]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: move io_init_req()'s definition
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
109 IOSQE_BUFFER_SELECT)
110
111 struct io_uring {
112 u32 head ____cacheline_aligned_in_smp;
113 u32 tail ____cacheline_aligned_in_smp;
114 };
115
116 /*
117 * This data is shared with the application through the mmap at offsets
118 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
119 *
120 * The offsets to the member fields are published through struct
121 * io_sqring_offsets when calling io_uring_setup.
122 */
123 struct io_rings {
124 /*
125 * Head and tail offsets into the ring; the offsets need to be
126 * masked to get valid indices.
127 *
128 * The kernel controls head of the sq ring and the tail of the cq ring,
129 * and the application controls tail of the sq ring and the head of the
130 * cq ring.
131 */
132 struct io_uring sq, cq;
133 /*
134 * Bitmasks to apply to head and tail offsets (constant, equals
135 * ring_entries - 1)
136 */
137 u32 sq_ring_mask, cq_ring_mask;
138 /* Ring sizes (constant, power of 2) */
139 u32 sq_ring_entries, cq_ring_entries;
140 /*
141 * Number of invalid entries dropped by the kernel due to
142 * invalid index stored in array
143 *
144 * Written by the kernel, shouldn't be modified by the
145 * application (i.e. get number of "new events" by comparing to
146 * cached value).
147 *
148 * After a new SQ head value was read by the application this
149 * counter includes all submissions that were dropped reaching
150 * the new SQ head (and possibly more).
151 */
152 u32 sq_dropped;
153 /*
154 * Runtime SQ flags
155 *
156 * Written by the kernel, shouldn't be modified by the
157 * application.
158 *
159 * The application needs a full memory barrier before checking
160 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
161 */
162 u32 sq_flags;
163 /*
164 * Runtime CQ flags
165 *
166 * Written by the application, shouldn't be modified by the
167 * kernel.
168 */
169 u32 cq_flags;
170 /*
171 * Number of completion events lost because the queue was full;
172 * this should be avoided by the application by making sure
173 * there are not more requests pending than there is space in
174 * the completion queue.
175 *
176 * Written by the kernel, shouldn't be modified by the
177 * application (i.e. get number of "new events" by comparing to
178 * cached value).
179 *
180 * As completion events come in out of order this counter is not
181 * ordered with any other data.
182 */
183 u32 cq_overflow;
184 /*
185 * Ring buffer of completion events.
186 *
187 * The kernel writes completion events fresh every time they are
188 * produced, so the application is allowed to modify pending
189 * entries.
190 */
191 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
192 };
193
194 enum io_uring_cmd_flags {
195 IO_URING_F_NONBLOCK = 1,
196 IO_URING_F_COMPLETE_DEFER = 2,
197 };
198
199 struct io_mapped_ubuf {
200 u64 ubuf;
201 size_t len;
202 struct bio_vec *bvec;
203 unsigned int nr_bvecs;
204 unsigned long acct_pages;
205 };
206
207 struct io_ring_ctx;
208
209 struct io_rsrc_put {
210 struct list_head list;
211 union {
212 void *rsrc;
213 struct file *file;
214 };
215 };
216
217 struct fixed_rsrc_table {
218 struct file **files;
219 };
220
221 struct fixed_rsrc_ref_node {
222 struct percpu_ref refs;
223 struct list_head node;
224 struct list_head rsrc_list;
225 struct fixed_rsrc_data *rsrc_data;
226 void (*rsrc_put)(struct io_ring_ctx *ctx,
227 struct io_rsrc_put *prsrc);
228 struct llist_node llist;
229 bool done;
230 };
231
232 struct fixed_rsrc_data {
233 struct fixed_rsrc_table *table;
234 struct io_ring_ctx *ctx;
235
236 struct fixed_rsrc_ref_node *node;
237 struct percpu_ref refs;
238 struct completion done;
239 };
240
241 struct io_buffer {
242 struct list_head list;
243 __u64 addr;
244 __s32 len;
245 __u16 bid;
246 };
247
248 struct io_restriction {
249 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
250 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
251 u8 sqe_flags_allowed;
252 u8 sqe_flags_required;
253 bool registered;
254 };
255
256 struct io_sq_data {
257 refcount_t refs;
258 struct mutex lock;
259
260 /* ctx's that are using this sqd */
261 struct list_head ctx_list;
262 struct list_head ctx_new_list;
263 struct mutex ctx_lock;
264
265 struct task_struct *thread;
266 struct wait_queue_head wait;
267
268 unsigned sq_thread_idle;
269 };
270
271 #define IO_IOPOLL_BATCH 8
272 #define IO_COMPL_BATCH 32
273 #define IO_REQ_CACHE_SIZE 32
274 #define IO_REQ_ALLOC_BATCH 8
275
276 struct io_comp_state {
277 struct io_kiocb *reqs[IO_COMPL_BATCH];
278 unsigned int nr;
279 unsigned int locked_free_nr;
280 /* inline/task_work completion list, under ->uring_lock */
281 struct list_head free_list;
282 /* IRQ completion list, under ->completion_lock */
283 struct list_head locked_free_list;
284 };
285
286 struct io_submit_state {
287 struct blk_plug plug;
288
289 /*
290 * io_kiocb alloc cache
291 */
292 void *reqs[IO_REQ_CACHE_SIZE];
293 unsigned int free_reqs;
294
295 bool plug_started;
296
297 /*
298 * Batch completion logic
299 */
300 struct io_comp_state comp;
301
302 /*
303 * File reference cache
304 */
305 struct file *file;
306 unsigned int fd;
307 unsigned int file_refs;
308 unsigned int ios_left;
309 };
310
311 struct io_ring_ctx {
312 struct {
313 struct percpu_ref refs;
314 } ____cacheline_aligned_in_smp;
315
316 struct {
317 unsigned int flags;
318 unsigned int compat: 1;
319 unsigned int limit_mem: 1;
320 unsigned int cq_overflow_flushed: 1;
321 unsigned int drain_next: 1;
322 unsigned int eventfd_async: 1;
323 unsigned int restricted: 1;
324 unsigned int sqo_dead: 1;
325
326 /*
327 * Ring buffer of indices into array of io_uring_sqe, which is
328 * mmapped by the application using the IORING_OFF_SQES offset.
329 *
330 * This indirection could e.g. be used to assign fixed
331 * io_uring_sqe entries to operations and only submit them to
332 * the queue when needed.
333 *
334 * The kernel modifies neither the indices array nor the entries
335 * array.
336 */
337 u32 *sq_array;
338 unsigned cached_sq_head;
339 unsigned sq_entries;
340 unsigned sq_mask;
341 unsigned sq_thread_idle;
342 unsigned cached_sq_dropped;
343 unsigned cached_cq_overflow;
344 unsigned long sq_check_overflow;
345
346 struct list_head defer_list;
347 struct list_head timeout_list;
348 struct list_head cq_overflow_list;
349
350 struct io_uring_sqe *sq_sqes;
351 } ____cacheline_aligned_in_smp;
352
353 struct {
354 struct mutex uring_lock;
355 wait_queue_head_t wait;
356 } ____cacheline_aligned_in_smp;
357
358 struct io_submit_state submit_state;
359
360 struct io_rings *rings;
361
362 /* IO offload */
363 struct io_wq *io_wq;
364
365 /*
366 * For SQPOLL usage - we hold a reference to the parent task, so we
367 * have access to the ->files
368 */
369 struct task_struct *sqo_task;
370
371 /* Only used for accounting purposes */
372 struct mm_struct *mm_account;
373
374 #ifdef CONFIG_BLK_CGROUP
375 struct cgroup_subsys_state *sqo_blkcg_css;
376 #endif
377
378 struct io_sq_data *sq_data; /* if using sq thread polling */
379
380 struct wait_queue_head sqo_sq_wait;
381 struct list_head sqd_list;
382
383 /*
384 * If used, fixed file set. Writers must ensure that ->refs is dead,
385 * readers must ensure that ->refs is alive as long as the file* is
386 * used. Only updated through io_uring_register(2).
387 */
388 struct fixed_rsrc_data *file_data;
389 unsigned nr_user_files;
390
391 /* if used, fixed mapped user buffers */
392 unsigned nr_user_bufs;
393 struct io_mapped_ubuf *user_bufs;
394
395 struct user_struct *user;
396
397 const struct cred *creds;
398
399 #ifdef CONFIG_AUDIT
400 kuid_t loginuid;
401 unsigned int sessionid;
402 #endif
403
404 struct completion ref_comp;
405 struct completion sq_thread_comp;
406
407 #if defined(CONFIG_UNIX)
408 struct socket *ring_sock;
409 #endif
410
411 struct idr io_buffer_idr;
412
413 struct idr personality_idr;
414
415 struct {
416 unsigned cached_cq_tail;
417 unsigned cq_entries;
418 unsigned cq_mask;
419 atomic_t cq_timeouts;
420 unsigned cq_last_tm_flush;
421 unsigned long cq_check_overflow;
422 struct wait_queue_head cq_wait;
423 struct fasync_struct *cq_fasync;
424 struct eventfd_ctx *cq_ev_fd;
425 } ____cacheline_aligned_in_smp;
426
427 struct {
428 spinlock_t completion_lock;
429
430 /*
431 * ->iopoll_list is protected by the ctx->uring_lock for
432 * io_uring instances that don't use IORING_SETUP_SQPOLL.
433 * For SQPOLL, only the single threaded io_sq_thread() will
434 * manipulate the list, hence no extra locking is needed there.
435 */
436 struct list_head iopoll_list;
437 struct hlist_head *cancel_hash;
438 unsigned cancel_hash_bits;
439 bool poll_multi_file;
440
441 spinlock_t inflight_lock;
442 struct list_head inflight_list;
443 } ____cacheline_aligned_in_smp;
444
445 struct delayed_work rsrc_put_work;
446 struct llist_head rsrc_put_llist;
447 struct list_head rsrc_ref_list;
448 spinlock_t rsrc_ref_lock;
449
450 struct io_restriction restrictions;
451
452 /* Keep this last, we don't need it for the fast path */
453 struct work_struct exit_work;
454 };
455
456 /*
457 * First field must be the file pointer in all the
458 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
459 */
460 struct io_poll_iocb {
461 struct file *file;
462 struct wait_queue_head *head;
463 __poll_t events;
464 bool done;
465 bool canceled;
466 struct wait_queue_entry wait;
467 };
468
469 struct io_poll_remove {
470 struct file *file;
471 u64 addr;
472 };
473
474 struct io_close {
475 struct file *file;
476 int fd;
477 };
478
479 struct io_timeout_data {
480 struct io_kiocb *req;
481 struct hrtimer timer;
482 struct timespec64 ts;
483 enum hrtimer_mode mode;
484 };
485
486 struct io_accept {
487 struct file *file;
488 struct sockaddr __user *addr;
489 int __user *addr_len;
490 int flags;
491 unsigned long nofile;
492 };
493
494 struct io_sync {
495 struct file *file;
496 loff_t len;
497 loff_t off;
498 int flags;
499 int mode;
500 };
501
502 struct io_cancel {
503 struct file *file;
504 u64 addr;
505 };
506
507 struct io_timeout {
508 struct file *file;
509 u32 off;
510 u32 target_seq;
511 struct list_head list;
512 /* head of the link, used by linked timeouts only */
513 struct io_kiocb *head;
514 };
515
516 struct io_timeout_rem {
517 struct file *file;
518 u64 addr;
519
520 /* timeout update */
521 struct timespec64 ts;
522 u32 flags;
523 };
524
525 struct io_rw {
526 /* NOTE: kiocb has the file as the first member, so don't do it here */
527 struct kiocb kiocb;
528 u64 addr;
529 u64 len;
530 };
531
532 struct io_connect {
533 struct file *file;
534 struct sockaddr __user *addr;
535 int addr_len;
536 };
537
538 struct io_sr_msg {
539 struct file *file;
540 union {
541 struct user_msghdr __user *umsg;
542 void __user *buf;
543 };
544 int msg_flags;
545 int bgid;
546 size_t len;
547 struct io_buffer *kbuf;
548 };
549
550 struct io_open {
551 struct file *file;
552 int dfd;
553 struct filename *filename;
554 struct open_how how;
555 unsigned long nofile;
556 };
557
558 struct io_rsrc_update {
559 struct file *file;
560 u64 arg;
561 u32 nr_args;
562 u32 offset;
563 };
564
565 struct io_fadvise {
566 struct file *file;
567 u64 offset;
568 u32 len;
569 u32 advice;
570 };
571
572 struct io_madvise {
573 struct file *file;
574 u64 addr;
575 u32 len;
576 u32 advice;
577 };
578
579 struct io_epoll {
580 struct file *file;
581 int epfd;
582 int op;
583 int fd;
584 struct epoll_event event;
585 };
586
587 struct io_splice {
588 struct file *file_out;
589 struct file *file_in;
590 loff_t off_out;
591 loff_t off_in;
592 u64 len;
593 unsigned int flags;
594 };
595
596 struct io_provide_buf {
597 struct file *file;
598 __u64 addr;
599 __s32 len;
600 __u32 bgid;
601 __u16 nbufs;
602 __u16 bid;
603 };
604
605 struct io_statx {
606 struct file *file;
607 int dfd;
608 unsigned int mask;
609 unsigned int flags;
610 const char __user *filename;
611 struct statx __user *buffer;
612 };
613
614 struct io_shutdown {
615 struct file *file;
616 int how;
617 };
618
619 struct io_rename {
620 struct file *file;
621 int old_dfd;
622 int new_dfd;
623 struct filename *oldpath;
624 struct filename *newpath;
625 int flags;
626 };
627
628 struct io_unlink {
629 struct file *file;
630 int dfd;
631 int flags;
632 struct filename *filename;
633 };
634
635 struct io_completion {
636 struct file *file;
637 struct list_head list;
638 int cflags;
639 };
640
641 struct io_async_connect {
642 struct sockaddr_storage address;
643 };
644
645 struct io_async_msghdr {
646 struct iovec fast_iov[UIO_FASTIOV];
647 /* points to an allocated iov, if NULL we use fast_iov instead */
648 struct iovec *free_iov;
649 struct sockaddr __user *uaddr;
650 struct msghdr msg;
651 struct sockaddr_storage addr;
652 };
653
654 struct io_async_rw {
655 struct iovec fast_iov[UIO_FASTIOV];
656 const struct iovec *free_iovec;
657 struct iov_iter iter;
658 size_t bytes_done;
659 struct wait_page_queue wpq;
660 };
661
662 enum {
663 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
664 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
665 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
666 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
667 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
668 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
669
670 REQ_F_FAIL_LINK_BIT,
671 REQ_F_INFLIGHT_BIT,
672 REQ_F_CUR_POS_BIT,
673 REQ_F_NOWAIT_BIT,
674 REQ_F_LINK_TIMEOUT_BIT,
675 REQ_F_ISREG_BIT,
676 REQ_F_NEED_CLEANUP_BIT,
677 REQ_F_POLLED_BIT,
678 REQ_F_BUFFER_SELECTED_BIT,
679 REQ_F_NO_FILE_TABLE_BIT,
680 REQ_F_WORK_INITIALIZED_BIT,
681 REQ_F_LTIMEOUT_ACTIVE_BIT,
682 REQ_F_COMPLETE_INLINE_BIT,
683
684 /* not a real bit, just to check we're not overflowing the space */
685 __REQ_F_LAST_BIT,
686 };
687
688 enum {
689 /* ctx owns file */
690 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
691 /* drain existing IO first */
692 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
693 /* linked sqes */
694 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
695 /* doesn't sever on completion < 0 */
696 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
697 /* IOSQE_ASYNC */
698 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
699 /* IOSQE_BUFFER_SELECT */
700 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
701
702 /* fail rest of links */
703 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
704 /* on inflight list */
705 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
706 /* read/write uses file position */
707 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
708 /* must not punt to workers */
709 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
710 /* has or had linked timeout */
711 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
712 /* regular file */
713 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
714 /* needs cleanup */
715 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
716 /* already went through poll handler */
717 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
718 /* buffer already selected */
719 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
720 /* doesn't need file table for this request */
721 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
722 /* io_wq_work is initialized */
723 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
724 /* linked timeout is active, i.e. prepared by link's head */
725 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
726 /* completion is deferred through io_comp_state */
727 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
728 };
729
730 struct async_poll {
731 struct io_poll_iocb poll;
732 struct io_poll_iocb *double_poll;
733 };
734
735 struct io_task_work {
736 struct io_wq_work_node node;
737 task_work_func_t func;
738 };
739
740 /*
741 * NOTE! Each of the iocb union members has the file pointer
742 * as the first entry in their struct definition. So you can
743 * access the file pointer through any of the sub-structs,
744 * or directly as just 'ki_filp' in this struct.
