]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: add more build check for uapi
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92
93 /*
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
95 */
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
101 IORING_REGISTER_LAST + IORING_OP_LAST)
102
103 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
104 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
105 IOSQE_BUFFER_SELECT)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
193 };
194
195 struct io_mapped_ubuf {
196 u64 ubuf;
197 u64 ubuf_end;
198 unsigned int nr_bvecs;
199 unsigned long acct_pages;
200 struct bio_vec bvec[];
201 };
202
203 struct io_ring_ctx;
204
205 struct io_overflow_cqe {
206 struct io_uring_cqe cqe;
207 struct list_head list;
208 };
209
210 struct io_fixed_file {
211 /* file * with additional FFS_* flags */
212 unsigned long file_ptr;
213 };
214
215 struct io_rsrc_put {
216 struct list_head list;
217 u64 tag;
218 union {
219 void *rsrc;
220 struct file *file;
221 struct io_mapped_ubuf *buf;
222 };
223 };
224
225 struct io_file_table {
226 /* two level table */
227 struct io_fixed_file **files;
228 };
229
230 struct io_rsrc_node {
231 struct percpu_ref refs;
232 struct list_head node;
233 struct list_head rsrc_list;
234 struct io_rsrc_data *rsrc_data;
235 struct llist_node llist;
236 bool done;
237 };
238
239 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
240
241 struct io_rsrc_data {
242 struct io_ring_ctx *ctx;
243
244 u64 *tags;
245 rsrc_put_fn *do_put;
246 atomic_t refs;
247 struct completion done;
248 bool quiesce;
249 };
250
251 struct io_buffer {
252 struct list_head list;
253 __u64 addr;
254 __s32 len;
255 __u16 bid;
256 };
257
258 struct io_restriction {
259 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
260 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
261 u8 sqe_flags_allowed;
262 u8 sqe_flags_required;
263 bool registered;
264 };
265
266 enum {
267 IO_SQ_THREAD_SHOULD_STOP = 0,
268 IO_SQ_THREAD_SHOULD_PARK,
269 };
270
271 struct io_sq_data {
272 refcount_t refs;
273 atomic_t park_pending;
274 struct mutex lock;
275
276 /* ctx's that are using this sqd */
277 struct list_head ctx_list;
278
279 struct task_struct *thread;
280 struct wait_queue_head wait;
281
282 unsigned sq_thread_idle;
283 int sq_cpu;
284 pid_t task_pid;
285 pid_t task_tgid;
286
287 unsigned long state;
288 struct completion exited;
289 struct callback_head *park_task_work;
290 };
291
292 #define IO_IOPOLL_BATCH 8
293 #define IO_COMPL_BATCH 32
294 #define IO_REQ_CACHE_SIZE 32
295 #define IO_REQ_ALLOC_BATCH 8
296
297 struct io_comp_state {
298 struct io_kiocb *reqs[IO_COMPL_BATCH];
299 unsigned int nr;
300 unsigned int locked_free_nr;
301 /* inline/task_work completion list, under ->uring_lock */
302 struct list_head free_list;
303 /* IRQ completion list, under ->completion_lock */
304 struct list_head locked_free_list;
305 };
306
307 struct io_submit_link {
308 struct io_kiocb *head;
309 struct io_kiocb *last;
310 };
311
312 struct io_submit_state {
313 struct blk_plug plug;
314 struct io_submit_link link;
315
316 /*
317 * io_kiocb alloc cache
318 */
319 void *reqs[IO_REQ_CACHE_SIZE];
320 unsigned int free_reqs;
321
322 bool plug_started;
323
324 /*
325 * Batch completion logic
326 */
327 struct io_comp_state comp;
328
329 /*
330 * File reference cache
331 */
332 struct file *file;
333 unsigned int fd;
334 unsigned int file_refs;
335 unsigned int ios_left;
336 };
337
338 struct io_ring_ctx {
339 struct {
340 struct percpu_ref refs;
341 } ____cacheline_aligned_in_smp;
342
343 struct {
344 unsigned int flags;
345 unsigned int compat: 1;
346 unsigned int drain_next: 1;
347 unsigned int eventfd_async: 1;
348 unsigned int restricted: 1;
349
350 /*
351 * Ring buffer of indices into array of io_uring_sqe, which is
352 * mmapped by the application using the IORING_OFF_SQES offset.
353 *
354 * This indirection could e.g. be used to assign fixed
355 * io_uring_sqe entries to operations and only submit them to
356 * the queue when needed.
357 *
358 * The kernel modifies neither the indices array nor the entries
359 * array.
360 */
361 u32 *sq_array;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 unsigned sq_mask;
365 unsigned sq_thread_idle;
366 unsigned cached_sq_dropped;
367 unsigned cached_cq_overflow;
368 unsigned long sq_check_overflow;
369
370 /* hashed buffered write serialization */
371 struct io_wq_hash *hash_map;
372
373 struct list_head defer_list;
374 struct list_head timeout_list;
375 struct list_head cq_overflow_list;
376
377 struct io_uring_sqe *sq_sqes;
378 } ____cacheline_aligned_in_smp;
379
380 struct {
381 struct mutex uring_lock;
382 wait_queue_head_t wait;
383 } ____cacheline_aligned_in_smp;
384
385 struct io_submit_state submit_state;
386
387 struct io_rings *rings;
388
389 /* Only used for accounting purposes */
390 struct mm_struct *mm_account;
391
392 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
393 struct io_sq_data *sq_data; /* if using sq thread polling */
394
395 struct wait_queue_head sqo_sq_wait;
396 struct list_head sqd_list;
397
398 /*
399 * If used, fixed file set. Writers must ensure that ->refs is dead,
400 * readers must ensure that ->refs is alive as long as the file* is
401 * used. Only updated through io_uring_register(2).
402 */
403 struct io_rsrc_data *file_data;
404 struct io_file_table file_table;
405 unsigned nr_user_files;
406
407 /* if used, fixed mapped user buffers */
408 struct io_rsrc_data *buf_data;
409 unsigned nr_user_bufs;
410 struct io_mapped_ubuf **user_bufs;
411
412 struct user_struct *user;
413
414 struct completion ref_comp;
415
416 #if defined(CONFIG_UNIX)
417 struct socket *ring_sock;
418 #endif
419
420 struct xarray io_buffers;
421
422 struct xarray personalities;
423 u32 pers_next;
424
425 struct {
426 unsigned cached_cq_tail;
427 unsigned cq_entries;
428 unsigned cq_mask;
429 atomic_t cq_timeouts;
430 unsigned cq_last_tm_flush;
431 unsigned cq_extra;
432 unsigned long cq_check_overflow;
433 struct wait_queue_head cq_wait;
434 struct fasync_struct *cq_fasync;
435 struct eventfd_ctx *cq_ev_fd;
436 } ____cacheline_aligned_in_smp;
437
438 struct {
439 spinlock_t completion_lock;
440
441 /*
442 * ->iopoll_list is protected by the ctx->uring_lock for
443 * io_uring instances that don't use IORING_SETUP_SQPOLL.
444 * For SQPOLL, only the single threaded io_sq_thread() will
445 * manipulate the list, hence no extra locking is needed there.
446 */
447 struct list_head iopoll_list;
448 struct hlist_head *cancel_hash;
449 unsigned cancel_hash_bits;
450 bool poll_multi_file;
451 } ____cacheline_aligned_in_smp;
452
453 struct delayed_work rsrc_put_work;
454 struct llist_head rsrc_put_llist;
455 struct list_head rsrc_ref_list;
456 spinlock_t rsrc_ref_lock;
457 struct io_rsrc_node *rsrc_node;
458 struct io_rsrc_node *rsrc_backup_node;
459
460 struct io_restriction restrictions;
461
462 /* exit task_work */
463 struct callback_head *exit_task_work;
464
465 /* Keep this last, we don't need it for the fast path */
466 struct work_struct exit_work;
467 struct list_head tctx_list;
468 };
469
470 struct io_uring_task {
471 /* submission side */
472 struct xarray xa;
473 struct wait_queue_head wait;
474 const struct io_ring_ctx *last;
475 struct io_wq *io_wq;
476 struct percpu_counter inflight;
477 atomic_t inflight_tracked;
478 atomic_t in_idle;
479
480 spinlock_t task_lock;
481 struct io_wq_work_list task_list;
482 unsigned long task_state;
483 struct callback_head task_work;
484 };
485
486 /*
487 * First field must be the file pointer in all the
488 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
489 */
490 struct io_poll_iocb {
491 struct file *file;
492 struct wait_queue_head *head;
493 __poll_t events;
494 bool done;
495 bool canceled;
496 struct wait_queue_entry wait;
497 };
498
499 struct io_poll_update {
500 struct file *file;
501 u64 old_user_data;
502 u64 new_user_data;
503 __poll_t events;
504 bool update_events;
505 bool update_user_data;
506 };
507
508 struct io_close {
509 struct file *file;
510 int fd;
511 };
512
513 struct io_timeout_data {
514 struct io_kiocb *req;
515 struct hrtimer timer;
516 struct timespec64 ts;
517 enum hrtimer_mode mode;
518 };
519
520 struct io_accept {
521 struct file *file;
522 struct sockaddr __user *addr;
523 int __user *addr_len;
524 int flags;
525 unsigned long nofile;
526 };
527
528 struct io_sync {
529 struct file *file;
530 loff_t len;
531 loff_t off;
532 int flags;
533 int mode;
534 };
535
536 struct io_cancel {
537 struct file *file;
538 u64 addr;
539 };
540
541 struct io_timeout {
542 struct file *file;
543 u32 off;
544 u32 target_seq;
545 struct list_head list;
546 /* head of the link, used by linked timeouts only */
547 struct io_kiocb *head;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 };
558
559 struct io_rw {
560 /* NOTE: kiocb has the file as the first member, so don't do it here */
561 struct kiocb kiocb;
562 u64 addr;
563 u64 len;
564 };
565
566 struct io_connect {
567 struct file *file;
568 struct sockaddr __user *addr;
569 int addr_len;
570 };
571
572 struct io_sr_msg {
573 struct file *file;
574 union {
575 struct compat_msghdr __user *umsg_compat;
576 struct user_msghdr __user *umsg;
577 void __user *buf;
578 };
579 int msg_flags;
580 int bgid;
581 size_t len;
582 struct io_buffer *kbuf;
583 };
584
585 struct io_open {
586 struct file *file;
587 int dfd;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591 };
592
593 struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598 };
599
600 struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605 };
606
607 struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620 };
621
622 struct io_splice {
623 struct file *file_out;
624 struct file *file_in;
625 loff_t off_out;
626 loff_t off_in;
627 u64 len;
628 unsigned int flags;
629 };
630
631 struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638 };
639
640 struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647 };
648
649 struct io_shutdown {
650 struct file *file;
651 int how;
652 };
653
654 struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661 };
662
663 struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668 };
669
670 struct io_completion {
671 struct file *file;
672 struct list_head list;
673 u32 cflags;
674 };
675
676 struct io_async_connect {
677 struct sockaddr_storage address;
678 };
679
680 struct io_async_msghdr {
681 struct iovec fast_iov[UIO_FASTIOV];
682 /* points to an allocated iov, if NULL we use fast_iov instead */
683 struct iovec *free_iov;
684 struct sockaddr __user *uaddr;
685 struct msghdr msg;
686 struct sockaddr_storage addr;
687 };
688
689 struct io_async_rw {
690 struct iovec fast_iov[UIO_FASTIOV];
691 const struct iovec *free_iovec;
692 struct iov_iter iter;
693 size_t bytes_done;
694 struct wait_page_queue wpq;
695 };
696
697 enum {
698 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
699 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
700 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
701 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
702 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
703 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
704
705 /* first byte is taken by user flags, shift it to not overlap */
706 REQ_F_FAIL_LINK_BIT = 8,
707 REQ_F_INFLIGHT_BIT,
708 REQ_F_CUR_POS_BIT,
709 REQ_F_NOWAIT_BIT,
710 REQ_F_LINK_TIMEOUT_BIT,
711 REQ_F_NEED_CLEANUP_BIT,
712 REQ_F_POLLED_BIT,
713 REQ_F_BUFFER_SELECTED_BIT,
714 REQ_F_LTIMEOUT_ACTIVE_BIT,
715 REQ_F_COMPLETE_INLINE_BIT,
716 REQ_F_REISSUE_BIT,
717 REQ_F_DONT_REISSUE_BIT,
718 /* keep async read/write and isreg together and in order */
719 REQ_F_ASYNC_READ_BIT,
720 REQ_F_ASYNC_WRITE_BIT,
721 REQ_F_ISREG_BIT,
722
723 /* not a real bit, just to check we're not overflowing the space */
724 __REQ_F_LAST_BIT,
725 };
726
727 enum {
728 /* ctx owns file */
729 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
730 /* drain existing IO first */
731 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
732 /* linked sqes */
733 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
734 /* doesn't sever on completion < 0 */
735 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
736 /* IOSQE_ASYNC */
737 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
738 /* IOSQE_BUFFER_SELECT */
739 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
740
741 /* fail rest of links */
742 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
743 /* on inflight list, should be cancelled and waited on exit reliably */
744 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
745 /* read/write uses file position */
746 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
747 /* must not punt to workers */
748 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
749 /* has or had linked timeout */
750 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
751 /* needs cleanup */
752 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
753 /* already went through poll handler */
754 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
755 /* buffer already selected */
756 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
757 /* linked timeout is active, i.e. prepared by link's head */
758 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
759 /* completion is deferred through io_comp_state */
760 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
761 /* caller should reissue async */
762 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
763 /* don't attempt request reissue, see io_rw_reissue() */
764 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
765 /* supports async reads */
766 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
767 /* supports async writes */
768 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
769 /* regular file */
770 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
771 };
772
773 struct async_poll {
774 struct io_poll_iocb poll;
775 struct io_poll_iocb *double_poll;
776 };
777
778 struct io_task_work {
779 struct io_wq_work_node node;
780 task_work_func_t func;
781 };
782
783 /*
784 * NOTE! Each of the iocb union members has the file pointer
785 * as the first entry in their struct definition. So you can
786 * access the file pointer through any of the sub-structs,
787 * or directly as just 'ki_filp' in this struct.
788 */
789 struct io_kiocb {
790 union {
791 struct file *file;
792 struct io_rw rw;
793 struct io_poll_iocb poll;
794 struct io_poll_update poll_update;
795 struct io_accept accept;
796 struct io_sync sync;
797 struct io_cancel cancel;
798 struct io_timeout timeout;
799 struct io_timeout_rem timeout_rem;
800 struct io_connect connect;
801 struct io_sr_msg sr_msg;
802 struct io_open open;
803 struct io_close close;
804 struct io_rsrc_update rsrc_update;
805 struct io_fadvise fadvise;
806 struct io_madvise madvise;
807 struct io_epoll epoll;
808 struct io_splice splice;
809 struct io_provide_buf pbuf;
810 struct io_statx statx;
811 struct io_shutdown shutdown;
812 struct io_rename rename;
813 struct io_unlink unlink;
814 /* use only after cleaning per-op data, see io_clean_op() */
815 struct io_completion compl;
816 };
817
818 /* opcode allocated if it needs to store data for async defer */
819 void *async_data;
820 u8 opcode;
821 /* polled IO has completed */
822 u8 iopoll_completed;
823
824 u16 buf_index;
825 u32 result;
826
827 struct io_ring_ctx *ctx;
828 unsigned int flags;
829 atomic_t refs;
830 struct task_struct *task;
831 u64 user_data;
832
833 struct io_kiocb *link;
834 struct percpu_ref *fixed_rsrc_refs;
835
836 /* used with ctx->iopoll_list with reads/writes */
837 struct list_head inflight_entry;
838 union {
839 struct io_task_work io_task_work;
840 struct callback_head task_work;
841 };
842 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
843 struct hlist_node hash_node;
844 struct async_poll *apoll;
845 struct io_wq_work work;
846 /* store used ubuf, so we can prevent reloading */
847 struct io_mapped_ubuf *imu;
848 };
849
850 struct io_tctx_node {
851 struct list_head ctx_node;
852 struct task_struct *task;
853 struct io_ring_ctx *ctx;
854 };
855
856 struct io_defer_entry {
857 struct list_head list;
858 struct io_kiocb *req;
859 u32 seq;
860 };
861
862 struct io_op_def {
863 /* needs req->file assigned */
864 unsigned needs_file : 1;
865 /* hash wq insertion if file is a regular file */
866 unsigned hash_reg_file : 1;
867 /* unbound wq insertion if file is a non-regular file */
868 unsigned unbound_nonreg_file : 1;
869 /* opcode is not supported by this kernel */
870 unsigned not_supported : 1;
871 /* set if opcode supports polled "wait" */
872 unsigned pollin : 1;
873 unsigned pollout : 1;
874 /* op supports buffer selection */
875 unsigned buffer_select : 1;
876 /* do prep async if is going to be punted */
877 unsigned needs_async_setup : 1;
878 /* should block plug */
879 unsigned plug : 1;
880 /* size of async data needed, if any */
881 unsigned short async_size;
882 };
883
884 static const struct io_op_def io_op_defs[] = {
885 [IORING_OP_NOP] = {},
886 [IORING_OP_READV] = {
887 .needs_file = 1,
888 .unbound_nonreg_file = 1,
889 .pollin = 1,
890 .buffer_select = 1,
891 .needs_async_setup = 1,
892 .plug = 1,
893 .async_size = sizeof(struct io_async_rw),
894 },
895 [IORING_OP_WRITEV] = {
896 .needs_file = 1,
897 .hash_reg_file = 1,
898 .unbound_nonreg_file = 1,
899 .pollout = 1,
900 .needs_async_setup = 1,
901 .plug = 1,
902 .async_size = sizeof(struct io_async_rw),
903 },
904 [IORING_OP_FSYNC] = {
905 .needs_file = 1,
906 },
907 [IORING_OP_READ_FIXED] = {
908 .needs_file = 1,
909 .unbound_nonreg_file = 1,
910 .pollin = 1,
911 .plug = 1,
912 .async_size = sizeof(struct io_async_rw),
913 },
914 [IORING_OP_WRITE_FIXED] = {
915 .needs_file = 1,
916 .hash_reg_file = 1,
917 .unbound_nonreg_file = 1,
918 .pollout = 1,
919 .plug = 1,
920 .async_size = sizeof(struct io_async_rw),
921 },
922 [IORING_OP_POLL_ADD] = {
923 .needs_file = 1,
924 .unbound_nonreg_file = 1,
925 },
926 [IORING_OP_POLL_REMOVE] = {},
927 [IORING_OP_SYNC_FILE_RANGE] = {
928 .needs_file = 1,
929 },
930 [IORING_OP_SENDMSG] = {
931 .needs_file = 1,
932 .unbound_nonreg_file = 1,
933 .pollout = 1,
934 .needs_async_setup = 1,
935 .async_size = sizeof(struct io_async_msghdr),
936 },
937 [IORING_OP_RECVMSG] = {
938 .needs_file = 1,
939 .unbound_nonreg_file = 1,
940 .pollin = 1,
941 .buffer_select = 1,
942 .needs_async_setup = 1,
943 .async_size = sizeof(struct io_async_msghdr),
944 },
945 [IORING_OP_TIMEOUT] = {
946 .async_size = sizeof(struct io_timeout_data),
947 },
948 [IORING_OP_TIMEOUT_REMOVE] = {
949 /* used by timeout updates' prep() */
950 },
951 [IORING_OP_ACCEPT] = {
952 .needs_file = 1,
953 .unbound_nonreg_file = 1,
954 .pollin = 1,
955 },
956 [IORING_OP_ASYNC_CANCEL] = {},
957 [IORING_OP_LINK_TIMEOUT] = {
958 .async_size = sizeof(struct io_timeout_data),
959 },
960 [IORING_OP_CONNECT] = {
961 .needs_file = 1,
962 .unbound_nonreg_file = 1,
963 .pollout = 1,
964 .needs_async_setup = 1,
965 .async_size = sizeof(struct io_async_connect),
966 },
967 [IORING_OP_FALLOCATE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_OPENAT] = {},
971 [IORING_OP_CLOSE] = {},
972 [IORING_OP_FILES_UPDATE] = {},
973 [IORING_OP_STATX] = {},
974 [IORING_OP_READ] = {
975 .needs_file = 1,
976 .unbound_nonreg_file = 1,
977 .pollin = 1,
978 .buffer_select = 1,
979 .plug = 1,
980 .async_size = sizeof(struct io_async_rw),
981 },
982 [IORING_OP_WRITE] = {
983 .needs_file = 1,
984 .unbound_nonreg_file = 1,
985 .pollout = 1,
986 .plug = 1,
987 .async_size = sizeof(struct io_async_rw),
988 },
989 [IORING_OP_FADVISE] = {
990 .needs_file = 1,
991 },
992 [IORING_OP_MADVISE] = {},
993 [IORING_OP_SEND] = {
994 .needs_file = 1,
995 .unbound_nonreg_file = 1,
996 .pollout = 1,
997 },
998 [IORING_OP_RECV] = {
999 .needs_file = 1,
1000 .unbound_nonreg_file = 1,
1001 .pollin = 1,
1002 .buffer_select = 1,
1003 },
1004 [IORING_OP_OPENAT2] = {
1005 },
1006 [IORING_OP_EPOLL_CTL] = {
1007 .unbound_nonreg_file = 1,
1008 },
1009 [IORING_OP_SPLICE] = {
1010 .needs_file = 1,
1011 .hash_reg_file = 1,
1012 .unbound_nonreg_file = 1,
1013 },
1014 [IORING_OP_PROVIDE_BUFFERS] = {},
1015 [IORING_OP_REMOVE_BUFFERS] = {},
1016 [IORING_OP_TEE] = {
1017 .needs_file = 1,
1018 .hash_reg_file = 1,
1019 .unbound_nonreg_file = 1,
1020 },
1021 [IORING_OP_SHUTDOWN] = {
1022 .needs_file = 1,
1023 },
1024 [IORING_OP_RENAMEAT] = {},
1025 [IORING_OP_UNLINKAT] = {},
1026 };
1027
1028 static bool io_disarm_next(struct io_kiocb *req);
1029 static void io_uring_del_task_file(unsigned long index);
1030 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1031 struct task_struct *task,
1032 struct files_struct *files);
1033 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd);
1034 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1035
1036 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1037 long res, unsigned int cflags);
1038 static void io_put_req(struct io_kiocb *req);
1039 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1040 static void io_dismantle_req(struct io_kiocb *req);
1041 static void io_put_task(struct task_struct *task, int nr);
1042 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1043 static void io_queue_linked_timeout(struct io_kiocb *req);
1044 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1045 struct io_uring_rsrc_update2 *up,
1046 unsigned nr_args);
1047 static void io_clean_op(struct io_kiocb *req);
1048 static struct file *io_file_get(struct io_submit_state *state,
1049 struct io_kiocb *req, int fd, bool fixed);
1050 static void __io_queue_sqe(struct io_kiocb *req);
1051 static void io_rsrc_put_work(struct work_struct *work);
1052
1053 static void io_req_task_queue(struct io_kiocb *req);
1054 static void io_submit_flush_completions(struct io_comp_state *cs,
1055 struct io_ring_ctx *ctx);
1056 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1057 static int io_req_prep_async(struct io_kiocb *req);
1058
1059 static struct kmem_cache *req_cachep;
1060
1061 static const struct file_operations io_uring_fops;
1062
1063 struct sock *io_uring_get_socket(struct file *file)
1064 {
1065 #if defined(CONFIG_UNIX)
1066 if (file->f_op == &io_uring_fops) {
1067 struct io_ring_ctx *ctx = file->private_data;
1068
1069 return ctx->ring_sock->sk;
1070 }
1071 #endif
1072 return NULL;
1073 }
1074 EXPORT_SYMBOL(io_uring_get_socket);
1075
1076 #define io_for_each_link(pos, head) \
1077 for (pos = (head); pos; pos = pos->link)
1078
1079 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1080 {
1081 struct io_ring_ctx *ctx = req->ctx;
1082
1083 if (!req->fixed_rsrc_refs) {
1084 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1085 percpu_ref_get(req->fixed_rsrc_refs);
1086 }
1087 }
1088
1089 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1090 {
1091 bool got = percpu_ref_tryget(ref);
1092
1093 /* already at zero, wait for ->release() */
1094 if (!got)
1095 wait_for_completion(compl);
1096 percpu_ref_resurrect(ref);
1097 if (got)
1098 percpu_ref_put(ref);
1099 }
1100
1101 static bool io_match_task(struct io_kiocb *head,
1102 struct task_struct *task,
1103 struct files_struct *files)
1104 {
1105 struct io_kiocb *req;
1106
1107 if (task && head->task != task)
1108 return false;
1109 if (!files)
1110 return true;
1111
1112 io_for_each_link(req, head) {
1113 if (req->flags & REQ_F_INFLIGHT)
1114 return true;
1115 }
1116 return false;
1117 }
1118
1119 static inline void req_set_fail_links(struct io_kiocb *req)
1120 {
1121 if (req->flags & REQ_F_LINK)
1122 req->flags |= REQ_F_FAIL_LINK;
1123 }
1124
1125 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1126 {
1127 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1128
1129 complete(&ctx->ref_comp);
1130 }
1131
1132 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1133 {
1134 return !req->timeout.off;
1135 }
1136
1137 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1138 {
1139 struct io_ring_ctx *ctx;
1140 int hash_bits;
1141
1142 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1143 if (!ctx)
1144 return NULL;
1145
1146 /*
1147 * Use 5 bits less than the max cq entries, that should give us around
1148 * 32 entries per hash list if totally full and uniformly spread.
1149 */
1150 hash_bits = ilog2(p->cq_entries);
1151 hash_bits -= 5;
1152 if (hash_bits <= 0)
1153 hash_bits = 1;
1154 ctx->cancel_hash_bits = hash_bits;
1155 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1156 GFP_KERNEL);
1157 if (!ctx->cancel_hash)
1158 goto err;
1159 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1160
1161 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1162 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1163 goto err;
1164
1165 ctx->flags = p->flags;
1166 init_waitqueue_head(&ctx->sqo_sq_wait);
1167 INIT_LIST_HEAD(&ctx->sqd_list);
1168 init_waitqueue_head(&ctx->cq_wait);
1169 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1170 init_completion(&ctx->ref_comp);
1171 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1172 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1173 mutex_init(&ctx->uring_lock);
1174 init_waitqueue_head(&ctx->wait);
1175 spin_lock_init(&ctx->completion_lock);
1176 INIT_LIST_HEAD(&ctx->iopoll_list);
1177 INIT_LIST_HEAD(&ctx->defer_list);
1178 INIT_LIST_HEAD(&ctx->timeout_list);
1179 spin_lock_init(&ctx->rsrc_ref_lock);
1180 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1181 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1182 init_llist_head(&ctx->rsrc_put_llist);
1183 INIT_LIST_HEAD(&ctx->tctx_list);
1184 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1185 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1186 return ctx;
1187 err:
1188 kfree(ctx->cancel_hash);
1189 kfree(ctx);
1190 return NULL;
1191 }
1192
1193 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1194 {
1195 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1196 struct io_ring_ctx *ctx = req->ctx;
1197
1198 return seq + ctx->cq_extra != ctx->cached_cq_tail
1199 + READ_ONCE(ctx->cached_cq_overflow);
1200 }
1201
1202 return false;
1203 }
1204
1205 static void io_req_track_inflight(struct io_kiocb *req)
1206 {
1207 if (!(req->flags & REQ_F_INFLIGHT)) {
1208 req->flags |= REQ_F_INFLIGHT;
1209 atomic_inc(&current->io_uring->inflight_tracked);
1210 }
1211 }
1212
1213 static void io_prep_async_work(struct io_kiocb *req)
1214 {
1215 const struct io_op_def *def = &io_op_defs[req->opcode];
1216 struct io_ring_ctx *ctx = req->ctx;
1217
1218 if (!req->work.creds)
1219 req->work.creds = get_current_cred();
1220
1221 req->work.list.next = NULL;
1222 req->work.flags = 0;
1223 if (req->flags & REQ_F_FORCE_ASYNC)
1224 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1225
1226 if (req->flags & REQ_F_ISREG) {
1227 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1228 io_wq_hash_work(&req->work, file_inode(req->file));
1229 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1230 if (def->unbound_nonreg_file)
1231 req->work.flags |= IO_WQ_WORK_UNBOUND;
1232 }
1233
1234 switch (req->opcode) {
1235 case IORING_OP_SPLICE:
1236 case IORING_OP_TEE:
1237 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1238 req->work.flags |= IO_WQ_WORK_UNBOUND;
1239 break;
1240 }
1241 }
1242
1243 static void io_prep_async_link(struct io_kiocb *req)
1244 {
1245 struct io_kiocb *cur;
1246
1247 io_for_each_link(cur, req)
1248 io_prep_async_work(cur);
1249 }
1250
1251 static void io_queue_async_work(struct io_kiocb *req)
1252 {
1253 struct io_ring_ctx *ctx = req->ctx;
1254 struct io_kiocb *link = io_prep_linked_timeout(req);
1255 struct io_uring_task *tctx = req->task->io_uring;
1256
1257 BUG_ON(!tctx);
1258 BUG_ON(!tctx->io_wq);
1259
1260 /* init ->work of the whole link before punting */
1261 io_prep_async_link(req);
1262 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1263 &req->work, req->flags);
1264 io_wq_enqueue(tctx->io_wq, &req->work);
1265 if (link)
1266 io_queue_linked_timeout(link);
1267 }
1268
1269 static void io_kill_timeout(struct io_kiocb *req, int status)
1270 __must_hold(&req->ctx->completion_lock)
1271 {
1272 struct io_timeout_data *io = req->async_data;
1273
1274 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1275 atomic_set(&req->ctx->cq_timeouts,
1276 atomic_read(&req->ctx->cq_timeouts) + 1);
1277 list_del_init(&req->timeout.list);
1278 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1279 io_put_req_deferred(req, 1);
1280 }
1281 }
1282
1283 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1284 {
1285 do {
1286 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1287 struct io_defer_entry, list);
1288
1289 if (req_need_defer(de->req, de->seq))
1290 break;
1291 list_del_init(&de->list);
1292 io_req_task_queue(de->req);
1293 kfree(de);
1294 } while (!list_empty(&ctx->defer_list));
1295 }
1296
1297 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1298 {
1299 u32 seq;
1300
1301 if (list_empty(&ctx->timeout_list))
1302 return;
1303
1304 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1305
1306 do {
1307 u32 events_needed, events_got;
1308 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1309 struct io_kiocb, timeout.list);
1310
1311 if (io_is_timeout_noseq(req))
1312 break;
1313
1314 /*
1315 * Since seq can easily wrap around over time, subtract
1316 * the last seq at which timeouts were flushed before comparing.
1317 * Assuming not more than 2^31-1 events have happened since,
1318 * these subtractions won't have wrapped, so we can check if
1319 * target is in [last_seq, current_seq] by comparing the two.
1320 */
1321 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1322 events_got = seq - ctx->cq_last_tm_flush;
1323 if (events_got < events_needed)
1324 break;
1325
1326 list_del_init(&req->timeout.list);
1327 io_kill_timeout(req, 0);
1328 } while (!list_empty(&ctx->timeout_list));
1329
1330 ctx->cq_last_tm_flush = seq;
1331 }
1332
1333 static void io_commit_cqring(struct io_ring_ctx *ctx)
1334 {
1335 io_flush_timeouts(ctx);
1336
1337 /* order cqe stores with ring update */
1338 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1339
1340 if (unlikely(!list_empty(&ctx->defer_list)))
1341 __io_queue_deferred(ctx);
1342 }
1343
1344 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1345 {
1346 struct io_rings *r = ctx->rings;
1347
1348 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1349 }
1350
1351 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1352 {
1353 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1354 }
1355
1356 static inline struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1357 {
1358 struct io_rings *rings = ctx->rings;
1359 unsigned tail;
1360
1361 /*
1362 * writes to the cq entry need to come after reading head; the
1363 * control dependency is enough as we're using WRITE_ONCE to
1364 * fill the cq entry
1365 */
1366 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1367 return NULL;
1368
1369 tail = ctx->cached_cq_tail++;
1370 return &rings->cqes[tail & ctx->cq_mask];
1371 }
1372
1373 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1374 {
1375 if (likely(!ctx->cq_ev_fd))
1376 return false;
1377 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1378 return false;
1379 return !ctx->eventfd_async || io_wq_current_is_worker();
1380 }
1381
1382 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1383 {
1384 /* see waitqueue_active() comment */
1385 smp_mb();
1386
1387 if (waitqueue_active(&ctx->wait))
1388 wake_up(&ctx->wait);
1389 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1390 wake_up(&ctx->sq_data->wait);
1391 if (io_should_trigger_evfd(ctx))
1392 eventfd_signal(ctx->cq_ev_fd, 1);
1393 if (waitqueue_active(&ctx->cq_wait)) {
1394 wake_up_interruptible(&ctx->cq_wait);
1395 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1396 }
1397 }
1398
1399 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1400 {
1401 /* see waitqueue_active() comment */
1402 smp_mb();
1403
1404 if (ctx->flags & IORING_SETUP_SQPOLL) {
1405 if (waitqueue_active(&ctx->wait))
1406 wake_up(&ctx->wait);
1407 }
1408 if (io_should_trigger_evfd(ctx))
1409 eventfd_signal(ctx->cq_ev_fd, 1);
1410 if (waitqueue_active(&ctx->cq_wait)) {
1411 wake_up_interruptible(&ctx->cq_wait);
1412 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1413 }
1414 }
1415
1416 /* Returns true if there are no backlogged entries after the flush */
1417 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1418 {
1419 struct io_rings *rings = ctx->rings;
1420 unsigned long flags;
1421 bool all_flushed, posted;
1422
1423 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1424 return false;
1425
1426 posted = false;
1427 spin_lock_irqsave(&ctx->completion_lock, flags);
1428 while (!list_empty(&ctx->cq_overflow_list)) {
1429 struct io_uring_cqe *cqe = io_get_cqring(ctx);
1430 struct io_overflow_cqe *ocqe;
1431
1432 if (!cqe && !force)
1433 break;
1434 ocqe = list_first_entry(&ctx->cq_overflow_list,
1435 struct io_overflow_cqe, list);
1436 if (cqe)
1437 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1438 else
1439 WRITE_ONCE(ctx->rings->cq_overflow,
1440 ++ctx->cached_cq_overflow);
1441 posted = true;
1442 list_del(&ocqe->list);
1443 kfree(ocqe);
1444 }
1445
1446 all_flushed = list_empty(&ctx->cq_overflow_list);
1447 if (all_flushed) {
1448 clear_bit(0, &ctx->sq_check_overflow);
1449 clear_bit(0, &ctx->cq_check_overflow);
1450 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1451 }
1452
1453 if (posted)
1454 io_commit_cqring(ctx);
1455 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1456 if (posted)
1457 io_cqring_ev_posted(ctx);
1458 return all_flushed;
1459 }
1460
1461 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1462 {
1463 bool ret = true;
1464
1465 if (test_bit(0, &ctx->cq_check_overflow)) {
1466 /* iopoll syncs against uring_lock, not completion_lock */
1467 if (ctx->flags & IORING_SETUP_IOPOLL)
1468 mutex_lock(&ctx->uring_lock);
1469 ret = __io_cqring_overflow_flush(ctx, force);
1470 if (ctx->flags & IORING_SETUP_IOPOLL)
1471 mutex_unlock(&ctx->uring_lock);
1472 }
1473
1474 return ret;
1475 }
1476
1477 /*
1478 * Shamelessly stolen from the mm implementation of page reference checking,
1479 * see commit f958d7b528b1 for details.
1480 */
1481 #define req_ref_zero_or_close_to_overflow(req) \
1482 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1483
1484 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1485 {
1486 return atomic_inc_not_zero(&req->refs);
1487 }
1488
1489 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1490 {
1491 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1492 return atomic_sub_and_test(refs, &req->refs);
1493 }
1494
1495 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1496 {
1497 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1498 return atomic_dec_and_test(&req->refs);
1499 }
1500
1501 static inline void req_ref_put(struct io_kiocb *req)
1502 {
1503 WARN_ON_ONCE(req_ref_put_and_test(req));
1504 }
1505
1506 static inline void req_ref_get(struct io_kiocb *req)
1507 {
1508 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1509 atomic_inc(&req->refs);
1510 }
1511
1512 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1513 long res, unsigned int cflags)
1514 {
1515 struct io_overflow_cqe *ocqe;
1516
1517 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1518 if (!ocqe) {
1519 /*
1520 * If we're in ring overflow flush mode, or in task cancel mode,
1521 * or cannot allocate an overflow entry, then we need to drop it
1522 * on the floor.
