #endif
7962 }
7963
7964 static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
7965 {
7966 struct io_rsrc_put *prsrc;
7967 struct fixed_rsrc_ref_node *ref_node = data->node;
7968
7969 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7970 if (!prsrc)
7971 return -ENOMEM;
7972
7973 prsrc->rsrc = rsrc;
7974 list_add(&prsrc->list, &ref_node->rsrc_list);
7975
7976 return 0;
7977 }
7978
7979 static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
7980 struct file *file)
7981 {
7982 return io_queue_rsrc_removal(data, (void *)file);
7983 }
7984
7985 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7986 struct io_uring_rsrc_update *up,
7987 unsigned nr_args)
7988 {
7989 struct fixed_rsrc_data *data = ctx->file_data;
7990 struct fixed_rsrc_ref_node *ref_node;
7991 struct file *file, **file_slot;
7992 __s32 __user *fds;
7993 int fd, i, err;
7994 __u32 done;
7995 bool needs_switch = false;
7996
7997 if (check_add_overflow(up->offset, nr_args, &done))
7998 return -EOVERFLOW;
7999 if (done > ctx->nr_user_files)
8000 return -EINVAL;
8001
8002 ref_node = alloc_fixed_rsrc_ref_node(ctx);
8003 if (!ref_node)
8004 return -ENOMEM;
8005 init_fixed_file_ref_node(ctx, ref_node);
8006
8007 fds = u64_to_user_ptr(up->data);
8008 for (done = 0; done < nr_args; done++) {
8009 err = 0;
8010 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8011 err = -EFAULT;
8012 break;
8013 }
8014 if (fd == IORING_REGISTER_FILES_SKIP)
8015 continue;
8016
8017 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8018 file_slot = io_fixed_file_slot(ctx->file_data, i);
8019
8020 if (*file_slot) {
8021 err = io_queue_file_removal(data, *file_slot);
8022 if (err)
8023 break;
8024 *file_slot = NULL;
8025 needs_switch = true;
8026 }
8027 if (fd != -1) {
8028 file = fget(fd);
8029 if (!file) {
8030 err = -EBADF;
8031 break;
8032 }
8033 /*
8034 * Don't allow io_uring instances to be registered. If
8035 * UNIX isn't enabled, then this causes a reference
8036 * cycle and this instance can never get freed. If UNIX
8037 * is enabled we'll handle it just fine, but there's
8038 * still no point in allowing a ring fd as it doesn't
8039 * support regular read/write anyway.
8040 */
8041 if (file->f_op == &io_uring_fops) {
8042 fput(file);
8043 err = -EBADF;
8044 break;
8045 }
8046 *file_slot = file;
8047 err = io_sqe_file_register(ctx, file, i);
8048 if (err) {
8049 *file_slot = NULL;
8050 fput(file);
8051 break;
8052 }
8053 }
8054 }
8055
8056 if (needs_switch) {
8057 percpu_ref_kill(&data->node->refs);
8058 io_sqe_rsrc_set_node(ctx, data, ref_node);
8059 } else
8060 destroy_fixed_rsrc_ref_node(ref_node);
8061
8062 return done ? done : err;
8063 }
8064
8065 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8066 unsigned nr_args)
8067 {
8068 struct io_uring_rsrc_update up;
8069
8070 if (!ctx->file_data)
8071 return -ENXIO;
8072 if (!nr_args)
8073 return -EINVAL;
8074 if (copy_from_user(&up, arg, sizeof(up)))
8075 return -EFAULT;
8076 if (up.resv)
8077 return -EINVAL;
8078
8079 return __io_sqe_files_update(ctx, &up, nr_args);
8080 }
8081
8082 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8083 {
8084 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8085
8086 req = io_put_req_find_next(req);
8087 return req ? &req->work : NULL;
8088 }
8089
8090 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8091 struct io_uring_params *p)
8092 {
8093 struct io_wq_data data;
8094 struct fd f;
8095 struct io_ring_ctx *ctx_attach;
8096 unsigned int concurrency;
8097 int ret = 0;
8098
8099 data.user = ctx->user;
8100 data.free_work = io_free_work;
8101 data.do_work = io_wq_submit_work;
8102
8103 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8104 /* Do QD, or 4 * CPUS, whatever is smallest */
8105 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8106
8107 ctx->io_wq = io_wq_create(concurrency, &data);
8108 if (IS_ERR(ctx->io_wq)) {
8109 ret = PTR_ERR(ctx->io_wq);
8110 ctx->io_wq = NULL;
8111 }
8112 return ret;
8113 }
8114
8115 f = fdget(p->wq_fd);
8116 if (!f.file)
8117 return -EBADF;
8118
8119 if (f.file->f_op != &io_uring_fops) {
8120 ret = -EINVAL;
8121 goto out_fput;
8122 }
8123
8124 ctx_attach = f.file->private_data;
8125 /* @io_wq is protected by holding the fd */
8126 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8127 ret = -EINVAL;
8128 goto out_fput;
8129 }
8130
8131 ctx->io_wq = ctx_attach->io_wq;
8132 out_fput:
8133 fdput(f);
8134 return ret;
8135 }
8136
8137 static int io_uring_alloc_task_context(struct task_struct *task)
8138 {
8139 struct io_uring_task *tctx;
8140 int ret;
8141
8142 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8143 if (unlikely(!tctx))
8144 return -ENOMEM;
8145
8146 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8147 if (unlikely(ret)) {
8148 kfree(tctx);
8149 return ret;
8150 }
8151
8152 xa_init(&tctx->xa);
8153 init_waitqueue_head(&tctx->wait);
8154 tctx->last = NULL;
8155 atomic_set(&tctx->in_idle, 0);
8156 tctx->sqpoll = false;
8157 io_init_identity(&tctx->__identity);
8158 tctx->identity = &tctx->__identity;
8159 task->io_uring = tctx;
8160 spin_lock_init(&tctx->task_lock);
8161 INIT_WQ_LIST(&tctx->task_list);
8162 tctx->task_state = 0;
8163 init_task_work(&tctx->task_work, tctx_task_work);
8164 return 0;
8165 }
8166
8167 void __io_uring_free(struct task_struct *tsk)
8168 {
8169 struct io_uring_task *tctx = tsk->io_uring;
8170
8171 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8172 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8173 if (tctx->identity != &tctx->__identity)
8174 kfree(tctx->identity);
8175 percpu_counter_destroy(&tctx->inflight);
8176 kfree(tctx);
8177 tsk->io_uring = NULL;
8178 }
8179
8180 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8181 struct io_uring_params *p)
8182 {
8183 int ret;
8184
8185 if (ctx->flags & IORING_SETUP_SQPOLL) {
8186 struct io_sq_data *sqd;
8187
8188 ret = -EPERM;
8189 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8190 goto err;
8191
8192 sqd = io_get_sq_data(p);
8193 if (IS_ERR(sqd)) {
8194 ret = PTR_ERR(sqd);
8195 goto err;
8196 }
8197
8198 ctx->sq_data = sqd;
8199 io_sq_thread_park(sqd);
8200 mutex_lock(&sqd->ctx_lock);
8201 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8202 mutex_unlock(&sqd->ctx_lock);
8203 io_sq_thread_unpark(sqd);
8204
8205 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8206 if (!ctx->sq_thread_idle)
8207 ctx->sq_thread_idle = HZ;
8208
8209 if (sqd->thread)
8210 goto done;
8211
8212 if (p->flags & IORING_SETUP_SQ_AFF) {
8213 int cpu = p->sq_thread_cpu;
8214
8215 ret = -EINVAL;
8216 if (cpu >= nr_cpu_ids)
8217 goto err;
8218 if (!cpu_online(cpu))
8219 goto err;
8220
8221 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8222 cpu, "io_uring-sq");
8223 } else {
8224 sqd->thread = kthread_create(io_sq_thread, sqd,
8225 "io_uring-sq");
8226 }
8227 if (IS_ERR(sqd->thread)) {
8228 ret = PTR_ERR(sqd->thread);
8229 sqd->thread = NULL;
8230 goto err;
8231 }
8232 ret = io_uring_alloc_task_context(sqd->thread);
8233 if (ret)
8234 goto err;
8235 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8236 /* Can't have SQ_AFF without SQPOLL */
8237 ret = -EINVAL;
8238 goto err;
8239 }
8240
8241 done:
8242 ret = io_init_wq_offload(ctx, p);
8243 if (ret)
8244 goto err;
8245
8246 return 0;
8247 err:
8248 io_finish_async(ctx);
8249 return ret;
8250 }
8251
8252 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8253 {
8254 struct io_sq_data *sqd = ctx->sq_data;
8255
8256 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8257 wake_up_process(sqd->thread);
8258 }
8259
8260 static inline void __io_unaccount_mem(struct user_struct *user,
8261 unsigned long nr_pages)
8262 {
8263 atomic_long_sub(nr_pages, &user->locked_vm);
8264 }
8265
8266 static inline int __io_account_mem(struct user_struct *user,
8267 unsigned long nr_pages)
8268 {
8269 unsigned long page_limit, cur_pages, new_pages;
8270
8271 /* Don't allow more pages than we can safely lock */