745 */
746 struct io_kiocb {
747 union {
748 struct file *file;
749 struct io_rw rw;
750 struct io_poll_iocb poll;
751 struct io_poll_remove poll_remove;
752 struct io_accept accept;
753 struct io_sync sync;
754 struct io_cancel cancel;
755 struct io_timeout timeout;
756 struct io_timeout_rem timeout_rem;
757 struct io_connect connect;
758 struct io_sr_msg sr_msg;
759 struct io_open open;
760 struct io_close close;
761 struct io_rsrc_update rsrc_update;
762 struct io_fadvise fadvise;
763 struct io_madvise madvise;
764 struct io_epoll epoll;
765 struct io_splice splice;
766 struct io_provide_buf pbuf;
767 struct io_statx statx;
768 struct io_shutdown shutdown;
769 struct io_rename rename;
770 struct io_unlink unlink;
771 /* use only after cleaning per-op data, see io_clean_op() */
772 struct io_completion compl;
773 };
774
775 /* opcode allocated if it needs to store data for async defer */
776 void *async_data;
777 u8 opcode;
778 /* polled IO has completed */
779 u8 iopoll_completed;
780
781 u16 buf_index;
782 u32 result;
783
784 struct io_ring_ctx *ctx;
785 unsigned int flags;
786 refcount_t refs;
787 struct task_struct *task;
788 u64 user_data;
789
790 struct io_kiocb *link;
791 struct percpu_ref *fixed_rsrc_refs;
792
793 /*
794 * 1. used with ctx->iopoll_list with reads/writes
795 * 2. to track reqs with ->files (see io_op_def::file_table)
796 */
797 struct list_head inflight_entry;
798 union {
799 struct io_task_work io_task_work;
800 struct callback_head task_work;
801 };
802 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
803 struct hlist_node hash_node;
804 struct async_poll *apoll;
805 struct io_wq_work work;
806 };
807
808 struct io_defer_entry {
809 struct list_head list;
810 struct io_kiocb *req;
811 u32 seq;
812 };
813
814 struct io_op_def {
815 /* needs req->file assigned */
816 unsigned needs_file : 1;
817 /* hash wq insertion if file is a regular file */
818 unsigned hash_reg_file : 1;
819 /* unbound wq insertion if file is a non-regular file */
820 unsigned unbound_nonreg_file : 1;
821 /* opcode is not supported by this kernel */
822 unsigned not_supported : 1;
823 /* set if opcode supports polled "wait" */
824 unsigned pollin : 1;
825 unsigned pollout : 1;
826 /* op supports buffer selection */
827 unsigned buffer_select : 1;
828 /* must always have async data allocated */
829 unsigned needs_async_data : 1;
830 /* should block plug */
831 unsigned plug : 1;
832 /* size of async data needed, if any */
833 unsigned short async_size;
834 unsigned work_flags;
835 };
836
837 static const struct io_op_def io_op_defs[] = {
838 [IORING_OP_NOP] = {},
839 [IORING_OP_READV] = {
840 .needs_file = 1,
841 .unbound_nonreg_file = 1,
842 .pollin = 1,
843 .buffer_select = 1,
844 .needs_async_data = 1,
845 .plug = 1,
846 .async_size = sizeof(struct io_async_rw),
847 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
848 },
849 [IORING_OP_WRITEV] = {
850 .needs_file = 1,
851 .hash_reg_file = 1,
852 .unbound_nonreg_file = 1,
853 .pollout = 1,
854 .needs_async_data = 1,
855 .plug = 1,
856 .async_size = sizeof(struct io_async_rw),
857 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
858 IO_WQ_WORK_FSIZE,
859 },
860 [IORING_OP_FSYNC] = {
861 .needs_file = 1,
862 .work_flags = IO_WQ_WORK_BLKCG,
863 },
864 [IORING_OP_READ_FIXED] = {
865 .needs_file = 1,
866 .unbound_nonreg_file = 1,
867 .pollin = 1,
868 .plug = 1,
869 .async_size = sizeof(struct io_async_rw),
870 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
871 },
872 [IORING_OP_WRITE_FIXED] = {
873 .needs_file = 1,
874 .hash_reg_file = 1,
875 .unbound_nonreg_file = 1,
876 .pollout = 1,
877 .plug = 1,
878 .async_size = sizeof(struct io_async_rw),
879 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
880 IO_WQ_WORK_MM,
881 },
882 [IORING_OP_POLL_ADD] = {
883 .needs_file = 1,
884 .unbound_nonreg_file = 1,
885 },
886 [IORING_OP_POLL_REMOVE] = {},
887 [IORING_OP_SYNC_FILE_RANGE] = {
888 .needs_file = 1,
889 .work_flags = IO_WQ_WORK_BLKCG,
890 },
891 [IORING_OP_SENDMSG] = {
892 .needs_file = 1,
893 .unbound_nonreg_file = 1,
894 .pollout = 1,
895 .needs_async_data = 1,
896 .async_size = sizeof(struct io_async_msghdr),
897 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
898 },
899 [IORING_OP_RECVMSG] = {
900 .needs_file = 1,
901 .unbound_nonreg_file = 1,
902 .pollin = 1,
903 .buffer_select = 1,
904 .needs_async_data = 1,
905 .async_size = sizeof(struct io_async_msghdr),
906 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
907 },
908 [IORING_OP_TIMEOUT] = {
909 .needs_async_data = 1,
910 .async_size = sizeof(struct io_timeout_data),
911 .work_flags = IO_WQ_WORK_MM,
912 },
913 [IORING_OP_TIMEOUT_REMOVE] = {
914 /* used by timeout updates' prep() */
915 .work_flags = IO_WQ_WORK_MM,
916 },
917 [IORING_OP_ACCEPT] = {
918 .needs_file = 1,
919 .unbound_nonreg_file = 1,
920 .pollin = 1,
921 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
922 },
923 [IORING_OP_ASYNC_CANCEL] = {},
924 [IORING_OP_LINK_TIMEOUT] = {
925 .needs_async_data = 1,
926 .async_size = sizeof(struct io_timeout_data),
927 .work_flags = IO_WQ_WORK_MM,
928 },
929 [IORING_OP_CONNECT] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .needs_async_data = 1,
934 .async_size = sizeof(struct io_async_connect),
935 .work_flags = IO_WQ_WORK_MM,
936 },
937 [IORING_OP_FALLOCATE] = {
938 .needs_file = 1,
939 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
940 },
941 [IORING_OP_OPENAT] = {
942 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
943 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
944 },
945 [IORING_OP_CLOSE] = {
946 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
947 },
948 [IORING_OP_FILES_UPDATE] = {
949 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
950 },
951 [IORING_OP_STATX] = {
952 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
953 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
954 },
955 [IORING_OP_READ] = {
956 .needs_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollin = 1,
959 .buffer_select = 1,
960 .plug = 1,
961 .async_size = sizeof(struct io_async_rw),
962 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
963 },
964 [IORING_OP_WRITE] = {
965 .needs_file = 1,
966 .unbound_nonreg_file = 1,
967 .pollout = 1,
968 .plug = 1,
969 .async_size = sizeof(struct io_async_rw),
970 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
971 IO_WQ_WORK_FSIZE,
972 },
973 [IORING_OP_FADVISE] = {
974 .needs_file = 1,
975 .work_flags = IO_WQ_WORK_BLKCG,
976 },
977 [IORING_OP_MADVISE] = {
978 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
979 },
980 [IORING_OP_SEND] = {
981 .needs_file = 1,
982 .unbound_nonreg_file = 1,
983 .pollout = 1,
984 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_RECV] = {
987 .needs_file = 1,
988 .unbound_nonreg_file = 1,
989 .pollin = 1,
990 .buffer_select = 1,
991 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
992 },
993 [IORING_OP_OPENAT2] = {
994 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
995 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
996 },
997 [IORING_OP_EPOLL_CTL] = {
998 .unbound_nonreg_file = 1,
999 .work_flags = IO_WQ_WORK_FILES,
1000 },
1001 [IORING_OP_SPLICE] = {
1002 .needs_file = 1,
1003 .hash_reg_file = 1,
1004 .unbound_nonreg_file = 1,
1005 .work_flags = IO_WQ_WORK_BLKCG,
1006 },
1007 [IORING_OP_PROVIDE_BUFFERS] = {},
1008 [IORING_OP_REMOVE_BUFFERS] = {},
1009 [IORING_OP_TEE] = {
1010 .needs_file = 1,
1011 .hash_reg_file = 1,
1012 .unbound_nonreg_file = 1,
1013 },
1014 [IORING_OP_SHUTDOWN] = {
1015 .needs_file = 1,
1016 },
1017 [IORING_OP_RENAMEAT] = {
1018 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1019 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1020 },
1021 [IORING_OP_UNLINKAT] = {
1022 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1023 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1024 },
1025 };
1026
1027 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1028 struct task_struct *task,
1029 struct files_struct *files);
1030 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
1031 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
1032 struct io_ring_ctx *ctx);
1033 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
1034 struct fixed_rsrc_ref_node *ref_node);
1035
1036 static bool io_rw_reissue(struct io_kiocb *req);
1037 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1038 static void io_put_req(struct io_kiocb *req);
1039 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1040 static void io_double_put_req(struct io_kiocb *req);
1041 static void io_dismantle_req(struct io_kiocb *req);
1042 static void io_put_task(struct task_struct *task, int nr);
1043 static void io_queue_next(struct io_kiocb *req);
1044 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1045 static void __io_queue_linked_timeout(struct io_kiocb *req);
1046 static void io_queue_linked_timeout(struct io_kiocb *req);
1047 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1048 struct io_uring_rsrc_update *ip,
1049 unsigned nr_args);
1050 static void __io_clean_op(struct io_kiocb *req);
1051 static struct file *io_file_get(struct io_submit_state *state,
1052 struct io_kiocb *req, int fd, bool fixed);
1053 static void __io_queue_sqe(struct io_kiocb *req);
1054 static void io_rsrc_put_work(struct work_struct *work);
1055
1056 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
1057 struct iov_iter *iter, bool needs_lock);
1058 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1059 const struct iovec *fast_iov,
1060 struct iov_iter *iter, bool force);
1061 static void io_req_task_queue(struct io_kiocb *req);
1062 static void io_submit_flush_completions(struct io_comp_state *cs,
1063 struct io_ring_ctx *ctx);
1064
1065 static struct kmem_cache *req_cachep;
1066
1067 static const struct file_operations io_uring_fops;
1068
1069 struct sock *io_uring_get_socket(struct file *file)
1070 {
1071 #if defined(CONFIG_UNIX)
1072 if (file->f_op == &io_uring_fops) {
1073 struct io_ring_ctx *ctx = file->private_data;
1074
1075 return ctx->ring_sock->sk;
1076 }
1077 #endif
1078 return NULL;
1079 }
1080 EXPORT_SYMBOL(io_uring_get_socket);
1081
1082 #define io_for_each_link(pos, head) \
1083 for (pos = (head); pos; pos = pos->link)
1084
1085 static inline void io_clean_op(struct io_kiocb *req)
1086 {
1087 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1088 __io_clean_op(req);
1089 }
1090
1091 static inline void io_set_resource_node(struct io_kiocb *req)
1092 {
1093 struct io_ring_ctx *ctx = req->ctx;
1094
1095 if (!req->fixed_rsrc_refs) {
1096 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1097 percpu_ref_get(req->fixed_rsrc_refs);
1098 }
1099 }
1100
1101 static bool io_match_task(struct io_kiocb *head,
1102 struct task_struct *task,
1103 struct files_struct *files)
1104 {
1105 struct io_kiocb *req;
1106
1107 if (task && head->task != task) {
1108 /* in terms of cancelation, always match if req task is dead */
1109 if (head->task->flags & PF_EXITING)
1110 return true;
1111 return false;
1112 }
1113 if (!files)
1114 return true;
1115
1116 io_for_each_link(req, head) {
1117 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1118 continue;
1119 if (req->file && req->file->f_op == &io_uring_fops)
1120 return true;
1121 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1122 req->work.identity->files == files)
1123 return true;
1124 }
1125 return false;
1126 }
1127
1128 static void io_sq_thread_drop_mm_files(void)
1129 {
1130 struct files_struct *files = current->files;
1131 struct mm_struct *mm = current->mm;
1132
1133 if (mm) {
1134 kthread_unuse_mm(mm);
1135 mmput(mm);
1136 current->mm = NULL;
1137 }
1138 if (files) {
1139 struct nsproxy *nsproxy = current->nsproxy;
1140
1141 task_lock(current);
1142 current->files = NULL;
1143 current->nsproxy = NULL;
1144 task_unlock(current);
1145 put_files_struct(files);
1146 put_nsproxy(nsproxy);
1147 }
1148 }
1149
1150 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1151 {
1152 if (!current->files) {
1153 struct files_struct *files;
1154 struct nsproxy *nsproxy;
1155
1156 task_lock(ctx->sqo_task);
1157 files = ctx->sqo_task->files;
1158 if (!files) {
1159 task_unlock(ctx->sqo_task);
1160 return -EOWNERDEAD;
1161 }
1162 atomic_inc(&files->count);
1163 get_nsproxy(ctx->sqo_task->nsproxy);
1164 nsproxy = ctx->sqo_task->nsproxy;
1165 task_unlock(ctx->sqo_task);
1166
1167 task_lock(current);
1168 current->files = files;
1169 current->nsproxy = nsproxy;
1170 task_unlock(current);
1171 }
1172 return 0;
1173 }
1174
1175 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1176 {
1177 struct mm_struct *mm;
1178
1179 if (current->mm)
1180 return 0;
1181
1182 task_lock(ctx->sqo_task);
1183 mm = ctx->sqo_task->mm;
1184 if (unlikely(!mm || !mmget_not_zero(mm)))
1185 mm = NULL;
1186 task_unlock(ctx->sqo_task);
1187
1188 if (mm) {
1189 kthread_use_mm(mm);
1190 return 0;
1191 }
1192
1193 return -EFAULT;
1194 }
1195
1196 static int __io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1197 struct io_kiocb *req)
1198 {
1199 const struct io_op_def *def = &io_op_defs[req->opcode];
1200 int ret;
1201
1202 if (def->work_flags & IO_WQ_WORK_MM) {
1203 ret = __io_sq_thread_acquire_mm(ctx);
1204 if (unlikely(ret))
1205 return ret;
1206 }
1207
1208 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1209 ret = __io_sq_thread_acquire_files(ctx);
1210 if (unlikely(ret))
1211 return ret;
1212 }
1213
1214 return 0;
1215 }
1216
1217 static inline int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1218 struct io_kiocb *req)
1219 {
1220 if (!(ctx->flags & IORING_SETUP_SQPOLL))
1221 return 0;
1222 return __io_sq_thread_acquire_mm_files(ctx, req);
1223 }
1224
1225 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1226 struct cgroup_subsys_state **cur_css)
1227
1228 {
1229 #ifdef CONFIG_BLK_CGROUP
1230 /* puts the old one when swapping */
1231 if (*cur_css != ctx->sqo_blkcg_css) {
1232 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1233 *cur_css = ctx->sqo_blkcg_css;
1234 }
1235 #endif
1236 }
1237
1238 static void io_sq_thread_unassociate_blkcg(void)
1239 {
1240 #ifdef CONFIG_BLK_CGROUP
1241 kthread_associate_blkcg(NULL);
1242 #endif
1243 }
1244
1245 static inline void req_set_fail_links(struct io_kiocb *req)
1246 {
1247 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1248 req->flags |= REQ_F_FAIL_LINK;
1249 }
1250
1251 /*
1252 * None of these are dereferenced, they are simply used to check if any of
1253 * them have changed. If we're under current and check they are still the
1254 * same, we're fine to grab references to them for actual out-of-line use.
1255 */
1256 static void io_init_identity(struct io_identity *id)
1257 {
1258 id->files = current->files;
1259 id->mm = current->mm;
1260 #ifdef CONFIG_BLK_CGROUP
1261 rcu_read_lock();
1262 id->blkcg_css = blkcg_css();
1263 rcu_read_unlock();
1264 #endif
1265 id->creds = current_cred();
1266 id->nsproxy = current->nsproxy;
1267 id->fs = current->fs;
1268 id->fsize = rlimit(RLIMIT_FSIZE);
1269 #ifdef CONFIG_AUDIT
1270 id->loginuid = current->loginuid;
1271 id->sessionid = current->sessionid;
1272 #endif
1273 refcount_set(&id->count, 1);
1274 }
1275
1276 static inline void __io_req_init_async(struct io_kiocb *req)
1277 {
1278 memset(&req->work, 0, sizeof(req->work));
1279 req->flags |= REQ_F_WORK_INITIALIZED;
1280 }
1281
1282 /*
1283 * Note: must call io_req_init_async() for the first time you
1284 * touch any members of io_wq_work.
1285 */
1286 static inline void io_req_init_async(struct io_kiocb *req)
1287 {
1288 struct io_uring_task *tctx = current->io_uring;
1289
1290 if (req->flags & REQ_F_WORK_INITIALIZED)
1291 return;
1292
1293 __io_req_init_async(req);
1294
1295 /* Grab a ref if this isn't our static identity */
1296 req->work.identity = tctx->identity;
1297 if (tctx->identity != &tctx->__identity)
1298 refcount_inc(&req->work.identity->count);
1299 }
1300
1301 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1302 {
1303 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1304
1305 complete(&ctx->ref_comp);
1306 }
1307
1308 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1309 {
1310 return !req->timeout.off;
1311 }
1312
1313 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1314 {
1315 struct io_ring_ctx *ctx;
1316 int hash_bits;
1317
1318 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1319 if (!ctx)
1320 return NULL;
1321
1322 /*
1323 * Use 5 bits less than the max cq entries, that should give us around
1324 * 32 entries per hash list if totally full and uniformly spread.
1325 */
1326 hash_bits = ilog2(p->cq_entries);
1327 hash_bits -= 5;
1328 if (hash_bits <= 0)
1329 hash_bits = 1;
1330 ctx->cancel_hash_bits = hash_bits;
1331 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1332 GFP_KERNEL);
1333 if (!ctx->cancel_hash)
1334 goto err;
1335 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1336
1337 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1338 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1339 goto err;
1340
1341 ctx->flags = p->flags;
1342 init_waitqueue_head(&ctx->sqo_sq_wait);
1343 INIT_LIST_HEAD(&ctx->sqd_list);
1344 init_waitqueue_head(&ctx->cq_wait);
1345 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1346 init_completion(&ctx->ref_comp);
1347 init_completion(&ctx->sq_thread_comp);
1348 idr_init(&ctx->io_buffer_idr);
1349 idr_init(&ctx->personality_idr);
1350 mutex_init(&ctx->uring_lock);
1351 init_waitqueue_head(&ctx->wait);
1352 spin_lock_init(&ctx->completion_lock);
1353 INIT_LIST_HEAD(&ctx->iopoll_list);
1354 INIT_LIST_HEAD(&ctx->defer_list);
1355 INIT_LIST_HEAD(&ctx->timeout_list);
1356 spin_lock_init(&ctx->inflight_lock);
1357 INIT_LIST_HEAD(&ctx->inflight_list);
1358 spin_lock_init(&ctx->rsrc_ref_lock);
1359 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1360 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1361 init_llist_head(&ctx->rsrc_put_llist);
1362 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1363 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1364 return ctx;
1365 err:
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1372 {
1373 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1374 struct io_ring_ctx *ctx = req->ctx;
1375
1376 return seq != ctx->cached_cq_tail
1377 + READ_ONCE(ctx->cached_cq_overflow);
1378 }
1379
1380 return false;
1381 }
1382
1383 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1384 {
1385 if (req->work.identity == &tctx->__identity)
1386 return;
1387 if (refcount_dec_and_test(&req->work.identity->count))
1388 kfree(req->work.identity);
1389 }
1390
1391 static void io_req_clean_work(struct io_kiocb *req)
1392 {
1393 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1394 return;
1395
1396 if (req->work.flags & IO_WQ_WORK_MM)
1397 mmdrop(req->work.identity->mm);
1398 #ifdef CONFIG_BLK_CGROUP
1399 if (req->work.flags & IO_WQ_WORK_BLKCG)
1400 css_put(req->work.identity->blkcg_css);
1401 #endif
1402 if (req->work.flags & IO_WQ_WORK_CREDS)
1403 put_cred(req->work.identity->creds);
1404 if (req->work.flags & IO_WQ_WORK_FS) {
1405 struct fs_struct *fs = req->work.identity->fs;
1406
1407 spin_lock(&req->work.identity->fs->lock);
1408 if (--fs->users)
1409 fs = NULL;
1410 spin_unlock(&req->work.identity->fs->lock);
1411 if (fs)
1412 free_fs_struct(fs);
1413 }
1414 if (req->work.flags & IO_WQ_WORK_FILES) {
1415 put_files_struct(req->work.identity->files);
1416 put_nsproxy(req->work.identity->nsproxy);
1417 }
1418 if (req->flags & REQ_F_INFLIGHT) {
1419 struct io_ring_ctx *ctx = req->ctx;
1420 struct io_uring_task *tctx = req->task->io_uring;
1421 unsigned long flags;
1422
1423 spin_lock_irqsave(&ctx->inflight_lock, flags);
1424 list_del(&req->inflight_entry);
1425 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1426 req->flags &= ~REQ_F_INFLIGHT;
1427 if (atomic_read(&tctx->in_idle))
1428 wake_up(&tctx->wait);
1429 }
1430
1431 req->flags &= ~REQ_F_WORK_INITIALIZED;
1432 req->work.flags &= ~(IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG | IO_WQ_WORK_FS |
1433 IO_WQ_WORK_CREDS | IO_WQ_WORK_FILES);
1434 io_put_identity(req->task->io_uring, req);
1435 }
1436
1437 /*
1438 * Create a private copy of io_identity, since some fields don't match
1439 * the current context.
1440 */
1441 static bool io_identity_cow(struct io_kiocb *req)
1442 {
1443 struct io_uring_task *tctx = current->io_uring;
1444 const struct cred *creds = NULL;
1445 struct io_identity *id;
1446
1447 if (req->work.flags & IO_WQ_WORK_CREDS)
1448 creds = req->work.identity->creds;
1449
1450 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1451 if (unlikely(!id)) {
1452 req->work.flags |= IO_WQ_WORK_CANCEL;
1453 return false;
1454 }
1455
1456 /*
1457 * We can safely just re-init the creds we copied Either the field
1458 * matches the current one, or we haven't grabbed it yet. The only
1459 * exception is ->creds, through registered personalities, so handle
1460 * that one separately.
1461 */
1462 io_init_identity(id);
1463 if (creds)
1464 id->creds = creds;
1465
1466 /* add one for this request */
1467 refcount_inc(&id->count);
1468
1469 /* drop tctx and req identity references, if needed */
1470 if (tctx->identity != &tctx->__identity &&
1471 refcount_dec_and_test(&tctx->identity->count))
1472 kfree(tctx->identity);
1473 if (req->work.identity != &tctx->__identity &&
1474 refcount_dec_and_test(&req->work.identity->count))
1475 kfree(req->work.identity);
1476
1477 req->work.identity = id;
1478 tctx->identity = id;
1479 return true;
1480 }
1481
1482 static void io_req_track_inflight(struct io_kiocb *req)
1483 {
1484 struct io_ring_ctx *ctx = req->ctx;
1485
1486 if (!(req->flags & REQ_F_INFLIGHT)) {
1487 io_req_init_async(req);
1488 req->flags |= REQ_F_INFLIGHT;
1489
1490 spin_lock_irq(&ctx->inflight_lock);
1491 list_add(&req->inflight_entry, &ctx->inflight_list);
1492 spin_unlock_irq(&ctx->inflight_lock);
1493 }
1494 }
1495
1496 static bool io_grab_identity(struct io_kiocb *req)
1497 {
1498 const struct io_op_def *def = &io_op_defs[req->opcode];
1499 struct io_identity *id = req->work.identity;
1500
1501 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1502 if (id->fsize != rlimit(RLIMIT_FSIZE))
1503 return false;
1504 req->work.flags |= IO_WQ_WORK_FSIZE;
1505 }
1506 #ifdef CONFIG_BLK_CGROUP
1507 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1508 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1509 rcu_read_lock();
1510 if (id->blkcg_css != blkcg_css()) {
1511 rcu_read_unlock();
1512 return false;
1513 }
1514 /*
1515 * This should be rare, either the cgroup is dying or the task
1516 * is moving cgroups. Just punt to root for the handful of ios.