1523 */
1524 WRITE_ONCE(ctx->rings->cq_overflow, ++ctx->cached_cq_overflow);
1525 return false;
1526 }
1527 if (list_empty(&ctx->cq_overflow_list)) {
1528 set_bit(0, &ctx->sq_check_overflow);
1529 set_bit(0, &ctx->cq_check_overflow);
1530 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1531 }
1532 ocqe->cqe.user_data = user_data;
1533 ocqe->cqe.res = res;
1534 ocqe->cqe.flags = cflags;
1535 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1536 return true;
1537 }
1538
1539 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1540 long res, unsigned int cflags)
1541 {
1542 struct io_uring_cqe *cqe;
1543
1544 trace_io_uring_complete(ctx, user_data, res, cflags);
1545
1546 /*
1547 * If we can't get a cq entry, userspace overflowed the
1548 * submission (by quite a lot). Increment the overflow count in
1549 * the ring.
1550 */
1551 cqe = io_get_cqring(ctx);
1552 if (likely(cqe)) {
1553 WRITE_ONCE(cqe->user_data, user_data);
1554 WRITE_ONCE(cqe->res, res);
1555 WRITE_ONCE(cqe->flags, cflags);
1556 return true;
1557 }
1558 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1559 }
1560
1561 /* not as hot to bloat with inlining */
1562 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1563 long res, unsigned int cflags)
1564 {
1565 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1566 }
1567
1568 static void io_req_complete_post(struct io_kiocb *req, long res,
1569 unsigned int cflags)
1570 {
1571 struct io_ring_ctx *ctx = req->ctx;
1572 unsigned long flags;
1573
1574 spin_lock_irqsave(&ctx->completion_lock, flags);
1575 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1576 /*
1577 * If we're the last reference to this request, add to our locked
1578 * free_list cache.
1579 */
1580 if (req_ref_put_and_test(req)) {
1581 struct io_comp_state *cs = &ctx->submit_state.comp;
1582
1583 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1584 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK))
1585 io_disarm_next(req);
1586 if (req->link) {
1587 io_req_task_queue(req->link);
1588 req->link = NULL;
1589 }
1590 }
1591 io_dismantle_req(req);
1592 io_put_task(req->task, 1);
1593 list_add(&req->compl.list, &cs->locked_free_list);
1594 cs->locked_free_nr++;
1595 } else {
1596 if (!percpu_ref_tryget(&ctx->refs))
1597 req = NULL;
1598 }
1599 io_commit_cqring(ctx);
1600 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1601
1602 if (req) {
1603 io_cqring_ev_posted(ctx);
1604 percpu_ref_put(&ctx->refs);
1605 }
1606 }
1607
1608 static inline bool io_req_needs_clean(struct io_kiocb *req)
1609 {
1610 return req->flags & (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP |
1611 REQ_F_POLLED | REQ_F_INFLIGHT);
1612 }
1613
1614 static void io_req_complete_state(struct io_kiocb *req, long res,
1615 unsigned int cflags)
1616 {
1617 if (io_req_needs_clean(req))
1618 io_clean_op(req);
1619 req->result = res;
1620 req->compl.cflags = cflags;
1621 req->flags |= REQ_F_COMPLETE_INLINE;
1622 }
1623
1624 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1625 long res, unsigned cflags)
1626 {
1627 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1628 io_req_complete_state(req, res, cflags);
1629 else
1630 io_req_complete_post(req, res, cflags);
1631 }
1632
1633 static inline void io_req_complete(struct io_kiocb *req, long res)
1634 {
1635 __io_req_complete(req, 0, res, 0);
1636 }
1637
1638 static void io_req_complete_failed(struct io_kiocb *req, long res)
1639 {
1640 req_set_fail_links(req);
1641 io_put_req(req);
1642 io_req_complete_post(req, res, 0);
1643 }
1644
1645 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1646 struct io_comp_state *cs)
1647 {
1648 spin_lock_irq(&ctx->completion_lock);
1649 list_splice_init(&cs->locked_free_list, &cs->free_list);
1650 cs->locked_free_nr = 0;
1651 spin_unlock_irq(&ctx->completion_lock);
1652 }
1653
1654 /* Returns true IFF there are requests in the cache */
1655 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1656 {
1657 struct io_submit_state *state = &ctx->submit_state;
1658 struct io_comp_state *cs = &state->comp;
1659 int nr;
1660
1661 /*
1662 * If we have more than a batch's worth of requests in our IRQ side
1663 * locked cache, grab the lock and move them over to our submission
1664 * side cache.
1665 */
1666 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH)
1667 io_flush_cached_locked_reqs(ctx, cs);
1668
1669 nr = state->free_reqs;
1670 while (!list_empty(&cs->free_list)) {
1671 struct io_kiocb *req = list_first_entry(&cs->free_list,
1672 struct io_kiocb, compl.list);
1673
1674 list_del(&req->compl.list);
1675 state->reqs[nr++] = req;
1676 if (nr == ARRAY_SIZE(state->reqs))
1677 break;
1678 }
1679
1680 state->free_reqs = nr;
1681 return nr != 0;
1682 }
1683
1684 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1685 {
1686 struct io_submit_state *state = &ctx->submit_state;
1687
1688 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
1689
1690 if (!state->free_reqs) {
1691 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1692 int ret;
1693
1694 if (io_flush_cached_reqs(ctx))
1695 goto got_req;
1696
1697 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1698 state->reqs);
1699
1700 /*
1701 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1702 * retry single alloc to be on the safe side.
1703 */
1704 if (unlikely(ret <= 0)) {
1705 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1706 if (!state->reqs[0])
1707 return NULL;
1708 ret = 1;
1709 }
1710 state->free_reqs = ret;
1711 }
1712 got_req:
1713 state->free_reqs--;
1714 return state->reqs[state->free_reqs];
1715 }
1716
1717 static inline void io_put_file(struct file *file)
1718 {
1719 if (file)
1720 fput(file);
1721 }
1722
1723 static void io_dismantle_req(struct io_kiocb *req)
1724 {
1725 unsigned int flags = req->flags;
1726
1727 if (io_req_needs_clean(req))
1728 io_clean_op(req);
1729 if (!(flags & REQ_F_FIXED_FILE))
1730 io_put_file(req->file);
1731 if (req->fixed_rsrc_refs)
1732 percpu_ref_put(req->fixed_rsrc_refs);
1733 if (req->async_data)
1734 kfree(req->async_data);
1735 if (req->work.creds) {
1736 put_cred(req->work.creds);
1737 req->work.creds = NULL;
1738 }
1739 }
1740
1741 /* must to be called somewhat shortly after putting a request */
1742 static inline void io_put_task(struct task_struct *task, int nr)
1743 {
1744 struct io_uring_task *tctx = task->io_uring;
1745
1746 percpu_counter_sub(&tctx->inflight, nr);
1747 if (unlikely(atomic_read(&tctx->in_idle)))
1748 wake_up(&tctx->wait);
1749 put_task_struct_many(task, nr);
1750 }
1751
1752 static void __io_free_req(struct io_kiocb *req)
1753 {
1754 struct io_ring_ctx *ctx = req->ctx;
1755
1756 io_dismantle_req(req);
1757 io_put_task(req->task, 1);
1758
1759 kmem_cache_free(req_cachep, req);
1760 percpu_ref_put(&ctx->refs);
1761 }
1762
1763 static inline void io_remove_next_linked(struct io_kiocb *req)
1764 {
1765 struct io_kiocb *nxt = req->link;
1766
1767 req->link = nxt->link;
1768 nxt->link = NULL;
1769 }
1770
1771 static bool io_kill_linked_timeout(struct io_kiocb *req)
1772 __must_hold(&req->ctx->completion_lock)
1773 {
1774 struct io_kiocb *link = req->link;
1775
1776 /*
1777 * Can happen if a linked timeout fired and link had been like
1778 * req -> link t-out -> link t-out [-> ...]
1779 */
1780 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1781 struct io_timeout_data *io = link->async_data;
1782
1783 io_remove_next_linked(req);
1784 link->timeout.head = NULL;
1785 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1786 io_cqring_fill_event(link->ctx, link->user_data,
1787 -ECANCELED, 0);
1788 io_put_req_deferred(link, 1);
1789 return true;
1790 }
1791 }
1792 return false;
1793 }
1794
1795 static void io_fail_links(struct io_kiocb *req)
1796 __must_hold(&req->ctx->completion_lock)
1797 {
1798 struct io_kiocb *nxt, *link = req->link;
1799
1800 req->link = NULL;
1801 while (link) {
1802 nxt = link->link;
1803 link->link = NULL;
1804
1805 trace_io_uring_fail_link(req, link);
1806 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1807 io_put_req_deferred(link, 2);
1808 link = nxt;
1809 }
1810 }
1811
1812 static bool io_disarm_next(struct io_kiocb *req)
1813 __must_hold(&req->ctx->completion_lock)
1814 {
1815 bool posted = false;
1816
1817 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1818 posted = io_kill_linked_timeout(req);
1819 if (unlikely((req->flags & REQ_F_FAIL_LINK) &&
1820 !(req->flags & REQ_F_HARDLINK))) {
1821 posted |= (req->link != NULL);
1822 io_fail_links(req);
1823 }
1824 return posted;
1825 }
1826
1827 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1828 {
1829 struct io_kiocb *nxt;
1830
1831 /*
1832 * If LINK is set, we have dependent requests in this chain. If we
1833 * didn't fail this request, queue the first one up, moving any other
1834 * dependencies to the next request. In case of failure, fail the rest
1835 * of the chain.
1836 */
1837 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK)) {
1838 struct io_ring_ctx *ctx = req->ctx;
1839 unsigned long flags;
1840 bool posted;
1841
1842 spin_lock_irqsave(&ctx->completion_lock, flags);
1843 posted = io_disarm_next(req);
1844 if (posted)
1845 io_commit_cqring(req->ctx);
1846 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1847 if (posted)
1848 io_cqring_ev_posted(ctx);
1849 }
1850 nxt = req->link;
1851 req->link = NULL;
1852 return nxt;
1853 }
1854
1855 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1856 {
1857 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1858 return NULL;
1859 return __io_req_find_next(req);
1860 }
1861
1862 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1863 {
1864 if (!ctx)
1865 return;
1866 if (ctx->submit_state.comp.nr) {
1867 mutex_lock(&ctx->uring_lock);
1868 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
1869 mutex_unlock(&ctx->uring_lock);
1870 }
1871 percpu_ref_put(&ctx->refs);
1872 }
1873
1874 static bool __tctx_task_work(struct io_uring_task *tctx)
1875 {
1876 struct io_ring_ctx *ctx = NULL;
1877 struct io_wq_work_list list;
1878 struct io_wq_work_node *node;
1879
1880 if (wq_list_empty(&tctx->task_list))
1881 return false;
1882
1883 spin_lock_irq(&tctx->task_lock);
1884 list = tctx->task_list;
1885 INIT_WQ_LIST(&tctx->task_list);
1886 spin_unlock_irq(&tctx->task_lock);
1887
1888 node = list.first;
1889 while (node) {
1890 struct io_wq_work_node *next = node->next;
1891 struct io_kiocb *req;
1892
1893 req = container_of(node, struct io_kiocb, io_task_work.node);
1894 if (req->ctx != ctx) {
1895 ctx_flush_and_put(ctx);
1896 ctx = req->ctx;
1897 percpu_ref_get(&ctx->refs);
1898 }
1899
1900 req->task_work.func(&req->task_work);
1901 node = next;
1902 }
1903
1904 ctx_flush_and_put(ctx);
1905 return list.first != NULL;
1906 }
1907
1908 static void tctx_task_work(struct callback_head *cb)
1909 {
1910 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
1911
1912 clear_bit(0, &tctx->task_state);
1913
1914 while (__tctx_task_work(tctx))
1915 cond_resched();
1916 }
1917
1918 static int io_req_task_work_add(struct io_kiocb *req)
1919 {
1920 struct task_struct *tsk = req->task;
1921 struct io_uring_task *tctx = tsk->io_uring;
1922 enum task_work_notify_mode notify;
1923 struct io_wq_work_node *node, *prev;
1924 unsigned long flags;
1925 int ret = 0;
1926
1927 if (unlikely(tsk->flags & PF_EXITING))
1928 return -ESRCH;
1929
1930 WARN_ON_ONCE(!tctx);
1931
1932 spin_lock_irqsave(&tctx->task_lock, flags);
1933 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1934 spin_unlock_irqrestore(&tctx->task_lock, flags);
1935
1936 /* task_work already pending, we're done */
1937 if (test_bit(0, &tctx->task_state) ||
1938 test_and_set_bit(0, &tctx->task_state))
1939 return 0;
1940
1941 /*
1942 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1943 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1944 * processing task_work. There's no reliable way to tell if TWA_RESUME
1945 * will do the job.
1946 */
1947 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1948
1949 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1950 wake_up_process(tsk);
1951 return 0;
1952 }
1953
1954 /*
1955 * Slow path - we failed, find and delete work. if the work is not
1956 * in the list, it got run and we're fine.
1957 */
1958 spin_lock_irqsave(&tctx->task_lock, flags);
1959 wq_list_for_each(node, prev, &tctx->task_list) {
1960 if (&req->io_task_work.node == node) {
1961 wq_list_del(&tctx->task_list, node, prev);
1962 ret = 1;
1963 break;
1964 }
1965 }
1966 spin_unlock_irqrestore(&tctx->task_lock, flags);
1967 clear_bit(0, &tctx->task_state);
1968 return ret;
1969 }
1970
1971 static bool io_run_task_work_head(struct callback_head **work_head)
1972 {
1973 struct callback_head *work, *next;
1974 bool executed = false;
1975
1976 do {
1977 work = xchg(work_head, NULL);
1978 if (!work)
1979 break;
1980
1981 do {
1982 next = work->next;
1983 work->func(work);
1984 work = next;
1985 cond_resched();
1986 } while (work);
1987 executed = true;
1988 } while (1);
1989
1990 return executed;
1991 }
1992
1993 static void io_task_work_add_head(struct callback_head **work_head,
1994 struct callback_head *task_work)
1995 {
1996 struct callback_head *head;
1997
1998 do {
1999 head = READ_ONCE(*work_head);
2000 task_work->next = head;
2001 } while (cmpxchg(work_head, head, task_work) != head);
2002 }
2003
2004 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2005 task_work_func_t cb)
2006 {
2007 init_task_work(&req->task_work, cb);
2008 io_task_work_add_head(&req->ctx->exit_task_work, &req->task_work);
2009 }
2010
2011 static void io_req_task_cancel(struct callback_head *cb)
2012 {
2013 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2014 struct io_ring_ctx *ctx = req->ctx;
2015
2016 /* ctx is guaranteed to stay alive while we hold uring_lock */
2017 mutex_lock(&ctx->uring_lock);
2018 io_req_complete_failed(req, req->result);
2019 mutex_unlock(&ctx->uring_lock);
2020 }
2021
2022 static void __io_req_task_submit(struct io_kiocb *req)
2023 {
2024 struct io_ring_ctx *ctx = req->ctx;
2025
2026 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2027 mutex_lock(&ctx->uring_lock);
2028 if (!(current->flags & PF_EXITING) && !current->in_execve)
2029 __io_queue_sqe(req);
2030 else
2031 io_req_complete_failed(req, -EFAULT);
2032 mutex_unlock(&ctx->uring_lock);
2033 }
2034
2035 static void io_req_task_submit(struct callback_head *cb)
2036 {
2037 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2038
2039 __io_req_task_submit(req);
2040 }
2041
2042 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2043 {
2044 req->result = ret;
2045 req->task_work.func = io_req_task_cancel;
2046
2047 if (unlikely(io_req_task_work_add(req)))
2048 io_req_task_work_add_fallback(req, io_req_task_cancel);
2049 }
2050
2051 static void io_req_task_queue(struct io_kiocb *req)
2052 {
2053 req->task_work.func = io_req_task_submit;
2054
2055 if (unlikely(io_req_task_work_add(req)))
2056 io_req_task_queue_fail(req, -ECANCELED);
2057 }
2058
2059 static inline void io_queue_next(struct io_kiocb *req)
2060 {
2061 struct io_kiocb *nxt = io_req_find_next(req);
2062
2063 if (nxt)
2064 io_req_task_queue(nxt);
2065 }
2066
2067 static void io_free_req(struct io_kiocb *req)
2068 {
2069 io_queue_next(req);
2070 __io_free_req(req);
2071 }
2072
2073 struct req_batch {
2074 struct task_struct *task;
2075 int task_refs;
2076 int ctx_refs;
2077 };
2078
2079 static inline void io_init_req_batch(struct req_batch *rb)
2080 {
2081 rb->task_refs = 0;
2082 rb->ctx_refs = 0;
2083 rb->task = NULL;
2084 }
2085
2086 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2087 struct req_batch *rb)
2088 {
2089 if (rb->task)
2090 io_put_task(rb->task, rb->task_refs);
2091 if (rb->ctx_refs)
2092 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2093 }
2094
2095 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2096 struct io_submit_state *state)
2097 {
2098 io_queue_next(req);
2099 io_dismantle_req(req);
2100
2101 if (req->task != rb->task) {
2102 if (rb->task)
2103 io_put_task(rb->task, rb->task_refs);
2104 rb->task = req->task;
2105 rb->task_refs = 0;
2106 }
2107 rb->task_refs++;
2108 rb->ctx_refs++;
2109
2110 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2111 state->reqs[state->free_reqs++] = req;
2112 else
2113 list_add(&req->compl.list, &state->comp.free_list);
2114 }
2115
2116 static void io_submit_flush_completions(struct io_comp_state *cs,
2117 struct io_ring_ctx *ctx)
2118 {
2119 int i, nr = cs->nr;
2120 struct io_kiocb *req;
2121 struct req_batch rb;
2122
2123 io_init_req_batch(&rb);
2124 spin_lock_irq(&ctx->completion_lock);
2125 for (i = 0; i < nr; i++) {
2126 req = cs->reqs[i];
2127 __io_cqring_fill_event(ctx, req->user_data, req->result,
2128 req->compl.cflags);
2129 }
2130 io_commit_cqring(ctx);
2131 spin_unlock_irq(&ctx->completion_lock);
2132
2133 io_cqring_ev_posted(ctx);
2134 for (i = 0; i < nr; i++) {
2135 req = cs->reqs[i];
2136
2137 /* submission and completion refs */
2138 if (req_ref_sub_and_test(req, 2))
2139 io_req_free_batch(&rb, req, &ctx->submit_state);
2140 }
2141
2142 io_req_free_batch_finish(ctx, &rb);
2143 cs->nr = 0;
2144 }
2145
2146 /*
2147 * Drop reference to request, return next in chain (if there is one) if this
2148 * was the last reference to this request.
2149 */
2150 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2151 {
2152 struct io_kiocb *nxt = NULL;
2153
2154 if (req_ref_put_and_test(req)) {
2155 nxt = io_req_find_next(req);
2156 __io_free_req(req);
2157 }
2158 return nxt;
2159 }
2160
2161 static inline void io_put_req(struct io_kiocb *req)
2162 {
2163 if (req_ref_put_and_test(req))
2164 io_free_req(req);
2165 }
2166
2167 static void io_put_req_deferred_cb(struct callback_head *cb)
2168 {
2169 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2170
2171 io_free_req(req);
2172 }
2173
2174 static void io_free_req_deferred(struct io_kiocb *req)
2175 {
2176 req->task_work.func = io_put_req_deferred_cb;
2177 if (unlikely(io_req_task_work_add(req)))
2178 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2179 }
2180
2181 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2182 {
2183 if (req_ref_sub_and_test(req, refs))
2184 io_free_req_deferred(req);
2185 }
2186
2187 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2188 {
2189 /* See comment at the top of this file */
2190 smp_rmb();
2191 return __io_cqring_events(ctx);
2192 }
2193
2194 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2195 {
2196 struct io_rings *rings = ctx->rings;
2197
2198 /* make sure SQ entry isn't read before tail */
2199 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2200 }
2201
2202 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2203 {
2204 unsigned int cflags;
2205
2206 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2207 cflags |= IORING_CQE_F_BUFFER;
2208 req->flags &= ~REQ_F_BUFFER_SELECTED;
2209 kfree(kbuf);
2210 return cflags;
2211 }
2212
2213 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2214 {
2215 struct io_buffer *kbuf;
2216
2217 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2218 return io_put_kbuf(req, kbuf);
2219 }
2220
2221 static inline bool io_run_task_work(void)
2222 {
2223 /*
2224 * Not safe to run on exiting task, and the task_work handling will
2225 * not add work to such a task.
2226 */
2227 if (unlikely(current->flags & PF_EXITING))
2228 return false;
2229 if (current->task_works) {
2230 __set_current_state(TASK_RUNNING);
2231 task_work_run();
2232 return true;
2233 }
2234
2235 return false;
2236 }
2237
2238 /*
2239 * Find and free completed poll iocbs
2240 */
2241 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2242 struct list_head *done)
2243 {
2244 struct req_batch rb;
2245 struct io_kiocb *req;
2246
2247 /* order with ->result store in io_complete_rw_iopoll() */
2248 smp_rmb();
2249
2250 io_init_req_batch(&rb);
2251 while (!list_empty(done)) {
2252 int cflags = 0;
2253
2254 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2255 list_del(&req->inflight_entry);
2256
2257 if (READ_ONCE(req->result) == -EAGAIN &&
2258 !(req->flags & REQ_F_DONT_REISSUE)) {
2259 req->iopoll_completed = 0;
2260 req_ref_get(req);
2261 io_queue_async_work(req);
2262 continue;
2263 }
2264
2265 if (req->flags & REQ_F_BUFFER_SELECTED)
2266 cflags = io_put_rw_kbuf(req);
2267
2268 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2269 (*nr_events)++;
2270
2271 if (req_ref_put_and_test(req))
2272 io_req_free_batch(&rb, req, &ctx->submit_state);
2273 }
2274
2275 io_commit_cqring(ctx);
2276 io_cqring_ev_posted_iopoll(ctx);
2277 io_req_free_batch_finish(ctx, &rb);
2278 }
2279
2280 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2281 long min)
2282 {
2283 struct io_kiocb *req, *tmp;
2284 LIST_HEAD(done);
2285 bool spin;
2286 int ret;
2287
2288 /*
2289 * Only spin for completions if we don't have multiple devices hanging
2290 * off our complete list, and we're under the requested amount.
2291 */
2292 spin = !ctx->poll_multi_file && *nr_events < min;
2293
2294 ret = 0;
2295 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2296 struct kiocb *kiocb = &req->rw.kiocb;
2297
2298 /*
2299 * Move completed and retryable entries to our local lists.
2300 * If we find a request that requires polling, break out
2301 * and complete those lists first, if we have entries there.
2302 */
2303 if (READ_ONCE(req->iopoll_completed)) {
2304 list_move_tail(&req->inflight_entry, &done);
2305 continue;
2306 }
2307 if (!list_empty(&done))
2308 break;
2309
2310 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2311 if (ret < 0)
2312 break;
2313
2314 /* iopoll may have completed current req */
2315 if (READ_ONCE(req->iopoll_completed))
2316 list_move_tail(&req->inflight_entry, &done);
2317
2318 if (ret && spin)
2319 spin = false;
2320 ret = 0;
2321 }
2322
2323 if (!list_empty(&done))
2324 io_iopoll_complete(ctx, nr_events, &done);
2325
2326 return ret;
2327 }
2328
2329 /*
2330 * We can't just wait for polled events to come to us, we have to actively
2331 * find and complete them.
2332 */
2333 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2334 {
2335 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2336 return;
2337
2338 mutex_lock(&ctx->uring_lock);
2339 while (!list_empty(&ctx->iopoll_list)) {
2340 unsigned int nr_events = 0;
2341
2342 io_do_iopoll(ctx, &nr_events, 0);
2343
2344 /* let it sleep and repeat later if can't complete a request */
2345 if (nr_events == 0)
2346 break;
2347 /*
2348 * Ensure we allow local-to-the-cpu processing to take place,
2349 * in this case we need to ensure that we reap all events.
2350 * Also let task_work, etc. to progress by releasing the mutex
2351 */
2352 if (need_resched()) {
2353 mutex_unlock(&ctx->uring_lock);
2354 cond_resched();
2355 mutex_lock(&ctx->uring_lock);
2356 }
2357 }
2358 mutex_unlock(&ctx->uring_lock);
2359 }
2360
2361 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2362 {
2363 unsigned int nr_events = 0;
2364 int ret = 0;
2365
2366 /*
2367 * We disallow the app entering submit/complete with polling, but we
2368 * still need to lock the ring to prevent racing with polled issue
2369 * that got punted to a workqueue.
2370 */
2371 mutex_lock(&ctx->uring_lock);
2372 /*
2373 * Don't enter poll loop if we already have events pending.
2374 * If we do, we can potentially be spinning for commands that
2375 * already triggered a CQE (eg in error).
2376 */
2377 if (test_bit(0, &ctx->cq_check_overflow))
2378 __io_cqring_overflow_flush(ctx, false);
2379 if (io_cqring_events(ctx))
2380 goto out;
2381 do {
2382 /*
2383 * If a submit got punted to a workqueue, we can have the
2384 * application entering polling for a command before it gets
2385 * issued. That app will hold the uring_lock for the duration
2386 * of the poll right here, so we need to take a breather every
2387 * now and then to ensure that the issue has a chance to add
2388 * the poll to the issued list. Otherwise we can spin here
2389 * forever, while the workqueue is stuck trying to acquire the
2390 * very same mutex.
2391 */
2392 if (list_empty(&ctx->iopoll_list)) {
2393 mutex_unlock(&ctx->uring_lock);
2394 io_run_task_work();
2395 mutex_lock(&ctx->uring_lock);
2396
2397 if (list_empty(&ctx->iopoll_list))
2398 break;
2399 }
2400 ret = io_do_iopoll(ctx, &nr_events, min);
2401 } while (!ret && nr_events < min && !need_resched());
2402 out:
2403 mutex_unlock(&ctx->uring_lock);
2404 return ret;
2405 }
2406
2407 static void kiocb_end_write(struct io_kiocb *req)
2408 {
2409 /*
2410 * Tell lockdep we inherited freeze protection from submission
2411 * thread.
2412 */
2413 if (req->flags & REQ_F_ISREG) {
2414 struct super_block *sb = file_inode(req->file)->i_sb;
2415
2416 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2417 sb_end_write(sb);
2418 }
2419 }
2420
2421 #ifdef CONFIG_BLOCK
2422 static bool io_resubmit_prep(struct io_kiocb *req)
2423 {
2424 struct io_async_rw *rw = req->async_data;
2425
2426 if (!rw)
2427 return !io_req_prep_async(req);
2428 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2429 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2430 return true;
2431 }
2432
2433 static bool io_rw_should_reissue(struct io_kiocb *req)
2434 {
2435 umode_t mode = file_inode(req->file)->i_mode;
2436 struct io_ring_ctx *ctx = req->ctx;
2437
2438 if (!S_ISBLK(mode) && !S_ISREG(mode))
2439 return false;
2440 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2441 !(ctx->flags & IORING_SETUP_IOPOLL)))
2442 return false;
2443 /*
2444 * If ref is dying, we might be running poll reap from the exit work.
2445 * Don't attempt to reissue from that path, just let it fail with
2446 * -EAGAIN.
2447 */
2448 if (percpu_ref_is_dying(&ctx->refs))
2449 return false;
2450 return true;
2451 }
2452 #else
2453 static bool io_resubmit_prep(struct io_kiocb *req)
2454 {
2455 return false;
2456 }
2457 static bool io_rw_should_reissue(struct io_kiocb *req)
2458 {
2459 return false;
2460 }
2461 #endif
2462
2463 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2464 unsigned int issue_flags)
2465 {
2466 int cflags = 0;
2467
2468 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2469 kiocb_end_write(req);
2470 if (res != req->result) {
2471 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2472 io_rw_should_reissue(req)) {
2473 req->flags |= REQ_F_REISSUE;
2474 return;
2475 }
2476 req_set_fail_links(req);
2477 }
2478 if (req->flags & REQ_F_BUFFER_SELECTED)
2479 cflags = io_put_rw_kbuf(req);
2480 __io_req_complete(req, issue_flags, res, cflags);
2481 }
2482
2483 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2484 {
2485 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2486
2487 __io_complete_rw(req, res, res2, 0);
2488 }
2489
2490 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2491 {
2492 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2493
2494 if (kiocb->ki_flags & IOCB_WRITE)
2495 kiocb_end_write(req);
2496 if (unlikely(res != req->result)) {
2497 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2498 io_resubmit_prep(req))) {
2499 req_set_fail_links(req);
2500 req->flags |= REQ_F_DONT_REISSUE;
2501 }
2502 }
2503
2504 WRITE_ONCE(req->result, res);
2505 /* order with io_iopoll_complete() checking ->result */
2506 smp_wmb();
2507 WRITE_ONCE(req->iopoll_completed, 1);
2508 }
2509
2510 /*
2511 * After the iocb has been issued, it's safe to be found on the poll list.
2512 * Adding the kiocb to the list AFTER submission ensures that we don't
2513 * find it from a io_do_iopoll() thread before the issuer is done
2514 * accessing the kiocb cookie.
2515 */
2516 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2517 {
2518 struct io_ring_ctx *ctx = req->ctx;
2519
2520 /*
2521 * Track whether we have multiple files in our lists. This will impact
2522 * how we do polling eventually, not spinning if we're on potentially
2523 * different devices.
2524 */
2525 if (list_empty(&ctx->iopoll_list)) {
2526 ctx->poll_multi_file = false;
2527 } else if (!ctx->poll_multi_file) {
2528 struct io_kiocb *list_req;
2529
2530 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2531 inflight_entry);
2532 if (list_req->file != req->file)
2533 ctx->poll_multi_file = true;
2534 }
2535
2536 /*
2537 * For fast devices, IO may have already completed. If it has, add
2538 * it to the front so we find it first.
2539 */
2540 if (READ_ONCE(req->iopoll_completed))
2541 list_add(&req->inflight_entry, &ctx->iopoll_list);
2542 else
2543 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2544
2545 /*
2546 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2547 * task context or in io worker task context. If current task context is
2548 * sq thread, we don't need to check whether should wake up sq thread.
2549 */
2550 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2551 wq_has_sleeper(&ctx->sq_data->wait))
2552 wake_up(&ctx->sq_data->wait);
2553 }
2554
2555 static inline void io_state_file_put(struct io_submit_state *state)
2556 {
2557 if (state->file_refs) {
2558 fput_many(state->file, state->file_refs);
2559 state->file_refs = 0;
2560 }
2561 }
2562
2563 /*
2564 * Get as many references to a file as we have IOs left in this submission,
2565 * assuming most submissions are for one file, or at least that each file
2566 * has more than one submission.
2567 */
2568 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2569 {
2570 if (!state)
2571 return fget(fd);
2572
2573 if (state->file_refs) {
2574 if (state->fd == fd) {
2575 state->file_refs--;
2576 return state->file;
2577 }
2578 io_state_file_put(state);
2579 }
2580 state->file = fget_many(fd, state->ios_left);
2581 if (unlikely(!state->file))
2582 return NULL;
2583
2584 state->fd = fd;
2585 state->file_refs = state->ios_left - 1;
2586 return state->file;
2587 }
2588
2589 static bool io_bdev_nowait(struct block_device *bdev)
2590 {
2591 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2592 }
2593
2594 /*
2595 * If we tracked the file through the SCM inflight mechanism, we could support
2596 * any file. For now, just ensure that anything potentially problematic is done
2597 * inline.
2598 */
2599 static bool __io_file_supports_async(struct file *file, int rw)
2600 {
2601 umode_t mode = file_inode(file)->i_mode;
2602
2603 if (S_ISBLK(mode)) {
2604 if (IS_ENABLED(CONFIG_BLOCK) &&
2605 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2606 return true;
2607 return false;
2608 }
2609 if (S_ISCHR(mode) || S_ISSOCK(mode))
2610 return true;
2611 if (S_ISREG(mode)) {
2612 if (IS_ENABLED(CONFIG_BLOCK) &&
2613 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2614 file->f_op != &io_uring_fops)
2615 return true;
2616 return false;
2617 }
2618
2619 /* any ->read/write should understand O_NONBLOCK */
2620 if (file->f_flags & O_NONBLOCK)
2621 return true;
2622
2623 if (!(file->f_mode & FMODE_NOWAIT))
2624 return false;
2625
2626 if (rw == READ)
2627 return file->f_op->read_iter != NULL;
2628
2629 return file->f_op->write_iter != NULL;
2630 }
2631
2632 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2633 {
2634 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2635 return true;
2636 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2637 return true;
2638
2639 return __io_file_supports_async(req->file, rw);
2640 }
2641
2642 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2643 {
2644 struct io_ring_ctx *ctx = req->ctx;
2645 struct kiocb *kiocb = &req->rw.kiocb;
2646 struct file *file = req->file;
2647 unsigned ioprio;
2648 int ret;
2649
2650 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2651 req->flags |= REQ_F_ISREG;
2652
2653 kiocb->ki_pos = READ_ONCE(sqe->off);
2654 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2655 req->flags |= REQ_F_CUR_POS;
2656 kiocb->ki_pos = file->f_pos;
2657 }
2658 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2659 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2660 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2661 if (unlikely(ret))
2662 return ret;
2663
2664 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2665 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2666 req->flags |= REQ_F_NOWAIT;
2667
2668 ioprio = READ_ONCE(sqe->ioprio);
2669 if (ioprio) {
2670 ret = ioprio_check_cap(ioprio);
2671 if (ret)
2672 return ret;
2673
2674 kiocb->ki_ioprio = ioprio;
2675 } else
2676 kiocb->ki_ioprio = get_current_ioprio();
2677
2678 if (ctx->flags & IORING_SETUP_IOPOLL) {
2679 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2680 !kiocb->ki_filp->f_op->iopoll)
2681 return -EOPNOTSUPP;
2682
2683 kiocb->ki_flags |= IOCB_HIPRI;
2684 kiocb->ki_complete = io_complete_rw_iopoll;
2685 req->iopoll_completed = 0;
2686 } else {
2687 if (kiocb->ki_flags & IOCB_HIPRI)
2688 return -EINVAL;
2689 kiocb->ki_complete = io_complete_rw;
2690 }
2691
2692 if (req->opcode == IORING_OP_READ_FIXED ||
2693 req->opcode == IORING_OP_WRITE_FIXED) {
2694 req->imu = NULL;
2695 io_req_set_rsrc_node(req);
2696 }
2697
2698 req->rw.addr = READ_ONCE(sqe->addr);
2699 req->rw.len = READ_ONCE(sqe->len);
2700 req->buf_index = READ_ONCE(sqe->buf_index);
2701 return 0;
2702 }
2703
2704 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2705 {
2706 switch (ret) {
2707 case -EIOCBQUEUED:
2708 break;
2709 case -ERESTARTSYS:
2710 case -ERESTARTNOINTR:
2711 case -ERESTARTNOHAND:
2712 case -ERESTART_RESTARTBLOCK:
2713 /*
2714 * We can't just restart the syscall, since previously
2715 * submitted sqes may already be in progress. Just fail this
2716 * IO with EINTR.