8272 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8273
8274 do {
8275 cur_pages = atomic_long_read(&user->locked_vm);
8276 new_pages = cur_pages + nr_pages;
8277 if (new_pages > page_limit)
8278 return -ENOMEM;
8279 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8280 new_pages) != cur_pages);
8281
8282 return 0;
8283 }
8284
8285 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8286 {
8287 if (ctx->limit_mem)
8288 __io_unaccount_mem(ctx->user, nr_pages);
8289
8290 if (ctx->mm_account)
8291 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8292 }
8293
8294 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8295 {
8296 int ret;
8297
8298 if (ctx->limit_mem) {
8299 ret = __io_account_mem(ctx->user, nr_pages);
8300 if (ret)
8301 return ret;
8302 }
8303
8304 if (ctx->mm_account)
8305 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8306
8307 return 0;
8308 }
8309
8310 static void io_mem_free(void *ptr)
8311 {
8312 struct page *page;
8313
8314 if (!ptr)
8315 return;
8316
8317 page = virt_to_head_page(ptr);
8318 if (put_page_testzero(page))
8319 free_compound_page(page);
8320 }
8321
8322 static void *io_mem_alloc(size_t size)
8323 {
8324 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8325 __GFP_NORETRY | __GFP_ACCOUNT;
8326
8327 return (void *) __get_free_pages(gfp_flags, get_order(size));
8328 }
8329
8330 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8331 size_t *sq_offset)
8332 {
8333 struct io_rings *rings;
8334 size_t off, sq_array_size;
8335
8336 off = struct_size(rings, cqes, cq_entries);
8337 if (off == SIZE_MAX)
8338 return SIZE_MAX;
8339
8340 #ifdef CONFIG_SMP
8341 off = ALIGN(off, SMP_CACHE_BYTES);
8342 if (off == 0)
8343 return SIZE_MAX;
8344 #endif
8345
8346 if (sq_offset)
8347 *sq_offset = off;
8348
8349 sq_array_size = array_size(sizeof(u32), sq_entries);
8350 if (sq_array_size == SIZE_MAX)
8351 return SIZE_MAX;
8352
8353 if (check_add_overflow(off, sq_array_size, &off))
8354 return SIZE_MAX;
8355
8356 return off;
8357 }
8358
8359 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8360 {
8361 int i, j;
8362
8363 if (!ctx->user_bufs)
8364 return -ENXIO;
8365
8366 for (i = 0; i < ctx->nr_user_bufs; i++) {
8367 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8368
8369 for (j = 0; j < imu->nr_bvecs; j++)
8370 unpin_user_page(imu->bvec[j].bv_page);
8371
8372 if (imu->acct_pages)
8373 io_unaccount_mem(ctx, imu->acct_pages);
8374 kvfree(imu->bvec);
8375 imu->nr_bvecs = 0;
8376 }
8377
8378 kfree(ctx->user_bufs);
8379 ctx->user_bufs = NULL;
8380 ctx->nr_user_bufs = 0;
8381 return 0;
8382 }
8383
8384 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8385 void __user *arg, unsigned index)
8386 {
8387 struct iovec __user *src;
8388
8389 #ifdef CONFIG_COMPAT
8390 if (ctx->compat) {
8391 struct compat_iovec __user *ciovs;
8392 struct compat_iovec ciov;
8393
8394 ciovs = (struct compat_iovec __user *) arg;
8395 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8396 return -EFAULT;
8397
8398 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8399 dst->iov_len = ciov.iov_len;
8400 return 0;
8401 }
8402 #endif
8403 src = (struct iovec __user *) arg;
8404 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8405 return -EFAULT;
8406 return 0;
8407 }
8408
8409 /*
8410 * Not super efficient, but this is just a registration time. And we do cache
8411 * the last compound head, so generally we'll only do a full search if we don't
8412 * match that one.
8413 *
8414 * We check if the given compound head page has already been accounted, to
8415 * avoid double accounting it. This allows us to account the full size of the
8416 * page, not just the constituent pages of a huge page.
8417 */
8418 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8419 int nr_pages, struct page *hpage)
8420 {
8421 int i, j;
8422
8423 /* check current page array */
8424 for (i = 0; i < nr_pages; i++) {
8425 if (!PageCompound(pages[i]))
8426 continue;
8427 if (compound_head(pages[i]) == hpage)
8428 return true;
8429 }
8430
8431 /* check previously registered pages */
8432 for (i = 0; i < ctx->nr_user_bufs; i++) {
8433 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8434
8435 for (j = 0; j < imu->nr_bvecs; j++) {
8436 if (!PageCompound(imu->bvec[j].bv_page))
8437 continue;
8438 if (compound_head(imu->bvec[j].bv_page) == hpage)
8439 return true;
8440 }
8441 }
8442
8443 return false;
8444 }
8445
8446 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8447 int nr_pages, struct io_mapped_ubuf *imu,
8448 struct page **last_hpage)
8449 {
8450 int i, ret;
8451
8452 for (i = 0; i < nr_pages; i++) {
8453 if (!PageCompound(pages[i])) {
8454 imu->acct_pages++;
8455 } else {
8456 struct page *hpage;
8457
8458 hpage = compound_head(pages[i]);
8459 if (hpage == *last_hpage)
8460 continue;
8461 *last_hpage = hpage;
8462 if (headpage_already_acct(ctx, pages, i, hpage))
8463 continue;
8464 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8465 }
8466 }
8467
8468 if (!imu->acct_pages)
8469 return 0;
8470
8471 ret = io_account_mem(ctx, imu->acct_pages);
8472 if (ret)
8473 imu->acct_pages = 0;
8474 return ret;
8475 }
8476
8477 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8478 struct io_mapped_ubuf *imu,
8479 struct page **last_hpage)
8480 {
8481 struct vm_area_struct **vmas = NULL;
8482 struct page **pages = NULL;
8483 unsigned long off, start, end, ubuf;
8484 size_t size;
8485 int ret, pret, nr_pages, i;
8486
8487 ubuf = (unsigned long) iov->iov_base;
8488 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8489 start = ubuf >> PAGE_SHIFT;
8490 nr_pages = end - start;
8491
8492 ret = -ENOMEM;
8493
8494 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8495 if (!pages)
8496 goto done;
8497
8498 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8499 GFP_KERNEL);
8500 if (!vmas)
8501 goto done;
8502
8503 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8504 GFP_KERNEL);
8505 if (!imu->bvec)
8506 goto done;
8507
8508 ret = 0;
8509 mmap_read_lock(current->mm);
8510 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8511 pages, vmas);
8512 if (pret == nr_pages) {
8513 /* don't support file backed memory */
8514 for (i = 0; i < nr_pages; i++) {
8515 struct vm_area_struct *vma = vmas[i];
8516
8517 if (vma->vm_file &&
8518 !is_file_hugepages(vma->vm_file)) {
8519 ret = -EOPNOTSUPP;
8520 break;
8521 }
8522 }
8523 } else {
8524 ret = pret < 0 ? pret : -EFAULT;
8525 }
8526 mmap_read_unlock(current->mm);
8527 if (ret) {
8528 /*
8529 * if we did partial map, or found file backed vmas,
8530 * release any pages we did get
8531 */
8532 if (pret > 0)
8533 unpin_user_pages(pages, pret);
8534 kvfree(imu->bvec);
8535 goto done;
8536 }
8537
8538 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8539 if (ret) {
8540 unpin_user_pages(pages, pret);
8541 kvfree(imu->bvec);
8542 goto done;
8543 }
8544
8545 off = ubuf & ~PAGE_MASK;
8546 size = iov->iov_len;
8547 for (i = 0; i < nr_pages; i++) {
8548 size_t vec_len;
8549
8550 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8551 imu->bvec[i].bv_page = pages[i];
8552 imu->bvec[i].bv_len = vec_len;
8553 imu->bvec[i].bv_offset = off;
8554 off = 0;
8555 size -= vec_len;
8556 }
8557 /* store original address for later verification */
8558 imu->ubuf = ubuf;
8559 imu->len = iov->iov_len;
8560 imu->nr_bvecs = nr_pages;
8561 ret = 0;
8562 done:
8563 kvfree(pages);
8564 kvfree(vmas);
8565 return ret;
8566 }
8567
8568 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8569 {
8570 if (ctx->user_bufs)
8571 return -EBUSY;
8572 if (!nr_args || nr_args > UIO_MAXIOV)
8573 return -EINVAL;
8574
8575 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8576 GFP_KERNEL);
8577 if (!ctx->user_bufs)
8578 return -ENOMEM;
8579
8580 return 0;
8581 }
8582
8583 static int io_buffer_validate(struct iovec *iov)
8584 {
8585 /*
8586 * Don't impose further limits on the size and buffer
8587 * constraints here, we'll -EINVAL later when IO is
8588 * submitted if they are wrong.