1517 */
1518 if (css_tryget_online(id->blkcg_css))
1519 req->work.flags |= IO_WQ_WORK_BLKCG;
1520 rcu_read_unlock();
1521 }
1522 #endif
1523 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1524 if (id->creds != current_cred())
1525 return false;
1526 get_cred(id->creds);
1527 req->work.flags |= IO_WQ_WORK_CREDS;
1528 }
1529 #ifdef CONFIG_AUDIT
1530 if (!uid_eq(current->loginuid, id->loginuid) ||
1531 current->sessionid != id->sessionid)
1532 return false;
1533 #endif
1534 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1535 (def->work_flags & IO_WQ_WORK_FS)) {
1536 if (current->fs != id->fs)
1537 return false;
1538 spin_lock(&id->fs->lock);
1539 if (!id->fs->in_exec) {
1540 id->fs->users++;
1541 req->work.flags |= IO_WQ_WORK_FS;
1542 } else {
1543 req->work.flags |= IO_WQ_WORK_CANCEL;
1544 }
1545 spin_unlock(&current->fs->lock);
1546 }
1547 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1548 (def->work_flags & IO_WQ_WORK_FILES) &&
1549 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1550 if (id->files != current->files ||
1551 id->nsproxy != current->nsproxy)
1552 return false;
1553 atomic_inc(&id->files->count);
1554 get_nsproxy(id->nsproxy);
1555 req->work.flags |= IO_WQ_WORK_FILES;
1556 io_req_track_inflight(req);
1557 }
1558 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1559 (def->work_flags & IO_WQ_WORK_MM)) {
1560 if (id->mm != current->mm)
1561 return false;
1562 mmgrab(id->mm);
1563 req->work.flags |= IO_WQ_WORK_MM;
1564 }
1565
1566 return true;
1567 }
1568
1569 static void io_prep_async_work(struct io_kiocb *req)
1570 {
1571 const struct io_op_def *def = &io_op_defs[req->opcode];
1572 struct io_ring_ctx *ctx = req->ctx;
1573
1574 io_req_init_async(req);
1575
1576 if (req->flags & REQ_F_FORCE_ASYNC)
1577 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1578
1579 if (req->flags & REQ_F_ISREG) {
1580 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1581 io_wq_hash_work(&req->work, file_inode(req->file));
1582 } else {
1583 if (def->unbound_nonreg_file)
1584 req->work.flags |= IO_WQ_WORK_UNBOUND;
1585 }
1586
1587 /* if we fail grabbing identity, we must COW, regrab, and retry */
1588 if (io_grab_identity(req))
1589 return;
1590
1591 if (!io_identity_cow(req))
1592 return;
1593
1594 /* can't fail at this point */
1595 if (!io_grab_identity(req))
1596 WARN_ON(1);
1597 }
1598
1599 static void io_prep_async_link(struct io_kiocb *req)
1600 {
1601 struct io_kiocb *cur;
1602
1603 io_for_each_link(cur, req)
1604 io_prep_async_work(cur);
1605 }
1606
1607 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1608 {
1609 struct io_ring_ctx *ctx = req->ctx;
1610 struct io_kiocb *link = io_prep_linked_timeout(req);
1611
1612 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1613 &req->work, req->flags);
1614 io_wq_enqueue(ctx->io_wq, &req->work);
1615 return link;
1616 }
1617
1618 static void io_queue_async_work(struct io_kiocb *req)
1619 {
1620 struct io_kiocb *link;
1621
1622 /* init ->work of the whole link before punting */
1623 io_prep_async_link(req);
1624 link = __io_queue_async_work(req);
1625
1626 if (link)
1627 io_queue_linked_timeout(link);
1628 }
1629
1630 static void io_kill_timeout(struct io_kiocb *req)
1631 {
1632 struct io_timeout_data *io = req->async_data;
1633 int ret;
1634
1635 ret = hrtimer_try_to_cancel(&io->timer);
1636 if (ret != -1) {
1637 atomic_set(&req->ctx->cq_timeouts,
1638 atomic_read(&req->ctx->cq_timeouts) + 1);
1639 list_del_init(&req->timeout.list);
1640 io_cqring_fill_event(req, 0);
1641 io_put_req_deferred(req, 1);
1642 }
1643 }
1644
1645 /*
1646 * Returns true if we found and killed one or more timeouts
1647 */
1648 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1649 struct files_struct *files)
1650 {
1651 struct io_kiocb *req, *tmp;
1652 int canceled = 0;
1653
1654 spin_lock_irq(&ctx->completion_lock);
1655 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1656 if (io_match_task(req, tsk, files)) {
1657 io_kill_timeout(req);
1658 canceled++;
1659 }
1660 }
1661 spin_unlock_irq(&ctx->completion_lock);
1662 return canceled != 0;
1663 }
1664
1665 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1666 {
1667 do {
1668 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1669 struct io_defer_entry, list);
1670
1671 if (req_need_defer(de->req, de->seq))
1672 break;
1673 list_del_init(&de->list);
1674 io_req_task_queue(de->req);
1675 kfree(de);
1676 } while (!list_empty(&ctx->defer_list));
1677 }
1678
1679 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1680 {
1681 u32 seq;
1682
1683 if (list_empty(&ctx->timeout_list))
1684 return;
1685
1686 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1687
1688 do {
1689 u32 events_needed, events_got;
1690 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1691 struct io_kiocb, timeout.list);
1692
1693 if (io_is_timeout_noseq(req))
1694 break;
1695
1696 /*
1697 * Since seq can easily wrap around over time, subtract
1698 * the last seq at which timeouts were flushed before comparing.
1699 * Assuming not more than 2^31-1 events have happened since,
1700 * these subtractions won't have wrapped, so we can check if
1701 * target is in [last_seq, current_seq] by comparing the two.
1702 */
1703 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1704 events_got = seq - ctx->cq_last_tm_flush;
1705 if (events_got < events_needed)
1706 break;
1707
1708 list_del_init(&req->timeout.list);
1709 io_kill_timeout(req);
1710 } while (!list_empty(&ctx->timeout_list));
1711
1712 ctx->cq_last_tm_flush = seq;
1713 }
1714
1715 static void io_commit_cqring(struct io_ring_ctx *ctx)
1716 {
1717 io_flush_timeouts(ctx);
1718
1719 /* order cqe stores with ring update */
1720 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1721
1722 if (unlikely(!list_empty(&ctx->defer_list)))
1723 __io_queue_deferred(ctx);
1724 }
1725
1726 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1727 {
1728 struct io_rings *r = ctx->rings;
1729
1730 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1731 }
1732
1733 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1734 {
1735 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1736 }
1737
1738 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1739 {
1740 struct io_rings *rings = ctx->rings;
1741 unsigned tail;
1742
1743 /*
1744 * writes to the cq entry need to come after reading head; the
1745 * control dependency is enough as we're using WRITE_ONCE to
1746 * fill the cq entry
1747 */
1748 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1749 return NULL;
1750
1751 tail = ctx->cached_cq_tail++;
1752 return &rings->cqes[tail & ctx->cq_mask];
1753 }
1754
1755 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1756 {
1757 if (!ctx->cq_ev_fd)
1758 return false;
1759 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1760 return false;
1761 if (!ctx->eventfd_async)
1762 return true;
1763 return io_wq_current_is_worker();
1764 }
1765
1766 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1767 {
1768 /* see waitqueue_active() comment */
1769 smp_mb();
1770
1771 if (waitqueue_active(&ctx->wait))
1772 wake_up(&ctx->wait);
1773 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1774 wake_up(&ctx->sq_data->wait);
1775 if (io_should_trigger_evfd(ctx))
1776 eventfd_signal(ctx->cq_ev_fd, 1);
1777 if (waitqueue_active(&ctx->cq_wait)) {
1778 wake_up_interruptible(&ctx->cq_wait);
1779 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1780 }
1781 }
1782
1783 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1784 {
1785 /* see waitqueue_active() comment */
1786 smp_mb();
1787
1788 if (ctx->flags & IORING_SETUP_SQPOLL) {
1789 if (waitqueue_active(&ctx->wait))
1790 wake_up(&ctx->wait);
1791 }
1792 if (io_should_trigger_evfd(ctx))
1793 eventfd_signal(ctx->cq_ev_fd, 1);
1794 if (waitqueue_active(&ctx->cq_wait)) {
1795 wake_up_interruptible(&ctx->cq_wait);
1796 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1797 }
1798 }
1799
1800 /* Returns true if there are no backlogged entries after the flush */
1801 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1802 struct task_struct *tsk,
1803 struct files_struct *files)
1804 {
1805 struct io_rings *rings = ctx->rings;
1806 struct io_kiocb *req, *tmp;
1807 struct io_uring_cqe *cqe;
1808 unsigned long flags;
1809 bool all_flushed, posted;
1810 LIST_HEAD(list);
1811
1812 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1813 return false;
1814
1815 posted = false;
1816 spin_lock_irqsave(&ctx->completion_lock, flags);
1817 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1818 if (!io_match_task(req, tsk, files))
1819 continue;
1820
1821 cqe = io_get_cqring(ctx);
1822 if (!cqe && !force)
1823 break;
1824
1825 list_move(&req->compl.list, &list);
1826 if (cqe) {
1827 WRITE_ONCE(cqe->user_data, req->user_data);
1828 WRITE_ONCE(cqe->res, req->result);
1829 WRITE_ONCE(cqe->flags, req->compl.cflags);
1830 } else {
1831 ctx->cached_cq_overflow++;
1832 WRITE_ONCE(ctx->rings->cq_overflow,
1833 ctx->cached_cq_overflow);
1834 }
1835 posted = true;
1836 }
1837
1838 all_flushed = list_empty(&ctx->cq_overflow_list);
1839 if (all_flushed) {
1840 clear_bit(0, &ctx->sq_check_overflow);
1841 clear_bit(0, &ctx->cq_check_overflow);
1842 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1843 }
1844
1845 if (posted)
1846 io_commit_cqring(ctx);
1847 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1848 if (posted)
1849 io_cqring_ev_posted(ctx);
1850
1851 while (!list_empty(&list)) {
1852 req = list_first_entry(&list, struct io_kiocb, compl.list);
1853 list_del(&req->compl.list);
1854 io_put_req(req);
1855 }
1856
1857 return all_flushed;
1858 }
1859
1860 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1861 struct task_struct *tsk,
1862 struct files_struct *files)
1863 {
1864 if (test_bit(0, &ctx->cq_check_overflow)) {
1865 /* iopoll syncs against uring_lock, not completion_lock */
1866 if (ctx->flags & IORING_SETUP_IOPOLL)
1867 mutex_lock(&ctx->uring_lock);
1868 __io_cqring_overflow_flush(ctx, force, tsk, files);
1869 if (ctx->flags & IORING_SETUP_IOPOLL)
1870 mutex_unlock(&ctx->uring_lock);
1871 }
1872 }
1873
1874 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1875 {
1876 struct io_ring_ctx *ctx = req->ctx;
1877 struct io_uring_cqe *cqe;
1878
1879 trace_io_uring_complete(ctx, req->user_data, res);
1880
1881 /*
1882 * If we can't get a cq entry, userspace overflowed the
1883 * submission (by quite a lot). Increment the overflow count in
1884 * the ring.
1885 */
1886 cqe = io_get_cqring(ctx);
1887 if (likely(cqe)) {
1888 WRITE_ONCE(cqe->user_data, req->user_data);
1889 WRITE_ONCE(cqe->res, res);
1890 WRITE_ONCE(cqe->flags, cflags);
1891 } else if (ctx->cq_overflow_flushed ||
1892 atomic_read(&req->task->io_uring->in_idle)) {
1893 /*
1894 * If we're in ring overflow flush mode, or in task cancel mode,
1895 * then we cannot store the request for later flushing, we need
1896 * to drop it on the floor.
1897 */
1898 ctx->cached_cq_overflow++;
1899 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1900 } else {
1901 if (list_empty(&ctx->cq_overflow_list)) {
1902 set_bit(0, &ctx->sq_check_overflow);
1903 set_bit(0, &ctx->cq_check_overflow);
1904 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1905 }
1906 io_clean_op(req);
1907 req->result = res;
1908 req->compl.cflags = cflags;
1909 refcount_inc(&req->refs);
1910 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1911 }
1912 }
1913
1914 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1915 {
1916 __io_cqring_fill_event(req, res, 0);
1917 }
1918
1919 static inline void io_req_complete_post(struct io_kiocb *req, long res,
1920 unsigned int cflags)
1921 {
1922 struct io_ring_ctx *ctx = req->ctx;
1923 unsigned long flags;
1924
1925 spin_lock_irqsave(&ctx->completion_lock, flags);
1926 __io_cqring_fill_event(req, res, cflags);
1927 io_commit_cqring(ctx);
1928 /*
1929 * If we're the last reference to this request, add to our locked
1930 * free_list cache.
1931 */
1932 if (refcount_dec_and_test(&req->refs)) {
1933 struct io_comp_state *cs = &ctx->submit_state.comp;
1934
1935 io_dismantle_req(req);
1936 io_put_task(req->task, 1);
1937 list_add(&req->compl.list, &cs->locked_free_list);
1938 cs->locked_free_nr++;
1939 } else
1940 req = NULL;
1941 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1942
1943 io_cqring_ev_posted(ctx);
1944 if (req) {
1945 io_queue_next(req);
1946 percpu_ref_put(&ctx->refs);
1947 }
1948 }
1949
1950 static void io_req_complete_state(struct io_kiocb *req, long res,
1951 unsigned int cflags)
1952 {
1953 io_clean_op(req);
1954 req->result = res;
1955 req->compl.cflags = cflags;
1956 req->flags |= REQ_F_COMPLETE_INLINE;
1957 }
1958
1959 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1960 long res, unsigned cflags)
1961 {
1962 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1963 io_req_complete_state(req, res, cflags);
1964 else
1965 io_req_complete_post(req, res, cflags);
1966 }
1967
1968 static inline void io_req_complete(struct io_kiocb *req, long res)
1969 {
1970 __io_req_complete(req, 0, res, 0);
1971 }
1972
1973 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1974 {
1975 struct io_submit_state *state = &ctx->submit_state;
1976 struct io_comp_state *cs = &state->comp;
1977 struct io_kiocb *req = NULL;
1978
1979 /*
1980 * If we have more than a batch's worth of requests in our IRQ side
1981 * locked cache, grab the lock and move them over to our submission
1982 * side cache.
1983 */
1984 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
1985 spin_lock_irq(&ctx->completion_lock);
1986 list_splice_init(&cs->locked_free_list, &cs->free_list);
1987 cs->locked_free_nr = 0;
1988 spin_unlock_irq(&ctx->completion_lock);
1989 }
1990
1991 while (!list_empty(&cs->free_list)) {
1992 req = list_first_entry(&cs->free_list, struct io_kiocb,
1993 compl.list);
1994 list_del(&req->compl.list);
1995 state->reqs[state->free_reqs++] = req;
1996 if (state->free_reqs == ARRAY_SIZE(state->reqs))
1997 break;
1998 }
1999
2000 return req != NULL;
2001 }
2002
2003 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2004 {
2005 struct io_submit_state *state = &ctx->submit_state;
2006
2007 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
2008
2009 if (!state->free_reqs) {
2010 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2011 int ret;
2012
2013 if (io_flush_cached_reqs(ctx))
2014 goto got_req;
2015
2016 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
2017 state->reqs);
2018
2019 /*
2020 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2021 * retry single alloc to be on the safe side.
2022 */
2023 if (unlikely(ret <= 0)) {
2024 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2025 if (!state->reqs[0])
2026 return NULL;
2027 ret = 1;
2028 }
2029 state->free_reqs = ret;
2030 }
2031 got_req:
2032 state->free_reqs--;
2033 return state->reqs[state->free_reqs];
2034 }
2035
2036 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2037 bool fixed)
2038 {
2039 if (!fixed)
2040 fput(file);
2041 }
2042
2043 static void io_dismantle_req(struct io_kiocb *req)
2044 {
2045 io_clean_op(req);
2046
2047 if (req->async_data)
2048 kfree(req->async_data);
2049 if (req->file)
2050 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2051 if (req->fixed_rsrc_refs)
2052 percpu_ref_put(req->fixed_rsrc_refs);
2053 io_req_clean_work(req);
2054 }
2055
2056 static inline void io_put_task(struct task_struct *task, int nr)
2057 {
2058 struct io_uring_task *tctx = task->io_uring;
2059
2060 percpu_counter_sub(&tctx->inflight, nr);
2061 if (unlikely(atomic_read(&tctx->in_idle)))
2062 wake_up(&tctx->wait);
2063 put_task_struct_many(task, nr);
2064 }
2065
2066 static void __io_free_req(struct io_kiocb *req)
2067 {
2068 struct io_ring_ctx *ctx = req->ctx;
2069
2070 io_dismantle_req(req);
2071 io_put_task(req->task, 1);
2072
2073 kmem_cache_free(req_cachep, req);
2074 percpu_ref_put(&ctx->refs);
2075 }
2076
2077 static inline void io_remove_next_linked(struct io_kiocb *req)
2078 {
2079 struct io_kiocb *nxt = req->link;
2080
2081 req->link = nxt->link;
2082 nxt->link = NULL;
2083 }
2084
2085 static void io_kill_linked_timeout(struct io_kiocb *req)
2086 {
2087 struct io_ring_ctx *ctx = req->ctx;
2088 struct io_kiocb *link;
2089 bool cancelled = false;
2090 unsigned long flags;
2091
2092 spin_lock_irqsave(&ctx->completion_lock, flags);
2093 link = req->link;
2094
2095 /*
2096 * Can happen if a linked timeout fired and link had been like
2097 * req -> link t-out -> link t-out [-> ...]
2098 */
2099 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2100 struct io_timeout_data *io = link->async_data;
2101 int ret;
2102
2103 io_remove_next_linked(req);
2104 link->timeout.head = NULL;
2105 ret = hrtimer_try_to_cancel(&io->timer);
2106 if (ret != -1) {
2107 io_cqring_fill_event(link, -ECANCELED);
2108 io_commit_cqring(ctx);
2109 cancelled = true;
2110 }
2111 }
2112 req->flags &= ~REQ_F_LINK_TIMEOUT;
2113 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2114
2115 if (cancelled) {
2116 io_cqring_ev_posted(ctx);
2117 io_put_req(link);
2118 }
2119 }
2120
2121
2122 static void io_fail_links(struct io_kiocb *req)
2123 {
2124 struct io_kiocb *link, *nxt;
2125 struct io_ring_ctx *ctx = req->ctx;
2126 unsigned long flags;
2127
2128 spin_lock_irqsave(&ctx->completion_lock, flags);
2129 link = req->link;
2130 req->link = NULL;
2131
2132 while (link) {
2133 nxt = link->link;
2134 link->link = NULL;
2135
2136 trace_io_uring_fail_link(req, link);
2137 io_cqring_fill_event(link, -ECANCELED);
2138
2139 /*
2140 * It's ok to free under spinlock as they're not linked anymore,
2141 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2142 * work.fs->lock.
2143 */
2144 if (link->flags & REQ_F_WORK_INITIALIZED)
2145 io_put_req_deferred(link, 2);
2146 else
2147 io_double_put_req(link);
2148 link = nxt;
2149 }
2150 io_commit_cqring(ctx);
2151 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2152
2153 io_cqring_ev_posted(ctx);
2154 }
2155
2156 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2157 {
2158 if (req->flags & REQ_F_LINK_TIMEOUT)
2159 io_kill_linked_timeout(req);
2160
2161 /*
2162 * If LINK is set, we have dependent requests in this chain. If we
2163 * didn't fail this request, queue the first one up, moving any other
2164 * dependencies to the next request. In case of failure, fail the rest
2165 * of the chain.
2166 */
2167 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2168 struct io_kiocb *nxt = req->link;
2169
2170 req->link = NULL;
2171 return nxt;
2172 }
2173 io_fail_links(req);
2174 return NULL;
2175 }
2176
2177 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2178 {
2179 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2180 return NULL;
2181 return __io_req_find_next(req);
2182 }
2183
2184 static bool __tctx_task_work(struct io_uring_task *tctx)
2185 {
2186 struct io_ring_ctx *ctx = NULL;
2187 struct io_wq_work_list list;
2188 struct io_wq_work_node *node;
2189
2190 if (wq_list_empty(&tctx->task_list))
2191 return false;
2192
2193 spin_lock_irq(&tctx->task_lock);
2194 list = tctx->task_list;
2195 INIT_WQ_LIST(&tctx->task_list);
2196 spin_unlock_irq(&tctx->task_lock);
2197
2198 node = list.first;
2199 while (node) {
2200 struct io_wq_work_node *next = node->next;
2201 struct io_ring_ctx *this_ctx;
2202 struct io_kiocb *req;
2203
2204 req = container_of(node, struct io_kiocb, io_task_work.node);
2205 this_ctx = req->ctx;
2206 req->task_work.func(&req->task_work);
2207 node = next;
2208
2209 if (!ctx) {
2210 ctx = this_ctx;
2211 } else if (ctx != this_ctx) {
2212 mutex_lock(&ctx->uring_lock);
2213 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2214 mutex_unlock(&ctx->uring_lock);
2215 ctx = this_ctx;
2216 }
2217 }
2218
2219 if (ctx && ctx->submit_state.comp.nr) {
2220 mutex_lock(&ctx->uring_lock);
2221 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2222 mutex_unlock(&ctx->uring_lock);
2223 }
2224
2225 return list.first != NULL;
2226 }
2227
2228 static void tctx_task_work(struct callback_head *cb)
2229 {
2230 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
2231
2232 while (__tctx_task_work(tctx))
2233 cond_resched();
2234
2235 clear_bit(0, &tctx->task_state);
2236 }
2237
2238 static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
2239 enum task_work_notify_mode notify)
2240 {
2241 struct io_uring_task *tctx = tsk->io_uring;
2242 struct io_wq_work_node *node, *prev;
2243 unsigned long flags;
2244 int ret;
2245
2246 WARN_ON_ONCE(!tctx);
2247
2248 spin_lock_irqsave(&tctx->task_lock, flags);
2249 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2250 spin_unlock_irqrestore(&tctx->task_lock, flags);
2251
2252 /* task_work already pending, we're done */
2253 if (test_bit(0, &tctx->task_state) ||
2254 test_and_set_bit(0, &tctx->task_state))
2255 return 0;
2256
2257 if (!task_work_add(tsk, &tctx->task_work, notify))
2258 return 0;
2259
2260 /*
2261 * Slow path - we failed, find and delete work. if the work is not
2262 * in the list, it got run and we're fine.
2263 */
2264 ret = 0;
2265 spin_lock_irqsave(&tctx->task_lock, flags);
2266 wq_list_for_each(node, prev, &tctx->task_list) {
2267 if (&req->io_task_work.node == node) {
2268 wq_list_del(&tctx->task_list, node, prev);
2269 ret = 1;
2270 break;
2271 }
2272 }
2273 spin_unlock_irqrestore(&tctx->task_lock, flags);
2274 clear_bit(0, &tctx->task_state);
2275 return ret;
2276 }
2277
2278 static int io_req_task_work_add(struct io_kiocb *req)
2279 {
2280 struct task_struct *tsk = req->task;
2281 struct io_ring_ctx *ctx = req->ctx;
2282 enum task_work_notify_mode notify;
2283 int ret;
2284
2285 if (tsk->flags & PF_EXITING)
2286 return -ESRCH;
2287
2288 /*
2289 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2290 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2291 * processing task_work. There's no reliable way to tell if TWA_RESUME
2292 * will do the job.