2717 */
2718 ret = -EINTR;
2719 fallthrough;
2720 default:
2721 kiocb->ki_complete(kiocb, ret, 0);
2722 }
2723 }
2724
2725 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2726 unsigned int issue_flags)
2727 {
2728 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2729 struct io_async_rw *io = req->async_data;
2730 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2731
2732 /* add previously done IO, if any */
2733 if (io && io->bytes_done > 0) {
2734 if (ret < 0)
2735 ret = io->bytes_done;
2736 else
2737 ret += io->bytes_done;
2738 }
2739
2740 if (req->flags & REQ_F_CUR_POS)
2741 req->file->f_pos = kiocb->ki_pos;
2742 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2743 __io_complete_rw(req, ret, 0, issue_flags);
2744 else
2745 io_rw_done(kiocb, ret);
2746
2747 if (check_reissue && req->flags & REQ_F_REISSUE) {
2748 req->flags &= ~REQ_F_REISSUE;
2749 if (io_resubmit_prep(req)) {
2750 req_ref_get(req);
2751 io_queue_async_work(req);
2752 } else {
2753 int cflags = 0;
2754
2755 req_set_fail_links(req);
2756 if (req->flags & REQ_F_BUFFER_SELECTED)
2757 cflags = io_put_rw_kbuf(req);
2758 __io_req_complete(req, issue_flags, ret, cflags);
2759 }
2760 }
2761 }
2762
2763 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2764 struct io_mapped_ubuf *imu)
2765 {
2766 size_t len = req->rw.len;
2767 u64 buf_end, buf_addr = req->rw.addr;
2768 size_t offset;
2769
2770 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2771 return -EFAULT;
2772 /* not inside the mapped region */
2773 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2774 return -EFAULT;
2775
2776 /*
2777 * May not be a start of buffer, set size appropriately
2778 * and advance us to the beginning.
2779 */
2780 offset = buf_addr - imu->ubuf;
2781 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2782
2783 if (offset) {
2784 /*
2785 * Don't use iov_iter_advance() here, as it's really slow for
2786 * using the latter parts of a big fixed buffer - it iterates
2787 * over each segment manually. We can cheat a bit here, because
2788 * we know that:
2789 *
2790 * 1) it's a BVEC iter, we set it up
2791 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2792 * first and last bvec
2793 *
2794 * So just find our index, and adjust the iterator afterwards.
2795 * If the offset is within the first bvec (or the whole first
2796 * bvec, just use iov_iter_advance(). This makes it easier
2797 * since we can just skip the first segment, which may not
2798 * be PAGE_SIZE aligned.
2799 */
2800 const struct bio_vec *bvec = imu->bvec;
2801
2802 if (offset <= bvec->bv_len) {
2803 iov_iter_advance(iter, offset);
2804 } else {
2805 unsigned long seg_skip;
2806
2807 /* skip first vec */
2808 offset -= bvec->bv_len;
2809 seg_skip = 1 + (offset >> PAGE_SHIFT);
2810
2811 iter->bvec = bvec + seg_skip;
2812 iter->nr_segs -= seg_skip;
2813 iter->count -= bvec->bv_len + offset;
2814 iter->iov_offset = offset & ~PAGE_MASK;
2815 }
2816 }
2817
2818 return 0;
2819 }
2820
2821 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2822 {
2823 struct io_ring_ctx *ctx = req->ctx;
2824 struct io_mapped_ubuf *imu = req->imu;
2825 u16 index, buf_index = req->buf_index;
2826
2827 if (likely(!imu)) {
2828 if (unlikely(buf_index >= ctx->nr_user_bufs))
2829 return -EFAULT;
2830 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2831 imu = READ_ONCE(ctx->user_bufs[index]);
2832 req->imu = imu;
2833 }
2834 return __io_import_fixed(req, rw, iter, imu);
2835 }
2836
2837 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2838 {
2839 if (needs_lock)
2840 mutex_unlock(&ctx->uring_lock);
2841 }
2842
2843 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2844 {
2845 /*
2846 * "Normal" inline submissions always hold the uring_lock, since we
2847 * grab it from the system call. Same is true for the SQPOLL offload.
2848 * The only exception is when we've detached the request and issue it
2849 * from an async worker thread, grab the lock for that case.
2850 */
2851 if (needs_lock)
2852 mutex_lock(&ctx->uring_lock);
2853 }
2854
2855 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2856 int bgid, struct io_buffer *kbuf,
2857 bool needs_lock)
2858 {
2859 struct io_buffer *head;
2860
2861 if (req->flags & REQ_F_BUFFER_SELECTED)
2862 return kbuf;
2863
2864 io_ring_submit_lock(req->ctx, needs_lock);
2865
2866 lockdep_assert_held(&req->ctx->uring_lock);
2867
2868 head = xa_load(&req->ctx->io_buffers, bgid);
2869 if (head) {
2870 if (!list_empty(&head->list)) {
2871 kbuf = list_last_entry(&head->list, struct io_buffer,
2872 list);
2873 list_del(&kbuf->list);
2874 } else {
2875 kbuf = head;
2876 xa_erase(&req->ctx->io_buffers, bgid);
2877 }
2878 if (*len > kbuf->len)
2879 *len = kbuf->len;
2880 } else {
2881 kbuf = ERR_PTR(-ENOBUFS);
2882 }
2883
2884 io_ring_submit_unlock(req->ctx, needs_lock);
2885
2886 return kbuf;
2887 }
2888
2889 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2890 bool needs_lock)
2891 {
2892 struct io_buffer *kbuf;
2893 u16 bgid;
2894
2895 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2896 bgid = req->buf_index;
2897 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2898 if (IS_ERR(kbuf))
2899 return kbuf;
2900 req->rw.addr = (u64) (unsigned long) kbuf;
2901 req->flags |= REQ_F_BUFFER_SELECTED;
2902 return u64_to_user_ptr(kbuf->addr);
2903 }
2904
2905 #ifdef CONFIG_COMPAT
2906 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2907 bool needs_lock)
2908 {
2909 struct compat_iovec __user *uiov;
2910 compat_ssize_t clen;
2911 void __user *buf;
2912 ssize_t len;
2913
2914 uiov = u64_to_user_ptr(req->rw.addr);
2915 if (!access_ok(uiov, sizeof(*uiov)))
2916 return -EFAULT;
2917 if (__get_user(clen, &uiov->iov_len))
2918 return -EFAULT;
2919 if (clen < 0)
2920 return -EINVAL;
2921
2922 len = clen;
2923 buf = io_rw_buffer_select(req, &len, needs_lock);
2924 if (IS_ERR(buf))
2925 return PTR_ERR(buf);
2926 iov[0].iov_base = buf;
2927 iov[0].iov_len = (compat_size_t) len;
2928 return 0;
2929 }
2930 #endif
2931
2932 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2933 bool needs_lock)
2934 {
2935 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2936 void __user *buf;
2937 ssize_t len;
2938
2939 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2940 return -EFAULT;
2941
2942 len = iov[0].iov_len;
2943 if (len < 0)
2944 return -EINVAL;
2945 buf = io_rw_buffer_select(req, &len, needs_lock);
2946 if (IS_ERR(buf))
2947 return PTR_ERR(buf);
2948 iov[0].iov_base = buf;
2949 iov[0].iov_len = len;
2950 return 0;
2951 }
2952
2953 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2954 bool needs_lock)
2955 {
2956 if (req->flags & REQ_F_BUFFER_SELECTED) {
2957 struct io_buffer *kbuf;
2958
2959 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2960 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2961 iov[0].iov_len = kbuf->len;
2962 return 0;
2963 }
2964 if (req->rw.len != 1)
2965 return -EINVAL;
2966
2967 #ifdef CONFIG_COMPAT
2968 if (req->ctx->compat)
2969 return io_compat_import(req, iov, needs_lock);
2970 #endif
2971
2972 return __io_iov_buffer_select(req, iov, needs_lock);
2973 }
2974
2975 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2976 struct iov_iter *iter, bool needs_lock)
2977 {
2978 void __user *buf = u64_to_user_ptr(req->rw.addr);
2979 size_t sqe_len = req->rw.len;
2980 u8 opcode = req->opcode;
2981 ssize_t ret;
2982
2983 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2984 *iovec = NULL;
2985 return io_import_fixed(req, rw, iter);
2986 }
2987
2988 /* buffer index only valid with fixed read/write, or buffer select */
2989 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2990 return -EINVAL;
2991
2992 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2993 if (req->flags & REQ_F_BUFFER_SELECT) {
2994 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2995 if (IS_ERR(buf))
2996 return PTR_ERR(buf);
2997 req->rw.len = sqe_len;
2998 }
2999
3000 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3001 *iovec = NULL;
3002 return ret;
3003 }
3004
3005 if (req->flags & REQ_F_BUFFER_SELECT) {
3006 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3007 if (!ret)
3008 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3009 *iovec = NULL;
3010 return ret;
3011 }
3012
3013 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3014 req->ctx->compat);
3015 }
3016
3017 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3018 {
3019 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3020 }
3021
3022 /*
3023 * For files that don't have ->read_iter() and ->write_iter(), handle them
3024 * by looping over ->read() or ->write() manually.
3025 */
3026 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3027 {
3028 struct kiocb *kiocb = &req->rw.kiocb;
3029 struct file *file = req->file;
3030 ssize_t ret = 0;
3031
3032 /*
3033 * Don't support polled IO through this interface, and we can't
3034 * support non-blocking either. For the latter, this just causes
3035 * the kiocb to be handled from an async context.
3036 */
3037 if (kiocb->ki_flags & IOCB_HIPRI)
3038 return -EOPNOTSUPP;
3039 if (kiocb->ki_flags & IOCB_NOWAIT)
3040 return -EAGAIN;
3041
3042 while (iov_iter_count(iter)) {
3043 struct iovec iovec;
3044 ssize_t nr;
3045
3046 if (!iov_iter_is_bvec(iter)) {
3047 iovec = iov_iter_iovec(iter);
3048 } else {
3049 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3050 iovec.iov_len = req->rw.len;
3051 }
3052
3053 if (rw == READ) {
3054 nr = file->f_op->read(file, iovec.iov_base,
3055 iovec.iov_len, io_kiocb_ppos(kiocb));
3056 } else {
3057 nr = file->f_op->write(file, iovec.iov_base,
3058 iovec.iov_len, io_kiocb_ppos(kiocb));
3059 }
3060
3061 if (nr < 0) {
3062 if (!ret)
3063 ret = nr;
3064 break;
3065 }
3066 ret += nr;
3067 if (nr != iovec.iov_len)
3068 break;
3069 req->rw.len -= nr;
3070 req->rw.addr += nr;
3071 iov_iter_advance(iter, nr);
3072 }
3073
3074 return ret;
3075 }
3076
3077 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3078 const struct iovec *fast_iov, struct iov_iter *iter)
3079 {
3080 struct io_async_rw *rw = req->async_data;
3081
3082 memcpy(&rw->iter, iter, sizeof(*iter));
3083 rw->free_iovec = iovec;
3084 rw->bytes_done = 0;
3085 /* can only be fixed buffers, no need to do anything */
3086 if (iov_iter_is_bvec(iter))
3087 return;
3088 if (!iovec) {
3089 unsigned iov_off = 0;
3090
3091 rw->iter.iov = rw->fast_iov;
3092 if (iter->iov != fast_iov) {
3093 iov_off = iter->iov - fast_iov;
3094 rw->iter.iov += iov_off;
3095 }
3096 if (rw->fast_iov != fast_iov)
3097 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3098 sizeof(struct iovec) * iter->nr_segs);
3099 } else {
3100 req->flags |= REQ_F_NEED_CLEANUP;
3101 }
3102 }
3103
3104 static inline int io_alloc_async_data(struct io_kiocb *req)
3105 {
3106 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3107 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3108 return req->async_data == NULL;
3109 }
3110
3111 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3112 const struct iovec *fast_iov,
3113 struct iov_iter *iter, bool force)
3114 {
3115 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3116 return 0;
3117 if (!req->async_data) {
3118 if (io_alloc_async_data(req)) {
3119 kfree(iovec);
3120 return -ENOMEM;
3121 }
3122
3123 io_req_map_rw(req, iovec, fast_iov, iter);
3124 }
3125 return 0;
3126 }
3127
3128 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3129 {
3130 struct io_async_rw *iorw = req->async_data;
3131 struct iovec *iov = iorw->fast_iov;
3132 int ret;
3133
3134 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3135 if (unlikely(ret < 0))
3136 return ret;
3137
3138 iorw->bytes_done = 0;
3139 iorw->free_iovec = iov;
3140 if (iov)
3141 req->flags |= REQ_F_NEED_CLEANUP;
3142 return 0;
3143 }
3144
3145 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3146 {
3147 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3148 return -EBADF;
3149 return io_prep_rw(req, sqe);
3150 }
3151
3152 /*
3153 * This is our waitqueue callback handler, registered through lock_page_async()
3154 * when we initially tried to do the IO with the iocb armed our waitqueue.
3155 * This gets called when the page is unlocked, and we generally expect that to
3156 * happen when the page IO is completed and the page is now uptodate. This will
3157 * queue a task_work based retry of the operation, attempting to copy the data
3158 * again. If the latter fails because the page was NOT uptodate, then we will
3159 * do a thread based blocking retry of the operation. That's the unexpected
3160 * slow path.
3161 */
3162 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3163 int sync, void *arg)
3164 {
3165 struct wait_page_queue *wpq;
3166 struct io_kiocb *req = wait->private;
3167 struct wait_page_key *key = arg;
3168
3169 wpq = container_of(wait, struct wait_page_queue, wait);
3170
3171 if (!wake_page_match(wpq, key))
3172 return 0;
3173
3174 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3175 list_del_init(&wait->entry);
3176
3177 /* submit ref gets dropped, acquire a new one */
3178 req_ref_get(req);
3179 io_req_task_queue(req);
3180 return 1;
3181 }
3182
3183 /*
3184 * This controls whether a given IO request should be armed for async page
3185 * based retry. If we return false here, the request is handed to the async
3186 * worker threads for retry. If we're doing buffered reads on a regular file,
3187 * we prepare a private wait_page_queue entry and retry the operation. This
3188 * will either succeed because the page is now uptodate and unlocked, or it
3189 * will register a callback when the page is unlocked at IO completion. Through
3190 * that callback, io_uring uses task_work to setup a retry of the operation.
3191 * That retry will attempt the buffered read again. The retry will generally
3192 * succeed, or in rare cases where it fails, we then fall back to using the
3193 * async worker threads for a blocking retry.
3194 */
3195 static bool io_rw_should_retry(struct io_kiocb *req)
3196 {
3197 struct io_async_rw *rw = req->async_data;
3198 struct wait_page_queue *wait = &rw->wpq;
3199 struct kiocb *kiocb = &req->rw.kiocb;
3200
3201 /* never retry for NOWAIT, we just complete with -EAGAIN */
3202 if (req->flags & REQ_F_NOWAIT)
3203 return false;
3204
3205 /* Only for buffered IO */
3206 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3207 return false;
3208
3209 /*
3210 * just use poll if we can, and don't attempt if the fs doesn't
3211 * support callback based unlocks
3212 */
3213 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3214 return false;
3215
3216 wait->wait.func = io_async_buf_func;
3217 wait->wait.private = req;
3218 wait->wait.flags = 0;
3219 INIT_LIST_HEAD(&wait->wait.entry);
3220 kiocb->ki_flags |= IOCB_WAITQ;
3221 kiocb->ki_flags &= ~IOCB_NOWAIT;
3222 kiocb->ki_waitq = wait;
3223 return true;
3224 }
3225
3226 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3227 {
3228 if (req->file->f_op->read_iter)
3229 return call_read_iter(req->file, &req->rw.kiocb, iter);
3230 else if (req->file->f_op->read)
3231 return loop_rw_iter(READ, req, iter);
3232 else
3233 return -EINVAL;
3234 }
3235
3236 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3237 {
3238 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3239 struct kiocb *kiocb = &req->rw.kiocb;
3240 struct iov_iter __iter, *iter = &__iter;
3241 struct io_async_rw *rw = req->async_data;
3242 ssize_t io_size, ret, ret2;
3243 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3244
3245 if (rw) {
3246 iter = &rw->iter;
3247 iovec = NULL;
3248 } else {
3249 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3250 if (ret < 0)
3251 return ret;
3252 }
3253 io_size = iov_iter_count(iter);
3254 req->result = io_size;
3255
3256 /* Ensure we clear previously set non-block flag */
3257 if (!force_nonblock)
3258 kiocb->ki_flags &= ~IOCB_NOWAIT;
3259 else
3260 kiocb->ki_flags |= IOCB_NOWAIT;
3261
3262 /* If the file doesn't support async, just async punt */
3263 if (force_nonblock && !io_file_supports_async(req, READ)) {
3264 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3265 return ret ?: -EAGAIN;
3266 }
3267
3268 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3269 if (unlikely(ret)) {
3270 kfree(iovec);
3271 return ret;
3272 }
3273
3274 ret = io_iter_do_read(req, iter);
3275
3276 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3277 req->flags &= ~REQ_F_REISSUE;
3278 /* IOPOLL retry should happen for io-wq threads */
3279 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3280 goto done;
3281 /* no retry on NONBLOCK nor RWF_NOWAIT */
3282 if (req->flags & REQ_F_NOWAIT)
3283 goto done;
3284 /* some cases will consume bytes even on error returns */
3285 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3286 ret = 0;
3287 } else if (ret == -EIOCBQUEUED) {
3288 goto out_free;
3289 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3290 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3291 /* read all, failed, already did sync or don't want to retry */
3292 goto done;
3293 }
3294
3295 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3296 if (ret2)
3297 return ret2;
3298
3299 iovec = NULL;
3300 rw = req->async_data;
3301 /* now use our persistent iterator, if we aren't already */
3302 iter = &rw->iter;
3303
3304 do {
3305 io_size -= ret;
3306 rw->bytes_done += ret;
3307 /* if we can retry, do so with the callbacks armed */
3308 if (!io_rw_should_retry(req)) {
3309 kiocb->ki_flags &= ~IOCB_WAITQ;
3310 return -EAGAIN;
3311 }
3312
3313 /*
3314 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3315 * we get -EIOCBQUEUED, then we'll get a notification when the
3316 * desired page gets unlocked. We can also get a partial read
3317 * here, and if we do, then just retry at the new offset.
3318 */
3319 ret = io_iter_do_read(req, iter);
3320 if (ret == -EIOCBQUEUED)
3321 return 0;
3322 /* we got some bytes, but not all. retry. */
3323 kiocb->ki_flags &= ~IOCB_WAITQ;
3324 } while (ret > 0 && ret < io_size);
3325 done:
3326 kiocb_done(kiocb, ret, issue_flags);
3327 out_free:
3328 /* it's faster to check here then delegate to kfree */
3329 if (iovec)
3330 kfree(iovec);
3331 return 0;
3332 }
3333
3334 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3335 {
3336 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3337 return -EBADF;
3338 return io_prep_rw(req, sqe);
3339 }
3340
3341 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3342 {
3343 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3344 struct kiocb *kiocb = &req->rw.kiocb;
3345 struct iov_iter __iter, *iter = &__iter;
3346 struct io_async_rw *rw = req->async_data;
3347 ssize_t ret, ret2, io_size;
3348 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3349
3350 if (rw) {
3351 iter = &rw->iter;
3352 iovec = NULL;
3353 } else {
3354 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3355 if (ret < 0)
3356 return ret;
3357 }
3358 io_size = iov_iter_count(iter);
3359 req->result = io_size;
3360
3361 /* Ensure we clear previously set non-block flag */
3362 if (!force_nonblock)
3363 kiocb->ki_flags &= ~IOCB_NOWAIT;
3364 else
3365 kiocb->ki_flags |= IOCB_NOWAIT;
3366
3367 /* If the file doesn't support async, just async punt */
3368 if (force_nonblock && !io_file_supports_async(req, WRITE))
3369 goto copy_iov;
3370
3371 /* file path doesn't support NOWAIT for non-direct_IO */
3372 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3373 (req->flags & REQ_F_ISREG))
3374 goto copy_iov;
3375
3376 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3377 if (unlikely(ret))
3378 goto out_free;
3379
3380 /*
3381 * Open-code file_start_write here to grab freeze protection,
3382 * which will be released by another thread in
3383 * io_complete_rw(). Fool lockdep by telling it the lock got
3384 * released so that it doesn't complain about the held lock when
3385 * we return to userspace.
3386 */
3387 if (req->flags & REQ_F_ISREG) {
3388 sb_start_write(file_inode(req->file)->i_sb);
3389 __sb_writers_release(file_inode(req->file)->i_sb,
3390 SB_FREEZE_WRITE);
3391 }
3392 kiocb->ki_flags |= IOCB_WRITE;
3393
3394 if (req->file->f_op->write_iter)
3395 ret2 = call_write_iter(req->file, kiocb, iter);
3396 else if (req->file->f_op->write)
3397 ret2 = loop_rw_iter(WRITE, req, iter);
3398 else
3399 ret2 = -EINVAL;
3400
3401 if (req->flags & REQ_F_REISSUE) {
3402 req->flags &= ~REQ_F_REISSUE;
3403 ret2 = -EAGAIN;
3404 }
3405
3406 /*
3407 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3408 * retry them without IOCB_NOWAIT.
3409 */
3410 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3411 ret2 = -EAGAIN;
3412 /* no retry on NONBLOCK nor RWF_NOWAIT */
3413 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3414 goto done;
3415 if (!force_nonblock || ret2 != -EAGAIN) {
3416 /* IOPOLL retry should happen for io-wq threads */
3417 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3418 goto copy_iov;
3419 done:
3420 kiocb_done(kiocb, ret2, issue_flags);
3421 } else {
3422 copy_iov:
3423 /* some cases will consume bytes even on error returns */
3424 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3425 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3426 return ret ?: -EAGAIN;
3427 }
3428 out_free:
3429 /* it's reportedly faster than delegating the null check to kfree() */
3430 if (iovec)
3431 kfree(iovec);
3432 return ret;
3433 }
3434
3435 static int io_renameat_prep(struct io_kiocb *req,
3436 const struct io_uring_sqe *sqe)
3437 {
3438 struct io_rename *ren = &req->rename;
3439 const char __user *oldf, *newf;
3440
3441 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3442 return -EBADF;
3443
3444 ren->old_dfd = READ_ONCE(sqe->fd);
3445 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3446 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3447 ren->new_dfd = READ_ONCE(sqe->len);
3448 ren->flags = READ_ONCE(sqe->rename_flags);
3449
3450 ren->oldpath = getname(oldf);
3451 if (IS_ERR(ren->oldpath))
3452 return PTR_ERR(ren->oldpath);
3453
3454 ren->newpath = getname(newf);
3455 if (IS_ERR(ren->newpath)) {
3456 putname(ren->oldpath);
3457 return PTR_ERR(ren->newpath);
3458 }
3459
3460 req->flags |= REQ_F_NEED_CLEANUP;
3461 return 0;
3462 }
3463
3464 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3465 {
3466 struct io_rename *ren = &req->rename;
3467 int ret;
3468
3469 if (issue_flags & IO_URING_F_NONBLOCK)
3470 return -EAGAIN;
3471
3472 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3473 ren->newpath, ren->flags);
3474
3475 req->flags &= ~REQ_F_NEED_CLEANUP;
3476 if (ret < 0)
3477 req_set_fail_links(req);
3478 io_req_complete(req, ret);
3479 return 0;
3480 }
3481
3482 static int io_unlinkat_prep(struct io_kiocb *req,
3483 const struct io_uring_sqe *sqe)
3484 {
3485 struct io_unlink *un = &req->unlink;
3486 const char __user *fname;
3487
3488 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3489 return -EBADF;
3490
3491 un->dfd = READ_ONCE(sqe->fd);
3492
3493 un->flags = READ_ONCE(sqe->unlink_flags);
3494 if (un->flags & ~AT_REMOVEDIR)
3495 return -EINVAL;
3496
3497 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3498 un->filename = getname(fname);
3499 if (IS_ERR(un->filename))
3500 return PTR_ERR(un->filename);
3501
3502 req->flags |= REQ_F_NEED_CLEANUP;
3503 return 0;
3504 }
3505
3506 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3507 {
3508 struct io_unlink *un = &req->unlink;
3509 int ret;
3510
3511 if (issue_flags & IO_URING_F_NONBLOCK)
3512 return -EAGAIN;
3513
3514 if (un->flags & AT_REMOVEDIR)
3515 ret = do_rmdir(un->dfd, un->filename);
3516 else
3517 ret = do_unlinkat(un->dfd, un->filename);
3518
3519 req->flags &= ~REQ_F_NEED_CLEANUP;
3520 if (ret < 0)
3521 req_set_fail_links(req);
3522 io_req_complete(req, ret);
3523 return 0;
3524 }
3525
3526 static int io_shutdown_prep(struct io_kiocb *req,
3527 const struct io_uring_sqe *sqe)
3528 {
3529 #if defined(CONFIG_NET)
3530 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3531 return -EINVAL;
3532 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3533 sqe->buf_index)
3534 return -EINVAL;
3535
3536 req->shutdown.how = READ_ONCE(sqe->len);
3537 return 0;
3538 #else
3539 return -EOPNOTSUPP;
3540 #endif
3541 }
3542
3543 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3544 {
3545 #if defined(CONFIG_NET)
3546 struct socket *sock;
3547 int ret;
3548
3549 if (issue_flags & IO_URING_F_NONBLOCK)
3550 return -EAGAIN;
3551
3552 sock = sock_from_file(req->file);
3553 if (unlikely(!sock))
3554 return -ENOTSOCK;
3555
3556 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3557 if (ret < 0)
3558 req_set_fail_links(req);
3559 io_req_complete(req, ret);
3560 return 0;
3561 #else
3562 return -EOPNOTSUPP;
3563 #endif
3564 }
3565
3566 static int __io_splice_prep(struct io_kiocb *req,
3567 const struct io_uring_sqe *sqe)
3568 {
3569 struct io_splice* sp = &req->splice;
3570 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3571
3572 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3573 return -EINVAL;
3574
3575 sp->file_in = NULL;
3576 sp->len = READ_ONCE(sqe->len);
3577 sp->flags = READ_ONCE(sqe->splice_flags);
3578
3579 if (unlikely(sp->flags & ~valid_flags))
3580 return -EINVAL;
3581
3582 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3583 (sp->flags & SPLICE_F_FD_IN_FIXED));
3584 if (!sp->file_in)
3585 return -EBADF;
3586 req->flags |= REQ_F_NEED_CLEANUP;
3587 return 0;
3588 }
3589
3590 static int io_tee_prep(struct io_kiocb *req,
3591 const struct io_uring_sqe *sqe)
3592 {
3593 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3594 return -EINVAL;
3595 return __io_splice_prep(req, sqe);
3596 }
3597
3598 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3599 {
3600 struct io_splice *sp = &req->splice;
3601 struct file *in = sp->file_in;
3602 struct file *out = sp->file_out;
3603 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3604 long ret = 0;
3605
3606 if (issue_flags & IO_URING_F_NONBLOCK)
3607 return -EAGAIN;
3608 if (sp->len)
3609 ret = do_tee(in, out, sp->len, flags);
3610
3611 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3612 io_put_file(in);
3613 req->flags &= ~REQ_F_NEED_CLEANUP;
3614
3615 if (ret != sp->len)
3616 req_set_fail_links(req);
3617 io_req_complete(req, ret);
3618 return 0;
3619 }
3620
3621 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3622 {
3623 struct io_splice* sp = &req->splice;
3624
3625 sp->off_in = READ_ONCE(sqe->splice_off_in);
3626 sp->off_out = READ_ONCE(sqe->off);
3627 return __io_splice_prep(req, sqe);
3628 }
3629
3630 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3631 {
3632 struct io_splice *sp = &req->splice;
3633 struct file *in = sp->file_in;
3634 struct file *out = sp->file_out;
3635 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3636 loff_t *poff_in, *poff_out;
3637 long ret = 0;
3638
3639 if (issue_flags & IO_URING_F_NONBLOCK)
3640 return -EAGAIN;
3641
3642 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3643 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3644
3645 if (sp->len)
3646 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3647
3648 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3649 io_put_file(in);
3650 req->flags &= ~REQ_F_NEED_CLEANUP;
3651
3652 if (ret != sp->len)
3653 req_set_fail_links(req);
3654 io_req_complete(req, ret);
3655 return 0;
3656 }
3657
3658 /*
3659 * IORING_OP_NOP just posts a completion event, nothing else.
3660 */
3661 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3662 {
3663 struct io_ring_ctx *ctx = req->ctx;
3664
3665 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3666 return -EINVAL;
3667
3668 __io_req_complete(req, issue_flags, 0, 0);
3669 return 0;
3670 }
3671
3672 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3673 {
3674 struct io_ring_ctx *ctx = req->ctx;
3675
3676 if (!req->file)
3677 return -EBADF;
3678
3679 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3680 return -EINVAL;
3681 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3682 return -EINVAL;
3683
3684 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3685 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3686 return -EINVAL;
3687
3688 req->sync.off = READ_ONCE(sqe->off);
3689 req->sync.len = READ_ONCE(sqe->len);
3690 return 0;
3691 }
3692
3693 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3694 {
3695 loff_t end = req->sync.off + req->sync.len;
3696 int ret;
3697
3698 /* fsync always requires a blocking context */
3699 if (issue_flags & IO_URING_F_NONBLOCK)
3700 return -EAGAIN;
3701
3702 ret = vfs_fsync_range(req->file, req->sync.off,
3703 end > 0 ? end : LLONG_MAX,
3704 req->sync.flags & IORING_FSYNC_DATASYNC);
3705 if (ret < 0)
3706 req_set_fail_links(req);
3707 io_req_complete(req, ret);
3708 return 0;
3709 }
3710
3711 static int io_fallocate_prep(struct io_kiocb *req,
3712 const struct io_uring_sqe *sqe)
3713 {
3714 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3715 return -EINVAL;
3716 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3717 return -EINVAL;
3718
3719 req->sync.off = READ_ONCE(sqe->off);
3720 req->sync.len = READ_ONCE(sqe->addr);
3721 req->sync.mode = READ_ONCE(sqe->len);
3722 return 0;
3723 }
3724
3725 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3726 {
3727 int ret;
3728
3729 /* fallocate always requiring blocking context */
3730 if (issue_flags & IO_URING_F_NONBLOCK)
3731 return -EAGAIN;
3732 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3733 req->sync.len);
3734 if (ret < 0)
3735 req_set_fail_links(req);
3736 io_req_complete(req, ret);
3737 return 0;
3738 }
3739
3740 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3741 {
3742 const char __user *fname;
3743 int ret;
3744
3745 if (unlikely(sqe->ioprio || sqe->buf_index))
3746 return -EINVAL;
3747 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3748 return -EBADF;
3749
3750 /* open.how should be already initialised */
3751 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3752 req->open.how.flags |= O_LARGEFILE;
3753
3754 req->open.dfd = READ_ONCE(sqe->fd);
3755 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3756 req->open.filename = getname(fname);
3757 if (IS_ERR(req->open.filename)) {
3758 ret = PTR_ERR(req->open.filename);
3759 req->open.filename = NULL;
3760 return ret;
3761 }
3762 req->open.nofile = rlimit(RLIMIT_NOFILE);
3763 req->flags |= REQ_F_NEED_CLEANUP;
3764 return 0;
3765 }
3766
3767 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3768 {
3769 u64 flags, mode;
3770
3771 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3772 return -EINVAL;
3773 mode = READ_ONCE(sqe->len);
3774 flags = READ_ONCE(sqe->open_flags);
3775 req->open.how = build_open_how(flags, mode);
3776 return __io_openat_prep(req, sqe);
3777 }
3778
3779 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3780 {
3781 struct open_how __user *how;
3782 size_t len;
3783 int ret;
3784
3785 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3786 return -EINVAL;
3787 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3788 len = READ_ONCE(sqe->len);
3789 if (len < OPEN_HOW_SIZE_VER0)
3790 return -EINVAL;
3791
3792 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3793 len);
3794 if (ret)
3795 return ret;
3796
3797 return __io_openat_prep(req, sqe);
3798 }
3799
3800 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3801 {
3802 struct open_flags op;
3803 struct file *file;
3804 bool nonblock_set;
3805 bool resolve_nonblock;
3806 int ret;
3807
3808 ret = build_open_flags(&req->open.how, &op);
3809 if (ret)
3810 goto err;
3811 nonblock_set = op.open_flag & O_NONBLOCK;
3812 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3813 if (issue_flags & IO_URING_F_NONBLOCK) {
3814 /*
3815 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3816 * it'll always -EAGAIN
3817 */
3818 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3819 return -EAGAIN;
3820 op.lookup_flags |= LOOKUP_CACHED;
3821 op.open_flag |= O_NONBLOCK;
3822 }
3823
3824 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3825 if (ret < 0)
3826 goto err;
3827
3828 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3829 /* only retry if RESOLVE_CACHED wasn't already set by application */
3830 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
3831 file == ERR_PTR(-EAGAIN)) {
3832 /*
3833 * We could hang on to this 'fd', but seems like marginal
3834 * gain for something that is now known to be a slower path.
3835 * So just put it, and we'll get a new one when we retry.