8589 */
8590 if (!iov->iov_base || !iov->iov_len)
8591 return -EFAULT;
8592
8593 /* arbitrary limit, but we need something */
8594 if (iov->iov_len > SZ_1G)
8595 return -EFAULT;
8596
8597 return 0;
8598 }
8599
8600 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8601 unsigned int nr_args)
8602 {
8603 int i, ret;
8604 struct iovec iov;
8605 struct page *last_hpage = NULL;
8606
8607 ret = io_buffers_map_alloc(ctx, nr_args);
8608 if (ret)
8609 return ret;
8610
8611 for (i = 0; i < nr_args; i++) {
8612 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8613
8614 ret = io_copy_iov(ctx, &iov, arg, i);
8615 if (ret)
8616 break;
8617
8618 ret = io_buffer_validate(&iov);
8619 if (ret)
8620 break;
8621
8622 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8623 if (ret)
8624 break;
8625
8626 ctx->nr_user_bufs++;
8627 }
8628
8629 if (ret)
8630 io_sqe_buffers_unregister(ctx);
8631
8632 return ret;
8633 }
8634
8635 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8636 {
8637 __s32 __user *fds = arg;
8638 int fd;
8639
8640 if (ctx->cq_ev_fd)
8641 return -EBUSY;
8642
8643 if (copy_from_user(&fd, fds, sizeof(*fds)))
8644 return -EFAULT;
8645
8646 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8647 if (IS_ERR(ctx->cq_ev_fd)) {
8648 int ret = PTR_ERR(ctx->cq_ev_fd);
8649 ctx->cq_ev_fd = NULL;
8650 return ret;
8651 }
8652
8653 return 0;
8654 }
8655
8656 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8657 {
8658 if (ctx->cq_ev_fd) {
8659 eventfd_ctx_put(ctx->cq_ev_fd);
8660 ctx->cq_ev_fd = NULL;
8661 return 0;
8662 }
8663
8664 return -ENXIO;
8665 }
8666
8667 static int __io_destroy_buffers(int id, void *p, void *data)
8668 {
8669 struct io_ring_ctx *ctx = data;
8670 struct io_buffer *buf = p;
8671
8672 __io_remove_buffers(ctx, buf, id, -1U);
8673 return 0;
8674 }
8675
8676 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8677 {
8678 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8679 idr_destroy(&ctx->io_buffer_idr);
8680 }
8681
8682 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8683 {
8684 struct io_kiocb *req, *nxt;
8685
8686 list_for_each_entry_safe(req, nxt, list, compl.list) {
8687 if (tsk && req->task != tsk)
8688 continue;
8689 list_del(&req->compl.list);
8690 kmem_cache_free(req_cachep, req);
8691 }
8692 }
8693
8694 static void io_req_caches_free(struct io_ring_ctx *ctx, struct task_struct *tsk)
8695 {
8696 struct io_submit_state *submit_state = &ctx->submit_state;
8697
8698 mutex_lock(&ctx->uring_lock);
8699
8700 if (submit_state->free_reqs)
8701 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8702 submit_state->reqs);
8703
8704 io_req_cache_free(&submit_state->comp.free_list, NULL);
8705
8706 spin_lock_irq(&ctx->completion_lock);
8707 io_req_cache_free(&submit_state->comp.locked_free_list, NULL);
8708 spin_unlock_irq(&ctx->completion_lock);
8709
8710 mutex_unlock(&ctx->uring_lock);
8711 }
8712
8713 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8714 {
8715 /*
8716 * Some may use context even when all refs and requests have been put,
8717 * and they are free to do so while still holding uring_lock, see
8718 * __io_req_task_submit(). Wait for them to finish.
8719 */
8720 mutex_lock(&ctx->uring_lock);
8721 mutex_unlock(&ctx->uring_lock);
8722
8723 io_finish_async(ctx);
8724 io_sqe_buffers_unregister(ctx);
8725
8726 if (ctx->sqo_task) {
8727 put_task_struct(ctx->sqo_task);
8728 ctx->sqo_task = NULL;
8729 mmdrop(ctx->mm_account);
8730 ctx->mm_account = NULL;
8731 }
8732
8733 #ifdef CONFIG_BLK_CGROUP
8734 if (ctx->sqo_blkcg_css)
8735 css_put(ctx->sqo_blkcg_css);
8736 #endif
8737
8738 io_sqe_files_unregister(ctx);
8739 io_eventfd_unregister(ctx);
8740 io_destroy_buffers(ctx);
8741 idr_destroy(&ctx->personality_idr);
8742
8743 #if defined(CONFIG_UNIX)
8744 if (ctx->ring_sock) {
8745 ctx->ring_sock->file = NULL; /* so that iput() is called */
8746 sock_release(ctx->ring_sock);
8747 }
8748 #endif
8749
8750 io_mem_free(ctx->rings);
8751 io_mem_free(ctx->sq_sqes);
8752
8753 percpu_ref_exit(&ctx->refs);
8754 free_uid(ctx->user);
8755 put_cred(ctx->creds);
8756 io_req_caches_free(ctx, NULL);
8757 kfree(ctx->cancel_hash);
8758 kfree(ctx);
8759 }
8760
8761 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8762 {
8763 struct io_ring_ctx *ctx = file->private_data;
8764 __poll_t mask = 0;
8765
8766 poll_wait(file, &ctx->cq_wait, wait);
8767 /*
8768 * synchronizes with barrier from wq_has_sleeper call in
8769 * io_commit_cqring
8770 */
8771 smp_rmb();
8772 if (!io_sqring_full(ctx))
8773 mask |= EPOLLOUT | EPOLLWRNORM;
8774
8775 /*
8776 * Don't flush cqring overflow list here, just do a simple check.
8777 * Otherwise there could possible be ABBA deadlock:
8778 * CPU0 CPU1
8779 * ---- ----
8780 * lock(&ctx->uring_lock);
8781 * lock(&ep->mtx);
8782 * lock(&ctx->uring_lock);
8783 * lock(&ep->mtx);
8784 *
8785 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8786 * pushs them to do the flush.
8787 */
8788 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8789 mask |= EPOLLIN | EPOLLRDNORM;
8790
8791 return mask;
8792 }
8793
8794 static int io_uring_fasync(int fd, struct file *file, int on)
8795 {
8796 struct io_ring_ctx *ctx = file->private_data;
8797
8798 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8799 }
8800
8801 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8802 {
8803 struct io_identity *iod;
8804
8805 iod = idr_remove(&ctx->personality_idr, id);
8806 if (iod) {
8807 put_cred(iod->creds);
8808 if (refcount_dec_and_test(&iod->count))
8809 kfree(iod);
8810 return 0;
8811 }
8812
8813 return -EINVAL;
8814 }
8815
8816 static int io_remove_personalities(int id, void *p, void *data)
8817 {
8818 struct io_ring_ctx *ctx = data;
8819
8820 io_unregister_personality(ctx, id);
8821 return 0;
8822 }
8823
8824 static void io_ring_exit_work(struct work_struct *work)
8825 {
8826 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8827 exit_work);
8828
8829 /*
8830 * If we're doing polled IO and end up having requests being
8831 * submitted async (out-of-line), then completions can come in while
8832 * we're waiting for refs to drop. We need to reap these manually,
8833 * as nobody else will be looking for them.