2293 */
2294 notify = TWA_NONE;
2295 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2296 notify = TWA_SIGNAL;
2297
2298 ret = io_task_work_add(tsk, req, notify);
2299 if (!ret)
2300 wake_up_process(tsk);
2301
2302 return ret;
2303 }
2304
2305 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2306 task_work_func_t cb)
2307 {
2308 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2309
2310 init_task_work(&req->task_work, cb);
2311 task_work_add(tsk, &req->task_work, TWA_NONE);
2312 wake_up_process(tsk);
2313 }
2314
2315 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2316 {
2317 struct io_ring_ctx *ctx = req->ctx;
2318
2319 spin_lock_irq(&ctx->completion_lock);
2320 io_cqring_fill_event(req, error);
2321 io_commit_cqring(ctx);
2322 spin_unlock_irq(&ctx->completion_lock);
2323
2324 io_cqring_ev_posted(ctx);
2325 req_set_fail_links(req);
2326 io_double_put_req(req);
2327 }
2328
2329 static void io_req_task_cancel(struct callback_head *cb)
2330 {
2331 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2332 struct io_ring_ctx *ctx = req->ctx;
2333
2334 __io_req_task_cancel(req, -ECANCELED);
2335 percpu_ref_put(&ctx->refs);
2336 }
2337
2338 static void __io_req_task_submit(struct io_kiocb *req)
2339 {
2340 struct io_ring_ctx *ctx = req->ctx;
2341
2342 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2343 mutex_lock(&ctx->uring_lock);
2344 if (!ctx->sqo_dead && !(current->flags & PF_EXITING) &&
2345 !io_sq_thread_acquire_mm_files(ctx, req))
2346 __io_queue_sqe(req);
2347 else
2348 __io_req_task_cancel(req, -EFAULT);
2349 mutex_unlock(&ctx->uring_lock);
2350 }
2351
2352 static void io_req_task_submit(struct callback_head *cb)
2353 {
2354 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2355
2356 __io_req_task_submit(req);
2357 }
2358
2359 static void io_req_task_queue(struct io_kiocb *req)
2360 {
2361 int ret;
2362
2363 req->task_work.func = io_req_task_submit;
2364 ret = io_req_task_work_add(req);
2365 if (unlikely(ret)) {
2366 percpu_ref_get(&req->ctx->refs);
2367 io_req_task_work_add_fallback(req, io_req_task_cancel);
2368 }
2369 }
2370
2371 static inline void io_queue_next(struct io_kiocb *req)
2372 {
2373 struct io_kiocb *nxt = io_req_find_next(req);
2374
2375 if (nxt)
2376 io_req_task_queue(nxt);
2377 }
2378
2379 static void io_free_req(struct io_kiocb *req)
2380 {
2381 io_queue_next(req);
2382 __io_free_req(req);
2383 }
2384
2385 struct req_batch {
2386 struct task_struct *task;
2387 int task_refs;
2388 int ctx_refs;
2389 };
2390
2391 static inline void io_init_req_batch(struct req_batch *rb)
2392 {
2393 rb->task_refs = 0;
2394 rb->ctx_refs = 0;
2395 rb->task = NULL;
2396 }
2397
2398 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2399 struct req_batch *rb)
2400 {
2401 if (rb->task)
2402 io_put_task(rb->task, rb->task_refs);
2403 if (rb->ctx_refs)
2404 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2405 }
2406
2407 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2408 struct io_submit_state *state)
2409 {
2410 io_queue_next(req);
2411
2412 if (req->task != rb->task) {
2413 if (rb->task)
2414 io_put_task(rb->task, rb->task_refs);
2415 rb->task = req->task;
2416 rb->task_refs = 0;
2417 }
2418 rb->task_refs++;
2419 rb->ctx_refs++;
2420
2421 io_dismantle_req(req);
2422 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2423 state->reqs[state->free_reqs++] = req;
2424 else
2425 list_add(&req->compl.list, &state->comp.free_list);
2426 }
2427
2428 static void io_submit_flush_completions(struct io_comp_state *cs,
2429 struct io_ring_ctx *ctx)
2430 {
2431 int i, nr = cs->nr;
2432 struct io_kiocb *req;
2433 struct req_batch rb;
2434
2435 io_init_req_batch(&rb);
2436 spin_lock_irq(&ctx->completion_lock);
2437 for (i = 0; i < nr; i++) {
2438 req = cs->reqs[i];
2439 __io_cqring_fill_event(req, req->result, req->compl.cflags);
2440 }
2441 io_commit_cqring(ctx);
2442 spin_unlock_irq(&ctx->completion_lock);
2443
2444 io_cqring_ev_posted(ctx);
2445 for (i = 0; i < nr; i++) {
2446 req = cs->reqs[i];
2447
2448 /* submission and completion refs */
2449 if (refcount_sub_and_test(2, &req->refs))
2450 io_req_free_batch(&rb, req, &ctx->submit_state);
2451 }
2452
2453 io_req_free_batch_finish(ctx, &rb);
2454 cs->nr = 0;
2455 }
2456
2457 /*
2458 * Drop reference to request, return next in chain (if there is one) if this
2459 * was the last reference to this request.
2460 */
2461 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2462 {
2463 struct io_kiocb *nxt = NULL;
2464
2465 if (refcount_dec_and_test(&req->refs)) {
2466 nxt = io_req_find_next(req);
2467 __io_free_req(req);
2468 }
2469 return nxt;
2470 }
2471
2472 static void io_put_req(struct io_kiocb *req)
2473 {
2474 if (refcount_dec_and_test(&req->refs))
2475 io_free_req(req);
2476 }
2477
2478 static void io_put_req_deferred_cb(struct callback_head *cb)
2479 {
2480 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2481
2482 io_free_req(req);
2483 }
2484
2485 static void io_free_req_deferred(struct io_kiocb *req)
2486 {
2487 int ret;
2488
2489 req->task_work.func = io_put_req_deferred_cb;
2490 ret = io_req_task_work_add(req);
2491 if (unlikely(ret))
2492 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2493 }
2494
2495 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2496 {
2497 if (refcount_sub_and_test(refs, &req->refs))
2498 io_free_req_deferred(req);
2499 }
2500
2501 static void io_double_put_req(struct io_kiocb *req)
2502 {
2503 /* drop both submit and complete references */
2504 if (refcount_sub_and_test(2, &req->refs))
2505 io_free_req(req);
2506 }
2507
2508 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2509 {
2510 /* See comment at the top of this file */
2511 smp_rmb();
2512 return __io_cqring_events(ctx);
2513 }
2514
2515 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2516 {
2517 struct io_rings *rings = ctx->rings;
2518
2519 /* make sure SQ entry isn't read before tail */
2520 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2521 }
2522
2523 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2524 {
2525 unsigned int cflags;
2526
2527 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2528 cflags |= IORING_CQE_F_BUFFER;
2529 req->flags &= ~REQ_F_BUFFER_SELECTED;
2530 kfree(kbuf);
2531 return cflags;
2532 }
2533
2534 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2535 {
2536 struct io_buffer *kbuf;
2537
2538 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2539 return io_put_kbuf(req, kbuf);
2540 }
2541
2542 static inline bool io_run_task_work(void)
2543 {
2544 /*
2545 * Not safe to run on exiting task, and the task_work handling will
2546 * not add work to such a task.
2547 */
2548 if (unlikely(current->flags & PF_EXITING))
2549 return false;
2550 if (current->task_works) {
2551 __set_current_state(TASK_RUNNING);
2552 task_work_run();
2553 return true;
2554 }
2555
2556 return false;
2557 }
2558
2559 /*
2560 * Find and free completed poll iocbs
2561 */
2562 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2563 struct list_head *done)
2564 {
2565 struct req_batch rb;
2566 struct io_kiocb *req;
2567
2568 /* order with ->result store in io_complete_rw_iopoll() */
2569 smp_rmb();
2570
2571 io_init_req_batch(&rb);
2572 while (!list_empty(done)) {
2573 int cflags = 0;
2574
2575 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2576 list_del(&req->inflight_entry);
2577
2578 if (READ_ONCE(req->result) == -EAGAIN) {
2579 req->iopoll_completed = 0;
2580 if (io_rw_reissue(req))
2581 continue;
2582 }
2583
2584 if (req->flags & REQ_F_BUFFER_SELECTED)
2585 cflags = io_put_rw_kbuf(req);
2586
2587 __io_cqring_fill_event(req, req->result, cflags);
2588 (*nr_events)++;
2589
2590 if (refcount_dec_and_test(&req->refs))
2591 io_req_free_batch(&rb, req, &ctx->submit_state);
2592 }
2593
2594 io_commit_cqring(ctx);
2595 io_cqring_ev_posted_iopoll(ctx);
2596 io_req_free_batch_finish(ctx, &rb);
2597 }
2598
2599 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2600 long min)
2601 {
2602 struct io_kiocb *req, *tmp;
2603 LIST_HEAD(done);
2604 bool spin;
2605 int ret;
2606
2607 /*
2608 * Only spin for completions if we don't have multiple devices hanging
2609 * off our complete list, and we're under the requested amount.
2610 */
2611 spin = !ctx->poll_multi_file && *nr_events < min;
2612
2613 ret = 0;
2614 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2615 struct kiocb *kiocb = &req->rw.kiocb;
2616
2617 /*
2618 * Move completed and retryable entries to our local lists.
2619 * If we find a request that requires polling, break out
2620 * and complete those lists first, if we have entries there.
2621 */
2622 if (READ_ONCE(req->iopoll_completed)) {
2623 list_move_tail(&req->inflight_entry, &done);
2624 continue;
2625 }
2626 if (!list_empty(&done))
2627 break;
2628
2629 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2630 if (ret < 0)
2631 break;
2632
2633 /* iopoll may have completed current req */
2634 if (READ_ONCE(req->iopoll_completed))
2635 list_move_tail(&req->inflight_entry, &done);
2636
2637 if (ret && spin)
2638 spin = false;
2639 ret = 0;
2640 }
2641
2642 if (!list_empty(&done))
2643 io_iopoll_complete(ctx, nr_events, &done);
2644
2645 return ret;
2646 }
2647
2648 /*
2649 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2650 * non-spinning poll check - we'll still enter the driver poll loop, but only
2651 * as a non-spinning completion check.
2652 */
2653 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2654 long min)
2655 {
2656 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2657 int ret;
2658
2659 ret = io_do_iopoll(ctx, nr_events, min);
2660 if (ret < 0)
2661 return ret;
2662 if (*nr_events >= min)
2663 return 0;
2664 }
2665
2666 return 1;
2667 }
2668
2669 /*
2670 * We can't just wait for polled events to come to us, we have to actively
2671 * find and complete them.
2672 */
2673 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2674 {
2675 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2676 return;
2677
2678 mutex_lock(&ctx->uring_lock);
2679 while (!list_empty(&ctx->iopoll_list)) {
2680 unsigned int nr_events = 0;
2681
2682 io_do_iopoll(ctx, &nr_events, 0);
2683
2684 /* let it sleep and repeat later if can't complete a request */
2685 if (nr_events == 0)
2686 break;
2687 /*
2688 * Ensure we allow local-to-the-cpu processing to take place,
2689 * in this case we need to ensure that we reap all events.
2690 * Also let task_work, etc. to progress by releasing the mutex
2691 */
2692 if (need_resched()) {
2693 mutex_unlock(&ctx->uring_lock);
2694 cond_resched();
2695 mutex_lock(&ctx->uring_lock);
2696 }
2697 }
2698 mutex_unlock(&ctx->uring_lock);
2699 }
2700
2701 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2702 {
2703 unsigned int nr_events = 0;
2704 int iters = 0, ret = 0;
2705
2706 /*
2707 * We disallow the app entering submit/complete with polling, but we
2708 * still need to lock the ring to prevent racing with polled issue
2709 * that got punted to a workqueue.
2710 */
2711 mutex_lock(&ctx->uring_lock);
2712 do {
2713 /*
2714 * Don't enter poll loop if we already have events pending.
2715 * If we do, we can potentially be spinning for commands that
2716 * already triggered a CQE (eg in error).
2717 */
2718 if (test_bit(0, &ctx->cq_check_overflow))
2719 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2720 if (io_cqring_events(ctx))
2721 break;
2722
2723 /*
2724 * If a submit got punted to a workqueue, we can have the
2725 * application entering polling for a command before it gets
2726 * issued. That app will hold the uring_lock for the duration
2727 * of the poll right here, so we need to take a breather every
2728 * now and then to ensure that the issue has a chance to add
2729 * the poll to the issued list. Otherwise we can spin here
2730 * forever, while the workqueue is stuck trying to acquire the
2731 * very same mutex.
2732 */
2733 if (!(++iters & 7)) {
2734 mutex_unlock(&ctx->uring_lock);
2735 io_run_task_work();
2736 mutex_lock(&ctx->uring_lock);
2737 }
2738
2739 ret = io_iopoll_getevents(ctx, &nr_events, min);
2740 if (ret <= 0)
2741 break;
2742 ret = 0;
2743 } while (min && !nr_events && !need_resched());
2744
2745 mutex_unlock(&ctx->uring_lock);
2746 return ret;
2747 }
2748
2749 static void kiocb_end_write(struct io_kiocb *req)
2750 {
2751 /*
2752 * Tell lockdep we inherited freeze protection from submission
2753 * thread.
2754 */
2755 if (req->flags & REQ_F_ISREG) {
2756 struct inode *inode = file_inode(req->file);
2757
2758 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2759 }
2760 file_end_write(req->file);
2761 }
2762
2763 #ifdef CONFIG_BLOCK
2764 static bool io_resubmit_prep(struct io_kiocb *req)
2765 {
2766 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2767 int rw, ret;
2768 struct iov_iter iter;
2769
2770 /* already prepared */
2771 if (req->async_data)
2772 return true;
2773
2774 switch (req->opcode) {
2775 case IORING_OP_READV:
2776 case IORING_OP_READ_FIXED:
2777 case IORING_OP_READ:
2778 rw = READ;
2779 break;
2780 case IORING_OP_WRITEV:
2781 case IORING_OP_WRITE_FIXED:
2782 case IORING_OP_WRITE:
2783 rw = WRITE;
2784 break;
2785 default:
2786 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2787 req->opcode);
2788 return false;
2789 }
2790
2791 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2792 if (ret < 0)
2793 return false;
2794 return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2795 }
2796 #endif
2797
2798 static bool io_rw_reissue(struct io_kiocb *req)
2799 {
2800 #ifdef CONFIG_BLOCK
2801 umode_t mode = file_inode(req->file)->i_mode;
2802 int ret;
2803
2804 if (!S_ISBLK(mode) && !S_ISREG(mode))
2805 return false;
2806 if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
2807 return false;
2808
2809 lockdep_assert_held(&req->ctx->uring_lock);
2810
2811 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2812
2813 if (!ret && io_resubmit_prep(req)) {
2814 refcount_inc(&req->refs);
2815 io_queue_async_work(req);
2816 return true;
2817 }
2818 req_set_fail_links(req);
2819 #endif
2820 return false;
2821 }
2822
2823 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2824 unsigned int issue_flags)
2825 {
2826 int cflags = 0;
2827
2828 if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
2829 return;
2830 if (res != req->result)
2831 req_set_fail_links(req);
2832
2833 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2834 kiocb_end_write(req);
2835 if (req->flags & REQ_F_BUFFER_SELECTED)
2836 cflags = io_put_rw_kbuf(req);
2837 __io_req_complete(req, issue_flags, res, cflags);
2838 }
2839
2840 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2841 {
2842 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2843
2844 __io_complete_rw(req, res, res2, 0);
2845 }
2846
2847 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2848 {
2849 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2850
2851 if (kiocb->ki_flags & IOCB_WRITE)
2852 kiocb_end_write(req);
2853
2854 if (res != -EAGAIN && res != req->result)
2855 req_set_fail_links(req);
2856
2857 WRITE_ONCE(req->result, res);
2858 /* order with io_poll_complete() checking ->result */
2859 smp_wmb();
2860 WRITE_ONCE(req->iopoll_completed, 1);
2861 }
2862
2863 /*
2864 * After the iocb has been issued, it's safe to be found on the poll list.
2865 * Adding the kiocb to the list AFTER submission ensures that we don't
2866 * find it from a io_iopoll_getevents() thread before the issuer is done
2867 * accessing the kiocb cookie.
2868 */
2869 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2870 {
2871 struct io_ring_ctx *ctx = req->ctx;
2872
2873 /*
2874 * Track whether we have multiple files in our lists. This will impact
2875 * how we do polling eventually, not spinning if we're on potentially
2876 * different devices.
2877 */
2878 if (list_empty(&ctx->iopoll_list)) {
2879 ctx->poll_multi_file = false;
2880 } else if (!ctx->poll_multi_file) {
2881 struct io_kiocb *list_req;
2882
2883 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2884 inflight_entry);
2885 if (list_req->file != req->file)
2886 ctx->poll_multi_file = true;
2887 }
2888
2889 /*
2890 * For fast devices, IO may have already completed. If it has, add
2891 * it to the front so we find it first.
2892 */
2893 if (READ_ONCE(req->iopoll_completed))
2894 list_add(&req->inflight_entry, &ctx->iopoll_list);
2895 else
2896 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2897
2898 /*
2899 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2900 * task context or in io worker task context. If current task context is
2901 * sq thread, we don't need to check whether should wake up sq thread.
2902 */
2903 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2904 wq_has_sleeper(&ctx->sq_data->wait))
2905 wake_up(&ctx->sq_data->wait);
2906 }
2907
2908 static inline void io_state_file_put(struct io_submit_state *state)
2909 {
2910 if (state->file_refs) {
2911 fput_many(state->file, state->file_refs);
2912 state->file_refs = 0;
2913 }
2914 }
2915
2916 /*
2917 * Get as many references to a file as we have IOs left in this submission,
2918 * assuming most submissions are for one file, or at least that each file
2919 * has more than one submission.
2920 */
2921 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2922 {
2923 if (!state)
2924 return fget(fd);
2925
2926 if (state->file_refs) {
2927 if (state->fd == fd) {
2928 state->file_refs--;
2929 return state->file;
2930 }
2931 io_state_file_put(state);
2932 }
2933 state->file = fget_many(fd, state->ios_left);
2934 if (unlikely(!state->file))
2935 return NULL;
2936
2937 state->fd = fd;
2938 state->file_refs = state->ios_left - 1;
2939 return state->file;
2940 }
2941
2942 static bool io_bdev_nowait(struct block_device *bdev)
2943 {
2944 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2945 }
2946
2947 /*
2948 * If we tracked the file through the SCM inflight mechanism, we could support
2949 * any file. For now, just ensure that anything potentially problematic is done
2950 * inline.
2951 */
2952 static bool io_file_supports_async(struct file *file, int rw)
2953 {
2954 umode_t mode = file_inode(file)->i_mode;
2955
2956 if (S_ISBLK(mode)) {
2957 if (IS_ENABLED(CONFIG_BLOCK) &&
2958 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2959 return true;
2960 return false;
2961 }
2962 if (S_ISCHR(mode) || S_ISSOCK(mode))
2963 return true;
2964 if (S_ISREG(mode)) {
2965 if (IS_ENABLED(CONFIG_BLOCK) &&
2966 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2967 file->f_op != &io_uring_fops)
2968 return true;
2969 return false;
2970 }
2971
2972 /* any ->read/write should understand O_NONBLOCK */
2973 if (file->f_flags & O_NONBLOCK)
2974 return true;
2975
2976 if (!(file->f_mode & FMODE_NOWAIT))
2977 return false;
2978
2979 if (rw == READ)
2980 return file->f_op->read_iter != NULL;
2981
2982 return file->f_op->write_iter != NULL;
2983 }
2984
2985 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2986 {
2987 struct io_ring_ctx *ctx = req->ctx;
2988 struct kiocb *kiocb = &req->rw.kiocb;
2989 struct file *file = req->file;
2990 unsigned ioprio;
2991 int ret;
2992
2993 if (S_ISREG(file_inode(file)->i_mode))
2994 req->flags |= REQ_F_ISREG;
2995
2996 kiocb->ki_pos = READ_ONCE(sqe->off);
2997 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2998 req->flags |= REQ_F_CUR_POS;
2999 kiocb->ki_pos = file->f_pos;
3000 }
3001 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
3002 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
3003 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
3004 if (unlikely(ret))
3005 return ret;
3006
3007 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
3008 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
3009 req->flags |= REQ_F_NOWAIT;
3010
3011 ioprio = READ_ONCE(sqe->ioprio);
3012 if (ioprio) {
3013 ret = ioprio_check_cap(ioprio);
3014 if (ret)
3015 return ret;
3016
3017 kiocb->ki_ioprio = ioprio;
3018 } else
3019 kiocb->ki_ioprio = get_current_ioprio();
3020
3021 if (ctx->flags & IORING_SETUP_IOPOLL) {
3022 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3023 !kiocb->ki_filp->f_op->iopoll)
3024 return -EOPNOTSUPP;
3025
3026 kiocb->ki_flags |= IOCB_HIPRI;
3027 kiocb->ki_complete = io_complete_rw_iopoll;
3028 req->iopoll_completed = 0;
3029 } else {
3030 if (kiocb->ki_flags & IOCB_HIPRI)
3031 return -EINVAL;
3032 kiocb->ki_complete = io_complete_rw;
3033 }
3034
3035 req->rw.addr = READ_ONCE(sqe->addr);
3036 req->rw.len = READ_ONCE(sqe->len);
3037 req->buf_index = READ_ONCE(sqe->buf_index);
3038 return 0;
3039 }
3040
3041 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3042 {
3043 switch (ret) {
3044 case -EIOCBQUEUED:
3045 break;
3046 case -ERESTARTSYS:
3047 case -ERESTARTNOINTR:
3048 case -ERESTARTNOHAND:
3049 case -ERESTART_RESTARTBLOCK:
3050 /*
3051 * We can't just restart the syscall, since previously
3052 * submitted sqes may already be in progress. Just fail this
3053 * IO with EINTR.