3836 */
3837 put_unused_fd(ret);
3838 return -EAGAIN;
3839 }
3840
3841 if (IS_ERR(file)) {
3842 put_unused_fd(ret);
3843 ret = PTR_ERR(file);
3844 } else {
3845 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3846 file->f_flags &= ~O_NONBLOCK;
3847 fsnotify_open(file);
3848 fd_install(ret, file);
3849 }
3850 err:
3851 putname(req->open.filename);
3852 req->flags &= ~REQ_F_NEED_CLEANUP;
3853 if (ret < 0)
3854 req_set_fail_links(req);
3855 __io_req_complete(req, issue_flags, ret, 0);
3856 return 0;
3857 }
3858
3859 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3860 {
3861 return io_openat2(req, issue_flags);
3862 }
3863
3864 static int io_remove_buffers_prep(struct io_kiocb *req,
3865 const struct io_uring_sqe *sqe)
3866 {
3867 struct io_provide_buf *p = &req->pbuf;
3868 u64 tmp;
3869
3870 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3871 return -EINVAL;
3872
3873 tmp = READ_ONCE(sqe->fd);
3874 if (!tmp || tmp > USHRT_MAX)
3875 return -EINVAL;
3876
3877 memset(p, 0, sizeof(*p));
3878 p->nbufs = tmp;
3879 p->bgid = READ_ONCE(sqe->buf_group);
3880 return 0;
3881 }
3882
3883 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3884 int bgid, unsigned nbufs)
3885 {
3886 unsigned i = 0;
3887
3888 /* shouldn't happen */
3889 if (!nbufs)
3890 return 0;
3891
3892 /* the head kbuf is the list itself */
3893 while (!list_empty(&buf->list)) {
3894 struct io_buffer *nxt;
3895
3896 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3897 list_del(&nxt->list);
3898 kfree(nxt);
3899 if (++i == nbufs)
3900 return i;
3901 }
3902 i++;
3903 kfree(buf);
3904 xa_erase(&ctx->io_buffers, bgid);
3905
3906 return i;
3907 }
3908
3909 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3910 {
3911 struct io_provide_buf *p = &req->pbuf;
3912 struct io_ring_ctx *ctx = req->ctx;
3913 struct io_buffer *head;
3914 int ret = 0;
3915 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3916
3917 io_ring_submit_lock(ctx, !force_nonblock);
3918
3919 lockdep_assert_held(&ctx->uring_lock);
3920
3921 ret = -ENOENT;
3922 head = xa_load(&ctx->io_buffers, p->bgid);
3923 if (head)
3924 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3925 if (ret < 0)
3926 req_set_fail_links(req);
3927
3928 /* complete before unlock, IOPOLL may need the lock */
3929 __io_req_complete(req, issue_flags, ret, 0);
3930 io_ring_submit_unlock(ctx, !force_nonblock);
3931 return 0;
3932 }
3933
3934 static int io_provide_buffers_prep(struct io_kiocb *req,
3935 const struct io_uring_sqe *sqe)
3936 {
3937 unsigned long size, tmp_check;
3938 struct io_provide_buf *p = &req->pbuf;
3939 u64 tmp;
3940
3941 if (sqe->ioprio || sqe->rw_flags)
3942 return -EINVAL;
3943
3944 tmp = READ_ONCE(sqe->fd);
3945 if (!tmp || tmp > USHRT_MAX)
3946 return -E2BIG;
3947 p->nbufs = tmp;
3948 p->addr = READ_ONCE(sqe->addr);
3949 p->len = READ_ONCE(sqe->len);
3950
3951 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3952 &size))
3953 return -EOVERFLOW;
3954 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3955 return -EOVERFLOW;
3956
3957 size = (unsigned long)p->len * p->nbufs;
3958 if (!access_ok(u64_to_user_ptr(p->addr), size))
3959 return -EFAULT;
3960
3961 p->bgid = READ_ONCE(sqe->buf_group);
3962 tmp = READ_ONCE(sqe->off);
3963 if (tmp > USHRT_MAX)
3964 return -E2BIG;
3965 p->bid = tmp;
3966 return 0;
3967 }
3968
3969 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3970 {
3971 struct io_buffer *buf;
3972 u64 addr = pbuf->addr;
3973 int i, bid = pbuf->bid;
3974
3975 for (i = 0; i < pbuf->nbufs; i++) {
3976 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3977 if (!buf)
3978 break;
3979
3980 buf->addr = addr;
3981 buf->len = pbuf->len;
3982 buf->bid = bid;
3983 addr += pbuf->len;
3984 bid++;
3985 if (!*head) {
3986 INIT_LIST_HEAD(&buf->list);
3987 *head = buf;
3988 } else {
3989 list_add_tail(&buf->list, &(*head)->list);
3990 }
3991 }
3992
3993 return i ? i : -ENOMEM;
3994 }
3995
3996 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
3997 {
3998 struct io_provide_buf *p = &req->pbuf;
3999 struct io_ring_ctx *ctx = req->ctx;
4000 struct io_buffer *head, *list;
4001 int ret = 0;
4002 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4003
4004 io_ring_submit_lock(ctx, !force_nonblock);
4005
4006 lockdep_assert_held(&ctx->uring_lock);
4007
4008 list = head = xa_load(&ctx->io_buffers, p->bgid);
4009
4010 ret = io_add_buffers(p, &head);
4011 if (ret >= 0 && !list) {
4012 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4013 if (ret < 0)
4014 __io_remove_buffers(ctx, head, p->bgid, -1U);
4015 }
4016 if (ret < 0)
4017 req_set_fail_links(req);
4018 /* complete before unlock, IOPOLL may need the lock */
4019 __io_req_complete(req, issue_flags, ret, 0);
4020 io_ring_submit_unlock(ctx, !force_nonblock);
4021 return 0;
4022 }
4023
4024 static int io_epoll_ctl_prep(struct io_kiocb *req,
4025 const struct io_uring_sqe *sqe)
4026 {
4027 #if defined(CONFIG_EPOLL)
4028 if (sqe->ioprio || sqe->buf_index)
4029 return -EINVAL;
4030 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4031 return -EINVAL;
4032
4033 req->epoll.epfd = READ_ONCE(sqe->fd);
4034 req->epoll.op = READ_ONCE(sqe->len);
4035 req->epoll.fd = READ_ONCE(sqe->off);
4036
4037 if (ep_op_has_event(req->epoll.op)) {
4038 struct epoll_event __user *ev;
4039
4040 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4041 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4042 return -EFAULT;
4043 }
4044
4045 return 0;
4046 #else
4047 return -EOPNOTSUPP;
4048 #endif
4049 }
4050
4051 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4052 {
4053 #if defined(CONFIG_EPOLL)
4054 struct io_epoll *ie = &req->epoll;
4055 int ret;
4056 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4057
4058 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4059 if (force_nonblock && ret == -EAGAIN)
4060 return -EAGAIN;
4061
4062 if (ret < 0)
4063 req_set_fail_links(req);
4064 __io_req_complete(req, issue_flags, ret, 0);
4065 return 0;
4066 #else
4067 return -EOPNOTSUPP;
4068 #endif
4069 }
4070
4071 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4072 {
4073 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4074 if (sqe->ioprio || sqe->buf_index || sqe->off)
4075 return -EINVAL;
4076 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4077 return -EINVAL;
4078
4079 req->madvise.addr = READ_ONCE(sqe->addr);
4080 req->madvise.len = READ_ONCE(sqe->len);
4081 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4082 return 0;
4083 #else
4084 return -EOPNOTSUPP;
4085 #endif
4086 }
4087
4088 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4089 {
4090 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4091 struct io_madvise *ma = &req->madvise;
4092 int ret;
4093
4094 if (issue_flags & IO_URING_F_NONBLOCK)
4095 return -EAGAIN;
4096
4097 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4098 if (ret < 0)
4099 req_set_fail_links(req);
4100 io_req_complete(req, ret);
4101 return 0;
4102 #else
4103 return -EOPNOTSUPP;
4104 #endif
4105 }
4106
4107 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4108 {
4109 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4110 return -EINVAL;
4111 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4112 return -EINVAL;
4113
4114 req->fadvise.offset = READ_ONCE(sqe->off);
4115 req->fadvise.len = READ_ONCE(sqe->len);
4116 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4117 return 0;
4118 }
4119
4120 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4121 {
4122 struct io_fadvise *fa = &req->fadvise;
4123 int ret;
4124
4125 if (issue_flags & IO_URING_F_NONBLOCK) {
4126 switch (fa->advice) {
4127 case POSIX_FADV_NORMAL:
4128 case POSIX_FADV_RANDOM:
4129 case POSIX_FADV_SEQUENTIAL:
4130 break;
4131 default:
4132 return -EAGAIN;
4133 }
4134 }
4135
4136 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4137 if (ret < 0)
4138 req_set_fail_links(req);
4139 __io_req_complete(req, issue_flags, ret, 0);
4140 return 0;
4141 }
4142
4143 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4144 {
4145 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4146 return -EINVAL;
4147 if (sqe->ioprio || sqe->buf_index)
4148 return -EINVAL;
4149 if (req->flags & REQ_F_FIXED_FILE)
4150 return -EBADF;
4151
4152 req->statx.dfd = READ_ONCE(sqe->fd);
4153 req->statx.mask = READ_ONCE(sqe->len);
4154 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4155 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4156 req->statx.flags = READ_ONCE(sqe->statx_flags);
4157
4158 return 0;
4159 }
4160
4161 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4162 {
4163 struct io_statx *ctx = &req->statx;
4164 int ret;
4165
4166 if (issue_flags & IO_URING_F_NONBLOCK)
4167 return -EAGAIN;
4168
4169 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4170 ctx->buffer);
4171
4172 if (ret < 0)
4173 req_set_fail_links(req);
4174 io_req_complete(req, ret);
4175 return 0;
4176 }
4177
4178 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4179 {
4180 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4181 return -EINVAL;
4182 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4183 sqe->rw_flags || sqe->buf_index)
4184 return -EINVAL;
4185 if (req->flags & REQ_F_FIXED_FILE)
4186 return -EBADF;
4187
4188 req->close.fd = READ_ONCE(sqe->fd);
4189 return 0;
4190 }
4191
4192 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4193 {
4194 struct files_struct *files = current->files;
4195 struct io_close *close = &req->close;
4196 struct fdtable *fdt;
4197 struct file *file = NULL;
4198 int ret = -EBADF;
4199
4200 spin_lock(&files->file_lock);
4201 fdt = files_fdtable(files);
4202 if (close->fd >= fdt->max_fds) {
4203 spin_unlock(&files->file_lock);
4204 goto err;
4205 }
4206 file = fdt->fd[close->fd];
4207 if (!file || file->f_op == &io_uring_fops) {
4208 spin_unlock(&files->file_lock);
4209 file = NULL;
4210 goto err;
4211 }
4212
4213 /* if the file has a flush method, be safe and punt to async */
4214 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4215 spin_unlock(&files->file_lock);
4216 return -EAGAIN;
4217 }
4218
4219 ret = __close_fd_get_file(close->fd, &file);
4220 spin_unlock(&files->file_lock);
4221 if (ret < 0) {
4222 if (ret == -ENOENT)
4223 ret = -EBADF;
4224 goto err;
4225 }
4226
4227 /* No ->flush() or already async, safely close from here */
4228 ret = filp_close(file, current->files);
4229 err:
4230 if (ret < 0)
4231 req_set_fail_links(req);
4232 if (file)
4233 fput(file);
4234 __io_req_complete(req, issue_flags, ret, 0);
4235 return 0;
4236 }
4237
4238 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4239 {
4240 struct io_ring_ctx *ctx = req->ctx;
4241
4242 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4243 return -EINVAL;
4244 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4245 return -EINVAL;
4246
4247 req->sync.off = READ_ONCE(sqe->off);
4248 req->sync.len = READ_ONCE(sqe->len);
4249 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4250 return 0;
4251 }
4252
4253 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4254 {
4255 int ret;
4256
4257 /* sync_file_range always requires a blocking context */
4258 if (issue_flags & IO_URING_F_NONBLOCK)
4259 return -EAGAIN;
4260
4261 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4262 req->sync.flags);
4263 if (ret < 0)
4264 req_set_fail_links(req);
4265 io_req_complete(req, ret);
4266 return 0;
4267 }
4268
4269 #if defined(CONFIG_NET)
4270 static int io_setup_async_msg(struct io_kiocb *req,
4271 struct io_async_msghdr *kmsg)
4272 {
4273 struct io_async_msghdr *async_msg = req->async_data;
4274
4275 if (async_msg)
4276 return -EAGAIN;
4277 if (io_alloc_async_data(req)) {
4278 kfree(kmsg->free_iov);
4279 return -ENOMEM;
4280 }
4281 async_msg = req->async_data;
4282 req->flags |= REQ_F_NEED_CLEANUP;
4283 memcpy(async_msg, kmsg, sizeof(*kmsg));
4284 async_msg->msg.msg_name = &async_msg->addr;
4285 /* if were using fast_iov, set it to the new one */
4286 if (!async_msg->free_iov)
4287 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4288
4289 return -EAGAIN;
4290 }
4291
4292 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4293 struct io_async_msghdr *iomsg)
4294 {
4295 iomsg->msg.msg_name = &iomsg->addr;
4296 iomsg->free_iov = iomsg->fast_iov;
4297 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4298 req->sr_msg.msg_flags, &iomsg->free_iov);
4299 }
4300
4301 static int io_sendmsg_prep_async(struct io_kiocb *req)
4302 {
4303 int ret;
4304
4305 ret = io_sendmsg_copy_hdr(req, req->async_data);
4306 if (!ret)
4307 req->flags |= REQ_F_NEED_CLEANUP;
4308 return ret;
4309 }
4310
4311 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4312 {
4313 struct io_sr_msg *sr = &req->sr_msg;
4314
4315 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4316 return -EINVAL;
4317
4318 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4319 sr->len = READ_ONCE(sqe->len);
4320 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4321 if (sr->msg_flags & MSG_DONTWAIT)
4322 req->flags |= REQ_F_NOWAIT;
4323
4324 #ifdef CONFIG_COMPAT
4325 if (req->ctx->compat)
4326 sr->msg_flags |= MSG_CMSG_COMPAT;
4327 #endif
4328 return 0;
4329 }
4330
4331 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4332 {
4333 struct io_async_msghdr iomsg, *kmsg;
4334 struct socket *sock;
4335 unsigned flags;
4336 int min_ret = 0;
4337 int ret;
4338
4339 sock = sock_from_file(req->file);
4340 if (unlikely(!sock))
4341 return -ENOTSOCK;
4342
4343 kmsg = req->async_data;
4344 if (!kmsg) {
4345 ret = io_sendmsg_copy_hdr(req, &iomsg);
4346 if (ret)
4347 return ret;
4348 kmsg = &iomsg;
4349 }
4350
4351 flags = req->sr_msg.msg_flags;
4352 if (issue_flags & IO_URING_F_NONBLOCK)
4353 flags |= MSG_DONTWAIT;
4354 if (flags & MSG_WAITALL)
4355 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4356
4357 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4358 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4359 return io_setup_async_msg(req, kmsg);
4360 if (ret == -ERESTARTSYS)
4361 ret = -EINTR;
4362
4363 /* fast path, check for non-NULL to avoid function call */
4364 if (kmsg->free_iov)
4365 kfree(kmsg->free_iov);
4366 req->flags &= ~REQ_F_NEED_CLEANUP;
4367 if (ret < min_ret)
4368 req_set_fail_links(req);
4369 __io_req_complete(req, issue_flags, ret, 0);
4370 return 0;
4371 }
4372
4373 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4374 {
4375 struct io_sr_msg *sr = &req->sr_msg;
4376 struct msghdr msg;
4377 struct iovec iov;
4378 struct socket *sock;
4379 unsigned flags;
4380 int min_ret = 0;
4381 int ret;
4382
4383 sock = sock_from_file(req->file);
4384 if (unlikely(!sock))
4385 return -ENOTSOCK;
4386
4387 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4388 if (unlikely(ret))
4389 return ret;
4390
4391 msg.msg_name = NULL;
4392 msg.msg_control = NULL;
4393 msg.msg_controllen = 0;
4394 msg.msg_namelen = 0;
4395
4396 flags = req->sr_msg.msg_flags;
4397 if (issue_flags & IO_URING_F_NONBLOCK)
4398 flags |= MSG_DONTWAIT;
4399 if (flags & MSG_WAITALL)
4400 min_ret = iov_iter_count(&msg.msg_iter);
4401
4402 msg.msg_flags = flags;
4403 ret = sock_sendmsg(sock, &msg);
4404 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4405 return -EAGAIN;
4406 if (ret == -ERESTARTSYS)
4407 ret = -EINTR;
4408
4409 if (ret < min_ret)
4410 req_set_fail_links(req);
4411 __io_req_complete(req, issue_flags, ret, 0);
4412 return 0;
4413 }
4414
4415 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4416 struct io_async_msghdr *iomsg)
4417 {
4418 struct io_sr_msg *sr = &req->sr_msg;
4419 struct iovec __user *uiov;
4420 size_t iov_len;
4421 int ret;
4422
4423 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4424 &iomsg->uaddr, &uiov, &iov_len);
4425 if (ret)
4426 return ret;
4427
4428 if (req->flags & REQ_F_BUFFER_SELECT) {
4429 if (iov_len > 1)
4430 return -EINVAL;
4431 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4432 return -EFAULT;
4433 sr->len = iomsg->fast_iov[0].iov_len;
4434 iomsg->free_iov = NULL;
4435 } else {
4436 iomsg->free_iov = iomsg->fast_iov;
4437 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4438 &iomsg->free_iov, &iomsg->msg.msg_iter,
4439 false);
4440 if (ret > 0)
4441 ret = 0;
4442 }
4443
4444 return ret;
4445 }
4446
4447 #ifdef CONFIG_COMPAT
4448 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4449 struct io_async_msghdr *iomsg)
4450 {
4451 struct io_sr_msg *sr = &req->sr_msg;
4452 struct compat_iovec __user *uiov;
4453 compat_uptr_t ptr;
4454 compat_size_t len;
4455 int ret;
4456
4457 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4458 &ptr, &len);
4459 if (ret)
4460 return ret;
4461
4462 uiov = compat_ptr(ptr);
4463 if (req->flags & REQ_F_BUFFER_SELECT) {
4464 compat_ssize_t clen;
4465
4466 if (len > 1)
4467 return -EINVAL;
4468 if (!access_ok(uiov, sizeof(*uiov)))
4469 return -EFAULT;
4470 if (__get_user(clen, &uiov->iov_len))
4471 return -EFAULT;
4472 if (clen < 0)
4473 return -EINVAL;
4474 sr->len = clen;
4475 iomsg->free_iov = NULL;
4476 } else {
4477 iomsg->free_iov = iomsg->fast_iov;
4478 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4479 UIO_FASTIOV, &iomsg->free_iov,
4480 &iomsg->msg.msg_iter, true);
4481 if (ret < 0)
4482 return ret;
4483 }
4484
4485 return 0;
4486 }
4487 #endif
4488
4489 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4490 struct io_async_msghdr *iomsg)
4491 {
4492 iomsg->msg.msg_name = &iomsg->addr;
4493
4494 #ifdef CONFIG_COMPAT
4495 if (req->ctx->compat)
4496 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4497 #endif
4498
4499 return __io_recvmsg_copy_hdr(req, iomsg);
4500 }
4501
4502 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4503 bool needs_lock)
4504 {
4505 struct io_sr_msg *sr = &req->sr_msg;
4506 struct io_buffer *kbuf;
4507
4508 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4509 if (IS_ERR(kbuf))
4510 return kbuf;
4511
4512 sr->kbuf = kbuf;
4513 req->flags |= REQ_F_BUFFER_SELECTED;
4514 return kbuf;
4515 }
4516
4517 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4518 {
4519 return io_put_kbuf(req, req->sr_msg.kbuf);
4520 }
4521
4522 static int io_recvmsg_prep_async(struct io_kiocb *req)
4523 {
4524 int ret;
4525
4526 ret = io_recvmsg_copy_hdr(req, req->async_data);
4527 if (!ret)
4528 req->flags |= REQ_F_NEED_CLEANUP;
4529 return ret;
4530 }
4531
4532 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4533 {
4534 struct io_sr_msg *sr = &req->sr_msg;
4535
4536 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4537 return -EINVAL;
4538
4539 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4540 sr->len = READ_ONCE(sqe->len);
4541 sr->bgid = READ_ONCE(sqe->buf_group);
4542 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4543 if (sr->msg_flags & MSG_DONTWAIT)
4544 req->flags |= REQ_F_NOWAIT;
4545
4546 #ifdef CONFIG_COMPAT
4547 if (req->ctx->compat)
4548 sr->msg_flags |= MSG_CMSG_COMPAT;
4549 #endif
4550 return 0;
4551 }
4552
4553 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4554 {
4555 struct io_async_msghdr iomsg, *kmsg;
4556 struct socket *sock;
4557 struct io_buffer *kbuf;
4558 unsigned flags;
4559 int min_ret = 0;
4560 int ret, cflags = 0;
4561 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4562
4563 sock = sock_from_file(req->file);
4564 if (unlikely(!sock))
4565 return -ENOTSOCK;
4566
4567 kmsg = req->async_data;
4568 if (!kmsg) {
4569 ret = io_recvmsg_copy_hdr(req, &iomsg);
4570 if (ret)
4571 return ret;
4572 kmsg = &iomsg;
4573 }
4574
4575 if (req->flags & REQ_F_BUFFER_SELECT) {
4576 kbuf = io_recv_buffer_select(req, !force_nonblock);
4577 if (IS_ERR(kbuf))
4578 return PTR_ERR(kbuf);
4579 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4580 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4581 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4582 1, req->sr_msg.len);
4583 }
4584
4585 flags = req->sr_msg.msg_flags;
4586 if (force_nonblock)
4587 flags |= MSG_DONTWAIT;
4588 if (flags & MSG_WAITALL)
4589 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4590
4591 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4592 kmsg->uaddr, flags);
4593 if (force_nonblock && ret == -EAGAIN)
4594 return io_setup_async_msg(req, kmsg);
4595 if (ret == -ERESTARTSYS)
4596 ret = -EINTR;
4597
4598 if (req->flags & REQ_F_BUFFER_SELECTED)
4599 cflags = io_put_recv_kbuf(req);
4600 /* fast path, check for non-NULL to avoid function call */
4601 if (kmsg->free_iov)
4602 kfree(kmsg->free_iov);
4603 req->flags &= ~REQ_F_NEED_CLEANUP;
4604 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4605 req_set_fail_links(req);
4606 __io_req_complete(req, issue_flags, ret, cflags);
4607 return 0;
4608 }
4609
4610 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4611 {
4612 struct io_buffer *kbuf;
4613 struct io_sr_msg *sr = &req->sr_msg;
4614 struct msghdr msg;
4615 void __user *buf = sr->buf;
4616 struct socket *sock;
4617 struct iovec iov;
4618 unsigned flags;
4619 int min_ret = 0;
4620 int ret, cflags = 0;
4621 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4622
4623 sock = sock_from_file(req->file);
4624 if (unlikely(!sock))
4625 return -ENOTSOCK;
4626
4627 if (req->flags & REQ_F_BUFFER_SELECT) {
4628 kbuf = io_recv_buffer_select(req, !force_nonblock);
4629 if (IS_ERR(kbuf))
4630 return PTR_ERR(kbuf);
4631 buf = u64_to_user_ptr(kbuf->addr);
4632 }
4633
4634 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4635 if (unlikely(ret))
4636 goto out_free;
4637
4638 msg.msg_name = NULL;
4639 msg.msg_control = NULL;
4640 msg.msg_controllen = 0;
4641 msg.msg_namelen = 0;
4642 msg.msg_iocb = NULL;
4643 msg.msg_flags = 0;
4644
4645 flags = req->sr_msg.msg_flags;
4646 if (force_nonblock)
4647 flags |= MSG_DONTWAIT;
4648 if (flags & MSG_WAITALL)
4649 min_ret = iov_iter_count(&msg.msg_iter);
4650
4651 ret = sock_recvmsg(sock, &msg, flags);
4652 if (force_nonblock && ret == -EAGAIN)
4653 return -EAGAIN;
4654 if (ret == -ERESTARTSYS)
4655 ret = -EINTR;
4656 out_free:
4657 if (req->flags & REQ_F_BUFFER_SELECTED)
4658 cflags = io_put_recv_kbuf(req);
4659 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4660 req_set_fail_links(req);
4661 __io_req_complete(req, issue_flags, ret, cflags);
4662 return 0;
4663 }
4664
4665 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4666 {
4667 struct io_accept *accept = &req->accept;
4668
4669 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4670 return -EINVAL;
4671 if (sqe->ioprio || sqe->len || sqe->buf_index)
4672 return -EINVAL;
4673
4674 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4675 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4676 accept->flags = READ_ONCE(sqe->accept_flags);
4677 accept->nofile = rlimit(RLIMIT_NOFILE);
4678 return 0;
4679 }
4680
4681 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4682 {
4683 struct io_accept *accept = &req->accept;
4684 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4685 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4686 int ret;
4687
4688 if (req->file->f_flags & O_NONBLOCK)
4689 req->flags |= REQ_F_NOWAIT;
4690
4691 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4692 accept->addr_len, accept->flags,
4693 accept->nofile);
4694 if (ret == -EAGAIN && force_nonblock)
4695 return -EAGAIN;
4696 if (ret < 0) {
4697 if (ret == -ERESTARTSYS)
4698 ret = -EINTR;
4699 req_set_fail_links(req);
4700 }
4701 __io_req_complete(req, issue_flags, ret, 0);
4702 return 0;
4703 }
4704
4705 static int io_connect_prep_async(struct io_kiocb *req)
4706 {
4707 struct io_async_connect *io = req->async_data;
4708 struct io_connect *conn = &req->connect;
4709
4710 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4711 }
4712
4713 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4714 {
4715 struct io_connect *conn = &req->connect;
4716
4717 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4718 return -EINVAL;
4719 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4720 return -EINVAL;
4721
4722 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4723 conn->addr_len = READ_ONCE(sqe->addr2);
4724 return 0;
4725 }
4726
4727 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4728 {
4729 struct io_async_connect __io, *io;
4730 unsigned file_flags;
4731 int ret;
4732 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4733
4734 if (req->async_data) {
4735 io = req->async_data;
4736 } else {
4737 ret = move_addr_to_kernel(req->connect.addr,
4738 req->connect.addr_len,
4739 &__io.address);
4740 if (ret)
4741 goto out;
4742 io = &__io;
4743 }
4744
4745 file_flags = force_nonblock ? O_NONBLOCK : 0;
4746
4747 ret = __sys_connect_file(req->file, &io->address,
4748 req->connect.addr_len, file_flags);
4749 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4750 if (req->async_data)
4751 return -EAGAIN;
4752 if (io_alloc_async_data(req)) {
4753 ret = -ENOMEM;
4754 goto out;
4755 }
4756 memcpy(req->async_data, &__io, sizeof(__io));
4757 return -EAGAIN;
4758 }
4759 if (ret == -ERESTARTSYS)
4760 ret = -EINTR;
4761 out:
4762 if (ret < 0)
4763 req_set_fail_links(req);
4764 __io_req_complete(req, issue_flags, ret, 0);
4765 return 0;
4766 }
4767 #else /* !CONFIG_NET */
4768 #define IO_NETOP_FN(op) \
4769 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4770 { \
4771 return -EOPNOTSUPP; \
4772 }
4773
4774 #define IO_NETOP_PREP(op) \
4775 IO_NETOP_FN(op) \
4776 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4777 { \
4778 return -EOPNOTSUPP; \
4779 } \
4780
4781 #define IO_NETOP_PREP_ASYNC(op) \
4782 IO_NETOP_PREP(op) \
4783 static int io_##op##_prep_async(struct io_kiocb *req) \
4784 { \
4785 return -EOPNOTSUPP; \
4786 }
4787
4788 IO_NETOP_PREP_ASYNC(sendmsg);
4789 IO_NETOP_PREP_ASYNC(recvmsg);
4790 IO_NETOP_PREP_ASYNC(connect);
4791 IO_NETOP_PREP(accept);
4792 IO_NETOP_FN(send);
4793 IO_NETOP_FN(recv);
4794 #endif /* CONFIG_NET */
4795
4796 struct io_poll_table {
4797 struct poll_table_struct pt;
4798 struct io_kiocb *req;
4799 int error;
4800 };
4801
4802 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4803 __poll_t mask, task_work_func_t func)
4804 {
4805 int ret;
4806
4807 /* for instances that support it check for an event match first: */
4808 if (mask && !(mask & poll->events))
4809 return 0;
4810
4811 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4812
4813 list_del_init(&poll->wait.entry);
4814
4815 req->result = mask;
4816 req->task_work.func = func;
4817
4818 /*
4819 * If this fails, then the task is exiting. When a task exits, the
4820 * work gets canceled, so just cancel this request as well instead
4821 * of executing it. We can't safely execute it anyway, as we may not
4822 * have the needed state needed for it anyway.
4823 */
4824 ret = io_req_task_work_add(req);
4825 if (unlikely(ret)) {
4826 WRITE_ONCE(poll->canceled, true);
4827 io_req_task_work_add_fallback(req, func);
4828 }
4829 return 1;
4830 }
4831
4832 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4833 __acquires(&req->ctx->completion_lock)
4834 {
4835 struct io_ring_ctx *ctx = req->ctx;
4836
4837 if (!req->result && !READ_ONCE(poll->canceled)) {
4838 struct poll_table_struct pt = { ._key = poll->events };
4839
4840 req->result = vfs_poll(req->file, &pt) & poll->events;
4841 }
4842
4843 spin_lock_irq(&ctx->completion_lock);
4844 if (!req->result && !READ_ONCE(poll->canceled)) {
4845 add_wait_queue(poll->head, &poll->wait);
4846 return true;
4847 }
4848
4849 return false;
4850 }
4851
4852 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4853 {
4854 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4855 if (req->opcode == IORING_OP_POLL_ADD)
4856 return req->async_data;
4857 return req->apoll->double_poll;
4858 }
4859
4860 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4861 {
4862 if (req->opcode == IORING_OP_POLL_ADD)
4863 return &req->poll;
4864 return &req->apoll->poll;
4865 }
4866
4867 static void io_poll_remove_double(struct io_kiocb *req)
4868 __must_hold(&req->ctx->completion_lock)
4869 {
4870 struct io_poll_iocb *poll = io_poll_get_double(req);
4871
4872 lockdep_assert_held(&req->ctx->completion_lock);
4873
4874 if (poll && poll->head) {
4875 struct wait_queue_head *head = poll->head;
4876
4877 spin_lock(&head->lock);
4878 list_del_init(&poll->wait.entry);
4879 if (poll->wait.private)
4880 req_ref_put(req);
4881 poll->head = NULL;
4882 spin_unlock(&head->lock);
4883 }
4884 }
4885
4886 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4887 __must_hold(&req->ctx->completion_lock)
4888 {
4889 struct io_ring_ctx *ctx = req->ctx;
4890 unsigned flags = IORING_CQE_F_MORE;
4891 int error;
4892
4893 if (READ_ONCE(req->poll.canceled)) {
4894 error = -ECANCELED;
4895 req->poll.events |= EPOLLONESHOT;
4896 } else {
4897 error = mangle_poll(mask);
4898 }
4899 if (req->poll.events & EPOLLONESHOT)
4900 flags = 0;
4901 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4902 io_poll_remove_waitqs(req);
4903 req->poll.done = true;
4904 flags = 0;
4905 }
4906 if (flags & IORING_CQE_F_MORE)
4907 ctx->cq_extra++;
4908
4909 io_commit_cqring(ctx);
4910 return !(flags & IORING_CQE_F_MORE);
4911 }
4912
4913 static void io_poll_task_func(struct callback_head *cb)
4914 {
4915 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4916 struct io_ring_ctx *ctx = req->ctx;
4917 struct io_kiocb *nxt;
4918
4919 if (io_poll_rewait(req, &req->poll)) {
4920 spin_unlock_irq(&ctx->completion_lock);
4921 } else {
4922 bool done;
4923
4924 done = io_poll_complete(req, req->result);
4925 if (done) {
4926 hash_del(&req->hash_node);
4927 } else {
4928 req->result = 0;
4929 add_wait_queue(req->poll.head, &req->poll.wait);
4930 }
4931 spin_unlock_irq(&ctx->completion_lock);
4932 io_cqring_ev_posted(ctx);
4933
4934 if (done) {
4935 nxt = io_put_req_find_next(req);
4936 if (nxt)
4937 __io_req_task_submit(nxt);
4938 }
4939 }
4940 }
4941
4942 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4943 int sync, void *key)
4944 {
4945 struct io_kiocb *req = wait->private;
4946 struct io_poll_iocb *poll = io_poll_get_single(req);
4947 __poll_t mask = key_to_poll(key);
4948
4949 /* for instances that support it check for an event match first: */
4950 if (mask && !(mask & poll->events))
4951 return 0;
4952 if (!(poll->events & EPOLLONESHOT))
4953 return poll->wait.func(&poll->wait, mode, sync, key);
4954
4955 list_del_init(&wait->entry);
4956
4957 if (poll && poll->head) {
4958 bool done;
4959
4960 spin_lock(&poll->head->lock);
4961 done = list_empty(&poll->wait.entry);
4962 if (!done)
4963 list_del_init(&poll->wait.entry);
4964 /* make sure double remove sees this as being gone */
4965 wait->private = NULL;
4966 spin_unlock(&poll->head->lock);
4967 if (!done) {
4968 /* use wait func handler, so it matches the rq type */
4969 poll->wait.func(&poll->wait, mode, sync, key);
4970 }
4971 }
4972 req_ref_put(req);
4973 return 1;
4974 }
4975
4976 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4977 wait_queue_func_t wake_func)
4978 {
4979 poll->head = NULL;
4980 poll->done = false;
4981 poll->canceled = false;
4982 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
4983 /* mask in events that we always want/need */
4984 poll->events = events | IO_POLL_UNMASK;
4985 INIT_LIST_HEAD(&poll->wait.entry);
4986 init_waitqueue_func_entry(&poll->wait, wake_func);
4987 }
4988
4989 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4990 struct wait_queue_head *head,
4991 struct io_poll_iocb **poll_ptr)
4992 {
4993 struct io_kiocb *req = pt->req;
4994
4995 /*
4996 * If poll->head is already set, it's because the file being polled
4997 * uses multiple waitqueues for poll handling (eg one for read, one
4998 * for write). Setup a separate io_poll_iocb if this happens.
4999 */
5000 if (unlikely(poll->head)) {
5001 struct io_poll_iocb *poll_one = poll;
5002
5003 /* already have a 2nd entry, fail a third attempt */
5004 if (*poll_ptr) {
5005 pt->error = -EINVAL;
5006 return;
5007 }
5008 /*
5009 * Can't handle multishot for double wait for now, turn it
5010 * into one-shot mode.