8834 */
8835 do {
8836 io_uring_try_cancel_requests(ctx, NULL, NULL);
8837 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8838 io_ring_ctx_free(ctx);
8839 }
8840
8841 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8842 {
8843 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8844
8845 return req->ctx == data;
8846 }
8847
8848 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8849 {
8850 mutex_lock(&ctx->uring_lock);
8851 percpu_ref_kill(&ctx->refs);
8852
8853 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8854 ctx->sqo_dead = 1;
8855
8856 /* if force is set, the ring is going away. always drop after that */
8857 ctx->cq_overflow_flushed = 1;
8858 if (ctx->rings)
8859 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8860 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8861 mutex_unlock(&ctx->uring_lock);
8862
8863 io_kill_timeouts(ctx, NULL, NULL);
8864 io_poll_remove_all(ctx, NULL, NULL);
8865
8866 if (ctx->io_wq)
8867 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8868
8869 /* if we failed setting up the ctx, we might not have any rings */
8870 io_iopoll_try_reap_events(ctx);
8871
8872 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8873 /*
8874 * Use system_unbound_wq to avoid spawning tons of event kworkers
8875 * if we're exiting a ton of rings at the same time. It just adds
8876 * noise and overhead, there's no discernable change in runtime
8877 * over using system_wq.
8878 */
8879 queue_work(system_unbound_wq, &ctx->exit_work);
8880 }
8881
8882 static int io_uring_release(struct inode *inode, struct file *file)
8883 {
8884 struct io_ring_ctx *ctx = file->private_data;
8885
8886 file->private_data = NULL;
8887 io_ring_ctx_wait_and_kill(ctx);
8888 return 0;
8889 }
8890
8891 struct io_task_cancel {
8892 struct task_struct *task;
8893 struct files_struct *files;
8894 };
8895
8896 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8897 {
8898 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8899 struct io_task_cancel *cancel = data;
8900 bool ret;
8901
8902 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8903 unsigned long flags;
8904 struct io_ring_ctx *ctx = req->ctx;
8905
8906 /* protect against races with linked timeouts */
8907 spin_lock_irqsave(&ctx->completion_lock, flags);
8908 ret = io_match_task(req, cancel->task, cancel->files);
8909 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8910 } else {
8911 ret = io_match_task(req, cancel->task, cancel->files);
8912 }
8913 return ret;
8914 }
8915
8916 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8917 struct task_struct *task,
8918 struct files_struct *files)
8919 {
8920 struct io_defer_entry *de = NULL;
8921 LIST_HEAD(list);
8922
8923 spin_lock_irq(&ctx->completion_lock);
8924 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8925 if (io_match_task(de->req, task, files)) {
8926 list_cut_position(&list, &ctx->defer_list, &de->list);
8927 break;
8928 }
8929 }
8930 spin_unlock_irq(&ctx->completion_lock);
8931
8932 while (!list_empty(&list)) {
8933 de = list_first_entry(&list, struct io_defer_entry, list);
8934 list_del_init(&de->list);
8935 req_set_fail_links(de->req);
8936 io_put_req(de->req);
8937 io_req_complete(de->req, -ECANCELED);
8938 kfree(de);
8939 }
8940 }
8941
8942 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8943 struct task_struct *task,
8944 struct files_struct *files)
8945 {
8946 struct io_task_cancel cancel = { .task = task, .files = files, };
8947
8948 while (1) {
8949 enum io_wq_cancel cret;
8950 bool ret = false;
8951
8952 if (ctx->io_wq) {
8953 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8954 &cancel, true);
8955 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8956 }
8957
8958 /* SQPOLL thread does its own polling */
8959 if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
8960 while (!list_empty_careful(&ctx->iopoll_list)) {
8961 io_iopoll_try_reap_events(ctx);
8962 ret = true;
8963 }
8964 }
8965
8966 ret |= io_poll_remove_all(ctx, task, files);
8967 ret |= io_kill_timeouts(ctx, task, files);
8968 ret |= io_run_task_work();
8969 io_cqring_overflow_flush(ctx, true, task, files);
8970 if (!ret)
8971 break;
8972 cond_resched();
8973 }
8974 }
8975
8976 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8977 struct task_struct *task,
8978 struct files_struct *files)
8979 {
8980 struct io_kiocb *req;
8981 int cnt = 0;
8982
8983 spin_lock_irq(&ctx->inflight_lock);
8984 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8985 cnt += io_match_task(req, task, files);
8986 spin_unlock_irq(&ctx->inflight_lock);
8987 return cnt;
8988 }
8989
8990 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8991 struct task_struct *task,
8992 struct files_struct *files)
8993 {
8994 while (!list_empty_careful(&ctx->inflight_list)) {
8995 DEFINE_WAIT(wait);
8996 int inflight;
8997
8998 inflight = io_uring_count_inflight(ctx, task, files);
8999 if (!inflight)
9000 break;
9001
9002 io_uring_try_cancel_requests(ctx, task, files);
9003
9004 if (ctx->sq_data)
9005 io_sq_thread_unpark(ctx->sq_data);
9006 prepare_to_wait(&task->io_uring->wait, &wait,
9007 TASK_UNINTERRUPTIBLE);
9008 if (inflight == io_uring_count_inflight(ctx, task, files))
9009 schedule();
9010 finish_wait(&task->io_uring->wait, &wait);
9011 if (ctx->sq_data)
9012 io_sq_thread_park(ctx->sq_data);
9013 }
9014 }
9015
9016 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9017 {
9018 mutex_lock(&ctx->uring_lock);
9019 ctx->sqo_dead = 1;
9020 mutex_unlock(&ctx->uring_lock);
9021
9022 /* make sure callers enter the ring to get error */
9023 if (ctx->rings)
9024 io_ring_set_wakeup_flag(ctx);
9025 }
9026
9027 /*
9028 * We need to iteratively cancel requests, in case a request has dependent
9029 * hard links. These persist even for failure of cancelations, hence keep
9030 * looping until none are found.
9031 */
9032 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9033 struct files_struct *files)
9034 {
9035 struct task_struct *task = current;
9036
9037 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9038 io_disable_sqo_submit(ctx);
9039 task = ctx->sq_data->thread;
9040 atomic_inc(&task->io_uring->in_idle);
9041 io_sq_thread_park(ctx->sq_data);
9042 }
9043
9044 io_cancel_defer_files(ctx, task, files);
9045
9046 io_uring_cancel_files(ctx, task, files);
9047 if (!files)
9048 io_uring_try_cancel_requests(ctx, task, NULL);
9049
9050 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9051 atomic_dec(&task->io_uring->in_idle);
9052 /*
9053 * If the files that are going away are the ones in the thread
9054 * identity, clear them out.
9055 */
9056 if (task->io_uring->identity->files == files)
9057 task->io_uring->identity->files = NULL;
9058 io_sq_thread_unpark(ctx->sq_data);
9059 }
9060 }
9061
9062 /*
9063 * Note that this task has used io_uring. We use it for cancelation purposes.
9064 */
9065 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9066 {
9067 struct io_uring_task *tctx = current->io_uring;
9068 int ret;
9069
9070 if (unlikely(!tctx)) {
9071 ret = io_uring_alloc_task_context(current);
9072 if (unlikely(ret))
9073 return ret;
9074 tctx = current->io_uring;
9075 }
9076 if (tctx->last != file) {
9077 void *old = xa_load(&tctx->xa, (unsigned long)file);
9078
9079 if (!old) {
9080 get_file(file);
9081 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9082 file, GFP_KERNEL));
9083 if (ret) {
9084 fput(file);
9085 return ret;
9086 }
9087
9088 /* one and only SQPOLL file note, held by sqo_task */
9089 WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
9090 current != ctx->sqo_task);
9091 }
9092 tctx->last = file;
9093 }
9094
9095 /*
9096 * This is race safe in that the task itself is doing this, hence it
9097 * cannot be going through the exit/cancel paths at the same time.
9098 * This cannot be modified while exit/cancel is running.
