]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'hsi-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92
93 /*
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
95 */
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
101 IORING_REGISTER_LAST + IORING_OP_LAST)
102
103 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
104 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
105 IOSQE_BUFFER_SELECT)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
193 };
194
195 struct io_mapped_ubuf {
196 u64 ubuf;
197 u64 ubuf_end;
198 unsigned int nr_bvecs;
199 unsigned long acct_pages;
200 struct bio_vec bvec[];
201 };
202
203 struct io_ring_ctx;
204
205 struct io_overflow_cqe {
206 struct io_uring_cqe cqe;
207 struct list_head list;
208 };
209
210 struct io_fixed_file {
211 /* file * with additional FFS_* flags */
212 unsigned long file_ptr;
213 };
214
215 struct io_rsrc_put {
216 struct list_head list;
217 u64 tag;
218 union {
219 void *rsrc;
220 struct file *file;
221 struct io_mapped_ubuf *buf;
222 };
223 };
224
225 struct io_file_table {
226 /* two level table */
227 struct io_fixed_file **files;
228 };
229
230 struct io_rsrc_node {
231 struct percpu_ref refs;
232 struct list_head node;
233 struct list_head rsrc_list;
234 struct io_rsrc_data *rsrc_data;
235 struct llist_node llist;
236 bool done;
237 };
238
239 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
240
241 struct io_rsrc_data {
242 struct io_ring_ctx *ctx;
243
244 u64 *tags;
245 rsrc_put_fn *do_put;
246 atomic_t refs;
247 struct completion done;
248 bool quiesce;
249 };
250
251 struct io_buffer {
252 struct list_head list;
253 __u64 addr;
254 __s32 len;
255 __u16 bid;
256 };
257
258 struct io_restriction {
259 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
260 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
261 u8 sqe_flags_allowed;
262 u8 sqe_flags_required;
263 bool registered;
264 };
265
266 enum {
267 IO_SQ_THREAD_SHOULD_STOP = 0,
268 IO_SQ_THREAD_SHOULD_PARK,
269 };
270
271 struct io_sq_data {
272 refcount_t refs;
273 atomic_t park_pending;
274 struct mutex lock;
275
276 /* ctx's that are using this sqd */
277 struct list_head ctx_list;
278
279 struct task_struct *thread;
280 struct wait_queue_head wait;
281
282 unsigned sq_thread_idle;
283 int sq_cpu;
284 pid_t task_pid;
285 pid_t task_tgid;
286
287 unsigned long state;
288 struct completion exited;
289 struct callback_head *park_task_work;
290 };
291
292 #define IO_IOPOLL_BATCH 8
293 #define IO_COMPL_BATCH 32
294 #define IO_REQ_CACHE_SIZE 32
295 #define IO_REQ_ALLOC_BATCH 8
296
297 struct io_comp_state {
298 struct io_kiocb *reqs[IO_COMPL_BATCH];
299 unsigned int nr;
300 unsigned int locked_free_nr;
301 /* inline/task_work completion list, under ->uring_lock */
302 struct list_head free_list;
303 /* IRQ completion list, under ->completion_lock */
304 struct list_head locked_free_list;
305 };
306
307 struct io_submit_link {
308 struct io_kiocb *head;
309 struct io_kiocb *last;
310 };
311
312 struct io_submit_state {
313 struct blk_plug plug;
314 struct io_submit_link link;
315
316 /*
317 * io_kiocb alloc cache
318 */
319 void *reqs[IO_REQ_CACHE_SIZE];
320 unsigned int free_reqs;
321
322 bool plug_started;
323
324 /*
325 * Batch completion logic
326 */
327 struct io_comp_state comp;
328
329 /*
330 * File reference cache
331 */
332 struct file *file;
333 unsigned int fd;
334 unsigned int file_refs;
335 unsigned int ios_left;
336 };
337
338 struct io_ring_ctx {
339 struct {
340 struct percpu_ref refs;
341 } ____cacheline_aligned_in_smp;
342
343 struct {
344 unsigned int flags;
345 unsigned int compat: 1;
346 unsigned int drain_next: 1;
347 unsigned int eventfd_async: 1;
348 unsigned int restricted: 1;
349
350 /*
351 * Ring buffer of indices into array of io_uring_sqe, which is
352 * mmapped by the application using the IORING_OFF_SQES offset.
353 *
354 * This indirection could e.g. be used to assign fixed
355 * io_uring_sqe entries to operations and only submit them to
356 * the queue when needed.
357 *
358 * The kernel modifies neither the indices array nor the entries
359 * array.
360 */
361 u32 *sq_array;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 unsigned sq_mask;
365 unsigned sq_thread_idle;
366 unsigned cached_sq_dropped;
367 unsigned cached_cq_overflow;
368 unsigned long sq_check_overflow;
369
370 /* hashed buffered write serialization */
371 struct io_wq_hash *hash_map;
372
373 struct list_head defer_list;
374 struct list_head timeout_list;
375 struct list_head cq_overflow_list;
376
377 struct io_uring_sqe *sq_sqes;
378 } ____cacheline_aligned_in_smp;
379
380 struct {
381 struct mutex uring_lock;
382 wait_queue_head_t wait;
383 } ____cacheline_aligned_in_smp;
384
385 struct io_submit_state submit_state;
386
387 struct io_rings *rings;
388
389 /* Only used for accounting purposes */
390 struct mm_struct *mm_account;
391
392 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
393 struct io_sq_data *sq_data; /* if using sq thread polling */
394
395 struct wait_queue_head sqo_sq_wait;
396 struct list_head sqd_list;
397
398 /*
399 * If used, fixed file set. Writers must ensure that ->refs is dead,
400 * readers must ensure that ->refs is alive as long as the file* is
401 * used. Only updated through io_uring_register(2).
402 */
403 struct io_rsrc_data *file_data;
404 struct io_file_table file_table;
405 unsigned nr_user_files;
406
407 /* if used, fixed mapped user buffers */
408 struct io_rsrc_data *buf_data;
409 unsigned nr_user_bufs;
410 struct io_mapped_ubuf **user_bufs;
411
412 struct user_struct *user;
413
414 struct completion ref_comp;
415
416 #if defined(CONFIG_UNIX)
417 struct socket *ring_sock;
418 #endif
419
420 struct xarray io_buffers;
421
422 struct xarray personalities;
423 u32 pers_next;
424
425 struct {
426 unsigned cached_cq_tail;
427 unsigned cq_entries;
428 unsigned cq_mask;
429 atomic_t cq_timeouts;
430 unsigned cq_last_tm_flush;
431 unsigned cq_extra;
432 unsigned long cq_check_overflow;
433 struct wait_queue_head cq_wait;
434 struct fasync_struct *cq_fasync;
435 struct eventfd_ctx *cq_ev_fd;
436 } ____cacheline_aligned_in_smp;
437
438 struct {
439 spinlock_t completion_lock;
440
441 /*
442 * ->iopoll_list is protected by the ctx->uring_lock for
443 * io_uring instances that don't use IORING_SETUP_SQPOLL.
444 * For SQPOLL, only the single threaded io_sq_thread() will
445 * manipulate the list, hence no extra locking is needed there.
446 */
447 struct list_head iopoll_list;
448 struct hlist_head *cancel_hash;
449 unsigned cancel_hash_bits;
450 bool poll_multi_file;
451 } ____cacheline_aligned_in_smp;
452
453 struct delayed_work rsrc_put_work;
454 struct llist_head rsrc_put_llist;
455 struct list_head rsrc_ref_list;
456 spinlock_t rsrc_ref_lock;
457 struct io_rsrc_node *rsrc_node;
458 struct io_rsrc_node *rsrc_backup_node;
459
460 struct io_restriction restrictions;
461
462 /* exit task_work */
463 struct callback_head *exit_task_work;
464
465 /* Keep this last, we don't need it for the fast path */
466 struct work_struct exit_work;
467 struct list_head tctx_list;
468 };
469
470 struct io_uring_task {
471 /* submission side */
472 struct xarray xa;
473 struct wait_queue_head wait;
474 const struct io_ring_ctx *last;
475 struct io_wq *io_wq;
476 struct percpu_counter inflight;
477 atomic_t inflight_tracked;
478 atomic_t in_idle;
479
480 spinlock_t task_lock;
481 struct io_wq_work_list task_list;
482 unsigned long task_state;
483 struct callback_head task_work;
484 };
485
486 /*
487 * First field must be the file pointer in all the
488 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
489 */
490 struct io_poll_iocb {
491 struct file *file;
492 struct wait_queue_head *head;
493 __poll_t events;
494 bool done;
495 bool canceled;
496 struct wait_queue_entry wait;
497 };
498
499 struct io_poll_update {
500 struct file *file;
501 u64 old_user_data;
502 u64 new_user_data;
503 __poll_t events;
504 bool update_events;
505 bool update_user_data;
506 };
507
508 struct io_close {
509 struct file *file;
510 int fd;
511 };
512
513 struct io_timeout_data {
514 struct io_kiocb *req;
515 struct hrtimer timer;
516 struct timespec64 ts;
517 enum hrtimer_mode mode;
518 };
519
520 struct io_accept {
521 struct file *file;
522 struct sockaddr __user *addr;
523 int __user *addr_len;
524 int flags;
525 unsigned long nofile;
526 };
527
528 struct io_sync {
529 struct file *file;
530 loff_t len;
531 loff_t off;
532 int flags;
533 int mode;
534 };
535
536 struct io_cancel {
537 struct file *file;
538 u64 addr;
539 };
540
541 struct io_timeout {
542 struct file *file;
543 u32 off;
544 u32 target_seq;
545 struct list_head list;
546 /* head of the link, used by linked timeouts only */
547 struct io_kiocb *head;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 };
558
559 struct io_rw {
560 /* NOTE: kiocb has the file as the first member, so don't do it here */
561 struct kiocb kiocb;
562 u64 addr;
563 u64 len;
564 };
565
566 struct io_connect {
567 struct file *file;
568 struct sockaddr __user *addr;
569 int addr_len;
570 };
571
572 struct io_sr_msg {
573 struct file *file;
574 union {
575 struct compat_msghdr __user *umsg_compat;
576 struct user_msghdr __user *umsg;
577 void __user *buf;
578 };
579 int msg_flags;
580 int bgid;
581 size_t len;
582 struct io_buffer *kbuf;
583 };
584
585 struct io_open {
586 struct file *file;
587 int dfd;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591 };
592
593 struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598 };
599
600 struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605 };
606
607 struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620 };
621
622 struct io_splice {
623 struct file *file_out;
624 struct file *file_in;
625 loff_t off_out;
626 loff_t off_in;
627 u64 len;
628 unsigned int flags;
629 };
630
631 struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638 };
639
640 struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647 };
648
649 struct io_shutdown {
650 struct file *file;
651 int how;
652 };
653
654 struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661 };
662
663 struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668 };
669
670 struct io_completion {
671 struct file *file;
672 struct list_head list;
673 u32 cflags;
674 };
675
676 struct io_async_connect {
677 struct sockaddr_storage address;
678 };
679
680 struct io_async_msghdr {
681 struct iovec fast_iov[UIO_FASTIOV];
682 /* points to an allocated iov, if NULL we use fast_iov instead */
683 struct iovec *free_iov;
684 struct sockaddr __user *uaddr;
685 struct msghdr msg;
686 struct sockaddr_storage addr;
687 };
688
689 struct io_async_rw {
690 struct iovec fast_iov[UIO_FASTIOV];
691 const struct iovec *free_iovec;
692 struct iov_iter iter;
693 size_t bytes_done;
694 struct wait_page_queue wpq;
695 };
696
697 enum {
698 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
699 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
700 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
701 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
702 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
703 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
704
705 REQ_F_FAIL_LINK_BIT,
706 REQ_F_INFLIGHT_BIT,
707 REQ_F_CUR_POS_BIT,
708 REQ_F_NOWAIT_BIT,
709 REQ_F_LINK_TIMEOUT_BIT,
710 REQ_F_NEED_CLEANUP_BIT,
711 REQ_F_POLLED_BIT,
712 REQ_F_BUFFER_SELECTED_BIT,
713 REQ_F_LTIMEOUT_ACTIVE_BIT,
714 REQ_F_COMPLETE_INLINE_BIT,
715 REQ_F_REISSUE_BIT,
716 REQ_F_DONT_REISSUE_BIT,
717 /* keep async read/write and isreg together and in order */
718 REQ_F_ASYNC_READ_BIT,
719 REQ_F_ASYNC_WRITE_BIT,
720 REQ_F_ISREG_BIT,
721
722 /* not a real bit, just to check we're not overflowing the space */
723 __REQ_F_LAST_BIT,
724 };
725
726 enum {
727 /* ctx owns file */
728 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
729 /* drain existing IO first */
730 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
731 /* linked sqes */
732 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
733 /* doesn't sever on completion < 0 */
734 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
735 /* IOSQE_ASYNC */
736 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
737 /* IOSQE_BUFFER_SELECT */
738 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
739
740 /* fail rest of links */
741 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
742 /* on inflight list, should be cancelled and waited on exit reliably */
743 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
744 /* read/write uses file position */
745 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
746 /* must not punt to workers */
747 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
748 /* has or had linked timeout */
749 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
750 /* needs cleanup */
751 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
752 /* already went through poll handler */
753 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
754 /* buffer already selected */
755 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
756 /* linked timeout is active, i.e. prepared by link's head */
757 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
758 /* completion is deferred through io_comp_state */
759 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
760 /* caller should reissue async */
761 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
762 /* don't attempt request reissue, see io_rw_reissue() */
763 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
764 /* supports async reads */
765 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
766 /* supports async writes */
767 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
768 /* regular file */
769 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
770 };
771
772 struct async_poll {
773 struct io_poll_iocb poll;
774 struct io_poll_iocb *double_poll;
775 };
776
777 struct io_task_work {
778 struct io_wq_work_node node;
779 task_work_func_t func;
780 };
781
782 /*
783 * NOTE! Each of the iocb union members has the file pointer
784 * as the first entry in their struct definition. So you can
785 * access the file pointer through any of the sub-structs,
786 * or directly as just 'ki_filp' in this struct.
787 */
788 struct io_kiocb {
789 union {
790 struct file *file;
791 struct io_rw rw;
792 struct io_poll_iocb poll;
793 struct io_poll_update poll_update;
794 struct io_accept accept;
795 struct io_sync sync;
796 struct io_cancel cancel;
797 struct io_timeout timeout;
798 struct io_timeout_rem timeout_rem;
799 struct io_connect connect;
800 struct io_sr_msg sr_msg;
801 struct io_open open;
802 struct io_close close;
803 struct io_rsrc_update rsrc_update;
804 struct io_fadvise fadvise;
805 struct io_madvise madvise;
806 struct io_epoll epoll;
807 struct io_splice splice;
808 struct io_provide_buf pbuf;
809 struct io_statx statx;
810 struct io_shutdown shutdown;
811 struct io_rename rename;
812 struct io_unlink unlink;
813 /* use only after cleaning per-op data, see io_clean_op() */
814 struct io_completion compl;
815 };
816
817 /* opcode allocated if it needs to store data for async defer */
818 void *async_data;
819 u8 opcode;
820 /* polled IO has completed */
821 u8 iopoll_completed;
822
823 u16 buf_index;
824 u32 result;
825
826 struct io_ring_ctx *ctx;
827 unsigned int flags;
828 atomic_t refs;
829 struct task_struct *task;
830 u64 user_data;
831
832 struct io_kiocb *link;
833 struct percpu_ref *fixed_rsrc_refs;
834
835 /* used with ctx->iopoll_list with reads/writes */
836 struct list_head inflight_entry;
837 union {
838 struct io_task_work io_task_work;
839 struct callback_head task_work;
840 };
841 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
842 struct hlist_node hash_node;
843 struct async_poll *apoll;
844 struct io_wq_work work;
845 /* store used ubuf, so we can prevent reloading */
846 struct io_mapped_ubuf *imu;
847 };
848
849 struct io_tctx_node {
850 struct list_head ctx_node;
851 struct task_struct *task;
852 struct io_ring_ctx *ctx;
853 };
854
855 struct io_defer_entry {
856 struct list_head list;
857 struct io_kiocb *req;
858 u32 seq;
859 };
860
861 struct io_op_def {
862 /* needs req->file assigned */
863 unsigned needs_file : 1;
864 /* hash wq insertion if file is a regular file */
865 unsigned hash_reg_file : 1;
866 /* unbound wq insertion if file is a non-regular file */
867 unsigned unbound_nonreg_file : 1;
868 /* opcode is not supported by this kernel */
869 unsigned not_supported : 1;
870 /* set if opcode supports polled "wait" */
871 unsigned pollin : 1;
872 unsigned pollout : 1;
873 /* op supports buffer selection */
874 unsigned buffer_select : 1;
875 /* do prep async if is going to be punted */
876 unsigned needs_async_setup : 1;
877 /* should block plug */
878 unsigned plug : 1;
879 /* size of async data needed, if any */
880 unsigned short async_size;
881 };
882
883 static const struct io_op_def io_op_defs[] = {
884 [IORING_OP_NOP] = {},
885 [IORING_OP_READV] = {
886 .needs_file = 1,
887 .unbound_nonreg_file = 1,
888 .pollin = 1,
889 .buffer_select = 1,
890 .needs_async_setup = 1,
891 .plug = 1,
892 .async_size = sizeof(struct io_async_rw),
893 },
894 [IORING_OP_WRITEV] = {
895 .needs_file = 1,
896 .hash_reg_file = 1,
897 .unbound_nonreg_file = 1,
898 .pollout = 1,
899 .needs_async_setup = 1,
900 .plug = 1,
901 .async_size = sizeof(struct io_async_rw),
902 },
903 [IORING_OP_FSYNC] = {
904 .needs_file = 1,
905 },
906 [IORING_OP_READ_FIXED] = {
907 .needs_file = 1,
908 .unbound_nonreg_file = 1,
909 .pollin = 1,
910 .plug = 1,
911 .async_size = sizeof(struct io_async_rw),
912 },
913 [IORING_OP_WRITE_FIXED] = {
914 .needs_file = 1,
915 .hash_reg_file = 1,
916 .unbound_nonreg_file = 1,
917 .pollout = 1,
918 .plug = 1,
919 .async_size = sizeof(struct io_async_rw),
920 },
921 [IORING_OP_POLL_ADD] = {
922 .needs_file = 1,
923 .unbound_nonreg_file = 1,
924 },
925 [IORING_OP_POLL_REMOVE] = {},
926 [IORING_OP_SYNC_FILE_RANGE] = {
927 .needs_file = 1,
928 },
929 [IORING_OP_SENDMSG] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .needs_async_setup = 1,
934 .async_size = sizeof(struct io_async_msghdr),
935 },
936 [IORING_OP_RECVMSG] = {
937 .needs_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollin = 1,
940 .buffer_select = 1,
941 .needs_async_setup = 1,
942 .async_size = sizeof(struct io_async_msghdr),
943 },
944 [IORING_OP_TIMEOUT] = {
945 .async_size = sizeof(struct io_timeout_data),
946 },
947 [IORING_OP_TIMEOUT_REMOVE] = {
948 /* used by timeout updates' prep() */
949 },
950 [IORING_OP_ACCEPT] = {
951 .needs_file = 1,
952 .unbound_nonreg_file = 1,
953 .pollin = 1,
954 },
955 [IORING_OP_ASYNC_CANCEL] = {},
956 [IORING_OP_LINK_TIMEOUT] = {
957 .async_size = sizeof(struct io_timeout_data),
958 },
959 [IORING_OP_CONNECT] = {
960 .needs_file = 1,
961 .unbound_nonreg_file = 1,
962 .pollout = 1,
963 .needs_async_setup = 1,
964 .async_size = sizeof(struct io_async_connect),
965 },
966 [IORING_OP_FALLOCATE] = {
967 .needs_file = 1,
968 },
969 [IORING_OP_OPENAT] = {},
970 [IORING_OP_CLOSE] = {},
971 [IORING_OP_FILES_UPDATE] = {},
972 [IORING_OP_STATX] = {},
973 [IORING_OP_READ] = {
974 .needs_file = 1,
975 .unbound_nonreg_file = 1,
976 .pollin = 1,
977 .buffer_select = 1,
978 .plug = 1,
979 .async_size = sizeof(struct io_async_rw),
980 },
981 [IORING_OP_WRITE] = {
982 .needs_file = 1,
983 .unbound_nonreg_file = 1,
984 .pollout = 1,
985 .plug = 1,
986 .async_size = sizeof(struct io_async_rw),
987 },
988 [IORING_OP_FADVISE] = {
989 .needs_file = 1,
990 },
991 [IORING_OP_MADVISE] = {},
992 [IORING_OP_SEND] = {
993 .needs_file = 1,
994 .unbound_nonreg_file = 1,
995 .pollout = 1,
996 },
997 [IORING_OP_RECV] = {
998 .needs_file = 1,
999 .unbound_nonreg_file = 1,
1000 .pollin = 1,
1001 .buffer_select = 1,
1002 },
1003 [IORING_OP_OPENAT2] = {
1004 },
1005 [IORING_OP_EPOLL_CTL] = {
1006 .unbound_nonreg_file = 1,
1007 },
1008 [IORING_OP_SPLICE] = {
1009 .needs_file = 1,
1010 .hash_reg_file = 1,
1011 .unbound_nonreg_file = 1,
1012 },
1013 [IORING_OP_PROVIDE_BUFFERS] = {},
1014 [IORING_OP_REMOVE_BUFFERS] = {},
1015 [IORING_OP_TEE] = {
1016 .needs_file = 1,
1017 .hash_reg_file = 1,
1018 .unbound_nonreg_file = 1,
1019 },
1020 [IORING_OP_SHUTDOWN] = {
1021 .needs_file = 1,
1022 },
1023 [IORING_OP_RENAMEAT] = {},
1024 [IORING_OP_UNLINKAT] = {},
1025 };
1026
1027 static bool io_disarm_next(struct io_kiocb *req);
1028 static void io_uring_del_task_file(unsigned long index);
1029 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1030 struct task_struct *task,
1031 struct files_struct *files);
1032 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd);
1033 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1034
1035 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1036 long res, unsigned int cflags);
1037 static void io_put_req(struct io_kiocb *req);
1038 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1039 static void io_dismantle_req(struct io_kiocb *req);
1040 static void io_put_task(struct task_struct *task, int nr);
1041 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1042 static void io_queue_linked_timeout(struct io_kiocb *req);
1043 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1044 struct io_uring_rsrc_update2 *up,
1045 unsigned nr_args);
1046 static void io_clean_op(struct io_kiocb *req);
1047 static struct file *io_file_get(struct io_submit_state *state,
1048 struct io_kiocb *req, int fd, bool fixed);
1049 static void __io_queue_sqe(struct io_kiocb *req);
1050 static void io_rsrc_put_work(struct work_struct *work);
1051
1052 static void io_req_task_queue(struct io_kiocb *req);
1053 static void io_submit_flush_completions(struct io_comp_state *cs,
1054 struct io_ring_ctx *ctx);
1055 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1056 static int io_req_prep_async(struct io_kiocb *req);
1057
1058 static struct kmem_cache *req_cachep;
1059
1060 static const struct file_operations io_uring_fops;
1061
1062 struct sock *io_uring_get_socket(struct file *file)
1063 {
1064 #if defined(CONFIG_UNIX)
1065 if (file->f_op == &io_uring_fops) {
1066 struct io_ring_ctx *ctx = file->private_data;
1067
1068 return ctx->ring_sock->sk;
1069 }
1070 #endif
1071 return NULL;
1072 }
1073 EXPORT_SYMBOL(io_uring_get_socket);
1074
1075 #define io_for_each_link(pos, head) \
1076 for (pos = (head); pos; pos = pos->link)
1077
1078 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1079 {
1080 struct io_ring_ctx *ctx = req->ctx;
1081
1082 if (!req->fixed_rsrc_refs) {
1083 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1084 percpu_ref_get(req->fixed_rsrc_refs);
1085 }
1086 }
1087
1088 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1089 {
1090 bool got = percpu_ref_tryget(ref);
1091
1092 /* already at zero, wait for ->release() */
1093 if (!got)
1094 wait_for_completion(compl);
1095 percpu_ref_resurrect(ref);
1096 if (got)
1097 percpu_ref_put(ref);
1098 }
1099
1100 static bool io_match_task(struct io_kiocb *head,
1101 struct task_struct *task,
1102 struct files_struct *files)
1103 {
1104 struct io_kiocb *req;
1105
1106 if (task && head->task != task)
1107 return false;
1108 if (!files)
1109 return true;
1110
1111 io_for_each_link(req, head) {
1112 if (req->flags & REQ_F_INFLIGHT)
1113 return true;
1114 }
1115 return false;
1116 }
1117
1118 static inline void req_set_fail_links(struct io_kiocb *req)
1119 {
1120 if (req->flags & REQ_F_LINK)
1121 req->flags |= REQ_F_FAIL_LINK;
1122 }
1123
1124 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1125 {
1126 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1127
1128 complete(&ctx->ref_comp);
1129 }
1130
1131 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1132 {
1133 return !req->timeout.off;
1134 }
1135
1136 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1137 {
1138 struct io_ring_ctx *ctx;
1139 int hash_bits;
1140
1141 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1142 if (!ctx)
1143 return NULL;
1144
1145 /*
1146 * Use 5 bits less than the max cq entries, that should give us around
1147 * 32 entries per hash list if totally full and uniformly spread.
1148 */
1149 hash_bits = ilog2(p->cq_entries);
1150 hash_bits -= 5;
1151 if (hash_bits <= 0)
1152 hash_bits = 1;
1153 ctx->cancel_hash_bits = hash_bits;
1154 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1155 GFP_KERNEL);
1156 if (!ctx->cancel_hash)
1157 goto err;
1158 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1159
1160 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1161 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1162 goto err;
1163
1164 ctx->flags = p->flags;
1165 init_waitqueue_head(&ctx->sqo_sq_wait);
1166 INIT_LIST_HEAD(&ctx->sqd_list);
1167 init_waitqueue_head(&ctx->cq_wait);
1168 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1169 init_completion(&ctx->ref_comp);
1170 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1171 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1172 mutex_init(&ctx->uring_lock);
1173 init_waitqueue_head(&ctx->wait);
1174 spin_lock_init(&ctx->completion_lock);
1175 INIT_LIST_HEAD(&ctx->iopoll_list);
1176 INIT_LIST_HEAD(&ctx->defer_list);
1177 INIT_LIST_HEAD(&ctx->timeout_list);
1178 spin_lock_init(&ctx->rsrc_ref_lock);
1179 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1180 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1181 init_llist_head(&ctx->rsrc_put_llist);
1182 INIT_LIST_HEAD(&ctx->tctx_list);
1183 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1184 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1185 return ctx;
1186 err:
1187 kfree(ctx->cancel_hash);
1188 kfree(ctx);
1189 return NULL;
1190 }
1191
1192 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1193 {
1194 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1195 struct io_ring_ctx *ctx = req->ctx;
1196
1197 return seq + ctx->cq_extra != ctx->cached_cq_tail
1198 + READ_ONCE(ctx->cached_cq_overflow);
1199 }
1200
1201 return false;
1202 }
1203
1204 static void io_req_track_inflight(struct io_kiocb *req)
1205 {
1206 if (!(req->flags & REQ_F_INFLIGHT)) {
1207 req->flags |= REQ_F_INFLIGHT;
1208 atomic_inc(&current->io_uring->inflight_tracked);
1209 }
1210 }
1211
1212 static void io_prep_async_work(struct io_kiocb *req)
1213 {
1214 const struct io_op_def *def = &io_op_defs[req->opcode];
1215 struct io_ring_ctx *ctx = req->ctx;
1216
1217 if (!req->work.creds)
1218 req->work.creds = get_current_cred();
1219
1220 req->work.list.next = NULL;
1221 req->work.flags = 0;
1222 if (req->flags & REQ_F_FORCE_ASYNC)
1223 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1224
1225 if (req->flags & REQ_F_ISREG) {
1226 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1227 io_wq_hash_work(&req->work, file_inode(req->file));
1228 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1229 if (def->unbound_nonreg_file)
1230 req->work.flags |= IO_WQ_WORK_UNBOUND;
1231 }
1232
1233 switch (req->opcode) {
1234 case IORING_OP_SPLICE:
1235 case IORING_OP_TEE:
1236 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1237 req->work.flags |= IO_WQ_WORK_UNBOUND;
1238 break;
1239 }
1240 }
1241
1242 static void io_prep_async_link(struct io_kiocb *req)
1243 {
1244 struct io_kiocb *cur;
1245
1246 io_for_each_link(cur, req)
1247 io_prep_async_work(cur);
1248 }
1249
1250 static void io_queue_async_work(struct io_kiocb *req)
1251 {
1252 struct io_ring_ctx *ctx = req->ctx;
1253 struct io_kiocb *link = io_prep_linked_timeout(req);
1254 struct io_uring_task *tctx = req->task->io_uring;
1255
1256 BUG_ON(!tctx);
1257 BUG_ON(!tctx->io_wq);
1258
1259 /* init ->work of the whole link before punting */
1260 io_prep_async_link(req);
1261 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1262 &req->work, req->flags);
1263 io_wq_enqueue(tctx->io_wq, &req->work);
1264 if (link)
1265 io_queue_linked_timeout(link);
1266 }
1267
1268 static void io_kill_timeout(struct io_kiocb *req, int status)
1269 __must_hold(&req->ctx->completion_lock)
1270 {
1271 struct io_timeout_data *io = req->async_data;
1272
1273 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1274 atomic_set(&req->ctx->cq_timeouts,
1275 atomic_read(&req->ctx->cq_timeouts) + 1);
1276 list_del_init(&req->timeout.list);
1277 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1278 io_put_req_deferred(req, 1);
1279 }
1280 }
1281
1282 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1283 {
1284 do {
1285 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1286 struct io_defer_entry, list);
1287
1288 if (req_need_defer(de->req, de->seq))
1289 break;
1290 list_del_init(&de->list);
1291 io_req_task_queue(de->req);
1292 kfree(de);
1293 } while (!list_empty(&ctx->defer_list));
1294 }
1295
1296 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1297 {
1298 u32 seq;
1299
1300 if (list_empty(&ctx->timeout_list))
1301 return;
1302
1303 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1304
1305 do {
1306 u32 events_needed, events_got;
1307 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1308 struct io_kiocb, timeout.list);
1309
1310 if (io_is_timeout_noseq(req))
1311 break;
1312
1313 /*
1314 * Since seq can easily wrap around over time, subtract
1315 * the last seq at which timeouts were flushed before comparing.
1316 * Assuming not more than 2^31-1 events have happened since,
1317 * these subtractions won't have wrapped, so we can check if
1318 * target is in [last_seq, current_seq] by comparing the two.
1319 */
1320 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1321 events_got = seq - ctx->cq_last_tm_flush;
1322 if (events_got < events_needed)
1323 break;
1324
1325 list_del_init(&req->timeout.list);
1326 io_kill_timeout(req, 0);
1327 } while (!list_empty(&ctx->timeout_list));
1328
1329 ctx->cq_last_tm_flush = seq;
1330 }
1331
1332 static void io_commit_cqring(struct io_ring_ctx *ctx)
1333 {
1334 io_flush_timeouts(ctx);
1335
1336 /* order cqe stores with ring update */
1337 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1338
1339 if (unlikely(!list_empty(&ctx->defer_list)))
1340 __io_queue_deferred(ctx);
1341 }
1342
1343 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1344 {
1345 struct io_rings *r = ctx->rings;
1346
1347 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1348 }
1349
1350 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1351 {
1352 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1353 }
1354
1355 static inline struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1356 {
1357 struct io_rings *rings = ctx->rings;
1358 unsigned tail;
1359
1360 /*
1361 * writes to the cq entry need to come after reading head; the
1362 * control dependency is enough as we're using WRITE_ONCE to
1363 * fill the cq entry
1364 */
1365 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1366 return NULL;
1367
1368 tail = ctx->cached_cq_tail++;
1369 return &rings->cqes[tail & ctx->cq_mask];
1370 }
1371
1372 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1373 {
1374 if (likely(!ctx->cq_ev_fd))
1375 return false;
1376 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1377 return false;
1378 return !ctx->eventfd_async || io_wq_current_is_worker();
1379 }
1380
1381 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1382 {
1383 /* see waitqueue_active() comment */
1384 smp_mb();
1385
1386 if (waitqueue_active(&ctx->wait))
1387 wake_up(&ctx->wait);
1388 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1389 wake_up(&ctx->sq_data->wait);
1390 if (io_should_trigger_evfd(ctx))
1391 eventfd_signal(ctx->cq_ev_fd, 1);
1392 if (waitqueue_active(&ctx->cq_wait)) {
1393 wake_up_interruptible(&ctx->cq_wait);
1394 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1395 }
1396 }
1397
1398 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1399 {
1400 /* see waitqueue_active() comment */
1401 smp_mb();
1402
1403 if (ctx->flags & IORING_SETUP_SQPOLL) {
1404 if (waitqueue_active(&ctx->wait))
1405 wake_up(&ctx->wait);
1406 }
1407 if (io_should_trigger_evfd(ctx))
1408 eventfd_signal(ctx->cq_ev_fd, 1);
1409 if (waitqueue_active(&ctx->cq_wait)) {
1410 wake_up_interruptible(&ctx->cq_wait);
1411 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1412 }
1413 }
1414
1415 /* Returns true if there are no backlogged entries after the flush */
1416 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1417 {
1418 struct io_rings *rings = ctx->rings;
1419 unsigned long flags;
1420 bool all_flushed, posted;
1421
1422 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1423 return false;
1424
1425 posted = false;
1426 spin_lock_irqsave(&ctx->completion_lock, flags);
1427 while (!list_empty(&ctx->cq_overflow_list)) {
1428 struct io_uring_cqe *cqe = io_get_cqring(ctx);
1429 struct io_overflow_cqe *ocqe;
1430
1431 if (!cqe && !force)
1432 break;
1433 ocqe = list_first_entry(&ctx->cq_overflow_list,
1434 struct io_overflow_cqe, list);
1435 if (cqe)
1436 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1437 else
1438 WRITE_ONCE(ctx->rings->cq_overflow,
1439 ++ctx->cached_cq_overflow);
1440 posted = true;
1441 list_del(&ocqe->list);
1442 kfree(ocqe);
1443 }
1444
1445 all_flushed = list_empty(&ctx->cq_overflow_list);
1446 if (all_flushed) {
1447 clear_bit(0, &ctx->sq_check_overflow);
1448 clear_bit(0, &ctx->cq_check_overflow);
1449 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1450 }
1451
1452 if (posted)
1453 io_commit_cqring(ctx);
1454 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1455 if (posted)
1456 io_cqring_ev_posted(ctx);
1457 return all_flushed;
1458 }
1459
1460 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1461 {
1462 bool ret = true;
1463
1464 if (test_bit(0, &ctx->cq_check_overflow)) {
1465 /* iopoll syncs against uring_lock, not completion_lock */
1466 if (ctx->flags & IORING_SETUP_IOPOLL)
1467 mutex_lock(&ctx->uring_lock);
1468 ret = __io_cqring_overflow_flush(ctx, force);
1469 if (ctx->flags & IORING_SETUP_IOPOLL)
1470 mutex_unlock(&ctx->uring_lock);
1471 }
1472
1473 return ret;
1474 }
1475
1476 /*
1477 * Shamelessly stolen from the mm implementation of page reference checking,
1478 * see commit f958d7b528b1 for details.
1479 */
1480 #define req_ref_zero_or_close_to_overflow(req) \
1481 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1482
1483 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1484 {
1485 return atomic_inc_not_zero(&req->refs);
1486 }
1487
1488 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1489 {
1490 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1491 return atomic_sub_and_test(refs, &req->refs);
1492 }
1493
1494 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1495 {
1496 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1497 return atomic_dec_and_test(&req->refs);
1498 }
1499
1500 static inline void req_ref_put(struct io_kiocb *req)
1501 {
1502 WARN_ON_ONCE(req_ref_put_and_test(req));
1503 }
1504
1505 static inline void req_ref_get(struct io_kiocb *req)
1506 {
1507 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1508 atomic_inc(&req->refs);
1509 }
1510
1511 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1512 long res, unsigned int cflags)
1513 {
1514 struct io_overflow_cqe *ocqe;
1515
1516 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1517 if (!ocqe) {
1518 /*
1519 * If we're in ring overflow flush mode, or in task cancel mode,
1520 * or cannot allocate an overflow entry, then we need to drop it
1521 * on the floor.