5011 */
5012 if (!(req->poll.events & EPOLLONESHOT))
5013 req->poll.events |= EPOLLONESHOT;
5014 /* double add on the same waitqueue head, ignore */
5015 if (poll->head == head)
5016 return;
5017 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5018 if (!poll) {
5019 pt->error = -ENOMEM;
5020 return;
5021 }
5022 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5023 req_ref_get(req);
5024 poll->wait.private = req;
5025 *poll_ptr = poll;
5026 }
5027
5028 pt->error = 0;
5029 poll->head = head;
5030
5031 if (poll->events & EPOLLEXCLUSIVE)
5032 add_wait_queue_exclusive(head, &poll->wait);
5033 else
5034 add_wait_queue(head, &poll->wait);
5035 }
5036
5037 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5038 struct poll_table_struct *p)
5039 {
5040 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5041 struct async_poll *apoll = pt->req->apoll;
5042
5043 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5044 }
5045
5046 static void io_async_task_func(struct callback_head *cb)
5047 {
5048 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5049 struct async_poll *apoll = req->apoll;
5050 struct io_ring_ctx *ctx = req->ctx;
5051
5052 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5053
5054 if (io_poll_rewait(req, &apoll->poll)) {
5055 spin_unlock_irq(&ctx->completion_lock);
5056 return;
5057 }
5058
5059 hash_del(&req->hash_node);
5060 io_poll_remove_double(req);
5061 spin_unlock_irq(&ctx->completion_lock);
5062
5063 if (!READ_ONCE(apoll->poll.canceled))
5064 __io_req_task_submit(req);
5065 else
5066 io_req_complete_failed(req, -ECANCELED);
5067 }
5068
5069 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5070 void *key)
5071 {
5072 struct io_kiocb *req = wait->private;
5073 struct io_poll_iocb *poll = &req->apoll->poll;
5074
5075 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5076 key_to_poll(key));
5077
5078 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5079 }
5080
5081 static void io_poll_req_insert(struct io_kiocb *req)
5082 {
5083 struct io_ring_ctx *ctx = req->ctx;
5084 struct hlist_head *list;
5085
5086 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5087 hlist_add_head(&req->hash_node, list);
5088 }
5089
5090 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5091 struct io_poll_iocb *poll,
5092 struct io_poll_table *ipt, __poll_t mask,
5093 wait_queue_func_t wake_func)
5094 __acquires(&ctx->completion_lock)
5095 {
5096 struct io_ring_ctx *ctx = req->ctx;
5097 bool cancel = false;
5098
5099 INIT_HLIST_NODE(&req->hash_node);
5100 io_init_poll_iocb(poll, mask, wake_func);
5101 poll->file = req->file;
5102 poll->wait.private = req;
5103
5104 ipt->pt._key = mask;
5105 ipt->req = req;
5106 ipt->error = -EINVAL;
5107
5108 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5109
5110 spin_lock_irq(&ctx->completion_lock);
5111 if (likely(poll->head)) {
5112 spin_lock(&poll->head->lock);
5113 if (unlikely(list_empty(&poll->wait.entry))) {
5114 if (ipt->error)
5115 cancel = true;
5116 ipt->error = 0;
5117 mask = 0;
5118 }
5119 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5120 list_del_init(&poll->wait.entry);
5121 else if (cancel)
5122 WRITE_ONCE(poll->canceled, true);
5123 else if (!poll->done) /* actually waiting for an event */
5124 io_poll_req_insert(req);
5125 spin_unlock(&poll->head->lock);
5126 }
5127
5128 return mask;
5129 }
5130
5131 static bool io_arm_poll_handler(struct io_kiocb *req)
5132 {
5133 const struct io_op_def *def = &io_op_defs[req->opcode];
5134 struct io_ring_ctx *ctx = req->ctx;
5135 struct async_poll *apoll;
5136 struct io_poll_table ipt;
5137 __poll_t mask, ret;
5138 int rw;
5139
5140 if (!req->file || !file_can_poll(req->file))
5141 return false;
5142 if (req->flags & REQ_F_POLLED)
5143 return false;
5144 if (def->pollin)
5145 rw = READ;
5146 else if (def->pollout)
5147 rw = WRITE;
5148 else
5149 return false;
5150 /* if we can't nonblock try, then no point in arming a poll handler */
5151 if (!io_file_supports_async(req, rw))
5152 return false;
5153
5154 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5155 if (unlikely(!apoll))
5156 return false;
5157 apoll->double_poll = NULL;
5158
5159 req->flags |= REQ_F_POLLED;
5160 req->apoll = apoll;
5161
5162 mask = EPOLLONESHOT;
5163 if (def->pollin)
5164 mask |= POLLIN | POLLRDNORM;
5165 if (def->pollout)
5166 mask |= POLLOUT | POLLWRNORM;
5167
5168 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5169 if ((req->opcode == IORING_OP_RECVMSG) &&
5170 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5171 mask &= ~POLLIN;
5172
5173 mask |= POLLERR | POLLPRI;
5174
5175 ipt.pt._qproc = io_async_queue_proc;
5176
5177 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5178 io_async_wake);
5179 if (ret || ipt.error) {
5180 io_poll_remove_double(req);
5181 spin_unlock_irq(&ctx->completion_lock);
5182 return false;
5183 }
5184 spin_unlock_irq(&ctx->completion_lock);
5185 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5186 apoll->poll.events);
5187 return true;
5188 }
5189
5190 static bool __io_poll_remove_one(struct io_kiocb *req,
5191 struct io_poll_iocb *poll, bool do_cancel)
5192 __must_hold(&req->ctx->completion_lock)
5193 {
5194 bool do_complete = false;
5195
5196 if (!poll->head)
5197 return false;
5198 spin_lock(&poll->head->lock);
5199 if (do_cancel)
5200 WRITE_ONCE(poll->canceled, true);
5201 if (!list_empty(&poll->wait.entry)) {
5202 list_del_init(&poll->wait.entry);
5203 do_complete = true;
5204 }
5205 spin_unlock(&poll->head->lock);
5206 hash_del(&req->hash_node);
5207 return do_complete;
5208 }
5209
5210 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5211 __must_hold(&req->ctx->completion_lock)
5212 {
5213 bool do_complete;
5214
5215 io_poll_remove_double(req);
5216 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5217
5218 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5219 /* non-poll requests have submit ref still */
5220 req_ref_put(req);
5221 }
5222 return do_complete;
5223 }
5224
5225 static bool io_poll_remove_one(struct io_kiocb *req)
5226 __must_hold(&req->ctx->completion_lock)
5227 {
5228 bool do_complete;
5229
5230 do_complete = io_poll_remove_waitqs(req);
5231 if (do_complete) {
5232 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5233 io_commit_cqring(req->ctx);
5234 req_set_fail_links(req);
5235 io_put_req_deferred(req, 1);
5236 }
5237
5238 return do_complete;
5239 }
5240
5241 /*
5242 * Returns true if we found and killed one or more poll requests
5243 */
5244 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5245 struct files_struct *files)
5246 {
5247 struct hlist_node *tmp;
5248 struct io_kiocb *req;
5249 int posted = 0, i;
5250
5251 spin_lock_irq(&ctx->completion_lock);
5252 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5253 struct hlist_head *list;
5254
5255 list = &ctx->cancel_hash[i];
5256 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5257 if (io_match_task(req, tsk, files))
5258 posted += io_poll_remove_one(req);
5259 }
5260 }
5261 spin_unlock_irq(&ctx->completion_lock);
5262
5263 if (posted)
5264 io_cqring_ev_posted(ctx);
5265
5266 return posted != 0;
5267 }
5268
5269 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5270 bool poll_only)
5271 __must_hold(&ctx->completion_lock)
5272 {
5273 struct hlist_head *list;
5274 struct io_kiocb *req;
5275
5276 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5277 hlist_for_each_entry(req, list, hash_node) {
5278 if (sqe_addr != req->user_data)
5279 continue;
5280 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5281 continue;
5282 return req;
5283 }
5284 return NULL;
5285 }
5286
5287 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5288 bool poll_only)
5289 __must_hold(&ctx->completion_lock)
5290 {
5291 struct io_kiocb *req;
5292
5293 req = io_poll_find(ctx, sqe_addr, poll_only);
5294 if (!req)
5295 return -ENOENT;
5296 if (io_poll_remove_one(req))
5297 return 0;
5298
5299 return -EALREADY;
5300 }
5301
5302 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5303 unsigned int flags)
5304 {
5305 u32 events;
5306
5307 events = READ_ONCE(sqe->poll32_events);
5308 #ifdef __BIG_ENDIAN
5309 events = swahw32(events);
5310 #endif
5311 if (!(flags & IORING_POLL_ADD_MULTI))
5312 events |= EPOLLONESHOT;
5313 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5314 }
5315
5316 static int io_poll_update_prep(struct io_kiocb *req,
5317 const struct io_uring_sqe *sqe)
5318 {
5319 struct io_poll_update *upd = &req->poll_update;
5320 u32 flags;
5321
5322 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5323 return -EINVAL;
5324 if (sqe->ioprio || sqe->buf_index)
5325 return -EINVAL;
5326 flags = READ_ONCE(sqe->len);
5327 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5328 IORING_POLL_ADD_MULTI))
5329 return -EINVAL;
5330 /* meaningless without update */
5331 if (flags == IORING_POLL_ADD_MULTI)
5332 return -EINVAL;
5333
5334 upd->old_user_data = READ_ONCE(sqe->addr);
5335 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5336 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5337
5338 upd->new_user_data = READ_ONCE(sqe->off);
5339 if (!upd->update_user_data && upd->new_user_data)
5340 return -EINVAL;
5341 if (upd->update_events)
5342 upd->events = io_poll_parse_events(sqe, flags);
5343 else if (sqe->poll32_events)
5344 return -EINVAL;
5345
5346 return 0;
5347 }
5348
5349 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5350 void *key)
5351 {
5352 struct io_kiocb *req = wait->private;
5353 struct io_poll_iocb *poll = &req->poll;
5354
5355 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5356 }
5357
5358 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5359 struct poll_table_struct *p)
5360 {
5361 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5362
5363 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5364 }
5365
5366 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5367 {
5368 struct io_poll_iocb *poll = &req->poll;
5369 u32 flags;
5370
5371 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5372 return -EINVAL;
5373 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5374 return -EINVAL;
5375 flags = READ_ONCE(sqe->len);
5376 if (flags & ~IORING_POLL_ADD_MULTI)
5377 return -EINVAL;
5378
5379 poll->events = io_poll_parse_events(sqe, flags);
5380 return 0;
5381 }
5382
5383 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5384 {
5385 struct io_poll_iocb *poll = &req->poll;
5386 struct io_ring_ctx *ctx = req->ctx;
5387 struct io_poll_table ipt;
5388 __poll_t mask;
5389
5390 ipt.pt._qproc = io_poll_queue_proc;
5391
5392 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5393 io_poll_wake);
5394
5395 if (mask) { /* no async, we'd stolen it */
5396 ipt.error = 0;
5397 io_poll_complete(req, mask);
5398 }
5399 spin_unlock_irq(&ctx->completion_lock);
5400
5401 if (mask) {
5402 io_cqring_ev_posted(ctx);
5403 if (poll->events & EPOLLONESHOT)
5404 io_put_req(req);
5405 }
5406 return ipt.error;
5407 }
5408
5409 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5410 {
5411 struct io_ring_ctx *ctx = req->ctx;
5412 struct io_kiocb *preq;
5413 bool completing;
5414 int ret;
5415
5416 spin_lock_irq(&ctx->completion_lock);
5417 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5418 if (!preq) {
5419 ret = -ENOENT;
5420 goto err;
5421 }
5422
5423 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5424 completing = true;
5425 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5426 goto err;
5427 }
5428
5429 /*
5430 * Don't allow racy completion with singleshot, as we cannot safely
5431 * update those. For multishot, if we're racing with completion, just
5432 * let completion re-add it.
5433 */
5434 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5435 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5436 ret = -EALREADY;
5437 goto err;
5438 }
5439 /* we now have a detached poll request. reissue. */
5440 ret = 0;
5441 err:
5442 if (ret < 0) {
5443 spin_unlock_irq(&ctx->completion_lock);
5444 req_set_fail_links(req);
5445 io_req_complete(req, ret);
5446 return 0;
5447 }
5448 /* only mask one event flags, keep behavior flags */
5449 if (req->poll_update.update_events) {
5450 preq->poll.events &= ~0xffff;
5451 preq->poll.events |= req->poll_update.events & 0xffff;
5452 preq->poll.events |= IO_POLL_UNMASK;
5453 }
5454 if (req->poll_update.update_user_data)
5455 preq->user_data = req->poll_update.new_user_data;
5456 spin_unlock_irq(&ctx->completion_lock);
5457
5458 /* complete update request, we're done with it */
5459 io_req_complete(req, ret);
5460
5461 if (!completing) {
5462 ret = io_poll_add(preq, issue_flags);
5463 if (ret < 0) {
5464 req_set_fail_links(preq);
5465 io_req_complete(preq, ret);
5466 }
5467 }
5468 return 0;
5469 }
5470
5471 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5472 {
5473 struct io_timeout_data *data = container_of(timer,
5474 struct io_timeout_data, timer);
5475 struct io_kiocb *req = data->req;
5476 struct io_ring_ctx *ctx = req->ctx;
5477 unsigned long flags;
5478
5479 spin_lock_irqsave(&ctx->completion_lock, flags);
5480 list_del_init(&req->timeout.list);
5481 atomic_set(&req->ctx->cq_timeouts,
5482 atomic_read(&req->ctx->cq_timeouts) + 1);
5483
5484 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5485 io_commit_cqring(ctx);
5486 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5487
5488 io_cqring_ev_posted(ctx);
5489 req_set_fail_links(req);
5490 io_put_req(req);
5491 return HRTIMER_NORESTART;
5492 }
5493
5494 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5495 __u64 user_data)
5496 __must_hold(&ctx->completion_lock)
5497 {
5498 struct io_timeout_data *io;
5499 struct io_kiocb *req;
5500 bool found = false;
5501
5502 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5503 found = user_data == req->user_data;
5504 if (found)
5505 break;
5506 }
5507 if (!found)
5508 return ERR_PTR(-ENOENT);
5509
5510 io = req->async_data;
5511 if (hrtimer_try_to_cancel(&io->timer) == -1)
5512 return ERR_PTR(-EALREADY);
5513 list_del_init(&req->timeout.list);
5514 return req;
5515 }
5516
5517 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5518 __must_hold(&ctx->completion_lock)
5519 {
5520 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5521
5522 if (IS_ERR(req))
5523 return PTR_ERR(req);
5524
5525 req_set_fail_links(req);
5526 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5527 io_put_req_deferred(req, 1);
5528 return 0;
5529 }
5530
5531 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5532 struct timespec64 *ts, enum hrtimer_mode mode)
5533 __must_hold(&ctx->completion_lock)
5534 {
5535 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5536 struct io_timeout_data *data;
5537
5538 if (IS_ERR(req))
5539 return PTR_ERR(req);
5540
5541 req->timeout.off = 0; /* noseq */
5542 data = req->async_data;
5543 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5544 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5545 data->timer.function = io_timeout_fn;
5546 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5547 return 0;
5548 }
5549
5550 static int io_timeout_remove_prep(struct io_kiocb *req,
5551 const struct io_uring_sqe *sqe)
5552 {
5553 struct io_timeout_rem *tr = &req->timeout_rem;
5554
5555 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5556 return -EINVAL;
5557 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5558 return -EINVAL;
5559 if (sqe->ioprio || sqe->buf_index || sqe->len)
5560 return -EINVAL;
5561
5562 tr->addr = READ_ONCE(sqe->addr);
5563 tr->flags = READ_ONCE(sqe->timeout_flags);
5564 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5565 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5566 return -EINVAL;
5567 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5568 return -EFAULT;
5569 } else if (tr->flags) {
5570 /* timeout removal doesn't support flags */
5571 return -EINVAL;
5572 }
5573
5574 return 0;
5575 }
5576
5577 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5578 {
5579 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5580 : HRTIMER_MODE_REL;
5581 }
5582
5583 /*
5584 * Remove or update an existing timeout command
5585 */
5586 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5587 {
5588 struct io_timeout_rem *tr = &req->timeout_rem;
5589 struct io_ring_ctx *ctx = req->ctx;
5590 int ret;
5591
5592 spin_lock_irq(&ctx->completion_lock);
5593 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5594 ret = io_timeout_cancel(ctx, tr->addr);
5595 else
5596 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5597 io_translate_timeout_mode(tr->flags));
5598
5599 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5600 io_commit_cqring(ctx);
5601 spin_unlock_irq(&ctx->completion_lock);
5602 io_cqring_ev_posted(ctx);
5603 if (ret < 0)
5604 req_set_fail_links(req);
5605 io_put_req(req);
5606 return 0;
5607 }
5608
5609 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5610 bool is_timeout_link)
5611 {
5612 struct io_timeout_data *data;
5613 unsigned flags;
5614 u32 off = READ_ONCE(sqe->off);
5615
5616 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5617 return -EINVAL;
5618 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5619 return -EINVAL;
5620 if (off && is_timeout_link)
5621 return -EINVAL;
5622 flags = READ_ONCE(sqe->timeout_flags);
5623 if (flags & ~IORING_TIMEOUT_ABS)
5624 return -EINVAL;
5625
5626 req->timeout.off = off;
5627
5628 if (!req->async_data && io_alloc_async_data(req))
5629 return -ENOMEM;
5630
5631 data = req->async_data;
5632 data->req = req;
5633
5634 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5635 return -EFAULT;
5636
5637 data->mode = io_translate_timeout_mode(flags);
5638 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5639 if (is_timeout_link)
5640 io_req_track_inflight(req);
5641 return 0;
5642 }
5643
5644 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5645 {
5646 struct io_ring_ctx *ctx = req->ctx;
5647 struct io_timeout_data *data = req->async_data;
5648 struct list_head *entry;
5649 u32 tail, off = req->timeout.off;
5650
5651 spin_lock_irq(&ctx->completion_lock);
5652
5653 /*
5654 * sqe->off holds how many events that need to occur for this
5655 * timeout event to be satisfied. If it isn't set, then this is
5656 * a pure timeout request, sequence isn't used.
5657 */
5658 if (io_is_timeout_noseq(req)) {
5659 entry = ctx->timeout_list.prev;
5660 goto add;
5661 }
5662
5663 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5664 req->timeout.target_seq = tail + off;
5665
5666 /* Update the last seq here in case io_flush_timeouts() hasn't.
5667 * This is safe because ->completion_lock is held, and submissions
5668 * and completions are never mixed in the same ->completion_lock section.
5669 */
5670 ctx->cq_last_tm_flush = tail;
5671
5672 /*
5673 * Insertion sort, ensuring the first entry in the list is always
5674 * the one we need first.
5675 */
5676 list_for_each_prev(entry, &ctx->timeout_list) {
5677 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5678 timeout.list);
5679
5680 if (io_is_timeout_noseq(nxt))
5681 continue;
5682 /* nxt.seq is behind @tail, otherwise would've been completed */
5683 if (off >= nxt->timeout.target_seq - tail)
5684 break;
5685 }
5686 add:
5687 list_add(&req->timeout.list, entry);
5688 data->timer.function = io_timeout_fn;
5689 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5690 spin_unlock_irq(&ctx->completion_lock);
5691 return 0;
5692 }
5693
5694 struct io_cancel_data {
5695 struct io_ring_ctx *ctx;
5696 u64 user_data;
5697 };
5698
5699 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5700 {
5701 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5702 struct io_cancel_data *cd = data;
5703
5704 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5705 }
5706
5707 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5708 struct io_ring_ctx *ctx)
5709 {
5710 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5711 enum io_wq_cancel cancel_ret;
5712 int ret = 0;
5713
5714 if (!tctx || !tctx->io_wq)
5715 return -ENOENT;
5716
5717 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5718 switch (cancel_ret) {
5719 case IO_WQ_CANCEL_OK:
5720 ret = 0;
5721 break;
5722 case IO_WQ_CANCEL_RUNNING:
5723 ret = -EALREADY;
5724 break;
5725 case IO_WQ_CANCEL_NOTFOUND:
5726 ret = -ENOENT;
5727 break;
5728 }
5729
5730 return ret;
5731 }
5732
5733 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5734 struct io_kiocb *req, __u64 sqe_addr,
5735 int success_ret)
5736 {
5737 unsigned long flags;
5738 int ret;
5739
5740 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5741 spin_lock_irqsave(&ctx->completion_lock, flags);
5742 if (ret != -ENOENT)
5743 goto done;
5744 ret = io_timeout_cancel(ctx, sqe_addr);
5745 if (ret != -ENOENT)
5746 goto done;
5747 ret = io_poll_cancel(ctx, sqe_addr, false);
5748 done:
5749 if (!ret)
5750 ret = success_ret;
5751 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5752 io_commit_cqring(ctx);
5753 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5754 io_cqring_ev_posted(ctx);
5755
5756 if (ret < 0)
5757 req_set_fail_links(req);
5758 }
5759
5760 static int io_async_cancel_prep(struct io_kiocb *req,
5761 const struct io_uring_sqe *sqe)
5762 {
5763 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5764 return -EINVAL;
5765 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5766 return -EINVAL;
5767 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5768 return -EINVAL;
5769
5770 req->cancel.addr = READ_ONCE(sqe->addr);
5771 return 0;
5772 }
5773
5774 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5775 {
5776 struct io_ring_ctx *ctx = req->ctx;
5777 u64 sqe_addr = req->cancel.addr;
5778 struct io_tctx_node *node;
5779 int ret;
5780
5781 /* tasks should wait for their io-wq threads, so safe w/o sync */
5782 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5783 spin_lock_irq(&ctx->completion_lock);
5784 if (ret != -ENOENT)
5785 goto done;
5786 ret = io_timeout_cancel(ctx, sqe_addr);
5787 if (ret != -ENOENT)
5788 goto done;
5789 ret = io_poll_cancel(ctx, sqe_addr, false);
5790 if (ret != -ENOENT)
5791 goto done;
5792 spin_unlock_irq(&ctx->completion_lock);
5793
5794 /* slow path, try all io-wq's */
5795 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5796 ret = -ENOENT;
5797 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5798 struct io_uring_task *tctx = node->task->io_uring;
5799
5800 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5801 if (ret != -ENOENT)
5802 break;
5803 }
5804 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5805
5806 spin_lock_irq(&ctx->completion_lock);
5807 done:
5808 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5809 io_commit_cqring(ctx);
5810 spin_unlock_irq(&ctx->completion_lock);
5811 io_cqring_ev_posted(ctx);
5812
5813 if (ret < 0)
5814 req_set_fail_links(req);
5815 io_put_req(req);
5816 return 0;
5817 }
5818
5819 static int io_rsrc_update_prep(struct io_kiocb *req,
5820 const struct io_uring_sqe *sqe)
5821 {
5822 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5823 return -EINVAL;
5824 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5825 return -EINVAL;
5826 if (sqe->ioprio || sqe->rw_flags)
5827 return -EINVAL;
5828
5829 req->rsrc_update.offset = READ_ONCE(sqe->off);
5830 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5831 if (!req->rsrc_update.nr_args)
5832 return -EINVAL;
5833 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5834 return 0;
5835 }
5836
5837 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5838 {
5839 struct io_ring_ctx *ctx = req->ctx;
5840 struct io_uring_rsrc_update2 up;
5841 int ret;
5842
5843 if (issue_flags & IO_URING_F_NONBLOCK)
5844 return -EAGAIN;
5845
5846 up.offset = req->rsrc_update.offset;
5847 up.data = req->rsrc_update.arg;
5848 up.nr = 0;
5849 up.tags = 0;
5850 up.resv = 0;
5851
5852 mutex_lock(&ctx->uring_lock);
5853 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5854 &up, req->rsrc_update.nr_args);
5855 mutex_unlock(&ctx->uring_lock);
5856
5857 if (ret < 0)
5858 req_set_fail_links(req);
5859 __io_req_complete(req, issue_flags, ret, 0);
5860 return 0;
5861 }
5862
5863 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5864 {
5865 switch (req->opcode) {
5866 case IORING_OP_NOP:
5867 return 0;
5868 case IORING_OP_READV:
5869 case IORING_OP_READ_FIXED:
5870 case IORING_OP_READ:
5871 return io_read_prep(req, sqe);
5872 case IORING_OP_WRITEV:
5873 case IORING_OP_WRITE_FIXED:
5874 case IORING_OP_WRITE:
5875 return io_write_prep(req, sqe);
5876 case IORING_OP_POLL_ADD:
5877 return io_poll_add_prep(req, sqe);
5878 case IORING_OP_POLL_REMOVE:
5879 return io_poll_update_prep(req, sqe);
5880 case IORING_OP_FSYNC:
5881 return io_fsync_prep(req, sqe);
5882 case IORING_OP_SYNC_FILE_RANGE:
5883 return io_sfr_prep(req, sqe);
5884 case IORING_OP_SENDMSG:
5885 case IORING_OP_SEND:
5886 return io_sendmsg_prep(req, sqe);
5887 case IORING_OP_RECVMSG:
5888 case IORING_OP_RECV:
5889 return io_recvmsg_prep(req, sqe);
5890 case IORING_OP_CONNECT:
5891 return io_connect_prep(req, sqe);
5892 case IORING_OP_TIMEOUT:
5893 return io_timeout_prep(req, sqe, false);
5894 case IORING_OP_TIMEOUT_REMOVE:
5895 return io_timeout_remove_prep(req, sqe);
5896 case IORING_OP_ASYNC_CANCEL:
5897 return io_async_cancel_prep(req, sqe);
5898 case IORING_OP_LINK_TIMEOUT:
5899 return io_timeout_prep(req, sqe, true);
5900 case IORING_OP_ACCEPT:
5901 return io_accept_prep(req, sqe);
5902 case IORING_OP_FALLOCATE:
5903 return io_fallocate_prep(req, sqe);
5904 case IORING_OP_OPENAT:
5905 return io_openat_prep(req, sqe);
5906 case IORING_OP_CLOSE:
5907 return io_close_prep(req, sqe);
5908 case IORING_OP_FILES_UPDATE:
5909 return io_rsrc_update_prep(req, sqe);
5910 case IORING_OP_STATX:
5911 return io_statx_prep(req, sqe);
5912 case IORING_OP_FADVISE:
5913 return io_fadvise_prep(req, sqe);
5914 case IORING_OP_MADVISE:
5915 return io_madvise_prep(req, sqe);
5916 case IORING_OP_OPENAT2:
5917 return io_openat2_prep(req, sqe);
5918 case IORING_OP_EPOLL_CTL:
5919 return io_epoll_ctl_prep(req, sqe);
5920 case IORING_OP_SPLICE:
5921 return io_splice_prep(req, sqe);
5922 case IORING_OP_PROVIDE_BUFFERS:
5923 return io_provide_buffers_prep(req, sqe);
5924 case IORING_OP_REMOVE_BUFFERS:
5925 return io_remove_buffers_prep(req, sqe);
5926 case IORING_OP_TEE:
5927 return io_tee_prep(req, sqe);
5928 case IORING_OP_SHUTDOWN:
5929 return io_shutdown_prep(req, sqe);
5930 case IORING_OP_RENAMEAT:
5931 return io_renameat_prep(req, sqe);
5932 case IORING_OP_UNLINKAT:
5933 return io_unlinkat_prep(req, sqe);
5934 }
5935
5936 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5937 req->opcode);
5938 return -EINVAL;
5939 }
5940
5941 static int io_req_prep_async(struct io_kiocb *req)
5942 {
5943 if (!io_op_defs[req->opcode].needs_async_setup)
5944 return 0;
5945 if (WARN_ON_ONCE(req->async_data))
5946 return -EFAULT;
5947 if (io_alloc_async_data(req))
5948 return -EAGAIN;
5949
5950 switch (req->opcode) {
5951 case IORING_OP_READV:
5952 return io_rw_prep_async(req, READ);
5953 case IORING_OP_WRITEV:
5954 return io_rw_prep_async(req, WRITE);
5955 case IORING_OP_SENDMSG:
5956 return io_sendmsg_prep_async(req);
5957 case IORING_OP_RECVMSG:
5958 return io_recvmsg_prep_async(req);
5959 case IORING_OP_CONNECT:
5960 return io_connect_prep_async(req);
5961 }
5962 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5963 req->opcode);
5964 return -EFAULT;
5965 }
5966
5967 static u32 io_get_sequence(struct io_kiocb *req)
5968 {
5969 struct io_kiocb *pos;
5970 struct io_ring_ctx *ctx = req->ctx;
5971 u32 total_submitted, nr_reqs = 0;
5972
5973 io_for_each_link(pos, req)
5974 nr_reqs++;
5975
5976 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5977 return total_submitted - nr_reqs;
5978 }
5979
5980 static int io_req_defer(struct io_kiocb *req)
5981 {
5982 struct io_ring_ctx *ctx = req->ctx;
5983 struct io_defer_entry *de;
5984 int ret;
5985 u32 seq;
5986
5987 /* Still need defer if there is pending req in defer list. */
5988 if (likely(list_empty_careful(&ctx->defer_list) &&
5989 !(req->flags & REQ_F_IO_DRAIN)))
5990 return 0;
5991
5992 seq = io_get_sequence(req);
5993 /* Still a chance to pass the sequence check */
5994 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5995 return 0;
5996
5997 ret = io_req_prep_async(req);
5998 if (ret)
5999 return ret;
6000 io_prep_async_link(req);
6001 de = kmalloc(sizeof(*de), GFP_KERNEL);
6002 if (!de)
6003 return -ENOMEM;
6004
6005 spin_lock_irq(&ctx->completion_lock);
6006 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6007 spin_unlock_irq(&ctx->completion_lock);
6008 kfree(de);
6009 io_queue_async_work(req);
6010 return -EIOCBQUEUED;
6011 }
6012
6013 trace_io_uring_defer(ctx, req, req->user_data);
6014 de->req = req;
6015 de->seq = seq;
6016 list_add_tail(&de->list, &ctx->defer_list);
6017 spin_unlock_irq(&ctx->completion_lock);
6018 return -EIOCBQUEUED;
6019 }
6020
6021 static void io_clean_op(struct io_kiocb *req)
6022 {
6023 if (req->flags & REQ_F_BUFFER_SELECTED) {
6024 switch (req->opcode) {
6025 case IORING_OP_READV:
6026 case IORING_OP_READ_FIXED:
6027 case IORING_OP_READ:
6028 kfree((void *)(unsigned long)req->rw.addr);
6029 break;
6030 case IORING_OP_RECVMSG:
6031 case IORING_OP_RECV:
6032 kfree(req->sr_msg.kbuf);
6033 break;
6034 }
6035 req->flags &= ~REQ_F_BUFFER_SELECTED;
6036 }
6037
6038 if (req->flags & REQ_F_NEED_CLEANUP) {
6039 switch (req->opcode) {
6040 case IORING_OP_READV:
6041 case IORING_OP_READ_FIXED:
6042 case IORING_OP_READ:
6043 case IORING_OP_WRITEV:
6044 case IORING_OP_WRITE_FIXED:
6045 case IORING_OP_WRITE: {
6046 struct io_async_rw *io = req->async_data;
6047 if (io->free_iovec)
6048 kfree(io->free_iovec);
6049 break;
6050 }
6051 case IORING_OP_RECVMSG:
6052 case IORING_OP_SENDMSG: {
6053 struct io_async_msghdr *io = req->async_data;
6054
6055 kfree(io->free_iov);
6056 break;
6057 }
6058 case IORING_OP_SPLICE:
6059 case IORING_OP_TEE:
6060 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6061 io_put_file(req->splice.file_in);
6062 break;
6063 case IORING_OP_OPENAT:
6064 case IORING_OP_OPENAT2:
6065 if (req->open.filename)
6066 putname(req->open.filename);
6067 break;
6068 case IORING_OP_RENAMEAT:
6069 putname(req->rename.oldpath);
6070 putname(req->rename.newpath);
6071 break;
6072 case IORING_OP_UNLINKAT:
6073 putname(req->unlink.filename);
6074 break;
6075 }
6076 req->flags &= ~REQ_F_NEED_CLEANUP;
6077 }
6078 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6079 kfree(req->apoll->double_poll);
6080 kfree(req->apoll);
6081 req->apoll = NULL;
6082 }
6083 if (req->flags & REQ_F_INFLIGHT) {
6084 struct io_uring_task *tctx = req->task->io_uring;
6085
6086 atomic_dec(&tctx->inflight_tracked);
6087 req->flags &= ~REQ_F_INFLIGHT;
6088 }
6089 }
6090
6091 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6092 {
6093 struct io_ring_ctx *ctx = req->ctx;
6094 const struct cred *creds = NULL;
6095 int ret;
6096
6097 if (req->work.creds && req->work.creds != current_cred())
6098 creds = override_creds(req->work.creds);
6099
6100 switch (req->opcode) {
6101 case IORING_OP_NOP:
6102 ret = io_nop(req, issue_flags);
6103 break;
6104 case IORING_OP_READV:
6105 case IORING_OP_READ_FIXED:
6106 case IORING_OP_READ:
6107 ret = io_read(req, issue_flags);
6108 break;
6109 case IORING_OP_WRITEV:
6110 case IORING_OP_WRITE_FIXED:
6111 case IORING_OP_WRITE:
6112 ret = io_write(req, issue_flags);
6113 break;
6114 case IORING_OP_FSYNC:
6115 ret = io_fsync(req, issue_flags);
6116 break;
6117 case IORING_OP_POLL_ADD:
6118 ret = io_poll_add(req, issue_flags);
6119 break;
6120 case IORING_OP_POLL_REMOVE:
6121 ret = io_poll_update(req, issue_flags);
6122 break;
6123 case IORING_OP_SYNC_FILE_RANGE:
6124 ret = io_sync_file_range(req, issue_flags);
6125 break;
6126 case IORING_OP_SENDMSG:
6127 ret = io_sendmsg(req, issue_flags);
6128 break;
6129 case IORING_OP_SEND:
6130 ret = io_send(req, issue_flags);
6131 break;
6132 case IORING_OP_RECVMSG:
6133 ret = io_recvmsg(req, issue_flags);
6134 break;
6135 case IORING_OP_RECV:
6136 ret = io_recv(req, issue_flags);
6137 break;
6138 case IORING_OP_TIMEOUT:
6139 ret = io_timeout(req, issue_flags);
6140 break;
6141 case IORING_OP_TIMEOUT_REMOVE:
6142 ret = io_timeout_remove(req, issue_flags);
6143 break;
6144 case IORING_OP_ACCEPT:
6145 ret = io_accept(req, issue_flags);
6146 break;
6147 case IORING_OP_CONNECT:
6148 ret = io_connect(req, issue_flags);
6149 break;
6150 case IORING_OP_ASYNC_CANCEL:
6151 ret = io_async_cancel(req, issue_flags);
6152 break;
6153 case IORING_OP_FALLOCATE:
6154 ret = io_fallocate(req, issue_flags);
6155 break;
6156 case IORING_OP_OPENAT:
6157 ret = io_openat(req, issue_flags);
6158 break;
6159 case IORING_OP_CLOSE:
6160 ret = io_close(req, issue_flags);
6161 break;
6162 case IORING_OP_FILES_UPDATE:
6163 ret = io_files_update(req, issue_flags);
6164 break;
6165 case IORING_OP_STATX:
6166 ret = io_statx(req, issue_flags);
6167 break;
6168 case IORING_OP_FADVISE:
6169 ret = io_fadvise(req, issue_flags);
6170 break;
6171 case IORING_OP_MADVISE:
6172 ret = io_madvise(req, issue_flags);
6173 break;
6174 case IORING_OP_OPENAT2:
6175 ret = io_openat2(req, issue_flags);
6176 break;
6177 case IORING_OP_EPOLL_CTL:
6178 ret = io_epoll_ctl(req, issue_flags);
6179 break;
6180 case IORING_OP_SPLICE:
6181 ret = io_splice(req, issue_flags);
6182 break;
6183 case IORING_OP_PROVIDE_BUFFERS:
6184 ret = io_provide_buffers(req, issue_flags);
6185 break;
6186 case IORING_OP_REMOVE_BUFFERS:
6187 ret = io_remove_buffers(req, issue_flags);
6188 break;
6189 case IORING_OP_TEE:
6190 ret = io_tee(req, issue_flags);
6191 break;
6192 case IORING_OP_SHUTDOWN:
6193 ret = io_shutdown(req, issue_flags);
6194 break;
6195 case IORING_OP_RENAMEAT:
6196 ret = io_renameat(req, issue_flags);
6197 break;
6198 case IORING_OP_UNLINKAT:
6199 ret = io_unlinkat(req, issue_flags);
6200 break;
6201 default:
6202 ret = -EINVAL;
6203 break;
6204 }
6205
6206 if (creds)
6207 revert_creds(creds);
6208
6209 if (ret)
6210 return ret;
6211
6212 /* If the op doesn't have a file, we're not polling for it */
6213 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6214 const bool in_async = io_wq_current_is_worker();
6215
6216 /* workqueue context doesn't hold uring_lock, grab it now */
6217 if (in_async)
6218 mutex_lock(&ctx->uring_lock);
6219
6220 io_iopoll_req_issued(req, in_async);
6221
6222 if (in_async)
6223 mutex_unlock(&ctx->uring_lock);
6224 }
6225
6226 return 0;
6227 }
6228
6229 static void io_wq_submit_work(struct io_wq_work *work)
6230 {
6231 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6232 struct io_kiocb *timeout;
6233 int ret = 0;
6234
6235 timeout = io_prep_linked_timeout(req);
6236 if (timeout)
6237 io_queue_linked_timeout(timeout);
6238
6239 if (work->flags & IO_WQ_WORK_CANCEL)
6240 ret = -ECANCELED;
6241
6242 if (!ret) {
6243 do {
6244 ret = io_issue_sqe(req, 0);
6245 /*
6246 * We can get EAGAIN for polled IO even though we're
6247 * forcing a sync submission from here, since we can't
6248 * wait for request slots on the block side.
6249 */
6250 if (ret != -EAGAIN)
6251 break;
6252 cond_resched();
6253 } while (1);
6254 }
6255
6256 /* avoid locking problems by failing it from a clean context */
6257 if (ret) {
6258 /* io-wq is going to take one down */
6259 req_ref_get(req);
6260 io_req_task_queue_fail(req, ret);
6261 }
6262 }
6263
6264 #define FFS_ASYNC_READ 0x1UL
6265 #define FFS_ASYNC_WRITE 0x2UL
6266 #ifdef CONFIG_64BIT
6267 #define FFS_ISREG 0x4UL
6268 #else
6269 #define FFS_ISREG 0x0UL
6270 #endif
6271 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6272
6273 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6274 unsigned i)
6275 {
6276 struct io_fixed_file *table_l2;
6277
6278 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6279 return &table_l2[i & IORING_FILE_TABLE_MASK];
6280 }
6281
6282 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6283 int index)
6284 {
6285 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6286
6287 return (struct file *) (slot->file_ptr & FFS_MASK);
6288 }
6289
6290 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6291 {
6292 unsigned long file_ptr = (unsigned long) file;
6293
6294 if (__io_file_supports_async(file, READ))
6295 file_ptr |= FFS_ASYNC_READ;
6296 if (__io_file_supports_async(file, WRITE))
6297 file_ptr |= FFS_ASYNC_WRITE;
6298 if (S_ISREG(file_inode(file)->i_mode))
6299 file_ptr |= FFS_ISREG;
6300 file_slot->file_ptr = file_ptr;
6301 }
6302
6303 static struct file *io_file_get(struct io_submit_state *state,
6304 struct io_kiocb *req, int fd, bool fixed)
6305 {
6306 struct io_ring_ctx *ctx = req->ctx;
6307 struct file *file;
6308
6309 if (fixed) {
6310 unsigned long file_ptr;
6311
6312 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6313 return NULL;
6314 fd = array_index_nospec(fd, ctx->nr_user_files);
6315 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6316 file = (struct file *) (file_ptr & FFS_MASK);
6317 file_ptr &= ~FFS_MASK;
6318 /* mask in overlapping REQ_F and FFS bits */
6319 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6320 io_req_set_rsrc_node(req);
6321 } else {
6322 trace_io_uring_file_get(ctx, fd);
6323 file = __io_file_get(state, fd);
6324
6325 /* we don't allow fixed io_uring files */
6326 if (file && unlikely(file->f_op == &io_uring_fops))
6327 io_req_track_inflight(req);
6328 }
6329
6330 return file;
6331 }
6332
6333 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6334 {
6335 struct io_timeout_data *data = container_of(timer,
6336 struct io_timeout_data, timer);
6337 struct io_kiocb *prev, *req = data->req;
6338 struct io_ring_ctx *ctx = req->ctx;
6339 unsigned long flags;
6340
6341 spin_lock_irqsave(&ctx->completion_lock, flags);
6342 prev = req->timeout.head;
6343 req->timeout.head = NULL;
6344
6345 /*
6346 * We don't expect the list to be empty, that will only happen if we
6347 * race with the completion of the linked work.