9099 */
9100 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9101 tctx->sqpoll = true;
9102
9103 return 0;
9104 }
9105
9106 /*
9107 * Remove this io_uring_file -> task mapping.
9108 */
9109 static void io_uring_del_task_file(struct file *file)
9110 {
9111 struct io_uring_task *tctx = current->io_uring;
9112
9113 if (tctx->last == file)
9114 tctx->last = NULL;
9115 file = xa_erase(&tctx->xa, (unsigned long)file);
9116 if (file)
9117 fput(file);
9118 }
9119
9120 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9121 {
9122 struct file *file;
9123 unsigned long index;
9124
9125 xa_for_each(&tctx->xa, index, file)
9126 io_uring_del_task_file(file);
9127 }
9128
9129 void __io_uring_files_cancel(struct files_struct *files)
9130 {
9131 struct io_uring_task *tctx = current->io_uring;
9132 struct file *file;
9133 unsigned long index;
9134
9135 /* make sure overflow events are dropped */
9136 atomic_inc(&tctx->in_idle);
9137 xa_for_each(&tctx->xa, index, file)
9138 io_uring_cancel_task_requests(file->private_data, files);
9139 atomic_dec(&tctx->in_idle);
9140
9141 if (files)
9142 io_uring_remove_task_files(tctx);
9143 }
9144
9145 static s64 tctx_inflight(struct io_uring_task *tctx)
9146 {
9147 return percpu_counter_sum(&tctx->inflight);
9148 }
9149
9150 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
9151 {
9152 struct io_uring_task *tctx;
9153 s64 inflight;
9154 DEFINE_WAIT(wait);
9155
9156 if (!ctx->sq_data)
9157 return;
9158 tctx = ctx->sq_data->thread->io_uring;
9159 io_disable_sqo_submit(ctx);
9160
9161 atomic_inc(&tctx->in_idle);
9162 do {
9163 /* read completions before cancelations */
9164 inflight = tctx_inflight(tctx);
9165 if (!inflight)
9166 break;
9167 io_uring_cancel_task_requests(ctx, NULL);
9168
9169 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9170 /*
9171 * If we've seen completions, retry without waiting. This
9172 * avoids a race where a completion comes in before we did
9173 * prepare_to_wait().
9174 */
9175 if (inflight == tctx_inflight(tctx))
9176 schedule();
9177 finish_wait(&tctx->wait, &wait);
9178 } while (1);
9179 atomic_dec(&tctx->in_idle);
9180 }
9181
9182 /*
9183 * Find any io_uring fd that this task has registered or done IO on, and cancel
9184 * requests.
9185 */
9186 void __io_uring_task_cancel(void)
9187 {
9188 struct io_uring_task *tctx = current->io_uring;
9189 DEFINE_WAIT(wait);
9190 s64 inflight;
9191
9192 /* make sure overflow events are dropped */
9193 atomic_inc(&tctx->in_idle);
9194
9195 /* trigger io_disable_sqo_submit() */
9196 if (tctx->sqpoll) {
9197 struct file *file;
9198 unsigned long index;
9199
9200 xa_for_each(&tctx->xa, index, file)
9201 io_uring_cancel_sqpoll(file->private_data);
9202 }
9203
9204 do {
9205 /* read completions before cancelations */
9206 inflight = tctx_inflight(tctx);
9207 if (!inflight)
9208 break;
9209 __io_uring_files_cancel(NULL);
9210
9211 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9212
9213 /*
9214 * If we've seen completions, retry without waiting. This
9215 * avoids a race where a completion comes in before we did
9216 * prepare_to_wait().
9217 */
9218 if (inflight == tctx_inflight(tctx))
9219 schedule();
9220 finish_wait(&tctx->wait, &wait);
9221 } while (1);
9222
9223 atomic_dec(&tctx->in_idle);
9224
9225 io_uring_remove_task_files(tctx);
9226 }
9227
9228 static int io_uring_flush(struct file *file, void *data)
9229 {
9230 struct io_uring_task *tctx = current->io_uring;
9231 struct io_ring_ctx *ctx = file->private_data;
9232
9233 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
9234 io_uring_cancel_task_requests(ctx, NULL);
9235 io_req_caches_free(ctx, current);
9236 }
9237
9238 if (!tctx)
9239 return 0;
9240
9241 /* we should have cancelled and erased it before PF_EXITING */
9242 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9243 xa_load(&tctx->xa, (unsigned long)file));
9244
9245 /*
9246 * fput() is pending, will be 2 if the only other ref is our potential
9247 * task file note. If the task is exiting, drop regardless of count.
9248 */
9249 if (atomic_long_read(&file->f_count) != 2)
9250 return 0;
9251
9252 if (ctx->flags & IORING_SETUP_SQPOLL) {
9253 /* there is only one file note, which is owned by sqo_task */
9254 WARN_ON_ONCE(ctx->sqo_task != current &&
9255 xa_load(&tctx->xa, (unsigned long)file));
9256 /* sqo_dead check is for when this happens after cancellation */
9257 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9258 !xa_load(&tctx->xa, (unsigned long)file));
9259
9260 io_disable_sqo_submit(ctx);
9261 }
9262
9263 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9264 io_uring_del_task_file(file);
9265 return 0;
9266 }
9267
9268 static void *io_uring_validate_mmap_request(struct file *file,
9269 loff_t pgoff, size_t sz)
9270 {
9271 struct io_ring_ctx *ctx = file->private_data;
9272 loff_t offset = pgoff << PAGE_SHIFT;
9273 struct page *page;
9274 void *ptr;
9275
9276 switch (offset) {
9277 case IORING_OFF_SQ_RING:
9278 case IORING_OFF_CQ_RING:
9279 ptr = ctx->rings;
9280 break;
9281 case IORING_OFF_SQES:
9282 ptr = ctx->sq_sqes;
9283 break;
9284 default:
9285 return ERR_PTR(-EINVAL);
9286 }
9287
9288 page = virt_to_head_page(ptr);
9289 if (sz > page_size(page))
9290 return ERR_PTR(-EINVAL);
9291
9292 return ptr;
9293 }
9294
9295 #ifdef CONFIG_MMU
9296
9297 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9298 {
9299 size_t sz = vma->vm_end - vma->vm_start;
9300 unsigned long pfn;
9301 void *ptr;
9302
9303 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9304 if (IS_ERR(ptr))
9305 return PTR_ERR(ptr);
9306
9307 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9308 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9309 }
9310
9311 #else /* !CONFIG_MMU */
9312
9313 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9314 {
9315 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9316 }
9317
9318 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9319 {
9320 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9321 }
9322
9323 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9324 unsigned long addr, unsigned long len,
9325 unsigned long pgoff, unsigned long flags)
9326 {
9327 void *ptr;
9328
9329 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9330 if (IS_ERR(ptr))
9331 return PTR_ERR(ptr);
9332
9333 return (unsigned long) ptr;
9334 }
9335
9336 #endif /* !CONFIG_MMU */
9337
9338 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9339 {
9340 int ret = 0;
9341 DEFINE_WAIT(wait);
9342
9343 do {
9344 if (!io_sqring_full(ctx))
9345 break;
9346
9347 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9348
9349 if (unlikely(ctx->sqo_dead)) {
9350 ret = -EOWNERDEAD;
9351 goto out;
9352 }
9353
9354 if (!io_sqring_full(ctx))
9355 break;
9356
9357 schedule();
9358 } while (!signal_pending(current));
9359
9360 finish_wait(&ctx->sqo_sq_wait, &wait);
9361 out:
9362 return ret;
9363 }
9364
9365 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9366 struct __kernel_timespec __user **ts,
9367 const sigset_t __user **sig)
9368 {
9369 struct io_uring_getevents_arg arg;
9370
9371 /*
9372 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9373 * is just a pointer to the sigset_t.
9374 */
9375 if (!(flags & IORING_ENTER_EXT_ARG)) {
9376 *sig = (const sigset_t __user *) argp;
9377 *ts = NULL;
9378 return 0;
9379 }
9380
9381 /*
9382 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9383 * timespec and sigset_t pointers if good.