1522 */
1523 WRITE_ONCE(ctx->rings->cq_overflow, ++ctx->cached_cq_overflow);
1524 return false;
1525 }
1526 if (list_empty(&ctx->cq_overflow_list)) {
1527 set_bit(0, &ctx->sq_check_overflow);
1528 set_bit(0, &ctx->cq_check_overflow);
1529 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1530 }
1531 ocqe->cqe.user_data = user_data;
1532 ocqe->cqe.res = res;
1533 ocqe->cqe.flags = cflags;
1534 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1535 return true;
1536 }
1537
1538 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1539 long res, unsigned int cflags)
1540 {
1541 struct io_uring_cqe *cqe;
1542
1543 trace_io_uring_complete(ctx, user_data, res, cflags);
1544
1545 /*
1546 * If we can't get a cq entry, userspace overflowed the
1547 * submission (by quite a lot). Increment the overflow count in
1548 * the ring.
1549 */
1550 cqe = io_get_cqring(ctx);
1551 if (likely(cqe)) {
1552 WRITE_ONCE(cqe->user_data, user_data);
1553 WRITE_ONCE(cqe->res, res);
1554 WRITE_ONCE(cqe->flags, cflags);
1555 return true;
1556 }
1557 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1558 }
1559
1560 /* not as hot to bloat with inlining */
1561 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1562 long res, unsigned int cflags)
1563 {
1564 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1565 }
1566
1567 static void io_req_complete_post(struct io_kiocb *req, long res,
1568 unsigned int cflags)
1569 {
1570 struct io_ring_ctx *ctx = req->ctx;
1571 unsigned long flags;
1572
1573 spin_lock_irqsave(&ctx->completion_lock, flags);
1574 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1575 /*
1576 * If we're the last reference to this request, add to our locked
1577 * free_list cache.
1578 */
1579 if (req_ref_put_and_test(req)) {
1580 struct io_comp_state *cs = &ctx->submit_state.comp;
1581
1582 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1583 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK))
1584 io_disarm_next(req);
1585 if (req->link) {
1586 io_req_task_queue(req->link);
1587 req->link = NULL;
1588 }
1589 }
1590 io_dismantle_req(req);
1591 io_put_task(req->task, 1);
1592 list_add(&req->compl.list, &cs->locked_free_list);
1593 cs->locked_free_nr++;
1594 } else {
1595 if (!percpu_ref_tryget(&ctx->refs))
1596 req = NULL;
1597 }
1598 io_commit_cqring(ctx);
1599 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1600
1601 if (req) {
1602 io_cqring_ev_posted(ctx);
1603 percpu_ref_put(&ctx->refs);
1604 }
1605 }
1606
1607 static inline bool io_req_needs_clean(struct io_kiocb *req)
1608 {
1609 return req->flags & (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP |
1610 REQ_F_POLLED | REQ_F_INFLIGHT);
1611 }
1612
1613 static void io_req_complete_state(struct io_kiocb *req, long res,
1614 unsigned int cflags)
1615 {
1616 if (io_req_needs_clean(req))
1617 io_clean_op(req);
1618 req->result = res;
1619 req->compl.cflags = cflags;
1620 req->flags |= REQ_F_COMPLETE_INLINE;
1621 }
1622
1623 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1624 long res, unsigned cflags)
1625 {
1626 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1627 io_req_complete_state(req, res, cflags);
1628 else
1629 io_req_complete_post(req, res, cflags);
1630 }
1631
1632 static inline void io_req_complete(struct io_kiocb *req, long res)
1633 {
1634 __io_req_complete(req, 0, res, 0);
1635 }
1636
1637 static void io_req_complete_failed(struct io_kiocb *req, long res)
1638 {
1639 req_set_fail_links(req);
1640 io_put_req(req);
1641 io_req_complete_post(req, res, 0);
1642 }
1643
1644 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1645 struct io_comp_state *cs)
1646 {
1647 spin_lock_irq(&ctx->completion_lock);
1648 list_splice_init(&cs->locked_free_list, &cs->free_list);
1649 cs->locked_free_nr = 0;
1650 spin_unlock_irq(&ctx->completion_lock);
1651 }
1652
1653 /* Returns true IFF there are requests in the cache */
1654 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1655 {
1656 struct io_submit_state *state = &ctx->submit_state;
1657 struct io_comp_state *cs = &state->comp;
1658 int nr;
1659
1660 /*
1661 * If we have more than a batch's worth of requests in our IRQ side
1662 * locked cache, grab the lock and move them over to our submission
1663 * side cache.
1664 */
1665 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH)
1666 io_flush_cached_locked_reqs(ctx, cs);
1667
1668 nr = state->free_reqs;
1669 while (!list_empty(&cs->free_list)) {
1670 struct io_kiocb *req = list_first_entry(&cs->free_list,
1671 struct io_kiocb, compl.list);
1672
1673 list_del(&req->compl.list);
1674 state->reqs[nr++] = req;
1675 if (nr == ARRAY_SIZE(state->reqs))
1676 break;
1677 }
1678
1679 state->free_reqs = nr;
1680 return nr != 0;
1681 }
1682
1683 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1684 {
1685 struct io_submit_state *state = &ctx->submit_state;
1686
1687 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
1688
1689 if (!state->free_reqs) {
1690 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1691 int ret;
1692
1693 if (io_flush_cached_reqs(ctx))
1694 goto got_req;
1695
1696 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1697 state->reqs);
1698
1699 /*
1700 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1701 * retry single alloc to be on the safe side.
1702 */
1703 if (unlikely(ret <= 0)) {
1704 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1705 if (!state->reqs[0])
1706 return NULL;
1707 ret = 1;
1708 }
1709 state->free_reqs = ret;
1710 }
1711 got_req:
1712 state->free_reqs--;
1713 return state->reqs[state->free_reqs];
1714 }
1715
1716 static inline void io_put_file(struct file *file)
1717 {
1718 if (file)
1719 fput(file);
1720 }
1721
1722 static void io_dismantle_req(struct io_kiocb *req)
1723 {
1724 unsigned int flags = req->flags;
1725
1726 if (io_req_needs_clean(req))
1727 io_clean_op(req);
1728 if (!(flags & REQ_F_FIXED_FILE))
1729 io_put_file(req->file);
1730 if (req->fixed_rsrc_refs)
1731 percpu_ref_put(req->fixed_rsrc_refs);
1732 if (req->async_data)
1733 kfree(req->async_data);
1734 if (req->work.creds) {
1735 put_cred(req->work.creds);
1736 req->work.creds = NULL;
1737 }
1738 }
1739
1740 /* must to be called somewhat shortly after putting a request */
1741 static inline void io_put_task(struct task_struct *task, int nr)
1742 {
1743 struct io_uring_task *tctx = task->io_uring;
1744
1745 percpu_counter_sub(&tctx->inflight, nr);
1746 if (unlikely(atomic_read(&tctx->in_idle)))
1747 wake_up(&tctx->wait);
1748 put_task_struct_many(task, nr);
1749 }
1750
1751 static void __io_free_req(struct io_kiocb *req)
1752 {
1753 struct io_ring_ctx *ctx = req->ctx;
1754
1755 io_dismantle_req(req);
1756 io_put_task(req->task, 1);
1757
1758 kmem_cache_free(req_cachep, req);
1759 percpu_ref_put(&ctx->refs);
1760 }
1761
1762 static inline void io_remove_next_linked(struct io_kiocb *req)
1763 {
1764 struct io_kiocb *nxt = req->link;
1765
1766 req->link = nxt->link;
1767 nxt->link = NULL;
1768 }
1769
1770 static bool io_kill_linked_timeout(struct io_kiocb *req)
1771 __must_hold(&req->ctx->completion_lock)
1772 {
1773 struct io_kiocb *link = req->link;
1774
1775 /*
1776 * Can happen if a linked timeout fired and link had been like
1777 * req -> link t-out -> link t-out [-> ...]
1778 */
1779 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1780 struct io_timeout_data *io = link->async_data;
1781
1782 io_remove_next_linked(req);
1783 link->timeout.head = NULL;
1784 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1785 io_cqring_fill_event(link->ctx, link->user_data,
1786 -ECANCELED, 0);
1787 io_put_req_deferred(link, 1);
1788 return true;
1789 }
1790 }
1791 return false;
1792 }
1793
1794 static void io_fail_links(struct io_kiocb *req)
1795 __must_hold(&req->ctx->completion_lock)
1796 {
1797 struct io_kiocb *nxt, *link = req->link;
1798
1799 req->link = NULL;
1800 while (link) {
1801 nxt = link->link;
1802 link->link = NULL;
1803
1804 trace_io_uring_fail_link(req, link);
1805 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1806 io_put_req_deferred(link, 2);
1807 link = nxt;
1808 }
1809 }
1810
1811 static bool io_disarm_next(struct io_kiocb *req)
1812 __must_hold(&req->ctx->completion_lock)
1813 {
1814 bool posted = false;
1815
1816 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1817 posted = io_kill_linked_timeout(req);
1818 if (unlikely((req->flags & REQ_F_FAIL_LINK) &&
1819 !(req->flags & REQ_F_HARDLINK))) {
1820 posted |= (req->link != NULL);
1821 io_fail_links(req);
1822 }
1823 return posted;
1824 }
1825
1826 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1827 {
1828 struct io_kiocb *nxt;
1829
1830 /*
1831 * If LINK is set, we have dependent requests in this chain. If we
1832 * didn't fail this request, queue the first one up, moving any other
1833 * dependencies to the next request. In case of failure, fail the rest
1834 * of the chain.
1835 */
1836 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK)) {
1837 struct io_ring_ctx *ctx = req->ctx;
1838 unsigned long flags;
1839 bool posted;
1840
1841 spin_lock_irqsave(&ctx->completion_lock, flags);
1842 posted = io_disarm_next(req);
1843 if (posted)
1844 io_commit_cqring(req->ctx);
1845 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1846 if (posted)
1847 io_cqring_ev_posted(ctx);
1848 }
1849 nxt = req->link;
1850 req->link = NULL;
1851 return nxt;
1852 }
1853
1854 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1855 {
1856 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1857 return NULL;
1858 return __io_req_find_next(req);
1859 }
1860
1861 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1862 {
1863 if (!ctx)
1864 return;
1865 if (ctx->submit_state.comp.nr) {
1866 mutex_lock(&ctx->uring_lock);
1867 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
1868 mutex_unlock(&ctx->uring_lock);
1869 }
1870 percpu_ref_put(&ctx->refs);
1871 }
1872
1873 static bool __tctx_task_work(struct io_uring_task *tctx)
1874 {
1875 struct io_ring_ctx *ctx = NULL;
1876 struct io_wq_work_list list;
1877 struct io_wq_work_node *node;
1878
1879 if (wq_list_empty(&tctx->task_list))
1880 return false;
1881
1882 spin_lock_irq(&tctx->task_lock);
1883 list = tctx->task_list;
1884 INIT_WQ_LIST(&tctx->task_list);
1885 spin_unlock_irq(&tctx->task_lock);
1886
1887 node = list.first;
1888 while (node) {
1889 struct io_wq_work_node *next = node->next;
1890 struct io_kiocb *req;
1891
1892 req = container_of(node, struct io_kiocb, io_task_work.node);
1893 if (req->ctx != ctx) {
1894 ctx_flush_and_put(ctx);
1895 ctx = req->ctx;
1896 percpu_ref_get(&ctx->refs);
1897 }
1898
1899 req->task_work.func(&req->task_work);
1900 node = next;
1901 }
1902
1903 ctx_flush_and_put(ctx);
1904 return list.first != NULL;
1905 }
1906
1907 static void tctx_task_work(struct callback_head *cb)
1908 {
1909 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
1910
1911 clear_bit(0, &tctx->task_state);
1912
1913 while (__tctx_task_work(tctx))
1914 cond_resched();
1915 }
1916
1917 static int io_req_task_work_add(struct io_kiocb *req)
1918 {
1919 struct task_struct *tsk = req->task;
1920 struct io_uring_task *tctx = tsk->io_uring;
1921 enum task_work_notify_mode notify;
1922 struct io_wq_work_node *node, *prev;
1923 unsigned long flags;
1924 int ret = 0;
1925
1926 if (unlikely(tsk->flags & PF_EXITING))
1927 return -ESRCH;
1928
1929 WARN_ON_ONCE(!tctx);
1930
1931 spin_lock_irqsave(&tctx->task_lock, flags);
1932 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1933 spin_unlock_irqrestore(&tctx->task_lock, flags);
1934
1935 /* task_work already pending, we're done */
1936 if (test_bit(0, &tctx->task_state) ||
1937 test_and_set_bit(0, &tctx->task_state))
1938 return 0;
1939
1940 /*
1941 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1942 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1943 * processing task_work. There's no reliable way to tell if TWA_RESUME
1944 * will do the job.
1945 */
1946 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1947
1948 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1949 wake_up_process(tsk);
1950 return 0;
1951 }
1952
1953 /*
1954 * Slow path - we failed, find and delete work. if the work is not
1955 * in the list, it got run and we're fine.
1956 */
1957 spin_lock_irqsave(&tctx->task_lock, flags);
1958 wq_list_for_each(node, prev, &tctx->task_list) {
1959 if (&req->io_task_work.node == node) {
1960 wq_list_del(&tctx->task_list, node, prev);
1961 ret = 1;
1962 break;
1963 }
1964 }
1965 spin_unlock_irqrestore(&tctx->task_lock, flags);
1966 clear_bit(0, &tctx->task_state);
1967 return ret;
1968 }
1969
1970 static bool io_run_task_work_head(struct callback_head **work_head)
1971 {
1972 struct callback_head *work, *next;
1973 bool executed = false;
1974
1975 do {
1976 work = xchg(work_head, NULL);
1977 if (!work)
1978 break;
1979
1980 do {
1981 next = work->next;
1982 work->func(work);
1983 work = next;
1984 cond_resched();
1985 } while (work);
1986 executed = true;
1987 } while (1);
1988
1989 return executed;
1990 }
1991
1992 static void io_task_work_add_head(struct callback_head **work_head,
1993 struct callback_head *task_work)
1994 {
1995 struct callback_head *head;
1996
1997 do {
1998 head = READ_ONCE(*work_head);
1999 task_work->next = head;
2000 } while (cmpxchg(work_head, head, task_work) != head);
2001 }
2002
2003 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2004 task_work_func_t cb)
2005 {
2006 init_task_work(&req->task_work, cb);
2007 io_task_work_add_head(&req->ctx->exit_task_work, &req->task_work);
2008 }
2009
2010 static void io_req_task_cancel(struct callback_head *cb)
2011 {
2012 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2013 struct io_ring_ctx *ctx = req->ctx;
2014
2015 /* ctx is guaranteed to stay alive while we hold uring_lock */
2016 mutex_lock(&ctx->uring_lock);
2017 io_req_complete_failed(req, req->result);
2018 mutex_unlock(&ctx->uring_lock);
2019 }
2020
2021 static void __io_req_task_submit(struct io_kiocb *req)
2022 {
2023 struct io_ring_ctx *ctx = req->ctx;
2024
2025 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2026 mutex_lock(&ctx->uring_lock);
2027 if (!(current->flags & PF_EXITING) && !current->in_execve)
2028 __io_queue_sqe(req);
2029 else
2030 io_req_complete_failed(req, -EFAULT);
2031 mutex_unlock(&ctx->uring_lock);
2032 }
2033
2034 static void io_req_task_submit(struct callback_head *cb)
2035 {
2036 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2037
2038 __io_req_task_submit(req);
2039 }
2040
2041 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2042 {
2043 req->result = ret;
2044 req->task_work.func = io_req_task_cancel;
2045
2046 if (unlikely(io_req_task_work_add(req)))
2047 io_req_task_work_add_fallback(req, io_req_task_cancel);
2048 }
2049
2050 static void io_req_task_queue(struct io_kiocb *req)
2051 {
2052 req->task_work.func = io_req_task_submit;
2053
2054 if (unlikely(io_req_task_work_add(req)))
2055 io_req_task_queue_fail(req, -ECANCELED);
2056 }
2057
2058 static inline void io_queue_next(struct io_kiocb *req)
2059 {
2060 struct io_kiocb *nxt = io_req_find_next(req);
2061
2062 if (nxt)
2063 io_req_task_queue(nxt);
2064 }
2065
2066 static void io_free_req(struct io_kiocb *req)
2067 {
2068 io_queue_next(req);
2069 __io_free_req(req);
2070 }
2071
2072 struct req_batch {
2073 struct task_struct *task;
2074 int task_refs;
2075 int ctx_refs;
2076 };
2077
2078 static inline void io_init_req_batch(struct req_batch *rb)
2079 {
2080 rb->task_refs = 0;
2081 rb->ctx_refs = 0;
2082 rb->task = NULL;
2083 }
2084
2085 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2086 struct req_batch *rb)
2087 {
2088 if (rb->task)
2089 io_put_task(rb->task, rb->task_refs);
2090 if (rb->ctx_refs)
2091 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2092 }
2093
2094 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2095 struct io_submit_state *state)
2096 {
2097 io_queue_next(req);
2098 io_dismantle_req(req);
2099
2100 if (req->task != rb->task) {
2101 if (rb->task)
2102 io_put_task(rb->task, rb->task_refs);
2103 rb->task = req->task;
2104 rb->task_refs = 0;
2105 }
2106 rb->task_refs++;
2107 rb->ctx_refs++;
2108
2109 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2110 state->reqs[state->free_reqs++] = req;
2111 else
2112 list_add(&req->compl.list, &state->comp.free_list);
2113 }
2114
2115 static void io_submit_flush_completions(struct io_comp_state *cs,
2116 struct io_ring_ctx *ctx)
2117 {
2118 int i, nr = cs->nr;
2119 struct io_kiocb *req;
2120 struct req_batch rb;
2121
2122 io_init_req_batch(&rb);
2123 spin_lock_irq(&ctx->completion_lock);
2124 for (i = 0; i < nr; i++) {
2125 req = cs->reqs[i];
2126 __io_cqring_fill_event(ctx, req->user_data, req->result,
2127 req->compl.cflags);
2128 }
2129 io_commit_cqring(ctx);
2130 spin_unlock_irq(&ctx->completion_lock);
2131
2132 io_cqring_ev_posted(ctx);
2133 for (i = 0; i < nr; i++) {
2134 req = cs->reqs[i];
2135
2136 /* submission and completion refs */
2137 if (req_ref_sub_and_test(req, 2))
2138 io_req_free_batch(&rb, req, &ctx->submit_state);
2139 }
2140
2141 io_req_free_batch_finish(ctx, &rb);
2142 cs->nr = 0;
2143 }
2144
2145 /*
2146 * Drop reference to request, return next in chain (if there is one) if this
2147 * was the last reference to this request.
2148 */
2149 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2150 {
2151 struct io_kiocb *nxt = NULL;
2152
2153 if (req_ref_put_and_test(req)) {
2154 nxt = io_req_find_next(req);
2155 __io_free_req(req);
2156 }
2157 return nxt;
2158 }
2159
2160 static inline void io_put_req(struct io_kiocb *req)
2161 {
2162 if (req_ref_put_and_test(req))
2163 io_free_req(req);
2164 }
2165
2166 static void io_put_req_deferred_cb(struct callback_head *cb)
2167 {
2168 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2169
2170 io_free_req(req);
2171 }
2172
2173 static void io_free_req_deferred(struct io_kiocb *req)
2174 {
2175 req->task_work.func = io_put_req_deferred_cb;
2176 if (unlikely(io_req_task_work_add(req)))
2177 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2178 }
2179
2180 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2181 {
2182 if (req_ref_sub_and_test(req, refs))
2183 io_free_req_deferred(req);
2184 }
2185
2186 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2187 {
2188 /* See comment at the top of this file */
2189 smp_rmb();
2190 return __io_cqring_events(ctx);
2191 }
2192
2193 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2194 {
2195 struct io_rings *rings = ctx->rings;
2196
2197 /* make sure SQ entry isn't read before tail */
2198 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2199 }
2200
2201 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2202 {
2203 unsigned int cflags;
2204
2205 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2206 cflags |= IORING_CQE_F_BUFFER;
2207 req->flags &= ~REQ_F_BUFFER_SELECTED;
2208 kfree(kbuf);
2209 return cflags;
2210 }
2211
2212 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2213 {
2214 struct io_buffer *kbuf;
2215
2216 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2217 return io_put_kbuf(req, kbuf);
2218 }
2219
2220 static inline bool io_run_task_work(void)
2221 {
2222 /*
2223 * Not safe to run on exiting task, and the task_work handling will
2224 * not add work to such a task.
2225 */
2226 if (unlikely(current->flags & PF_EXITING))
2227 return false;
2228 if (current->task_works) {
2229 __set_current_state(TASK_RUNNING);
2230 task_work_run();
2231 return true;
2232 }
2233
2234 return false;
2235 }
2236
2237 /*
2238 * Find and free completed poll iocbs
2239 */
2240 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2241 struct list_head *done)
2242 {
2243 struct req_batch rb;
2244 struct io_kiocb *req;
2245
2246 /* order with ->result store in io_complete_rw_iopoll() */
2247 smp_rmb();
2248
2249 io_init_req_batch(&rb);
2250 while (!list_empty(done)) {
2251 int cflags = 0;
2252
2253 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2254 list_del(&req->inflight_entry);
2255
2256 if (READ_ONCE(req->result) == -EAGAIN &&
2257 !(req->flags & REQ_F_DONT_REISSUE)) {
2258 req->iopoll_completed = 0;
2259 req_ref_get(req);
2260 io_queue_async_work(req);
2261 continue;
2262 }
2263
2264 if (req->flags & REQ_F_BUFFER_SELECTED)
2265 cflags = io_put_rw_kbuf(req);
2266
2267 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2268 (*nr_events)++;
2269
2270 if (req_ref_put_and_test(req))
2271 io_req_free_batch(&rb, req, &ctx->submit_state);
2272 }
2273
2274 io_commit_cqring(ctx);
2275 io_cqring_ev_posted_iopoll(ctx);
2276 io_req_free_batch_finish(ctx, &rb);
2277 }
2278
2279 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2280 long min)
2281 {
2282 struct io_kiocb *req, *tmp;
2283 LIST_HEAD(done);
2284 bool spin;
2285 int ret;
2286
2287 /*
2288 * Only spin for completions if we don't have multiple devices hanging
2289 * off our complete list, and we're under the requested amount.
2290 */
2291 spin = !ctx->poll_multi_file && *nr_events < min;
2292
2293 ret = 0;
2294 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2295 struct kiocb *kiocb = &req->rw.kiocb;
2296
2297 /*
2298 * Move completed and retryable entries to our local lists.
2299 * If we find a request that requires polling, break out
2300 * and complete those lists first, if we have entries there.
2301 */
2302 if (READ_ONCE(req->iopoll_completed)) {
2303 list_move_tail(&req->inflight_entry, &done);
2304 continue;
2305 }
2306 if (!list_empty(&done))
2307 break;
2308
2309 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2310 if (ret < 0)
2311 break;
2312
2313 /* iopoll may have completed current req */
2314 if (READ_ONCE(req->iopoll_completed))
2315 list_move_tail(&req->inflight_entry, &done);
2316
2317 if (ret && spin)
2318 spin = false;
2319 ret = 0;
2320 }
2321
2322 if (!list_empty(&done))
2323 io_iopoll_complete(ctx, nr_events, &done);
2324
2325 return ret;
2326 }
2327
2328 /*
2329 * We can't just wait for polled events to come to us, we have to actively
2330 * find and complete them.
2331 */
2332 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2333 {
2334 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2335 return;
2336
2337 mutex_lock(&ctx->uring_lock);
2338 while (!list_empty(&ctx->iopoll_list)) {
2339 unsigned int nr_events = 0;
2340
2341 io_do_iopoll(ctx, &nr_events, 0);
2342
2343 /* let it sleep and repeat later if can't complete a request */
2344 if (nr_events == 0)
2345 break;
2346 /*
2347 * Ensure we allow local-to-the-cpu processing to take place,
2348 * in this case we need to ensure that we reap all events.
2349 * Also let task_work, etc. to progress by releasing the mutex
2350 */
2351 if (need_resched()) {
2352 mutex_unlock(&ctx->uring_lock);
2353 cond_resched();
2354 mutex_lock(&ctx->uring_lock);
2355 }
2356 }
2357 mutex_unlock(&ctx->uring_lock);
2358 }
2359
2360 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2361 {
2362 unsigned int nr_events = 0;
2363 int ret = 0;
2364
2365 /*
2366 * We disallow the app entering submit/complete with polling, but we
2367 * still need to lock the ring to prevent racing with polled issue
2368 * that got punted to a workqueue.
2369 */
2370 mutex_lock(&ctx->uring_lock);
2371 /*
2372 * Don't enter poll loop if we already have events pending.
2373 * If we do, we can potentially be spinning for commands that
2374 * already triggered a CQE (eg in error).
2375 */
2376 if (test_bit(0, &ctx->cq_check_overflow))
2377 __io_cqring_overflow_flush(ctx, false);
2378 if (io_cqring_events(ctx))
2379 goto out;
2380 do {
2381 /*
2382 * If a submit got punted to a workqueue, we can have the
2383 * application entering polling for a command before it gets
2384 * issued. That app will hold the uring_lock for the duration
2385 * of the poll right here, so we need to take a breather every
2386 * now and then to ensure that the issue has a chance to add
2387 * the poll to the issued list. Otherwise we can spin here
2388 * forever, while the workqueue is stuck trying to acquire the
2389 * very same mutex.
2390 */
2391 if (list_empty(&ctx->iopoll_list)) {
2392 mutex_unlock(&ctx->uring_lock);
2393 io_run_task_work();
2394 mutex_lock(&ctx->uring_lock);
2395
2396 if (list_empty(&ctx->iopoll_list))
2397 break;
2398 }
2399 ret = io_do_iopoll(ctx, &nr_events, min);
2400 } while (!ret && nr_events < min && !need_resched());
2401 out:
2402 mutex_unlock(&ctx->uring_lock);
2403 return ret;
2404 }
2405
2406 static void kiocb_end_write(struct io_kiocb *req)
2407 {
2408 /*
2409 * Tell lockdep we inherited freeze protection from submission
2410 * thread.
2411 */
2412 if (req->flags & REQ_F_ISREG) {
2413 struct super_block *sb = file_inode(req->file)->i_sb;
2414
2415 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2416 sb_end_write(sb);
2417 }
2418 }
2419
2420 #ifdef CONFIG_BLOCK
2421 static bool io_resubmit_prep(struct io_kiocb *req)
2422 {
2423 struct io_async_rw *rw = req->async_data;
2424
2425 if (!rw)
2426 return !io_req_prep_async(req);
2427 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2428 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2429 return true;
2430 }
2431
2432 static bool io_rw_should_reissue(struct io_kiocb *req)
2433 {
2434 umode_t mode = file_inode(req->file)->i_mode;
2435 struct io_ring_ctx *ctx = req->ctx;
2436
2437 if (!S_ISBLK(mode) && !S_ISREG(mode))
2438 return false;
2439 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2440 !(ctx->flags & IORING_SETUP_IOPOLL)))
2441 return false;
2442 /*
2443 * If ref is dying, we might be running poll reap from the exit work.
2444 * Don't attempt to reissue from that path, just let it fail with
2445 * -EAGAIN.
2446 */
2447 if (percpu_ref_is_dying(&ctx->refs))
2448 return false;
2449 return true;
2450 }
2451 #else
2452 static bool io_resubmit_prep(struct io_kiocb *req)
2453 {
2454 return false;
2455 }
2456 static bool io_rw_should_reissue(struct io_kiocb *req)
2457 {
2458 return false;
2459 }
2460 #endif
2461
2462 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2463 unsigned int issue_flags)
2464 {
2465 int cflags = 0;
2466
2467 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2468 kiocb_end_write(req);
2469 if (res != req->result) {
2470 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2471 io_rw_should_reissue(req)) {
2472 req->flags |= REQ_F_REISSUE;
2473 return;
2474 }
2475 req_set_fail_links(req);
2476 }
2477 if (req->flags & REQ_F_BUFFER_SELECTED)
2478 cflags = io_put_rw_kbuf(req);
2479 __io_req_complete(req, issue_flags, res, cflags);
2480 }
2481
2482 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2483 {
2484 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2485
2486 __io_complete_rw(req, res, res2, 0);
2487 }
2488
2489 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2490 {
2491 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2492
2493 if (kiocb->ki_flags & IOCB_WRITE)
2494 kiocb_end_write(req);
2495 if (unlikely(res != req->result)) {
2496 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2497 io_resubmit_prep(req))) {
2498 req_set_fail_links(req);
2499 req->flags |= REQ_F_DONT_REISSUE;
2500 }
2501 }
2502
2503 WRITE_ONCE(req->result, res);
2504 /* order with io_iopoll_complete() checking ->result */
2505 smp_wmb();
2506 WRITE_ONCE(req->iopoll_completed, 1);
2507 }
2508
2509 /*
2510 * After the iocb has been issued, it's safe to be found on the poll list.
2511 * Adding the kiocb to the list AFTER submission ensures that we don't
2512 * find it from a io_do_iopoll() thread before the issuer is done
2513 * accessing the kiocb cookie.
2514 */
2515 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2516 {
2517 struct io_ring_ctx *ctx = req->ctx;
2518
2519 /*
2520 * Track whether we have multiple files in our lists. This will impact
2521 * how we do polling eventually, not spinning if we're on potentially
2522 * different devices.
2523 */
2524 if (list_empty(&ctx->iopoll_list)) {
2525 ctx->poll_multi_file = false;
2526 } else if (!ctx->poll_multi_file) {
2527 struct io_kiocb *list_req;
2528
2529 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2530 inflight_entry);
2531 if (list_req->file != req->file)
2532 ctx->poll_multi_file = true;
2533 }
2534
2535 /*
2536 * For fast devices, IO may have already completed. If it has, add
2537 * it to the front so we find it first.
2538 */
2539 if (READ_ONCE(req->iopoll_completed))
2540 list_add(&req->inflight_entry, &ctx->iopoll_list);
2541 else
2542 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2543
2544 /*
2545 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2546 * task context or in io worker task context. If current task context is
2547 * sq thread, we don't need to check whether should wake up sq thread.
2548 */
2549 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2550 wq_has_sleeper(&ctx->sq_data->wait))
2551 wake_up(&ctx->sq_data->wait);
2552 }
2553
2554 static inline void io_state_file_put(struct io_submit_state *state)
2555 {
2556 if (state->file_refs) {
2557 fput_many(state->file, state->file_refs);
2558 state->file_refs = 0;
2559 }
2560 }
2561
2562 /*
2563 * Get as many references to a file as we have IOs left in this submission,
2564 * assuming most submissions are for one file, or at least that each file
2565 * has more than one submission.
2566 */
2567 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2568 {
2569 if (!state)
2570 return fget(fd);
2571
2572 if (state->file_refs) {
2573 if (state->fd == fd) {
2574 state->file_refs--;
2575 return state->file;
2576 }
2577 io_state_file_put(state);
2578 }
2579 state->file = fget_many(fd, state->ios_left);
2580 if (unlikely(!state->file))
2581 return NULL;
2582
2583 state->fd = fd;
2584 state->file_refs = state->ios_left - 1;
2585 return state->file;
2586 }
2587
2588 static bool io_bdev_nowait(struct block_device *bdev)
2589 {
2590 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2591 }
2592
2593 /*
2594 * If we tracked the file through the SCM inflight mechanism, we could support
2595 * any file. For now, just ensure that anything potentially problematic is done
2596 * inline.
2597 */
2598 static bool __io_file_supports_async(struct file *file, int rw)
2599 {
2600 umode_t mode = file_inode(file)->i_mode;
2601
2602 if (S_ISBLK(mode)) {
2603 if (IS_ENABLED(CONFIG_BLOCK) &&
2604 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2605 return true;
2606 return false;
2607 }
2608 if (S_ISCHR(mode) || S_ISSOCK(mode))
2609 return true;
2610 if (S_ISREG(mode)) {
2611 if (IS_ENABLED(CONFIG_BLOCK) &&
2612 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2613 file->f_op != &io_uring_fops)
2614 return true;
2615 return false;
2616 }
2617
2618 /* any ->read/write should understand O_NONBLOCK */
2619 if (file->f_flags & O_NONBLOCK)
2620 return true;
2621
2622 if (!(file->f_mode & FMODE_NOWAIT))
2623 return false;
2624
2625 if (rw == READ)
2626 return file->f_op->read_iter != NULL;
2627
2628 return file->f_op->write_iter != NULL;
2629 }
2630
2631 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2632 {
2633 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2634 return true;
2635 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2636 return true;
2637
2638 return __io_file_supports_async(req->file, rw);
2639 }
2640
2641 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2642 {
2643 struct io_ring_ctx *ctx = req->ctx;
2644 struct kiocb *kiocb = &req->rw.kiocb;
2645 struct file *file = req->file;
2646 unsigned ioprio;
2647 int ret;
2648
2649 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2650 req->flags |= REQ_F_ISREG;
2651
2652 kiocb->ki_pos = READ_ONCE(sqe->off);
2653 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2654 req->flags |= REQ_F_CUR_POS;
2655 kiocb->ki_pos = file->f_pos;
2656 }
2657 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2658 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2659 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2660 if (unlikely(ret))
2661 return ret;
2662
2663 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2664 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2665 req->flags |= REQ_F_NOWAIT;
2666
2667 ioprio = READ_ONCE(sqe->ioprio);
2668 if (ioprio) {
2669 ret = ioprio_check_cap(ioprio);
2670 if (ret)
2671 return ret;
2672
2673 kiocb->ki_ioprio = ioprio;
2674 } else
2675 kiocb->ki_ioprio = get_current_ioprio();
2676
2677 if (ctx->flags & IORING_SETUP_IOPOLL) {
2678 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2679 !kiocb->ki_filp->f_op->iopoll)
2680 return -EOPNOTSUPP;
2681
2682 kiocb->ki_flags |= IOCB_HIPRI;
2683 kiocb->ki_complete = io_complete_rw_iopoll;
2684 req->iopoll_completed = 0;
2685 } else {
2686 if (kiocb->ki_flags & IOCB_HIPRI)
2687 return -EINVAL;
2688 kiocb->ki_complete = io_complete_rw;
2689 }
2690
2691 if (req->opcode == IORING_OP_READ_FIXED ||
2692 req->opcode == IORING_OP_WRITE_FIXED) {
2693 req->imu = NULL;
2694 io_req_set_rsrc_node(req);
2695 }
2696
2697 req->rw.addr = READ_ONCE(sqe->addr);
2698 req->rw.len = READ_ONCE(sqe->len);
2699 req->buf_index = READ_ONCE(sqe->buf_index);
2700 return 0;
2701 }
2702
2703 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2704 {
2705 switch (ret) {
2706 case -EIOCBQUEUED:
2707 break;
2708 case -ERESTARTSYS:
2709 case -ERESTARTNOINTR:
2710 case -ERESTARTNOHAND:
2711 case -ERESTART_RESTARTBLOCK:
2712 /*
2713 * We can't just restart the syscall, since previously
2714 * submitted sqes may already be in progress. Just fail this
2715 * IO with EINTR.