6348 */
6349 if (prev && req_ref_inc_not_zero(prev))
6350 io_remove_next_linked(prev);
6351 else
6352 prev = NULL;
6353 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6354
6355 if (prev) {
6356 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6357 io_put_req_deferred(prev, 1);
6358 } else {
6359 io_req_complete_post(req, -ETIME, 0);
6360 }
6361 io_put_req_deferred(req, 1);
6362 return HRTIMER_NORESTART;
6363 }
6364
6365 static void io_queue_linked_timeout(struct io_kiocb *req)
6366 {
6367 struct io_ring_ctx *ctx = req->ctx;
6368
6369 spin_lock_irq(&ctx->completion_lock);
6370 /*
6371 * If the back reference is NULL, then our linked request finished
6372 * before we got a chance to setup the timer
6373 */
6374 if (req->timeout.head) {
6375 struct io_timeout_data *data = req->async_data;
6376
6377 data->timer.function = io_link_timeout_fn;
6378 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6379 data->mode);
6380 }
6381 spin_unlock_irq(&ctx->completion_lock);
6382 /* drop submission reference */
6383 io_put_req(req);
6384 }
6385
6386 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6387 {
6388 struct io_kiocb *nxt = req->link;
6389
6390 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6391 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6392 return NULL;
6393
6394 nxt->timeout.head = req;
6395 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6396 req->flags |= REQ_F_LINK_TIMEOUT;
6397 return nxt;
6398 }
6399
6400 static void __io_queue_sqe(struct io_kiocb *req)
6401 {
6402 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6403 int ret;
6404
6405 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6406
6407 /*
6408 * We async punt it if the file wasn't marked NOWAIT, or if the file
6409 * doesn't support non-blocking read/write attempts
6410 */
6411 if (likely(!ret)) {
6412 /* drop submission reference */
6413 if (req->flags & REQ_F_COMPLETE_INLINE) {
6414 struct io_ring_ctx *ctx = req->ctx;
6415 struct io_comp_state *cs = &ctx->submit_state.comp;
6416
6417 cs->reqs[cs->nr++] = req;
6418 if (cs->nr == ARRAY_SIZE(cs->reqs))
6419 io_submit_flush_completions(cs, ctx);
6420 } else {
6421 io_put_req(req);
6422 }
6423 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6424 if (!io_arm_poll_handler(req)) {
6425 /*
6426 * Queued up for async execution, worker will release
6427 * submit reference when the iocb is actually submitted.
6428 */
6429 io_queue_async_work(req);
6430 }
6431 } else {
6432 io_req_complete_failed(req, ret);
6433 }
6434 if (linked_timeout)
6435 io_queue_linked_timeout(linked_timeout);
6436 }
6437
6438 static void io_queue_sqe(struct io_kiocb *req)
6439 {
6440 int ret;
6441
6442 ret = io_req_defer(req);
6443 if (ret) {
6444 if (ret != -EIOCBQUEUED) {
6445 fail_req:
6446 io_req_complete_failed(req, ret);
6447 }
6448 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6449 ret = io_req_prep_async(req);
6450 if (unlikely(ret))
6451 goto fail_req;
6452 io_queue_async_work(req);
6453 } else {
6454 __io_queue_sqe(req);
6455 }
6456 }
6457
6458 /*
6459 * Check SQE restrictions (opcode and flags).
6460 *
6461 * Returns 'true' if SQE is allowed, 'false' otherwise.
6462 */
6463 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6464 struct io_kiocb *req,
6465 unsigned int sqe_flags)
6466 {
6467 if (!ctx->restricted)
6468 return true;
6469
6470 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6471 return false;
6472
6473 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6474 ctx->restrictions.sqe_flags_required)
6475 return false;
6476
6477 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6478 ctx->restrictions.sqe_flags_required))
6479 return false;
6480
6481 return true;
6482 }
6483
6484 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6485 const struct io_uring_sqe *sqe)
6486 {
6487 struct io_submit_state *state;
6488 unsigned int sqe_flags;
6489 int personality, ret = 0;
6490
6491 req->opcode = READ_ONCE(sqe->opcode);
6492 /* same numerical values with corresponding REQ_F_*, safe to copy */
6493 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6494 req->user_data = READ_ONCE(sqe->user_data);
6495 req->async_data = NULL;
6496 req->file = NULL;
6497 req->ctx = ctx;
6498 req->link = NULL;
6499 req->fixed_rsrc_refs = NULL;
6500 /* one is dropped after submission, the other at completion */
6501 atomic_set(&req->refs, 2);
6502 req->task = current;
6503 req->result = 0;
6504 req->work.creds = NULL;
6505
6506 /* enforce forwards compatibility on users */
6507 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6508 return -EINVAL;
6509 if (unlikely(req->opcode >= IORING_OP_LAST))
6510 return -EINVAL;
6511 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6512 return -EACCES;
6513
6514 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6515 !io_op_defs[req->opcode].buffer_select)
6516 return -EOPNOTSUPP;
6517
6518 personality = READ_ONCE(sqe->personality);
6519 if (personality) {
6520 req->work.creds = xa_load(&ctx->personalities, personality);
6521 if (!req->work.creds)
6522 return -EINVAL;
6523 get_cred(req->work.creds);
6524 }
6525 state = &ctx->submit_state;
6526
6527 /*
6528 * Plug now if we have more than 1 IO left after this, and the target
6529 * is potentially a read/write to block based storage.
6530 */
6531 if (!state->plug_started && state->ios_left > 1 &&
6532 io_op_defs[req->opcode].plug) {
6533 blk_start_plug(&state->plug);
6534 state->plug_started = true;
6535 }
6536
6537 if (io_op_defs[req->opcode].needs_file) {
6538 bool fixed = req->flags & REQ_F_FIXED_FILE;
6539
6540 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6541 if (unlikely(!req->file))
6542 ret = -EBADF;
6543 }
6544
6545 state->ios_left--;
6546 return ret;
6547 }
6548
6549 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6550 const struct io_uring_sqe *sqe)
6551 {
6552 struct io_submit_link *link = &ctx->submit_state.link;
6553 int ret;
6554
6555 ret = io_init_req(ctx, req, sqe);
6556 if (unlikely(ret)) {
6557 fail_req:
6558 if (link->head) {
6559 /* fail even hard links since we don't submit */
6560 link->head->flags |= REQ_F_FAIL_LINK;
6561 io_req_complete_failed(link->head, -ECANCELED);
6562 link->head = NULL;
6563 }
6564 io_req_complete_failed(req, ret);
6565 return ret;
6566 }
6567 ret = io_req_prep(req, sqe);
6568 if (unlikely(ret))
6569 goto fail_req;
6570
6571 /* don't need @sqe from now on */
6572 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6573 true, ctx->flags & IORING_SETUP_SQPOLL);
6574
6575 /*
6576 * If we already have a head request, queue this one for async
6577 * submittal once the head completes. If we don't have a head but
6578 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6579 * submitted sync once the chain is complete. If none of those
6580 * conditions are true (normal request), then just queue it.
6581 */
6582 if (link->head) {
6583 struct io_kiocb *head = link->head;
6584
6585 /*
6586 * Taking sequential execution of a link, draining both sides
6587 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6588 * requests in the link. So, it drains the head and the
6589 * next after the link request. The last one is done via
6590 * drain_next flag to persist the effect across calls.
6591 */
6592 if (req->flags & REQ_F_IO_DRAIN) {
6593 head->flags |= REQ_F_IO_DRAIN;
6594 ctx->drain_next = 1;
6595 }
6596 ret = io_req_prep_async(req);
6597 if (unlikely(ret))
6598 goto fail_req;
6599 trace_io_uring_link(ctx, req, head);
6600 link->last->link = req;
6601 link->last = req;
6602
6603 /* last request of a link, enqueue the link */
6604 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6605 io_queue_sqe(head);
6606 link->head = NULL;
6607 }
6608 } else {
6609 if (unlikely(ctx->drain_next)) {
6610 req->flags |= REQ_F_IO_DRAIN;
6611 ctx->drain_next = 0;
6612 }
6613 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6614 link->head = req;
6615 link->last = req;
6616 } else {
6617 io_queue_sqe(req);
6618 }
6619 }
6620
6621 return 0;
6622 }
6623
6624 /*
6625 * Batched submission is done, ensure local IO is flushed out.
6626 */
6627 static void io_submit_state_end(struct io_submit_state *state,
6628 struct io_ring_ctx *ctx)
6629 {
6630 if (state->link.head)
6631 io_queue_sqe(state->link.head);
6632 if (state->comp.nr)
6633 io_submit_flush_completions(&state->comp, ctx);
6634 if (state->plug_started)
6635 blk_finish_plug(&state->plug);
6636 io_state_file_put(state);
6637 }
6638
6639 /*
6640 * Start submission side cache.
6641 */
6642 static void io_submit_state_start(struct io_submit_state *state,
6643 unsigned int max_ios)
6644 {
6645 state->plug_started = false;
6646 state->ios_left = max_ios;
6647 /* set only head, no need to init link_last in advance */
6648 state->link.head = NULL;
6649 }
6650
6651 static void io_commit_sqring(struct io_ring_ctx *ctx)
6652 {
6653 struct io_rings *rings = ctx->rings;
6654
6655 /*
6656 * Ensure any loads from the SQEs are done at this point,
6657 * since once we write the new head, the application could
6658 * write new data to them.
6659 */
6660 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6661 }
6662
6663 /*
6664 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6665 * that is mapped by userspace. This means that care needs to be taken to
6666 * ensure that reads are stable, as we cannot rely on userspace always
6667 * being a good citizen. If members of the sqe are validated and then later
6668 * used, it's important that those reads are done through READ_ONCE() to
6669 * prevent a re-load down the line.
6670 */
6671 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6672 {
6673 u32 *sq_array = ctx->sq_array;
6674 unsigned head;
6675
6676 /*
6677 * The cached sq head (or cq tail) serves two purposes:
6678 *
6679 * 1) allows us to batch the cost of updating the user visible
6680 * head updates.
6681 * 2) allows the kernel side to track the head on its own, even
6682 * though the application is the one updating it.
6683 */
6684 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6685 if (likely(head < ctx->sq_entries))
6686 return &ctx->sq_sqes[head];
6687
6688 /* drop invalid entries */
6689 ctx->cached_sq_dropped++;
6690 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6691 return NULL;
6692 }
6693
6694 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6695 {
6696 int submitted = 0;
6697
6698 /* make sure SQ entry isn't read before tail */
6699 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6700
6701 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6702 return -EAGAIN;
6703
6704 percpu_counter_add(&current->io_uring->inflight, nr);
6705 refcount_add(nr, &current->usage);
6706 io_submit_state_start(&ctx->submit_state, nr);
6707
6708 while (submitted < nr) {
6709 const struct io_uring_sqe *sqe;
6710 struct io_kiocb *req;
6711
6712 req = io_alloc_req(ctx);
6713 if (unlikely(!req)) {
6714 if (!submitted)
6715 submitted = -EAGAIN;
6716 break;
6717 }
6718 sqe = io_get_sqe(ctx);
6719 if (unlikely(!sqe)) {
6720 kmem_cache_free(req_cachep, req);
6721 break;
6722 }
6723 /* will complete beyond this point, count as submitted */
6724 submitted++;
6725 if (io_submit_sqe(ctx, req, sqe))
6726 break;
6727 }
6728
6729 if (unlikely(submitted != nr)) {
6730 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6731 struct io_uring_task *tctx = current->io_uring;
6732 int unused = nr - ref_used;
6733
6734 percpu_ref_put_many(&ctx->refs, unused);
6735 percpu_counter_sub(&tctx->inflight, unused);
6736 put_task_struct_many(current, unused);
6737 }
6738
6739 io_submit_state_end(&ctx->submit_state, ctx);
6740 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6741 io_commit_sqring(ctx);
6742
6743 return submitted;
6744 }
6745
6746 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6747 {
6748 /* Tell userspace we may need a wakeup call */
6749 spin_lock_irq(&ctx->completion_lock);
6750 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6751 spin_unlock_irq(&ctx->completion_lock);
6752 }
6753
6754 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6755 {
6756 spin_lock_irq(&ctx->completion_lock);
6757 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6758 spin_unlock_irq(&ctx->completion_lock);
6759 }
6760
6761 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6762 {
6763 unsigned int to_submit;
6764 int ret = 0;
6765
6766 to_submit = io_sqring_entries(ctx);
6767 /* if we're handling multiple rings, cap submit size for fairness */
6768 if (cap_entries && to_submit > 8)
6769 to_submit = 8;
6770
6771 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6772 unsigned nr_events = 0;
6773
6774 mutex_lock(&ctx->uring_lock);
6775 if (!list_empty(&ctx->iopoll_list))
6776 io_do_iopoll(ctx, &nr_events, 0);
6777
6778 /*
6779 * Don't submit if refs are dying, good for io_uring_register(),
6780 * but also it is relied upon by io_ring_exit_work()
6781 */
6782 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6783 !(ctx->flags & IORING_SETUP_R_DISABLED))
6784 ret = io_submit_sqes(ctx, to_submit);
6785 mutex_unlock(&ctx->uring_lock);
6786 }
6787
6788 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6789 wake_up(&ctx->sqo_sq_wait);
6790
6791 return ret;
6792 }
6793
6794 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6795 {
6796 struct io_ring_ctx *ctx;
6797 unsigned sq_thread_idle = 0;
6798
6799 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6800 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6801 sqd->sq_thread_idle = sq_thread_idle;
6802 }
6803
6804 static int io_sq_thread(void *data)
6805 {
6806 struct io_sq_data *sqd = data;
6807 struct io_ring_ctx *ctx;
6808 unsigned long timeout = 0;
6809 char buf[TASK_COMM_LEN];
6810 DEFINE_WAIT(wait);
6811
6812 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6813 set_task_comm(current, buf);
6814
6815 if (sqd->sq_cpu != -1)
6816 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6817 else
6818 set_cpus_allowed_ptr(current, cpu_online_mask);
6819 current->flags |= PF_NO_SETAFFINITY;
6820
6821 mutex_lock(&sqd->lock);
6822 /* a user may had exited before the thread started */
6823 io_run_task_work_head(&sqd->park_task_work);
6824
6825 while (!test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)) {
6826 int ret;
6827 bool cap_entries, sqt_spin, needs_sched;
6828
6829 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6830 signal_pending(current)) {
6831 bool did_sig = false;
6832
6833 mutex_unlock(&sqd->lock);
6834 if (signal_pending(current)) {
6835 struct ksignal ksig;
6836
6837 did_sig = get_signal(&ksig);
6838 }
6839 cond_resched();
6840 mutex_lock(&sqd->lock);
6841 io_run_task_work();
6842 io_run_task_work_head(&sqd->park_task_work);
6843 if (did_sig)
6844 break;
6845 timeout = jiffies + sqd->sq_thread_idle;
6846 continue;
6847 }
6848 sqt_spin = false;
6849 cap_entries = !list_is_singular(&sqd->ctx_list);
6850 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6851 const struct cred *creds = NULL;
6852
6853 if (ctx->sq_creds != current_cred())
6854 creds = override_creds(ctx->sq_creds);
6855 ret = __io_sq_thread(ctx, cap_entries);
6856 if (creds)
6857 revert_creds(creds);
6858 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6859 sqt_spin = true;
6860 }
6861
6862 if (sqt_spin || !time_after(jiffies, timeout)) {
6863 io_run_task_work();
6864 cond_resched();
6865 if (sqt_spin)
6866 timeout = jiffies + sqd->sq_thread_idle;
6867 continue;
6868 }
6869
6870 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6871 if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state)) {
6872 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6873 io_ring_set_wakeup_flag(ctx);
6874
6875 needs_sched = true;
6876 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6877 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6878 !list_empty_careful(&ctx->iopoll_list)) {
6879 needs_sched = false;
6880 break;
6881 }
6882 if (io_sqring_entries(ctx)) {
6883 needs_sched = false;
6884 break;
6885 }
6886 }
6887
6888 if (needs_sched) {
6889 mutex_unlock(&sqd->lock);
6890 schedule();
6891 mutex_lock(&sqd->lock);
6892 }
6893 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6894 io_ring_clear_wakeup_flag(ctx);
6895 }
6896
6897 finish_wait(&sqd->wait, &wait);
6898 io_run_task_work_head(&sqd->park_task_work);
6899 timeout = jiffies + sqd->sq_thread_idle;
6900 }
6901
6902 io_uring_cancel_sqpoll(sqd);
6903 sqd->thread = NULL;
6904 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6905 io_ring_set_wakeup_flag(ctx);
6906 io_run_task_work();
6907 io_run_task_work_head(&sqd->park_task_work);
6908 mutex_unlock(&sqd->lock);
6909
6910 complete(&sqd->exited);
6911 do_exit(0);
6912 }
6913
6914 struct io_wait_queue {
6915 struct wait_queue_entry wq;
6916 struct io_ring_ctx *ctx;
6917 unsigned to_wait;
6918 unsigned nr_timeouts;
6919 };
6920
6921 static inline bool io_should_wake(struct io_wait_queue *iowq)
6922 {
6923 struct io_ring_ctx *ctx = iowq->ctx;
6924
6925 /*
6926 * Wake up if we have enough events, or if a timeout occurred since we
6927 * started waiting. For timeouts, we always want to return to userspace,
6928 * regardless of event count.
6929 */
6930 return io_cqring_events(ctx) >= iowq->to_wait ||
6931 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6932 }
6933
6934 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6935 int wake_flags, void *key)
6936 {
6937 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6938 wq);
6939
6940 /*
6941 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6942 * the task, and the next invocation will do it.
6943 */
6944 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
6945 return autoremove_wake_function(curr, mode, wake_flags, key);
6946 return -1;
6947 }
6948
6949 static int io_run_task_work_sig(void)
6950 {
6951 if (io_run_task_work())
6952 return 1;
6953 if (!signal_pending(current))
6954 return 0;
6955 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6956 return -ERESTARTSYS;
6957 return -EINTR;
6958 }
6959
6960 /* when returns >0, the caller should retry */
6961 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6962 struct io_wait_queue *iowq,
6963 signed long *timeout)
6964 {
6965 int ret;
6966
6967 /* make sure we run task_work before checking for signals */
6968 ret = io_run_task_work_sig();
6969 if (ret || io_should_wake(iowq))
6970 return ret;
6971 /* let the caller flush overflows, retry */
6972 if (test_bit(0, &ctx->cq_check_overflow))
6973 return 1;
6974
6975 *timeout = schedule_timeout(*timeout);
6976 return !*timeout ? -ETIME : 1;
6977 }
6978
6979 /*
6980 * Wait until events become available, if we don't already have some. The
6981 * application must reap them itself, as they reside on the shared cq ring.
6982 */
6983 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6984 const sigset_t __user *sig, size_t sigsz,
6985 struct __kernel_timespec __user *uts)
6986 {
6987 struct io_wait_queue iowq = {
6988 .wq = {
6989 .private = current,
6990 .func = io_wake_function,
6991 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6992 },
6993 .ctx = ctx,
6994 .to_wait = min_events,
6995 };
6996 struct io_rings *rings = ctx->rings;
6997 signed long timeout = MAX_SCHEDULE_TIMEOUT;
6998 int ret;
6999
7000 do {
7001 io_cqring_overflow_flush(ctx, false);
7002 if (io_cqring_events(ctx) >= min_events)
7003 return 0;
7004 if (!io_run_task_work())
7005 break;
7006 } while (1);
7007
7008 if (sig) {
7009 #ifdef CONFIG_COMPAT
7010 if (in_compat_syscall())
7011 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7012 sigsz);
7013 else
7014 #endif
7015 ret = set_user_sigmask(sig, sigsz);
7016
7017 if (ret)
7018 return ret;
7019 }
7020
7021 if (uts) {
7022 struct timespec64 ts;
7023
7024 if (get_timespec64(&ts, uts))
7025 return -EFAULT;
7026 timeout = timespec64_to_jiffies(&ts);
7027 }
7028
7029 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7030 trace_io_uring_cqring_wait(ctx, min_events);
7031 do {
7032 /* if we can't even flush overflow, don't wait for more */
7033 if (!io_cqring_overflow_flush(ctx, false)) {
7034 ret = -EBUSY;
7035 break;
7036 }
7037 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7038 TASK_INTERRUPTIBLE);
7039 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7040 finish_wait(&ctx->wait, &iowq.wq);
7041 cond_resched();
7042 } while (ret > 0);
7043
7044 restore_saved_sigmask_unless(ret == -EINTR);
7045
7046 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7047 }
7048
7049 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7050 {
7051 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7052
7053 for (i = 0; i < nr_tables; i++)
7054 kfree(table->files[i]);
7055 kfree(table->files);
7056 table->files = NULL;
7057 }
7058
7059 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7060 {
7061 spin_lock_bh(&ctx->rsrc_ref_lock);
7062 }
7063
7064 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7065 {
7066 spin_unlock_bh(&ctx->rsrc_ref_lock);
7067 }
7068
7069 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7070 {
7071 percpu_ref_exit(&ref_node->refs);
7072 kfree(ref_node);
7073 }
7074
7075 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7076 struct io_rsrc_data *data_to_kill)
7077 {
7078 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7079 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7080
7081 if (data_to_kill) {
7082 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7083
7084 rsrc_node->rsrc_data = data_to_kill;
7085 io_rsrc_ref_lock(ctx);
7086 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7087 io_rsrc_ref_unlock(ctx);
7088
7089 atomic_inc(&data_to_kill->refs);
7090 percpu_ref_kill(&rsrc_node->refs);
7091 ctx->rsrc_node = NULL;
7092 }
7093
7094 if (!ctx->rsrc_node) {
7095 ctx->rsrc_node = ctx->rsrc_backup_node;
7096 ctx->rsrc_backup_node = NULL;
7097 }
7098 }
7099
7100 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7101 {
7102 if (ctx->rsrc_backup_node)
7103 return 0;
7104 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7105 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7106 }
7107
7108 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7109 {
7110 int ret;
7111
7112 /* As we may drop ->uring_lock, other task may have started quiesce */
7113 if (data->quiesce)
7114 return -ENXIO;
7115
7116 data->quiesce = true;
7117 do {
7118 ret = io_rsrc_node_switch_start(ctx);
7119 if (ret)
7120 break;
7121 io_rsrc_node_switch(ctx, data);
7122
7123 /* kill initial ref, already quiesced if zero */
7124 if (atomic_dec_and_test(&data->refs))
7125 break;
7126 flush_delayed_work(&ctx->rsrc_put_work);
7127 ret = wait_for_completion_interruptible(&data->done);
7128 if (!ret)
7129 break;
7130
7131 atomic_inc(&data->refs);
7132 /* wait for all works potentially completing data->done */
7133 flush_delayed_work(&ctx->rsrc_put_work);
7134 reinit_completion(&data->done);
7135
7136 mutex_unlock(&ctx->uring_lock);
7137 ret = io_run_task_work_sig();
7138 mutex_lock(&ctx->uring_lock);
7139 } while (ret >= 0);
7140 data->quiesce = false;
7141
7142 return ret;
7143 }
7144
7145 static void io_rsrc_data_free(struct io_rsrc_data *data)
7146 {
7147 kvfree(data->tags);
7148 kfree(data);
7149 }
7150
7151 static struct io_rsrc_data *io_rsrc_data_alloc(struct io_ring_ctx *ctx,
7152 rsrc_put_fn *do_put,
7153 unsigned nr)
7154 {
7155 struct io_rsrc_data *data;
7156
7157 data = kzalloc(sizeof(*data), GFP_KERNEL);
7158 if (!data)
7159 return NULL;
7160
7161 data->tags = kvcalloc(nr, sizeof(*data->tags), GFP_KERNEL);
7162 if (!data->tags) {
7163 kfree(data);
7164 return NULL;
7165 }
7166
7167 atomic_set(&data->refs, 1);
7168 data->ctx = ctx;
7169 data->do_put = do_put;
7170 init_completion(&data->done);
7171 return data;
7172 }
7173
7174 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7175 {
7176 #if defined(CONFIG_UNIX)
7177 if (ctx->ring_sock) {
7178 struct sock *sock = ctx->ring_sock->sk;
7179 struct sk_buff *skb;
7180
7181 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7182 kfree_skb(skb);
7183 }
7184 #else
7185 int i;
7186
7187 for (i = 0; i < ctx->nr_user_files; i++) {
7188 struct file *file;
7189
7190 file = io_file_from_index(ctx, i);
7191 if (file)
7192 fput(file);
7193 }
7194 #endif
7195 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7196 io_rsrc_data_free(ctx->file_data);
7197 ctx->file_data = NULL;
7198 ctx->nr_user_files = 0;
7199 }
7200
7201 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7202 {
7203 int ret;
7204
7205 if (!ctx->file_data)
7206 return -ENXIO;
7207 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7208 if (!ret)
7209 __io_sqe_files_unregister(ctx);
7210 return ret;
7211 }
7212
7213 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7214 __releases(&sqd->lock)
7215 {
7216 WARN_ON_ONCE(sqd->thread == current);
7217
7218 /*
7219 * Do the dance but not conditional clear_bit() because it'd race with
7220 * other threads incrementing park_pending and setting the bit.
7221 */
7222 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7223 if (atomic_dec_return(&sqd->park_pending))
7224 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7225 mutex_unlock(&sqd->lock);
7226 }
7227
7228 static void io_sq_thread_park(struct io_sq_data *sqd)
7229 __acquires(&sqd->lock)
7230 {
7231 WARN_ON_ONCE(sqd->thread == current);
7232
7233 atomic_inc(&sqd->park_pending);
7234 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7235 mutex_lock(&sqd->lock);
7236 if (sqd->thread)
7237 wake_up_process(sqd->thread);
7238 }
7239
7240 static void io_sq_thread_stop(struct io_sq_data *sqd)
7241 {
7242 WARN_ON_ONCE(sqd->thread == current);
7243 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7244
7245 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7246 mutex_lock(&sqd->lock);
7247 if (sqd->thread)
7248 wake_up_process(sqd->thread);
7249 mutex_unlock(&sqd->lock);
7250 wait_for_completion(&sqd->exited);
7251 }
7252
7253 static void io_put_sq_data(struct io_sq_data *sqd)
7254 {
7255 if (refcount_dec_and_test(&sqd->refs)) {
7256 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7257
7258 io_sq_thread_stop(sqd);
7259 kfree(sqd);
7260 }
7261 }
7262
7263 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7264 {
7265 struct io_sq_data *sqd = ctx->sq_data;
7266
7267 if (sqd) {
7268 io_sq_thread_park(sqd);
7269 list_del_init(&ctx->sqd_list);
7270 io_sqd_update_thread_idle(sqd);
7271 io_sq_thread_unpark(sqd);
7272
7273 io_put_sq_data(sqd);
7274 ctx->sq_data = NULL;
7275 }
7276 }
7277
7278 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7279 {
7280 struct io_ring_ctx *ctx_attach;
7281 struct io_sq_data *sqd;
7282 struct fd f;
7283
7284 f = fdget(p->wq_fd);
7285 if (!f.file)
7286 return ERR_PTR(-ENXIO);
7287 if (f.file->f_op != &io_uring_fops) {
7288 fdput(f);
7289 return ERR_PTR(-EINVAL);
7290 }
7291
7292 ctx_attach = f.file->private_data;
7293 sqd = ctx_attach->sq_data;
7294 if (!sqd) {
7295 fdput(f);
7296 return ERR_PTR(-EINVAL);
7297 }
7298 if (sqd->task_tgid != current->tgid) {
7299 fdput(f);
7300 return ERR_PTR(-EPERM);
7301 }
7302
7303 refcount_inc(&sqd->refs);
7304 fdput(f);
7305 return sqd;
7306 }
7307
7308 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7309 bool *attached)
7310 {
7311 struct io_sq_data *sqd;
7312
7313 *attached = false;
7314 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7315 sqd = io_attach_sq_data(p);
7316 if (!IS_ERR(sqd)) {
7317 *attached = true;
7318 return sqd;
7319 }
7320 /* fall through for EPERM case, setup new sqd/task */
7321 if (PTR_ERR(sqd) != -EPERM)
7322 return sqd;
7323 }
7324
7325 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7326 if (!sqd)
7327 return ERR_PTR(-ENOMEM);
7328
7329 atomic_set(&sqd->park_pending, 0);
7330 refcount_set(&sqd->refs, 1);
7331 INIT_LIST_HEAD(&sqd->ctx_list);
7332 mutex_init(&sqd->lock);
7333 init_waitqueue_head(&sqd->wait);
7334 init_completion(&sqd->exited);
7335 return sqd;
7336 }
7337
7338 #if defined(CONFIG_UNIX)
7339 /*
7340 * Ensure the UNIX gc is aware of our file set, so we are certain that
7341 * the io_uring can be safely unregistered on process exit, even if we have
7342 * loops in the file referencing.
7343 */
7344 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7345 {
7346 struct sock *sk = ctx->ring_sock->sk;
7347 struct scm_fp_list *fpl;
7348 struct sk_buff *skb;
7349 int i, nr_files;
7350
7351 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7352 if (!fpl)
7353 return -ENOMEM;
7354
7355 skb = alloc_skb(0, GFP_KERNEL);
7356 if (!skb) {
7357 kfree(fpl);
7358 return -ENOMEM;
7359 }
7360
7361 skb->sk = sk;
7362
7363 nr_files = 0;
7364 fpl->user = get_uid(current_user());
7365 for (i = 0; i < nr; i++) {
7366 struct file *file = io_file_from_index(ctx, i + offset);
7367
7368 if (!file)
7369 continue;
7370 fpl->fp[nr_files] = get_file(file);
7371 unix_inflight(fpl->user, fpl->fp[nr_files]);
7372 nr_files++;
7373 }
7374
7375 if (nr_files) {
7376 fpl->max = SCM_MAX_FD;
7377 fpl->count = nr_files;
7378 UNIXCB(skb).fp = fpl;
7379 skb->destructor = unix_destruct_scm;
7380 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7381 skb_queue_head(&sk->sk_receive_queue, skb);
7382
7383 for (i = 0; i < nr_files; i++)
7384 fput(fpl->fp[i]);
7385 } else {
7386 kfree_skb(skb);
7387 kfree(fpl);
7388 }
7389
7390 return 0;
7391 }
7392
7393 /*
7394 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7395 * causes regular reference counting to break down. We rely on the UNIX
7396 * garbage collection to take care of this problem for us.
7397 */
7398 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7399 {
7400 unsigned left, total;
7401 int ret = 0;
7402
7403 total = 0;
7404 left = ctx->nr_user_files;
7405 while (left) {
7406 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7407
7408 ret = __io_sqe_files_scm(ctx, this_files, total);
7409 if (ret)
7410 break;
7411 left -= this_files;
7412 total += this_files;
7413 }
7414
7415 if (!ret)
7416 return 0;
7417
7418 while (total < ctx->nr_user_files) {
7419 struct file *file = io_file_from_index(ctx, total);
7420
7421 if (file)
7422 fput(file);
7423 total++;
7424 }
7425
7426 return ret;
7427 }
7428 #else
7429 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7430 {
7431 return 0;
7432 }
7433 #endif
7434
7435 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7436 {
7437 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7438
7439 table->files = kcalloc(nr_tables, sizeof(*table->files), GFP_KERNEL);
7440 if (!table->files)
7441 return false;
7442
7443 for (i = 0; i < nr_tables; i++) {
7444 unsigned int this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7445
7446 table->files[i] = kcalloc(this_files, sizeof(*table->files[i]),
7447 GFP_KERNEL);
7448 if (!table->files[i])
7449 break;
7450 nr_files -= this_files;
7451 }
7452
7453 if (i == nr_tables)
7454 return true;
7455
7456 io_free_file_tables(table, nr_tables * IORING_MAX_FILES_TABLE);
7457 return false;
7458 }
7459
7460 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7461 {
7462 struct file *file = prsrc->file;
7463 #if defined(CONFIG_UNIX)
7464 struct sock *sock = ctx->ring_sock->sk;
7465 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7466 struct sk_buff *skb;
7467 int i;
7468
7469 __skb_queue_head_init(&list);
7470
7471 /*
7472 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7473 * remove this entry and rearrange the file array.
7474 */
7475 skb = skb_dequeue(head);
7476 while (skb) {
7477 struct scm_fp_list *fp;
7478
7479 fp = UNIXCB(skb).fp;
7480 for (i = 0; i < fp->count; i++) {
7481 int left;
7482
7483 if (fp->fp[i] != file)
7484 continue;
7485
7486 unix_notinflight(fp->user, fp->fp[i]);
7487 left = fp->count - 1 - i;
7488 if (left) {
7489 memmove(&fp->fp[i], &fp->fp[i + 1],
7490 left * sizeof(struct file *));
7491 }
7492 fp->count--;
7493 if (!fp->count) {
7494 kfree_skb(skb);
7495 skb = NULL;
7496 } else {
7497 __skb_queue_tail(&list, skb);
7498 }
7499 fput(file);
7500 file = NULL;
7501 break;
7502 }
7503
7504 if (!file)
7505 break;
7506
7507 __skb_queue_tail(&list, skb);
7508
7509 skb = skb_dequeue(head);
7510 }
7511
7512 if (skb_peek(&list)) {
7513 spin_lock_irq(&head->lock);
7514 while ((skb = __skb_dequeue(&list)) != NULL)
7515 __skb_queue_tail(head, skb);
7516 spin_unlock_irq(&head->lock);
7517 }
7518 #else
7519 fput(file);
7520 #endif
7521 }
7522
7523 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7524 {
7525 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7526 struct io_ring_ctx *ctx = rsrc_data->ctx;
7527 struct io_rsrc_put *prsrc, *tmp;
7528
7529 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7530 list_del(&prsrc->list);
7531
7532 if (prsrc->tag) {
7533 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7534 unsigned long flags;
7535
7536 io_ring_submit_lock(ctx, lock_ring);
7537 spin_lock_irqsave(&ctx->completion_lock, flags);
7538 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7539 ctx->cq_extra++;
7540 io_commit_cqring(ctx);
7541 spin_unlock_irqrestore(&ctx->completion_lock, flags);
7542 io_cqring_ev_posted(ctx);
7543 io_ring_submit_unlock(ctx, lock_ring);
7544 }
7545
7546 rsrc_data->do_put(ctx, prsrc);
7547 kfree(prsrc);
7548 }
7549
7550 io_rsrc_node_destroy(ref_node);
7551 if (atomic_dec_and_test(&rsrc_data->refs))
7552 complete(&rsrc_data->done);
7553 }
7554
7555 static void io_rsrc_put_work(struct work_struct *work)
7556 {
7557 struct io_ring_ctx *ctx;
7558 struct llist_node *node;
7559
7560 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7561 node = llist_del_all(&ctx->rsrc_put_llist);
7562
7563 while (node) {
7564 struct io_rsrc_node *ref_node;
7565 struct llist_node *next = node->next;
7566
7567 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7568 __io_rsrc_put_work(ref_node);
7569 node = next;
7570 }
7571 }
7572
7573 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7574 {
7575 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7576 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7577 bool first_add = false;
7578
7579 io_rsrc_ref_lock(ctx);
7580 node->done = true;
7581
7582 while (!list_empty(&ctx->rsrc_ref_list)) {
7583 node = list_first_entry(&ctx->rsrc_ref_list,
7584 struct io_rsrc_node, node);
7585 /* recycle ref nodes in order */
7586 if (!node->done)
7587 break;
7588 list_del(&node->node);
7589 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7590 }
7591 io_rsrc_ref_unlock(ctx);
7592
7593 if (first_add)
7594 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7595 }
7596
7597 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7598 {
7599 struct io_rsrc_node *ref_node;
7600
7601 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7602 if (!ref_node)
7603 return NULL;
7604
7605 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7606 0, GFP_KERNEL)) {
7607 kfree(ref_node);
7608 return NULL;
7609 }
7610 INIT_LIST_HEAD(&ref_node->node);
7611 INIT_LIST_HEAD(&ref_node->rsrc_list);
7612 ref_node->done = false;
7613 return ref_node;
7614 }
7615
7616 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7617 unsigned nr_args, u64 __user *tags)
7618 {
7619 __s32 __user *fds = (__s32 __user *) arg;
7620 struct file *file;
7621 int fd, ret;
7622 unsigned i;
7623 struct io_rsrc_data *file_data;
7624
7625 if (ctx->file_data)
7626 return -EBUSY;
7627 if (!nr_args)
7628 return -EINVAL;
7629 if (nr_args > IORING_MAX_FIXED_FILES)
7630 return -EMFILE;
7631 ret = io_rsrc_node_switch_start(ctx);
7632 if (ret)
7633 return ret;
7634
7635 file_data = io_rsrc_data_alloc(ctx, io_rsrc_file_put, nr_args);
7636 if (!file_data)
7637 return -ENOMEM;
7638 ctx->file_data = file_data;
7639 ret = -ENOMEM;
7640 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7641 goto out_free;
7642
7643 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7644 u64 tag = 0;
7645
7646 if ((tags && copy_from_user(&tag, &tags[i], sizeof(tag))) ||
7647 copy_from_user(&fd, &fds[i], sizeof(fd))) {
7648 ret = -EFAULT;
7649 goto out_fput;
7650 }
7651 /* allow sparse sets */
7652 if (fd == -1) {
7653 ret = -EINVAL;
7654 if (unlikely(tag))
7655 goto out_fput;
7656 continue;
7657 }
7658
7659 file = fget(fd);
7660 ret = -EBADF;
7661 if (unlikely(!file))
7662 goto out_fput;
7663
7664 /*
7665 * Don't allow io_uring instances to be registered. If UNIX
7666 * isn't enabled, then this causes a reference cycle and this
7667 * instance can never get freed. If UNIX is enabled we'll
7668 * handle it just fine, but there's still no point in allowing
7669 * a ring fd as it doesn't support regular read/write anyway.