9384 */
9385 if (*argsz != sizeof(arg))
9386 return -EINVAL;
9387 if (copy_from_user(&arg, argp, sizeof(arg)))
9388 return -EFAULT;
9389 *sig = u64_to_user_ptr(arg.sigmask);
9390 *argsz = arg.sigmask_sz;
9391 *ts = u64_to_user_ptr(arg.ts);
9392 return 0;
9393 }
9394
9395 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9396 u32, min_complete, u32, flags, const void __user *, argp,
9397 size_t, argsz)
9398 {
9399 struct io_ring_ctx *ctx;
9400 long ret = -EBADF;
9401 int submitted = 0;
9402 struct fd f;
9403
9404 io_run_task_work();
9405
9406 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9407 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9408 return -EINVAL;
9409
9410 f = fdget(fd);
9411 if (!f.file)
9412 return -EBADF;
9413
9414 ret = -EOPNOTSUPP;
9415 if (f.file->f_op != &io_uring_fops)
9416 goto out_fput;
9417
9418 ret = -ENXIO;
9419 ctx = f.file->private_data;
9420 if (!percpu_ref_tryget(&ctx->refs))
9421 goto out_fput;
9422
9423 ret = -EBADFD;
9424 if (ctx->flags & IORING_SETUP_R_DISABLED)
9425 goto out;
9426
9427 /*
9428 * For SQ polling, the thread will do all submissions and completions.
9429 * Just return the requested submit count, and wake the thread if
9430 * we were asked to.
9431 */
9432 ret = 0;
9433 if (ctx->flags & IORING_SETUP_SQPOLL) {
9434 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9435
9436 ret = -EOWNERDEAD;
9437 if (unlikely(ctx->sqo_dead))
9438 goto out;
9439 if (flags & IORING_ENTER_SQ_WAKEUP)
9440 wake_up(&ctx->sq_data->wait);
9441 if (flags & IORING_ENTER_SQ_WAIT) {
9442 ret = io_sqpoll_wait_sq(ctx);
9443 if (ret)
9444 goto out;
9445 }
9446 submitted = to_submit;
9447 } else if (to_submit) {
9448 ret = io_uring_add_task_file(ctx, f.file);
9449 if (unlikely(ret))
9450 goto out;
9451 mutex_lock(&ctx->uring_lock);
9452 submitted = io_submit_sqes(ctx, to_submit);
9453 mutex_unlock(&ctx->uring_lock);
9454
9455 if (submitted != to_submit)
9456 goto out;
9457 }
9458 if (flags & IORING_ENTER_GETEVENTS) {
9459 const sigset_t __user *sig;
9460 struct __kernel_timespec __user *ts;
9461
9462 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9463 if (unlikely(ret))
9464 goto out;
9465
9466 min_complete = min(min_complete, ctx->cq_entries);
9467
9468 /*
9469 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9470 * space applications don't need to do io completion events
9471 * polling again, they can rely on io_sq_thread to do polling
9472 * work, which can reduce cpu usage and uring_lock contention.
9473 */
9474 if (ctx->flags & IORING_SETUP_IOPOLL &&
9475 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9476 ret = io_iopoll_check(ctx, min_complete);
9477 } else {
9478 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9479 }
9480 }
9481
9482 out:
9483 percpu_ref_put(&ctx->refs);
9484 out_fput:
9485 fdput(f);
9486 return submitted ? submitted : ret;
9487 }
9488
9489 #ifdef CONFIG_PROC_FS
9490 static int io_uring_show_cred(int id, void *p, void *data)
9491 {
9492 struct io_identity *iod = p;
9493 const struct cred *cred = iod->creds;
9494 struct seq_file *m = data;
9495 struct user_namespace *uns = seq_user_ns(m);
9496 struct group_info *gi;
9497 kernel_cap_t cap;
9498 unsigned __capi;
9499 int g;
9500
9501 seq_printf(m, "%5d\n", id);
9502 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9503 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9504 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9505 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9506 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9507 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9508 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9509 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9510 seq_puts(m, "\n\tGroups:\t");
9511 gi = cred->group_info;
9512 for (g = 0; g < gi->ngroups; g++) {
9513 seq_put_decimal_ull(m, g ? " " : "",
9514 from_kgid_munged(uns, gi->gid[g]));
9515 }
9516 seq_puts(m, "\n\tCapEff:\t");
9517 cap = cred->cap_effective;
9518 CAP_FOR_EACH_U32(__capi)
9519 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9520 seq_putc(m, '\n');
9521 return 0;
9522 }
9523
9524 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9525 {
9526 struct io_sq_data *sq = NULL;
9527 bool has_lock;
9528 int i;
9529
9530 /*
9531 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9532 * since fdinfo case grabs it in the opposite direction of normal use
9533 * cases. If we fail to get the lock, we just don't iterate any
9534 * structures that could be going away outside the io_uring mutex.
9535 */
9536 has_lock = mutex_trylock(&ctx->uring_lock);
9537
9538 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9539 sq = ctx->sq_data;
9540
9541 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9542 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9543 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9544 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9545 struct file *f = *io_fixed_file_slot(ctx->file_data, i);
9546
9547 if (f)
9548 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9549 else
9550 seq_printf(m, "%5u: <none>\n", i);
9551 }
9552 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9553 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9554 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9555
9556 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9557 (unsigned int) buf->len);
9558 }
9559 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9560 seq_printf(m, "Personalities:\n");
9561 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9562 }
9563 seq_printf(m, "PollList:\n");
9564 spin_lock_irq(&ctx->completion_lock);
9565 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9566 struct hlist_head *list = &ctx->cancel_hash[i];
9567 struct io_kiocb *req;
9568
9569 hlist_for_each_entry(req, list, hash_node)
9570 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9571 req->task->task_works != NULL);
9572 }
9573 spin_unlock_irq(&ctx->completion_lock);
9574 if (has_lock)
9575 mutex_unlock(&ctx->uring_lock);
9576 }
9577
9578 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9579 {
9580 struct io_ring_ctx *ctx = f->private_data;
9581
9582 if (percpu_ref_tryget(&ctx->refs)) {
9583 __io_uring_show_fdinfo(ctx, m);
9584 percpu_ref_put(&ctx->refs);
9585 }
9586 }
9587 #endif
9588
9589 static const struct file_operations io_uring_fops = {
9590 .release = io_uring_release,
9591 .flush = io_uring_flush,
9592 .mmap = io_uring_mmap,
9593 #ifndef CONFIG_MMU
9594 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9595 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9596 #endif
9597 .poll = io_uring_poll,
9598 .fasync = io_uring_fasync,
9599 #ifdef CONFIG_PROC_FS
9600 .show_fdinfo = io_uring_show_fdinfo,
9601 #endif
9602 };
9603
9604 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9605 struct io_uring_params *p)
9606 {
9607 struct io_rings *rings;
9608 size_t size, sq_array_offset;
9609
9610 /* make sure these are sane, as we already accounted them */
9611 ctx->sq_entries = p->sq_entries;
9612 ctx->cq_entries = p->cq_entries;
9613
9614 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9615 if (size == SIZE_MAX)
9616 return -EOVERFLOW;
9617
9618 rings = io_mem_alloc(size);
9619 if (!rings)
9620 return -ENOMEM;
9621
9622 ctx->rings = rings;
9623 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9624 rings->sq_ring_mask = p->sq_entries - 1;
9625 rings->cq_ring_mask = p->cq_entries - 1;
9626 rings->sq_ring_entries = p->sq_entries;
9627 rings->cq_ring_entries = p->cq_entries;
9628 ctx->sq_mask = rings->sq_ring_mask;
9629 ctx->cq_mask = rings->cq_ring_mask;
9630
9631 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9632 if (size == SIZE_MAX) {
9633 io_mem_free(ctx->rings);
9634 ctx->rings = NULL;
9635 return -EOVERFLOW;
9636 }
9637
9638 ctx->sq_sqes = io_mem_alloc(size);
9639 if (!ctx->sq_sqes) {
9640 io_mem_free(ctx->rings);
9641 ctx->rings = NULL;
9642 return -ENOMEM;
9643 }
9644
9645 return 0;
9646 }
9647
9648 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9649 {
9650 int ret, fd;
9651
9652 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9653 if (fd < 0)
9654 return fd;
9655
9656 ret = io_uring_add_task_file(ctx, file);
9657 if (ret) {
9658 put_unused_fd(fd);
9659 return ret;
9660 }
9661 fd_install(fd, file);
9662 return fd;
9663 }
9664
9665 /*
9666 * Allocate an anonymous fd, this is what constitutes the application
9667 * visible backing of an io_uring instance. The application mmaps this
9668 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9669 * we have to tie this fd to a socket for file garbage collection purposes.