2716 */
2717 ret = -EINTR;
2718 fallthrough;
2719 default:
2720 kiocb->ki_complete(kiocb, ret, 0);
2721 }
2722 }
2723
2724 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2725 unsigned int issue_flags)
2726 {
2727 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2728 struct io_async_rw *io = req->async_data;
2729 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2730
2731 /* add previously done IO, if any */
2732 if (io && io->bytes_done > 0) {
2733 if (ret < 0)
2734 ret = io->bytes_done;
2735 else
2736 ret += io->bytes_done;
2737 }
2738
2739 if (req->flags & REQ_F_CUR_POS)
2740 req->file->f_pos = kiocb->ki_pos;
2741 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2742 __io_complete_rw(req, ret, 0, issue_flags);
2743 else
2744 io_rw_done(kiocb, ret);
2745
2746 if (check_reissue && req->flags & REQ_F_REISSUE) {
2747 req->flags &= ~REQ_F_REISSUE;
2748 if (io_resubmit_prep(req)) {
2749 req_ref_get(req);
2750 io_queue_async_work(req);
2751 } else {
2752 int cflags = 0;
2753
2754 req_set_fail_links(req);
2755 if (req->flags & REQ_F_BUFFER_SELECTED)
2756 cflags = io_put_rw_kbuf(req);
2757 __io_req_complete(req, issue_flags, ret, cflags);
2758 }
2759 }
2760 }
2761
2762 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2763 struct io_mapped_ubuf *imu)
2764 {
2765 size_t len = req->rw.len;
2766 u64 buf_end, buf_addr = req->rw.addr;
2767 size_t offset;
2768
2769 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2770 return -EFAULT;
2771 /* not inside the mapped region */
2772 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2773 return -EFAULT;
2774
2775 /*
2776 * May not be a start of buffer, set size appropriately
2777 * and advance us to the beginning.
2778 */
2779 offset = buf_addr - imu->ubuf;
2780 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2781
2782 if (offset) {
2783 /*
2784 * Don't use iov_iter_advance() here, as it's really slow for
2785 * using the latter parts of a big fixed buffer - it iterates
2786 * over each segment manually. We can cheat a bit here, because
2787 * we know that:
2788 *
2789 * 1) it's a BVEC iter, we set it up
2790 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2791 * first and last bvec
2792 *
2793 * So just find our index, and adjust the iterator afterwards.
2794 * If the offset is within the first bvec (or the whole first
2795 * bvec, just use iov_iter_advance(). This makes it easier
2796 * since we can just skip the first segment, which may not
2797 * be PAGE_SIZE aligned.
2798 */
2799 const struct bio_vec *bvec = imu->bvec;
2800
2801 if (offset <= bvec->bv_len) {
2802 iov_iter_advance(iter, offset);
2803 } else {
2804 unsigned long seg_skip;
2805
2806 /* skip first vec */
2807 offset -= bvec->bv_len;
2808 seg_skip = 1 + (offset >> PAGE_SHIFT);
2809
2810 iter->bvec = bvec + seg_skip;
2811 iter->nr_segs -= seg_skip;
2812 iter->count -= bvec->bv_len + offset;
2813 iter->iov_offset = offset & ~PAGE_MASK;
2814 }
2815 }
2816
2817 return 0;
2818 }
2819
2820 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2821 {
2822 struct io_ring_ctx *ctx = req->ctx;
2823 struct io_mapped_ubuf *imu = req->imu;
2824 u16 index, buf_index = req->buf_index;
2825
2826 if (likely(!imu)) {
2827 if (unlikely(buf_index >= ctx->nr_user_bufs))
2828 return -EFAULT;
2829 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2830 imu = READ_ONCE(ctx->user_bufs[index]);
2831 req->imu = imu;
2832 }
2833 return __io_import_fixed(req, rw, iter, imu);
2834 }
2835
2836 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2837 {
2838 if (needs_lock)
2839 mutex_unlock(&ctx->uring_lock);
2840 }
2841
2842 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2843 {
2844 /*
2845 * "Normal" inline submissions always hold the uring_lock, since we
2846 * grab it from the system call. Same is true for the SQPOLL offload.
2847 * The only exception is when we've detached the request and issue it
2848 * from an async worker thread, grab the lock for that case.
2849 */
2850 if (needs_lock)
2851 mutex_lock(&ctx->uring_lock);
2852 }
2853
2854 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2855 int bgid, struct io_buffer *kbuf,
2856 bool needs_lock)
2857 {
2858 struct io_buffer *head;
2859
2860 if (req->flags & REQ_F_BUFFER_SELECTED)
2861 return kbuf;
2862
2863 io_ring_submit_lock(req->ctx, needs_lock);
2864
2865 lockdep_assert_held(&req->ctx->uring_lock);
2866
2867 head = xa_load(&req->ctx->io_buffers, bgid);
2868 if (head) {
2869 if (!list_empty(&head->list)) {
2870 kbuf = list_last_entry(&head->list, struct io_buffer,
2871 list);
2872 list_del(&kbuf->list);
2873 } else {
2874 kbuf = head;
2875 xa_erase(&req->ctx->io_buffers, bgid);
2876 }
2877 if (*len > kbuf->len)
2878 *len = kbuf->len;
2879 } else {
2880 kbuf = ERR_PTR(-ENOBUFS);
2881 }
2882
2883 io_ring_submit_unlock(req->ctx, needs_lock);
2884
2885 return kbuf;
2886 }
2887
2888 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2889 bool needs_lock)
2890 {
2891 struct io_buffer *kbuf;
2892 u16 bgid;
2893
2894 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2895 bgid = req->buf_index;
2896 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2897 if (IS_ERR(kbuf))
2898 return kbuf;
2899 req->rw.addr = (u64) (unsigned long) kbuf;
2900 req->flags |= REQ_F_BUFFER_SELECTED;
2901 return u64_to_user_ptr(kbuf->addr);
2902 }
2903
2904 #ifdef CONFIG_COMPAT
2905 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2906 bool needs_lock)
2907 {
2908 struct compat_iovec __user *uiov;
2909 compat_ssize_t clen;
2910 void __user *buf;
2911 ssize_t len;
2912
2913 uiov = u64_to_user_ptr(req->rw.addr);
2914 if (!access_ok(uiov, sizeof(*uiov)))
2915 return -EFAULT;
2916 if (__get_user(clen, &uiov->iov_len))
2917 return -EFAULT;
2918 if (clen < 0)
2919 return -EINVAL;
2920
2921 len = clen;
2922 buf = io_rw_buffer_select(req, &len, needs_lock);
2923 if (IS_ERR(buf))
2924 return PTR_ERR(buf);
2925 iov[0].iov_base = buf;
2926 iov[0].iov_len = (compat_size_t) len;
2927 return 0;
2928 }
2929 #endif
2930
2931 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2932 bool needs_lock)
2933 {
2934 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2935 void __user *buf;
2936 ssize_t len;
2937
2938 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2939 return -EFAULT;
2940
2941 len = iov[0].iov_len;
2942 if (len < 0)
2943 return -EINVAL;
2944 buf = io_rw_buffer_select(req, &len, needs_lock);
2945 if (IS_ERR(buf))
2946 return PTR_ERR(buf);
2947 iov[0].iov_base = buf;
2948 iov[0].iov_len = len;
2949 return 0;
2950 }
2951
2952 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2953 bool needs_lock)
2954 {
2955 if (req->flags & REQ_F_BUFFER_SELECTED) {
2956 struct io_buffer *kbuf;
2957
2958 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2959 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2960 iov[0].iov_len = kbuf->len;
2961 return 0;
2962 }
2963 if (req->rw.len != 1)
2964 return -EINVAL;
2965
2966 #ifdef CONFIG_COMPAT
2967 if (req->ctx->compat)
2968 return io_compat_import(req, iov, needs_lock);
2969 #endif
2970
2971 return __io_iov_buffer_select(req, iov, needs_lock);
2972 }
2973
2974 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2975 struct iov_iter *iter, bool needs_lock)
2976 {
2977 void __user *buf = u64_to_user_ptr(req->rw.addr);
2978 size_t sqe_len = req->rw.len;
2979 u8 opcode = req->opcode;
2980 ssize_t ret;
2981
2982 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2983 *iovec = NULL;
2984 return io_import_fixed(req, rw, iter);
2985 }
2986
2987 /* buffer index only valid with fixed read/write, or buffer select */
2988 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2989 return -EINVAL;
2990
2991 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2992 if (req->flags & REQ_F_BUFFER_SELECT) {
2993 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2994 if (IS_ERR(buf))
2995 return PTR_ERR(buf);
2996 req->rw.len = sqe_len;
2997 }
2998
2999 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3000 *iovec = NULL;
3001 return ret;
3002 }
3003
3004 if (req->flags & REQ_F_BUFFER_SELECT) {
3005 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3006 if (!ret)
3007 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3008 *iovec = NULL;
3009 return ret;
3010 }
3011
3012 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3013 req->ctx->compat);
3014 }
3015
3016 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3017 {
3018 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3019 }
3020
3021 /*
3022 * For files that don't have ->read_iter() and ->write_iter(), handle them
3023 * by looping over ->read() or ->write() manually.
3024 */
3025 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3026 {
3027 struct kiocb *kiocb = &req->rw.kiocb;
3028 struct file *file = req->file;
3029 ssize_t ret = 0;
3030
3031 /*
3032 * Don't support polled IO through this interface, and we can't
3033 * support non-blocking either. For the latter, this just causes
3034 * the kiocb to be handled from an async context.
3035 */
3036 if (kiocb->ki_flags & IOCB_HIPRI)
3037 return -EOPNOTSUPP;
3038 if (kiocb->ki_flags & IOCB_NOWAIT)
3039 return -EAGAIN;
3040
3041 while (iov_iter_count(iter)) {
3042 struct iovec iovec;
3043 ssize_t nr;
3044
3045 if (!iov_iter_is_bvec(iter)) {
3046 iovec = iov_iter_iovec(iter);
3047 } else {
3048 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3049 iovec.iov_len = req->rw.len;
3050 }
3051
3052 if (rw == READ) {
3053 nr = file->f_op->read(file, iovec.iov_base,
3054 iovec.iov_len, io_kiocb_ppos(kiocb));
3055 } else {
3056 nr = file->f_op->write(file, iovec.iov_base,
3057 iovec.iov_len, io_kiocb_ppos(kiocb));
3058 }
3059
3060 if (nr < 0) {
3061 if (!ret)
3062 ret = nr;
3063 break;
3064 }
3065 ret += nr;
3066 if (nr != iovec.iov_len)
3067 break;
3068 req->rw.len -= nr;
3069 req->rw.addr += nr;
3070 iov_iter_advance(iter, nr);
3071 }
3072
3073 return ret;
3074 }
3075
3076 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3077 const struct iovec *fast_iov, struct iov_iter *iter)
3078 {
3079 struct io_async_rw *rw = req->async_data;
3080
3081 memcpy(&rw->iter, iter, sizeof(*iter));
3082 rw->free_iovec = iovec;
3083 rw->bytes_done = 0;
3084 /* can only be fixed buffers, no need to do anything */
3085 if (iov_iter_is_bvec(iter))
3086 return;
3087 if (!iovec) {
3088 unsigned iov_off = 0;
3089
3090 rw->iter.iov = rw->fast_iov;
3091 if (iter->iov != fast_iov) {
3092 iov_off = iter->iov - fast_iov;
3093 rw->iter.iov += iov_off;
3094 }
3095 if (rw->fast_iov != fast_iov)
3096 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3097 sizeof(struct iovec) * iter->nr_segs);
3098 } else {
3099 req->flags |= REQ_F_NEED_CLEANUP;
3100 }
3101 }
3102
3103 static inline int io_alloc_async_data(struct io_kiocb *req)
3104 {
3105 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3106 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3107 return req->async_data == NULL;
3108 }
3109
3110 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3111 const struct iovec *fast_iov,
3112 struct iov_iter *iter, bool force)
3113 {
3114 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3115 return 0;
3116 if (!req->async_data) {
3117 if (io_alloc_async_data(req)) {
3118 kfree(iovec);
3119 return -ENOMEM;
3120 }
3121
3122 io_req_map_rw(req, iovec, fast_iov, iter);
3123 }
3124 return 0;
3125 }
3126
3127 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3128 {
3129 struct io_async_rw *iorw = req->async_data;
3130 struct iovec *iov = iorw->fast_iov;
3131 int ret;
3132
3133 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3134 if (unlikely(ret < 0))
3135 return ret;
3136
3137 iorw->bytes_done = 0;
3138 iorw->free_iovec = iov;
3139 if (iov)
3140 req->flags |= REQ_F_NEED_CLEANUP;
3141 return 0;
3142 }
3143
3144 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3145 {
3146 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3147 return -EBADF;
3148 return io_prep_rw(req, sqe);
3149 }
3150
3151 /*
3152 * This is our waitqueue callback handler, registered through lock_page_async()
3153 * when we initially tried to do the IO with the iocb armed our waitqueue.
3154 * This gets called when the page is unlocked, and we generally expect that to
3155 * happen when the page IO is completed and the page is now uptodate. This will
3156 * queue a task_work based retry of the operation, attempting to copy the data
3157 * again. If the latter fails because the page was NOT uptodate, then we will
3158 * do a thread based blocking retry of the operation. That's the unexpected
3159 * slow path.
3160 */
3161 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3162 int sync, void *arg)
3163 {
3164 struct wait_page_queue *wpq;
3165 struct io_kiocb *req = wait->private;
3166 struct wait_page_key *key = arg;
3167
3168 wpq = container_of(wait, struct wait_page_queue, wait);
3169
3170 if (!wake_page_match(wpq, key))
3171 return 0;
3172
3173 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3174 list_del_init(&wait->entry);
3175
3176 /* submit ref gets dropped, acquire a new one */
3177 req_ref_get(req);
3178 io_req_task_queue(req);
3179 return 1;
3180 }
3181
3182 /*
3183 * This controls whether a given IO request should be armed for async page
3184 * based retry. If we return false here, the request is handed to the async
3185 * worker threads for retry. If we're doing buffered reads on a regular file,
3186 * we prepare a private wait_page_queue entry and retry the operation. This
3187 * will either succeed because the page is now uptodate and unlocked, or it
3188 * will register a callback when the page is unlocked at IO completion. Through
3189 * that callback, io_uring uses task_work to setup a retry of the operation.
3190 * That retry will attempt the buffered read again. The retry will generally
3191 * succeed, or in rare cases where it fails, we then fall back to using the
3192 * async worker threads for a blocking retry.
3193 */
3194 static bool io_rw_should_retry(struct io_kiocb *req)
3195 {
3196 struct io_async_rw *rw = req->async_data;
3197 struct wait_page_queue *wait = &rw->wpq;
3198 struct kiocb *kiocb = &req->rw.kiocb;
3199
3200 /* never retry for NOWAIT, we just complete with -EAGAIN */
3201 if (req->flags & REQ_F_NOWAIT)
3202 return false;
3203
3204 /* Only for buffered IO */
3205 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3206 return false;
3207
3208 /*
3209 * just use poll if we can, and don't attempt if the fs doesn't
3210 * support callback based unlocks
3211 */
3212 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3213 return false;
3214
3215 wait->wait.func = io_async_buf_func;
3216 wait->wait.private = req;
3217 wait->wait.flags = 0;
3218 INIT_LIST_HEAD(&wait->wait.entry);
3219 kiocb->ki_flags |= IOCB_WAITQ;
3220 kiocb->ki_flags &= ~IOCB_NOWAIT;
3221 kiocb->ki_waitq = wait;
3222 return true;
3223 }
3224
3225 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3226 {
3227 if (req->file->f_op->read_iter)
3228 return call_read_iter(req->file, &req->rw.kiocb, iter);
3229 else if (req->file->f_op->read)
3230 return loop_rw_iter(READ, req, iter);
3231 else
3232 return -EINVAL;
3233 }
3234
3235 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3236 {
3237 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3238 struct kiocb *kiocb = &req->rw.kiocb;
3239 struct iov_iter __iter, *iter = &__iter;
3240 struct io_async_rw *rw = req->async_data;
3241 ssize_t io_size, ret, ret2;
3242 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3243
3244 if (rw) {
3245 iter = &rw->iter;
3246 iovec = NULL;
3247 } else {
3248 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3249 if (ret < 0)
3250 return ret;
3251 }
3252 io_size = iov_iter_count(iter);
3253 req->result = io_size;
3254
3255 /* Ensure we clear previously set non-block flag */
3256 if (!force_nonblock)
3257 kiocb->ki_flags &= ~IOCB_NOWAIT;
3258 else
3259 kiocb->ki_flags |= IOCB_NOWAIT;
3260
3261 /* If the file doesn't support async, just async punt */
3262 if (force_nonblock && !io_file_supports_async(req, READ)) {
3263 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3264 return ret ?: -EAGAIN;
3265 }
3266
3267 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3268 if (unlikely(ret)) {
3269 kfree(iovec);
3270 return ret;
3271 }
3272
3273 ret = io_iter_do_read(req, iter);
3274
3275 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3276 req->flags &= ~REQ_F_REISSUE;
3277 /* IOPOLL retry should happen for io-wq threads */
3278 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3279 goto done;
3280 /* no retry on NONBLOCK nor RWF_NOWAIT */
3281 if (req->flags & REQ_F_NOWAIT)
3282 goto done;
3283 /* some cases will consume bytes even on error returns */
3284 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3285 ret = 0;
3286 } else if (ret == -EIOCBQUEUED) {
3287 goto out_free;
3288 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3289 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3290 /* read all, failed, already did sync or don't want to retry */
3291 goto done;
3292 }
3293
3294 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3295 if (ret2)
3296 return ret2;
3297
3298 iovec = NULL;
3299 rw = req->async_data;
3300 /* now use our persistent iterator, if we aren't already */
3301 iter = &rw->iter;
3302
3303 do {
3304 io_size -= ret;
3305 rw->bytes_done += ret;
3306 /* if we can retry, do so with the callbacks armed */
3307 if (!io_rw_should_retry(req)) {
3308 kiocb->ki_flags &= ~IOCB_WAITQ;
3309 return -EAGAIN;
3310 }
3311
3312 /*
3313 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3314 * we get -EIOCBQUEUED, then we'll get a notification when the
3315 * desired page gets unlocked. We can also get a partial read
3316 * here, and if we do, then just retry at the new offset.
3317 */
3318 ret = io_iter_do_read(req, iter);
3319 if (ret == -EIOCBQUEUED)
3320 return 0;
3321 /* we got some bytes, but not all. retry. */
3322 kiocb->ki_flags &= ~IOCB_WAITQ;
3323 } while (ret > 0 && ret < io_size);
3324 done:
3325 kiocb_done(kiocb, ret, issue_flags);
3326 out_free:
3327 /* it's faster to check here then delegate to kfree */
3328 if (iovec)
3329 kfree(iovec);
3330 return 0;
3331 }
3332
3333 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3334 {
3335 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3336 return -EBADF;
3337 return io_prep_rw(req, sqe);
3338 }
3339
3340 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3341 {
3342 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3343 struct kiocb *kiocb = &req->rw.kiocb;
3344 struct iov_iter __iter, *iter = &__iter;
3345 struct io_async_rw *rw = req->async_data;
3346 ssize_t ret, ret2, io_size;
3347 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3348
3349 if (rw) {
3350 iter = &rw->iter;
3351 iovec = NULL;
3352 } else {
3353 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3354 if (ret < 0)
3355 return ret;
3356 }
3357 io_size = iov_iter_count(iter);
3358 req->result = io_size;
3359
3360 /* Ensure we clear previously set non-block flag */
3361 if (!force_nonblock)
3362 kiocb->ki_flags &= ~IOCB_NOWAIT;
3363 else
3364 kiocb->ki_flags |= IOCB_NOWAIT;
3365
3366 /* If the file doesn't support async, just async punt */
3367 if (force_nonblock && !io_file_supports_async(req, WRITE))
3368 goto copy_iov;
3369
3370 /* file path doesn't support NOWAIT for non-direct_IO */
3371 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3372 (req->flags & REQ_F_ISREG))
3373 goto copy_iov;
3374
3375 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3376 if (unlikely(ret))
3377 goto out_free;
3378
3379 /*
3380 * Open-code file_start_write here to grab freeze protection,
3381 * which will be released by another thread in
3382 * io_complete_rw(). Fool lockdep by telling it the lock got
3383 * released so that it doesn't complain about the held lock when
3384 * we return to userspace.
3385 */
3386 if (req->flags & REQ_F_ISREG) {
3387 sb_start_write(file_inode(req->file)->i_sb);
3388 __sb_writers_release(file_inode(req->file)->i_sb,
3389 SB_FREEZE_WRITE);
3390 }
3391 kiocb->ki_flags |= IOCB_WRITE;
3392
3393 if (req->file->f_op->write_iter)
3394 ret2 = call_write_iter(req->file, kiocb, iter);
3395 else if (req->file->f_op->write)
3396 ret2 = loop_rw_iter(WRITE, req, iter);
3397 else
3398 ret2 = -EINVAL;
3399
3400 if (req->flags & REQ_F_REISSUE) {
3401 req->flags &= ~REQ_F_REISSUE;
3402 ret2 = -EAGAIN;
3403 }
3404
3405 /*
3406 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3407 * retry them without IOCB_NOWAIT.
3408 */
3409 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3410 ret2 = -EAGAIN;
3411 /* no retry on NONBLOCK nor RWF_NOWAIT */
3412 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3413 goto done;
3414 if (!force_nonblock || ret2 != -EAGAIN) {
3415 /* IOPOLL retry should happen for io-wq threads */
3416 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3417 goto copy_iov;
3418 done:
3419 kiocb_done(kiocb, ret2, issue_flags);
3420 } else {
3421 copy_iov:
3422 /* some cases will consume bytes even on error returns */
3423 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3424 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3425 return ret ?: -EAGAIN;
3426 }
3427 out_free:
3428 /* it's reportedly faster than delegating the null check to kfree() */
3429 if (iovec)
3430 kfree(iovec);
3431 return ret;
3432 }
3433
3434 static int io_renameat_prep(struct io_kiocb *req,
3435 const struct io_uring_sqe *sqe)
3436 {
3437 struct io_rename *ren = &req->rename;
3438 const char __user *oldf, *newf;
3439
3440 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3441 return -EBADF;
3442
3443 ren->old_dfd = READ_ONCE(sqe->fd);
3444 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3445 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3446 ren->new_dfd = READ_ONCE(sqe->len);
3447 ren->flags = READ_ONCE(sqe->rename_flags);
3448
3449 ren->oldpath = getname(oldf);
3450 if (IS_ERR(ren->oldpath))
3451 return PTR_ERR(ren->oldpath);
3452
3453 ren->newpath = getname(newf);
3454 if (IS_ERR(ren->newpath)) {
3455 putname(ren->oldpath);
3456 return PTR_ERR(ren->newpath);
3457 }
3458
3459 req->flags |= REQ_F_NEED_CLEANUP;
3460 return 0;
3461 }
3462
3463 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3464 {
3465 struct io_rename *ren = &req->rename;
3466 int ret;
3467
3468 if (issue_flags & IO_URING_F_NONBLOCK)
3469 return -EAGAIN;
3470
3471 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3472 ren->newpath, ren->flags);
3473
3474 req->flags &= ~REQ_F_NEED_CLEANUP;
3475 if (ret < 0)
3476 req_set_fail_links(req);
3477 io_req_complete(req, ret);
3478 return 0;
3479 }
3480
3481 static int io_unlinkat_prep(struct io_kiocb *req,
3482 const struct io_uring_sqe *sqe)
3483 {
3484 struct io_unlink *un = &req->unlink;
3485 const char __user *fname;
3486
3487 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3488 return -EBADF;
3489
3490 un->dfd = READ_ONCE(sqe->fd);
3491
3492 un->flags = READ_ONCE(sqe->unlink_flags);
3493 if (un->flags & ~AT_REMOVEDIR)
3494 return -EINVAL;
3495
3496 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3497 un->filename = getname(fname);
3498 if (IS_ERR(un->filename))
3499 return PTR_ERR(un->filename);
3500
3501 req->flags |= REQ_F_NEED_CLEANUP;
3502 return 0;
3503 }
3504
3505 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3506 {
3507 struct io_unlink *un = &req->unlink;
3508 int ret;
3509
3510 if (issue_flags & IO_URING_F_NONBLOCK)
3511 return -EAGAIN;
3512
3513 if (un->flags & AT_REMOVEDIR)
3514 ret = do_rmdir(un->dfd, un->filename);
3515 else
3516 ret = do_unlinkat(un->dfd, un->filename);
3517
3518 req->flags &= ~REQ_F_NEED_CLEANUP;
3519 if (ret < 0)
3520 req_set_fail_links(req);
3521 io_req_complete(req, ret);
3522 return 0;
3523 }
3524
3525 static int io_shutdown_prep(struct io_kiocb *req,
3526 const struct io_uring_sqe *sqe)
3527 {
3528 #if defined(CONFIG_NET)
3529 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3530 return -EINVAL;
3531 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3532 sqe->buf_index)
3533 return -EINVAL;
3534
3535 req->shutdown.how = READ_ONCE(sqe->len);
3536 return 0;
3537 #else
3538 return -EOPNOTSUPP;
3539 #endif
3540 }
3541
3542 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3543 {
3544 #if defined(CONFIG_NET)
3545 struct socket *sock;
3546 int ret;
3547
3548 if (issue_flags & IO_URING_F_NONBLOCK)
3549 return -EAGAIN;
3550
3551 sock = sock_from_file(req->file);
3552 if (unlikely(!sock))
3553 return -ENOTSOCK;
3554
3555 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3556 if (ret < 0)
3557 req_set_fail_links(req);
3558 io_req_complete(req, ret);
3559 return 0;
3560 #else
3561 return -EOPNOTSUPP;
3562 #endif
3563 }
3564
3565 static int __io_splice_prep(struct io_kiocb *req,
3566 const struct io_uring_sqe *sqe)
3567 {
3568 struct io_splice* sp = &req->splice;
3569 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3570
3571 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3572 return -EINVAL;
3573
3574 sp->file_in = NULL;
3575 sp->len = READ_ONCE(sqe->len);
3576 sp->flags = READ_ONCE(sqe->splice_flags);
3577
3578 if (unlikely(sp->flags & ~valid_flags))
3579 return -EINVAL;
3580
3581 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3582 (sp->flags & SPLICE_F_FD_IN_FIXED));
3583 if (!sp->file_in)
3584 return -EBADF;
3585 req->flags |= REQ_F_NEED_CLEANUP;
3586 return 0;
3587 }
3588
3589 static int io_tee_prep(struct io_kiocb *req,
3590 const struct io_uring_sqe *sqe)
3591 {
3592 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3593 return -EINVAL;
3594 return __io_splice_prep(req, sqe);
3595 }
3596
3597 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3598 {
3599 struct io_splice *sp = &req->splice;
3600 struct file *in = sp->file_in;
3601 struct file *out = sp->file_out;
3602 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3603 long ret = 0;
3604
3605 if (issue_flags & IO_URING_F_NONBLOCK)
3606 return -EAGAIN;
3607 if (sp->len)
3608 ret = do_tee(in, out, sp->len, flags);
3609
3610 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3611 io_put_file(in);
3612 req->flags &= ~REQ_F_NEED_CLEANUP;
3613
3614 if (ret != sp->len)
3615 req_set_fail_links(req);
3616 io_req_complete(req, ret);
3617 return 0;
3618 }
3619
3620 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3621 {
3622 struct io_splice* sp = &req->splice;
3623
3624 sp->off_in = READ_ONCE(sqe->splice_off_in);
3625 sp->off_out = READ_ONCE(sqe->off);
3626 return __io_splice_prep(req, sqe);
3627 }
3628
3629 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3630 {
3631 struct io_splice *sp = &req->splice;
3632 struct file *in = sp->file_in;
3633 struct file *out = sp->file_out;
3634 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3635 loff_t *poff_in, *poff_out;
3636 long ret = 0;
3637
3638 if (issue_flags & IO_URING_F_NONBLOCK)
3639 return -EAGAIN;
3640
3641 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3642 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3643
3644 if (sp->len)
3645 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3646
3647 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3648 io_put_file(in);
3649 req->flags &= ~REQ_F_NEED_CLEANUP;
3650
3651 if (ret != sp->len)
3652 req_set_fail_links(req);
3653 io_req_complete(req, ret);
3654 return 0;
3655 }
3656
3657 /*
3658 * IORING_OP_NOP just posts a completion event, nothing else.
3659 */
3660 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3661 {
3662 struct io_ring_ctx *ctx = req->ctx;
3663
3664 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3665 return -EINVAL;
3666
3667 __io_req_complete(req, issue_flags, 0, 0);
3668 return 0;
3669 }
3670
3671 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3672 {
3673 struct io_ring_ctx *ctx = req->ctx;
3674
3675 if (!req->file)
3676 return -EBADF;
3677
3678 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3679 return -EINVAL;
3680 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3681 return -EINVAL;
3682
3683 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3684 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3685 return -EINVAL;
3686
3687 req->sync.off = READ_ONCE(sqe->off);
3688 req->sync.len = READ_ONCE(sqe->len);
3689 return 0;
3690 }
3691
3692 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3693 {
3694 loff_t end = req->sync.off + req->sync.len;
3695 int ret;
3696
3697 /* fsync always requires a blocking context */
3698 if (issue_flags & IO_URING_F_NONBLOCK)
3699 return -EAGAIN;
3700
3701 ret = vfs_fsync_range(req->file, req->sync.off,
3702 end > 0 ? end : LLONG_MAX,
3703 req->sync.flags & IORING_FSYNC_DATASYNC);
3704 if (ret < 0)
3705 req_set_fail_links(req);
3706 io_req_complete(req, ret);
3707 return 0;
3708 }
3709
3710 static int io_fallocate_prep(struct io_kiocb *req,
3711 const struct io_uring_sqe *sqe)
3712 {
3713 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3714 return -EINVAL;
3715 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3716 return -EINVAL;
3717
3718 req->sync.off = READ_ONCE(sqe->off);
3719 req->sync.len = READ_ONCE(sqe->addr);
3720 req->sync.mode = READ_ONCE(sqe->len);
3721 return 0;
3722 }
3723
3724 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3725 {
3726 int ret;
3727
3728 /* fallocate always requiring blocking context */
3729 if (issue_flags & IO_URING_F_NONBLOCK)
3730 return -EAGAIN;
3731 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3732 req->sync.len);
3733 if (ret < 0)
3734 req_set_fail_links(req);
3735 io_req_complete(req, ret);
3736 return 0;
3737 }
3738
3739 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3740 {
3741 const char __user *fname;
3742 int ret;
3743
3744 if (unlikely(sqe->ioprio || sqe->buf_index))
3745 return -EINVAL;
3746 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3747 return -EBADF;
3748
3749 /* open.how should be already initialised */
3750 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3751 req->open.how.flags |= O_LARGEFILE;
3752
3753 req->open.dfd = READ_ONCE(sqe->fd);
3754 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3755 req->open.filename = getname(fname);
3756 if (IS_ERR(req->open.filename)) {
3757 ret = PTR_ERR(req->open.filename);
3758 req->open.filename = NULL;
3759 return ret;
3760 }
3761 req->open.nofile = rlimit(RLIMIT_NOFILE);
3762 req->flags |= REQ_F_NEED_CLEANUP;
3763 return 0;
3764 }
3765
3766 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3767 {
3768 u64 flags, mode;
3769
3770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3771 return -EINVAL;
3772 mode = READ_ONCE(sqe->len);
3773 flags = READ_ONCE(sqe->open_flags);
3774 req->open.how = build_open_how(flags, mode);
3775 return __io_openat_prep(req, sqe);
3776 }
3777
3778 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3779 {
3780 struct open_how __user *how;
3781 size_t len;
3782 int ret;
3783
3784 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3785 return -EINVAL;
3786 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3787 len = READ_ONCE(sqe->len);
3788 if (len < OPEN_HOW_SIZE_VER0)
3789 return -EINVAL;
3790
3791 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3792 len);
3793 if (ret)
3794 return ret;
3795
3796 return __io_openat_prep(req, sqe);
3797 }
3798
3799 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3800 {
3801 struct open_flags op;
3802 struct file *file;
3803 bool nonblock_set;
3804 bool resolve_nonblock;
3805 int ret;
3806
3807 ret = build_open_flags(&req->open.how, &op);
3808 if (ret)
3809 goto err;
3810 nonblock_set = op.open_flag & O_NONBLOCK;
3811 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3812 if (issue_flags & IO_URING_F_NONBLOCK) {
3813 /*
3814 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3815 * it'll always -EAGAIN
3816 */
3817 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3818 return -EAGAIN;
3819 op.lookup_flags |= LOOKUP_CACHED;
3820 op.open_flag |= O_NONBLOCK;
3821 }
3822
3823 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3824 if (ret < 0)
3825 goto err;
3826
3827 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3828 /* only retry if RESOLVE_CACHED wasn't already set by application */
3829 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
3830 file == ERR_PTR(-EAGAIN)) {
3831 /*
3832 * We could hang on to this 'fd', but seems like marginal
3833 * gain for something that is now known to be a slower path.
3834 * So just put it, and we'll get a new one when we retry.