3054 */
3055 ret = -EINTR;
3056 fallthrough;
3057 default:
3058 kiocb->ki_complete(kiocb, ret, 0);
3059 }
3060 }
3061
3062 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3063 unsigned int issue_flags)
3064 {
3065 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3066 struct io_async_rw *io = req->async_data;
3067
3068 /* add previously done IO, if any */
3069 if (io && io->bytes_done > 0) {
3070 if (ret < 0)
3071 ret = io->bytes_done;
3072 else
3073 ret += io->bytes_done;
3074 }
3075
3076 if (req->flags & REQ_F_CUR_POS)
3077 req->file->f_pos = kiocb->ki_pos;
3078 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3079 __io_complete_rw(req, ret, 0, issue_flags);
3080 else
3081 io_rw_done(kiocb, ret);
3082 }
3083
3084 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3085 {
3086 struct io_ring_ctx *ctx = req->ctx;
3087 size_t len = req->rw.len;
3088 struct io_mapped_ubuf *imu;
3089 u16 index, buf_index = req->buf_index;
3090 size_t offset;
3091 u64 buf_addr;
3092
3093 if (unlikely(buf_index >= ctx->nr_user_bufs))
3094 return -EFAULT;
3095 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3096 imu = &ctx->user_bufs[index];
3097 buf_addr = req->rw.addr;
3098
3099 /* overflow */
3100 if (buf_addr + len < buf_addr)
3101 return -EFAULT;
3102 /* not inside the mapped region */
3103 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3104 return -EFAULT;
3105
3106 /*
3107 * May not be a start of buffer, set size appropriately
3108 * and advance us to the beginning.
3109 */
3110 offset = buf_addr - imu->ubuf;
3111 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3112
3113 if (offset) {
3114 /*
3115 * Don't use iov_iter_advance() here, as it's really slow for
3116 * using the latter parts of a big fixed buffer - it iterates
3117 * over each segment manually. We can cheat a bit here, because
3118 * we know that:
3119 *
3120 * 1) it's a BVEC iter, we set it up
3121 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3122 * first and last bvec
3123 *
3124 * So just find our index, and adjust the iterator afterwards.
3125 * If the offset is within the first bvec (or the whole first
3126 * bvec, just use iov_iter_advance(). This makes it easier
3127 * since we can just skip the first segment, which may not
3128 * be PAGE_SIZE aligned.
3129 */
3130 const struct bio_vec *bvec = imu->bvec;
3131
3132 if (offset <= bvec->bv_len) {
3133 iov_iter_advance(iter, offset);
3134 } else {
3135 unsigned long seg_skip;
3136
3137 /* skip first vec */
3138 offset -= bvec->bv_len;
3139 seg_skip = 1 + (offset >> PAGE_SHIFT);
3140
3141 iter->bvec = bvec + seg_skip;
3142 iter->nr_segs -= seg_skip;
3143 iter->count -= bvec->bv_len + offset;
3144 iter->iov_offset = offset & ~PAGE_MASK;
3145 }
3146 }
3147
3148 return 0;
3149 }
3150
3151 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3152 {
3153 if (needs_lock)
3154 mutex_unlock(&ctx->uring_lock);
3155 }
3156
3157 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3158 {
3159 /*
3160 * "Normal" inline submissions always hold the uring_lock, since we
3161 * grab it from the system call. Same is true for the SQPOLL offload.
3162 * The only exception is when we've detached the request and issue it
3163 * from an async worker thread, grab the lock for that case.
3164 */
3165 if (needs_lock)
3166 mutex_lock(&ctx->uring_lock);
3167 }
3168
3169 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3170 int bgid, struct io_buffer *kbuf,
3171 bool needs_lock)
3172 {
3173 struct io_buffer *head;
3174
3175 if (req->flags & REQ_F_BUFFER_SELECTED)
3176 return kbuf;
3177
3178 io_ring_submit_lock(req->ctx, needs_lock);
3179
3180 lockdep_assert_held(&req->ctx->uring_lock);
3181
3182 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3183 if (head) {
3184 if (!list_empty(&head->list)) {
3185 kbuf = list_last_entry(&head->list, struct io_buffer,
3186 list);
3187 list_del(&kbuf->list);
3188 } else {
3189 kbuf = head;
3190 idr_remove(&req->ctx->io_buffer_idr, bgid);
3191 }
3192 if (*len > kbuf->len)
3193 *len = kbuf->len;
3194 } else {
3195 kbuf = ERR_PTR(-ENOBUFS);
3196 }
3197
3198 io_ring_submit_unlock(req->ctx, needs_lock);
3199
3200 return kbuf;
3201 }
3202
3203 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3204 bool needs_lock)
3205 {
3206 struct io_buffer *kbuf;
3207 u16 bgid;
3208
3209 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3210 bgid = req->buf_index;
3211 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3212 if (IS_ERR(kbuf))
3213 return kbuf;
3214 req->rw.addr = (u64) (unsigned long) kbuf;
3215 req->flags |= REQ_F_BUFFER_SELECTED;
3216 return u64_to_user_ptr(kbuf->addr);
3217 }
3218
3219 #ifdef CONFIG_COMPAT
3220 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3221 bool needs_lock)
3222 {
3223 struct compat_iovec __user *uiov;
3224 compat_ssize_t clen;
3225 void __user *buf;
3226 ssize_t len;
3227
3228 uiov = u64_to_user_ptr(req->rw.addr);
3229 if (!access_ok(uiov, sizeof(*uiov)))
3230 return -EFAULT;
3231 if (__get_user(clen, &uiov->iov_len))
3232 return -EFAULT;
3233 if (clen < 0)
3234 return -EINVAL;
3235
3236 len = clen;
3237 buf = io_rw_buffer_select(req, &len, needs_lock);
3238 if (IS_ERR(buf))
3239 return PTR_ERR(buf);
3240 iov[0].iov_base = buf;
3241 iov[0].iov_len = (compat_size_t) len;
3242 return 0;
3243 }
3244 #endif
3245
3246 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3247 bool needs_lock)
3248 {
3249 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3250 void __user *buf;
3251 ssize_t len;
3252
3253 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3254 return -EFAULT;
3255
3256 len = iov[0].iov_len;
3257 if (len < 0)
3258 return -EINVAL;
3259 buf = io_rw_buffer_select(req, &len, needs_lock);
3260 if (IS_ERR(buf))
3261 return PTR_ERR(buf);
3262 iov[0].iov_base = buf;
3263 iov[0].iov_len = len;
3264 return 0;
3265 }
3266
3267 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3268 bool needs_lock)
3269 {
3270 if (req->flags & REQ_F_BUFFER_SELECTED) {
3271 struct io_buffer *kbuf;
3272
3273 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3274 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3275 iov[0].iov_len = kbuf->len;
3276 return 0;
3277 }
3278 if (req->rw.len != 1)
3279 return -EINVAL;
3280
3281 #ifdef CONFIG_COMPAT
3282 if (req->ctx->compat)
3283 return io_compat_import(req, iov, needs_lock);
3284 #endif
3285
3286 return __io_iov_buffer_select(req, iov, needs_lock);
3287 }
3288
3289 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3290 struct iov_iter *iter, bool needs_lock)
3291 {
3292 void __user *buf = u64_to_user_ptr(req->rw.addr);
3293 size_t sqe_len = req->rw.len;
3294 u8 opcode = req->opcode;
3295 ssize_t ret;
3296
3297 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3298 *iovec = NULL;
3299 return io_import_fixed(req, rw, iter);
3300 }
3301
3302 /* buffer index only valid with fixed read/write, or buffer select */
3303 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3304 return -EINVAL;
3305
3306 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3307 if (req->flags & REQ_F_BUFFER_SELECT) {
3308 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3309 if (IS_ERR(buf))
3310 return PTR_ERR(buf);
3311 req->rw.len = sqe_len;
3312 }
3313
3314 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3315 *iovec = NULL;
3316 return ret;
3317 }
3318
3319 if (req->flags & REQ_F_BUFFER_SELECT) {
3320 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3321 if (!ret)
3322 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3323 *iovec = NULL;
3324 return ret;
3325 }
3326
3327 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3328 req->ctx->compat);
3329 }
3330
3331 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3332 {
3333 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3334 }
3335
3336 /*
3337 * For files that don't have ->read_iter() and ->write_iter(), handle them
3338 * by looping over ->read() or ->write() manually.
3339 */
3340 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3341 {
3342 struct kiocb *kiocb = &req->rw.kiocb;
3343 struct file *file = req->file;
3344 ssize_t ret = 0;
3345
3346 /*
3347 * Don't support polled IO through this interface, and we can't
3348 * support non-blocking either. For the latter, this just causes
3349 * the kiocb to be handled from an async context.
3350 */
3351 if (kiocb->ki_flags & IOCB_HIPRI)
3352 return -EOPNOTSUPP;
3353 if (kiocb->ki_flags & IOCB_NOWAIT)
3354 return -EAGAIN;
3355
3356 while (iov_iter_count(iter)) {
3357 struct iovec iovec;
3358 ssize_t nr;
3359
3360 if (!iov_iter_is_bvec(iter)) {
3361 iovec = iov_iter_iovec(iter);
3362 } else {
3363 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3364 iovec.iov_len = req->rw.len;
3365 }
3366
3367 if (rw == READ) {
3368 nr = file->f_op->read(file, iovec.iov_base,
3369 iovec.iov_len, io_kiocb_ppos(kiocb));
3370 } else {
3371 nr = file->f_op->write(file, iovec.iov_base,
3372 iovec.iov_len, io_kiocb_ppos(kiocb));
3373 }
3374
3375 if (nr < 0) {
3376 if (!ret)
3377 ret = nr;
3378 break;
3379 }
3380 ret += nr;
3381 if (nr != iovec.iov_len)
3382 break;
3383 req->rw.len -= nr;
3384 req->rw.addr += nr;
3385 iov_iter_advance(iter, nr);
3386 }
3387
3388 return ret;
3389 }
3390
3391 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3392 const struct iovec *fast_iov, struct iov_iter *iter)
3393 {
3394 struct io_async_rw *rw = req->async_data;
3395
3396 memcpy(&rw->iter, iter, sizeof(*iter));
3397 rw->free_iovec = iovec;
3398 rw->bytes_done = 0;
3399 /* can only be fixed buffers, no need to do anything */
3400 if (iov_iter_is_bvec(iter))
3401 return;
3402 if (!iovec) {
3403 unsigned iov_off = 0;
3404
3405 rw->iter.iov = rw->fast_iov;
3406 if (iter->iov != fast_iov) {
3407 iov_off = iter->iov - fast_iov;
3408 rw->iter.iov += iov_off;
3409 }
3410 if (rw->fast_iov != fast_iov)
3411 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3412 sizeof(struct iovec) * iter->nr_segs);
3413 } else {
3414 req->flags |= REQ_F_NEED_CLEANUP;
3415 }
3416 }
3417
3418 static inline int __io_alloc_async_data(struct io_kiocb *req)
3419 {
3420 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3421 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3422 return req->async_data == NULL;
3423 }
3424
3425 static int io_alloc_async_data(struct io_kiocb *req)
3426 {
3427 if (!io_op_defs[req->opcode].needs_async_data)
3428 return 0;
3429
3430 return __io_alloc_async_data(req);
3431 }
3432
3433 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3434 const struct iovec *fast_iov,
3435 struct iov_iter *iter, bool force)
3436 {
3437 if (!force && !io_op_defs[req->opcode].needs_async_data)
3438 return 0;
3439 if (!req->async_data) {
3440 if (__io_alloc_async_data(req)) {
3441 kfree(iovec);
3442 return -ENOMEM;
3443 }
3444
3445 io_req_map_rw(req, iovec, fast_iov, iter);
3446 }
3447 return 0;
3448 }
3449
3450 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3451 {
3452 struct io_async_rw *iorw = req->async_data;
3453 struct iovec *iov = iorw->fast_iov;
3454 int ret;
3455
3456 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3457 if (unlikely(ret < 0))
3458 return ret;
3459
3460 iorw->bytes_done = 0;
3461 iorw->free_iovec = iov;
3462 if (iov)
3463 req->flags |= REQ_F_NEED_CLEANUP;
3464 return 0;
3465 }
3466
3467 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3468 {
3469 ssize_t ret;
3470
3471 ret = io_prep_rw(req, sqe);
3472 if (ret)
3473 return ret;
3474
3475 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3476 return -EBADF;
3477
3478 /* either don't need iovec imported or already have it */
3479 if (!req->async_data)
3480 return 0;
3481 return io_rw_prep_async(req, READ);
3482 }
3483
3484 /*
3485 * This is our waitqueue callback handler, registered through lock_page_async()
3486 * when we initially tried to do the IO with the iocb armed our waitqueue.
3487 * This gets called when the page is unlocked, and we generally expect that to
3488 * happen when the page IO is completed and the page is now uptodate. This will
3489 * queue a task_work based retry of the operation, attempting to copy the data
3490 * again. If the latter fails because the page was NOT uptodate, then we will
3491 * do a thread based blocking retry of the operation. That's the unexpected
3492 * slow path.
3493 */
3494 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3495 int sync, void *arg)
3496 {
3497 struct wait_page_queue *wpq;
3498 struct io_kiocb *req = wait->private;
3499 struct wait_page_key *key = arg;
3500
3501 wpq = container_of(wait, struct wait_page_queue, wait);
3502
3503 if (!wake_page_match(wpq, key))
3504 return 0;
3505
3506 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3507 list_del_init(&wait->entry);
3508
3509 /* submit ref gets dropped, acquire a new one */
3510 refcount_inc(&req->refs);
3511 io_req_task_queue(req);
3512 return 1;
3513 }
3514
3515 /*
3516 * This controls whether a given IO request should be armed for async page
3517 * based retry. If we return false here, the request is handed to the async
3518 * worker threads for retry. If we're doing buffered reads on a regular file,
3519 * we prepare a private wait_page_queue entry and retry the operation. This
3520 * will either succeed because the page is now uptodate and unlocked, or it
3521 * will register a callback when the page is unlocked at IO completion. Through
3522 * that callback, io_uring uses task_work to setup a retry of the operation.
3523 * That retry will attempt the buffered read again. The retry will generally
3524 * succeed, or in rare cases where it fails, we then fall back to using the
3525 * async worker threads for a blocking retry.
3526 */
3527 static bool io_rw_should_retry(struct io_kiocb *req)
3528 {
3529 struct io_async_rw *rw = req->async_data;
3530 struct wait_page_queue *wait = &rw->wpq;
3531 struct kiocb *kiocb = &req->rw.kiocb;
3532
3533 /* never retry for NOWAIT, we just complete with -EAGAIN */
3534 if (req->flags & REQ_F_NOWAIT)
3535 return false;
3536
3537 /* Only for buffered IO */
3538 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3539 return false;
3540
3541 /*
3542 * just use poll if we can, and don't attempt if the fs doesn't
3543 * support callback based unlocks
3544 */
3545 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3546 return false;
3547
3548 wait->wait.func = io_async_buf_func;
3549 wait->wait.private = req;
3550 wait->wait.flags = 0;
3551 INIT_LIST_HEAD(&wait->wait.entry);
3552 kiocb->ki_flags |= IOCB_WAITQ;
3553 kiocb->ki_flags &= ~IOCB_NOWAIT;
3554 kiocb->ki_waitq = wait;
3555 return true;
3556 }
3557
3558 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3559 {
3560 if (req->file->f_op->read_iter)
3561 return call_read_iter(req->file, &req->rw.kiocb, iter);
3562 else if (req->file->f_op->read)
3563 return loop_rw_iter(READ, req, iter);
3564 else
3565 return -EINVAL;
3566 }
3567
3568 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3569 {
3570 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3571 struct kiocb *kiocb = &req->rw.kiocb;
3572 struct iov_iter __iter, *iter = &__iter;
3573 struct io_async_rw *rw = req->async_data;
3574 ssize_t io_size, ret, ret2;
3575 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3576
3577 if (rw) {
3578 iter = &rw->iter;
3579 iovec = NULL;
3580 } else {
3581 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3582 if (ret < 0)
3583 return ret;
3584 }
3585 io_size = iov_iter_count(iter);
3586 req->result = io_size;
3587
3588 /* Ensure we clear previously set non-block flag */
3589 if (!force_nonblock)
3590 kiocb->ki_flags &= ~IOCB_NOWAIT;
3591 else
3592 kiocb->ki_flags |= IOCB_NOWAIT;
3593
3594 /* If the file doesn't support async, just async punt */
3595 if (force_nonblock && !io_file_supports_async(req->file, READ)) {
3596 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3597 return ret ?: -EAGAIN;
3598 }
3599
3600 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3601 if (unlikely(ret)) {
3602 kfree(iovec);
3603 return ret;
3604 }
3605
3606 ret = io_iter_do_read(req, iter);
3607
3608 if (ret == -EIOCBQUEUED) {
3609 goto out_free;
3610 } else if (ret == -EAGAIN) {
3611 /* IOPOLL retry should happen for io-wq threads */
3612 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3613 goto done;
3614 /* no retry on NONBLOCK nor RWF_NOWAIT */
3615 if (req->flags & REQ_F_NOWAIT)
3616 goto done;
3617 /* some cases will consume bytes even on error returns */
3618 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3619 ret = 0;
3620 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3621 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3622 /* read all, failed, already did sync or don't want to retry */
3623 goto done;
3624 }
3625
3626 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3627 if (ret2)
3628 return ret2;
3629
3630 iovec = NULL;
3631 rw = req->async_data;
3632 /* now use our persistent iterator, if we aren't already */
3633 iter = &rw->iter;
3634
3635 do {
3636 io_size -= ret;
3637 rw->bytes_done += ret;
3638 /* if we can retry, do so with the callbacks armed */
3639 if (!io_rw_should_retry(req)) {
3640 kiocb->ki_flags &= ~IOCB_WAITQ;
3641 return -EAGAIN;
3642 }
3643
3644 /*
3645 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3646 * we get -EIOCBQUEUED, then we'll get a notification when the
3647 * desired page gets unlocked. We can also get a partial read
3648 * here, and if we do, then just retry at the new offset.
3649 */
3650 ret = io_iter_do_read(req, iter);
3651 if (ret == -EIOCBQUEUED)
3652 return 0;
3653 /* we got some bytes, but not all. retry. */
3654 } while (ret > 0 && ret < io_size);
3655 done:
3656 kiocb_done(kiocb, ret, issue_flags);
3657 out_free:
3658 /* it's faster to check here then delegate to kfree */
3659 if (iovec)
3660 kfree(iovec);
3661 return 0;
3662 }
3663
3664 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3665 {
3666 ssize_t ret;
3667
3668 ret = io_prep_rw(req, sqe);
3669 if (ret)
3670 return ret;
3671
3672 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3673 return -EBADF;
3674
3675 /* either don't need iovec imported or already have it */
3676 if (!req->async_data)
3677 return 0;
3678 return io_rw_prep_async(req, WRITE);
3679 }
3680
3681 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3682 {
3683 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3684 struct kiocb *kiocb = &req->rw.kiocb;
3685 struct iov_iter __iter, *iter = &__iter;
3686 struct io_async_rw *rw = req->async_data;
3687 ssize_t ret, ret2, io_size;
3688 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3689
3690 if (rw) {
3691 iter = &rw->iter;
3692 iovec = NULL;
3693 } else {
3694 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3695 if (ret < 0)
3696 return ret;
3697 }
3698 io_size = iov_iter_count(iter);
3699 req->result = io_size;
3700
3701 /* Ensure we clear previously set non-block flag */
3702 if (!force_nonblock)
3703 kiocb->ki_flags &= ~IOCB_NOWAIT;
3704 else
3705 kiocb->ki_flags |= IOCB_NOWAIT;
3706
3707 /* If the file doesn't support async, just async punt */
3708 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3709 goto copy_iov;
3710
3711 /* file path doesn't support NOWAIT for non-direct_IO */
3712 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3713 (req->flags & REQ_F_ISREG))
3714 goto copy_iov;
3715
3716 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3717 if (unlikely(ret))
3718 goto out_free;
3719
3720 /*
3721 * Open-code file_start_write here to grab freeze protection,
3722 * which will be released by another thread in
3723 * io_complete_rw(). Fool lockdep by telling it the lock got
3724 * released so that it doesn't complain about the held lock when
3725 * we return to userspace.
3726 */
3727 if (req->flags & REQ_F_ISREG) {
3728 sb_start_write(file_inode(req->file)->i_sb);
3729 __sb_writers_release(file_inode(req->file)->i_sb,
3730 SB_FREEZE_WRITE);
3731 }
3732 kiocb->ki_flags |= IOCB_WRITE;
3733
3734 if (req->file->f_op->write_iter)
3735 ret2 = call_write_iter(req->file, kiocb, iter);
3736 else if (req->file->f_op->write)
3737 ret2 = loop_rw_iter(WRITE, req, iter);
3738 else
3739 ret2 = -EINVAL;
3740
3741 /*
3742 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3743 * retry them without IOCB_NOWAIT.