7670 */
7671 if (file->f_op == &io_uring_fops) {
7672 fput(file);
7673 goto out_fput;
7674 }
7675 ctx->file_data->tags[i] = tag;
7676 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7677 }
7678
7679 ret = io_sqe_files_scm(ctx);
7680 if (ret) {
7681 __io_sqe_files_unregister(ctx);
7682 return ret;
7683 }
7684
7685 io_rsrc_node_switch(ctx, NULL);
7686 return ret;
7687 out_fput:
7688 for (i = 0; i < ctx->nr_user_files; i++) {
7689 file = io_file_from_index(ctx, i);
7690 if (file)
7691 fput(file);
7692 }
7693 io_free_file_tables(&ctx->file_table, nr_args);
7694 ctx->nr_user_files = 0;
7695 out_free:
7696 io_rsrc_data_free(ctx->file_data);
7697 ctx->file_data = NULL;
7698 return ret;
7699 }
7700
7701 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7702 int index)
7703 {
7704 #if defined(CONFIG_UNIX)
7705 struct sock *sock = ctx->ring_sock->sk;
7706 struct sk_buff_head *head = &sock->sk_receive_queue;
7707 struct sk_buff *skb;
7708
7709 /*
7710 * See if we can merge this file into an existing skb SCM_RIGHTS
7711 * file set. If there's no room, fall back to allocating a new skb
7712 * and filling it in.
7713 */
7714 spin_lock_irq(&head->lock);
7715 skb = skb_peek(head);
7716 if (skb) {
7717 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7718
7719 if (fpl->count < SCM_MAX_FD) {
7720 __skb_unlink(skb, head);
7721 spin_unlock_irq(&head->lock);
7722 fpl->fp[fpl->count] = get_file(file);
7723 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7724 fpl->count++;
7725 spin_lock_irq(&head->lock);
7726 __skb_queue_head(head, skb);
7727 } else {
7728 skb = NULL;
7729 }
7730 }
7731 spin_unlock_irq(&head->lock);
7732
7733 if (skb) {
7734 fput(file);
7735 return 0;
7736 }
7737
7738 return __io_sqe_files_scm(ctx, 1, index);
7739 #else
7740 return 0;
7741 #endif
7742 }
7743
7744 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7745 struct io_rsrc_node *node, void *rsrc)
7746 {
7747 struct io_rsrc_put *prsrc;
7748
7749 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7750 if (!prsrc)
7751 return -ENOMEM;
7752
7753 prsrc->tag = data->tags[idx];
7754 prsrc->rsrc = rsrc;
7755 list_add(&prsrc->list, &node->rsrc_list);
7756 return 0;
7757 }
7758
7759 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7760 struct io_uring_rsrc_update2 *up,
7761 unsigned nr_args)
7762 {
7763 u64 __user *tags = u64_to_user_ptr(up->tags);
7764 __s32 __user *fds = u64_to_user_ptr(up->data);
7765 struct io_rsrc_data *data = ctx->file_data;
7766 struct io_fixed_file *file_slot;
7767 struct file *file;
7768 int fd, i, err = 0;
7769 unsigned int done;
7770 bool needs_switch = false;
7771
7772 if (!ctx->file_data)
7773 return -ENXIO;
7774 if (up->offset + nr_args > ctx->nr_user_files)
7775 return -EINVAL;
7776
7777 for (done = 0; done < nr_args; done++) {
7778 u64 tag = 0;
7779
7780 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7781 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7782 err = -EFAULT;
7783 break;
7784 }
7785 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7786 err = -EINVAL;
7787 break;
7788 }
7789 if (fd == IORING_REGISTER_FILES_SKIP)
7790 continue;
7791
7792 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7793 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7794
7795 if (file_slot->file_ptr) {
7796 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7797 err = io_queue_rsrc_removal(data, up->offset + done,
7798 ctx->rsrc_node, file);
7799 if (err)
7800 break;
7801 file_slot->file_ptr = 0;
7802 needs_switch = true;
7803 }
7804 if (fd != -1) {
7805 file = fget(fd);
7806 if (!file) {
7807 err = -EBADF;
7808 break;
7809 }
7810 /*
7811 * Don't allow io_uring instances to be registered. If
7812 * UNIX isn't enabled, then this causes a reference
7813 * cycle and this instance can never get freed. If UNIX
7814 * is enabled we'll handle it just fine, but there's
7815 * still no point in allowing a ring fd as it doesn't
7816 * support regular read/write anyway.
7817 */
7818 if (file->f_op == &io_uring_fops) {
7819 fput(file);
7820 err = -EBADF;
7821 break;
7822 }
7823 data->tags[up->offset + done] = tag;
7824 io_fixed_file_set(file_slot, file);
7825 err = io_sqe_file_register(ctx, file, i);
7826 if (err) {
7827 file_slot->file_ptr = 0;
7828 fput(file);
7829 break;
7830 }
7831 }
7832 }
7833
7834 if (needs_switch)
7835 io_rsrc_node_switch(ctx, data);
7836 return done ? done : err;
7837 }
7838
7839 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7840 {
7841 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7842
7843 req = io_put_req_find_next(req);
7844 return req ? &req->work : NULL;
7845 }
7846
7847 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7848 struct task_struct *task)
7849 {
7850 struct io_wq_hash *hash;
7851 struct io_wq_data data;
7852 unsigned int concurrency;
7853
7854 hash = ctx->hash_map;
7855 if (!hash) {
7856 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7857 if (!hash)
7858 return ERR_PTR(-ENOMEM);
7859 refcount_set(&hash->refs, 1);
7860 init_waitqueue_head(&hash->wait);
7861 ctx->hash_map = hash;
7862 }
7863
7864 data.hash = hash;
7865 data.task = task;
7866 data.free_work = io_free_work;
7867 data.do_work = io_wq_submit_work;
7868
7869 /* Do QD, or 4 * CPUS, whatever is smallest */
7870 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7871
7872 return io_wq_create(concurrency, &data);
7873 }
7874
7875 static int io_uring_alloc_task_context(struct task_struct *task,
7876 struct io_ring_ctx *ctx)
7877 {
7878 struct io_uring_task *tctx;
7879 int ret;
7880
7881 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7882 if (unlikely(!tctx))
7883 return -ENOMEM;
7884
7885 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7886 if (unlikely(ret)) {
7887 kfree(tctx);
7888 return ret;
7889 }
7890
7891 tctx->io_wq = io_init_wq_offload(ctx, task);
7892 if (IS_ERR(tctx->io_wq)) {
7893 ret = PTR_ERR(tctx->io_wq);
7894 percpu_counter_destroy(&tctx->inflight);
7895 kfree(tctx);
7896 return ret;
7897 }
7898
7899 xa_init(&tctx->xa);
7900 init_waitqueue_head(&tctx->wait);
7901 tctx->last = NULL;
7902 atomic_set(&tctx->in_idle, 0);
7903 atomic_set(&tctx->inflight_tracked, 0);
7904 task->io_uring = tctx;
7905 spin_lock_init(&tctx->task_lock);
7906 INIT_WQ_LIST(&tctx->task_list);
7907 tctx->task_state = 0;
7908 init_task_work(&tctx->task_work, tctx_task_work);
7909 return 0;
7910 }
7911
7912 void __io_uring_free(struct task_struct *tsk)
7913 {
7914 struct io_uring_task *tctx = tsk->io_uring;
7915
7916 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7917 WARN_ON_ONCE(tctx->io_wq);
7918
7919 percpu_counter_destroy(&tctx->inflight);
7920 kfree(tctx);
7921 tsk->io_uring = NULL;
7922 }
7923
7924 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7925 struct io_uring_params *p)
7926 {
7927 int ret;
7928
7929 /* Retain compatibility with failing for an invalid attach attempt */
7930 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7931 IORING_SETUP_ATTACH_WQ) {
7932 struct fd f;
7933
7934 f = fdget(p->wq_fd);
7935 if (!f.file)
7936 return -ENXIO;
7937 fdput(f);
7938 if (f.file->f_op != &io_uring_fops)
7939 return -EINVAL;
7940 }
7941 if (ctx->flags & IORING_SETUP_SQPOLL) {
7942 struct task_struct *tsk;
7943 struct io_sq_data *sqd;
7944 bool attached;
7945
7946 sqd = io_get_sq_data(p, &attached);
7947 if (IS_ERR(sqd)) {
7948 ret = PTR_ERR(sqd);
7949 goto err;
7950 }
7951
7952 ctx->sq_creds = get_current_cred();
7953 ctx->sq_data = sqd;
7954 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7955 if (!ctx->sq_thread_idle)
7956 ctx->sq_thread_idle = HZ;
7957
7958 io_sq_thread_park(sqd);
7959 list_add(&ctx->sqd_list, &sqd->ctx_list);
7960 io_sqd_update_thread_idle(sqd);
7961 /* don't attach to a dying SQPOLL thread, would be racy */
7962 ret = (attached && !sqd->thread) ? -ENXIO : 0;
7963 io_sq_thread_unpark(sqd);
7964
7965 if (ret < 0)
7966 goto err;
7967 if (attached)
7968 return 0;
7969
7970 if (p->flags & IORING_SETUP_SQ_AFF) {
7971 int cpu = p->sq_thread_cpu;
7972
7973 ret = -EINVAL;
7974 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
7975 goto err_sqpoll;
7976 sqd->sq_cpu = cpu;
7977 } else {
7978 sqd->sq_cpu = -1;
7979 }
7980
7981 sqd->task_pid = current->pid;
7982 sqd->task_tgid = current->tgid;
7983 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
7984 if (IS_ERR(tsk)) {
7985 ret = PTR_ERR(tsk);
7986 goto err_sqpoll;
7987 }
7988
7989 sqd->thread = tsk;
7990 ret = io_uring_alloc_task_context(tsk, ctx);
7991 wake_up_new_task(tsk);
7992 if (ret)
7993 goto err;
7994 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7995 /* Can't have SQ_AFF without SQPOLL */
7996 ret = -EINVAL;
7997 goto err;
7998 }
7999
8000 return 0;
8001 err_sqpoll:
8002 complete(&ctx->sq_data->exited);
8003 err:
8004 io_sq_thread_finish(ctx);
8005 return ret;
8006 }
8007
8008 static inline void __io_unaccount_mem(struct user_struct *user,
8009 unsigned long nr_pages)
8010 {
8011 atomic_long_sub(nr_pages, &user->locked_vm);
8012 }
8013
8014 static inline int __io_account_mem(struct user_struct *user,
8015 unsigned long nr_pages)
8016 {
8017 unsigned long page_limit, cur_pages, new_pages;
8018
8019 /* Don't allow more pages than we can safely lock */
8020 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8021
8022 do {
8023 cur_pages = atomic_long_read(&user->locked_vm);
8024 new_pages = cur_pages + nr_pages;
8025 if (new_pages > page_limit)
8026 return -ENOMEM;
8027 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8028 new_pages) != cur_pages);
8029
8030 return 0;
8031 }
8032
8033 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8034 {
8035 if (ctx->user)
8036 __io_unaccount_mem(ctx->user, nr_pages);
8037
8038 if (ctx->mm_account)
8039 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8040 }
8041
8042 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8043 {
8044 int ret;
8045
8046 if (ctx->user) {
8047 ret = __io_account_mem(ctx->user, nr_pages);
8048 if (ret)
8049 return ret;
8050 }
8051
8052 if (ctx->mm_account)
8053 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8054
8055 return 0;
8056 }
8057
8058 static void io_mem_free(void *ptr)
8059 {
8060 struct page *page;
8061
8062 if (!ptr)
8063 return;
8064
8065 page = virt_to_head_page(ptr);
8066 if (put_page_testzero(page))
8067 free_compound_page(page);
8068 }
8069
8070 static void *io_mem_alloc(size_t size)
8071 {
8072 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8073 __GFP_NORETRY | __GFP_ACCOUNT;
8074
8075 return (void *) __get_free_pages(gfp_flags, get_order(size));
8076 }
8077
8078 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8079 size_t *sq_offset)
8080 {
8081 struct io_rings *rings;
8082 size_t off, sq_array_size;
8083
8084 off = struct_size(rings, cqes, cq_entries);
8085 if (off == SIZE_MAX)
8086 return SIZE_MAX;
8087
8088 #ifdef CONFIG_SMP
8089 off = ALIGN(off, SMP_CACHE_BYTES);
8090 if (off == 0)
8091 return SIZE_MAX;
8092 #endif
8093
8094 if (sq_offset)
8095 *sq_offset = off;
8096
8097 sq_array_size = array_size(sizeof(u32), sq_entries);
8098 if (sq_array_size == SIZE_MAX)
8099 return SIZE_MAX;
8100
8101 if (check_add_overflow(off, sq_array_size, &off))
8102 return SIZE_MAX;
8103
8104 return off;
8105 }
8106
8107 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8108 {
8109 struct io_mapped_ubuf *imu = *slot;
8110 unsigned int i;
8111
8112 for (i = 0; i < imu->nr_bvecs; i++)
8113 unpin_user_page(imu->bvec[i].bv_page);
8114 if (imu->acct_pages)
8115 io_unaccount_mem(ctx, imu->acct_pages);
8116 kvfree(imu);
8117 *slot = NULL;
8118 }
8119
8120 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8121 {
8122 io_buffer_unmap(ctx, &prsrc->buf);
8123 prsrc->buf = NULL;
8124 }
8125
8126 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8127 {
8128 unsigned int i;
8129
8130 for (i = 0; i < ctx->nr_user_bufs; i++)
8131 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8132 kfree(ctx->user_bufs);
8133 kfree(ctx->buf_data);
8134 ctx->user_bufs = NULL;
8135 ctx->buf_data = NULL;
8136 ctx->nr_user_bufs = 0;
8137 }
8138
8139 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8140 {
8141 int ret;
8142
8143 if (!ctx->buf_data)
8144 return -ENXIO;
8145
8146 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8147 if (!ret)
8148 __io_sqe_buffers_unregister(ctx);
8149 return ret;
8150 }
8151
8152 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8153 void __user *arg, unsigned index)
8154 {
8155 struct iovec __user *src;
8156
8157 #ifdef CONFIG_COMPAT
8158 if (ctx->compat) {
8159 struct compat_iovec __user *ciovs;
8160 struct compat_iovec ciov;
8161
8162 ciovs = (struct compat_iovec __user *) arg;
8163 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8164 return -EFAULT;
8165
8166 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8167 dst->iov_len = ciov.iov_len;
8168 return 0;
8169 }
8170 #endif
8171 src = (struct iovec __user *) arg;
8172 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8173 return -EFAULT;
8174 return 0;
8175 }
8176
8177 /*
8178 * Not super efficient, but this is just a registration time. And we do cache
8179 * the last compound head, so generally we'll only do a full search if we don't
8180 * match that one.
8181 *
8182 * We check if the given compound head page has already been accounted, to
8183 * avoid double accounting it. This allows us to account the full size of the
8184 * page, not just the constituent pages of a huge page.
8185 */
8186 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8187 int nr_pages, struct page *hpage)
8188 {
8189 int i, j;
8190
8191 /* check current page array */
8192 for (i = 0; i < nr_pages; i++) {
8193 if (!PageCompound(pages[i]))
8194 continue;
8195 if (compound_head(pages[i]) == hpage)
8196 return true;
8197 }
8198
8199 /* check previously registered pages */
8200 for (i = 0; i < ctx->nr_user_bufs; i++) {
8201 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8202
8203 for (j = 0; j < imu->nr_bvecs; j++) {
8204 if (!PageCompound(imu->bvec[j].bv_page))
8205 continue;
8206 if (compound_head(imu->bvec[j].bv_page) == hpage)
8207 return true;
8208 }
8209 }
8210
8211 return false;
8212 }
8213
8214 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8215 int nr_pages, struct io_mapped_ubuf *imu,
8216 struct page **last_hpage)
8217 {
8218 int i, ret;
8219
8220 for (i = 0; i < nr_pages; i++) {
8221 if (!PageCompound(pages[i])) {
8222 imu->acct_pages++;
8223 } else {
8224 struct page *hpage;
8225
8226 hpage = compound_head(pages[i]);
8227 if (hpage == *last_hpage)
8228 continue;
8229 *last_hpage = hpage;
8230 if (headpage_already_acct(ctx, pages, i, hpage))
8231 continue;
8232 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8233 }
8234 }
8235
8236 if (!imu->acct_pages)
8237 return 0;
8238
8239 ret = io_account_mem(ctx, imu->acct_pages);
8240 if (ret)
8241 imu->acct_pages = 0;
8242 return ret;
8243 }
8244
8245 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8246 struct io_mapped_ubuf **pimu,
8247 struct page **last_hpage)
8248 {
8249 struct io_mapped_ubuf *imu = NULL;
8250 struct vm_area_struct **vmas = NULL;
8251 struct page **pages = NULL;
8252 unsigned long off, start, end, ubuf;
8253 size_t size;
8254 int ret, pret, nr_pages, i;
8255
8256 ubuf = (unsigned long) iov->iov_base;
8257 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8258 start = ubuf >> PAGE_SHIFT;
8259 nr_pages = end - start;
8260
8261 *pimu = NULL;
8262 ret = -ENOMEM;
8263
8264 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8265 if (!pages)
8266 goto done;
8267
8268 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8269 GFP_KERNEL);
8270 if (!vmas)
8271 goto done;
8272
8273 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8274 if (!imu)
8275 goto done;
8276
8277 ret = 0;
8278 mmap_read_lock(current->mm);
8279 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8280 pages, vmas);
8281 if (pret == nr_pages) {
8282 /* don't support file backed memory */
8283 for (i = 0; i < nr_pages; i++) {
8284 struct vm_area_struct *vma = vmas[i];
8285
8286 if (vma->vm_file &&
8287 !is_file_hugepages(vma->vm_file)) {
8288 ret = -EOPNOTSUPP;
8289 break;
8290 }
8291 }
8292 } else {
8293 ret = pret < 0 ? pret : -EFAULT;
8294 }
8295 mmap_read_unlock(current->mm);
8296 if (ret) {
8297 /*
8298 * if we did partial map, or found file backed vmas,
8299 * release any pages we did get
8300 */
8301 if (pret > 0)
8302 unpin_user_pages(pages, pret);
8303 goto done;
8304 }
8305
8306 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8307 if (ret) {
8308 unpin_user_pages(pages, pret);
8309 goto done;
8310 }
8311
8312 off = ubuf & ~PAGE_MASK;
8313 size = iov->iov_len;
8314 for (i = 0; i < nr_pages; i++) {
8315 size_t vec_len;
8316
8317 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8318 imu->bvec[i].bv_page = pages[i];
8319 imu->bvec[i].bv_len = vec_len;
8320 imu->bvec[i].bv_offset = off;
8321 off = 0;
8322 size -= vec_len;
8323 }
8324 /* store original address for later verification */
8325 imu->ubuf = ubuf;
8326 imu->ubuf_end = ubuf + iov->iov_len;
8327 imu->nr_bvecs = nr_pages;
8328 *pimu = imu;
8329 ret = 0;
8330 done:
8331 if (ret)
8332 kvfree(imu);
8333 kvfree(pages);
8334 kvfree(vmas);
8335 return ret;
8336 }
8337
8338 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8339 {
8340 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8341 return ctx->user_bufs ? 0 : -ENOMEM;
8342 }
8343
8344 static int io_buffer_validate(struct iovec *iov)
8345 {
8346 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8347
8348 /*
8349 * Don't impose further limits on the size and buffer
8350 * constraints here, we'll -EINVAL later when IO is
8351 * submitted if they are wrong.
8352 */
8353 if (!iov->iov_base || !iov->iov_len)
8354 return -EFAULT;
8355
8356 /* arbitrary limit, but we need something */
8357 if (iov->iov_len > SZ_1G)
8358 return -EFAULT;
8359
8360 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8361 return -EOVERFLOW;
8362
8363 return 0;
8364 }
8365
8366 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8367 unsigned int nr_args, u64 __user *tags)
8368 {
8369 struct page *last_hpage = NULL;
8370 struct io_rsrc_data *data;
8371 int i, ret;
8372 struct iovec iov;
8373
8374 if (ctx->user_bufs)
8375 return -EBUSY;
8376 if (!nr_args || nr_args > UIO_MAXIOV)
8377 return -EINVAL;
8378 ret = io_rsrc_node_switch_start(ctx);
8379 if (ret)
8380 return ret;
8381 data = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, nr_args);
8382 if (!data)
8383 return -ENOMEM;
8384 ret = io_buffers_map_alloc(ctx, nr_args);
8385 if (ret) {
8386 kfree(data);
8387 return ret;
8388 }
8389
8390 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8391 u64 tag = 0;
8392
8393 if (tags && copy_from_user(&tag, &tags[i], sizeof(tag))) {
8394 ret = -EFAULT;
8395 break;
8396 }
8397 ret = io_copy_iov(ctx, &iov, arg, i);
8398 if (ret)
8399 break;
8400 ret = io_buffer_validate(&iov);
8401 if (ret)
8402 break;
8403
8404 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8405 &last_hpage);
8406 if (ret)
8407 break;
8408 data->tags[i] = tag;
8409 }
8410
8411 WARN_ON_ONCE(ctx->buf_data);
8412
8413 ctx->buf_data = data;
8414 if (ret)
8415 __io_sqe_buffers_unregister(ctx);
8416 else
8417 io_rsrc_node_switch(ctx, NULL);
8418 return ret;
8419 }
8420
8421 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8422 struct io_uring_rsrc_update2 *up,
8423 unsigned int nr_args)
8424 {
8425 u64 __user *tags = u64_to_user_ptr(up->tags);
8426 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8427 struct page *last_hpage = NULL;
8428 bool needs_switch = false;
8429 __u32 done;
8430 int i, err;
8431
8432 if (!ctx->buf_data)
8433 return -ENXIO;
8434 if (up->offset + nr_args > ctx->nr_user_bufs)
8435 return -EINVAL;
8436
8437 for (done = 0; done < nr_args; done++) {
8438 struct io_mapped_ubuf *imu;
8439 int offset = up->offset + done;
8440 u64 tag = 0;
8441
8442 err = io_copy_iov(ctx, &iov, iovs, done);
8443 if (err)
8444 break;
8445 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8446 err = -EFAULT;
8447 break;
8448 }
8449 err = io_buffer_validate(&iov);
8450 if (err)
8451 break;
8452 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8453 if (err)
8454 break;
8455
8456 i = array_index_nospec(offset, ctx->nr_user_bufs);
8457 if (ctx->user_bufs[i]) {
8458 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8459 ctx->rsrc_node, ctx->user_bufs[i]);
8460 if (unlikely(err)) {
8461 io_buffer_unmap(ctx, &imu);
8462 break;
8463 }
8464 ctx->user_bufs[i] = NULL;
8465 needs_switch = true;
8466 }
8467
8468 ctx->user_bufs[i] = imu;
8469 ctx->buf_data->tags[offset] = tag;
8470 }
8471
8472 if (needs_switch)
8473 io_rsrc_node_switch(ctx, ctx->buf_data);
8474 return done ? done : err;
8475 }
8476
8477 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8478 {
8479 __s32 __user *fds = arg;
8480 int fd;
8481
8482 if (ctx->cq_ev_fd)
8483 return -EBUSY;
8484
8485 if (copy_from_user(&fd, fds, sizeof(*fds)))
8486 return -EFAULT;
8487
8488 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8489 if (IS_ERR(ctx->cq_ev_fd)) {
8490 int ret = PTR_ERR(ctx->cq_ev_fd);
8491 ctx->cq_ev_fd = NULL;
8492 return ret;
8493 }
8494
8495 return 0;
8496 }
8497
8498 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8499 {
8500 if (ctx->cq_ev_fd) {
8501 eventfd_ctx_put(ctx->cq_ev_fd);
8502 ctx->cq_ev_fd = NULL;
8503 return 0;
8504 }
8505
8506 return -ENXIO;
8507 }
8508
8509 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8510 {
8511 struct io_buffer *buf;
8512 unsigned long index;
8513
8514 xa_for_each(&ctx->io_buffers, index, buf)
8515 __io_remove_buffers(ctx, buf, index, -1U);
8516 }
8517
8518 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8519 {
8520 struct io_kiocb *req, *nxt;
8521
8522 list_for_each_entry_safe(req, nxt, list, compl.list) {
8523 if (tsk && req->task != tsk)
8524 continue;
8525 list_del(&req->compl.list);
8526 kmem_cache_free(req_cachep, req);
8527 }
8528 }
8529
8530 static void io_req_caches_free(struct io_ring_ctx *ctx)
8531 {
8532 struct io_submit_state *submit_state = &ctx->submit_state;
8533 struct io_comp_state *cs = &ctx->submit_state.comp;
8534
8535 mutex_lock(&ctx->uring_lock);
8536
8537 if (submit_state->free_reqs) {
8538 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8539 submit_state->reqs);
8540 submit_state->free_reqs = 0;
8541 }
8542
8543 io_flush_cached_locked_reqs(ctx, cs);
8544 io_req_cache_free(&cs->free_list, NULL);
8545 mutex_unlock(&ctx->uring_lock);
8546 }
8547
8548 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8549 {
8550 if (!data)
8551 return false;
8552 if (!atomic_dec_and_test(&data->refs))
8553 wait_for_completion(&data->done);
8554 return true;
8555 }
8556
8557 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8558 {
8559 io_sq_thread_finish(ctx);
8560
8561 if (ctx->mm_account) {
8562 mmdrop(ctx->mm_account);
8563 ctx->mm_account = NULL;
8564 }
8565
8566 mutex_lock(&ctx->uring_lock);
8567 if (io_wait_rsrc_data(ctx->buf_data))
8568 __io_sqe_buffers_unregister(ctx);
8569 if (io_wait_rsrc_data(ctx->file_data))
8570 __io_sqe_files_unregister(ctx);
8571 if (ctx->rings)
8572 __io_cqring_overflow_flush(ctx, true);
8573 mutex_unlock(&ctx->uring_lock);
8574 io_eventfd_unregister(ctx);
8575 io_destroy_buffers(ctx);
8576 if (ctx->sq_creds)
8577 put_cred(ctx->sq_creds);
8578
8579 /* there are no registered resources left, nobody uses it */
8580 if (ctx->rsrc_node)
8581 io_rsrc_node_destroy(ctx->rsrc_node);
8582 if (ctx->rsrc_backup_node)
8583 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8584 flush_delayed_work(&ctx->rsrc_put_work);
8585
8586 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8587 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8588
8589 #if defined(CONFIG_UNIX)
8590 if (ctx->ring_sock) {
8591 ctx->ring_sock->file = NULL; /* so that iput() is called */
8592 sock_release(ctx->ring_sock);
8593 }
8594 #endif
8595
8596 io_mem_free(ctx->rings);
8597 io_mem_free(ctx->sq_sqes);
8598
8599 percpu_ref_exit(&ctx->refs);
8600 free_uid(ctx->user);
8601 io_req_caches_free(ctx);
8602 if (ctx->hash_map)
8603 io_wq_put_hash(ctx->hash_map);
8604 kfree(ctx->cancel_hash);
8605 kfree(ctx);
8606 }
8607
8608 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8609 {
8610 struct io_ring_ctx *ctx = file->private_data;
8611 __poll_t mask = 0;
8612
8613 poll_wait(file, &ctx->cq_wait, wait);
8614 /*
8615 * synchronizes with barrier from wq_has_sleeper call in
8616 * io_commit_cqring
8617 */
8618 smp_rmb();
8619 if (!io_sqring_full(ctx))
8620 mask |= EPOLLOUT | EPOLLWRNORM;
8621
8622 /*
8623 * Don't flush cqring overflow list here, just do a simple check.
8624 * Otherwise there could possible be ABBA deadlock:
8625 * CPU0 CPU1
8626 * ---- ----
8627 * lock(&ctx->uring_lock);
8628 * lock(&ep->mtx);
8629 * lock(&ctx->uring_lock);
8630 * lock(&ep->mtx);
8631 *
8632 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8633 * pushs them to do the flush.
8634 */
8635 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8636 mask |= EPOLLIN | EPOLLRDNORM;
8637
8638 return mask;
8639 }
8640
8641 static int io_uring_fasync(int fd, struct file *file, int on)
8642 {
8643 struct io_ring_ctx *ctx = file->private_data;
8644
8645 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8646 }
8647
8648 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8649 {
8650 const struct cred *creds;
8651
8652 creds = xa_erase(&ctx->personalities, id);
8653 if (creds) {
8654 put_cred(creds);
8655 return 0;
8656 }
8657
8658 return -EINVAL;
8659 }
8660
8661 static inline bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
8662 {
8663 return io_run_task_work_head(&ctx->exit_task_work);
8664 }
8665
8666 struct io_tctx_exit {
8667 struct callback_head task_work;
8668 struct completion completion;
8669 struct io_ring_ctx *ctx;
8670 };
8671
8672 static void io_tctx_exit_cb(struct callback_head *cb)
8673 {
8674 struct io_uring_task *tctx = current->io_uring;
8675 struct io_tctx_exit *work;
8676
8677 work = container_of(cb, struct io_tctx_exit, task_work);
8678 /*
8679 * When @in_idle, we're in cancellation and it's racy to remove the
8680 * node. It'll be removed by the end of cancellation, just ignore it.
8681 */
8682 if (!atomic_read(&tctx->in_idle))
8683 io_uring_del_task_file((unsigned long)work->ctx);
8684 complete(&work->completion);
8685 }
8686
8687 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8688 {
8689 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8690
8691 return req->ctx == data;
8692 }
8693
8694 static void io_ring_exit_work(struct work_struct *work)
8695 {
8696 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8697 unsigned long timeout = jiffies + HZ * 60 * 5;
8698 struct io_tctx_exit exit;
8699 struct io_tctx_node *node;
8700 int ret;
8701
8702 /*
8703 * If we're doing polled IO and end up having requests being
8704 * submitted async (out-of-line), then completions can come in while
8705 * we're waiting for refs to drop. We need to reap these manually,
8706 * as nobody else will be looking for them.
8707 */
8708 do {
8709 io_uring_try_cancel_requests(ctx, NULL, NULL);
8710 if (ctx->sq_data) {
8711 struct io_sq_data *sqd = ctx->sq_data;
8712 struct task_struct *tsk;
8713
8714 io_sq_thread_park(sqd);
8715 tsk = sqd->thread;
8716 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8717 io_wq_cancel_cb(tsk->io_uring->io_wq,
8718 io_cancel_ctx_cb, ctx, true);
8719 io_sq_thread_unpark(sqd);
8720 }
8721
8722 WARN_ON_ONCE(time_after(jiffies, timeout));
8723 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8724
8725 init_completion(&exit.completion);
8726 init_task_work(&exit.task_work, io_tctx_exit_cb);
8727 exit.ctx = ctx;
8728 /*
8729 * Some may use context even when all refs and requests have been put,
8730 * and they are free to do so while still holding uring_lock or
8731 * completion_lock, see __io_req_task_submit(). Apart from other work,
8732 * this lock/unlock section also waits them to finish.
8733 */
8734 mutex_lock(&ctx->uring_lock);
8735 while (!list_empty(&ctx->tctx_list)) {
8736 WARN_ON_ONCE(time_after(jiffies, timeout));
8737
8738 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8739 ctx_node);
8740 /* don't spin on a single task if cancellation failed */
8741 list_rotate_left(&ctx->tctx_list);
8742 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8743 if (WARN_ON_ONCE(ret))
8744 continue;
8745 wake_up_process(node->task);
8746
8747 mutex_unlock(&ctx->uring_lock);
8748 wait_for_completion(&exit.completion);
8749 mutex_lock(&ctx->uring_lock);
8750 }
8751 mutex_unlock(&ctx->uring_lock);
8752 spin_lock_irq(&ctx->completion_lock);
8753 spin_unlock_irq(&ctx->completion_lock);
8754
8755 io_ring_ctx_free(ctx);
8756 }
8757
8758 /* Returns true if we found and killed one or more timeouts */
8759 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8760 struct files_struct *files)
8761 {
8762 struct io_kiocb *req, *tmp;
8763 int canceled = 0;
8764
8765 spin_lock_irq(&ctx->completion_lock);
8766 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8767 if (io_match_task(req, tsk, files)) {
8768 io_kill_timeout(req, -ECANCELED);
8769 canceled++;
8770 }
8771 }
8772 if (canceled != 0)
8773 io_commit_cqring(ctx);
8774 spin_unlock_irq(&ctx->completion_lock);
8775 if (canceled != 0)
8776 io_cqring_ev_posted(ctx);
8777 return canceled != 0;
8778 }
8779
8780 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8781 {
8782 unsigned long index;
8783 struct creds *creds;
8784
8785 mutex_lock(&ctx->uring_lock);
8786 percpu_ref_kill(&ctx->refs);
8787 if (ctx->rings)
8788 __io_cqring_overflow_flush(ctx, true);
8789 xa_for_each(&ctx->personalities, index, creds)
8790 io_unregister_personality(ctx, index);
8791 mutex_unlock(&ctx->uring_lock);
8792
8793 io_kill_timeouts(ctx, NULL, NULL);
8794 io_poll_remove_all(ctx, NULL, NULL);
8795
8796 /* if we failed setting up the ctx, we might not have any rings */
8797 io_iopoll_try_reap_events(ctx);
8798
8799 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8800 /*
8801 * Use system_unbound_wq to avoid spawning tons of event kworkers
8802 * if we're exiting a ton of rings at the same time. It just adds
8803 * noise and overhead, there's no discernable change in runtime
8804 * over using system_wq.
8805 */
8806 queue_work(system_unbound_wq, &ctx->exit_work);
8807 }
8808
8809 static int io_uring_release(struct inode *inode, struct file *file)
8810 {
8811 struct io_ring_ctx *ctx = file->private_data;
8812
8813 file->private_data = NULL;
8814 io_ring_ctx_wait_and_kill(ctx);
8815 return 0;
8816 }
8817
8818 struct io_task_cancel {
8819 struct task_struct *task;
8820 struct files_struct *files;
8821 };
8822
8823 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8824 {
8825 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8826 struct io_task_cancel *cancel = data;
8827 bool ret;
8828
8829 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8830 unsigned long flags;
8831 struct io_ring_ctx *ctx = req->ctx;
8832
8833 /* protect against races with linked timeouts */
8834 spin_lock_irqsave(&ctx->completion_lock, flags);
8835 ret = io_match_task(req, cancel->task, cancel->files);
8836 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8837 } else {
8838 ret = io_match_task(req, cancel->task, cancel->files);
8839 }
8840 return ret;
8841 }
8842
8843 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8844 struct task_struct *task,
8845 struct files_struct *files)
8846 {
8847 struct io_defer_entry *de;
8848 LIST_HEAD(list);
8849
8850 spin_lock_irq(&ctx->completion_lock);
8851 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8852 if (io_match_task(de->req, task, files)) {
8853 list_cut_position(&list, &ctx->defer_list, &de->list);
8854 break;
8855 }
8856 }
8857 spin_unlock_irq(&ctx->completion_lock);
8858 if (list_empty(&list))
8859 return false;
8860
8861 while (!list_empty(&list)) {
8862 de = list_first_entry(&list, struct io_defer_entry, list);
8863 list_del_init(&de->list);
8864 io_req_complete_failed(de->req, -ECANCELED);
8865 kfree(de);
8866 }
8867 return true;
8868 }
8869
8870 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8871 {
8872 struct io_tctx_node *node;
8873 enum io_wq_cancel cret;
8874 bool ret = false;
8875
8876 mutex_lock(&ctx->uring_lock);
8877 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8878 struct io_uring_task *tctx = node->task->io_uring;
8879
8880 /*
8881 * io_wq will stay alive while we hold uring_lock, because it's
8882 * killed after ctx nodes, which requires to take the lock.