3835 */
3836 put_unused_fd(ret);
3837 return -EAGAIN;
3838 }
3839
3840 if (IS_ERR(file)) {
3841 put_unused_fd(ret);
3842 ret = PTR_ERR(file);
3843 } else {
3844 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3845 file->f_flags &= ~O_NONBLOCK;
3846 fsnotify_open(file);
3847 fd_install(ret, file);
3848 }
3849 err:
3850 putname(req->open.filename);
3851 req->flags &= ~REQ_F_NEED_CLEANUP;
3852 if (ret < 0)
3853 req_set_fail_links(req);
3854 __io_req_complete(req, issue_flags, ret, 0);
3855 return 0;
3856 }
3857
3858 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3859 {
3860 return io_openat2(req, issue_flags);
3861 }
3862
3863 static int io_remove_buffers_prep(struct io_kiocb *req,
3864 const struct io_uring_sqe *sqe)
3865 {
3866 struct io_provide_buf *p = &req->pbuf;
3867 u64 tmp;
3868
3869 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3870 return -EINVAL;
3871
3872 tmp = READ_ONCE(sqe->fd);
3873 if (!tmp || tmp > USHRT_MAX)
3874 return -EINVAL;
3875
3876 memset(p, 0, sizeof(*p));
3877 p->nbufs = tmp;
3878 p->bgid = READ_ONCE(sqe->buf_group);
3879 return 0;
3880 }
3881
3882 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3883 int bgid, unsigned nbufs)
3884 {
3885 unsigned i = 0;
3886
3887 /* shouldn't happen */
3888 if (!nbufs)
3889 return 0;
3890
3891 /* the head kbuf is the list itself */
3892 while (!list_empty(&buf->list)) {
3893 struct io_buffer *nxt;
3894
3895 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3896 list_del(&nxt->list);
3897 kfree(nxt);
3898 if (++i == nbufs)
3899 return i;
3900 }
3901 i++;
3902 kfree(buf);
3903 xa_erase(&ctx->io_buffers, bgid);
3904
3905 return i;
3906 }
3907
3908 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3909 {
3910 struct io_provide_buf *p = &req->pbuf;
3911 struct io_ring_ctx *ctx = req->ctx;
3912 struct io_buffer *head;
3913 int ret = 0;
3914 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3915
3916 io_ring_submit_lock(ctx, !force_nonblock);
3917
3918 lockdep_assert_held(&ctx->uring_lock);
3919
3920 ret = -ENOENT;
3921 head = xa_load(&ctx->io_buffers, p->bgid);
3922 if (head)
3923 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3924 if (ret < 0)
3925 req_set_fail_links(req);
3926
3927 /* complete before unlock, IOPOLL may need the lock */
3928 __io_req_complete(req, issue_flags, ret, 0);
3929 io_ring_submit_unlock(ctx, !force_nonblock);
3930 return 0;
3931 }
3932
3933 static int io_provide_buffers_prep(struct io_kiocb *req,
3934 const struct io_uring_sqe *sqe)
3935 {
3936 unsigned long size, tmp_check;
3937 struct io_provide_buf *p = &req->pbuf;
3938 u64 tmp;
3939
3940 if (sqe->ioprio || sqe->rw_flags)
3941 return -EINVAL;
3942
3943 tmp = READ_ONCE(sqe->fd);
3944 if (!tmp || tmp > USHRT_MAX)
3945 return -E2BIG;
3946 p->nbufs = tmp;
3947 p->addr = READ_ONCE(sqe->addr);
3948 p->len = READ_ONCE(sqe->len);
3949
3950 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3951 &size))
3952 return -EOVERFLOW;
3953 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3954 return -EOVERFLOW;
3955
3956 size = (unsigned long)p->len * p->nbufs;
3957 if (!access_ok(u64_to_user_ptr(p->addr), size))
3958 return -EFAULT;
3959
3960 p->bgid = READ_ONCE(sqe->buf_group);
3961 tmp = READ_ONCE(sqe->off);
3962 if (tmp > USHRT_MAX)
3963 return -E2BIG;
3964 p->bid = tmp;
3965 return 0;
3966 }
3967
3968 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3969 {
3970 struct io_buffer *buf;
3971 u64 addr = pbuf->addr;
3972 int i, bid = pbuf->bid;
3973
3974 for (i = 0; i < pbuf->nbufs; i++) {
3975 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3976 if (!buf)
3977 break;
3978
3979 buf->addr = addr;
3980 buf->len = pbuf->len;
3981 buf->bid = bid;
3982 addr += pbuf->len;
3983 bid++;
3984 if (!*head) {
3985 INIT_LIST_HEAD(&buf->list);
3986 *head = buf;
3987 } else {
3988 list_add_tail(&buf->list, &(*head)->list);
3989 }
3990 }
3991
3992 return i ? i : -ENOMEM;
3993 }
3994
3995 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
3996 {
3997 struct io_provide_buf *p = &req->pbuf;
3998 struct io_ring_ctx *ctx = req->ctx;
3999 struct io_buffer *head, *list;
4000 int ret = 0;
4001 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4002
4003 io_ring_submit_lock(ctx, !force_nonblock);
4004
4005 lockdep_assert_held(&ctx->uring_lock);
4006
4007 list = head = xa_load(&ctx->io_buffers, p->bgid);
4008
4009 ret = io_add_buffers(p, &head);
4010 if (ret >= 0 && !list) {
4011 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4012 if (ret < 0)
4013 __io_remove_buffers(ctx, head, p->bgid, -1U);
4014 }
4015 if (ret < 0)
4016 req_set_fail_links(req);
4017 /* complete before unlock, IOPOLL may need the lock */
4018 __io_req_complete(req, issue_flags, ret, 0);
4019 io_ring_submit_unlock(ctx, !force_nonblock);
4020 return 0;
4021 }
4022
4023 static int io_epoll_ctl_prep(struct io_kiocb *req,
4024 const struct io_uring_sqe *sqe)
4025 {
4026 #if defined(CONFIG_EPOLL)
4027 if (sqe->ioprio || sqe->buf_index)
4028 return -EINVAL;
4029 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4030 return -EINVAL;
4031
4032 req->epoll.epfd = READ_ONCE(sqe->fd);
4033 req->epoll.op = READ_ONCE(sqe->len);
4034 req->epoll.fd = READ_ONCE(sqe->off);
4035
4036 if (ep_op_has_event(req->epoll.op)) {
4037 struct epoll_event __user *ev;
4038
4039 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4040 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4041 return -EFAULT;
4042 }
4043
4044 return 0;
4045 #else
4046 return -EOPNOTSUPP;
4047 #endif
4048 }
4049
4050 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4051 {
4052 #if defined(CONFIG_EPOLL)
4053 struct io_epoll *ie = &req->epoll;
4054 int ret;
4055 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4056
4057 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4058 if (force_nonblock && ret == -EAGAIN)
4059 return -EAGAIN;
4060
4061 if (ret < 0)
4062 req_set_fail_links(req);
4063 __io_req_complete(req, issue_flags, ret, 0);
4064 return 0;
4065 #else
4066 return -EOPNOTSUPP;
4067 #endif
4068 }
4069
4070 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4071 {
4072 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4073 if (sqe->ioprio || sqe->buf_index || sqe->off)
4074 return -EINVAL;
4075 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4076 return -EINVAL;
4077
4078 req->madvise.addr = READ_ONCE(sqe->addr);
4079 req->madvise.len = READ_ONCE(sqe->len);
4080 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4081 return 0;
4082 #else
4083 return -EOPNOTSUPP;
4084 #endif
4085 }
4086
4087 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4088 {
4089 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4090 struct io_madvise *ma = &req->madvise;
4091 int ret;
4092
4093 if (issue_flags & IO_URING_F_NONBLOCK)
4094 return -EAGAIN;
4095
4096 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4097 if (ret < 0)
4098 req_set_fail_links(req);
4099 io_req_complete(req, ret);
4100 return 0;
4101 #else
4102 return -EOPNOTSUPP;
4103 #endif
4104 }
4105
4106 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4107 {
4108 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4109 return -EINVAL;
4110 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4111 return -EINVAL;
4112
4113 req->fadvise.offset = READ_ONCE(sqe->off);
4114 req->fadvise.len = READ_ONCE(sqe->len);
4115 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4116 return 0;
4117 }
4118
4119 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4120 {
4121 struct io_fadvise *fa = &req->fadvise;
4122 int ret;
4123
4124 if (issue_flags & IO_URING_F_NONBLOCK) {
4125 switch (fa->advice) {
4126 case POSIX_FADV_NORMAL:
4127 case POSIX_FADV_RANDOM:
4128 case POSIX_FADV_SEQUENTIAL:
4129 break;
4130 default:
4131 return -EAGAIN;
4132 }
4133 }
4134
4135 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4136 if (ret < 0)
4137 req_set_fail_links(req);
4138 __io_req_complete(req, issue_flags, ret, 0);
4139 return 0;
4140 }
4141
4142 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4143 {
4144 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4145 return -EINVAL;
4146 if (sqe->ioprio || sqe->buf_index)
4147 return -EINVAL;
4148 if (req->flags & REQ_F_FIXED_FILE)
4149 return -EBADF;
4150
4151 req->statx.dfd = READ_ONCE(sqe->fd);
4152 req->statx.mask = READ_ONCE(sqe->len);
4153 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4154 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4155 req->statx.flags = READ_ONCE(sqe->statx_flags);
4156
4157 return 0;
4158 }
4159
4160 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4161 {
4162 struct io_statx *ctx = &req->statx;
4163 int ret;
4164
4165 if (issue_flags & IO_URING_F_NONBLOCK)
4166 return -EAGAIN;
4167
4168 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4169 ctx->buffer);
4170
4171 if (ret < 0)
4172 req_set_fail_links(req);
4173 io_req_complete(req, ret);
4174 return 0;
4175 }
4176
4177 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4178 {
4179 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4180 return -EINVAL;
4181 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4182 sqe->rw_flags || sqe->buf_index)
4183 return -EINVAL;
4184 if (req->flags & REQ_F_FIXED_FILE)
4185 return -EBADF;
4186
4187 req->close.fd = READ_ONCE(sqe->fd);
4188 return 0;
4189 }
4190
4191 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4192 {
4193 struct files_struct *files = current->files;
4194 struct io_close *close = &req->close;
4195 struct fdtable *fdt;
4196 struct file *file = NULL;
4197 int ret = -EBADF;
4198
4199 spin_lock(&files->file_lock);
4200 fdt = files_fdtable(files);
4201 if (close->fd >= fdt->max_fds) {
4202 spin_unlock(&files->file_lock);
4203 goto err;
4204 }
4205 file = fdt->fd[close->fd];
4206 if (!file || file->f_op == &io_uring_fops) {
4207 spin_unlock(&files->file_lock);
4208 file = NULL;
4209 goto err;
4210 }
4211
4212 /* if the file has a flush method, be safe and punt to async */
4213 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4214 spin_unlock(&files->file_lock);
4215 return -EAGAIN;
4216 }
4217
4218 ret = __close_fd_get_file(close->fd, &file);
4219 spin_unlock(&files->file_lock);
4220 if (ret < 0) {
4221 if (ret == -ENOENT)
4222 ret = -EBADF;
4223 goto err;
4224 }
4225
4226 /* No ->flush() or already async, safely close from here */
4227 ret = filp_close(file, current->files);
4228 err:
4229 if (ret < 0)
4230 req_set_fail_links(req);
4231 if (file)
4232 fput(file);
4233 __io_req_complete(req, issue_flags, ret, 0);
4234 return 0;
4235 }
4236
4237 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4238 {
4239 struct io_ring_ctx *ctx = req->ctx;
4240
4241 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4242 return -EINVAL;
4243 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4244 return -EINVAL;
4245
4246 req->sync.off = READ_ONCE(sqe->off);
4247 req->sync.len = READ_ONCE(sqe->len);
4248 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4249 return 0;
4250 }
4251
4252 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4253 {
4254 int ret;
4255
4256 /* sync_file_range always requires a blocking context */
4257 if (issue_flags & IO_URING_F_NONBLOCK)
4258 return -EAGAIN;
4259
4260 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4261 req->sync.flags);
4262 if (ret < 0)
4263 req_set_fail_links(req);
4264 io_req_complete(req, ret);
4265 return 0;
4266 }
4267
4268 #if defined(CONFIG_NET)
4269 static int io_setup_async_msg(struct io_kiocb *req,
4270 struct io_async_msghdr *kmsg)
4271 {
4272 struct io_async_msghdr *async_msg = req->async_data;
4273
4274 if (async_msg)
4275 return -EAGAIN;
4276 if (io_alloc_async_data(req)) {
4277 kfree(kmsg->free_iov);
4278 return -ENOMEM;
4279 }
4280 async_msg = req->async_data;
4281 req->flags |= REQ_F_NEED_CLEANUP;
4282 memcpy(async_msg, kmsg, sizeof(*kmsg));
4283 async_msg->msg.msg_name = &async_msg->addr;
4284 /* if were using fast_iov, set it to the new one */
4285 if (!async_msg->free_iov)
4286 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4287
4288 return -EAGAIN;
4289 }
4290
4291 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4292 struct io_async_msghdr *iomsg)
4293 {
4294 iomsg->msg.msg_name = &iomsg->addr;
4295 iomsg->free_iov = iomsg->fast_iov;
4296 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4297 req->sr_msg.msg_flags, &iomsg->free_iov);
4298 }
4299
4300 static int io_sendmsg_prep_async(struct io_kiocb *req)
4301 {
4302 int ret;
4303
4304 ret = io_sendmsg_copy_hdr(req, req->async_data);
4305 if (!ret)
4306 req->flags |= REQ_F_NEED_CLEANUP;
4307 return ret;
4308 }
4309
4310 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4311 {
4312 struct io_sr_msg *sr = &req->sr_msg;
4313
4314 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4315 return -EINVAL;
4316
4317 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4318 sr->len = READ_ONCE(sqe->len);
4319 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4320 if (sr->msg_flags & MSG_DONTWAIT)
4321 req->flags |= REQ_F_NOWAIT;
4322
4323 #ifdef CONFIG_COMPAT
4324 if (req->ctx->compat)
4325 sr->msg_flags |= MSG_CMSG_COMPAT;
4326 #endif
4327 return 0;
4328 }
4329
4330 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4331 {
4332 struct io_async_msghdr iomsg, *kmsg;
4333 struct socket *sock;
4334 unsigned flags;
4335 int min_ret = 0;
4336 int ret;
4337
4338 sock = sock_from_file(req->file);
4339 if (unlikely(!sock))
4340 return -ENOTSOCK;
4341
4342 kmsg = req->async_data;
4343 if (!kmsg) {
4344 ret = io_sendmsg_copy_hdr(req, &iomsg);
4345 if (ret)
4346 return ret;
4347 kmsg = &iomsg;
4348 }
4349
4350 flags = req->sr_msg.msg_flags;
4351 if (issue_flags & IO_URING_F_NONBLOCK)
4352 flags |= MSG_DONTWAIT;
4353 if (flags & MSG_WAITALL)
4354 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4355
4356 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4357 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4358 return io_setup_async_msg(req, kmsg);
4359 if (ret == -ERESTARTSYS)
4360 ret = -EINTR;
4361
4362 /* fast path, check for non-NULL to avoid function call */
4363 if (kmsg->free_iov)
4364 kfree(kmsg->free_iov);
4365 req->flags &= ~REQ_F_NEED_CLEANUP;
4366 if (ret < min_ret)
4367 req_set_fail_links(req);
4368 __io_req_complete(req, issue_flags, ret, 0);
4369 return 0;
4370 }
4371
4372 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4373 {
4374 struct io_sr_msg *sr = &req->sr_msg;
4375 struct msghdr msg;
4376 struct iovec iov;
4377 struct socket *sock;
4378 unsigned flags;
4379 int min_ret = 0;
4380 int ret;
4381
4382 sock = sock_from_file(req->file);
4383 if (unlikely(!sock))
4384 return -ENOTSOCK;
4385
4386 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4387 if (unlikely(ret))
4388 return ret;
4389
4390 msg.msg_name = NULL;
4391 msg.msg_control = NULL;
4392 msg.msg_controllen = 0;
4393 msg.msg_namelen = 0;
4394
4395 flags = req->sr_msg.msg_flags;
4396 if (issue_flags & IO_URING_F_NONBLOCK)
4397 flags |= MSG_DONTWAIT;
4398 if (flags & MSG_WAITALL)
4399 min_ret = iov_iter_count(&msg.msg_iter);
4400
4401 msg.msg_flags = flags;
4402 ret = sock_sendmsg(sock, &msg);
4403 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4404 return -EAGAIN;
4405 if (ret == -ERESTARTSYS)
4406 ret = -EINTR;
4407
4408 if (ret < min_ret)
4409 req_set_fail_links(req);
4410 __io_req_complete(req, issue_flags, ret, 0);
4411 return 0;
4412 }
4413
4414 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4415 struct io_async_msghdr *iomsg)
4416 {
4417 struct io_sr_msg *sr = &req->sr_msg;
4418 struct iovec __user *uiov;
4419 size_t iov_len;
4420 int ret;
4421
4422 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4423 &iomsg->uaddr, &uiov, &iov_len);
4424 if (ret)
4425 return ret;
4426
4427 if (req->flags & REQ_F_BUFFER_SELECT) {
4428 if (iov_len > 1)
4429 return -EINVAL;
4430 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4431 return -EFAULT;
4432 sr->len = iomsg->fast_iov[0].iov_len;
4433 iomsg->free_iov = NULL;
4434 } else {
4435 iomsg->free_iov = iomsg->fast_iov;
4436 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4437 &iomsg->free_iov, &iomsg->msg.msg_iter,
4438 false);
4439 if (ret > 0)
4440 ret = 0;
4441 }
4442
4443 return ret;
4444 }
4445
4446 #ifdef CONFIG_COMPAT
4447 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4448 struct io_async_msghdr *iomsg)
4449 {
4450 struct io_sr_msg *sr = &req->sr_msg;
4451 struct compat_iovec __user *uiov;
4452 compat_uptr_t ptr;
4453 compat_size_t len;
4454 int ret;
4455
4456 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4457 &ptr, &len);
4458 if (ret)
4459 return ret;
4460
4461 uiov = compat_ptr(ptr);
4462 if (req->flags & REQ_F_BUFFER_SELECT) {
4463 compat_ssize_t clen;
4464
4465 if (len > 1)
4466 return -EINVAL;
4467 if (!access_ok(uiov, sizeof(*uiov)))
4468 return -EFAULT;
4469 if (__get_user(clen, &uiov->iov_len))
4470 return -EFAULT;
4471 if (clen < 0)
4472 return -EINVAL;
4473 sr->len = clen;
4474 iomsg->free_iov = NULL;
4475 } else {
4476 iomsg->free_iov = iomsg->fast_iov;
4477 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4478 UIO_FASTIOV, &iomsg->free_iov,
4479 &iomsg->msg.msg_iter, true);
4480 if (ret < 0)
4481 return ret;
4482 }
4483
4484 return 0;
4485 }
4486 #endif
4487
4488 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4489 struct io_async_msghdr *iomsg)
4490 {
4491 iomsg->msg.msg_name = &iomsg->addr;
4492
4493 #ifdef CONFIG_COMPAT
4494 if (req->ctx->compat)
4495 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4496 #endif
4497
4498 return __io_recvmsg_copy_hdr(req, iomsg);
4499 }
4500
4501 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4502 bool needs_lock)
4503 {
4504 struct io_sr_msg *sr = &req->sr_msg;
4505 struct io_buffer *kbuf;
4506
4507 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4508 if (IS_ERR(kbuf))
4509 return kbuf;
4510
4511 sr->kbuf = kbuf;
4512 req->flags |= REQ_F_BUFFER_SELECTED;
4513 return kbuf;
4514 }
4515
4516 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4517 {
4518 return io_put_kbuf(req, req->sr_msg.kbuf);
4519 }
4520
4521 static int io_recvmsg_prep_async(struct io_kiocb *req)
4522 {
4523 int ret;
4524
4525 ret = io_recvmsg_copy_hdr(req, req->async_data);
4526 if (!ret)
4527 req->flags |= REQ_F_NEED_CLEANUP;
4528 return ret;
4529 }
4530
4531 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4532 {
4533 struct io_sr_msg *sr = &req->sr_msg;
4534
4535 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4536 return -EINVAL;
4537
4538 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4539 sr->len = READ_ONCE(sqe->len);
4540 sr->bgid = READ_ONCE(sqe->buf_group);
4541 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4542 if (sr->msg_flags & MSG_DONTWAIT)
4543 req->flags |= REQ_F_NOWAIT;
4544
4545 #ifdef CONFIG_COMPAT
4546 if (req->ctx->compat)
4547 sr->msg_flags |= MSG_CMSG_COMPAT;
4548 #endif
4549 return 0;
4550 }
4551
4552 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4553 {
4554 struct io_async_msghdr iomsg, *kmsg;
4555 struct socket *sock;
4556 struct io_buffer *kbuf;
4557 unsigned flags;
4558 int min_ret = 0;
4559 int ret, cflags = 0;
4560 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4561
4562 sock = sock_from_file(req->file);
4563 if (unlikely(!sock))
4564 return -ENOTSOCK;
4565
4566 kmsg = req->async_data;
4567 if (!kmsg) {
4568 ret = io_recvmsg_copy_hdr(req, &iomsg);
4569 if (ret)
4570 return ret;
4571 kmsg = &iomsg;
4572 }
4573
4574 if (req->flags & REQ_F_BUFFER_SELECT) {
4575 kbuf = io_recv_buffer_select(req, !force_nonblock);
4576 if (IS_ERR(kbuf))
4577 return PTR_ERR(kbuf);
4578 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4579 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4580 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4581 1, req->sr_msg.len);
4582 }
4583
4584 flags = req->sr_msg.msg_flags;
4585 if (force_nonblock)
4586 flags |= MSG_DONTWAIT;
4587 if (flags & MSG_WAITALL)
4588 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4589
4590 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4591 kmsg->uaddr, flags);
4592 if (force_nonblock && ret == -EAGAIN)
4593 return io_setup_async_msg(req, kmsg);
4594 if (ret == -ERESTARTSYS)
4595 ret = -EINTR;
4596
4597 if (req->flags & REQ_F_BUFFER_SELECTED)
4598 cflags = io_put_recv_kbuf(req);
4599 /* fast path, check for non-NULL to avoid function call */
4600 if (kmsg->free_iov)
4601 kfree(kmsg->free_iov);
4602 req->flags &= ~REQ_F_NEED_CLEANUP;
4603 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4604 req_set_fail_links(req);
4605 __io_req_complete(req, issue_flags, ret, cflags);
4606 return 0;
4607 }
4608
4609 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4610 {
4611 struct io_buffer *kbuf;
4612 struct io_sr_msg *sr = &req->sr_msg;
4613 struct msghdr msg;
4614 void __user *buf = sr->buf;
4615 struct socket *sock;
4616 struct iovec iov;
4617 unsigned flags;
4618 int min_ret = 0;
4619 int ret, cflags = 0;
4620 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4621
4622 sock = sock_from_file(req->file);
4623 if (unlikely(!sock))
4624 return -ENOTSOCK;
4625
4626 if (req->flags & REQ_F_BUFFER_SELECT) {
4627 kbuf = io_recv_buffer_select(req, !force_nonblock);
4628 if (IS_ERR(kbuf))
4629 return PTR_ERR(kbuf);
4630 buf = u64_to_user_ptr(kbuf->addr);
4631 }
4632
4633 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4634 if (unlikely(ret))
4635 goto out_free;
4636
4637 msg.msg_name = NULL;
4638 msg.msg_control = NULL;
4639 msg.msg_controllen = 0;
4640 msg.msg_namelen = 0;
4641 msg.msg_iocb = NULL;
4642 msg.msg_flags = 0;
4643
4644 flags = req->sr_msg.msg_flags;
4645 if (force_nonblock)
4646 flags |= MSG_DONTWAIT;
4647 if (flags & MSG_WAITALL)
4648 min_ret = iov_iter_count(&msg.msg_iter);
4649
4650 ret = sock_recvmsg(sock, &msg, flags);
4651 if (force_nonblock && ret == -EAGAIN)
4652 return -EAGAIN;
4653 if (ret == -ERESTARTSYS)
4654 ret = -EINTR;
4655 out_free:
4656 if (req->flags & REQ_F_BUFFER_SELECTED)
4657 cflags = io_put_recv_kbuf(req);
4658 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4659 req_set_fail_links(req);
4660 __io_req_complete(req, issue_flags, ret, cflags);
4661 return 0;
4662 }
4663
4664 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4665 {
4666 struct io_accept *accept = &req->accept;
4667
4668 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4669 return -EINVAL;
4670 if (sqe->ioprio || sqe->len || sqe->buf_index)
4671 return -EINVAL;
4672
4673 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4674 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4675 accept->flags = READ_ONCE(sqe->accept_flags);
4676 accept->nofile = rlimit(RLIMIT_NOFILE);
4677 return 0;
4678 }
4679
4680 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4681 {
4682 struct io_accept *accept = &req->accept;
4683 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4684 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4685 int ret;
4686
4687 if (req->file->f_flags & O_NONBLOCK)
4688 req->flags |= REQ_F_NOWAIT;
4689
4690 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4691 accept->addr_len, accept->flags,
4692 accept->nofile);
4693 if (ret == -EAGAIN && force_nonblock)
4694 return -EAGAIN;
4695 if (ret < 0) {
4696 if (ret == -ERESTARTSYS)
4697 ret = -EINTR;
4698 req_set_fail_links(req);
4699 }
4700 __io_req_complete(req, issue_flags, ret, 0);
4701 return 0;
4702 }
4703
4704 static int io_connect_prep_async(struct io_kiocb *req)
4705 {
4706 struct io_async_connect *io = req->async_data;
4707 struct io_connect *conn = &req->connect;
4708
4709 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4710 }
4711
4712 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4713 {
4714 struct io_connect *conn = &req->connect;
4715
4716 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4717 return -EINVAL;
4718 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4719 return -EINVAL;
4720
4721 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4722 conn->addr_len = READ_ONCE(sqe->addr2);
4723 return 0;
4724 }
4725
4726 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4727 {
4728 struct io_async_connect __io, *io;
4729 unsigned file_flags;
4730 int ret;
4731 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4732
4733 if (req->async_data) {
4734 io = req->async_data;
4735 } else {
4736 ret = move_addr_to_kernel(req->connect.addr,
4737 req->connect.addr_len,
4738 &__io.address);
4739 if (ret)
4740 goto out;
4741 io = &__io;
4742 }
4743
4744 file_flags = force_nonblock ? O_NONBLOCK : 0;
4745
4746 ret = __sys_connect_file(req->file, &io->address,
4747 req->connect.addr_len, file_flags);
4748 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4749 if (req->async_data)
4750 return -EAGAIN;
4751 if (io_alloc_async_data(req)) {
4752 ret = -ENOMEM;
4753 goto out;
4754 }
4755 memcpy(req->async_data, &__io, sizeof(__io));
4756 return -EAGAIN;
4757 }
4758 if (ret == -ERESTARTSYS)
4759 ret = -EINTR;
4760 out:
4761 if (ret < 0)
4762 req_set_fail_links(req);
4763 __io_req_complete(req, issue_flags, ret, 0);
4764 return 0;
4765 }
4766 #else /* !CONFIG_NET */
4767 #define IO_NETOP_FN(op) \
4768 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4769 { \
4770 return -EOPNOTSUPP; \
4771 }
4772
4773 #define IO_NETOP_PREP(op) \
4774 IO_NETOP_FN(op) \
4775 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4776 { \
4777 return -EOPNOTSUPP; \
4778 } \
4779
4780 #define IO_NETOP_PREP_ASYNC(op) \
4781 IO_NETOP_PREP(op) \
4782 static int io_##op##_prep_async(struct io_kiocb *req) \
4783 { \
4784 return -EOPNOTSUPP; \
4785 }
4786
4787 IO_NETOP_PREP_ASYNC(sendmsg);
4788 IO_NETOP_PREP_ASYNC(recvmsg);
4789 IO_NETOP_PREP_ASYNC(connect);
4790 IO_NETOP_PREP(accept);
4791 IO_NETOP_FN(send);
4792 IO_NETOP_FN(recv);
4793 #endif /* CONFIG_NET */
4794
4795 struct io_poll_table {
4796 struct poll_table_struct pt;
4797 struct io_kiocb *req;
4798 int error;
4799 };
4800
4801 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4802 __poll_t mask, task_work_func_t func)
4803 {
4804 int ret;
4805
4806 /* for instances that support it check for an event match first: */
4807 if (mask && !(mask & poll->events))
4808 return 0;
4809
4810 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4811
4812 list_del_init(&poll->wait.entry);
4813
4814 req->result = mask;
4815 req->task_work.func = func;
4816
4817 /*
4818 * If this fails, then the task is exiting. When a task exits, the
4819 * work gets canceled, so just cancel this request as well instead
4820 * of executing it. We can't safely execute it anyway, as we may not
4821 * have the needed state needed for it anyway.
4822 */
4823 ret = io_req_task_work_add(req);
4824 if (unlikely(ret)) {
4825 WRITE_ONCE(poll->canceled, true);
4826 io_req_task_work_add_fallback(req, func);
4827 }
4828 return 1;
4829 }
4830
4831 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4832 __acquires(&req->ctx->completion_lock)
4833 {
4834 struct io_ring_ctx *ctx = req->ctx;
4835
4836 if (!req->result && !READ_ONCE(poll->canceled)) {
4837 struct poll_table_struct pt = { ._key = poll->events };
4838
4839 req->result = vfs_poll(req->file, &pt) & poll->events;
4840 }
4841
4842 spin_lock_irq(&ctx->completion_lock);
4843 if (!req->result && !READ_ONCE(poll->canceled)) {
4844 add_wait_queue(poll->head, &poll->wait);
4845 return true;
4846 }
4847
4848 return false;
4849 }
4850
4851 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4852 {
4853 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4854 if (req->opcode == IORING_OP_POLL_ADD)
4855 return req->async_data;
4856 return req->apoll->double_poll;
4857 }
4858
4859 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4860 {
4861 if (req->opcode == IORING_OP_POLL_ADD)
4862 return &req->poll;
4863 return &req->apoll->poll;
4864 }
4865
4866 static void io_poll_remove_double(struct io_kiocb *req)
4867 __must_hold(&req->ctx->completion_lock)
4868 {
4869 struct io_poll_iocb *poll = io_poll_get_double(req);
4870
4871 lockdep_assert_held(&req->ctx->completion_lock);
4872
4873 if (poll && poll->head) {
4874 struct wait_queue_head *head = poll->head;
4875
4876 spin_lock(&head->lock);
4877 list_del_init(&poll->wait.entry);
4878 if (poll->wait.private)
4879 req_ref_put(req);
4880 poll->head = NULL;
4881 spin_unlock(&head->lock);
4882 }
4883 }
4884
4885 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4886 __must_hold(&req->ctx->completion_lock)
4887 {
4888 struct io_ring_ctx *ctx = req->ctx;
4889 unsigned flags = IORING_CQE_F_MORE;
4890 int error;
4891
4892 if (READ_ONCE(req->poll.canceled)) {
4893 error = -ECANCELED;
4894 req->poll.events |= EPOLLONESHOT;
4895 } else {
4896 error = mangle_poll(mask);
4897 }
4898 if (req->poll.events & EPOLLONESHOT)
4899 flags = 0;
4900 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4901 io_poll_remove_waitqs(req);
4902 req->poll.done = true;
4903 flags = 0;
4904 }
4905 if (flags & IORING_CQE_F_MORE)
4906 ctx->cq_extra++;
4907
4908 io_commit_cqring(ctx);
4909 return !(flags & IORING_CQE_F_MORE);
4910 }
4911
4912 static void io_poll_task_func(struct callback_head *cb)
4913 {
4914 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4915 struct io_ring_ctx *ctx = req->ctx;
4916 struct io_kiocb *nxt;
4917
4918 if (io_poll_rewait(req, &req->poll)) {
4919 spin_unlock_irq(&ctx->completion_lock);
4920 } else {
4921 bool done;
4922
4923 done = io_poll_complete(req, req->result);
4924 if (done) {
4925 hash_del(&req->hash_node);
4926 } else {
4927 req->result = 0;
4928 add_wait_queue(req->poll.head, &req->poll.wait);
4929 }
4930 spin_unlock_irq(&ctx->completion_lock);
4931 io_cqring_ev_posted(ctx);
4932
4933 if (done) {
4934 nxt = io_put_req_find_next(req);
4935 if (nxt)
4936 __io_req_task_submit(nxt);
4937 }
4938 }
4939 }
4940
4941 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4942 int sync, void *key)
4943 {
4944 struct io_kiocb *req = wait->private;
4945 struct io_poll_iocb *poll = io_poll_get_single(req);
4946 __poll_t mask = key_to_poll(key);
4947
4948 /* for instances that support it check for an event match first: */
4949 if (mask && !(mask & poll->events))
4950 return 0;
4951 if (!(poll->events & EPOLLONESHOT))
4952 return poll->wait.func(&poll->wait, mode, sync, key);
4953
4954 list_del_init(&wait->entry);
4955
4956 if (poll && poll->head) {
4957 bool done;
4958
4959 spin_lock(&poll->head->lock);
4960 done = list_empty(&poll->wait.entry);
4961 if (!done)
4962 list_del_init(&poll->wait.entry);
4963 /* make sure double remove sees this as being gone */
4964 wait->private = NULL;
4965 spin_unlock(&poll->head->lock);
4966 if (!done) {
4967 /* use wait func handler, so it matches the rq type */
4968 poll->wait.func(&poll->wait, mode, sync, key);
4969 }
4970 }
4971 req_ref_put(req);
4972 return 1;
4973 }
4974
4975 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4976 wait_queue_func_t wake_func)
4977 {
4978 poll->head = NULL;
4979 poll->done = false;
4980 poll->canceled = false;
4981 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
4982 /* mask in events that we always want/need */
4983 poll->events = events | IO_POLL_UNMASK;
4984 INIT_LIST_HEAD(&poll->wait.entry);
4985 init_waitqueue_func_entry(&poll->wait, wake_func);
4986 }
4987
4988 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4989 struct wait_queue_head *head,
4990 struct io_poll_iocb **poll_ptr)
4991 {
4992 struct io_kiocb *req = pt->req;
4993
4994 /*
4995 * If poll->head is already set, it's because the file being polled
4996 * uses multiple waitqueues for poll handling (eg one for read, one
4997 * for write). Setup a separate io_poll_iocb if this happens.
4998 */
4999 if (unlikely(poll->head)) {
5000 struct io_poll_iocb *poll_one = poll;
5001
5002 /* already have a 2nd entry, fail a third attempt */
5003 if (*poll_ptr) {
5004 pt->error = -EINVAL;
5005 return;
5006 }
5007 /*
5008 * Can't handle multishot for double wait for now, turn it
5009 * into one-shot mode.