3744 */
3745 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3746 ret2 = -EAGAIN;
3747 /* no retry on NONBLOCK nor RWF_NOWAIT */
3748 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3749 goto done;
3750 if (!force_nonblock || ret2 != -EAGAIN) {
3751 /* IOPOLL retry should happen for io-wq threads */
3752 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3753 goto copy_iov;
3754 done:
3755 kiocb_done(kiocb, ret2, issue_flags);
3756 } else {
3757 copy_iov:
3758 /* some cases will consume bytes even on error returns */
3759 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3760 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3761 return ret ?: -EAGAIN;
3762 }
3763 out_free:
3764 /* it's reportedly faster than delegating the null check to kfree() */
3765 if (iovec)
3766 kfree(iovec);
3767 return ret;
3768 }
3769
3770 static int io_renameat_prep(struct io_kiocb *req,
3771 const struct io_uring_sqe *sqe)
3772 {
3773 struct io_rename *ren = &req->rename;
3774 const char __user *oldf, *newf;
3775
3776 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3777 return -EBADF;
3778
3779 ren->old_dfd = READ_ONCE(sqe->fd);
3780 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3781 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3782 ren->new_dfd = READ_ONCE(sqe->len);
3783 ren->flags = READ_ONCE(sqe->rename_flags);
3784
3785 ren->oldpath = getname(oldf);
3786 if (IS_ERR(ren->oldpath))
3787 return PTR_ERR(ren->oldpath);
3788
3789 ren->newpath = getname(newf);
3790 if (IS_ERR(ren->newpath)) {
3791 putname(ren->oldpath);
3792 return PTR_ERR(ren->newpath);
3793 }
3794
3795 req->flags |= REQ_F_NEED_CLEANUP;
3796 return 0;
3797 }
3798
3799 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3800 {
3801 struct io_rename *ren = &req->rename;
3802 int ret;
3803
3804 if (issue_flags & IO_URING_F_NONBLOCK)
3805 return -EAGAIN;
3806
3807 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3808 ren->newpath, ren->flags);
3809
3810 req->flags &= ~REQ_F_NEED_CLEANUP;
3811 if (ret < 0)
3812 req_set_fail_links(req);
3813 io_req_complete(req, ret);
3814 return 0;
3815 }
3816
3817 static int io_unlinkat_prep(struct io_kiocb *req,
3818 const struct io_uring_sqe *sqe)
3819 {
3820 struct io_unlink *un = &req->unlink;
3821 const char __user *fname;
3822
3823 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3824 return -EBADF;
3825
3826 un->dfd = READ_ONCE(sqe->fd);
3827
3828 un->flags = READ_ONCE(sqe->unlink_flags);
3829 if (un->flags & ~AT_REMOVEDIR)
3830 return -EINVAL;
3831
3832 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3833 un->filename = getname(fname);
3834 if (IS_ERR(un->filename))
3835 return PTR_ERR(un->filename);
3836
3837 req->flags |= REQ_F_NEED_CLEANUP;
3838 return 0;
3839 }
3840
3841 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3842 {
3843 struct io_unlink *un = &req->unlink;
3844 int ret;
3845
3846 if (issue_flags & IO_URING_F_NONBLOCK)
3847 return -EAGAIN;
3848
3849 if (un->flags & AT_REMOVEDIR)
3850 ret = do_rmdir(un->dfd, un->filename);
3851 else
3852 ret = do_unlinkat(un->dfd, un->filename);
3853
3854 req->flags &= ~REQ_F_NEED_CLEANUP;
3855 if (ret < 0)
3856 req_set_fail_links(req);
3857 io_req_complete(req, ret);
3858 return 0;
3859 }
3860
3861 static int io_shutdown_prep(struct io_kiocb *req,
3862 const struct io_uring_sqe *sqe)
3863 {
3864 #if defined(CONFIG_NET)
3865 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3866 return -EINVAL;
3867 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3868 sqe->buf_index)
3869 return -EINVAL;
3870
3871 req->shutdown.how = READ_ONCE(sqe->len);
3872 return 0;
3873 #else
3874 return -EOPNOTSUPP;
3875 #endif
3876 }
3877
3878 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3879 {
3880 #if defined(CONFIG_NET)
3881 struct socket *sock;
3882 int ret;
3883
3884 if (issue_flags & IO_URING_F_NONBLOCK)
3885 return -EAGAIN;
3886
3887 sock = sock_from_file(req->file);
3888 if (unlikely(!sock))
3889 return -ENOTSOCK;
3890
3891 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3892 if (ret < 0)
3893 req_set_fail_links(req);
3894 io_req_complete(req, ret);
3895 return 0;
3896 #else
3897 return -EOPNOTSUPP;
3898 #endif
3899 }
3900
3901 static int __io_splice_prep(struct io_kiocb *req,
3902 const struct io_uring_sqe *sqe)
3903 {
3904 struct io_splice* sp = &req->splice;
3905 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3906
3907 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3908 return -EINVAL;
3909
3910 sp->file_in = NULL;
3911 sp->len = READ_ONCE(sqe->len);
3912 sp->flags = READ_ONCE(sqe->splice_flags);
3913
3914 if (unlikely(sp->flags & ~valid_flags))
3915 return -EINVAL;
3916
3917 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3918 (sp->flags & SPLICE_F_FD_IN_FIXED));
3919 if (!sp->file_in)
3920 return -EBADF;
3921 req->flags |= REQ_F_NEED_CLEANUP;
3922
3923 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3924 /*
3925 * Splice operation will be punted aync, and here need to
3926 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3927 */
3928 io_req_init_async(req);
3929 req->work.flags |= IO_WQ_WORK_UNBOUND;
3930 }
3931
3932 return 0;
3933 }
3934
3935 static int io_tee_prep(struct io_kiocb *req,
3936 const struct io_uring_sqe *sqe)
3937 {
3938 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3939 return -EINVAL;
3940 return __io_splice_prep(req, sqe);
3941 }
3942
3943 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3944 {
3945 struct io_splice *sp = &req->splice;
3946 struct file *in = sp->file_in;
3947 struct file *out = sp->file_out;
3948 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3949 long ret = 0;
3950
3951 if (issue_flags & IO_URING_F_NONBLOCK)
3952 return -EAGAIN;
3953 if (sp->len)
3954 ret = do_tee(in, out, sp->len, flags);
3955
3956 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3957 req->flags &= ~REQ_F_NEED_CLEANUP;
3958
3959 if (ret != sp->len)
3960 req_set_fail_links(req);
3961 io_req_complete(req, ret);
3962 return 0;
3963 }
3964
3965 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3966 {
3967 struct io_splice* sp = &req->splice;
3968
3969 sp->off_in = READ_ONCE(sqe->splice_off_in);
3970 sp->off_out = READ_ONCE(sqe->off);
3971 return __io_splice_prep(req, sqe);
3972 }
3973
3974 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3975 {
3976 struct io_splice *sp = &req->splice;
3977 struct file *in = sp->file_in;
3978 struct file *out = sp->file_out;
3979 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3980 loff_t *poff_in, *poff_out;
3981 long ret = 0;
3982
3983 if (issue_flags & IO_URING_F_NONBLOCK)
3984 return -EAGAIN;
3985
3986 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3987 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3988
3989 if (sp->len)
3990 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3991
3992 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3993 req->flags &= ~REQ_F_NEED_CLEANUP;
3994
3995 if (ret != sp->len)
3996 req_set_fail_links(req);
3997 io_req_complete(req, ret);
3998 return 0;
3999 }
4000
4001 /*
4002 * IORING_OP_NOP just posts a completion event, nothing else.
4003 */
4004 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4005 {
4006 struct io_ring_ctx *ctx = req->ctx;
4007
4008 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4009 return -EINVAL;
4010
4011 __io_req_complete(req, issue_flags, 0, 0);
4012 return 0;
4013 }
4014
4015 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 {
4017 struct io_ring_ctx *ctx = req->ctx;
4018
4019 if (!req->file)
4020 return -EBADF;
4021
4022 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4023 return -EINVAL;
4024 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4025 return -EINVAL;
4026
4027 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4028 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4029 return -EINVAL;
4030
4031 req->sync.off = READ_ONCE(sqe->off);
4032 req->sync.len = READ_ONCE(sqe->len);
4033 return 0;
4034 }
4035
4036 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4037 {
4038 loff_t end = req->sync.off + req->sync.len;
4039 int ret;
4040
4041 /* fsync always requires a blocking context */
4042 if (issue_flags & IO_URING_F_NONBLOCK)
4043 return -EAGAIN;
4044
4045 ret = vfs_fsync_range(req->file, req->sync.off,
4046 end > 0 ? end : LLONG_MAX,
4047 req->sync.flags & IORING_FSYNC_DATASYNC);
4048 if (ret < 0)
4049 req_set_fail_links(req);
4050 io_req_complete(req, ret);
4051 return 0;
4052 }
4053
4054 static int io_fallocate_prep(struct io_kiocb *req,
4055 const struct io_uring_sqe *sqe)
4056 {
4057 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4058 return -EINVAL;
4059 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4060 return -EINVAL;
4061
4062 req->sync.off = READ_ONCE(sqe->off);
4063 req->sync.len = READ_ONCE(sqe->addr);
4064 req->sync.mode = READ_ONCE(sqe->len);
4065 return 0;
4066 }
4067
4068 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4069 {
4070 int ret;
4071
4072 /* fallocate always requiring blocking context */
4073 if (issue_flags & IO_URING_F_NONBLOCK)
4074 return -EAGAIN;
4075 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4076 req->sync.len);
4077 if (ret < 0)
4078 req_set_fail_links(req);
4079 io_req_complete(req, ret);
4080 return 0;
4081 }
4082
4083 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4084 {
4085 const char __user *fname;
4086 int ret;
4087
4088 if (unlikely(sqe->ioprio || sqe->buf_index))
4089 return -EINVAL;
4090 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4091 return -EBADF;
4092
4093 /* open.how should be already initialised */
4094 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4095 req->open.how.flags |= O_LARGEFILE;
4096
4097 req->open.dfd = READ_ONCE(sqe->fd);
4098 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4099 req->open.filename = getname(fname);
4100 if (IS_ERR(req->open.filename)) {
4101 ret = PTR_ERR(req->open.filename);
4102 req->open.filename = NULL;
4103 return ret;
4104 }
4105 req->open.nofile = rlimit(RLIMIT_NOFILE);
4106 req->flags |= REQ_F_NEED_CLEANUP;
4107 return 0;
4108 }
4109
4110 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4111 {
4112 u64 flags, mode;
4113
4114 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4115 return -EINVAL;
4116 mode = READ_ONCE(sqe->len);
4117 flags = READ_ONCE(sqe->open_flags);
4118 req->open.how = build_open_how(flags, mode);
4119 return __io_openat_prep(req, sqe);
4120 }
4121
4122 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4123 {
4124 struct open_how __user *how;
4125 size_t len;
4126 int ret;
4127
4128 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4129 return -EINVAL;
4130 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4131 len = READ_ONCE(sqe->len);
4132 if (len < OPEN_HOW_SIZE_VER0)
4133 return -EINVAL;
4134
4135 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4136 len);
4137 if (ret)
4138 return ret;
4139
4140 return __io_openat_prep(req, sqe);
4141 }
4142
4143 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4144 {
4145 struct open_flags op;
4146 struct file *file;
4147 bool nonblock_set;
4148 bool resolve_nonblock;
4149 int ret;
4150
4151 ret = build_open_flags(&req->open.how, &op);
4152 if (ret)
4153 goto err;
4154 nonblock_set = op.open_flag & O_NONBLOCK;
4155 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4156 if (issue_flags & IO_URING_F_NONBLOCK) {
4157 /*
4158 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4159 * it'll always -EAGAIN
4160 */
4161 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4162 return -EAGAIN;
4163 op.lookup_flags |= LOOKUP_CACHED;
4164 op.open_flag |= O_NONBLOCK;
4165 }
4166
4167 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4168 if (ret < 0)
4169 goto err;
4170
4171 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4172 /* only retry if RESOLVE_CACHED wasn't already set by application */
4173 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
4174 file == ERR_PTR(-EAGAIN)) {
4175 /*
4176 * We could hang on to this 'fd', but seems like marginal
4177 * gain for something that is now known to be a slower path.
4178 * So just put it, and we'll get a new one when we retry.
4179 */
4180 put_unused_fd(ret);
4181 return -EAGAIN;
4182 }
4183
4184 if (IS_ERR(file)) {
4185 put_unused_fd(ret);
4186 ret = PTR_ERR(file);
4187 } else {
4188 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4189 file->f_flags &= ~O_NONBLOCK;
4190 fsnotify_open(file);
4191 fd_install(ret, file);
4192 }
4193 err:
4194 putname(req->open.filename);
4195 req->flags &= ~REQ_F_NEED_CLEANUP;
4196 if (ret < 0)
4197 req_set_fail_links(req);
4198 io_req_complete(req, ret);
4199 return 0;
4200 }
4201
4202 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4203 {
4204 return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
4205 }
4206
4207 static int io_remove_buffers_prep(struct io_kiocb *req,
4208 const struct io_uring_sqe *sqe)
4209 {
4210 struct io_provide_buf *p = &req->pbuf;
4211 u64 tmp;
4212
4213 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4214 return -EINVAL;
4215
4216 tmp = READ_ONCE(sqe->fd);
4217 if (!tmp || tmp > USHRT_MAX)
4218 return -EINVAL;
4219
4220 memset(p, 0, sizeof(*p));
4221 p->nbufs = tmp;
4222 p->bgid = READ_ONCE(sqe->buf_group);
4223 return 0;
4224 }
4225
4226 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4227 int bgid, unsigned nbufs)
4228 {
4229 unsigned i = 0;
4230
4231 /* shouldn't happen */
4232 if (!nbufs)
4233 return 0;
4234
4235 /* the head kbuf is the list itself */
4236 while (!list_empty(&buf->list)) {
4237 struct io_buffer *nxt;
4238
4239 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4240 list_del(&nxt->list);
4241 kfree(nxt);
4242 if (++i == nbufs)
4243 return i;
4244 }
4245 i++;
4246 kfree(buf);
4247 idr_remove(&ctx->io_buffer_idr, bgid);
4248
4249 return i;
4250 }
4251
4252 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4253 {
4254 struct io_provide_buf *p = &req->pbuf;
4255 struct io_ring_ctx *ctx = req->ctx;
4256 struct io_buffer *head;
4257 int ret = 0;
4258 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4259
4260 io_ring_submit_lock(ctx, !force_nonblock);
4261
4262 lockdep_assert_held(&ctx->uring_lock);
4263
4264 ret = -ENOENT;
4265 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4266 if (head)
4267 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4268 if (ret < 0)
4269 req_set_fail_links(req);
4270
4271 /* need to hold the lock to complete IOPOLL requests */
4272 if (ctx->flags & IORING_SETUP_IOPOLL) {
4273 __io_req_complete(req, issue_flags, ret, 0);
4274 io_ring_submit_unlock(ctx, !force_nonblock);
4275 } else {
4276 io_ring_submit_unlock(ctx, !force_nonblock);
4277 __io_req_complete(req, issue_flags, ret, 0);
4278 }
4279 return 0;
4280 }
4281
4282 static int io_provide_buffers_prep(struct io_kiocb *req,
4283 const struct io_uring_sqe *sqe)
4284 {
4285 struct io_provide_buf *p = &req->pbuf;
4286 u64 tmp;
4287
4288 if (sqe->ioprio || sqe->rw_flags)
4289 return -EINVAL;
4290
4291 tmp = READ_ONCE(sqe->fd);
4292 if (!tmp || tmp > USHRT_MAX)
4293 return -E2BIG;
4294 p->nbufs = tmp;
4295 p->addr = READ_ONCE(sqe->addr);
4296 p->len = READ_ONCE(sqe->len);
4297
4298 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4299 return -EFAULT;
4300
4301 p->bgid = READ_ONCE(sqe->buf_group);
4302 tmp = READ_ONCE(sqe->off);
4303 if (tmp > USHRT_MAX)
4304 return -E2BIG;
4305 p->bid = tmp;
4306 return 0;
4307 }
4308
4309 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4310 {
4311 struct io_buffer *buf;
4312 u64 addr = pbuf->addr;
4313 int i, bid = pbuf->bid;
4314
4315 for (i = 0; i < pbuf->nbufs; i++) {
4316 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4317 if (!buf)
4318 break;
4319
4320 buf->addr = addr;
4321 buf->len = pbuf->len;
4322 buf->bid = bid;
4323 addr += pbuf->len;
4324 bid++;
4325 if (!*head) {
4326 INIT_LIST_HEAD(&buf->list);
4327 *head = buf;
4328 } else {
4329 list_add_tail(&buf->list, &(*head)->list);
4330 }
4331 }
4332
4333 return i ? i : -ENOMEM;
4334 }
4335
4336 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4337 {
4338 struct io_provide_buf *p = &req->pbuf;
4339 struct io_ring_ctx *ctx = req->ctx;
4340 struct io_buffer *head, *list;
4341 int ret = 0;
4342 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4343
4344 io_ring_submit_lock(ctx, !force_nonblock);
4345
4346 lockdep_assert_held(&ctx->uring_lock);
4347
4348 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4349
4350 ret = io_add_buffers(p, &head);
4351 if (ret < 0)
4352 goto out;
4353
4354 if (!list) {
4355 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4356 GFP_KERNEL);
4357 if (ret < 0) {
4358 __io_remove_buffers(ctx, head, p->bgid, -1U);
4359 goto out;
4360 }
4361 }
4362 out:
4363 if (ret < 0)
4364 req_set_fail_links(req);
4365
4366 /* need to hold the lock to complete IOPOLL requests */
4367 if (ctx->flags & IORING_SETUP_IOPOLL) {
4368 __io_req_complete(req, issue_flags, ret, 0);
4369 io_ring_submit_unlock(ctx, !force_nonblock);
4370 } else {
4371 io_ring_submit_unlock(ctx, !force_nonblock);
4372 __io_req_complete(req, issue_flags, ret, 0);
4373 }
4374 return 0;
4375 }
4376
4377 static int io_epoll_ctl_prep(struct io_kiocb *req,
4378 const struct io_uring_sqe *sqe)
4379 {
4380 #if defined(CONFIG_EPOLL)
4381 if (sqe->ioprio || sqe->buf_index)
4382 return -EINVAL;
4383 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4384 return -EINVAL;
4385
4386 req->epoll.epfd = READ_ONCE(sqe->fd);
4387 req->epoll.op = READ_ONCE(sqe->len);
4388 req->epoll.fd = READ_ONCE(sqe->off);
4389
4390 if (ep_op_has_event(req->epoll.op)) {
4391 struct epoll_event __user *ev;
4392
4393 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4394 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4395 return -EFAULT;
4396 }
4397
4398 return 0;
4399 #else
4400 return -EOPNOTSUPP;
4401 #endif
4402 }
4403
4404 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4405 {
4406 #if defined(CONFIG_EPOLL)
4407 struct io_epoll *ie = &req->epoll;
4408 int ret;
4409 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4410
4411 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4412 if (force_nonblock && ret == -EAGAIN)
4413 return -EAGAIN;
4414
4415 if (ret < 0)
4416 req_set_fail_links(req);
4417 __io_req_complete(req, issue_flags, ret, 0);
4418 return 0;
4419 #else
4420 return -EOPNOTSUPP;
4421 #endif
4422 }
4423
4424 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4425 {
4426 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4427 if (sqe->ioprio || sqe->buf_index || sqe->off)
4428 return -EINVAL;
4429 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4430 return -EINVAL;
4431
4432 req->madvise.addr = READ_ONCE(sqe->addr);
4433 req->madvise.len = READ_ONCE(sqe->len);
4434 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4435 return 0;
4436 #else
4437 return -EOPNOTSUPP;
4438 #endif
4439 }
4440
4441 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4442 {
4443 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4444 struct io_madvise *ma = &req->madvise;
4445 int ret;
4446
4447 if (issue_flags & IO_URING_F_NONBLOCK)
4448 return -EAGAIN;
4449
4450 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4451 if (ret < 0)
4452 req_set_fail_links(req);
4453 io_req_complete(req, ret);
4454 return 0;
4455 #else
4456 return -EOPNOTSUPP;
4457 #endif
4458 }
4459
4460 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4461 {
4462 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4463 return -EINVAL;
4464 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4465 return -EINVAL;
4466
4467 req->fadvise.offset = READ_ONCE(sqe->off);
4468 req->fadvise.len = READ_ONCE(sqe->len);
4469 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4470 return 0;
4471 }
4472
4473 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4474 {
4475 struct io_fadvise *fa = &req->fadvise;
4476 int ret;
4477
4478 if (issue_flags & IO_URING_F_NONBLOCK) {
4479 switch (fa->advice) {
4480 case POSIX_FADV_NORMAL:
4481 case POSIX_FADV_RANDOM:
4482 case POSIX_FADV_SEQUENTIAL:
4483 break;
4484 default:
4485 return -EAGAIN;
4486 }
4487 }
4488
4489 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4490 if (ret < 0)
4491 req_set_fail_links(req);
4492 io_req_complete(req, ret);
4493 return 0;
4494 }
4495
4496 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4497 {
4498 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4499 return -EINVAL;
4500 if (sqe->ioprio || sqe->buf_index)
4501 return -EINVAL;
4502 if (req->flags & REQ_F_FIXED_FILE)
4503 return -EBADF;
4504
4505 req->statx.dfd = READ_ONCE(sqe->fd);
4506 req->statx.mask = READ_ONCE(sqe->len);
4507 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4508 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4509 req->statx.flags = READ_ONCE(sqe->statx_flags);
4510
4511 return 0;
4512 }
4513
4514 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4515 {
4516 struct io_statx *ctx = &req->statx;
4517 int ret;
4518
4519 if (issue_flags & IO_URING_F_NONBLOCK) {
4520 /* only need file table for an actual valid fd */
4521 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4522 req->flags |= REQ_F_NO_FILE_TABLE;
4523 return -EAGAIN;
4524 }
4525
4526 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4527 ctx->buffer);
4528
4529 if (ret < 0)
4530 req_set_fail_links(req);
4531 io_req_complete(req, ret);
4532 return 0;
4533 }
4534
4535 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4536 {
4537 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4538 return -EINVAL;
4539 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4540 sqe->rw_flags || sqe->buf_index)
4541 return -EINVAL;
4542 if (req->flags & REQ_F_FIXED_FILE)
4543 return -EBADF;
4544
4545 req->close.fd = READ_ONCE(sqe->fd);