9670 */
9671 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9672 {
9673 struct file *file;
9674 #if defined(CONFIG_UNIX)
9675 int ret;
9676
9677 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9678 &ctx->ring_sock);
9679 if (ret)
9680 return ERR_PTR(ret);
9681 #endif
9682
9683 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9684 O_RDWR | O_CLOEXEC);
9685 #if defined(CONFIG_UNIX)
9686 if (IS_ERR(file)) {
9687 sock_release(ctx->ring_sock);
9688 ctx->ring_sock = NULL;
9689 } else {
9690 ctx->ring_sock->file = file;
9691 }
9692 #endif
9693 return file;
9694 }
9695
9696 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9697 struct io_uring_params __user *params)
9698 {
9699 struct user_struct *user = NULL;
9700 struct io_ring_ctx *ctx;
9701 struct file *file;
9702 int ret;
9703
9704 if (!entries)
9705 return -EINVAL;
9706 if (entries > IORING_MAX_ENTRIES) {
9707 if (!(p->flags & IORING_SETUP_CLAMP))
9708 return -EINVAL;
9709 entries = IORING_MAX_ENTRIES;
9710 }
9711
9712 /*
9713 * Use twice as many entries for the CQ ring. It's possible for the
9714 * application to drive a higher depth than the size of the SQ ring,
9715 * since the sqes are only used at submission time. This allows for
9716 * some flexibility in overcommitting a bit. If the application has
9717 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9718 * of CQ ring entries manually.
9719 */
9720 p->sq_entries = roundup_pow_of_two(entries);
9721 if (p->flags & IORING_SETUP_CQSIZE) {
9722 /*
9723 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9724 * to a power-of-two, if it isn't already. We do NOT impose
9725 * any cq vs sq ring sizing.
9726 */
9727 if (!p->cq_entries)
9728 return -EINVAL;
9729 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9730 if (!(p->flags & IORING_SETUP_CLAMP))
9731 return -EINVAL;
9732 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9733 }
9734 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9735 if (p->cq_entries < p->sq_entries)
9736 return -EINVAL;
9737 } else {
9738 p->cq_entries = 2 * p->sq_entries;
9739 }
9740
9741 user = get_uid(current_user());
9742
9743 ctx = io_ring_ctx_alloc(p);
9744 if (!ctx) {
9745 free_uid(user);
9746 return -ENOMEM;
9747 }
9748 ctx->compat = in_compat_syscall();
9749 ctx->limit_mem = !capable(CAP_IPC_LOCK);
9750 ctx->user = user;
9751 ctx->creds = get_current_cred();
9752 #ifdef CONFIG_AUDIT
9753 ctx->loginuid = current->loginuid;
9754 ctx->sessionid = current->sessionid;
9755 #endif
9756 ctx->sqo_task = get_task_struct(current);
9757
9758 /*
9759 * This is just grabbed for accounting purposes. When a process exits,
9760 * the mm is exited and dropped before the files, hence we need to hang
9761 * on to this mm purely for the purposes of being able to unaccount
9762 * memory (locked/pinned vm). It's not used for anything else.
9763 */
9764 mmgrab(current->mm);
9765 ctx->mm_account = current->mm;
9766
9767 #ifdef CONFIG_BLK_CGROUP
9768 /*
9769 * The sq thread will belong to the original cgroup it was inited in.
9770 * If the cgroup goes offline (e.g. disabling the io controller), then
9771 * issued bios will be associated with the closest cgroup later in the
9772 * block layer.
9773 */
9774 rcu_read_lock();
9775 ctx->sqo_blkcg_css = blkcg_css();
9776 ret = css_tryget_online(ctx->sqo_blkcg_css);
9777 rcu_read_unlock();
9778 if (!ret) {
9779 /* don't init against a dying cgroup, have the user try again */
9780 ctx->sqo_blkcg_css = NULL;
9781 ret = -ENODEV;
9782 goto err;
9783 }
9784 #endif
9785 ret = io_allocate_scq_urings(ctx, p);
9786 if (ret)
9787 goto err;
9788
9789 ret = io_sq_offload_create(ctx, p);
9790 if (ret)
9791 goto err;
9792
9793 if (!(p->flags & IORING_SETUP_R_DISABLED))
9794 io_sq_offload_start(ctx);
9795
9796 memset(&p->sq_off, 0, sizeof(p->sq_off));
9797 p->sq_off.head = offsetof(struct io_rings, sq.head);
9798 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9799 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9800 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9801 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9802 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9803 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9804
9805 memset(&p->cq_off, 0, sizeof(p->cq_off));
9806 p->cq_off.head = offsetof(struct io_rings, cq.head);
9807 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9808 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9809 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9810 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9811 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9812 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9813
9814 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9815 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9816 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9817 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9818 IORING_FEAT_EXT_ARG;
9819
9820 if (copy_to_user(params, p, sizeof(*p))) {
9821 ret = -EFAULT;
9822 goto err;
9823 }
9824
9825 file = io_uring_get_file(ctx);
9826 if (IS_ERR(file)) {
9827 ret = PTR_ERR(file);
9828 goto err;
9829 }
9830
9831 /*
9832 * Install ring fd as the very last thing, so we don't risk someone
9833 * having closed it before we finish setup
9834 */
9835 ret = io_uring_install_fd(ctx, file);
9836 if (ret < 0) {
9837 io_disable_sqo_submit(ctx);
9838 /* fput will clean it up */
9839 fput(file);
9840 return ret;
9841 }
9842
9843 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9844 return ret;
9845 err:
9846 io_disable_sqo_submit(ctx);
9847 io_ring_ctx_wait_and_kill(ctx);
9848 return ret;
9849 }
9850
9851 /*
9852 * Sets up an aio uring context, and returns the fd. Applications asks for a
9853 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9854 * params structure passed in.