5010 */
5011 if (!(req->poll.events & EPOLLONESHOT))
5012 req->poll.events |= EPOLLONESHOT;
5013 /* double add on the same waitqueue head, ignore */
5014 if (poll->head == head)
5015 return;
5016 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5017 if (!poll) {
5018 pt->error = -ENOMEM;
5019 return;
5020 }
5021 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5022 req_ref_get(req);
5023 poll->wait.private = req;
5024 *poll_ptr = poll;
5025 }
5026
5027 pt->error = 0;
5028 poll->head = head;
5029
5030 if (poll->events & EPOLLEXCLUSIVE)
5031 add_wait_queue_exclusive(head, &poll->wait);
5032 else
5033 add_wait_queue(head, &poll->wait);
5034 }
5035
5036 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5037 struct poll_table_struct *p)
5038 {
5039 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5040 struct async_poll *apoll = pt->req->apoll;
5041
5042 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5043 }
5044
5045 static void io_async_task_func(struct callback_head *cb)
5046 {
5047 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5048 struct async_poll *apoll = req->apoll;
5049 struct io_ring_ctx *ctx = req->ctx;
5050
5051 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5052
5053 if (io_poll_rewait(req, &apoll->poll)) {
5054 spin_unlock_irq(&ctx->completion_lock);
5055 return;
5056 }
5057
5058 hash_del(&req->hash_node);
5059 io_poll_remove_double(req);
5060 spin_unlock_irq(&ctx->completion_lock);
5061
5062 if (!READ_ONCE(apoll->poll.canceled))
5063 __io_req_task_submit(req);
5064 else
5065 io_req_complete_failed(req, -ECANCELED);
5066 }
5067
5068 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5069 void *key)
5070 {
5071 struct io_kiocb *req = wait->private;
5072 struct io_poll_iocb *poll = &req->apoll->poll;
5073
5074 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5075 key_to_poll(key));
5076
5077 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5078 }
5079
5080 static void io_poll_req_insert(struct io_kiocb *req)
5081 {
5082 struct io_ring_ctx *ctx = req->ctx;
5083 struct hlist_head *list;
5084
5085 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5086 hlist_add_head(&req->hash_node, list);
5087 }
5088
5089 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5090 struct io_poll_iocb *poll,
5091 struct io_poll_table *ipt, __poll_t mask,
5092 wait_queue_func_t wake_func)
5093 __acquires(&ctx->completion_lock)
5094 {
5095 struct io_ring_ctx *ctx = req->ctx;
5096 bool cancel = false;
5097
5098 INIT_HLIST_NODE(&req->hash_node);
5099 io_init_poll_iocb(poll, mask, wake_func);
5100 poll->file = req->file;
5101 poll->wait.private = req;
5102
5103 ipt->pt._key = mask;
5104 ipt->req = req;
5105 ipt->error = -EINVAL;
5106
5107 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5108
5109 spin_lock_irq(&ctx->completion_lock);
5110 if (likely(poll->head)) {
5111 spin_lock(&poll->head->lock);
5112 if (unlikely(list_empty(&poll->wait.entry))) {
5113 if (ipt->error)
5114 cancel = true;
5115 ipt->error = 0;
5116 mask = 0;
5117 }
5118 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5119 list_del_init(&poll->wait.entry);
5120 else if (cancel)
5121 WRITE_ONCE(poll->canceled, true);
5122 else if (!poll->done) /* actually waiting for an event */
5123 io_poll_req_insert(req);
5124 spin_unlock(&poll->head->lock);
5125 }
5126
5127 return mask;
5128 }
5129
5130 static bool io_arm_poll_handler(struct io_kiocb *req)
5131 {
5132 const struct io_op_def *def = &io_op_defs[req->opcode];
5133 struct io_ring_ctx *ctx = req->ctx;
5134 struct async_poll *apoll;
5135 struct io_poll_table ipt;
5136 __poll_t mask, ret;
5137 int rw;
5138
5139 if (!req->file || !file_can_poll(req->file))
5140 return false;
5141 if (req->flags & REQ_F_POLLED)
5142 return false;
5143 if (def->pollin)
5144 rw = READ;
5145 else if (def->pollout)
5146 rw = WRITE;
5147 else
5148 return false;
5149 /* if we can't nonblock try, then no point in arming a poll handler */
5150 if (!io_file_supports_async(req, rw))
5151 return false;
5152
5153 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5154 if (unlikely(!apoll))
5155 return false;
5156 apoll->double_poll = NULL;
5157
5158 req->flags |= REQ_F_POLLED;
5159 req->apoll = apoll;
5160
5161 mask = EPOLLONESHOT;
5162 if (def->pollin)
5163 mask |= POLLIN | POLLRDNORM;
5164 if (def->pollout)
5165 mask |= POLLOUT | POLLWRNORM;
5166
5167 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5168 if ((req->opcode == IORING_OP_RECVMSG) &&
5169 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5170 mask &= ~POLLIN;
5171
5172 mask |= POLLERR | POLLPRI;
5173
5174 ipt.pt._qproc = io_async_queue_proc;
5175
5176 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5177 io_async_wake);
5178 if (ret || ipt.error) {
5179 io_poll_remove_double(req);
5180 spin_unlock_irq(&ctx->completion_lock);
5181 return false;
5182 }
5183 spin_unlock_irq(&ctx->completion_lock);
5184 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5185 apoll->poll.events);
5186 return true;
5187 }
5188
5189 static bool __io_poll_remove_one(struct io_kiocb *req,
5190 struct io_poll_iocb *poll, bool do_cancel)
5191 __must_hold(&req->ctx->completion_lock)
5192 {
5193 bool do_complete = false;
5194
5195 if (!poll->head)
5196 return false;
5197 spin_lock(&poll->head->lock);
5198 if (do_cancel)
5199 WRITE_ONCE(poll->canceled, true);
5200 if (!list_empty(&poll->wait.entry)) {
5201 list_del_init(&poll->wait.entry);
5202 do_complete = true;
5203 }
5204 spin_unlock(&poll->head->lock);
5205 hash_del(&req->hash_node);
5206 return do_complete;
5207 }
5208
5209 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5210 __must_hold(&req->ctx->completion_lock)
5211 {
5212 bool do_complete;
5213
5214 io_poll_remove_double(req);
5215 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5216
5217 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5218 /* non-poll requests have submit ref still */
5219 req_ref_put(req);
5220 }
5221 return do_complete;
5222 }
5223
5224 static bool io_poll_remove_one(struct io_kiocb *req)
5225 __must_hold(&req->ctx->completion_lock)
5226 {
5227 bool do_complete;
5228
5229 do_complete = io_poll_remove_waitqs(req);
5230 if (do_complete) {
5231 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5232 io_commit_cqring(req->ctx);
5233 req_set_fail_links(req);
5234 io_put_req_deferred(req, 1);
5235 }
5236
5237 return do_complete;
5238 }
5239
5240 /*
5241 * Returns true if we found and killed one or more poll requests
5242 */
5243 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5244 struct files_struct *files)
5245 {
5246 struct hlist_node *tmp;
5247 struct io_kiocb *req;
5248 int posted = 0, i;
5249
5250 spin_lock_irq(&ctx->completion_lock);
5251 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5252 struct hlist_head *list;
5253
5254 list = &ctx->cancel_hash[i];
5255 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5256 if (io_match_task(req, tsk, files))
5257 posted += io_poll_remove_one(req);
5258 }
5259 }
5260 spin_unlock_irq(&ctx->completion_lock);
5261
5262 if (posted)
5263 io_cqring_ev_posted(ctx);
5264
5265 return posted != 0;
5266 }
5267
5268 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5269 bool poll_only)
5270 __must_hold(&ctx->completion_lock)
5271 {
5272 struct hlist_head *list;
5273 struct io_kiocb *req;
5274
5275 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5276 hlist_for_each_entry(req, list, hash_node) {
5277 if (sqe_addr != req->user_data)
5278 continue;
5279 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5280 continue;
5281 return req;
5282 }
5283 return NULL;
5284 }
5285
5286 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5287 bool poll_only)
5288 __must_hold(&ctx->completion_lock)
5289 {
5290 struct io_kiocb *req;
5291
5292 req = io_poll_find(ctx, sqe_addr, poll_only);
5293 if (!req)
5294 return -ENOENT;
5295 if (io_poll_remove_one(req))
5296 return 0;
5297
5298 return -EALREADY;
5299 }
5300
5301 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5302 unsigned int flags)
5303 {
5304 u32 events;
5305
5306 events = READ_ONCE(sqe->poll32_events);
5307 #ifdef __BIG_ENDIAN
5308 events = swahw32(events);
5309 #endif
5310 if (!(flags & IORING_POLL_ADD_MULTI))
5311 events |= EPOLLONESHOT;
5312 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5313 }
5314
5315 static int io_poll_update_prep(struct io_kiocb *req,
5316 const struct io_uring_sqe *sqe)
5317 {
5318 struct io_poll_update *upd = &req->poll_update;
5319 u32 flags;
5320
5321 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5322 return -EINVAL;
5323 if (sqe->ioprio || sqe->buf_index)
5324 return -EINVAL;
5325 flags = READ_ONCE(sqe->len);
5326 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5327 IORING_POLL_ADD_MULTI))
5328 return -EINVAL;
5329 /* meaningless without update */
5330 if (flags == IORING_POLL_ADD_MULTI)
5331 return -EINVAL;
5332
5333 upd->old_user_data = READ_ONCE(sqe->addr);
5334 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5335 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5336
5337 upd->new_user_data = READ_ONCE(sqe->off);
5338 if (!upd->update_user_data && upd->new_user_data)
5339 return -EINVAL;
5340 if (upd->update_events)
5341 upd->events = io_poll_parse_events(sqe, flags);
5342 else if (sqe->poll32_events)
5343 return -EINVAL;
5344
5345 return 0;
5346 }
5347
5348 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5349 void *key)
5350 {
5351 struct io_kiocb *req = wait->private;
5352 struct io_poll_iocb *poll = &req->poll;
5353
5354 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5355 }
5356
5357 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5358 struct poll_table_struct *p)
5359 {
5360 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5361
5362 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5363 }
5364
5365 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5366 {
5367 struct io_poll_iocb *poll = &req->poll;
5368 u32 flags;
5369
5370 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5371 return -EINVAL;
5372 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5373 return -EINVAL;
5374 flags = READ_ONCE(sqe->len);
5375 if (flags & ~IORING_POLL_ADD_MULTI)
5376 return -EINVAL;
5377
5378 poll->events = io_poll_parse_events(sqe, flags);
5379 return 0;
5380 }
5381
5382 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5383 {
5384 struct io_poll_iocb *poll = &req->poll;
5385 struct io_ring_ctx *ctx = req->ctx;
5386 struct io_poll_table ipt;
5387 __poll_t mask;
5388
5389 ipt.pt._qproc = io_poll_queue_proc;
5390
5391 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5392 io_poll_wake);
5393
5394 if (mask) { /* no async, we'd stolen it */
5395 ipt.error = 0;
5396 io_poll_complete(req, mask);
5397 }
5398 spin_unlock_irq(&ctx->completion_lock);
5399
5400 if (mask) {
5401 io_cqring_ev_posted(ctx);
5402 if (poll->events & EPOLLONESHOT)
5403 io_put_req(req);
5404 }
5405 return ipt.error;
5406 }
5407
5408 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5409 {
5410 struct io_ring_ctx *ctx = req->ctx;
5411 struct io_kiocb *preq;
5412 bool completing;
5413 int ret;
5414
5415 spin_lock_irq(&ctx->completion_lock);
5416 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5417 if (!preq) {
5418 ret = -ENOENT;
5419 goto err;
5420 }
5421
5422 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5423 completing = true;
5424 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5425 goto err;
5426 }
5427
5428 /*
5429 * Don't allow racy completion with singleshot, as we cannot safely
5430 * update those. For multishot, if we're racing with completion, just
5431 * let completion re-add it.
5432 */
5433 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5434 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5435 ret = -EALREADY;
5436 goto err;
5437 }
5438 /* we now have a detached poll request. reissue. */
5439 ret = 0;
5440 err:
5441 if (ret < 0) {
5442 spin_unlock_irq(&ctx->completion_lock);
5443 req_set_fail_links(req);
5444 io_req_complete(req, ret);
5445 return 0;
5446 }
5447 /* only mask one event flags, keep behavior flags */
5448 if (req->poll_update.update_events) {
5449 preq->poll.events &= ~0xffff;
5450 preq->poll.events |= req->poll_update.events & 0xffff;
5451 preq->poll.events |= IO_POLL_UNMASK;
5452 }
5453 if (req->poll_update.update_user_data)
5454 preq->user_data = req->poll_update.new_user_data;
5455 spin_unlock_irq(&ctx->completion_lock);
5456
5457 /* complete update request, we're done with it */
5458 io_req_complete(req, ret);
5459
5460 if (!completing) {
5461 ret = io_poll_add(preq, issue_flags);
5462 if (ret < 0) {
5463 req_set_fail_links(preq);
5464 io_req_complete(preq, ret);
5465 }
5466 }
5467 return 0;
5468 }
5469
5470 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5471 {
5472 struct io_timeout_data *data = container_of(timer,
5473 struct io_timeout_data, timer);
5474 struct io_kiocb *req = data->req;
5475 struct io_ring_ctx *ctx = req->ctx;
5476 unsigned long flags;
5477
5478 spin_lock_irqsave(&ctx->completion_lock, flags);
5479 list_del_init(&req->timeout.list);
5480 atomic_set(&req->ctx->cq_timeouts,
5481 atomic_read(&req->ctx->cq_timeouts) + 1);
5482
5483 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5484 io_commit_cqring(ctx);
5485 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5486
5487 io_cqring_ev_posted(ctx);
5488 req_set_fail_links(req);
5489 io_put_req(req);
5490 return HRTIMER_NORESTART;
5491 }
5492
5493 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5494 __u64 user_data)
5495 __must_hold(&ctx->completion_lock)
5496 {
5497 struct io_timeout_data *io;
5498 struct io_kiocb *req;
5499 bool found = false;
5500
5501 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5502 found = user_data == req->user_data;
5503 if (found)
5504 break;
5505 }
5506 if (!found)
5507 return ERR_PTR(-ENOENT);
5508
5509 io = req->async_data;
5510 if (hrtimer_try_to_cancel(&io->timer) == -1)
5511 return ERR_PTR(-EALREADY);
5512 list_del_init(&req->timeout.list);
5513 return req;
5514 }
5515
5516 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5517 __must_hold(&ctx->completion_lock)
5518 {
5519 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5520
5521 if (IS_ERR(req))
5522 return PTR_ERR(req);
5523
5524 req_set_fail_links(req);
5525 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5526 io_put_req_deferred(req, 1);
5527 return 0;
5528 }
5529
5530 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5531 struct timespec64 *ts, enum hrtimer_mode mode)
5532 __must_hold(&ctx->completion_lock)
5533 {
5534 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5535 struct io_timeout_data *data;
5536
5537 if (IS_ERR(req))
5538 return PTR_ERR(req);
5539
5540 req->timeout.off = 0; /* noseq */
5541 data = req->async_data;
5542 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5543 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5544 data->timer.function = io_timeout_fn;
5545 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5546 return 0;
5547 }
5548
5549 static int io_timeout_remove_prep(struct io_kiocb *req,
5550 const struct io_uring_sqe *sqe)
5551 {
5552 struct io_timeout_rem *tr = &req->timeout_rem;
5553
5554 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5555 return -EINVAL;
5556 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5557 return -EINVAL;
5558 if (sqe->ioprio || sqe->buf_index || sqe->len)
5559 return -EINVAL;
5560
5561 tr->addr = READ_ONCE(sqe->addr);
5562 tr->flags = READ_ONCE(sqe->timeout_flags);
5563 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5564 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5565 return -EINVAL;
5566 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5567 return -EFAULT;
5568 } else if (tr->flags) {
5569 /* timeout removal doesn't support flags */
5570 return -EINVAL;
5571 }
5572
5573 return 0;
5574 }
5575
5576 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5577 {
5578 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5579 : HRTIMER_MODE_REL;
5580 }
5581
5582 /*
5583 * Remove or update an existing timeout command
5584 */
5585 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5586 {
5587 struct io_timeout_rem *tr = &req->timeout_rem;
5588 struct io_ring_ctx *ctx = req->ctx;
5589 int ret;
5590
5591 spin_lock_irq(&ctx->completion_lock);
5592 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5593 ret = io_timeout_cancel(ctx, tr->addr);
5594 else
5595 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5596 io_translate_timeout_mode(tr->flags));
5597
5598 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5599 io_commit_cqring(ctx);
5600 spin_unlock_irq(&ctx->completion_lock);
5601 io_cqring_ev_posted(ctx);
5602 if (ret < 0)
5603 req_set_fail_links(req);
5604 io_put_req(req);
5605 return 0;
5606 }
5607
5608 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5609 bool is_timeout_link)
5610 {
5611 struct io_timeout_data *data;
5612 unsigned flags;
5613 u32 off = READ_ONCE(sqe->off);
5614
5615 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5616 return -EINVAL;
5617 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5618 return -EINVAL;
5619 if (off && is_timeout_link)
5620 return -EINVAL;
5621 flags = READ_ONCE(sqe->timeout_flags);
5622 if (flags & ~IORING_TIMEOUT_ABS)
5623 return -EINVAL;
5624
5625 req->timeout.off = off;
5626
5627 if (!req->async_data && io_alloc_async_data(req))
5628 return -ENOMEM;
5629
5630 data = req->async_data;
5631 data->req = req;
5632
5633 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5634 return -EFAULT;
5635
5636 data->mode = io_translate_timeout_mode(flags);
5637 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5638 if (is_timeout_link)
5639 io_req_track_inflight(req);
5640 return 0;
5641 }
5642
5643 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5644 {
5645 struct io_ring_ctx *ctx = req->ctx;
5646 struct io_timeout_data *data = req->async_data;
5647 struct list_head *entry;
5648 u32 tail, off = req->timeout.off;
5649
5650 spin_lock_irq(&ctx->completion_lock);
5651
5652 /*
5653 * sqe->off holds how many events that need to occur for this
5654 * timeout event to be satisfied. If it isn't set, then this is
5655 * a pure timeout request, sequence isn't used.
5656 */
5657 if (io_is_timeout_noseq(req)) {
5658 entry = ctx->timeout_list.prev;
5659 goto add;
5660 }
5661
5662 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5663 req->timeout.target_seq = tail + off;
5664
5665 /* Update the last seq here in case io_flush_timeouts() hasn't.
5666 * This is safe because ->completion_lock is held, and submissions
5667 * and completions are never mixed in the same ->completion_lock section.
5668 */
5669 ctx->cq_last_tm_flush = tail;
5670
5671 /*
5672 * Insertion sort, ensuring the first entry in the list is always
5673 * the one we need first.
5674 */
5675 list_for_each_prev(entry, &ctx->timeout_list) {
5676 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5677 timeout.list);
5678
5679 if (io_is_timeout_noseq(nxt))
5680 continue;
5681 /* nxt.seq is behind @tail, otherwise would've been completed */
5682 if (off >= nxt->timeout.target_seq - tail)
5683 break;
5684 }
5685 add:
5686 list_add(&req->timeout.list, entry);
5687 data->timer.function = io_timeout_fn;
5688 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5689 spin_unlock_irq(&ctx->completion_lock);
5690 return 0;
5691 }
5692
5693 struct io_cancel_data {
5694 struct io_ring_ctx *ctx;
5695 u64 user_data;
5696 };
5697
5698 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5699 {
5700 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5701 struct io_cancel_data *cd = data;
5702
5703 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5704 }
5705
5706 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5707 struct io_ring_ctx *ctx)
5708 {
5709 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5710 enum io_wq_cancel cancel_ret;
5711 int ret = 0;
5712
5713 if (!tctx || !tctx->io_wq)
5714 return -ENOENT;
5715
5716 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5717 switch (cancel_ret) {
5718 case IO_WQ_CANCEL_OK:
5719 ret = 0;
5720 break;
5721 case IO_WQ_CANCEL_RUNNING:
5722 ret = -EALREADY;
5723 break;
5724 case IO_WQ_CANCEL_NOTFOUND:
5725 ret = -ENOENT;
5726 break;
5727 }
5728
5729 return ret;
5730 }
5731
5732 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5733 struct io_kiocb *req, __u64 sqe_addr,
5734 int success_ret)
5735 {
5736 unsigned long flags;
5737 int ret;
5738
5739 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5740 spin_lock_irqsave(&ctx->completion_lock, flags);
5741 if (ret != -ENOENT)
5742 goto done;
5743 ret = io_timeout_cancel(ctx, sqe_addr);
5744 if (ret != -ENOENT)
5745 goto done;
5746 ret = io_poll_cancel(ctx, sqe_addr, false);
5747 done:
5748 if (!ret)
5749 ret = success_ret;
5750 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5751 io_commit_cqring(ctx);
5752 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5753 io_cqring_ev_posted(ctx);
5754
5755 if (ret < 0)
5756 req_set_fail_links(req);
5757 }
5758
5759 static int io_async_cancel_prep(struct io_kiocb *req,
5760 const struct io_uring_sqe *sqe)
5761 {
5762 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5763 return -EINVAL;
5764 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5765 return -EINVAL;
5766 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5767 return -EINVAL;
5768
5769 req->cancel.addr = READ_ONCE(sqe->addr);
5770 return 0;
5771 }
5772
5773 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5774 {
5775 struct io_ring_ctx *ctx = req->ctx;
5776 u64 sqe_addr = req->cancel.addr;
5777 struct io_tctx_node *node;
5778 int ret;
5779
5780 /* tasks should wait for their io-wq threads, so safe w/o sync */
5781 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5782 spin_lock_irq(&ctx->completion_lock);
5783 if (ret != -ENOENT)
5784 goto done;
5785 ret = io_timeout_cancel(ctx, sqe_addr);
5786 if (ret != -ENOENT)
5787 goto done;
5788 ret = io_poll_cancel(ctx, sqe_addr, false);
5789 if (ret != -ENOENT)
5790 goto done;
5791 spin_unlock_irq(&ctx->completion_lock);
5792
5793 /* slow path, try all io-wq's */
5794 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5795 ret = -ENOENT;
5796 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5797 struct io_uring_task *tctx = node->task->io_uring;
5798
5799 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5800 if (ret != -ENOENT)
5801 break;
5802 }
5803 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5804
5805 spin_lock_irq(&ctx->completion_lock);
5806 done:
5807 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5808 io_commit_cqring(ctx);
5809 spin_unlock_irq(&ctx->completion_lock);
5810 io_cqring_ev_posted(ctx);
5811
5812 if (ret < 0)
5813 req_set_fail_links(req);
5814 io_put_req(req);
5815 return 0;
5816 }
5817
5818 static int io_rsrc_update_prep(struct io_kiocb *req,
5819 const struct io_uring_sqe *sqe)
5820 {
5821 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5822 return -EINVAL;
5823 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5824 return -EINVAL;
5825 if (sqe->ioprio || sqe->rw_flags)
5826 return -EINVAL;
5827
5828 req->rsrc_update.offset = READ_ONCE(sqe->off);
5829 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5830 if (!req->rsrc_update.nr_args)
5831 return -EINVAL;
5832 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5833 return 0;
5834 }
5835
5836 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5837 {
5838 struct io_ring_ctx *ctx = req->ctx;
5839 struct io_uring_rsrc_update2 up;
5840 int ret;
5841
5842 if (issue_flags & IO_URING_F_NONBLOCK)
5843 return -EAGAIN;
5844
5845 up.offset = req->rsrc_update.offset;
5846 up.data = req->rsrc_update.arg;
5847 up.nr = 0;
5848 up.tags = 0;
5849 up.resv = 0;
5850
5851 mutex_lock(&ctx->uring_lock);
5852 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5853 &up, req->rsrc_update.nr_args);
5854 mutex_unlock(&ctx->uring_lock);
5855
5856 if (ret < 0)
5857 req_set_fail_links(req);
5858 __io_req_complete(req, issue_flags, ret, 0);
5859 return 0;
5860 }
5861
5862 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5863 {
5864 switch (req->opcode) {
5865 case IORING_OP_NOP:
5866 return 0;
5867 case IORING_OP_READV:
5868 case IORING_OP_READ_FIXED:
5869 case IORING_OP_READ:
5870 return io_read_prep(req, sqe);
5871 case IORING_OP_WRITEV:
5872 case IORING_OP_WRITE_FIXED:
5873 case IORING_OP_WRITE:
5874 return io_write_prep(req, sqe);
5875 case IORING_OP_POLL_ADD:
5876 return io_poll_add_prep(req, sqe);
5877 case IORING_OP_POLL_REMOVE:
5878 return io_poll_update_prep(req, sqe);
5879 case IORING_OP_FSYNC:
5880 return io_fsync_prep(req, sqe);
5881 case IORING_OP_SYNC_FILE_RANGE:
5882 return io_sfr_prep(req, sqe);
5883 case IORING_OP_SENDMSG:
5884 case IORING_OP_SEND:
5885 return io_sendmsg_prep(req, sqe);
5886 case IORING_OP_RECVMSG:
5887 case IORING_OP_RECV:
5888 return io_recvmsg_prep(req, sqe);
5889 case IORING_OP_CONNECT:
5890 return io_connect_prep(req, sqe);
5891 case IORING_OP_TIMEOUT:
5892 return io_timeout_prep(req, sqe, false);
5893 case IORING_OP_TIMEOUT_REMOVE:
5894 return io_timeout_remove_prep(req, sqe);
5895 case IORING_OP_ASYNC_CANCEL:
5896 return io_async_cancel_prep(req, sqe);
5897 case IORING_OP_LINK_TIMEOUT:
5898 return io_timeout_prep(req, sqe, true);
5899 case IORING_OP_ACCEPT:
5900 return io_accept_prep(req, sqe);
5901 case IORING_OP_FALLOCATE:
5902 return io_fallocate_prep(req, sqe);
5903 case IORING_OP_OPENAT:
5904 return io_openat_prep(req, sqe);
5905 case IORING_OP_CLOSE:
5906 return io_close_prep(req, sqe);
5907 case IORING_OP_FILES_UPDATE:
5908 return io_rsrc_update_prep(req, sqe);
5909 case IORING_OP_STATX:
5910 return io_statx_prep(req, sqe);
5911 case IORING_OP_FADVISE:
5912 return io_fadvise_prep(req, sqe);
5913 case IORING_OP_MADVISE:
5914 return io_madvise_prep(req, sqe);
5915 case IORING_OP_OPENAT2:
5916 return io_openat2_prep(req, sqe);
5917 case IORING_OP_EPOLL_CTL:
5918 return io_epoll_ctl_prep(req, sqe);
5919 case IORING_OP_SPLICE:
5920 return io_splice_prep(req, sqe);
5921 case IORING_OP_PROVIDE_BUFFERS:
5922 return io_provide_buffers_prep(req, sqe);
5923 case IORING_OP_REMOVE_BUFFERS:
5924 return io_remove_buffers_prep(req, sqe);
5925 case IORING_OP_TEE:
5926 return io_tee_prep(req, sqe);
5927 case IORING_OP_SHUTDOWN:
5928 return io_shutdown_prep(req, sqe);
5929 case IORING_OP_RENAMEAT:
5930 return io_renameat_prep(req, sqe);
5931 case IORING_OP_UNLINKAT:
5932 return io_unlinkat_prep(req, sqe);
5933 }
5934
5935 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5936 req->opcode);
5937 return -EINVAL;
5938 }
5939
5940 static int io_req_prep_async(struct io_kiocb *req)
5941 {
5942 if (!io_op_defs[req->opcode].needs_async_setup)
5943 return 0;
5944 if (WARN_ON_ONCE(req->async_data))
5945 return -EFAULT;
5946 if (io_alloc_async_data(req))
5947 return -EAGAIN;
5948
5949 switch (req->opcode) {
5950 case IORING_OP_READV:
5951 return io_rw_prep_async(req, READ);
5952 case IORING_OP_WRITEV:
5953 return io_rw_prep_async(req, WRITE);
5954 case IORING_OP_SENDMSG:
5955 return io_sendmsg_prep_async(req);
5956 case IORING_OP_RECVMSG:
5957 return io_recvmsg_prep_async(req);
5958 case IORING_OP_CONNECT:
5959 return io_connect_prep_async(req);
5960 }
5961 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5962 req->opcode);
5963 return -EFAULT;
5964 }
5965
5966 static u32 io_get_sequence(struct io_kiocb *req)
5967 {
5968 struct io_kiocb *pos;
5969 struct io_ring_ctx *ctx = req->ctx;
5970 u32 total_submitted, nr_reqs = 0;
5971
5972 io_for_each_link(pos, req)
5973 nr_reqs++;
5974
5975 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5976 return total_submitted - nr_reqs;
5977 }
5978
5979 static int io_req_defer(struct io_kiocb *req)
5980 {
5981 struct io_ring_ctx *ctx = req->ctx;
5982 struct io_defer_entry *de;
5983 int ret;
5984 u32 seq;
5985
5986 /* Still need defer if there is pending req in defer list. */
5987 if (likely(list_empty_careful(&ctx->defer_list) &&
5988 !(req->flags & REQ_F_IO_DRAIN)))
5989 return 0;
5990
5991 seq = io_get_sequence(req);
5992 /* Still a chance to pass the sequence check */
5993 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5994 return 0;
5995
5996 ret = io_req_prep_async(req);
5997 if (ret)
5998 return ret;
5999 io_prep_async_link(req);
6000 de = kmalloc(sizeof(*de), GFP_KERNEL);
6001 if (!de)
6002 return -ENOMEM;
6003
6004 spin_lock_irq(&ctx->completion_lock);
6005 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6006 spin_unlock_irq(&ctx->completion_lock);
6007 kfree(de);
6008 io_queue_async_work(req);
6009 return -EIOCBQUEUED;
6010 }
6011
6012 trace_io_uring_defer(ctx, req, req->user_data);
6013 de->req = req;
6014 de->seq = seq;
6015 list_add_tail(&de->list, &ctx->defer_list);
6016 spin_unlock_irq(&ctx->completion_lock);
6017 return -EIOCBQUEUED;
6018 }
6019
6020 static void io_clean_op(struct io_kiocb *req)
6021 {
6022 if (req->flags & REQ_F_BUFFER_SELECTED) {
6023 switch (req->opcode) {
6024 case IORING_OP_READV:
6025 case IORING_OP_READ_FIXED:
6026 case IORING_OP_READ:
6027 kfree((void *)(unsigned long)req->rw.addr);
6028 break;
6029 case IORING_OP_RECVMSG:
6030 case IORING_OP_RECV:
6031 kfree(req->sr_msg.kbuf);
6032 break;
6033 }
6034 req->flags &= ~REQ_F_BUFFER_SELECTED;
6035 }
6036
6037 if (req->flags & REQ_F_NEED_CLEANUP) {
6038 switch (req->opcode) {
6039 case IORING_OP_READV:
6040 case IORING_OP_READ_FIXED:
6041 case IORING_OP_READ:
6042 case IORING_OP_WRITEV:
6043 case IORING_OP_WRITE_FIXED:
6044 case IORING_OP_WRITE: {
6045 struct io_async_rw *io = req->async_data;
6046 if (io->free_iovec)
6047 kfree(io->free_iovec);
6048 break;
6049 }
6050 case IORING_OP_RECVMSG:
6051 case IORING_OP_SENDMSG: {
6052 struct io_async_msghdr *io = req->async_data;
6053
6054 kfree(io->free_iov);
6055 break;
6056 }
6057 case IORING_OP_SPLICE:
6058 case IORING_OP_TEE:
6059 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6060 io_put_file(req->splice.file_in);
6061 break;
6062 case IORING_OP_OPENAT:
6063 case IORING_OP_OPENAT2:
6064 if (req->open.filename)
6065 putname(req->open.filename);
6066 break;
6067 case IORING_OP_RENAMEAT:
6068 putname(req->rename.oldpath);
6069 putname(req->rename.newpath);
6070 break;
6071 case IORING_OP_UNLINKAT:
6072 putname(req->unlink.filename);
6073 break;
6074 }
6075 req->flags &= ~REQ_F_NEED_CLEANUP;
6076 }
6077 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6078 kfree(req->apoll->double_poll);
6079 kfree(req->apoll);
6080 req->apoll = NULL;
6081 }
6082 if (req->flags & REQ_F_INFLIGHT) {
6083 struct io_uring_task *tctx = req->task->io_uring;
6084
6085 atomic_dec(&tctx->inflight_tracked);
6086 req->flags &= ~REQ_F_INFLIGHT;
6087 }
6088 }
6089
6090 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6091 {
6092 struct io_ring_ctx *ctx = req->ctx;
6093 const struct cred *creds = NULL;
6094 int ret;
6095
6096 if (req->work.creds && req->work.creds != current_cred())
6097 creds = override_creds(req->work.creds);
6098
6099 switch (req->opcode) {
6100 case IORING_OP_NOP:
6101 ret = io_nop(req, issue_flags);
6102 break;
6103 case IORING_OP_READV:
6104 case IORING_OP_READ_FIXED:
6105 case IORING_OP_READ:
6106 ret = io_read(req, issue_flags);
6107 break;
6108 case IORING_OP_WRITEV:
6109 case IORING_OP_WRITE_FIXED:
6110 case IORING_OP_WRITE:
6111 ret = io_write(req, issue_flags);
6112 break;
6113 case IORING_OP_FSYNC:
6114 ret = io_fsync(req, issue_flags);
6115 break;
6116 case IORING_OP_POLL_ADD:
6117 ret = io_poll_add(req, issue_flags);
6118 break;
6119 case IORING_OP_POLL_REMOVE:
6120 ret = io_poll_update(req, issue_flags);
6121 break;
6122 case IORING_OP_SYNC_FILE_RANGE:
6123 ret = io_sync_file_range(req, issue_flags);
6124 break;
6125 case IORING_OP_SENDMSG:
6126 ret = io_sendmsg(req, issue_flags);
6127 break;
6128 case IORING_OP_SEND:
6129 ret = io_send(req, issue_flags);
6130 break;
6131 case IORING_OP_RECVMSG:
6132 ret = io_recvmsg(req, issue_flags);
6133 break;
6134 case IORING_OP_RECV:
6135 ret = io_recv(req, issue_flags);
6136 break;
6137 case IORING_OP_TIMEOUT:
6138 ret = io_timeout(req, issue_flags);
6139 break;
6140 case IORING_OP_TIMEOUT_REMOVE:
6141 ret = io_timeout_remove(req, issue_flags);
6142 break;
6143 case IORING_OP_ACCEPT:
6144 ret = io_accept(req, issue_flags);
6145 break;
6146 case IORING_OP_CONNECT:
6147 ret = io_connect(req, issue_flags);
6148 break;
6149 case IORING_OP_ASYNC_CANCEL:
6150 ret = io_async_cancel(req, issue_flags);
6151 break;
6152 case IORING_OP_FALLOCATE:
6153 ret = io_fallocate(req, issue_flags);
6154 break;
6155 case IORING_OP_OPENAT:
6156 ret = io_openat(req, issue_flags);
6157 break;
6158 case IORING_OP_CLOSE:
6159 ret = io_close(req, issue_flags);
6160 break;
6161 case IORING_OP_FILES_UPDATE:
6162 ret = io_files_update(req, issue_flags);
6163 break;
6164 case IORING_OP_STATX:
6165 ret = io_statx(req, issue_flags);
6166 break;
6167 case IORING_OP_FADVISE:
6168 ret = io_fadvise(req, issue_flags);
6169 break;
6170 case IORING_OP_MADVISE:
6171 ret = io_madvise(req, issue_flags);
6172 break;
6173 case IORING_OP_OPENAT2:
6174 ret = io_openat2(req, issue_flags);
6175 break;
6176 case IORING_OP_EPOLL_CTL:
6177 ret = io_epoll_ctl(req, issue_flags);
6178 break;
6179 case IORING_OP_SPLICE:
6180 ret = io_splice(req, issue_flags);
6181 break;
6182 case IORING_OP_PROVIDE_BUFFERS:
6183 ret = io_provide_buffers(req, issue_flags);
6184 break;
6185 case IORING_OP_REMOVE_BUFFERS:
6186 ret = io_remove_buffers(req, issue_flags);
6187 break;
6188 case IORING_OP_TEE:
6189 ret = io_tee(req, issue_flags);
6190 break;
6191 case IORING_OP_SHUTDOWN:
6192 ret = io_shutdown(req, issue_flags);
6193 break;
6194 case IORING_OP_RENAMEAT:
6195 ret = io_renameat(req, issue_flags);
6196 break;
6197 case IORING_OP_UNLINKAT:
6198 ret = io_unlinkat(req, issue_flags);
6199 break;
6200 default:
6201 ret = -EINVAL;
6202 break;
6203 }
6204
6205 if (creds)
6206 revert_creds(creds);
6207
6208 if (ret)
6209 return ret;
6210
6211 /* If the op doesn't have a file, we're not polling for it */
6212 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6213 const bool in_async = io_wq_current_is_worker();
6214
6215 /* workqueue context doesn't hold uring_lock, grab it now */
6216 if (in_async)
6217 mutex_lock(&ctx->uring_lock);
6218
6219 io_iopoll_req_issued(req, in_async);
6220
6221 if (in_async)
6222 mutex_unlock(&ctx->uring_lock);
6223 }
6224
6225 return 0;
6226 }
6227
6228 static void io_wq_submit_work(struct io_wq_work *work)
6229 {
6230 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6231 struct io_kiocb *timeout;
6232 int ret = 0;
6233
6234 timeout = io_prep_linked_timeout(req);
6235 if (timeout)
6236 io_queue_linked_timeout(timeout);
6237
6238 if (work->flags & IO_WQ_WORK_CANCEL)
6239 ret = -ECANCELED;
6240
6241 if (!ret) {
6242 do {
6243 ret = io_issue_sqe(req, 0);
6244 /*
6245 * We can get EAGAIN for polled IO even though we're
6246 * forcing a sync submission from here, since we can't
6247 * wait for request slots on the block side.
6248 */
6249 if (ret != -EAGAIN)
6250 break;
6251 cond_resched();
6252 } while (1);
6253 }
6254
6255 /* avoid locking problems by failing it from a clean context */
6256 if (ret) {
6257 /* io-wq is going to take one down */
6258 req_ref_get(req);
6259 io_req_task_queue_fail(req, ret);
6260 }
6261 }
6262
6263 #define FFS_ASYNC_READ 0x1UL
6264 #define FFS_ASYNC_WRITE 0x2UL
6265 #ifdef CONFIG_64BIT
6266 #define FFS_ISREG 0x4UL
6267 #else
6268 #define FFS_ISREG 0x0UL
6269 #endif
6270 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6271
6272 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6273 unsigned i)
6274 {
6275 struct io_fixed_file *table_l2;
6276
6277 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6278 return &table_l2[i & IORING_FILE_TABLE_MASK];
6279 }
6280
6281 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6282 int index)
6283 {
6284 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6285
6286 return (struct file *) (slot->file_ptr & FFS_MASK);
6287 }
6288
6289 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6290 {
6291 unsigned long file_ptr = (unsigned long) file;
6292
6293 if (__io_file_supports_async(file, READ))
6294 file_ptr |= FFS_ASYNC_READ;
6295 if (__io_file_supports_async(file, WRITE))
6296 file_ptr |= FFS_ASYNC_WRITE;
6297 if (S_ISREG(file_inode(file)->i_mode))
6298 file_ptr |= FFS_ISREG;
6299 file_slot->file_ptr = file_ptr;
6300 }
6301
6302 static struct file *io_file_get(struct io_submit_state *state,
6303 struct io_kiocb *req, int fd, bool fixed)
6304 {
6305 struct io_ring_ctx *ctx = req->ctx;
6306 struct file *file;
6307
6308 if (fixed) {
6309 unsigned long file_ptr;
6310
6311 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6312 return NULL;
6313 fd = array_index_nospec(fd, ctx->nr_user_files);
6314 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6315 file = (struct file *) (file_ptr & FFS_MASK);
6316 file_ptr &= ~FFS_MASK;
6317 /* mask in overlapping REQ_F and FFS bits */
6318 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6319 io_req_set_rsrc_node(req);
6320 } else {
6321 trace_io_uring_file_get(ctx, fd);
6322 file = __io_file_get(state, fd);
6323
6324 /* we don't allow fixed io_uring files */
6325 if (file && unlikely(file->f_op == &io_uring_fops))
6326 io_req_track_inflight(req);
6327 }
6328
6329 return file;
6330 }
6331
6332 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6333 {
6334 struct io_timeout_data *data = container_of(timer,
6335 struct io_timeout_data, timer);
6336 struct io_kiocb *prev, *req = data->req;
6337 struct io_ring_ctx *ctx = req->ctx;
6338 unsigned long flags;
6339
6340 spin_lock_irqsave(&ctx->completion_lock, flags);
6341 prev = req->timeout.head;
6342 req->timeout.head = NULL;
6343
6344 /*
6345 * We don't expect the list to be empty, that will only happen if we
6346 * race with the completion of the linked work.