4546 return 0;
4547 }
4548
4549 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4550 {
4551 struct files_struct *files = current->files;
4552 struct io_close *close = &req->close;
4553 struct fdtable *fdt;
4554 struct file *file;
4555 int ret;
4556
4557 file = NULL;
4558 ret = -EBADF;
4559 spin_lock(&files->file_lock);
4560 fdt = files_fdtable(files);
4561 if (close->fd >= fdt->max_fds) {
4562 spin_unlock(&files->file_lock);
4563 goto err;
4564 }
4565 file = fdt->fd[close->fd];
4566 if (!file) {
4567 spin_unlock(&files->file_lock);
4568 goto err;
4569 }
4570
4571 if (file->f_op == &io_uring_fops) {
4572 spin_unlock(&files->file_lock);
4573 file = NULL;
4574 goto err;
4575 }
4576
4577 /* if the file has a flush method, be safe and punt to async */
4578 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4579 spin_unlock(&files->file_lock);
4580 return -EAGAIN;
4581 }
4582
4583 ret = __close_fd_get_file(close->fd, &file);
4584 spin_unlock(&files->file_lock);
4585 if (ret < 0) {
4586 if (ret == -ENOENT)
4587 ret = -EBADF;
4588 goto err;
4589 }
4590
4591 /* No ->flush() or already async, safely close from here */
4592 ret = filp_close(file, current->files);
4593 err:
4594 if (ret < 0)
4595 req_set_fail_links(req);
4596 if (file)
4597 fput(file);
4598 __io_req_complete(req, issue_flags, ret, 0);
4599 return 0;
4600 }
4601
4602 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4603 {
4604 struct io_ring_ctx *ctx = req->ctx;
4605
4606 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4607 return -EINVAL;
4608 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4609 return -EINVAL;
4610
4611 req->sync.off = READ_ONCE(sqe->off);
4612 req->sync.len = READ_ONCE(sqe->len);
4613 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4614 return 0;
4615 }
4616
4617 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4618 {
4619 int ret;
4620
4621 /* sync_file_range always requires a blocking context */
4622 if (issue_flags & IO_URING_F_NONBLOCK)
4623 return -EAGAIN;
4624
4625 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4626 req->sync.flags);
4627 if (ret < 0)
4628 req_set_fail_links(req);
4629 io_req_complete(req, ret);
4630 return 0;
4631 }
4632
4633 #if defined(CONFIG_NET)
4634 static int io_setup_async_msg(struct io_kiocb *req,
4635 struct io_async_msghdr *kmsg)
4636 {
4637 struct io_async_msghdr *async_msg = req->async_data;
4638
4639 if (async_msg)
4640 return -EAGAIN;
4641 if (io_alloc_async_data(req)) {
4642 kfree(kmsg->free_iov);
4643 return -ENOMEM;
4644 }
4645 async_msg = req->async_data;
4646 req->flags |= REQ_F_NEED_CLEANUP;
4647 memcpy(async_msg, kmsg, sizeof(*kmsg));
4648 async_msg->msg.msg_name = &async_msg->addr;
4649 /* if were using fast_iov, set it to the new one */
4650 if (!async_msg->free_iov)
4651 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4652
4653 return -EAGAIN;
4654 }
4655
4656 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4657 struct io_async_msghdr *iomsg)
4658 {
4659 iomsg->msg.msg_name = &iomsg->addr;
4660 iomsg->free_iov = iomsg->fast_iov;
4661 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4662 req->sr_msg.msg_flags, &iomsg->free_iov);
4663 }
4664
4665 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4666 {
4667 struct io_async_msghdr *async_msg = req->async_data;
4668 struct io_sr_msg *sr = &req->sr_msg;
4669 int ret;
4670
4671 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4672 return -EINVAL;
4673
4674 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4675 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4676 sr->len = READ_ONCE(sqe->len);
4677
4678 #ifdef CONFIG_COMPAT
4679 if (req->ctx->compat)
4680 sr->msg_flags |= MSG_CMSG_COMPAT;
4681 #endif
4682
4683 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4684 return 0;
4685 ret = io_sendmsg_copy_hdr(req, async_msg);
4686 if (!ret)
4687 req->flags |= REQ_F_NEED_CLEANUP;
4688 return ret;
4689 }
4690
4691 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4692 {
4693 struct io_async_msghdr iomsg, *kmsg;
4694 struct socket *sock;
4695 unsigned flags;
4696 int ret;
4697
4698 sock = sock_from_file(req->file);
4699 if (unlikely(!sock))
4700 return -ENOTSOCK;
4701
4702 kmsg = req->async_data;
4703 if (!kmsg) {
4704 ret = io_sendmsg_copy_hdr(req, &iomsg);
4705 if (ret)
4706 return ret;
4707 kmsg = &iomsg;
4708 }
4709
4710 flags = req->sr_msg.msg_flags;
4711 if (flags & MSG_DONTWAIT)
4712 req->flags |= REQ_F_NOWAIT;
4713 else if (issue_flags & IO_URING_F_NONBLOCK)
4714 flags |= MSG_DONTWAIT;
4715
4716 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4717 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4718 return io_setup_async_msg(req, kmsg);
4719 if (ret == -ERESTARTSYS)
4720 ret = -EINTR;
4721
4722 /* fast path, check for non-NULL to avoid function call */
4723 if (kmsg->free_iov)
4724 kfree(kmsg->free_iov);
4725 req->flags &= ~REQ_F_NEED_CLEANUP;
4726 if (ret < 0)
4727 req_set_fail_links(req);
4728 __io_req_complete(req, issue_flags, ret, 0);
4729 return 0;
4730 }
4731
4732 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4733 {
4734 struct io_sr_msg *sr = &req->sr_msg;
4735 struct msghdr msg;
4736 struct iovec iov;
4737 struct socket *sock;
4738 unsigned flags;
4739 int ret;
4740
4741 sock = sock_from_file(req->file);
4742 if (unlikely(!sock))
4743 return -ENOTSOCK;
4744
4745 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4746 if (unlikely(ret))
4747 return ret;
4748
4749 msg.msg_name = NULL;
4750 msg.msg_control = NULL;
4751 msg.msg_controllen = 0;
4752 msg.msg_namelen = 0;
4753
4754 flags = req->sr_msg.msg_flags;
4755 if (flags & MSG_DONTWAIT)
4756 req->flags |= REQ_F_NOWAIT;
4757 else if (issue_flags & IO_URING_F_NONBLOCK)
4758 flags |= MSG_DONTWAIT;
4759
4760 msg.msg_flags = flags;
4761 ret = sock_sendmsg(sock, &msg);
4762 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4763 return -EAGAIN;
4764 if (ret == -ERESTARTSYS)
4765 ret = -EINTR;
4766
4767 if (ret < 0)
4768 req_set_fail_links(req);
4769 __io_req_complete(req, issue_flags, ret, 0);
4770 return 0;
4771 }
4772
4773 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4774 struct io_async_msghdr *iomsg)
4775 {
4776 struct io_sr_msg *sr = &req->sr_msg;
4777 struct iovec __user *uiov;
4778 size_t iov_len;
4779 int ret;
4780
4781 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4782 &iomsg->uaddr, &uiov, &iov_len);
4783 if (ret)
4784 return ret;
4785
4786 if (req->flags & REQ_F_BUFFER_SELECT) {
4787 if (iov_len > 1)
4788 return -EINVAL;
4789 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4790 return -EFAULT;
4791 sr->len = iomsg->fast_iov[0].iov_len;
4792 iomsg->free_iov = NULL;
4793 } else {
4794 iomsg->free_iov = iomsg->fast_iov;
4795 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4796 &iomsg->free_iov, &iomsg->msg.msg_iter,
4797 false);
4798 if (ret > 0)
4799 ret = 0;
4800 }
4801
4802 return ret;
4803 }
4804
4805 #ifdef CONFIG_COMPAT
4806 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4807 struct io_async_msghdr *iomsg)
4808 {
4809 struct compat_msghdr __user *msg_compat;
4810 struct io_sr_msg *sr = &req->sr_msg;
4811 struct compat_iovec __user *uiov;
4812 compat_uptr_t ptr;
4813 compat_size_t len;
4814 int ret;
4815
4816 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4817 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4818 &ptr, &len);
4819 if (ret)
4820 return ret;
4821
4822 uiov = compat_ptr(ptr);
4823 if (req->flags & REQ_F_BUFFER_SELECT) {
4824 compat_ssize_t clen;
4825
4826 if (len > 1)
4827 return -EINVAL;
4828 if (!access_ok(uiov, sizeof(*uiov)))
4829 return -EFAULT;
4830 if (__get_user(clen, &uiov->iov_len))
4831 return -EFAULT;
4832 if (clen < 0)
4833 return -EINVAL;
4834 sr->len = clen;
4835 iomsg->free_iov = NULL;
4836 } else {
4837 iomsg->free_iov = iomsg->fast_iov;
4838 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4839 UIO_FASTIOV, &iomsg->free_iov,
4840 &iomsg->msg.msg_iter, true);
4841 if (ret < 0)
4842 return ret;
4843 }
4844
4845 return 0;
4846 }
4847 #endif
4848
4849 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4850 struct io_async_msghdr *iomsg)
4851 {
4852 iomsg->msg.msg_name = &iomsg->addr;
4853
4854 #ifdef CONFIG_COMPAT
4855 if (req->ctx->compat)
4856 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4857 #endif
4858
4859 return __io_recvmsg_copy_hdr(req, iomsg);
4860 }
4861
4862 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4863 bool needs_lock)
4864 {
4865 struct io_sr_msg *sr = &req->sr_msg;
4866 struct io_buffer *kbuf;
4867
4868 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4869 if (IS_ERR(kbuf))
4870 return kbuf;
4871
4872 sr->kbuf = kbuf;
4873 req->flags |= REQ_F_BUFFER_SELECTED;
4874 return kbuf;
4875 }
4876
4877 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4878 {
4879 return io_put_kbuf(req, req->sr_msg.kbuf);
4880 }
4881
4882 static int io_recvmsg_prep(struct io_kiocb *req,
4883 const struct io_uring_sqe *sqe)
4884 {
4885 struct io_async_msghdr *async_msg = req->async_data;
4886 struct io_sr_msg *sr = &req->sr_msg;
4887 int ret;
4888
4889 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4890 return -EINVAL;
4891
4892 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4893 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4894 sr->len = READ_ONCE(sqe->len);
4895 sr->bgid = READ_ONCE(sqe->buf_group);
4896
4897 #ifdef CONFIG_COMPAT
4898 if (req->ctx->compat)
4899 sr->msg_flags |= MSG_CMSG_COMPAT;
4900 #endif
4901
4902 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4903 return 0;
4904 ret = io_recvmsg_copy_hdr(req, async_msg);
4905 if (!ret)
4906 req->flags |= REQ_F_NEED_CLEANUP;
4907 return ret;
4908 }
4909
4910 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4911 {
4912 struct io_async_msghdr iomsg, *kmsg;
4913 struct socket *sock;
4914 struct io_buffer *kbuf;
4915 unsigned flags;
4916 int ret, cflags = 0;
4917 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4918
4919 sock = sock_from_file(req->file);
4920 if (unlikely(!sock))
4921 return -ENOTSOCK;
4922
4923 kmsg = req->async_data;
4924 if (!kmsg) {
4925 ret = io_recvmsg_copy_hdr(req, &iomsg);
4926 if (ret)
4927 return ret;
4928 kmsg = &iomsg;
4929 }
4930
4931 if (req->flags & REQ_F_BUFFER_SELECT) {
4932 kbuf = io_recv_buffer_select(req, !force_nonblock);
4933 if (IS_ERR(kbuf))
4934 return PTR_ERR(kbuf);
4935 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4936 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4937 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4938 1, req->sr_msg.len);
4939 }
4940
4941 flags = req->sr_msg.msg_flags;
4942 if (flags & MSG_DONTWAIT)
4943 req->flags |= REQ_F_NOWAIT;
4944 else if (force_nonblock)
4945 flags |= MSG_DONTWAIT;
4946
4947 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4948 kmsg->uaddr, flags);
4949 if (force_nonblock && ret == -EAGAIN)
4950 return io_setup_async_msg(req, kmsg);
4951 if (ret == -ERESTARTSYS)
4952 ret = -EINTR;
4953
4954 if (req->flags & REQ_F_BUFFER_SELECTED)
4955 cflags = io_put_recv_kbuf(req);
4956 /* fast path, check for non-NULL to avoid function call */
4957 if (kmsg->free_iov)
4958 kfree(kmsg->free_iov);
4959 req->flags &= ~REQ_F_NEED_CLEANUP;
4960 if (ret < 0)
4961 req_set_fail_links(req);
4962 __io_req_complete(req, issue_flags, ret, cflags);
4963 return 0;
4964 }
4965
4966 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4967 {
4968 struct io_buffer *kbuf;
4969 struct io_sr_msg *sr = &req->sr_msg;
4970 struct msghdr msg;
4971 void __user *buf = sr->buf;
4972 struct socket *sock;
4973 struct iovec iov;
4974 unsigned flags;
4975 int ret, cflags = 0;
4976 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4977
4978 sock = sock_from_file(req->file);
4979 if (unlikely(!sock))
4980 return -ENOTSOCK;
4981
4982 if (req->flags & REQ_F_BUFFER_SELECT) {
4983 kbuf = io_recv_buffer_select(req, !force_nonblock);
4984 if (IS_ERR(kbuf))
4985 return PTR_ERR(kbuf);
4986 buf = u64_to_user_ptr(kbuf->addr);
4987 }
4988
4989 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4990 if (unlikely(ret))
4991 goto out_free;
4992
4993 msg.msg_name = NULL;
4994 msg.msg_control = NULL;
4995 msg.msg_controllen = 0;
4996 msg.msg_namelen = 0;
4997 msg.msg_iocb = NULL;
4998 msg.msg_flags = 0;
4999
5000 flags = req->sr_msg.msg_flags;
5001 if (flags & MSG_DONTWAIT)
5002 req->flags |= REQ_F_NOWAIT;
5003 else if (force_nonblock)
5004 flags |= MSG_DONTWAIT;
5005
5006 ret = sock_recvmsg(sock, &msg, flags);
5007 if (force_nonblock && ret == -EAGAIN)
5008 return -EAGAIN;
5009 if (ret == -ERESTARTSYS)
5010 ret = -EINTR;
5011 out_free:
5012 if (req->flags & REQ_F_BUFFER_SELECTED)
5013 cflags = io_put_recv_kbuf(req);
5014 if (ret < 0)
5015 req_set_fail_links(req);
5016 __io_req_complete(req, issue_flags, ret, cflags);
5017 return 0;
5018 }
5019
5020 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5021 {
5022 struct io_accept *accept = &req->accept;
5023
5024 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5025 return -EINVAL;
5026 if (sqe->ioprio || sqe->len || sqe->buf_index)
5027 return -EINVAL;
5028
5029 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5030 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5031 accept->flags = READ_ONCE(sqe->accept_flags);
5032 accept->nofile = rlimit(RLIMIT_NOFILE);
5033 return 0;
5034 }
5035
5036 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5037 {
5038 struct io_accept *accept = &req->accept;
5039 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5040 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5041 int ret;
5042
5043 if (req->file->f_flags & O_NONBLOCK)
5044 req->flags |= REQ_F_NOWAIT;
5045
5046 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5047 accept->addr_len, accept->flags,
5048 accept->nofile);
5049 if (ret == -EAGAIN && force_nonblock)
5050 return -EAGAIN;
5051 if (ret < 0) {
5052 if (ret == -ERESTARTSYS)
5053 ret = -EINTR;
5054 req_set_fail_links(req);
5055 }
5056 __io_req_complete(req, issue_flags, ret, 0);
5057 return 0;
5058 }
5059
5060 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5061 {
5062 struct io_connect *conn = &req->connect;
5063 struct io_async_connect *io = req->async_data;
5064
5065 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5066 return -EINVAL;
5067 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5068 return -EINVAL;
5069
5070 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5071 conn->addr_len = READ_ONCE(sqe->addr2);
5072
5073 if (!io)
5074 return 0;
5075
5076 return move_addr_to_kernel(conn->addr, conn->addr_len,
5077 &io->address);
5078 }
5079
5080 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5081 {
5082 struct io_async_connect __io, *io;
5083 unsigned file_flags;
5084 int ret;
5085 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5086
5087 if (req->async_data) {
5088 io = req->async_data;
5089 } else {
5090 ret = move_addr_to_kernel(req->connect.addr,
5091 req->connect.addr_len,
5092 &__io.address);
5093 if (ret)
5094 goto out;
5095 io = &__io;
5096 }
5097
5098 file_flags = force_nonblock ? O_NONBLOCK : 0;
5099
5100 ret = __sys_connect_file(req->file, &io->address,
5101 req->connect.addr_len, file_flags);
5102 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5103 if (req->async_data)
5104 return -EAGAIN;
5105 if (io_alloc_async_data(req)) {
5106 ret = -ENOMEM;
5107 goto out;
5108 }
5109 io = req->async_data;
5110 memcpy(req->async_data, &__io, sizeof(__io));
5111 return -EAGAIN;
5112 }
5113 if (ret == -ERESTARTSYS)
5114 ret = -EINTR;
5115 out:
5116 if (ret < 0)
5117 req_set_fail_links(req);
5118 __io_req_complete(req, issue_flags, ret, 0);
5119 return 0;
5120 }
5121 #else /* !CONFIG_NET */
5122 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5123 {
5124 return -EOPNOTSUPP;
5125 }
5126
5127 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
5128 {
5129 return -EOPNOTSUPP;
5130 }
5131
5132 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
5133 {
5134 return -EOPNOTSUPP;
5135 }
5136
5137 static int io_recvmsg_prep(struct io_kiocb *req,
5138 const struct io_uring_sqe *sqe)
5139 {
5140 return -EOPNOTSUPP;
5141 }
5142
5143 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5144 {
5145 return -EOPNOTSUPP;
5146 }
5147
5148 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5149 {
5150 return -EOPNOTSUPP;
5151 }
5152
5153 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5154 {
5155 return -EOPNOTSUPP;
5156 }
5157
5158 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5159 {
5160 return -EOPNOTSUPP;
5161 }
5162
5163 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5164 {
5165 return -EOPNOTSUPP;
5166 }
5167
5168 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5169 {
5170 return -EOPNOTSUPP;
5171 }
5172 #endif /* CONFIG_NET */
5173
5174 struct io_poll_table {
5175 struct poll_table_struct pt;
5176 struct io_kiocb *req;
5177 int error;
5178 };
5179
5180 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5181 __poll_t mask, task_work_func_t func)
5182 {
5183 int ret;
5184
5185 /* for instances that support it check for an event match first: */
5186 if (mask && !(mask & poll->events))
5187 return 0;
5188
5189 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5190
5191 list_del_init(&poll->wait.entry);
5192
5193 req->result = mask;
5194 req->task_work.func = func;
5195 percpu_ref_get(&req->ctx->refs);
5196
5197 /*
5198 * If this fails, then the task is exiting. When a task exits, the
5199 * work gets canceled, so just cancel this request as well instead
5200 * of executing it. We can't safely execute it anyway, as we may not
5201 * have the needed state needed for it anyway.
5202 */
5203 ret = io_req_task_work_add(req);
5204 if (unlikely(ret)) {
5205 WRITE_ONCE(poll->canceled, true);
5206 io_req_task_work_add_fallback(req, func);
5207 }
5208 return 1;
5209 }
5210
5211 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5212 __acquires(&req->ctx->completion_lock)
5213 {
5214 struct io_ring_ctx *ctx = req->ctx;
5215
5216 if (!req->result && !READ_ONCE(poll->canceled)) {
5217 struct poll_table_struct pt = { ._key = poll->events };
5218
5219 req->result = vfs_poll(req->file, &pt) & poll->events;
5220 }
5221
5222 spin_lock_irq(&ctx->completion_lock);
5223 if (!req->result && !READ_ONCE(poll->canceled)) {
5224 add_wait_queue(poll->head, &poll->wait);
5225 return true;
5226 }
5227
5228 return false;
5229 }
5230
5231 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5232 {
5233 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5234 if (req->opcode == IORING_OP_POLL_ADD)
5235 return req->async_data;
5236 return req->apoll->double_poll;
5237 }
5238
5239 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5240 {
5241 if (req->opcode == IORING_OP_POLL_ADD)
5242 return &req->poll;
5243 return &req->apoll->poll;
5244 }
5245
5246 static void io_poll_remove_double(struct io_kiocb *req)
5247 {
5248 struct io_poll_iocb *poll = io_poll_get_double(req);
5249
5250 lockdep_assert_held(&req->ctx->completion_lock);
5251
5252 if (poll && poll->head) {
5253 struct wait_queue_head *head = poll->head;
5254
5255 spin_lock(&head->lock);
5256 list_del_init(&poll->wait.entry);
5257 if (poll->wait.private)
5258 refcount_dec(&req->refs);
5259 poll->head = NULL;
5260 spin_unlock(&head->lock);
5261 }
5262 }
5263
5264 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5265 {
5266 struct io_ring_ctx *ctx = req->ctx;
5267
5268 io_poll_remove_double(req);
5269 req->poll.done = true;
5270 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5271 io_commit_cqring(ctx);
5272 }
5273
5274 static void io_poll_task_func(struct callback_head *cb)
5275 {
5276 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5277 struct io_ring_ctx *ctx = req->ctx;
5278 struct io_kiocb *nxt;
5279
5280 if (io_poll_rewait(req, &req->poll)) {
5281 spin_unlock_irq(&ctx->completion_lock);
5282 } else {
5283 hash_del(&req->hash_node);
5284 io_poll_complete(req, req->result, 0);
5285 spin_unlock_irq(&ctx->completion_lock);
5286
5287 nxt = io_put_req_find_next(req);
5288 io_cqring_ev_posted(ctx);
5289 if (nxt)
5290 __io_req_task_submit(nxt);
5291 }
5292
5293 percpu_ref_put(&ctx->refs);
5294 }
5295
5296 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5297 int sync, void *key)
5298 {
5299 struct io_kiocb *req = wait->private;
5300 struct io_poll_iocb *poll = io_poll_get_single(req);
5301 __poll_t mask = key_to_poll(key);
5302
5303 /* for instances that support it check for an event match first: */
5304 if (mask && !(mask & poll->events))
5305 return 0;
5306
5307 list_del_init(&wait->entry);
5308
5309 if (poll && poll->head) {
5310 bool done;
5311
5312 spin_lock(&poll->head->lock);
5313 done = list_empty(&poll->wait.entry);
5314 if (!done)
5315 list_del_init(&poll->wait.entry);
5316 /* make sure double remove sees this as being gone */
5317 wait->private = NULL;
5318 spin_unlock(&poll->head->lock);
5319 if (!done) {
5320 /* use wait func handler, so it matches the rq type */
5321 poll->wait.func(&poll->wait, mode, sync, key);
5322 }
5323 }
5324 refcount_dec(&req->refs);
5325 return 1;
5326 }
5327
5328 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5329 wait_queue_func_t wake_func)
5330 {
5331 poll->head = NULL;
5332 poll->done = false;
5333 poll->canceled = false;
5334 poll->events = events;
5335 INIT_LIST_HEAD(&poll->wait.entry);
5336 init_waitqueue_func_entry(&poll->wait, wake_func);
5337 }
5338
5339 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5340 struct wait_queue_head *head,
5341 struct io_poll_iocb **poll_ptr)
5342 {
5343 struct io_kiocb *req = pt->req;
5344
5345 /*
5346 * If poll->head is already set, it's because the file being polled
5347 * uses multiple waitqueues for poll handling (eg one for read, one
5348 * for write). Setup a separate io_poll_iocb if this happens.