8883 */
8884 if (!tctx || !tctx->io_wq)
8885 continue;
8886 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8887 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8888 }
8889 mutex_unlock(&ctx->uring_lock);
8890
8891 return ret;
8892 }
8893
8894 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8895 struct task_struct *task,
8896 struct files_struct *files)
8897 {
8898 struct io_task_cancel cancel = { .task = task, .files = files, };
8899 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8900
8901 while (1) {
8902 enum io_wq_cancel cret;
8903 bool ret = false;
8904
8905 if (!task) {
8906 ret |= io_uring_try_cancel_iowq(ctx);
8907 } else if (tctx && tctx->io_wq) {
8908 /*
8909 * Cancels requests of all rings, not only @ctx, but
8910 * it's fine as the task is in exit/exec.
8911 */
8912 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8913 &cancel, true);
8914 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8915 }
8916
8917 /* SQPOLL thread does its own polling */
8918 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8919 (ctx->sq_data && ctx->sq_data->thread == current)) {
8920 while (!list_empty_careful(&ctx->iopoll_list)) {
8921 io_iopoll_try_reap_events(ctx);
8922 ret = true;
8923 }
8924 }
8925
8926 ret |= io_cancel_defer_files(ctx, task, files);
8927 ret |= io_poll_remove_all(ctx, task, files);
8928 ret |= io_kill_timeouts(ctx, task, files);
8929 ret |= io_run_task_work();
8930 ret |= io_run_ctx_fallback(ctx);
8931 if (!ret)
8932 break;
8933 cond_resched();
8934 }
8935 }
8936
8937 static int __io_uring_add_task_file(struct io_ring_ctx *ctx)
8938 {
8939 struct io_uring_task *tctx = current->io_uring;
8940 struct io_tctx_node *node;
8941 int ret;
8942
8943 if (unlikely(!tctx)) {
8944 ret = io_uring_alloc_task_context(current, ctx);
8945 if (unlikely(ret))
8946 return ret;
8947 tctx = current->io_uring;
8948 }
8949 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
8950 node = kmalloc(sizeof(*node), GFP_KERNEL);
8951 if (!node)
8952 return -ENOMEM;
8953 node->ctx = ctx;
8954 node->task = current;
8955
8956 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
8957 node, GFP_KERNEL));
8958 if (ret) {
8959 kfree(node);
8960 return ret;
8961 }
8962
8963 mutex_lock(&ctx->uring_lock);
8964 list_add(&node->ctx_node, &ctx->tctx_list);
8965 mutex_unlock(&ctx->uring_lock);
8966 }
8967 tctx->last = ctx;
8968 return 0;
8969 }
8970
8971 /*
8972 * Note that this task has used io_uring. We use it for cancelation purposes.
8973 */
8974 static inline int io_uring_add_task_file(struct io_ring_ctx *ctx)
8975 {
8976 struct io_uring_task *tctx = current->io_uring;
8977
8978 if (likely(tctx && tctx->last == ctx))
8979 return 0;
8980 return __io_uring_add_task_file(ctx);
8981 }
8982
8983 /*
8984 * Remove this io_uring_file -> task mapping.
8985 */
8986 static void io_uring_del_task_file(unsigned long index)
8987 {
8988 struct io_uring_task *tctx = current->io_uring;
8989 struct io_tctx_node *node;
8990
8991 if (!tctx)
8992 return;
8993 node = xa_erase(&tctx->xa, index);
8994 if (!node)
8995 return;
8996
8997 WARN_ON_ONCE(current != node->task);
8998 WARN_ON_ONCE(list_empty(&node->ctx_node));
8999
9000 mutex_lock(&node->ctx->uring_lock);
9001 list_del(&node->ctx_node);
9002 mutex_unlock(&node->ctx->uring_lock);
9003
9004 if (tctx->last == node->ctx)
9005 tctx->last = NULL;
9006 kfree(node);
9007 }
9008
9009 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9010 {
9011 struct io_tctx_node *node;
9012 unsigned long index;
9013
9014 xa_for_each(&tctx->xa, index, node)
9015 io_uring_del_task_file(index);
9016 if (tctx->io_wq) {
9017 io_wq_put_and_exit(tctx->io_wq);
9018 tctx->io_wq = NULL;
9019 }
9020 }
9021
9022 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9023 {
9024 if (tracked)
9025 return atomic_read(&tctx->inflight_tracked);
9026 return percpu_counter_sum(&tctx->inflight);
9027 }
9028
9029 static void io_uring_try_cancel(struct files_struct *files)
9030 {
9031 struct io_uring_task *tctx = current->io_uring;
9032 struct io_tctx_node *node;
9033 unsigned long index;
9034
9035 xa_for_each(&tctx->xa, index, node) {
9036 struct io_ring_ctx *ctx = node->ctx;
9037
9038 /* sqpoll task will cancel all its requests */
9039 if (!ctx->sq_data)
9040 io_uring_try_cancel_requests(ctx, current, files);
9041 }
9042 }
9043
9044 /* should only be called by SQPOLL task */
9045 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd)
9046 {
9047 struct io_uring_task *tctx = current->io_uring;
9048 struct io_ring_ctx *ctx;
9049 s64 inflight;
9050 DEFINE_WAIT(wait);
9051
9052 if (!current->io_uring)
9053 return;
9054 WARN_ON_ONCE(!sqd || sqd->thread != current);
9055
9056 atomic_inc(&tctx->in_idle);
9057 do {
9058 /* read completions before cancelations */
9059 inflight = tctx_inflight(tctx, false);
9060 if (!inflight)
9061 break;
9062 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9063 io_uring_try_cancel_requests(ctx, current, NULL);
9064
9065 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9066 /*
9067 * If we've seen completions, retry without waiting. This
9068 * avoids a race where a completion comes in before we did
9069 * prepare_to_wait().
9070 */
9071 if (inflight == tctx_inflight(tctx, false))
9072 schedule();
9073 finish_wait(&tctx->wait, &wait);
9074 } while (1);
9075 atomic_dec(&tctx->in_idle);
9076 }
9077
9078 /*
9079 * Find any io_uring fd that this task has registered or done IO on, and cancel
9080 * requests.
9081 */
9082 void __io_uring_cancel(struct files_struct *files)
9083 {
9084 struct io_uring_task *tctx = current->io_uring;
9085 DEFINE_WAIT(wait);
9086 s64 inflight;
9087
9088 /* make sure overflow events are dropped */
9089 atomic_inc(&tctx->in_idle);
9090 do {
9091 /* read completions before cancelations */
9092 inflight = tctx_inflight(tctx, !!files);
9093 if (!inflight)
9094 break;
9095 io_uring_try_cancel(files);
9096 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9097
9098 /*
9099 * If we've seen completions, retry without waiting. This
9100 * avoids a race where a completion comes in before we did
9101 * prepare_to_wait().
9102 */
9103 if (inflight == tctx_inflight(tctx, !!files))
9104 schedule();
9105 finish_wait(&tctx->wait, &wait);
9106 } while (1);
9107 atomic_dec(&tctx->in_idle);
9108
9109 io_uring_clean_tctx(tctx);
9110 if (!files) {
9111 /* for exec all current's requests should be gone, kill tctx */
9112 __io_uring_free(current);
9113 }
9114 }
9115
9116 static void *io_uring_validate_mmap_request(struct file *file,
9117 loff_t pgoff, size_t sz)
9118 {
9119 struct io_ring_ctx *ctx = file->private_data;
9120 loff_t offset = pgoff << PAGE_SHIFT;
9121 struct page *page;
9122 void *ptr;
9123
9124 switch (offset) {
9125 case IORING_OFF_SQ_RING:
9126 case IORING_OFF_CQ_RING:
9127 ptr = ctx->rings;
9128 break;
9129 case IORING_OFF_SQES:
9130 ptr = ctx->sq_sqes;
9131 break;
9132 default:
9133 return ERR_PTR(-EINVAL);
9134 }
9135
9136 page = virt_to_head_page(ptr);
9137 if (sz > page_size(page))
9138 return ERR_PTR(-EINVAL);
9139
9140 return ptr;
9141 }
9142
9143 #ifdef CONFIG_MMU
9144
9145 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9146 {
9147 size_t sz = vma->vm_end - vma->vm_start;
9148 unsigned long pfn;
9149 void *ptr;
9150
9151 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9152 if (IS_ERR(ptr))
9153 return PTR_ERR(ptr);
9154
9155 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9156 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9157 }
9158
9159 #else /* !CONFIG_MMU */
9160
9161 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9162 {
9163 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9164 }
9165
9166 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9167 {
9168 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9169 }
9170
9171 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9172 unsigned long addr, unsigned long len,
9173 unsigned long pgoff, unsigned long flags)
9174 {
9175 void *ptr;
9176
9177 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9178 if (IS_ERR(ptr))
9179 return PTR_ERR(ptr);
9180
9181 return (unsigned long) ptr;
9182 }
9183
9184 #endif /* !CONFIG_MMU */
9185
9186 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9187 {
9188 DEFINE_WAIT(wait);
9189
9190 do {
9191 if (!io_sqring_full(ctx))
9192 break;
9193 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9194
9195 if (!io_sqring_full(ctx))
9196 break;
9197 schedule();
9198 } while (!signal_pending(current));
9199
9200 finish_wait(&ctx->sqo_sq_wait, &wait);
9201 return 0;
9202 }
9203
9204 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9205 struct __kernel_timespec __user **ts,
9206 const sigset_t __user **sig)
9207 {
9208 struct io_uring_getevents_arg arg;
9209
9210 /*
9211 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9212 * is just a pointer to the sigset_t.
9213 */
9214 if (!(flags & IORING_ENTER_EXT_ARG)) {
9215 *sig = (const sigset_t __user *) argp;
9216 *ts = NULL;
9217 return 0;
9218 }
9219
9220 /*
9221 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9222 * timespec and sigset_t pointers if good.
9223 */
9224 if (*argsz != sizeof(arg))
9225 return -EINVAL;
9226 if (copy_from_user(&arg, argp, sizeof(arg)))
9227 return -EFAULT;
9228 *sig = u64_to_user_ptr(arg.sigmask);
9229 *argsz = arg.sigmask_sz;
9230 *ts = u64_to_user_ptr(arg.ts);
9231 return 0;
9232 }
9233
9234 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9235 u32, min_complete, u32, flags, const void __user *, argp,
9236 size_t, argsz)
9237 {
9238 struct io_ring_ctx *ctx;
9239 int submitted = 0;
9240 struct fd f;
9241 long ret;
9242
9243 io_run_task_work();
9244
9245 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9246 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9247 return -EINVAL;
9248
9249 f = fdget(fd);
9250 if (unlikely(!f.file))
9251 return -EBADF;
9252
9253 ret = -EOPNOTSUPP;
9254 if (unlikely(f.file->f_op != &io_uring_fops))
9255 goto out_fput;
9256
9257 ret = -ENXIO;
9258 ctx = f.file->private_data;
9259 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9260 goto out_fput;
9261
9262 ret = -EBADFD;
9263 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9264 goto out;
9265
9266 /*
9267 * For SQ polling, the thread will do all submissions and completions.
9268 * Just return the requested submit count, and wake the thread if
9269 * we were asked to.
9270 */
9271 ret = 0;
9272 if (ctx->flags & IORING_SETUP_SQPOLL) {
9273 io_cqring_overflow_flush(ctx, false);
9274
9275 ret = -EOWNERDEAD;
9276 if (unlikely(ctx->sq_data->thread == NULL)) {
9277 goto out;
9278 }
9279 if (flags & IORING_ENTER_SQ_WAKEUP)
9280 wake_up(&ctx->sq_data->wait);
9281 if (flags & IORING_ENTER_SQ_WAIT) {
9282 ret = io_sqpoll_wait_sq(ctx);
9283 if (ret)
9284 goto out;
9285 }
9286 submitted = to_submit;
9287 } else if (to_submit) {
9288 ret = io_uring_add_task_file(ctx);
9289 if (unlikely(ret))
9290 goto out;
9291 mutex_lock(&ctx->uring_lock);
9292 submitted = io_submit_sqes(ctx, to_submit);
9293 mutex_unlock(&ctx->uring_lock);
9294
9295 if (submitted != to_submit)
9296 goto out;
9297 }
9298 if (flags & IORING_ENTER_GETEVENTS) {
9299 const sigset_t __user *sig;
9300 struct __kernel_timespec __user *ts;
9301
9302 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9303 if (unlikely(ret))
9304 goto out;
9305
9306 min_complete = min(min_complete, ctx->cq_entries);
9307
9308 /*
9309 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9310 * space applications don't need to do io completion events
9311 * polling again, they can rely on io_sq_thread to do polling
9312 * work, which can reduce cpu usage and uring_lock contention.
9313 */
9314 if (ctx->flags & IORING_SETUP_IOPOLL &&
9315 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9316 ret = io_iopoll_check(ctx, min_complete);
9317 } else {
9318 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9319 }
9320 }
9321
9322 out:
9323 percpu_ref_put(&ctx->refs);
9324 out_fput:
9325 fdput(f);
9326 return submitted ? submitted : ret;
9327 }
9328
9329 #ifdef CONFIG_PROC_FS
9330 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9331 const struct cred *cred)
9332 {
9333 struct user_namespace *uns = seq_user_ns(m);
9334 struct group_info *gi;
9335 kernel_cap_t cap;
9336 unsigned __capi;
9337 int g;
9338
9339 seq_printf(m, "%5d\n", id);
9340 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9341 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9342 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9343 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9344 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9345 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9346 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9347 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9348 seq_puts(m, "\n\tGroups:\t");
9349 gi = cred->group_info;
9350 for (g = 0; g < gi->ngroups; g++) {
9351 seq_put_decimal_ull(m, g ? " " : "",
9352 from_kgid_munged(uns, gi->gid[g]));
9353 }
9354 seq_puts(m, "\n\tCapEff:\t");
9355 cap = cred->cap_effective;
9356 CAP_FOR_EACH_U32(__capi)
9357 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9358 seq_putc(m, '\n');
9359 return 0;
9360 }
9361
9362 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9363 {
9364 struct io_sq_data *sq = NULL;
9365 bool has_lock;
9366 int i;
9367
9368 /*
9369 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9370 * since fdinfo case grabs it in the opposite direction of normal use
9371 * cases. If we fail to get the lock, we just don't iterate any
9372 * structures that could be going away outside the io_uring mutex.
9373 */
9374 has_lock = mutex_trylock(&ctx->uring_lock);
9375
9376 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9377 sq = ctx->sq_data;
9378 if (!sq->thread)
9379 sq = NULL;
9380 }
9381
9382 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9383 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9384 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9385 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9386 struct file *f = io_file_from_index(ctx, i);
9387
9388 if (f)
9389 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9390 else
9391 seq_printf(m, "%5u: <none>\n", i);
9392 }
9393 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9394 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9395 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9396 unsigned int len = buf->ubuf_end - buf->ubuf;
9397
9398 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9399 }
9400 if (has_lock && !xa_empty(&ctx->personalities)) {
9401 unsigned long index;
9402 const struct cred *cred;
9403
9404 seq_printf(m, "Personalities:\n");
9405 xa_for_each(&ctx->personalities, index, cred)
9406 io_uring_show_cred(m, index, cred);
9407 }
9408 seq_printf(m, "PollList:\n");
9409 spin_lock_irq(&ctx->completion_lock);
9410 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9411 struct hlist_head *list = &ctx->cancel_hash[i];
9412 struct io_kiocb *req;
9413
9414 hlist_for_each_entry(req, list, hash_node)
9415 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9416 req->task->task_works != NULL);
9417 }
9418 spin_unlock_irq(&ctx->completion_lock);
9419 if (has_lock)
9420 mutex_unlock(&ctx->uring_lock);
9421 }
9422
9423 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9424 {
9425 struct io_ring_ctx *ctx = f->private_data;
9426
9427 if (percpu_ref_tryget(&ctx->refs)) {
9428 __io_uring_show_fdinfo(ctx, m);
9429 percpu_ref_put(&ctx->refs);
9430 }
9431 }
9432 #endif
9433
9434 static const struct file_operations io_uring_fops = {
9435 .release = io_uring_release,
9436 .mmap = io_uring_mmap,
9437 #ifndef CONFIG_MMU
9438 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9439 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9440 #endif
9441 .poll = io_uring_poll,
9442 .fasync = io_uring_fasync,
9443 #ifdef CONFIG_PROC_FS
9444 .show_fdinfo = io_uring_show_fdinfo,
9445 #endif
9446 };
9447
9448 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9449 struct io_uring_params *p)
9450 {
9451 struct io_rings *rings;
9452 size_t size, sq_array_offset;
9453
9454 /* make sure these are sane, as we already accounted them */
9455 ctx->sq_entries = p->sq_entries;
9456 ctx->cq_entries = p->cq_entries;
9457
9458 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9459 if (size == SIZE_MAX)
9460 return -EOVERFLOW;
9461
9462 rings = io_mem_alloc(size);
9463 if (!rings)
9464 return -ENOMEM;
9465
9466 ctx->rings = rings;
9467 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9468 rings->sq_ring_mask = p->sq_entries - 1;
9469 rings->cq_ring_mask = p->cq_entries - 1;
9470 rings->sq_ring_entries = p->sq_entries;
9471 rings->cq_ring_entries = p->cq_entries;
9472 ctx->sq_mask = rings->sq_ring_mask;
9473 ctx->cq_mask = rings->cq_ring_mask;
9474
9475 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9476 if (size == SIZE_MAX) {
9477 io_mem_free(ctx->rings);
9478 ctx->rings = NULL;
9479 return -EOVERFLOW;
9480 }
9481
9482 ctx->sq_sqes = io_mem_alloc(size);
9483 if (!ctx->sq_sqes) {
9484 io_mem_free(ctx->rings);
9485 ctx->rings = NULL;
9486 return -ENOMEM;
9487 }
9488
9489 return 0;
9490 }
9491
9492 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9493 {
9494 int ret, fd;
9495
9496 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9497 if (fd < 0)
9498 return fd;
9499
9500 ret = io_uring_add_task_file(ctx);
9501 if (ret) {
9502 put_unused_fd(fd);
9503 return ret;
9504 }
9505 fd_install(fd, file);
9506 return fd;
9507 }
9508
9509 /*
9510 * Allocate an anonymous fd, this is what constitutes the application
9511 * visible backing of an io_uring instance. The application mmaps this
9512 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9513 * we have to tie this fd to a socket for file garbage collection purposes.
9514 */
9515 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9516 {
9517 struct file *file;
9518 #if defined(CONFIG_UNIX)
9519 int ret;
9520
9521 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9522 &ctx->ring_sock);
9523 if (ret)
9524 return ERR_PTR(ret);
9525 #endif
9526
9527 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9528 O_RDWR | O_CLOEXEC);
9529 #if defined(CONFIG_UNIX)
9530 if (IS_ERR(file)) {
9531 sock_release(ctx->ring_sock);
9532 ctx->ring_sock = NULL;
9533 } else {
9534 ctx->ring_sock->file = file;
9535 }
9536 #endif
9537 return file;
9538 }
9539
9540 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9541 struct io_uring_params __user *params)
9542 {
9543 struct io_ring_ctx *ctx;
9544 struct file *file;
9545 int ret;
9546
9547 if (!entries)
9548 return -EINVAL;
9549 if (entries > IORING_MAX_ENTRIES) {
9550 if (!(p->flags & IORING_SETUP_CLAMP))
9551 return -EINVAL;
9552 entries = IORING_MAX_ENTRIES;
9553 }
9554
9555 /*
9556 * Use twice as many entries for the CQ ring. It's possible for the
9557 * application to drive a higher depth than the size of the SQ ring,
9558 * since the sqes are only used at submission time. This allows for
9559 * some flexibility in overcommitting a bit. If the application has
9560 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9561 * of CQ ring entries manually.
9562 */
9563 p->sq_entries = roundup_pow_of_two(entries);
9564 if (p->flags & IORING_SETUP_CQSIZE) {
9565 /*
9566 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9567 * to a power-of-two, if it isn't already. We do NOT impose
9568 * any cq vs sq ring sizing.
9569 */
9570 if (!p->cq_entries)
9571 return -EINVAL;
9572 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9573 if (!(p->flags & IORING_SETUP_CLAMP))
9574 return -EINVAL;
9575 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9576 }
9577 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9578 if (p->cq_entries < p->sq_entries)
9579 return -EINVAL;
9580 } else {
9581 p->cq_entries = 2 * p->sq_entries;
9582 }
9583
9584 ctx = io_ring_ctx_alloc(p);
9585 if (!ctx)
9586 return -ENOMEM;
9587 ctx->compat = in_compat_syscall();
9588 if (!capable(CAP_IPC_LOCK))
9589 ctx->user = get_uid(current_user());
9590
9591 /*
9592 * This is just grabbed for accounting purposes. When a process exits,
9593 * the mm is exited and dropped before the files, hence we need to hang
9594 * on to this mm purely for the purposes of being able to unaccount
9595 * memory (locked/pinned vm). It's not used for anything else.
9596 */
9597 mmgrab(current->mm);
9598 ctx->mm_account = current->mm;
9599
9600 ret = io_allocate_scq_urings(ctx, p);
9601 if (ret)
9602 goto err;
9603
9604 ret = io_sq_offload_create(ctx, p);
9605 if (ret)
9606 goto err;
9607 /* always set a rsrc node */
9608 io_rsrc_node_switch_start(ctx);
9609 io_rsrc_node_switch(ctx, NULL);
9610
9611 memset(&p->sq_off, 0, sizeof(p->sq_off));
9612 p->sq_off.head = offsetof(struct io_rings, sq.head);
9613 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9614 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9615 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9616 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9617 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9618 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9619
9620 memset(&p->cq_off, 0, sizeof(p->cq_off));
9621 p->cq_off.head = offsetof(struct io_rings, cq.head);
9622 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9623 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9624 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9625 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9626 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9627 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9628
9629 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9630 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9631 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9632 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9633 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
9634
9635 if (copy_to_user(params, p, sizeof(*p))) {
9636 ret = -EFAULT;
9637 goto err;
9638 }
9639
9640 file = io_uring_get_file(ctx);
9641 if (IS_ERR(file)) {
9642 ret = PTR_ERR(file);
9643 goto err;
9644 }
9645
9646 /*
9647 * Install ring fd as the very last thing, so we don't risk someone
9648 * having closed it before we finish setup
9649 */
9650 ret = io_uring_install_fd(ctx, file);
9651 if (ret < 0) {
9652 /* fput will clean it up */
9653 fput(file);
9654 return ret;
9655 }
9656
9657 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9658 return ret;
9659 err:
9660 io_ring_ctx_wait_and_kill(ctx);
9661 return ret;
9662 }
9663
9664 /*
9665 * Sets up an aio uring context, and returns the fd. Applications asks for a
9666 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9667 * params structure passed in.
9668 */
9669 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9670 {
9671 struct io_uring_params p;
9672 int i;
9673
9674 if (copy_from_user(&p, params, sizeof(p)))
9675 return -EFAULT;
9676 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9677 if (p.resv[i])
9678 return -EINVAL;
9679 }
9680
9681 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9682 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9683 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9684 IORING_SETUP_R_DISABLED))
9685 return -EINVAL;
9686
9687 return io_uring_create(entries, &p, params);
9688 }
9689
9690 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9691 struct io_uring_params __user *, params)
9692 {
9693 return io_uring_setup(entries, params);
9694 }
9695
9696 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9697 {
9698 struct io_uring_probe *p;
9699 size_t size;
9700 int i, ret;
9701
9702 size = struct_size(p, ops, nr_args);
9703 if (size == SIZE_MAX)
9704 return -EOVERFLOW;
9705 p = kzalloc(size, GFP_KERNEL);
9706 if (!p)
9707 return -ENOMEM;
9708
9709 ret = -EFAULT;
9710 if (copy_from_user(p, arg, size))
9711 goto out;
9712 ret = -EINVAL;
9713 if (memchr_inv(p, 0, size))
9714 goto out;
9715
9716 p->last_op = IORING_OP_LAST - 1;
9717 if (nr_args > IORING_OP_LAST)
9718 nr_args = IORING_OP_LAST;
9719
9720 for (i = 0; i < nr_args; i++) {
9721 p->ops[i].op = i;
9722 if (!io_op_defs[i].not_supported)
9723 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9724 }
9725 p->ops_len = i;
9726
9727 ret = 0;
9728 if (copy_to_user(arg, p, size))
9729 ret = -EFAULT;
9730 out:
9731 kfree(p);
9732 return ret;
9733 }
9734
9735 static int io_register_personality(struct io_ring_ctx *ctx)
9736 {
9737 const struct cred *creds;
9738 u32 id;
9739 int ret;
9740
9741 creds = get_current_cred();
9742
9743 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9744 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9745 if (!ret)
9746 return id;
9747 put_cred(creds);
9748 return ret;
9749 }
9750
9751 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9752 unsigned int nr_args)
9753 {
9754 struct io_uring_restriction *res;
9755 size_t size;
9756 int i, ret;
9757
9758 /* Restrictions allowed only if rings started disabled */
9759 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9760 return -EBADFD;
9761
9762 /* We allow only a single restrictions registration */
9763 if (ctx->restrictions.registered)
9764 return -EBUSY;
9765
9766 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9767 return -EINVAL;
9768
9769 size = array_size(nr_args, sizeof(*res));
9770 if (size == SIZE_MAX)
9771 return -EOVERFLOW;
9772
9773 res = memdup_user(arg, size);
9774 if (IS_ERR(res))
9775 return PTR_ERR(res);
9776
9777 ret = 0;
9778
9779 for (i = 0; i < nr_args; i++) {
9780 switch (res[i].opcode) {
9781 case IORING_RESTRICTION_REGISTER_OP:
9782 if (res[i].register_op >= IORING_REGISTER_LAST) {
9783 ret = -EINVAL;
9784 goto out;
9785 }
9786
9787 __set_bit(res[i].register_op,
9788 ctx->restrictions.register_op);
9789 break;
9790 case IORING_RESTRICTION_SQE_OP:
9791 if (res[i].sqe_op >= IORING_OP_LAST) {
9792 ret = -EINVAL;
9793 goto out;
9794 }
9795
9796 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9797 break;
9798 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9799 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9800 break;
9801 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9802 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9803 break;
9804 default:
9805 ret = -EINVAL;
9806 goto out;
9807 }
9808 }
9809
9810 out:
9811 /* Reset all restrictions if an error happened */
9812 if (ret != 0)
9813 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9814 else
9815 ctx->restrictions.registered = true;
9816
9817 kfree(res);
9818 return ret;
9819 }
9820
9821 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9822 {
9823 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9824 return -EBADFD;
9825
9826 if (ctx->restrictions.registered)
9827 ctx->restricted = 1;
9828
9829 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9830 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9831 wake_up(&ctx->sq_data->wait);
9832 return 0;
9833 }
9834
9835 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9836 struct io_uring_rsrc_update2 *up,
9837 unsigned nr_args)
9838 {
9839 __u32 tmp;
9840 int err;
9841
9842 if (up->resv)
9843 return -EINVAL;
9844 if (check_add_overflow(up->offset, nr_args, &tmp))
9845 return -EOVERFLOW;
9846 err = io_rsrc_node_switch_start(ctx);
9847 if (err)
9848 return err;
9849
9850 switch (type) {
9851 case IORING_RSRC_FILE:
9852 return __io_sqe_files_update(ctx, up, nr_args);
9853 case IORING_RSRC_BUFFER:
9854 return __io_sqe_buffers_update(ctx, up, nr_args);
9855 }
9856 return -EINVAL;
9857 }
9858
9859 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9860 unsigned nr_args)
9861 {
9862 struct io_uring_rsrc_update2 up;
9863
9864 if (!nr_args)
9865 return -EINVAL;
9866 memset(&up, 0, sizeof(up));
9867 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9868 return -EFAULT;
9869 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9870 }
9871
9872 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9873 unsigned size)
9874 {
9875 struct io_uring_rsrc_update2 up;
9876
9877 if (size != sizeof(up))
9878 return -EINVAL;
9879 if (copy_from_user(&up, arg, sizeof(up)))
9880 return -EFAULT;
9881 if (!up.nr)
9882 return -EINVAL;
9883 return __io_register_rsrc_update(ctx, up.type, &up, up.nr);
9884 }
9885
9886 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9887 unsigned int size)
9888 {
9889 struct io_uring_rsrc_register rr;
9890
9891 /* keep it extendible */
9892 if (size != sizeof(rr))
9893 return -EINVAL;
9894
9895 memset(&rr, 0, sizeof(rr));
9896 if (copy_from_user(&rr, arg, size))
9897 return -EFAULT;
9898 if (!rr.nr)
9899 return -EINVAL;
9900
9901 switch (rr.type) {
9902 case IORING_RSRC_FILE:
9903 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9904 rr.nr, u64_to_user_ptr(rr.tags));
9905 case IORING_RSRC_BUFFER:
9906 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
9907 rr.nr, u64_to_user_ptr(rr.tags));
9908 }
9909 return -EINVAL;
9910 }
9911
9912 static bool io_register_op_must_quiesce(int op)
9913 {
9914 switch (op) {
9915 case IORING_REGISTER_BUFFERS:
9916 case IORING_UNREGISTER_BUFFERS:
9917 case IORING_REGISTER_FILES:
9918 case IORING_UNREGISTER_FILES:
9919 case IORING_REGISTER_FILES_UPDATE:
9920 case IORING_REGISTER_PROBE:
9921 case IORING_REGISTER_PERSONALITY:
9922 case IORING_UNREGISTER_PERSONALITY:
9923 case IORING_REGISTER_RSRC:
9924 case IORING_REGISTER_RSRC_UPDATE:
9925 return false;
9926 default:
9927 return true;
9928 }
9929 }
9930
9931 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9932 void __user *arg, unsigned nr_args)
9933 __releases(ctx->uring_lock)
9934 __acquires(ctx->uring_lock)
9935 {
9936 int ret;
9937
9938 /*
9939 * We're inside the ring mutex, if the ref is already dying, then
9940 * someone else killed the ctx or is already going through
9941 * io_uring_register().
9942 */
9943 if (percpu_ref_is_dying(&ctx->refs))
9944 return -ENXIO;
9945
9946 if (ctx->restricted) {
9947 if (opcode >= IORING_REGISTER_LAST)
9948 return -EINVAL;
9949 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
9950 if (!test_bit(opcode, ctx->restrictions.register_op))
9951 return -EACCES;
9952 }
9953
9954 if (io_register_op_must_quiesce(opcode)) {
9955 percpu_ref_kill(&ctx->refs);
9956
9957 /*
9958 * Drop uring mutex before waiting for references to exit. If
9959 * another thread is currently inside io_uring_enter() it might
9960 * need to grab the uring_lock to make progress. If we hold it
9961 * here across the drain wait, then we can deadlock. It's safe
9962 * to drop the mutex here, since no new references will come in
9963 * after we've killed the percpu ref.
9964 */
9965 mutex_unlock(&ctx->uring_lock);
9966 do {
9967 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9968 if (!ret)
9969 break;
9970 ret = io_run_task_work_sig();
9971 if (ret < 0)
9972 break;
9973 } while (1);
9974 mutex_lock(&ctx->uring_lock);
9975
9976 if (ret) {
9977 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
9978 return ret;
9979 }
9980 }
9981
9982 switch (opcode) {
9983 case IORING_REGISTER_BUFFERS:
9984 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
9985 break;
9986 case IORING_UNREGISTER_BUFFERS:
9987 ret = -EINVAL;
9988 if (arg || nr_args)
9989 break;
9990 ret = io_sqe_buffers_unregister(ctx);
9991 break;
9992 case IORING_REGISTER_FILES:
9993 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
9994 break;
9995 case IORING_UNREGISTER_FILES:
9996 ret = -EINVAL;
9997 if (arg || nr_args)
9998 break;
9999 ret = io_sqe_files_unregister(ctx);
10000 break;
10001 case IORING_REGISTER_FILES_UPDATE:
10002 ret = io_register_files_update(ctx, arg, nr_args);
10003 break;
10004 case IORING_REGISTER_EVENTFD:
10005 case IORING_REGISTER_EVENTFD_ASYNC:
10006 ret = -EINVAL;
10007 if (nr_args != 1)
10008 break;
10009 ret = io_eventfd_register(ctx, arg);
10010 if (ret)
10011 break;
10012 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10013 ctx->eventfd_async = 1;
10014 else
10015 ctx->eventfd_async = 0;
10016 break;
10017 case IORING_UNREGISTER_EVENTFD:
10018 ret = -EINVAL;
10019 if (arg || nr_args)
10020 break;
10021 ret = io_eventfd_unregister(ctx);
10022 break;
10023 case IORING_REGISTER_PROBE:
10024 ret = -EINVAL;
10025 if (!arg || nr_args > 256)
10026 break;
10027 ret = io_probe(ctx, arg, nr_args);
10028 break;
10029 case IORING_REGISTER_PERSONALITY:
10030 ret = -EINVAL;
10031 if (arg || nr_args)
10032 break;
10033 ret = io_register_personality(ctx);
10034 break;
10035 case IORING_UNREGISTER_PERSONALITY:
10036 ret = -EINVAL;
10037 if (arg)
10038 break;
10039 ret = io_unregister_personality(ctx, nr_args);
10040 break;
10041 case IORING_REGISTER_ENABLE_RINGS:
10042 ret = -EINVAL;
10043 if (arg || nr_args)
10044 break;
10045 ret = io_register_enable_rings(ctx);
10046 break;
10047 case IORING_REGISTER_RESTRICTIONS:
10048 ret = io_register_restrictions(ctx, arg, nr_args);
10049 break;
10050 case IORING_REGISTER_RSRC:
10051 ret = io_register_rsrc(ctx, arg, nr_args);
10052 break;
10053 case IORING_REGISTER_RSRC_UPDATE:
10054 ret = io_register_rsrc_update(ctx, arg, nr_args);
10055 break;
10056 default:
10057 ret = -EINVAL;
10058 break;
10059 }
10060
10061 if (io_register_op_must_quiesce(opcode)) {
10062 /* bring the ctx back to life */
10063 percpu_ref_reinit(&ctx->refs);
10064 reinit_completion(&ctx->ref_comp);
10065 }
10066 return ret;
10067 }
10068
10069 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10070 void __user *, arg, unsigned int, nr_args)
10071 {
10072 struct io_ring_ctx *ctx;
10073 long ret = -EBADF;
10074 struct fd f;
10075
10076 f = fdget(fd);
10077 if (!f.file)
10078 return -EBADF;
10079
10080 ret = -EOPNOTSUPP;
10081 if (f.file->f_op != &io_uring_fops)
10082 goto out_fput;
10083
10084 ctx = f.file->private_data;
10085
10086 io_run_task_work();
10087
10088 mutex_lock(&ctx->uring_lock);
10089 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10090 mutex_unlock(&ctx->uring_lock);
10091 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10092 ctx->cq_ev_fd != NULL, ret);
10093 out_fput:
10094 fdput(f);
10095 return ret;
10096 }
10097
10098 static int __init io_uring_init(void)
10099 {
10100 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10101 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10102 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10103 } while (0)
10104
10105 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10106 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10107 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10108 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10109 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10110 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10111 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10112 BUILD_BUG_SQE_ELEM(8, __u64, off);
10113 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10114 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10115 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10116 BUILD_BUG_SQE_ELEM(24, __u32, len);
10117 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10118 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10119 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10120 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10121 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10122 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10123 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10124 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10125 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10126 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10127 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10128 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10129 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10130 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10131 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10132 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10133 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10134 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10135 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10136
10137 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10138 sizeof(struct io_uring_rsrc_update));
10139 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10140 sizeof(struct io_uring_rsrc_update2));
10141 /* should fit into one byte */
10142 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10143
10144 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10145 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10146 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10147 SLAB_ACCOUNT);
10148 return 0;
10149 };
10150 __initcall(io_uring_init);