6347 */
6348 if (prev && req_ref_inc_not_zero(prev))
6349 io_remove_next_linked(prev);
6350 else
6351 prev = NULL;
6352 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6353
6354 if (prev) {
6355 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6356 io_put_req_deferred(prev, 1);
6357 } else {
6358 io_req_complete_post(req, -ETIME, 0);
6359 }
6360 io_put_req_deferred(req, 1);
6361 return HRTIMER_NORESTART;
6362 }
6363
6364 static void io_queue_linked_timeout(struct io_kiocb *req)
6365 {
6366 struct io_ring_ctx *ctx = req->ctx;
6367
6368 spin_lock_irq(&ctx->completion_lock);
6369 /*
6370 * If the back reference is NULL, then our linked request finished
6371 * before we got a chance to setup the timer
6372 */
6373 if (req->timeout.head) {
6374 struct io_timeout_data *data = req->async_data;
6375
6376 data->timer.function = io_link_timeout_fn;
6377 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6378 data->mode);
6379 }
6380 spin_unlock_irq(&ctx->completion_lock);
6381 /* drop submission reference */
6382 io_put_req(req);
6383 }
6384
6385 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6386 {
6387 struct io_kiocb *nxt = req->link;
6388
6389 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6390 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6391 return NULL;
6392
6393 nxt->timeout.head = req;
6394 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6395 req->flags |= REQ_F_LINK_TIMEOUT;
6396 return nxt;
6397 }
6398
6399 static void __io_queue_sqe(struct io_kiocb *req)
6400 {
6401 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6402 int ret;
6403
6404 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6405
6406 /*
6407 * We async punt it if the file wasn't marked NOWAIT, or if the file
6408 * doesn't support non-blocking read/write attempts
6409 */
6410 if (likely(!ret)) {
6411 /* drop submission reference */
6412 if (req->flags & REQ_F_COMPLETE_INLINE) {
6413 struct io_ring_ctx *ctx = req->ctx;
6414 struct io_comp_state *cs = &ctx->submit_state.comp;
6415
6416 cs->reqs[cs->nr++] = req;
6417 if (cs->nr == ARRAY_SIZE(cs->reqs))
6418 io_submit_flush_completions(cs, ctx);
6419 } else {
6420 io_put_req(req);
6421 }
6422 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6423 if (!io_arm_poll_handler(req)) {
6424 /*
6425 * Queued up for async execution, worker will release
6426 * submit reference when the iocb is actually submitted.
6427 */
6428 io_queue_async_work(req);
6429 }
6430 } else {
6431 io_req_complete_failed(req, ret);
6432 }
6433 if (linked_timeout)
6434 io_queue_linked_timeout(linked_timeout);
6435 }
6436
6437 static void io_queue_sqe(struct io_kiocb *req)
6438 {
6439 int ret;
6440
6441 ret = io_req_defer(req);
6442 if (ret) {
6443 if (ret != -EIOCBQUEUED) {
6444 fail_req:
6445 io_req_complete_failed(req, ret);
6446 }
6447 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6448 ret = io_req_prep_async(req);
6449 if (unlikely(ret))
6450 goto fail_req;
6451 io_queue_async_work(req);
6452 } else {
6453 __io_queue_sqe(req);
6454 }
6455 }
6456
6457 /*
6458 * Check SQE restrictions (opcode and flags).
6459 *
6460 * Returns 'true' if SQE is allowed, 'false' otherwise.
6461 */
6462 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6463 struct io_kiocb *req,
6464 unsigned int sqe_flags)
6465 {
6466 if (!ctx->restricted)
6467 return true;
6468
6469 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6470 return false;
6471
6472 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6473 ctx->restrictions.sqe_flags_required)
6474 return false;
6475
6476 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6477 ctx->restrictions.sqe_flags_required))
6478 return false;
6479
6480 return true;
6481 }
6482
6483 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6484 const struct io_uring_sqe *sqe)
6485 {
6486 struct io_submit_state *state;
6487 unsigned int sqe_flags;
6488 int personality, ret = 0;
6489
6490 req->opcode = READ_ONCE(sqe->opcode);
6491 /* same numerical values with corresponding REQ_F_*, safe to copy */
6492 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6493 req->user_data = READ_ONCE(sqe->user_data);
6494 req->async_data = NULL;
6495 req->file = NULL;
6496 req->ctx = ctx;
6497 req->link = NULL;
6498 req->fixed_rsrc_refs = NULL;
6499 /* one is dropped after submission, the other at completion */
6500 atomic_set(&req->refs, 2);
6501 req->task = current;
6502 req->result = 0;
6503 req->work.creds = NULL;
6504
6505 /* enforce forwards compatibility on users */
6506 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
6507 req->flags = 0;
6508 return -EINVAL;
6509 }
6510
6511 if (unlikely(req->opcode >= IORING_OP_LAST))
6512 return -EINVAL;
6513
6514 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6515 return -EACCES;
6516
6517 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6518 !io_op_defs[req->opcode].buffer_select)
6519 return -EOPNOTSUPP;
6520
6521 personality = READ_ONCE(sqe->personality);
6522 if (personality) {
6523 req->work.creds = xa_load(&ctx->personalities, personality);
6524 if (!req->work.creds)
6525 return -EINVAL;
6526 get_cred(req->work.creds);
6527 }
6528 state = &ctx->submit_state;
6529
6530 /*
6531 * Plug now if we have more than 1 IO left after this, and the target
6532 * is potentially a read/write to block based storage.
6533 */
6534 if (!state->plug_started && state->ios_left > 1 &&
6535 io_op_defs[req->opcode].plug) {
6536 blk_start_plug(&state->plug);
6537 state->plug_started = true;
6538 }
6539
6540 if (io_op_defs[req->opcode].needs_file) {
6541 bool fixed = req->flags & REQ_F_FIXED_FILE;
6542
6543 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6544 if (unlikely(!req->file))
6545 ret = -EBADF;
6546 }
6547
6548 state->ios_left--;
6549 return ret;
6550 }
6551
6552 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6553 const struct io_uring_sqe *sqe)
6554 {
6555 struct io_submit_link *link = &ctx->submit_state.link;
6556 int ret;
6557
6558 ret = io_init_req(ctx, req, sqe);
6559 if (unlikely(ret)) {
6560 fail_req:
6561 if (link->head) {
6562 /* fail even hard links since we don't submit */
6563 link->head->flags |= REQ_F_FAIL_LINK;
6564 io_req_complete_failed(link->head, -ECANCELED);
6565 link->head = NULL;
6566 }
6567 io_req_complete_failed(req, ret);
6568 return ret;
6569 }
6570 ret = io_req_prep(req, sqe);
6571 if (unlikely(ret))
6572 goto fail_req;
6573
6574 /* don't need @sqe from now on */
6575 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6576 true, ctx->flags & IORING_SETUP_SQPOLL);
6577
6578 /*
6579 * If we already have a head request, queue this one for async
6580 * submittal once the head completes. If we don't have a head but
6581 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6582 * submitted sync once the chain is complete. If none of those
6583 * conditions are true (normal request), then just queue it.
6584 */
6585 if (link->head) {
6586 struct io_kiocb *head = link->head;
6587
6588 /*
6589 * Taking sequential execution of a link, draining both sides
6590 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6591 * requests in the link. So, it drains the head and the
6592 * next after the link request. The last one is done via
6593 * drain_next flag to persist the effect across calls.
6594 */
6595 if (req->flags & REQ_F_IO_DRAIN) {
6596 head->flags |= REQ_F_IO_DRAIN;
6597 ctx->drain_next = 1;
6598 }
6599 ret = io_req_prep_async(req);
6600 if (unlikely(ret))
6601 goto fail_req;
6602 trace_io_uring_link(ctx, req, head);
6603 link->last->link = req;
6604 link->last = req;
6605
6606 /* last request of a link, enqueue the link */
6607 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6608 io_queue_sqe(head);
6609 link->head = NULL;
6610 }
6611 } else {
6612 if (unlikely(ctx->drain_next)) {
6613 req->flags |= REQ_F_IO_DRAIN;
6614 ctx->drain_next = 0;
6615 }
6616 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6617 link->head = req;
6618 link->last = req;
6619 } else {
6620 io_queue_sqe(req);
6621 }
6622 }
6623
6624 return 0;
6625 }
6626
6627 /*
6628 * Batched submission is done, ensure local IO is flushed out.
6629 */
6630 static void io_submit_state_end(struct io_submit_state *state,
6631 struct io_ring_ctx *ctx)
6632 {
6633 if (state->link.head)
6634 io_queue_sqe(state->link.head);
6635 if (state->comp.nr)
6636 io_submit_flush_completions(&state->comp, ctx);
6637 if (state->plug_started)
6638 blk_finish_plug(&state->plug);
6639 io_state_file_put(state);
6640 }
6641
6642 /*
6643 * Start submission side cache.
6644 */
6645 static void io_submit_state_start(struct io_submit_state *state,
6646 unsigned int max_ios)
6647 {
6648 state->plug_started = false;
6649 state->ios_left = max_ios;
6650 /* set only head, no need to init link_last in advance */
6651 state->link.head = NULL;
6652 }
6653
6654 static void io_commit_sqring(struct io_ring_ctx *ctx)
6655 {
6656 struct io_rings *rings = ctx->rings;
6657
6658 /*
6659 * Ensure any loads from the SQEs are done at this point,
6660 * since once we write the new head, the application could
6661 * write new data to them.
6662 */
6663 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6664 }
6665
6666 /*
6667 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6668 * that is mapped by userspace. This means that care needs to be taken to
6669 * ensure that reads are stable, as we cannot rely on userspace always
6670 * being a good citizen. If members of the sqe are validated and then later
6671 * used, it's important that those reads are done through READ_ONCE() to
6672 * prevent a re-load down the line.
6673 */
6674 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6675 {
6676 u32 *sq_array = ctx->sq_array;
6677 unsigned head;
6678
6679 /*
6680 * The cached sq head (or cq tail) serves two purposes:
6681 *
6682 * 1) allows us to batch the cost of updating the user visible
6683 * head updates.
6684 * 2) allows the kernel side to track the head on its own, even
6685 * though the application is the one updating it.
6686 */
6687 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6688 if (likely(head < ctx->sq_entries))
6689 return &ctx->sq_sqes[head];
6690
6691 /* drop invalid entries */
6692 ctx->cached_sq_dropped++;
6693 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6694 return NULL;
6695 }
6696
6697 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6698 {
6699 int submitted = 0;
6700
6701 /* make sure SQ entry isn't read before tail */
6702 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6703
6704 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6705 return -EAGAIN;
6706
6707 percpu_counter_add(&current->io_uring->inflight, nr);
6708 refcount_add(nr, &current->usage);
6709 io_submit_state_start(&ctx->submit_state, nr);
6710
6711 while (submitted < nr) {
6712 const struct io_uring_sqe *sqe;
6713 struct io_kiocb *req;
6714
6715 req = io_alloc_req(ctx);
6716 if (unlikely(!req)) {
6717 if (!submitted)
6718 submitted = -EAGAIN;
6719 break;
6720 }
6721 sqe = io_get_sqe(ctx);
6722 if (unlikely(!sqe)) {
6723 kmem_cache_free(req_cachep, req);
6724 break;
6725 }
6726 /* will complete beyond this point, count as submitted */
6727 submitted++;
6728 if (io_submit_sqe(ctx, req, sqe))
6729 break;
6730 }
6731
6732 if (unlikely(submitted != nr)) {
6733 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6734 struct io_uring_task *tctx = current->io_uring;
6735 int unused = nr - ref_used;
6736
6737 percpu_ref_put_many(&ctx->refs, unused);
6738 percpu_counter_sub(&tctx->inflight, unused);
6739 put_task_struct_many(current, unused);
6740 }
6741
6742 io_submit_state_end(&ctx->submit_state, ctx);
6743 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6744 io_commit_sqring(ctx);
6745
6746 return submitted;
6747 }
6748
6749 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6750 {
6751 /* Tell userspace we may need a wakeup call */
6752 spin_lock_irq(&ctx->completion_lock);
6753 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6754 spin_unlock_irq(&ctx->completion_lock);
6755 }
6756
6757 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6758 {
6759 spin_lock_irq(&ctx->completion_lock);
6760 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6761 spin_unlock_irq(&ctx->completion_lock);
6762 }
6763
6764 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6765 {
6766 unsigned int to_submit;
6767 int ret = 0;
6768
6769 to_submit = io_sqring_entries(ctx);
6770 /* if we're handling multiple rings, cap submit size for fairness */
6771 if (cap_entries && to_submit > 8)
6772 to_submit = 8;
6773
6774 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6775 unsigned nr_events = 0;
6776
6777 mutex_lock(&ctx->uring_lock);
6778 if (!list_empty(&ctx->iopoll_list))
6779 io_do_iopoll(ctx, &nr_events, 0);
6780
6781 /*
6782 * Don't submit if refs are dying, good for io_uring_register(),
6783 * but also it is relied upon by io_ring_exit_work()
6784 */
6785 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6786 !(ctx->flags & IORING_SETUP_R_DISABLED))
6787 ret = io_submit_sqes(ctx, to_submit);
6788 mutex_unlock(&ctx->uring_lock);
6789 }
6790
6791 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6792 wake_up(&ctx->sqo_sq_wait);
6793
6794 return ret;
6795 }
6796
6797 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6798 {
6799 struct io_ring_ctx *ctx;
6800 unsigned sq_thread_idle = 0;
6801
6802 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6803 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6804 sqd->sq_thread_idle = sq_thread_idle;
6805 }
6806
6807 static int io_sq_thread(void *data)
6808 {
6809 struct io_sq_data *sqd = data;
6810 struct io_ring_ctx *ctx;
6811 unsigned long timeout = 0;
6812 char buf[TASK_COMM_LEN];
6813 DEFINE_WAIT(wait);
6814
6815 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6816 set_task_comm(current, buf);
6817
6818 if (sqd->sq_cpu != -1)
6819 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6820 else
6821 set_cpus_allowed_ptr(current, cpu_online_mask);
6822 current->flags |= PF_NO_SETAFFINITY;
6823
6824 mutex_lock(&sqd->lock);
6825 /* a user may had exited before the thread started */
6826 io_run_task_work_head(&sqd->park_task_work);
6827
6828 while (!test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)) {
6829 int ret;
6830 bool cap_entries, sqt_spin, needs_sched;
6831
6832 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6833 signal_pending(current)) {
6834 bool did_sig = false;
6835
6836 mutex_unlock(&sqd->lock);
6837 if (signal_pending(current)) {
6838 struct ksignal ksig;
6839
6840 did_sig = get_signal(&ksig);
6841 }
6842 cond_resched();
6843 mutex_lock(&sqd->lock);
6844 io_run_task_work();
6845 io_run_task_work_head(&sqd->park_task_work);
6846 if (did_sig)
6847 break;
6848 timeout = jiffies + sqd->sq_thread_idle;
6849 continue;
6850 }
6851 sqt_spin = false;
6852 cap_entries = !list_is_singular(&sqd->ctx_list);
6853 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6854 const struct cred *creds = NULL;
6855
6856 if (ctx->sq_creds != current_cred())
6857 creds = override_creds(ctx->sq_creds);
6858 ret = __io_sq_thread(ctx, cap_entries);
6859 if (creds)
6860 revert_creds(creds);
6861 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6862 sqt_spin = true;
6863 }
6864
6865 if (sqt_spin || !time_after(jiffies, timeout)) {
6866 io_run_task_work();
6867 cond_resched();
6868 if (sqt_spin)
6869 timeout = jiffies + sqd->sq_thread_idle;
6870 continue;
6871 }
6872
6873 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6874 if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state)) {
6875 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6876 io_ring_set_wakeup_flag(ctx);
6877
6878 needs_sched = true;
6879 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6880 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6881 !list_empty_careful(&ctx->iopoll_list)) {
6882 needs_sched = false;
6883 break;
6884 }
6885 if (io_sqring_entries(ctx)) {
6886 needs_sched = false;
6887 break;
6888 }
6889 }
6890
6891 if (needs_sched) {
6892 mutex_unlock(&sqd->lock);
6893 schedule();
6894 mutex_lock(&sqd->lock);
6895 }
6896 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6897 io_ring_clear_wakeup_flag(ctx);
6898 }
6899
6900 finish_wait(&sqd->wait, &wait);
6901 io_run_task_work_head(&sqd->park_task_work);
6902 timeout = jiffies + sqd->sq_thread_idle;
6903 }
6904
6905 io_uring_cancel_sqpoll(sqd);
6906 sqd->thread = NULL;
6907 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6908 io_ring_set_wakeup_flag(ctx);
6909 io_run_task_work();
6910 io_run_task_work_head(&sqd->park_task_work);
6911 mutex_unlock(&sqd->lock);
6912
6913 complete(&sqd->exited);
6914 do_exit(0);
6915 }
6916
6917 struct io_wait_queue {
6918 struct wait_queue_entry wq;
6919 struct io_ring_ctx *ctx;
6920 unsigned to_wait;
6921 unsigned nr_timeouts;
6922 };
6923
6924 static inline bool io_should_wake(struct io_wait_queue *iowq)
6925 {
6926 struct io_ring_ctx *ctx = iowq->ctx;
6927
6928 /*
6929 * Wake up if we have enough events, or if a timeout occurred since we
6930 * started waiting. For timeouts, we always want to return to userspace,
6931 * regardless of event count.
6932 */
6933 return io_cqring_events(ctx) >= iowq->to_wait ||
6934 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6935 }
6936
6937 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6938 int wake_flags, void *key)
6939 {
6940 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6941 wq);
6942
6943 /*
6944 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6945 * the task, and the next invocation will do it.
6946 */
6947 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
6948 return autoremove_wake_function(curr, mode, wake_flags, key);
6949 return -1;
6950 }
6951
6952 static int io_run_task_work_sig(void)
6953 {
6954 if (io_run_task_work())
6955 return 1;
6956 if (!signal_pending(current))
6957 return 0;
6958 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6959 return -ERESTARTSYS;
6960 return -EINTR;
6961 }
6962
6963 /* when returns >0, the caller should retry */
6964 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6965 struct io_wait_queue *iowq,
6966 signed long *timeout)
6967 {
6968 int ret;
6969
6970 /* make sure we run task_work before checking for signals */
6971 ret = io_run_task_work_sig();
6972 if (ret || io_should_wake(iowq))
6973 return ret;
6974 /* let the caller flush overflows, retry */
6975 if (test_bit(0, &ctx->cq_check_overflow))
6976 return 1;
6977
6978 *timeout = schedule_timeout(*timeout);
6979 return !*timeout ? -ETIME : 1;
6980 }
6981
6982 /*
6983 * Wait until events become available, if we don't already have some. The
6984 * application must reap them itself, as they reside on the shared cq ring.
6985 */
6986 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6987 const sigset_t __user *sig, size_t sigsz,
6988 struct __kernel_timespec __user *uts)
6989 {
6990 struct io_wait_queue iowq = {
6991 .wq = {
6992 .private = current,
6993 .func = io_wake_function,
6994 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6995 },
6996 .ctx = ctx,
6997 .to_wait = min_events,
6998 };
6999 struct io_rings *rings = ctx->rings;
7000 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7001 int ret;
7002
7003 do {
7004 io_cqring_overflow_flush(ctx, false);
7005 if (io_cqring_events(ctx) >= min_events)
7006 return 0;
7007 if (!io_run_task_work())
7008 break;
7009 } while (1);
7010
7011 if (sig) {
7012 #ifdef CONFIG_COMPAT
7013 if (in_compat_syscall())
7014 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7015 sigsz);
7016 else
7017 #endif
7018 ret = set_user_sigmask(sig, sigsz);
7019
7020 if (ret)
7021 return ret;
7022 }
7023
7024 if (uts) {
7025 struct timespec64 ts;
7026
7027 if (get_timespec64(&ts, uts))
7028 return -EFAULT;
7029 timeout = timespec64_to_jiffies(&ts);
7030 }
7031
7032 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7033 trace_io_uring_cqring_wait(ctx, min_events);
7034 do {
7035 /* if we can't even flush overflow, don't wait for more */
7036 if (!io_cqring_overflow_flush(ctx, false)) {
7037 ret = -EBUSY;
7038 break;
7039 }
7040 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7041 TASK_INTERRUPTIBLE);
7042 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7043 finish_wait(&ctx->wait, &iowq.wq);
7044 cond_resched();
7045 } while (ret > 0);
7046
7047 restore_saved_sigmask_unless(ret == -EINTR);
7048
7049 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7050 }
7051
7052 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7053 {
7054 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7055
7056 for (i = 0; i < nr_tables; i++)
7057 kfree(table->files[i]);
7058 kfree(table->files);
7059 table->files = NULL;
7060 }
7061
7062 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7063 {
7064 spin_lock_bh(&ctx->rsrc_ref_lock);
7065 }
7066
7067 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7068 {
7069 spin_unlock_bh(&ctx->rsrc_ref_lock);
7070 }
7071
7072 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7073 {
7074 percpu_ref_exit(&ref_node->refs);
7075 kfree(ref_node);
7076 }
7077
7078 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7079 struct io_rsrc_data *data_to_kill)
7080 {
7081 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7082 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7083
7084 if (data_to_kill) {
7085 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7086
7087 rsrc_node->rsrc_data = data_to_kill;
7088 io_rsrc_ref_lock(ctx);
7089 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7090 io_rsrc_ref_unlock(ctx);
7091
7092 atomic_inc(&data_to_kill->refs);
7093 percpu_ref_kill(&rsrc_node->refs);
7094 ctx->rsrc_node = NULL;
7095 }
7096
7097 if (!ctx->rsrc_node) {
7098 ctx->rsrc_node = ctx->rsrc_backup_node;
7099 ctx->rsrc_backup_node = NULL;
7100 }
7101 }
7102
7103 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7104 {
7105 if (ctx->rsrc_backup_node)
7106 return 0;
7107 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7108 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7109 }
7110
7111 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7112 {
7113 int ret;
7114
7115 /* As we may drop ->uring_lock, other task may have started quiesce */
7116 if (data->quiesce)
7117 return -ENXIO;
7118
7119 data->quiesce = true;
7120 do {
7121 ret = io_rsrc_node_switch_start(ctx);
7122 if (ret)
7123 break;
7124 io_rsrc_node_switch(ctx, data);
7125
7126 /* kill initial ref, already quiesced if zero */
7127 if (atomic_dec_and_test(&data->refs))
7128 break;
7129 flush_delayed_work(&ctx->rsrc_put_work);
7130 ret = wait_for_completion_interruptible(&data->done);
7131 if (!ret)
7132 break;
7133
7134 atomic_inc(&data->refs);
7135 /* wait for all works potentially completing data->done */
7136 flush_delayed_work(&ctx->rsrc_put_work);
7137 reinit_completion(&data->done);
7138
7139 mutex_unlock(&ctx->uring_lock);
7140 ret = io_run_task_work_sig();
7141 mutex_lock(&ctx->uring_lock);
7142 } while (ret >= 0);
7143 data->quiesce = false;
7144
7145 return ret;
7146 }
7147
7148 static void io_rsrc_data_free(struct io_rsrc_data *data)
7149 {
7150 kvfree(data->tags);
7151 kfree(data);
7152 }
7153
7154 static struct io_rsrc_data *io_rsrc_data_alloc(struct io_ring_ctx *ctx,
7155 rsrc_put_fn *do_put,
7156 unsigned nr)
7157 {
7158 struct io_rsrc_data *data;
7159
7160 data = kzalloc(sizeof(*data), GFP_KERNEL);
7161 if (!data)
7162 return NULL;
7163
7164 data->tags = kvcalloc(nr, sizeof(*data->tags), GFP_KERNEL);
7165 if (!data->tags) {
7166 kfree(data);
7167 return NULL;
7168 }
7169
7170 atomic_set(&data->refs, 1);
7171 data->ctx = ctx;
7172 data->do_put = do_put;
7173 init_completion(&data->done);
7174 return data;
7175 }
7176
7177 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7178 {
7179 #if defined(CONFIG_UNIX)
7180 if (ctx->ring_sock) {
7181 struct sock *sock = ctx->ring_sock->sk;
7182 struct sk_buff *skb;
7183
7184 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7185 kfree_skb(skb);
7186 }
7187 #else
7188 int i;
7189
7190 for (i = 0; i < ctx->nr_user_files; i++) {
7191 struct file *file;
7192
7193 file = io_file_from_index(ctx, i);
7194 if (file)
7195 fput(file);
7196 }
7197 #endif
7198 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7199 io_rsrc_data_free(ctx->file_data);
7200 ctx->file_data = NULL;
7201 ctx->nr_user_files = 0;
7202 }
7203
7204 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7205 {
7206 int ret;
7207
7208 if (!ctx->file_data)
7209 return -ENXIO;
7210 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7211 if (!ret)
7212 __io_sqe_files_unregister(ctx);
7213 return ret;
7214 }
7215
7216 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7217 __releases(&sqd->lock)
7218 {
7219 WARN_ON_ONCE(sqd->thread == current);
7220
7221 /*
7222 * Do the dance but not conditional clear_bit() because it'd race with
7223 * other threads incrementing park_pending and setting the bit.
7224 */
7225 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7226 if (atomic_dec_return(&sqd->park_pending))
7227 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7228 mutex_unlock(&sqd->lock);
7229 }
7230
7231 static void io_sq_thread_park(struct io_sq_data *sqd)
7232 __acquires(&sqd->lock)
7233 {
7234 WARN_ON_ONCE(sqd->thread == current);
7235
7236 atomic_inc(&sqd->park_pending);
7237 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7238 mutex_lock(&sqd->lock);
7239 if (sqd->thread)
7240 wake_up_process(sqd->thread);
7241 }
7242
7243 static void io_sq_thread_stop(struct io_sq_data *sqd)
7244 {
7245 WARN_ON_ONCE(sqd->thread == current);
7246 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7247
7248 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7249 mutex_lock(&sqd->lock);
7250 if (sqd->thread)
7251 wake_up_process(sqd->thread);
7252 mutex_unlock(&sqd->lock);
7253 wait_for_completion(&sqd->exited);
7254 }
7255
7256 static void io_put_sq_data(struct io_sq_data *sqd)
7257 {
7258 if (refcount_dec_and_test(&sqd->refs)) {
7259 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7260
7261 io_sq_thread_stop(sqd);
7262 kfree(sqd);
7263 }
7264 }
7265
7266 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7267 {
7268 struct io_sq_data *sqd = ctx->sq_data;
7269
7270 if (sqd) {
7271 io_sq_thread_park(sqd);
7272 list_del_init(&ctx->sqd_list);
7273 io_sqd_update_thread_idle(sqd);
7274 io_sq_thread_unpark(sqd);
7275
7276 io_put_sq_data(sqd);
7277 ctx->sq_data = NULL;
7278 }
7279 }
7280
7281 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7282 {
7283 struct io_ring_ctx *ctx_attach;
7284 struct io_sq_data *sqd;
7285 struct fd f;
7286
7287 f = fdget(p->wq_fd);
7288 if (!f.file)
7289 return ERR_PTR(-ENXIO);
7290 if (f.file->f_op != &io_uring_fops) {
7291 fdput(f);
7292 return ERR_PTR(-EINVAL);
7293 }
7294
7295 ctx_attach = f.file->private_data;
7296 sqd = ctx_attach->sq_data;
7297 if (!sqd) {
7298 fdput(f);
7299 return ERR_PTR(-EINVAL);
7300 }
7301 if (sqd->task_tgid != current->tgid) {
7302 fdput(f);
7303 return ERR_PTR(-EPERM);
7304 }
7305
7306 refcount_inc(&sqd->refs);
7307 fdput(f);
7308 return sqd;
7309 }
7310
7311 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7312 bool *attached)
7313 {
7314 struct io_sq_data *sqd;
7315
7316 *attached = false;
7317 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7318 sqd = io_attach_sq_data(p);
7319 if (!IS_ERR(sqd)) {
7320 *attached = true;
7321 return sqd;
7322 }
7323 /* fall through for EPERM case, setup new sqd/task */
7324 if (PTR_ERR(sqd) != -EPERM)
7325 return sqd;
7326 }
7327
7328 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7329 if (!sqd)
7330 return ERR_PTR(-ENOMEM);
7331
7332 atomic_set(&sqd->park_pending, 0);
7333 refcount_set(&sqd->refs, 1);
7334 INIT_LIST_HEAD(&sqd->ctx_list);
7335 mutex_init(&sqd->lock);
7336 init_waitqueue_head(&sqd->wait);
7337 init_completion(&sqd->exited);
7338 return sqd;
7339 }
7340
7341 #if defined(CONFIG_UNIX)
7342 /*
7343 * Ensure the UNIX gc is aware of our file set, so we are certain that
7344 * the io_uring can be safely unregistered on process exit, even if we have
7345 * loops in the file referencing.
7346 */
7347 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7348 {
7349 struct sock *sk = ctx->ring_sock->sk;
7350 struct scm_fp_list *fpl;
7351 struct sk_buff *skb;
7352 int i, nr_files;
7353
7354 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7355 if (!fpl)
7356 return -ENOMEM;
7357
7358 skb = alloc_skb(0, GFP_KERNEL);
7359 if (!skb) {
7360 kfree(fpl);
7361 return -ENOMEM;
7362 }
7363
7364 skb->sk = sk;
7365
7366 nr_files = 0;
7367 fpl->user = get_uid(current_user());
7368 for (i = 0; i < nr; i++) {
7369 struct file *file = io_file_from_index(ctx, i + offset);
7370
7371 if (!file)
7372 continue;
7373 fpl->fp[nr_files] = get_file(file);
7374 unix_inflight(fpl->user, fpl->fp[nr_files]);
7375 nr_files++;
7376 }
7377
7378 if (nr_files) {
7379 fpl->max = SCM_MAX_FD;
7380 fpl->count = nr_files;
7381 UNIXCB(skb).fp = fpl;
7382 skb->destructor = unix_destruct_scm;
7383 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7384 skb_queue_head(&sk->sk_receive_queue, skb);
7385
7386 for (i = 0; i < nr_files; i++)
7387 fput(fpl->fp[i]);
7388 } else {
7389 kfree_skb(skb);
7390 kfree(fpl);
7391 }
7392
7393 return 0;
7394 }
7395
7396 /*
7397 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7398 * causes regular reference counting to break down. We rely on the UNIX
7399 * garbage collection to take care of this problem for us.
7400 */
7401 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7402 {
7403 unsigned left, total;
7404 int ret = 0;
7405
7406 total = 0;
7407 left = ctx->nr_user_files;
7408 while (left) {
7409 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7410
7411 ret = __io_sqe_files_scm(ctx, this_files, total);
7412 if (ret)
7413 break;
7414 left -= this_files;
7415 total += this_files;
7416 }
7417
7418 if (!ret)
7419 return 0;
7420
7421 while (total < ctx->nr_user_files) {
7422 struct file *file = io_file_from_index(ctx, total);
7423
7424 if (file)
7425 fput(file);
7426 total++;
7427 }
7428
7429 return ret;
7430 }
7431 #else
7432 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7433 {
7434 return 0;
7435 }
7436 #endif
7437
7438 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7439 {
7440 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7441
7442 table->files = kcalloc(nr_tables, sizeof(*table->files), GFP_KERNEL);
7443 if (!table->files)
7444 return false;
7445
7446 for (i = 0; i < nr_tables; i++) {
7447 unsigned int this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7448
7449 table->files[i] = kcalloc(this_files, sizeof(*table->files[i]),
7450 GFP_KERNEL);
7451 if (!table->files[i])
7452 break;
7453 nr_files -= this_files;
7454 }
7455
7456 if (i == nr_tables)
7457 return true;
7458
7459 io_free_file_tables(table, nr_tables * IORING_MAX_FILES_TABLE);
7460 return false;
7461 }
7462
7463 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7464 {
7465 struct file *file = prsrc->file;
7466 #if defined(CONFIG_UNIX)
7467 struct sock *sock = ctx->ring_sock->sk;
7468 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7469 struct sk_buff *skb;
7470 int i;
7471
7472 __skb_queue_head_init(&list);
7473
7474 /*
7475 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7476 * remove this entry and rearrange the file array.
7477 */
7478 skb = skb_dequeue(head);
7479 while (skb) {
7480 struct scm_fp_list *fp;
7481
7482 fp = UNIXCB(skb).fp;
7483 for (i = 0; i < fp->count; i++) {
7484 int left;
7485
7486 if (fp->fp[i] != file)
7487 continue;
7488
7489 unix_notinflight(fp->user, fp->fp[i]);
7490 left = fp->count - 1 - i;
7491 if (left) {
7492 memmove(&fp->fp[i], &fp->fp[i + 1],
7493 left * sizeof(struct file *));
7494 }
7495 fp->count--;
7496 if (!fp->count) {
7497 kfree_skb(skb);
7498 skb = NULL;
7499 } else {
7500 __skb_queue_tail(&list, skb);
7501 }
7502 fput(file);
7503 file = NULL;
7504 break;
7505 }
7506
7507 if (!file)
7508 break;
7509
7510 __skb_queue_tail(&list, skb);
7511
7512 skb = skb_dequeue(head);
7513 }
7514
7515 if (skb_peek(&list)) {
7516 spin_lock_irq(&head->lock);
7517 while ((skb = __skb_dequeue(&list)) != NULL)
7518 __skb_queue_tail(head, skb);
7519 spin_unlock_irq(&head->lock);
7520 }
7521 #else
7522 fput(file);
7523 #endif
7524 }
7525
7526 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7527 {
7528 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7529 struct io_ring_ctx *ctx = rsrc_data->ctx;
7530 struct io_rsrc_put *prsrc, *tmp;
7531
7532 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7533 list_del(&prsrc->list);
7534
7535 if (prsrc->tag) {
7536 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7537 unsigned long flags;
7538
7539 io_ring_submit_lock(ctx, lock_ring);
7540 spin_lock_irqsave(&ctx->completion_lock, flags);
7541 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7542 io_commit_cqring(ctx);
7543 spin_unlock_irqrestore(&ctx->completion_lock, flags);
7544 io_cqring_ev_posted(ctx);
7545 io_ring_submit_unlock(ctx, lock_ring);
7546 }
7547
7548 rsrc_data->do_put(ctx, prsrc);
7549 kfree(prsrc);
7550 }
7551
7552 io_rsrc_node_destroy(ref_node);
7553 if (atomic_dec_and_test(&rsrc_data->refs))
7554 complete(&rsrc_data->done);
7555 }
7556
7557 static void io_rsrc_put_work(struct work_struct *work)
7558 {
7559 struct io_ring_ctx *ctx;
7560 struct llist_node *node;
7561
7562 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7563 node = llist_del_all(&ctx->rsrc_put_llist);
7564
7565 while (node) {
7566 struct io_rsrc_node *ref_node;
7567 struct llist_node *next = node->next;
7568
7569 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7570 __io_rsrc_put_work(ref_node);
7571 node = next;
7572 }
7573 }
7574
7575 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7576 {
7577 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7578 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7579 bool first_add = false;
7580
7581 io_rsrc_ref_lock(ctx);
7582 node->done = true;
7583
7584 while (!list_empty(&ctx->rsrc_ref_list)) {
7585 node = list_first_entry(&ctx->rsrc_ref_list,
7586 struct io_rsrc_node, node);
7587 /* recycle ref nodes in order */
7588 if (!node->done)
7589 break;
7590 list_del(&node->node);
7591 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7592 }
7593 io_rsrc_ref_unlock(ctx);
7594
7595 if (first_add)
7596 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7597 }
7598
7599 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7600 {
7601 struct io_rsrc_node *ref_node;
7602
7603 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7604 if (!ref_node)
7605 return NULL;
7606
7607 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7608 0, GFP_KERNEL)) {
7609 kfree(ref_node);
7610 return NULL;
7611 }
7612 INIT_LIST_HEAD(&ref_node->node);
7613 INIT_LIST_HEAD(&ref_node->rsrc_list);
7614 ref_node->done = false;
7615 return ref_node;
7616 }
7617
7618 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7619 unsigned nr_args, u64 __user *tags)
7620 {
7621 __s32 __user *fds = (__s32 __user *) arg;
7622 struct file *file;
7623 int fd, ret;
7624 unsigned i;
7625 struct io_rsrc_data *file_data;
7626
7627 if (ctx->file_data)
7628 return -EBUSY;
7629 if (!nr_args)
7630 return -EINVAL;
7631 if (nr_args > IORING_MAX_FIXED_FILES)
7632 return -EMFILE;
7633 ret = io_rsrc_node_switch_start(ctx);
7634 if (ret)
7635 return ret;
7636
7637 file_data = io_rsrc_data_alloc(ctx, io_rsrc_file_put, nr_args);
7638 if (!file_data)
7639 return -ENOMEM;
7640 ctx->file_data = file_data;
7641 ret = -ENOMEM;
7642 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7643 goto out_free;
7644
7645 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7646 u64 tag = 0;
7647
7648 if ((tags && copy_from_user(&tag, &tags[i], sizeof(tag))) ||
7649 copy_from_user(&fd, &fds[i], sizeof(fd))) {
7650 ret = -EFAULT;
7651 goto out_fput;
7652 }
7653 /* allow sparse sets */
7654 if (fd == -1) {
7655 ret = -EINVAL;
7656 if (unlikely(tag))
7657 goto out_fput;
7658 continue;
7659 }
7660
7661 file = fget(fd);
7662 ret = -EBADF;
7663 if (unlikely(!file))
7664 goto out_fput;
7665
7666 /*
7667 * Don't allow io_uring instances to be registered. If UNIX
7668 * isn't enabled, then this causes a reference cycle and this
7669 * instance can never get freed. If UNIX is enabled we'll
7670 * handle it just fine, but there's still no point in allowing
7671 * a ring fd as it doesn't support regular read/write anyway.