9855 */
9856 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9857 {
9858 struct io_uring_params p;
9859 int i;
9860
9861 if (copy_from_user(&p, params, sizeof(p)))
9862 return -EFAULT;
9863 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9864 if (p.resv[i])
9865 return -EINVAL;
9866 }
9867
9868 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9869 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9870 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9871 IORING_SETUP_R_DISABLED))
9872 return -EINVAL;
9873
9874 return io_uring_create(entries, &p, params);
9875 }
9876
9877 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9878 struct io_uring_params __user *, params)
9879 {
9880 return io_uring_setup(entries, params);
9881 }
9882
9883 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9884 {
9885 struct io_uring_probe *p;
9886 size_t size;
9887 int i, ret;
9888
9889 size = struct_size(p, ops, nr_args);
9890 if (size == SIZE_MAX)
9891 return -EOVERFLOW;
9892 p = kzalloc(size, GFP_KERNEL);
9893 if (!p)
9894 return -ENOMEM;
9895
9896 ret = -EFAULT;
9897 if (copy_from_user(p, arg, size))
9898 goto out;
9899 ret = -EINVAL;
9900 if (memchr_inv(p, 0, size))
9901 goto out;
9902
9903 p->last_op = IORING_OP_LAST - 1;
9904 if (nr_args > IORING_OP_LAST)
9905 nr_args = IORING_OP_LAST;
9906
9907 for (i = 0; i < nr_args; i++) {
9908 p->ops[i].op = i;
9909 if (!io_op_defs[i].not_supported)
9910 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9911 }
9912 p->ops_len = i;
9913
9914 ret = 0;
9915 if (copy_to_user(arg, p, size))
9916 ret = -EFAULT;
9917 out:
9918 kfree(p);
9919 return ret;
9920 }
9921
9922 static int io_register_personality(struct io_ring_ctx *ctx)
9923 {
9924 struct io_identity *id;
9925 int ret;
9926
9927 id = kmalloc(sizeof(*id), GFP_KERNEL);
9928 if (unlikely(!id))
9929 return -ENOMEM;
9930
9931 io_init_identity(id);
9932 id->creds = get_current_cred();
9933
9934 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9935 if (ret < 0) {
9936 put_cred(id->creds);
9937 kfree(id);
9938 }
9939 return ret;
9940 }
9941
9942 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9943 unsigned int nr_args)
9944 {
9945 struct io_uring_restriction *res;
9946 size_t size;
9947 int i, ret;
9948
9949 /* Restrictions allowed only if rings started disabled */
9950 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9951 return -EBADFD;
9952
9953 /* We allow only a single restrictions registration */
9954 if (ctx->restrictions.registered)
9955 return -EBUSY;
9956
9957 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9958 return -EINVAL;
9959
9960 size = array_size(nr_args, sizeof(*res));
9961 if (size == SIZE_MAX)
9962 return -EOVERFLOW;
9963
9964 res = memdup_user(arg, size);
9965 if (IS_ERR(res))
9966 return PTR_ERR(res);
9967
9968 ret = 0;
9969
9970 for (i = 0; i < nr_args; i++) {
9971 switch (res[i].opcode) {
9972 case IORING_RESTRICTION_REGISTER_OP:
9973 if (res[i].register_op >= IORING_REGISTER_LAST) {
9974 ret = -EINVAL;
9975 goto out;
9976 }
9977
9978 __set_bit(res[i].register_op,
9979 ctx->restrictions.register_op);
9980 break;
9981 case IORING_RESTRICTION_SQE_OP:
9982 if (res[i].sqe_op >= IORING_OP_LAST) {
9983 ret = -EINVAL;
9984 goto out;
9985 }
9986
9987 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9988 break;
9989 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9990 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9991 break;
9992 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9993 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9994 break;
9995 default:
9996 ret = -EINVAL;
9997 goto out;
9998 }
9999 }
10000
10001 out:
10002 /* Reset all restrictions if an error happened */
10003 if (ret != 0)
10004 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10005 else
10006 ctx->restrictions.registered = true;
10007
10008 kfree(res);
10009 return ret;
10010 }
10011
10012 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10013 {
10014 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10015 return -EBADFD;
10016
10017 if (ctx->restrictions.registered)
10018 ctx->restricted = 1;
10019
10020 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10021
10022 io_sq_offload_start(ctx);
10023
10024 return 0;
10025 }
10026
10027 static bool io_register_op_must_quiesce(int op)
10028 {
10029 switch (op) {
10030 case IORING_UNREGISTER_FILES:
10031 case IORING_REGISTER_FILES_UPDATE:
10032 case IORING_REGISTER_PROBE:
10033 case IORING_REGISTER_PERSONALITY:
10034 case IORING_UNREGISTER_PERSONALITY:
10035 return false;
10036 default:
10037 return true;
10038 }
10039 }
10040
10041 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10042 void __user *arg, unsigned nr_args)
10043 __releases(ctx->uring_lock)
10044 __acquires(ctx->uring_lock)
10045 {
10046 int ret;
10047
10048 /*
10049 * We're inside the ring mutex, if the ref is already dying, then
10050 * someone else killed the ctx or is already going through
10051 * io_uring_register().
10052 */
10053 if (percpu_ref_is_dying(&ctx->refs))
10054 return -ENXIO;
10055
10056 if (io_register_op_must_quiesce(opcode)) {
10057 percpu_ref_kill(&ctx->refs);
10058
10059 /*
10060 * Drop uring mutex before waiting for references to exit. If
10061 * another thread is currently inside io_uring_enter() it might
10062 * need to grab the uring_lock to make progress. If we hold it
10063 * here across the drain wait, then we can deadlock. It's safe
10064 * to drop the mutex here, since no new references will come in
10065 * after we've killed the percpu ref.
10066 */
10067 mutex_unlock(&ctx->uring_lock);
10068 do {
10069 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10070 if (!ret)
10071 break;
10072 ret = io_run_task_work_sig();
10073 if (ret < 0)
10074 break;
10075 } while (1);
10076
10077 mutex_lock(&ctx->uring_lock);
10078
10079 if (ret) {
10080 percpu_ref_resurrect(&ctx->refs);
10081 goto out_quiesce;
10082 }
10083 }
10084
10085 if (ctx->restricted) {
10086 if (opcode >= IORING_REGISTER_LAST) {
10087 ret = -EINVAL;
10088 goto out;
10089 }
10090
10091 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10092 ret = -EACCES;
10093 goto out;
10094 }
10095 }
10096
10097 switch (opcode) {
10098 case IORING_REGISTER_BUFFERS:
10099 ret = io_sqe_buffers_register(ctx, arg, nr_args);
10100 break;
10101 case IORING_UNREGISTER_BUFFERS:
10102 ret = -EINVAL;
10103 if (arg || nr_args)
10104 break;
10105 ret = io_sqe_buffers_unregister(ctx);
10106 break;
10107 case IORING_REGISTER_FILES:
10108 ret = io_sqe_files_register(ctx, arg, nr_args);
10109 break;
10110 case IORING_UNREGISTER_FILES:
10111 ret = -EINVAL;
10112 if (arg || nr_args)
10113 break;
10114 ret = io_sqe_files_unregister(ctx);
10115 break;
10116 case IORING_REGISTER_FILES_UPDATE:
10117 ret = io_sqe_files_update(ctx, arg, nr_args);
10118 break;
10119 case IORING_REGISTER_EVENTFD:
10120 case IORING_REGISTER_EVENTFD_ASYNC:
10121 ret = -EINVAL;
10122 if (nr_args != 1)
10123 break;
10124 ret = io_eventfd_register(ctx, arg);
10125 if (ret)
10126 break;
10127 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10128 ctx->eventfd_async = 1;
10129 else
10130 ctx->eventfd_async = 0;
10131 break;
10132 case IORING_UNREGISTER_EVENTFD:
10133 ret = -EINVAL;
10134 if (arg || nr_args)
10135 break;
10136 ret = io_eventfd_unregister(ctx);
10137 break;
10138 case IORING_REGISTER_PROBE:
10139 ret = -EINVAL;
10140 if (!arg || nr_args > 256)
10141 break;
10142 ret = io_probe(ctx, arg, nr_args);
10143 break;
10144 case IORING_REGISTER_PERSONALITY:
10145 ret = -EINVAL;
10146 if (arg || nr_args)
10147 break;
10148 ret = io_register_personality(ctx);
10149 break;
10150 case IORING_UNREGISTER_PERSONALITY:
10151 ret = -EINVAL;
10152 if (arg)
10153 break;
10154 ret = io_unregister_personality(ctx, nr_args);
10155 break;
10156 case IORING_REGISTER_ENABLE_RINGS:
10157 ret = -EINVAL;
10158 if (arg || nr_args)
10159 break;
10160 ret = io_register_enable_rings(ctx);
10161 break;
10162 case IORING_REGISTER_RESTRICTIONS:
10163 ret = io_register_restrictions(ctx, arg, nr_args);
10164 break;
10165 default:
10166 ret = -EINVAL;
10167 break;
10168 }
10169
10170 out:
10171 if (io_register_op_must_quiesce(opcode)) {
10172 /* bring the ctx back to life */
10173 percpu_ref_reinit(&ctx->refs);
10174 out_quiesce:
10175 reinit_completion(&ctx->ref_comp);
10176 }
10177 return ret;
10178 }
10179
10180 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10181 void __user *, arg, unsigned int, nr_args)
10182 {
10183 struct io_ring_ctx *ctx;
10184 long ret = -EBADF;
10185 struct fd f;
10186
10187 f = fdget(fd);
10188 if (!f.file)
10189 return -EBADF;
10190
10191 ret = -EOPNOTSUPP;
10192 if (f.file->f_op != &io_uring_fops)
10193 goto out_fput;
10194
10195 ctx = f.file->private_data;
10196
10197 mutex_lock(&ctx->uring_lock);
10198 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10199 mutex_unlock(&ctx->uring_lock);
10200 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10201 ctx->cq_ev_fd != NULL, ret);
10202 out_fput:
10203 fdput(f);
10204 return ret;
10205 }
10206
10207 static int __init io_uring_init(void)
10208 {
10209 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10210 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10211 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10212 } while (0)
10213
10214 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10215 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10216 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10217 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10218 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10219 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10220 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10221 BUILD_BUG_SQE_ELEM(8, __u64, off);
10222 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10223 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10224 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10225 BUILD_BUG_SQE_ELEM(24, __u32, len);
10226 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10227 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10228 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10229 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10231 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10232 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10233 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10234 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10235 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10237 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10238 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10239 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10240 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10241 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10242 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10243 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10244 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10245
10246 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10247 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10248 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10249 SLAB_ACCOUNT);
10250 return 0;
10251 };
10252 __initcall(io_uring_init);