7672 */
7673 if (file->f_op == &io_uring_fops) {
7674 fput(file);
7675 goto out_fput;
7676 }
7677 ctx->file_data->tags[i] = tag;
7678 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7679 }
7680
7681 ret = io_sqe_files_scm(ctx);
7682 if (ret) {
7683 __io_sqe_files_unregister(ctx);
7684 return ret;
7685 }
7686
7687 io_rsrc_node_switch(ctx, NULL);
7688 return ret;
7689 out_fput:
7690 for (i = 0; i < ctx->nr_user_files; i++) {
7691 file = io_file_from_index(ctx, i);
7692 if (file)
7693 fput(file);
7694 }
7695 io_free_file_tables(&ctx->file_table, nr_args);
7696 ctx->nr_user_files = 0;
7697 out_free:
7698 io_rsrc_data_free(ctx->file_data);
7699 ctx->file_data = NULL;
7700 return ret;
7701 }
7702
7703 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7704 int index)
7705 {
7706 #if defined(CONFIG_UNIX)
7707 struct sock *sock = ctx->ring_sock->sk;
7708 struct sk_buff_head *head = &sock->sk_receive_queue;
7709 struct sk_buff *skb;
7710
7711 /*
7712 * See if we can merge this file into an existing skb SCM_RIGHTS
7713 * file set. If there's no room, fall back to allocating a new skb
7714 * and filling it in.
7715 */
7716 spin_lock_irq(&head->lock);
7717 skb = skb_peek(head);
7718 if (skb) {
7719 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7720
7721 if (fpl->count < SCM_MAX_FD) {
7722 __skb_unlink(skb, head);
7723 spin_unlock_irq(&head->lock);
7724 fpl->fp[fpl->count] = get_file(file);
7725 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7726 fpl->count++;
7727 spin_lock_irq(&head->lock);
7728 __skb_queue_head(head, skb);
7729 } else {
7730 skb = NULL;
7731 }
7732 }
7733 spin_unlock_irq(&head->lock);
7734
7735 if (skb) {
7736 fput(file);
7737 return 0;
7738 }
7739
7740 return __io_sqe_files_scm(ctx, 1, index);
7741 #else
7742 return 0;
7743 #endif
7744 }
7745
7746 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7747 struct io_rsrc_node *node, void *rsrc)
7748 {
7749 struct io_rsrc_put *prsrc;
7750
7751 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7752 if (!prsrc)
7753 return -ENOMEM;
7754
7755 prsrc->tag = data->tags[idx];
7756 prsrc->rsrc = rsrc;
7757 list_add(&prsrc->list, &node->rsrc_list);
7758 return 0;
7759 }
7760
7761 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7762 struct io_uring_rsrc_update2 *up,
7763 unsigned nr_args)
7764 {
7765 u64 __user *tags = u64_to_user_ptr(up->tags);
7766 __s32 __user *fds = u64_to_user_ptr(up->data);
7767 struct io_rsrc_data *data = ctx->file_data;
7768 struct io_fixed_file *file_slot;
7769 struct file *file;
7770 int fd, i, err = 0;
7771 unsigned int done;
7772 bool needs_switch = false;
7773
7774 if (!ctx->file_data)
7775 return -ENXIO;
7776 if (up->offset + nr_args > ctx->nr_user_files)
7777 return -EINVAL;
7778
7779 for (done = 0; done < nr_args; done++) {
7780 u64 tag = 0;
7781
7782 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7783 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7784 err = -EFAULT;
7785 break;
7786 }
7787 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7788 err = -EINVAL;
7789 break;
7790 }
7791 if (fd == IORING_REGISTER_FILES_SKIP)
7792 continue;
7793
7794 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7795 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7796
7797 if (file_slot->file_ptr) {
7798 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7799 err = io_queue_rsrc_removal(data, up->offset + done,
7800 ctx->rsrc_node, file);
7801 if (err)
7802 break;
7803 file_slot->file_ptr = 0;
7804 needs_switch = true;
7805 }
7806 if (fd != -1) {
7807 file = fget(fd);
7808 if (!file) {
7809 err = -EBADF;
7810 break;
7811 }
7812 /*
7813 * Don't allow io_uring instances to be registered. If
7814 * UNIX isn't enabled, then this causes a reference
7815 * cycle and this instance can never get freed. If UNIX
7816 * is enabled we'll handle it just fine, but there's
7817 * still no point in allowing a ring fd as it doesn't
7818 * support regular read/write anyway.
7819 */
7820 if (file->f_op == &io_uring_fops) {
7821 fput(file);
7822 err = -EBADF;
7823 break;
7824 }
7825 data->tags[up->offset + done] = tag;
7826 io_fixed_file_set(file_slot, file);
7827 err = io_sqe_file_register(ctx, file, i);
7828 if (err) {
7829 file_slot->file_ptr = 0;
7830 fput(file);
7831 break;
7832 }
7833 }
7834 }
7835
7836 if (needs_switch)
7837 io_rsrc_node_switch(ctx, data);
7838 return done ? done : err;
7839 }
7840
7841 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7842 {
7843 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7844
7845 req = io_put_req_find_next(req);
7846 return req ? &req->work : NULL;
7847 }
7848
7849 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7850 struct task_struct *task)
7851 {
7852 struct io_wq_hash *hash;
7853 struct io_wq_data data;
7854 unsigned int concurrency;
7855
7856 hash = ctx->hash_map;
7857 if (!hash) {
7858 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7859 if (!hash)
7860 return ERR_PTR(-ENOMEM);
7861 refcount_set(&hash->refs, 1);
7862 init_waitqueue_head(&hash->wait);
7863 ctx->hash_map = hash;
7864 }
7865
7866 data.hash = hash;
7867 data.task = task;
7868 data.free_work = io_free_work;
7869 data.do_work = io_wq_submit_work;
7870
7871 /* Do QD, or 4 * CPUS, whatever is smallest */
7872 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7873
7874 return io_wq_create(concurrency, &data);
7875 }
7876
7877 static int io_uring_alloc_task_context(struct task_struct *task,
7878 struct io_ring_ctx *ctx)
7879 {
7880 struct io_uring_task *tctx;
7881 int ret;
7882
7883 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7884 if (unlikely(!tctx))
7885 return -ENOMEM;
7886
7887 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7888 if (unlikely(ret)) {
7889 kfree(tctx);
7890 return ret;
7891 }
7892
7893 tctx->io_wq = io_init_wq_offload(ctx, task);
7894 if (IS_ERR(tctx->io_wq)) {
7895 ret = PTR_ERR(tctx->io_wq);
7896 percpu_counter_destroy(&tctx->inflight);
7897 kfree(tctx);
7898 return ret;
7899 }
7900
7901 xa_init(&tctx->xa);
7902 init_waitqueue_head(&tctx->wait);
7903 tctx->last = NULL;
7904 atomic_set(&tctx->in_idle, 0);
7905 atomic_set(&tctx->inflight_tracked, 0);
7906 task->io_uring = tctx;
7907 spin_lock_init(&tctx->task_lock);
7908 INIT_WQ_LIST(&tctx->task_list);
7909 tctx->task_state = 0;
7910 init_task_work(&tctx->task_work, tctx_task_work);
7911 return 0;
7912 }
7913
7914 void __io_uring_free(struct task_struct *tsk)
7915 {
7916 struct io_uring_task *tctx = tsk->io_uring;
7917
7918 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7919 WARN_ON_ONCE(tctx->io_wq);
7920
7921 percpu_counter_destroy(&tctx->inflight);
7922 kfree(tctx);
7923 tsk->io_uring = NULL;
7924 }
7925
7926 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7927 struct io_uring_params *p)
7928 {
7929 int ret;
7930
7931 /* Retain compatibility with failing for an invalid attach attempt */
7932 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7933 IORING_SETUP_ATTACH_WQ) {
7934 struct fd f;
7935
7936 f = fdget(p->wq_fd);
7937 if (!f.file)
7938 return -ENXIO;
7939 fdput(f);
7940 if (f.file->f_op != &io_uring_fops)
7941 return -EINVAL;
7942 }
7943 if (ctx->flags & IORING_SETUP_SQPOLL) {
7944 struct task_struct *tsk;
7945 struct io_sq_data *sqd;
7946 bool attached;
7947
7948 sqd = io_get_sq_data(p, &attached);
7949 if (IS_ERR(sqd)) {
7950 ret = PTR_ERR(sqd);
7951 goto err;
7952 }
7953
7954 ctx->sq_creds = get_current_cred();
7955 ctx->sq_data = sqd;
7956 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7957 if (!ctx->sq_thread_idle)
7958 ctx->sq_thread_idle = HZ;
7959
7960 io_sq_thread_park(sqd);
7961 list_add(&ctx->sqd_list, &sqd->ctx_list);
7962 io_sqd_update_thread_idle(sqd);
7963 /* don't attach to a dying SQPOLL thread, would be racy */
7964 ret = (attached && !sqd->thread) ? -ENXIO : 0;
7965 io_sq_thread_unpark(sqd);
7966
7967 if (ret < 0)
7968 goto err;
7969 if (attached)
7970 return 0;
7971
7972 if (p->flags & IORING_SETUP_SQ_AFF) {
7973 int cpu = p->sq_thread_cpu;
7974
7975 ret = -EINVAL;
7976 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
7977 goto err_sqpoll;
7978 sqd->sq_cpu = cpu;
7979 } else {
7980 sqd->sq_cpu = -1;
7981 }
7982
7983 sqd->task_pid = current->pid;
7984 sqd->task_tgid = current->tgid;
7985 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
7986 if (IS_ERR(tsk)) {
7987 ret = PTR_ERR(tsk);
7988 goto err_sqpoll;
7989 }
7990
7991 sqd->thread = tsk;
7992 ret = io_uring_alloc_task_context(tsk, ctx);
7993 wake_up_new_task(tsk);
7994 if (ret)
7995 goto err;
7996 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7997 /* Can't have SQ_AFF without SQPOLL */
7998 ret = -EINVAL;
7999 goto err;
8000 }
8001
8002 return 0;
8003 err_sqpoll:
8004 complete(&ctx->sq_data->exited);
8005 err:
8006 io_sq_thread_finish(ctx);
8007 return ret;
8008 }
8009
8010 static inline void __io_unaccount_mem(struct user_struct *user,
8011 unsigned long nr_pages)
8012 {
8013 atomic_long_sub(nr_pages, &user->locked_vm);
8014 }
8015
8016 static inline int __io_account_mem(struct user_struct *user,
8017 unsigned long nr_pages)
8018 {
8019 unsigned long page_limit, cur_pages, new_pages;
8020
8021 /* Don't allow more pages than we can safely lock */
8022 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8023
8024 do {
8025 cur_pages = atomic_long_read(&user->locked_vm);
8026 new_pages = cur_pages + nr_pages;
8027 if (new_pages > page_limit)
8028 return -ENOMEM;
8029 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8030 new_pages) != cur_pages);
8031
8032 return 0;
8033 }
8034
8035 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8036 {
8037 if (ctx->user)
8038 __io_unaccount_mem(ctx->user, nr_pages);
8039
8040 if (ctx->mm_account)
8041 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8042 }
8043
8044 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8045 {
8046 int ret;
8047
8048 if (ctx->user) {
8049 ret = __io_account_mem(ctx->user, nr_pages);
8050 if (ret)
8051 return ret;
8052 }
8053
8054 if (ctx->mm_account)
8055 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8056
8057 return 0;
8058 }
8059
8060 static void io_mem_free(void *ptr)
8061 {
8062 struct page *page;
8063
8064 if (!ptr)
8065 return;
8066
8067 page = virt_to_head_page(ptr);
8068 if (put_page_testzero(page))
8069 free_compound_page(page);
8070 }
8071
8072 static void *io_mem_alloc(size_t size)
8073 {
8074 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8075 __GFP_NORETRY | __GFP_ACCOUNT;
8076
8077 return (void *) __get_free_pages(gfp_flags, get_order(size));
8078 }
8079
8080 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8081 size_t *sq_offset)
8082 {
8083 struct io_rings *rings;
8084 size_t off, sq_array_size;
8085
8086 off = struct_size(rings, cqes, cq_entries);
8087 if (off == SIZE_MAX)
8088 return SIZE_MAX;
8089
8090 #ifdef CONFIG_SMP
8091 off = ALIGN(off, SMP_CACHE_BYTES);
8092 if (off == 0)
8093 return SIZE_MAX;
8094 #endif
8095
8096 if (sq_offset)
8097 *sq_offset = off;
8098
8099 sq_array_size = array_size(sizeof(u32), sq_entries);
8100 if (sq_array_size == SIZE_MAX)
8101 return SIZE_MAX;
8102
8103 if (check_add_overflow(off, sq_array_size, &off))
8104 return SIZE_MAX;
8105
8106 return off;
8107 }
8108
8109 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8110 {
8111 struct io_mapped_ubuf *imu = *slot;
8112 unsigned int i;
8113
8114 for (i = 0; i < imu->nr_bvecs; i++)
8115 unpin_user_page(imu->bvec[i].bv_page);
8116 if (imu->acct_pages)
8117 io_unaccount_mem(ctx, imu->acct_pages);
8118 kvfree(imu);
8119 *slot = NULL;
8120 }
8121
8122 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8123 {
8124 io_buffer_unmap(ctx, &prsrc->buf);
8125 prsrc->buf = NULL;
8126 }
8127
8128 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8129 {
8130 unsigned int i;
8131
8132 for (i = 0; i < ctx->nr_user_bufs; i++)
8133 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8134 kfree(ctx->user_bufs);
8135 kfree(ctx->buf_data);
8136 ctx->user_bufs = NULL;
8137 ctx->buf_data = NULL;
8138 ctx->nr_user_bufs = 0;
8139 }
8140
8141 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8142 {
8143 int ret;
8144
8145 if (!ctx->buf_data)
8146 return -ENXIO;
8147
8148 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8149 if (!ret)
8150 __io_sqe_buffers_unregister(ctx);
8151 return ret;
8152 }
8153
8154 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8155 void __user *arg, unsigned index)
8156 {
8157 struct iovec __user *src;
8158
8159 #ifdef CONFIG_COMPAT
8160 if (ctx->compat) {
8161 struct compat_iovec __user *ciovs;
8162 struct compat_iovec ciov;
8163
8164 ciovs = (struct compat_iovec __user *) arg;
8165 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8166 return -EFAULT;
8167
8168 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8169 dst->iov_len = ciov.iov_len;
8170 return 0;
8171 }
8172 #endif
8173 src = (struct iovec __user *) arg;
8174 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8175 return -EFAULT;
8176 return 0;
8177 }
8178
8179 /*
8180 * Not super efficient, but this is just a registration time. And we do cache
8181 * the last compound head, so generally we'll only do a full search if we don't
8182 * match that one.
8183 *
8184 * We check if the given compound head page has already been accounted, to
8185 * avoid double accounting it. This allows us to account the full size of the
8186 * page, not just the constituent pages of a huge page.
8187 */
8188 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8189 int nr_pages, struct page *hpage)
8190 {
8191 int i, j;
8192
8193 /* check current page array */
8194 for (i = 0; i < nr_pages; i++) {
8195 if (!PageCompound(pages[i]))
8196 continue;
8197 if (compound_head(pages[i]) == hpage)
8198 return true;
8199 }
8200
8201 /* check previously registered pages */
8202 for (i = 0; i < ctx->nr_user_bufs; i++) {
8203 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8204
8205 for (j = 0; j < imu->nr_bvecs; j++) {
8206 if (!PageCompound(imu->bvec[j].bv_page))
8207 continue;
8208 if (compound_head(imu->bvec[j].bv_page) == hpage)
8209 return true;
8210 }
8211 }
8212
8213 return false;
8214 }
8215
8216 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8217 int nr_pages, struct io_mapped_ubuf *imu,
8218 struct page **last_hpage)
8219 {
8220 int i, ret;
8221
8222 for (i = 0; i < nr_pages; i++) {
8223 if (!PageCompound(pages[i])) {
8224 imu->acct_pages++;
8225 } else {
8226 struct page *hpage;
8227
8228 hpage = compound_head(pages[i]);
8229 if (hpage == *last_hpage)
8230 continue;
8231 *last_hpage = hpage;
8232 if (headpage_already_acct(ctx, pages, i, hpage))
8233 continue;
8234 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8235 }
8236 }
8237
8238 if (!imu->acct_pages)
8239 return 0;
8240
8241 ret = io_account_mem(ctx, imu->acct_pages);
8242 if (ret)
8243 imu->acct_pages = 0;
8244 return ret;
8245 }
8246
8247 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8248 struct io_mapped_ubuf **pimu,
8249 struct page **last_hpage)
8250 {
8251 struct io_mapped_ubuf *imu = NULL;
8252 struct vm_area_struct **vmas = NULL;
8253 struct page **pages = NULL;
8254 unsigned long off, start, end, ubuf;
8255 size_t size;
8256 int ret, pret, nr_pages, i;
8257
8258 ubuf = (unsigned long) iov->iov_base;
8259 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8260 start = ubuf >> PAGE_SHIFT;
8261 nr_pages = end - start;
8262
8263 *pimu = NULL;
8264 ret = -ENOMEM;
8265
8266 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8267 if (!pages)
8268 goto done;
8269
8270 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8271 GFP_KERNEL);
8272 if (!vmas)
8273 goto done;
8274
8275 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8276 if (!imu)
8277 goto done;
8278
8279 ret = 0;
8280 mmap_read_lock(current->mm);
8281 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8282 pages, vmas);
8283 if (pret == nr_pages) {
8284 /* don't support file backed memory */
8285 for (i = 0; i < nr_pages; i++) {
8286 struct vm_area_struct *vma = vmas[i];
8287
8288 if (vma->vm_file &&
8289 !is_file_hugepages(vma->vm_file)) {
8290 ret = -EOPNOTSUPP;
8291 break;
8292 }
8293 }
8294 } else {
8295 ret = pret < 0 ? pret : -EFAULT;
8296 }
8297 mmap_read_unlock(current->mm);
8298 if (ret) {
8299 /*
8300 * if we did partial map, or found file backed vmas,
8301 * release any pages we did get
8302 */
8303 if (pret > 0)
8304 unpin_user_pages(pages, pret);
8305 goto done;
8306 }
8307
8308 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8309 if (ret) {
8310 unpin_user_pages(pages, pret);
8311 goto done;
8312 }
8313
8314 off = ubuf & ~PAGE_MASK;
8315 size = iov->iov_len;
8316 for (i = 0; i < nr_pages; i++) {
8317 size_t vec_len;
8318
8319 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8320 imu->bvec[i].bv_page = pages[i];
8321 imu->bvec[i].bv_len = vec_len;
8322 imu->bvec[i].bv_offset = off;
8323 off = 0;
8324 size -= vec_len;
8325 }
8326 /* store original address for later verification */
8327 imu->ubuf = ubuf;
8328 imu->ubuf_end = ubuf + iov->iov_len;
8329 imu->nr_bvecs = nr_pages;
8330 *pimu = imu;
8331 ret = 0;
8332 done:
8333 if (ret)
8334 kvfree(imu);
8335 kvfree(pages);
8336 kvfree(vmas);
8337 return ret;
8338 }
8339
8340 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8341 {
8342 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8343 return ctx->user_bufs ? 0 : -ENOMEM;
8344 }
8345
8346 static int io_buffer_validate(struct iovec *iov)
8347 {
8348 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8349
8350 /*
8351 * Don't impose further limits on the size and buffer
8352 * constraints here, we'll -EINVAL later when IO is
8353 * submitted if they are wrong.
8354 */
8355 if (!iov->iov_base || !iov->iov_len)
8356 return -EFAULT;
8357
8358 /* arbitrary limit, but we need something */
8359 if (iov->iov_len > SZ_1G)
8360 return -EFAULT;
8361
8362 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8363 return -EOVERFLOW;
8364
8365 return 0;
8366 }
8367
8368 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8369 unsigned int nr_args, u64 __user *tags)
8370 {
8371 struct page *last_hpage = NULL;
8372 struct io_rsrc_data *data;
8373 int i, ret;
8374 struct iovec iov;
8375
8376 if (ctx->user_bufs)
8377 return -EBUSY;
8378 if (!nr_args || nr_args > UIO_MAXIOV)
8379 return -EINVAL;
8380 ret = io_rsrc_node_switch_start(ctx);
8381 if (ret)
8382 return ret;
8383 data = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, nr_args);
8384 if (!data)
8385 return -ENOMEM;
8386 ret = io_buffers_map_alloc(ctx, nr_args);
8387 if (ret) {
8388 kfree(data);
8389 return ret;
8390 }
8391
8392 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8393 u64 tag = 0;
8394
8395 if (tags && copy_from_user(&tag, &tags[i], sizeof(tag))) {
8396 ret = -EFAULT;
8397 break;
8398 }
8399 ret = io_copy_iov(ctx, &iov, arg, i);
8400 if (ret)
8401 break;
8402 ret = io_buffer_validate(&iov);
8403 if (ret)
8404 break;
8405
8406 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8407 &last_hpage);
8408 if (ret)
8409 break;
8410 data->tags[i] = tag;
8411 }
8412
8413 WARN_ON_ONCE(ctx->buf_data);
8414
8415 ctx->buf_data = data;
8416 if (ret)
8417 __io_sqe_buffers_unregister(ctx);
8418 else
8419 io_rsrc_node_switch(ctx, NULL);
8420 return ret;
8421 }
8422
8423 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8424 struct io_uring_rsrc_update2 *up,
8425 unsigned int nr_args)
8426 {
8427 u64 __user *tags = u64_to_user_ptr(up->tags);
8428 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8429 struct page *last_hpage = NULL;
8430 bool needs_switch = false;
8431 __u32 done;
8432 int i, err;
8433
8434 if (!ctx->buf_data)
8435 return -ENXIO;
8436 if (up->offset + nr_args > ctx->nr_user_bufs)
8437 return -EINVAL;
8438
8439 for (done = 0; done < nr_args; done++) {
8440 struct io_mapped_ubuf *imu;
8441 int offset = up->offset + done;
8442 u64 tag = 0;
8443
8444 err = io_copy_iov(ctx, &iov, iovs, done);
8445 if (err)
8446 break;
8447 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8448 err = -EFAULT;
8449 break;
8450 }
8451 err = io_buffer_validate(&iov);
8452 if (err)
8453 break;
8454 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8455 if (err)
8456 break;
8457
8458 i = array_index_nospec(offset, ctx->nr_user_bufs);
8459 if (ctx->user_bufs[i]) {
8460 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8461 ctx->rsrc_node, ctx->user_bufs[i]);
8462 if (unlikely(err)) {
8463 io_buffer_unmap(ctx, &imu);
8464 break;
8465 }
8466 ctx->user_bufs[i] = NULL;
8467 needs_switch = true;
8468 }
8469
8470 ctx->user_bufs[i] = imu;
8471 ctx->buf_data->tags[offset] = tag;
8472 }
8473
8474 if (needs_switch)
8475 io_rsrc_node_switch(ctx, ctx->buf_data);
8476 return done ? done : err;
8477 }
8478
8479 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8480 {
8481 __s32 __user *fds = arg;
8482 int fd;
8483
8484 if (ctx->cq_ev_fd)
8485 return -EBUSY;
8486
8487 if (copy_from_user(&fd, fds, sizeof(*fds)))
8488 return -EFAULT;
8489
8490 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8491 if (IS_ERR(ctx->cq_ev_fd)) {
8492 int ret = PTR_ERR(ctx->cq_ev_fd);
8493 ctx->cq_ev_fd = NULL;
8494 return ret;
8495 }
8496
8497 return 0;
8498 }
8499
8500 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8501 {
8502 if (ctx->cq_ev_fd) {
8503 eventfd_ctx_put(ctx->cq_ev_fd);
8504 ctx->cq_ev_fd = NULL;
8505 return 0;
8506 }
8507
8508 return -ENXIO;
8509 }
8510
8511 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8512 {
8513 struct io_buffer *buf;
8514 unsigned long index;
8515
8516 xa_for_each(&ctx->io_buffers, index, buf)
8517 __io_remove_buffers(ctx, buf, index, -1U);
8518 }
8519
8520 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8521 {
8522 struct io_kiocb *req, *nxt;
8523
8524 list_for_each_entry_safe(req, nxt, list, compl.list) {
8525 if (tsk && req->task != tsk)
8526 continue;
8527 list_del(&req->compl.list);
8528 kmem_cache_free(req_cachep, req);
8529 }
8530 }
8531
8532 static void io_req_caches_free(struct io_ring_ctx *ctx)
8533 {
8534 struct io_submit_state *submit_state = &ctx->submit_state;
8535 struct io_comp_state *cs = &ctx->submit_state.comp;
8536
8537 mutex_lock(&ctx->uring_lock);
8538
8539 if (submit_state->free_reqs) {
8540 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8541 submit_state->reqs);
8542 submit_state->free_reqs = 0;
8543 }
8544
8545 io_flush_cached_locked_reqs(ctx, cs);
8546 io_req_cache_free(&cs->free_list, NULL);
8547 mutex_unlock(&ctx->uring_lock);
8548 }
8549
8550 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8551 {
8552 if (!data)
8553 return false;
8554 if (!atomic_dec_and_test(&data->refs))
8555 wait_for_completion(&data->done);
8556 return true;
8557 }
8558
8559 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8560 {
8561 io_sq_thread_finish(ctx);
8562
8563 if (ctx->mm_account) {
8564 mmdrop(ctx->mm_account);
8565 ctx->mm_account = NULL;
8566 }
8567
8568 mutex_lock(&ctx->uring_lock);
8569 if (io_wait_rsrc_data(ctx->buf_data))
8570 __io_sqe_buffers_unregister(ctx);
8571 if (io_wait_rsrc_data(ctx->file_data))
8572 __io_sqe_files_unregister(ctx);
8573 if (ctx->rings)
8574 __io_cqring_overflow_flush(ctx, true);
8575 mutex_unlock(&ctx->uring_lock);
8576 io_eventfd_unregister(ctx);
8577 io_destroy_buffers(ctx);
8578 if (ctx->sq_creds)
8579 put_cred(ctx->sq_creds);
8580
8581 /* there are no registered resources left, nobody uses it */
8582 if (ctx->rsrc_node)
8583 io_rsrc_node_destroy(ctx->rsrc_node);
8584 if (ctx->rsrc_backup_node)
8585 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8586 flush_delayed_work(&ctx->rsrc_put_work);
8587
8588 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8589 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8590
8591 #if defined(CONFIG_UNIX)
8592 if (ctx->ring_sock) {
8593 ctx->ring_sock->file = NULL; /* so that iput() is called */
8594 sock_release(ctx->ring_sock);
8595 }
8596 #endif
8597
8598 io_mem_free(ctx->rings);
8599 io_mem_free(ctx->sq_sqes);
8600
8601 percpu_ref_exit(&ctx->refs);
8602 free_uid(ctx->user);
8603 io_req_caches_free(ctx);
8604 if (ctx->hash_map)
8605 io_wq_put_hash(ctx->hash_map);
8606 kfree(ctx->cancel_hash);
8607 kfree(ctx);
8608 }
8609
8610 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8611 {
8612 struct io_ring_ctx *ctx = file->private_data;
8613 __poll_t mask = 0;
8614
8615 poll_wait(file, &ctx->cq_wait, wait);
8616 /*
8617 * synchronizes with barrier from wq_has_sleeper call in
8618 * io_commit_cqring
8619 */
8620 smp_rmb();
8621 if (!io_sqring_full(ctx))
8622 mask |= EPOLLOUT | EPOLLWRNORM;
8623
8624 /*
8625 * Don't flush cqring overflow list here, just do a simple check.
8626 * Otherwise there could possible be ABBA deadlock:
8627 * CPU0 CPU1
8628 * ---- ----
8629 * lock(&ctx->uring_lock);
8630 * lock(&ep->mtx);
8631 * lock(&ctx->uring_lock);
8632 * lock(&ep->mtx);
8633 *
8634 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8635 * pushs them to do the flush.
8636 */
8637 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8638 mask |= EPOLLIN | EPOLLRDNORM;
8639
8640 return mask;
8641 }
8642
8643 static int io_uring_fasync(int fd, struct file *file, int on)
8644 {
8645 struct io_ring_ctx *ctx = file->private_data;
8646
8647 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8648 }
8649
8650 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8651 {
8652 const struct cred *creds;
8653
8654 creds = xa_erase(&ctx->personalities, id);
8655 if (creds) {
8656 put_cred(creds);
8657 return 0;
8658 }
8659
8660 return -EINVAL;
8661 }
8662
8663 static inline bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
8664 {
8665 return io_run_task_work_head(&ctx->exit_task_work);
8666 }
8667
8668 struct io_tctx_exit {
8669 struct callback_head task_work;
8670 struct completion completion;
8671 struct io_ring_ctx *ctx;
8672 };
8673
8674 static void io_tctx_exit_cb(struct callback_head *cb)
8675 {
8676 struct io_uring_task *tctx = current->io_uring;
8677 struct io_tctx_exit *work;
8678
8679 work = container_of(cb, struct io_tctx_exit, task_work);
8680 /*
8681 * When @in_idle, we're in cancellation and it's racy to remove the
8682 * node. It'll be removed by the end of cancellation, just ignore it.
8683 */
8684 if (!atomic_read(&tctx->in_idle))
8685 io_uring_del_task_file((unsigned long)work->ctx);
8686 complete(&work->completion);
8687 }
8688
8689 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8690 {
8691 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8692
8693 return req->ctx == data;
8694 }
8695
8696 static void io_ring_exit_work(struct work_struct *work)
8697 {
8698 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8699 unsigned long timeout = jiffies + HZ * 60 * 5;
8700 struct io_tctx_exit exit;
8701 struct io_tctx_node *node;
8702 int ret;
8703
8704 /*
8705 * If we're doing polled IO and end up having requests being
8706 * submitted async (out-of-line), then completions can come in while
8707 * we're waiting for refs to drop. We need to reap these manually,
8708 * as nobody else will be looking for them.
8709 */
8710 do {
8711 io_uring_try_cancel_requests(ctx, NULL, NULL);
8712 if (ctx->sq_data) {
8713 struct io_sq_data *sqd = ctx->sq_data;
8714 struct task_struct *tsk;
8715
8716 io_sq_thread_park(sqd);
8717 tsk = sqd->thread;
8718 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8719 io_wq_cancel_cb(tsk->io_uring->io_wq,
8720 io_cancel_ctx_cb, ctx, true);
8721 io_sq_thread_unpark(sqd);
8722 }
8723
8724 WARN_ON_ONCE(time_after(jiffies, timeout));
8725 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8726
8727 init_completion(&exit.completion);
8728 init_task_work(&exit.task_work, io_tctx_exit_cb);
8729 exit.ctx = ctx;
8730 /*
8731 * Some may use context even when all refs and requests have been put,
8732 * and they are free to do so while still holding uring_lock or
8733 * completion_lock, see __io_req_task_submit(). Apart from other work,
8734 * this lock/unlock section also waits them to finish.
8735 */
8736 mutex_lock(&ctx->uring_lock);
8737 while (!list_empty(&ctx->tctx_list)) {
8738 WARN_ON_ONCE(time_after(jiffies, timeout));
8739
8740 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8741 ctx_node);
8742 /* don't spin on a single task if cancellation failed */
8743 list_rotate_left(&ctx->tctx_list);
8744 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8745 if (WARN_ON_ONCE(ret))
8746 continue;
8747 wake_up_process(node->task);
8748
8749 mutex_unlock(&ctx->uring_lock);
8750 wait_for_completion(&exit.completion);
8751 mutex_lock(&ctx->uring_lock);
8752 }
8753 mutex_unlock(&ctx->uring_lock);
8754 spin_lock_irq(&ctx->completion_lock);
8755 spin_unlock_irq(&ctx->completion_lock);
8756
8757 io_ring_ctx_free(ctx);
8758 }
8759
8760 /* Returns true if we found and killed one or more timeouts */
8761 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8762 struct files_struct *files)
8763 {
8764 struct io_kiocb *req, *tmp;
8765 int canceled = 0;
8766
8767 spin_lock_irq(&ctx->completion_lock);
8768 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8769 if (io_match_task(req, tsk, files)) {
8770 io_kill_timeout(req, -ECANCELED);
8771 canceled++;
8772 }
8773 }
8774 if (canceled != 0)
8775 io_commit_cqring(ctx);
8776 spin_unlock_irq(&ctx->completion_lock);
8777 if (canceled != 0)
8778 io_cqring_ev_posted(ctx);
8779 return canceled != 0;
8780 }
8781
8782 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8783 {
8784 unsigned long index;
8785 struct creds *creds;
8786
8787 mutex_lock(&ctx->uring_lock);
8788 percpu_ref_kill(&ctx->refs);
8789 if (ctx->rings)
8790 __io_cqring_overflow_flush(ctx, true);
8791 xa_for_each(&ctx->personalities, index, creds)
8792 io_unregister_personality(ctx, index);
8793 mutex_unlock(&ctx->uring_lock);
8794
8795 io_kill_timeouts(ctx, NULL, NULL);
8796 io_poll_remove_all(ctx, NULL, NULL);
8797
8798 /* if we failed setting up the ctx, we might not have any rings */
8799 io_iopoll_try_reap_events(ctx);
8800
8801 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8802 /*
8803 * Use system_unbound_wq to avoid spawning tons of event kworkers
8804 * if we're exiting a ton of rings at the same time. It just adds
8805 * noise and overhead, there's no discernable change in runtime
8806 * over using system_wq.
8807 */
8808 queue_work(system_unbound_wq, &ctx->exit_work);
8809 }
8810
8811 static int io_uring_release(struct inode *inode, struct file *file)
8812 {
8813 struct io_ring_ctx *ctx = file->private_data;
8814
8815 file->private_data = NULL;
8816 io_ring_ctx_wait_and_kill(ctx);
8817 return 0;
8818 }
8819
8820 struct io_task_cancel {
8821 struct task_struct *task;
8822 struct files_struct *files;
8823 };
8824
8825 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8826 {
8827 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8828 struct io_task_cancel *cancel = data;
8829 bool ret;
8830
8831 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8832 unsigned long flags;
8833 struct io_ring_ctx *ctx = req->ctx;
8834
8835 /* protect against races with linked timeouts */
8836 spin_lock_irqsave(&ctx->completion_lock, flags);
8837 ret = io_match_task(req, cancel->task, cancel->files);
8838 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8839 } else {
8840 ret = io_match_task(req, cancel->task, cancel->files);
8841 }
8842 return ret;
8843 }
8844
8845 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8846 struct task_struct *task,
8847 struct files_struct *files)
8848 {
8849 struct io_defer_entry *de;
8850 LIST_HEAD(list);
8851
8852 spin_lock_irq(&ctx->completion_lock);
8853 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8854 if (io_match_task(de->req, task, files)) {
8855 list_cut_position(&list, &ctx->defer_list, &de->list);
8856 break;
8857 }
8858 }
8859 spin_unlock_irq(&ctx->completion_lock);
8860 if (list_empty(&list))
8861 return false;
8862
8863 while (!list_empty(&list)) {
8864 de = list_first_entry(&list, struct io_defer_entry, list);
8865 list_del_init(&de->list);
8866 io_req_complete_failed(de->req, -ECANCELED);
8867 kfree(de);
8868 }
8869 return true;
8870 }
8871
8872 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8873 {
8874 struct io_tctx_node *node;
8875 enum io_wq_cancel cret;
8876 bool ret = false;
8877
8878 mutex_lock(&ctx->uring_lock);
8879 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8880 struct io_uring_task *tctx = node->task->io_uring;
8881
8882 /*
8883 * io_wq will stay alive while we hold uring_lock, because it's
8884 * killed after ctx nodes, which requires to take the lock.
8885 */
8886 if (!tctx || !tctx->io_wq)
8887 continue;
8888 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8889 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8890 }
8891 mutex_unlock(&ctx->uring_lock);
8892
8893 return ret;
8894 }
8895
8896 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8897 struct task_struct *task,
8898 struct files_struct *files)
8899 {
8900 struct io_task_cancel cancel = { .task = task, .files = files, };
8901 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8902
8903 while (1) {
8904 enum io_wq_cancel cret;
8905 bool ret = false;
8906
8907 if (!task) {
8908 ret |= io_uring_try_cancel_iowq(ctx);
8909 } else if (tctx && tctx->io_wq) {
8910 /*
8911 * Cancels requests of all rings, not only @ctx, but
8912 * it's fine as the task is in exit/exec.
8913 */
8914 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8915 &cancel, true);
8916 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8917 }
8918
8919 /* SQPOLL thread does its own polling */
8920 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8921 (ctx->sq_data && ctx->sq_data->thread == current)) {
8922 while (!list_empty_careful(&ctx->iopoll_list)) {
8923 io_iopoll_try_reap_events(ctx);
8924 ret = true;
8925 }
8926 }
8927
8928 ret |= io_cancel_defer_files(ctx, task, files);
8929 ret |= io_poll_remove_all(ctx, task, files);
8930 ret |= io_kill_timeouts(ctx, task, files);
8931 ret |= io_run_task_work();
8932 ret |= io_run_ctx_fallback(ctx);
8933 if (!ret)
8934 break;
8935 cond_resched();
8936 }
8937 }
8938
8939 static int __io_uring_add_task_file(struct io_ring_ctx *ctx)
8940 {
8941 struct io_uring_task *tctx = current->io_uring;
8942 struct io_tctx_node *node;
8943 int ret;
8944
8945 if (unlikely(!tctx)) {
8946 ret = io_uring_alloc_task_context(current, ctx);
8947 if (unlikely(ret))
8948 return ret;
8949 tctx = current->io_uring;
8950 }
8951 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
8952 node = kmalloc(sizeof(*node), GFP_KERNEL);
8953 if (!node)
8954 return -ENOMEM;
8955 node->ctx = ctx;
8956 node->task = current;
8957
8958 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
8959 node, GFP_KERNEL));
8960 if (ret) {
8961 kfree(node);
8962 return ret;
8963 }
8964
8965 mutex_lock(&ctx->uring_lock);
8966 list_add(&node->ctx_node, &ctx->tctx_list);
8967 mutex_unlock(&ctx->uring_lock);
8968 }
8969 tctx->last = ctx;
8970 return 0;
8971 }
8972
8973 /*
8974 * Note that this task has used io_uring. We use it for cancelation purposes.
8975 */
8976 static inline int io_uring_add_task_file(struct io_ring_ctx *ctx)
8977 {
8978 struct io_uring_task *tctx = current->io_uring;
8979
8980 if (likely(tctx && tctx->last == ctx))
8981 return 0;
8982 return __io_uring_add_task_file(ctx);
8983 }
8984
8985 /*
8986 * Remove this io_uring_file -> task mapping.
8987 */
8988 static void io_uring_del_task_file(unsigned long index)
8989 {
8990 struct io_uring_task *tctx = current->io_uring;
8991 struct io_tctx_node *node;
8992
8993 if (!tctx)
8994 return;
8995 node = xa_erase(&tctx->xa, index);
8996 if (!node)
8997 return;
8998
8999 WARN_ON_ONCE(current != node->task);
9000 WARN_ON_ONCE(list_empty(&node->ctx_node));
9001
9002 mutex_lock(&node->ctx->uring_lock);
9003 list_del(&node->ctx_node);
9004 mutex_unlock(&node->ctx->uring_lock);
9005
9006 if (tctx->last == node->ctx)
9007 tctx->last = NULL;
9008 kfree(node);
9009 }
9010
9011 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9012 {
9013 struct io_tctx_node *node;
9014 unsigned long index;
9015
9016 xa_for_each(&tctx->xa, index, node)
9017 io_uring_del_task_file(index);
9018 if (tctx->io_wq) {
9019 io_wq_put_and_exit(tctx->io_wq);
9020 tctx->io_wq = NULL;
9021 }
9022 }
9023
9024 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9025 {
9026 if (tracked)
9027 return atomic_read(&tctx->inflight_tracked);
9028 return percpu_counter_sum(&tctx->inflight);
9029 }
9030
9031 static void io_uring_try_cancel(struct files_struct *files)
9032 {
9033 struct io_uring_task *tctx = current->io_uring;
9034 struct io_tctx_node *node;
9035 unsigned long index;
9036
9037 xa_for_each(&tctx->xa, index, node) {
9038 struct io_ring_ctx *ctx = node->ctx;
9039
9040 /* sqpoll task will cancel all its requests */
9041 if (!ctx->sq_data)
9042 io_uring_try_cancel_requests(ctx, current, files);
9043 }
9044 }
9045
9046 /* should only be called by SQPOLL task */
9047 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd)
9048 {
9049 struct io_uring_task *tctx = current->io_uring;
9050 struct io_ring_ctx *ctx;
9051 s64 inflight;
9052 DEFINE_WAIT(wait);
9053
9054 if (!current->io_uring)
9055 return;
9056 WARN_ON_ONCE(!sqd || sqd->thread != current);
9057
9058 atomic_inc(&tctx->in_idle);
9059 do {
9060 /* read completions before cancelations */
9061 inflight = tctx_inflight(tctx, false);
9062 if (!inflight)
9063 break;
9064 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9065 io_uring_try_cancel_requests(ctx, current, NULL);
9066
9067 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9068 /*
9069 * If we've seen completions, retry without waiting. This
9070 * avoids a race where a completion comes in before we did
9071 * prepare_to_wait().
9072 */
9073 if (inflight == tctx_inflight(tctx, false))
9074 schedule();
9075 finish_wait(&tctx->wait, &wait);
9076 } while (1);
9077 atomic_dec(&tctx->in_idle);
9078 }
9079
9080 /*
9081 * Find any io_uring fd that this task has registered or done IO on, and cancel
9082 * requests.
9083 */
9084 void __io_uring_cancel(struct files_struct *files)
9085 {
9086 struct io_uring_task *tctx = current->io_uring;
9087 DEFINE_WAIT(wait);
9088 s64 inflight;
9089
9090 /* make sure overflow events are dropped */
9091 atomic_inc(&tctx->in_idle);
9092 do {
9093 /* read completions before cancelations */
9094 inflight = tctx_inflight(tctx, !!files);
9095 if (!inflight)
9096 break;
9097 io_uring_try_cancel(files);
9098 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9099
9100 /*
9101 * If we've seen completions, retry without waiting. This
9102 * avoids a race where a completion comes in before we did
9103 * prepare_to_wait().
9104 */
9105 if (inflight == tctx_inflight(tctx, !!files))
9106 schedule();
9107 finish_wait(&tctx->wait, &wait);
9108 } while (1);
9109 atomic_dec(&tctx->in_idle);
9110
9111 io_uring_clean_tctx(tctx);
9112 if (!files) {
9113 /* for exec all current's requests should be gone, kill tctx */
9114 __io_uring_free(current);
9115 }
9116 }
9117
9118 static void *io_uring_validate_mmap_request(struct file *file,
9119 loff_t pgoff, size_t sz)
9120 {
9121 struct io_ring_ctx *ctx = file->private_data;
9122 loff_t offset = pgoff << PAGE_SHIFT;
9123 struct page *page;
9124 void *ptr;
9125
9126 switch (offset) {
9127 case IORING_OFF_SQ_RING:
9128 case IORING_OFF_CQ_RING:
9129 ptr = ctx->rings;
9130 break;
9131 case IORING_OFF_SQES:
9132 ptr = ctx->sq_sqes;
9133 break;
9134 default:
9135 return ERR_PTR(-EINVAL);
9136 }
9137
9138 page = virt_to_head_page(ptr);
9139 if (sz > page_size(page))
9140 return ERR_PTR(-EINVAL);
9141
9142 return ptr;
9143 }
9144
9145 #ifdef CONFIG_MMU
9146
9147 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9148 {
9149 size_t sz = vma->vm_end - vma->vm_start;
9150 unsigned long pfn;
9151 void *ptr;
9152
9153 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9154 if (IS_ERR(ptr))
9155 return PTR_ERR(ptr);
9156
9157 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9158 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9159 }
9160
9161 #else /* !CONFIG_MMU */
9162
9163 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9164 {
9165 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9166 }
9167
9168 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9169 {
9170 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9171 }
9172
9173 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9174 unsigned long addr, unsigned long len,
9175 unsigned long pgoff, unsigned long flags)
9176 {
9177 void *ptr;
9178
9179 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9180 if (IS_ERR(ptr))
9181 return PTR_ERR(ptr);
9182
9183 return (unsigned long) ptr;
9184 }
9185
9186 #endif /* !CONFIG_MMU */
9187
9188 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9189 {
9190 DEFINE_WAIT(wait);
9191
9192 do {
9193 if (!io_sqring_full(ctx))
9194 break;
9195 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9196
9197 if (!io_sqring_full(ctx))
9198 break;
9199 schedule();
9200 } while (!signal_pending(current));
9201
9202 finish_wait(&ctx->sqo_sq_wait, &wait);
9203 return 0;
9204 }
9205
9206 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9207 struct __kernel_timespec __user **ts,
9208 const sigset_t __user **sig)
9209 {
9210 struct io_uring_getevents_arg arg;
9211
9212 /*
9213 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9214 * is just a pointer to the sigset_t.
9215 */
9216 if (!(flags & IORING_ENTER_EXT_ARG)) {
9217 *sig = (const sigset_t __user *) argp;
9218 *ts = NULL;
9219 return 0;
9220 }
9221
9222 /*
9223 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9224 * timespec and sigset_t pointers if good.
9225 */
9226 if (*argsz != sizeof(arg))
9227 return -EINVAL;
9228 if (copy_from_user(&arg, argp, sizeof(arg)))
9229 return -EFAULT;
9230 *sig = u64_to_user_ptr(arg.sigmask);
9231 *argsz = arg.sigmask_sz;
9232 *ts = u64_to_user_ptr(arg.ts);
9233 return 0;
9234 }
9235
9236 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9237 u32, min_complete, u32, flags, const void __user *, argp,
9238 size_t, argsz)
9239 {
9240 struct io_ring_ctx *ctx;
9241 int submitted = 0;
9242 struct fd f;
9243 long ret;
9244
9245 io_run_task_work();
9246
9247 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9248 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9249 return -EINVAL;
9250
9251 f = fdget(fd);
9252 if (unlikely(!f.file))
9253 return -EBADF;
9254
9255 ret = -EOPNOTSUPP;
9256 if (unlikely(f.file->f_op != &io_uring_fops))
9257 goto out_fput;
9258
9259 ret = -ENXIO;
9260 ctx = f.file->private_data;
9261 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9262 goto out_fput;
9263
9264 ret = -EBADFD;
9265 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9266 goto out;
9267
9268 /*
9269 * For SQ polling, the thread will do all submissions and completions.
9270 * Just return the requested submit count, and wake the thread if
9271 * we were asked to.
9272 */
9273 ret = 0;
9274 if (ctx->flags & IORING_SETUP_SQPOLL) {
9275 io_cqring_overflow_flush(ctx, false);
9276
9277 ret = -EOWNERDEAD;
9278 if (unlikely(ctx->sq_data->thread == NULL)) {
9279 goto out;
9280 }
9281 if (flags & IORING_ENTER_SQ_WAKEUP)
9282 wake_up(&ctx->sq_data->wait);
9283 if (flags & IORING_ENTER_SQ_WAIT) {
9284 ret = io_sqpoll_wait_sq(ctx);
9285 if (ret)
9286 goto out;
9287 }
9288 submitted = to_submit;
9289 } else if (to_submit) {
9290 ret = io_uring_add_task_file(ctx);
9291 if (unlikely(ret))
9292 goto out;
9293 mutex_lock(&ctx->uring_lock);
9294 submitted = io_submit_sqes(ctx, to_submit);
9295 mutex_unlock(&ctx->uring_lock);
9296
9297 if (submitted != to_submit)
9298 goto out;
9299 }
9300 if (flags & IORING_ENTER_GETEVENTS) {
9301 const sigset_t __user *sig;
9302 struct __kernel_timespec __user *ts;
9303
9304 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9305 if (unlikely(ret))
9306 goto out;
9307
9308 min_complete = min(min_complete, ctx->cq_entries);
9309
9310 /*
9311 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9312 * space applications don't need to do io completion events
9313 * polling again, they can rely on io_sq_thread to do polling
9314 * work, which can reduce cpu usage and uring_lock contention.
9315 */
9316 if (ctx->flags & IORING_SETUP_IOPOLL &&
9317 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9318 ret = io_iopoll_check(ctx, min_complete);
9319 } else {
9320 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9321 }
9322 }
9323
9324 out:
9325 percpu_ref_put(&ctx->refs);
9326 out_fput:
9327 fdput(f);
9328 return submitted ? submitted : ret;
9329 }
9330
9331 #ifdef CONFIG_PROC_FS
9332 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9333 const struct cred *cred)
9334 {
9335 struct user_namespace *uns = seq_user_ns(m);
9336 struct group_info *gi;
9337 kernel_cap_t cap;
9338 unsigned __capi;
9339 int g;
9340
9341 seq_printf(m, "%5d\n", id);
9342 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9343 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9344 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9345 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9346 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9347 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9348 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9349 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9350 seq_puts(m, "\n\tGroups:\t");
9351 gi = cred->group_info;
9352 for (g = 0; g < gi->ngroups; g++) {
9353 seq_put_decimal_ull(m, g ? " " : "",
9354 from_kgid_munged(uns, gi->gid[g]));
9355 }
9356 seq_puts(m, "\n\tCapEff:\t");
9357 cap = cred->cap_effective;
9358 CAP_FOR_EACH_U32(__capi)
9359 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9360 seq_putc(m, '\n');
9361 return 0;
9362 }
9363
9364 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9365 {
9366 struct io_sq_data *sq = NULL;
9367 bool has_lock;
9368 int i;
9369
9370 /*
9371 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9372 * since fdinfo case grabs it in the opposite direction of normal use
9373 * cases. If we fail to get the lock, we just don't iterate any
9374 * structures that could be going away outside the io_uring mutex.
9375 */
9376 has_lock = mutex_trylock(&ctx->uring_lock);
9377
9378 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9379 sq = ctx->sq_data;
9380 if (!sq->thread)
9381 sq = NULL;
9382 }
9383
9384 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9385 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9386 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9387 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9388 struct file *f = io_file_from_index(ctx, i);
9389
9390 if (f)
9391 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9392 else
9393 seq_printf(m, "%5u: <none>\n", i);
9394 }
9395 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9396 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9397 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9398 unsigned int len = buf->ubuf_end - buf->ubuf;
9399
9400 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9401 }
9402 if (has_lock && !xa_empty(&ctx->personalities)) {
9403 unsigned long index;
9404 const struct cred *cred;
9405
9406 seq_printf(m, "Personalities:\n");
9407 xa_for_each(&ctx->personalities, index, cred)
9408 io_uring_show_cred(m, index, cred);
9409 }
9410 seq_printf(m, "PollList:\n");
9411 spin_lock_irq(&ctx->completion_lock);
9412 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9413 struct hlist_head *list = &ctx->cancel_hash[i];
9414 struct io_kiocb *req;
9415
9416 hlist_for_each_entry(req, list, hash_node)
9417 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9418 req->task->task_works != NULL);
9419 }
9420 spin_unlock_irq(&ctx->completion_lock);
9421 if (has_lock)
9422 mutex_unlock(&ctx->uring_lock);
9423 }
9424
9425 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9426 {
9427 struct io_ring_ctx *ctx = f->private_data;
9428
9429 if (percpu_ref_tryget(&ctx->refs)) {
9430 __io_uring_show_fdinfo(ctx, m);
9431 percpu_ref_put(&ctx->refs);
9432 }
9433 }
9434 #endif
9435
9436 static const struct file_operations io_uring_fops = {
9437 .release = io_uring_release,
9438 .mmap = io_uring_mmap,
9439 #ifndef CONFIG_MMU
9440 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9441 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9442 #endif
9443 .poll = io_uring_poll,
9444 .fasync = io_uring_fasync,
9445 #ifdef CONFIG_PROC_FS
9446 .show_fdinfo = io_uring_show_fdinfo,
9447 #endif
9448 };
9449
9450 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9451 struct io_uring_params *p)
9452 {
9453 struct io_rings *rings;
9454 size_t size, sq_array_offset;
9455
9456 /* make sure these are sane, as we already accounted them */
9457 ctx->sq_entries = p->sq_entries;
9458 ctx->cq_entries = p->cq_entries;
9459
9460 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9461 if (size == SIZE_MAX)
9462 return -EOVERFLOW;
9463
9464 rings = io_mem_alloc(size);
9465 if (!rings)
9466 return -ENOMEM;
9467
9468 ctx->rings = rings;
9469 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9470 rings->sq_ring_mask = p->sq_entries - 1;
9471 rings->cq_ring_mask = p->cq_entries - 1;
9472 rings->sq_ring_entries = p->sq_entries;
9473 rings->cq_ring_entries = p->cq_entries;
9474 ctx->sq_mask = rings->sq_ring_mask;
9475 ctx->cq_mask = rings->cq_ring_mask;
9476
9477 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9478 if (size == SIZE_MAX) {
9479 io_mem_free(ctx->rings);
9480 ctx->rings = NULL;
9481 return -EOVERFLOW;
9482 }
9483
9484 ctx->sq_sqes = io_mem_alloc(size);
9485 if (!ctx->sq_sqes) {
9486 io_mem_free(ctx->rings);
9487 ctx->rings = NULL;
9488 return -ENOMEM;
9489 }
9490
9491 return 0;
9492 }
9493
9494 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9495 {
9496 int ret, fd;
9497
9498 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9499 if (fd < 0)
9500 return fd;
9501
9502 ret = io_uring_add_task_file(ctx);
9503 if (ret) {
9504 put_unused_fd(fd);
9505 return ret;
9506 }
9507 fd_install(fd, file);
9508 return fd;
9509 }
9510
9511 /*
9512 * Allocate an anonymous fd, this is what constitutes the application
9513 * visible backing of an io_uring instance. The application mmaps this
9514 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9515 * we have to tie this fd to a socket for file garbage collection purposes.
9516 */
9517 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9518 {
9519 struct file *file;
9520 #if defined(CONFIG_UNIX)
9521 int ret;
9522
9523 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9524 &ctx->ring_sock);
9525 if (ret)
9526 return ERR_PTR(ret);
9527 #endif
9528
9529 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9530 O_RDWR | O_CLOEXEC);
9531 #if defined(CONFIG_UNIX)
9532 if (IS_ERR(file)) {
9533 sock_release(ctx->ring_sock);
9534 ctx->ring_sock = NULL;
9535 } else {
9536 ctx->ring_sock->file = file;
9537 }
9538 #endif
9539 return file;
9540 }
9541
9542 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9543 struct io_uring_params __user *params)
9544 {
9545 struct io_ring_ctx *ctx;
9546 struct file *file;
9547 int ret;
9548
9549 if (!entries)
9550 return -EINVAL;
9551 if (entries > IORING_MAX_ENTRIES) {
9552 if (!(p->flags & IORING_SETUP_CLAMP))
9553 return -EINVAL;
9554 entries = IORING_MAX_ENTRIES;
9555 }
9556
9557 /*
9558 * Use twice as many entries for the CQ ring. It's possible for the
9559 * application to drive a higher depth than the size of the SQ ring,
9560 * since the sqes are only used at submission time. This allows for
9561 * some flexibility in overcommitting a bit. If the application has
9562 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9563 * of CQ ring entries manually.
9564 */
9565 p->sq_entries = roundup_pow_of_two(entries);
9566 if (p->flags & IORING_SETUP_CQSIZE) {
9567 /*
9568 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9569 * to a power-of-two, if it isn't already. We do NOT impose
9570 * any cq vs sq ring sizing.
9571 */
9572 if (!p->cq_entries)
9573 return -EINVAL;
9574 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9575 if (!(p->flags & IORING_SETUP_CLAMP))
9576 return -EINVAL;
9577 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9578 }
9579 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9580 if (p->cq_entries < p->sq_entries)
9581 return -EINVAL;
9582 } else {
9583 p->cq_entries = 2 * p->sq_entries;
9584 }
9585
9586 ctx = io_ring_ctx_alloc(p);
9587 if (!ctx)
9588 return -ENOMEM;
9589 ctx->compat = in_compat_syscall();
9590 if (!capable(CAP_IPC_LOCK))
9591 ctx->user = get_uid(current_user());
9592
9593 /*
9594 * This is just grabbed for accounting purposes. When a process exits,
9595 * the mm is exited and dropped before the files, hence we need to hang
9596 * on to this mm purely for the purposes of being able to unaccount
9597 * memory (locked/pinned vm). It's not used for anything else.
9598 */
9599 mmgrab(current->mm);
9600 ctx->mm_account = current->mm;
9601
9602 ret = io_allocate_scq_urings(ctx, p);
9603 if (ret)
9604 goto err;
9605
9606 ret = io_sq_offload_create(ctx, p);
9607 if (ret)
9608 goto err;
9609 /* always set a rsrc node */
9610 io_rsrc_node_switch_start(ctx);
9611 io_rsrc_node_switch(ctx, NULL);
9612
9613 memset(&p->sq_off, 0, sizeof(p->sq_off));
9614 p->sq_off.head = offsetof(struct io_rings, sq.head);
9615 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9616 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9617 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9618 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9619 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9620 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9621
9622 memset(&p->cq_off, 0, sizeof(p->cq_off));
9623 p->cq_off.head = offsetof(struct io_rings, cq.head);
9624 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9625 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9626 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9627 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9628 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9629 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9630
9631 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9632 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9633 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9634 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9635 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
9636
9637 if (copy_to_user(params, p, sizeof(*p))) {
9638 ret = -EFAULT;
9639 goto err;
9640 }
9641
9642 file = io_uring_get_file(ctx);
9643 if (IS_ERR(file)) {
9644 ret = PTR_ERR(file);
9645 goto err;
9646 }
9647
9648 /*
9649 * Install ring fd as the very last thing, so we don't risk someone
9650 * having closed it before we finish setup
9651 */
9652 ret = io_uring_install_fd(ctx, file);
9653 if (ret < 0) {
9654 /* fput will clean it up */
9655 fput(file);
9656 return ret;
9657 }
9658
9659 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9660 return ret;
9661 err:
9662 io_ring_ctx_wait_and_kill(ctx);
9663 return ret;
9664 }
9665
9666 /*
9667 * Sets up an aio uring context, and returns the fd. Applications asks for a
9668 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9669 * params structure passed in.
9670 */
9671 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9672 {
9673 struct io_uring_params p;
9674 int i;
9675
9676 if (copy_from_user(&p, params, sizeof(p)))
9677 return -EFAULT;
9678 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9679 if (p.resv[i])
9680 return -EINVAL;
9681 }
9682
9683 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9684 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9685 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9686 IORING_SETUP_R_DISABLED))
9687 return -EINVAL;
9688
9689 return io_uring_create(entries, &p, params);
9690 }
9691
9692 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9693 struct io_uring_params __user *, params)
9694 {
9695 return io_uring_setup(entries, params);
9696 }
9697
9698 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9699 {
9700 struct io_uring_probe *p;
9701 size_t size;
9702 int i, ret;
9703
9704 size = struct_size(p, ops, nr_args);
9705 if (size == SIZE_MAX)
9706 return -EOVERFLOW;
9707 p = kzalloc(size, GFP_KERNEL);
9708 if (!p)
9709 return -ENOMEM;
9710
9711 ret = -EFAULT;
9712 if (copy_from_user(p, arg, size))
9713 goto out;
9714 ret = -EINVAL;
9715 if (memchr_inv(p, 0, size))
9716 goto out;
9717
9718 p->last_op = IORING_OP_LAST - 1;
9719 if (nr_args > IORING_OP_LAST)
9720 nr_args = IORING_OP_LAST;
9721
9722 for (i = 0; i < nr_args; i++) {
9723 p->ops[i].op = i;
9724 if (!io_op_defs[i].not_supported)
9725 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9726 }
9727 p->ops_len = i;
9728
9729 ret = 0;
9730 if (copy_to_user(arg, p, size))
9731 ret = -EFAULT;
9732 out:
9733 kfree(p);
9734 return ret;
9735 }
9736
9737 static int io_register_personality(struct io_ring_ctx *ctx)
9738 {
9739 const struct cred *creds;
9740 u32 id;
9741 int ret;
9742
9743 creds = get_current_cred();
9744
9745 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9746 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9747 if (!ret)
9748 return id;
9749 put_cred(creds);
9750 return ret;
9751 }
9752
9753 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9754 unsigned int nr_args)
9755 {
9756 struct io_uring_restriction *res;
9757 size_t size;
9758 int i, ret;
9759
9760 /* Restrictions allowed only if rings started disabled */
9761 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9762 return -EBADFD;
9763
9764 /* We allow only a single restrictions registration */
9765 if (ctx->restrictions.registered)
9766 return -EBUSY;
9767
9768 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9769 return -EINVAL;
9770
9771 size = array_size(nr_args, sizeof(*res));
9772 if (size == SIZE_MAX)
9773 return -EOVERFLOW;
9774
9775 res = memdup_user(arg, size);
9776 if (IS_ERR(res))
9777 return PTR_ERR(res);
9778
9779 ret = 0;
9780
9781 for (i = 0; i < nr_args; i++) {
9782 switch (res[i].opcode) {
9783 case IORING_RESTRICTION_REGISTER_OP:
9784 if (res[i].register_op >= IORING_REGISTER_LAST) {
9785 ret = -EINVAL;
9786 goto out;
9787 }
9788
9789 __set_bit(res[i].register_op,
9790 ctx->restrictions.register_op);
9791 break;
9792 case IORING_RESTRICTION_SQE_OP:
9793 if (res[i].sqe_op >= IORING_OP_LAST) {
9794 ret = -EINVAL;
9795 goto out;
9796 }
9797
9798 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9799 break;
9800 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9801 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9802 break;
9803 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9804 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9805 break;
9806 default:
9807 ret = -EINVAL;
9808 goto out;
9809 }
9810 }
9811
9812 out:
9813 /* Reset all restrictions if an error happened */
9814 if (ret != 0)
9815 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9816 else
9817 ctx->restrictions.registered = true;
9818
9819 kfree(res);
9820 return ret;
9821 }
9822
9823 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9824 {
9825 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9826 return -EBADFD;
9827
9828 if (ctx->restrictions.registered)
9829 ctx->restricted = 1;
9830
9831 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9832 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9833 wake_up(&ctx->sq_data->wait);
9834 return 0;
9835 }
9836
9837 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9838 struct io_uring_rsrc_update2 *up,
9839 unsigned nr_args)
9840 {
9841 __u32 tmp;
9842 int err;
9843
9844 if (up->resv)
9845 return -EINVAL;
9846 if (check_add_overflow(up->offset, nr_args, &tmp))
9847 return -EOVERFLOW;
9848 err = io_rsrc_node_switch_start(ctx);
9849 if (err)
9850 return err;
9851
9852 switch (type) {
9853 case IORING_RSRC_FILE:
9854 return __io_sqe_files_update(ctx, up, nr_args);
9855 case IORING_RSRC_BUFFER:
9856 return __io_sqe_buffers_update(ctx, up, nr_args);
9857 }
9858 return -EINVAL;
9859 }
9860
9861 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9862 unsigned nr_args)
9863 {
9864 struct io_uring_rsrc_update2 up;
9865
9866 if (!nr_args)
9867 return -EINVAL;
9868 memset(&up, 0, sizeof(up));
9869 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9870 return -EFAULT;
9871 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9872 }
9873
9874 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9875 unsigned size)
9876 {
9877 struct io_uring_rsrc_update2 up;
9878
9879 if (size != sizeof(up))
9880 return -EINVAL;
9881 if (copy_from_user(&up, arg, sizeof(up)))
9882 return -EFAULT;
9883 if (!up.nr)
9884 return -EINVAL;
9885 return __io_register_rsrc_update(ctx, up.type, &up, up.nr);
9886 }
9887
9888 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9889 unsigned int size)
9890 {
9891 struct io_uring_rsrc_register rr;
9892
9893 /* keep it extendible */
9894 if (size != sizeof(rr))
9895 return -EINVAL;
9896
9897 memset(&rr, 0, sizeof(rr));
9898 if (copy_from_user(&rr, arg, size))
9899 return -EFAULT;
9900 if (!rr.nr)
9901 return -EINVAL;
9902
9903 switch (rr.type) {
9904 case IORING_RSRC_FILE:
9905 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9906 rr.nr, u64_to_user_ptr(rr.tags));
9907 case IORING_RSRC_BUFFER:
9908 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
9909 rr.nr, u64_to_user_ptr(rr.tags));
9910 }
9911 return -EINVAL;
9912 }
9913
9914 static bool io_register_op_must_quiesce(int op)
9915 {
9916 switch (op) {
9917 case IORING_REGISTER_BUFFERS:
9918 case IORING_UNREGISTER_BUFFERS:
9919 case IORING_REGISTER_FILES:
9920 case IORING_UNREGISTER_FILES:
9921 case IORING_REGISTER_FILES_UPDATE:
9922 case IORING_REGISTER_PROBE:
9923 case IORING_REGISTER_PERSONALITY:
9924 case IORING_UNREGISTER_PERSONALITY:
9925 case IORING_REGISTER_RSRC:
9926 case IORING_REGISTER_RSRC_UPDATE:
9927 return false;
9928 default:
9929 return true;
9930 }
9931 }
9932
9933 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9934 void __user *arg, unsigned nr_args)
9935 __releases(ctx->uring_lock)
9936 __acquires(ctx->uring_lock)
9937 {
9938 int ret;
9939
9940 /*
9941 * We're inside the ring mutex, if the ref is already dying, then
9942 * someone else killed the ctx or is already going through
9943 * io_uring_register().
9944 */
9945 if (percpu_ref_is_dying(&ctx->refs))
9946 return -ENXIO;
9947
9948 if (ctx->restricted) {
9949 if (opcode >= IORING_REGISTER_LAST)
9950 return -EINVAL;
9951 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
9952 if (!test_bit(opcode, ctx->restrictions.register_op))
9953 return -EACCES;
9954 }
9955
9956 if (io_register_op_must_quiesce(opcode)) {
9957 percpu_ref_kill(&ctx->refs);
9958
9959 /*
9960 * Drop uring mutex before waiting for references to exit. If
9961 * another thread is currently inside io_uring_enter() it might
9962 * need to grab the uring_lock to make progress. If we hold it
9963 * here across the drain wait, then we can deadlock. It's safe
9964 * to drop the mutex here, since no new references will come in
9965 * after we've killed the percpu ref.
9966 */
9967 mutex_unlock(&ctx->uring_lock);
9968 do {
9969 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9970 if (!ret)
9971 break;
9972 ret = io_run_task_work_sig();
9973 if (ret < 0)
9974 break;
9975 } while (1);
9976 mutex_lock(&ctx->uring_lock);
9977
9978 if (ret) {
9979 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
9980 return ret;
9981 }
9982 }
9983
9984 switch (opcode) {
9985 case IORING_REGISTER_BUFFERS:
9986 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
9987 break;
9988 case IORING_UNREGISTER_BUFFERS:
9989 ret = -EINVAL;
9990 if (arg || nr_args)
9991 break;
9992 ret = io_sqe_buffers_unregister(ctx);
9993 break;
9994 case IORING_REGISTER_FILES:
9995 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
9996 break;
9997 case IORING_UNREGISTER_FILES:
9998 ret = -EINVAL;
9999 if (arg || nr_args)
10000 break;
10001 ret = io_sqe_files_unregister(ctx);
10002 break;
10003 case IORING_REGISTER_FILES_UPDATE:
10004 ret = io_register_files_update(ctx, arg, nr_args);
10005 break;
10006 case IORING_REGISTER_EVENTFD:
10007 case IORING_REGISTER_EVENTFD_ASYNC:
10008 ret = -EINVAL;
10009 if (nr_args != 1)
10010 break;
10011 ret = io_eventfd_register(ctx, arg);
10012 if (ret)
10013 break;
10014 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10015 ctx->eventfd_async = 1;
10016 else
10017 ctx->eventfd_async = 0;
10018 break;
10019 case IORING_UNREGISTER_EVENTFD:
10020 ret = -EINVAL;
10021 if (arg || nr_args)
10022 break;
10023 ret = io_eventfd_unregister(ctx);
10024 break;
10025 case IORING_REGISTER_PROBE:
10026 ret = -EINVAL;
10027 if (!arg || nr_args > 256)
10028 break;
10029 ret = io_probe(ctx, arg, nr_args);
10030 break;
10031 case IORING_REGISTER_PERSONALITY:
10032 ret = -EINVAL;
10033 if (arg || nr_args)
10034 break;
10035 ret = io_register_personality(ctx);
10036 break;
10037 case IORING_UNREGISTER_PERSONALITY:
10038 ret = -EINVAL;
10039 if (arg)
10040 break;
10041 ret = io_unregister_personality(ctx, nr_args);
10042 break;
10043 case IORING_REGISTER_ENABLE_RINGS:
10044 ret = -EINVAL;
10045 if (arg || nr_args)
10046 break;
10047 ret = io_register_enable_rings(ctx);
10048 break;
10049 case IORING_REGISTER_RESTRICTIONS:
10050 ret = io_register_restrictions(ctx, arg, nr_args);
10051 break;
10052 case IORING_REGISTER_RSRC:
10053 ret = io_register_rsrc(ctx, arg, nr_args);
10054 break;
10055 case IORING_REGISTER_RSRC_UPDATE:
10056 ret = io_register_rsrc_update(ctx, arg, nr_args);
10057 break;
10058 default:
10059 ret = -EINVAL;
10060 break;
10061 }
10062
10063 if (io_register_op_must_quiesce(opcode)) {
10064 /* bring the ctx back to life */
10065 percpu_ref_reinit(&ctx->refs);
10066 reinit_completion(&ctx->ref_comp);
10067 }
10068 return ret;
10069 }
10070
10071 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10072 void __user *, arg, unsigned int, nr_args)
10073 {
10074 struct io_ring_ctx *ctx;
10075 long ret = -EBADF;
10076 struct fd f;
10077
10078 f = fdget(fd);
10079 if (!f.file)
10080 return -EBADF;
10081
10082 ret = -EOPNOTSUPP;
10083 if (f.file->f_op != &io_uring_fops)
10084 goto out_fput;
10085
10086 ctx = f.file->private_data;
10087
10088 io_run_task_work();
10089
10090 mutex_lock(&ctx->uring_lock);
10091 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10092 mutex_unlock(&ctx->uring_lock);
10093 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10094 ctx->cq_ev_fd != NULL, ret);
10095 out_fput:
10096 fdput(f);
10097 return ret;
10098 }
10099
10100 static int __init io_uring_init(void)
10101 {
10102 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10103 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10104 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10105 } while (0)
10106
10107 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10108 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10109 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10110 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10111 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10112 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10113 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10114 BUILD_BUG_SQE_ELEM(8, __u64, off);
10115 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10116 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10117 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10118 BUILD_BUG_SQE_ELEM(24, __u32, len);
10119 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10120 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10121 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10122 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10123 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10124 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10125 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10126 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10127 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10128 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10129 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10130 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10131 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10132 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10133 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10134 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10135 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10136 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10137 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10138
10139 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10140 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10141 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10142 SLAB_ACCOUNT);
10143 return 0;
10144 };
10145 __initcall(io_uring_init);