5349 */
5350 if (unlikely(poll->head)) {
5351 struct io_poll_iocb *poll_one = poll;
5352
5353 /* already have a 2nd entry, fail a third attempt */
5354 if (*poll_ptr) {
5355 pt->error = -EINVAL;
5356 return;
5357 }
5358 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5359 if (!poll) {
5360 pt->error = -ENOMEM;
5361 return;
5362 }
5363 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5364 refcount_inc(&req->refs);
5365 poll->wait.private = req;
5366 *poll_ptr = poll;
5367 }
5368
5369 pt->error = 0;
5370 poll->head = head;
5371
5372 if (poll->events & EPOLLEXCLUSIVE)
5373 add_wait_queue_exclusive(head, &poll->wait);
5374 else
5375 add_wait_queue(head, &poll->wait);
5376 }
5377
5378 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5379 struct poll_table_struct *p)
5380 {
5381 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5382 struct async_poll *apoll = pt->req->apoll;
5383
5384 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5385 }
5386
5387 static void io_async_task_func(struct callback_head *cb)
5388 {
5389 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5390 struct async_poll *apoll = req->apoll;
5391 struct io_ring_ctx *ctx = req->ctx;
5392
5393 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5394
5395 if (io_poll_rewait(req, &apoll->poll)) {
5396 spin_unlock_irq(&ctx->completion_lock);
5397 percpu_ref_put(&ctx->refs);
5398 return;
5399 }
5400
5401 /* If req is still hashed, it cannot have been canceled. Don't check. */
5402 if (hash_hashed(&req->hash_node))
5403 hash_del(&req->hash_node);
5404
5405 io_poll_remove_double(req);
5406 spin_unlock_irq(&ctx->completion_lock);
5407
5408 if (!READ_ONCE(apoll->poll.canceled))
5409 __io_req_task_submit(req);
5410 else
5411 __io_req_task_cancel(req, -ECANCELED);
5412
5413 percpu_ref_put(&ctx->refs);
5414 kfree(apoll->double_poll);
5415 kfree(apoll);
5416 }
5417
5418 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5419 void *key)
5420 {
5421 struct io_kiocb *req = wait->private;
5422 struct io_poll_iocb *poll = &req->apoll->poll;
5423
5424 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5425 key_to_poll(key));
5426
5427 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5428 }
5429
5430 static void io_poll_req_insert(struct io_kiocb *req)
5431 {
5432 struct io_ring_ctx *ctx = req->ctx;
5433 struct hlist_head *list;
5434
5435 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5436 hlist_add_head(&req->hash_node, list);
5437 }
5438
5439 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5440 struct io_poll_iocb *poll,
5441 struct io_poll_table *ipt, __poll_t mask,
5442 wait_queue_func_t wake_func)
5443 __acquires(&ctx->completion_lock)
5444 {
5445 struct io_ring_ctx *ctx = req->ctx;
5446 bool cancel = false;
5447
5448 INIT_HLIST_NODE(&req->hash_node);
5449 io_init_poll_iocb(poll, mask, wake_func);
5450 poll->file = req->file;
5451 poll->wait.private = req;
5452
5453 ipt->pt._key = mask;
5454 ipt->req = req;
5455 ipt->error = -EINVAL;
5456
5457 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5458
5459 spin_lock_irq(&ctx->completion_lock);
5460 if (likely(poll->head)) {
5461 spin_lock(&poll->head->lock);
5462 if (unlikely(list_empty(&poll->wait.entry))) {
5463 if (ipt->error)
5464 cancel = true;
5465 ipt->error = 0;
5466 mask = 0;
5467 }
5468 if (mask || ipt->error)
5469 list_del_init(&poll->wait.entry);
5470 else if (cancel)
5471 WRITE_ONCE(poll->canceled, true);
5472 else if (!poll->done) /* actually waiting for an event */
5473 io_poll_req_insert(req);
5474 spin_unlock(&poll->head->lock);
5475 }
5476
5477 return mask;
5478 }
5479
5480 static bool io_arm_poll_handler(struct io_kiocb *req)
5481 {
5482 const struct io_op_def *def = &io_op_defs[req->opcode];
5483 struct io_ring_ctx *ctx = req->ctx;
5484 struct async_poll *apoll;
5485 struct io_poll_table ipt;
5486 __poll_t mask, ret;
5487 int rw;
5488
5489 if (!req->file || !file_can_poll(req->file))
5490 return false;
5491 if (req->flags & REQ_F_POLLED)
5492 return false;
5493 if (def->pollin)
5494 rw = READ;
5495 else if (def->pollout)
5496 rw = WRITE;
5497 else
5498 return false;
5499 /* if we can't nonblock try, then no point in arming a poll handler */
5500 if (!io_file_supports_async(req->file, rw))
5501 return false;
5502
5503 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5504 if (unlikely(!apoll))
5505 return false;
5506 apoll->double_poll = NULL;
5507
5508 req->flags |= REQ_F_POLLED;
5509 req->apoll = apoll;
5510
5511 mask = 0;
5512 if (def->pollin)
5513 mask |= POLLIN | POLLRDNORM;
5514 if (def->pollout)
5515 mask |= POLLOUT | POLLWRNORM;
5516
5517 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5518 if ((req->opcode == IORING_OP_RECVMSG) &&
5519 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5520 mask &= ~POLLIN;
5521
5522 mask |= POLLERR | POLLPRI;
5523
5524 ipt.pt._qproc = io_async_queue_proc;
5525
5526 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5527 io_async_wake);
5528 if (ret || ipt.error) {
5529 io_poll_remove_double(req);
5530 spin_unlock_irq(&ctx->completion_lock);
5531 kfree(apoll->double_poll);
5532 kfree(apoll);
5533 return false;
5534 }
5535 spin_unlock_irq(&ctx->completion_lock);
5536 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5537 apoll->poll.events);
5538 return true;
5539 }
5540
5541 static bool __io_poll_remove_one(struct io_kiocb *req,
5542 struct io_poll_iocb *poll)
5543 {
5544 bool do_complete = false;
5545
5546 spin_lock(&poll->head->lock);
5547 WRITE_ONCE(poll->canceled, true);
5548 if (!list_empty(&poll->wait.entry)) {
5549 list_del_init(&poll->wait.entry);
5550 do_complete = true;
5551 }
5552 spin_unlock(&poll->head->lock);
5553 hash_del(&req->hash_node);
5554 return do_complete;
5555 }
5556
5557 static bool io_poll_remove_one(struct io_kiocb *req)
5558 {
5559 bool do_complete;
5560
5561 io_poll_remove_double(req);
5562
5563 if (req->opcode == IORING_OP_POLL_ADD) {
5564 do_complete = __io_poll_remove_one(req, &req->poll);
5565 } else {
5566 struct async_poll *apoll = req->apoll;
5567
5568 /* non-poll requests have submit ref still */
5569 do_complete = __io_poll_remove_one(req, &apoll->poll);
5570 if (do_complete) {
5571 io_put_req(req);
5572 kfree(apoll->double_poll);
5573 kfree(apoll);
5574 }
5575 }
5576
5577 if (do_complete) {
5578 io_cqring_fill_event(req, -ECANCELED);
5579 io_commit_cqring(req->ctx);
5580 req_set_fail_links(req);
5581 io_put_req_deferred(req, 1);
5582 }
5583
5584 return do_complete;
5585 }
5586
5587 /*
5588 * Returns true if we found and killed one or more poll requests
5589 */
5590 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5591 struct files_struct *files)
5592 {
5593 struct hlist_node *tmp;
5594 struct io_kiocb *req;
5595 int posted = 0, i;
5596
5597 spin_lock_irq(&ctx->completion_lock);
5598 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5599 struct hlist_head *list;
5600
5601 list = &ctx->cancel_hash[i];
5602 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5603 if (io_match_task(req, tsk, files))
5604 posted += io_poll_remove_one(req);
5605 }
5606 }
5607 spin_unlock_irq(&ctx->completion_lock);
5608
5609 if (posted)
5610 io_cqring_ev_posted(ctx);
5611
5612 return posted != 0;
5613 }
5614
5615 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5616 {
5617 struct hlist_head *list;
5618 struct io_kiocb *req;
5619
5620 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5621 hlist_for_each_entry(req, list, hash_node) {
5622 if (sqe_addr != req->user_data)
5623 continue;
5624 if (io_poll_remove_one(req))
5625 return 0;
5626 return -EALREADY;
5627 }
5628
5629 return -ENOENT;
5630 }
5631
5632 static int io_poll_remove_prep(struct io_kiocb *req,
5633 const struct io_uring_sqe *sqe)
5634 {
5635 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5636 return -EINVAL;
5637 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5638 sqe->poll_events)
5639 return -EINVAL;
5640
5641 req->poll_remove.addr = READ_ONCE(sqe->addr);
5642 return 0;
5643 }
5644
5645 /*
5646 * Find a running poll command that matches one specified in sqe->addr,
5647 * and remove it if found.
5648 */
5649 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
5650 {
5651 struct io_ring_ctx *ctx = req->ctx;
5652 int ret;
5653
5654 spin_lock_irq(&ctx->completion_lock);
5655 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5656 spin_unlock_irq(&ctx->completion_lock);
5657
5658 if (ret < 0)
5659 req_set_fail_links(req);
5660 io_req_complete(req, ret);
5661 return 0;
5662 }
5663
5664 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5665 void *key)
5666 {
5667 struct io_kiocb *req = wait->private;
5668 struct io_poll_iocb *poll = &req->poll;
5669
5670 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5671 }
5672
5673 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5674 struct poll_table_struct *p)
5675 {
5676 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5677
5678 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5679 }
5680
5681 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5682 {
5683 struct io_poll_iocb *poll = &req->poll;
5684 u32 events;
5685
5686 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5687 return -EINVAL;
5688 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5689 return -EINVAL;
5690
5691 events = READ_ONCE(sqe->poll32_events);
5692 #ifdef __BIG_ENDIAN
5693 events = swahw32(events);
5694 #endif
5695 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5696 (events & EPOLLEXCLUSIVE);
5697 return 0;
5698 }
5699
5700 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5701 {
5702 struct io_poll_iocb *poll = &req->poll;
5703 struct io_ring_ctx *ctx = req->ctx;
5704 struct io_poll_table ipt;
5705 __poll_t mask;
5706
5707 ipt.pt._qproc = io_poll_queue_proc;
5708
5709 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5710 io_poll_wake);
5711
5712 if (mask) { /* no async, we'd stolen it */
5713 ipt.error = 0;
5714 io_poll_complete(req, mask, 0);
5715 }
5716 spin_unlock_irq(&ctx->completion_lock);
5717
5718 if (mask) {
5719 io_cqring_ev_posted(ctx);
5720 io_put_req(req);
5721 }
5722 return ipt.error;
5723 }
5724
5725 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5726 {
5727 struct io_timeout_data *data = container_of(timer,
5728 struct io_timeout_data, timer);
5729 struct io_kiocb *req = data->req;
5730 struct io_ring_ctx *ctx = req->ctx;
5731 unsigned long flags;
5732
5733 spin_lock_irqsave(&ctx->completion_lock, flags);
5734 list_del_init(&req->timeout.list);
5735 atomic_set(&req->ctx->cq_timeouts,
5736 atomic_read(&req->ctx->cq_timeouts) + 1);
5737
5738 io_cqring_fill_event(req, -ETIME);
5739 io_commit_cqring(ctx);
5740 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5741
5742 io_cqring_ev_posted(ctx);
5743 req_set_fail_links(req);
5744 io_put_req(req);
5745 return HRTIMER_NORESTART;
5746 }
5747
5748 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5749 __u64 user_data)
5750 {
5751 struct io_timeout_data *io;
5752 struct io_kiocb *req;
5753 int ret = -ENOENT;
5754
5755 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5756 if (user_data == req->user_data) {
5757 ret = 0;
5758 break;
5759 }
5760 }
5761
5762 if (ret == -ENOENT)
5763 return ERR_PTR(ret);
5764
5765 io = req->async_data;
5766 ret = hrtimer_try_to_cancel(&io->timer);
5767 if (ret == -1)
5768 return ERR_PTR(-EALREADY);
5769 list_del_init(&req->timeout.list);
5770 return req;
5771 }
5772
5773 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5774 {
5775 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5776
5777 if (IS_ERR(req))
5778 return PTR_ERR(req);
5779
5780 req_set_fail_links(req);
5781 io_cqring_fill_event(req, -ECANCELED);
5782 io_put_req_deferred(req, 1);
5783 return 0;
5784 }
5785
5786 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5787 struct timespec64 *ts, enum hrtimer_mode mode)
5788 {
5789 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5790 struct io_timeout_data *data;
5791
5792 if (IS_ERR(req))
5793 return PTR_ERR(req);
5794
5795 req->timeout.off = 0; /* noseq */
5796 data = req->async_data;
5797 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5798 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5799 data->timer.function = io_timeout_fn;
5800 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5801 return 0;
5802 }
5803
5804 static int io_timeout_remove_prep(struct io_kiocb *req,
5805 const struct io_uring_sqe *sqe)
5806 {
5807 struct io_timeout_rem *tr = &req->timeout_rem;
5808
5809 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5810 return -EINVAL;
5811 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5812 return -EINVAL;
5813 if (sqe->ioprio || sqe->buf_index || sqe->len)
5814 return -EINVAL;
5815
5816 tr->addr = READ_ONCE(sqe->addr);
5817 tr->flags = READ_ONCE(sqe->timeout_flags);
5818 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5819 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5820 return -EINVAL;
5821 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5822 return -EFAULT;
5823 } else if (tr->flags) {
5824 /* timeout removal doesn't support flags */
5825 return -EINVAL;
5826 }
5827
5828 return 0;
5829 }
5830
5831 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5832 {
5833 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5834 : HRTIMER_MODE_REL;
5835 }
5836
5837 /*
5838 * Remove or update an existing timeout command
5839 */
5840 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5841 {
5842 struct io_timeout_rem *tr = &req->timeout_rem;
5843 struct io_ring_ctx *ctx = req->ctx;
5844 int ret;
5845
5846 spin_lock_irq(&ctx->completion_lock);
5847 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5848 ret = io_timeout_cancel(ctx, tr->addr);
5849 else
5850 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5851 io_translate_timeout_mode(tr->flags));
5852
5853 io_cqring_fill_event(req, ret);
5854 io_commit_cqring(ctx);
5855 spin_unlock_irq(&ctx->completion_lock);
5856 io_cqring_ev_posted(ctx);
5857 if (ret < 0)
5858 req_set_fail_links(req);
5859 io_put_req(req);
5860 return 0;
5861 }
5862
5863 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5864 bool is_timeout_link)
5865 {
5866 struct io_timeout_data *data;
5867 unsigned flags;
5868 u32 off = READ_ONCE(sqe->off);
5869
5870 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5871 return -EINVAL;
5872 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5873 return -EINVAL;
5874 if (off && is_timeout_link)
5875 return -EINVAL;
5876 flags = READ_ONCE(sqe->timeout_flags);
5877 if (flags & ~IORING_TIMEOUT_ABS)
5878 return -EINVAL;
5879
5880 req->timeout.off = off;
5881
5882 if (!req->async_data && io_alloc_async_data(req))
5883 return -ENOMEM;
5884
5885 data = req->async_data;
5886 data->req = req;
5887
5888 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5889 return -EFAULT;
5890
5891 data->mode = io_translate_timeout_mode(flags);
5892 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5893 return 0;
5894 }
5895
5896 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5897 {
5898 struct io_ring_ctx *ctx = req->ctx;
5899 struct io_timeout_data *data = req->async_data;
5900 struct list_head *entry;
5901 u32 tail, off = req->timeout.off;
5902
5903 spin_lock_irq(&ctx->completion_lock);
5904
5905 /*
5906 * sqe->off holds how many events that need to occur for this
5907 * timeout event to be satisfied. If it isn't set, then this is
5908 * a pure timeout request, sequence isn't used.
5909 */
5910 if (io_is_timeout_noseq(req)) {
5911 entry = ctx->timeout_list.prev;
5912 goto add;
5913 }
5914
5915 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5916 req->timeout.target_seq = tail + off;
5917
5918 /* Update the last seq here in case io_flush_timeouts() hasn't.
5919 * This is safe because ->completion_lock is held, and submissions
5920 * and completions are never mixed in the same ->completion_lock section.
5921 */
5922 ctx->cq_last_tm_flush = tail;
5923
5924 /*
5925 * Insertion sort, ensuring the first entry in the list is always
5926 * the one we need first.
5927 */
5928 list_for_each_prev(entry, &ctx->timeout_list) {
5929 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5930 timeout.list);
5931
5932 if (io_is_timeout_noseq(nxt))
5933 continue;
5934 /* nxt.seq is behind @tail, otherwise would've been completed */
5935 if (off >= nxt->timeout.target_seq - tail)
5936 break;
5937 }
5938 add:
5939 list_add(&req->timeout.list, entry);
5940 data->timer.function = io_timeout_fn;
5941 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5942 spin_unlock_irq(&ctx->completion_lock);
5943 return 0;
5944 }
5945
5946 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5947 {
5948 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5949
5950 return req->user_data == (unsigned long) data;
5951 }
5952
5953 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5954 {
5955 enum io_wq_cancel cancel_ret;
5956 int ret = 0;
5957
5958 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5959 switch (cancel_ret) {
5960 case IO_WQ_CANCEL_OK:
5961 ret = 0;
5962 break;
5963 case IO_WQ_CANCEL_RUNNING:
5964 ret = -EALREADY;
5965 break;
5966 case IO_WQ_CANCEL_NOTFOUND:
5967 ret = -ENOENT;
5968 break;
5969 }
5970
5971 return ret;
5972 }
5973
5974 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5975 struct io_kiocb *req, __u64 sqe_addr,
5976 int success_ret)
5977 {
5978 unsigned long flags;
5979 int ret;
5980
5981 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5982 if (ret != -ENOENT) {
5983 spin_lock_irqsave(&ctx->completion_lock, flags);
5984 goto done;
5985 }
5986
5987 spin_lock_irqsave(&ctx->completion_lock, flags);
5988 ret = io_timeout_cancel(ctx, sqe_addr);
5989 if (ret != -ENOENT)
5990 goto done;
5991 ret = io_poll_cancel(ctx, sqe_addr);
5992 done:
5993 if (!ret)
5994 ret = success_ret;
5995 io_cqring_fill_event(req, ret);
5996 io_commit_cqring(ctx);
5997 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5998 io_cqring_ev_posted(ctx);
5999
6000 if (ret < 0)
6001 req_set_fail_links(req);
6002 io_put_req(req);
6003 }
6004
6005 static int io_async_cancel_prep(struct io_kiocb *req,
6006 const struct io_uring_sqe *sqe)
6007 {
6008 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6009 return -EINVAL;
6010 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6011 return -EINVAL;
6012 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
6013 return -EINVAL;
6014
6015 req->cancel.addr = READ_ONCE(sqe->addr);
6016 return 0;
6017 }
6018
6019 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6020 {
6021 struct io_ring_ctx *ctx = req->ctx;
6022
6023 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6024 return 0;
6025 }
6026
6027 static int io_rsrc_update_prep(struct io_kiocb *req,
6028 const struct io_uring_sqe *sqe)
6029 {
6030 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6031 return -EINVAL;
6032 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6033 return -EINVAL;
6034 if (sqe->ioprio || sqe->rw_flags)
6035 return -EINVAL;
6036
6037 req->rsrc_update.offset = READ_ONCE(sqe->off);
6038 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6039 if (!req->rsrc_update.nr_args)
6040 return -EINVAL;
6041 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6042 return 0;
6043 }
6044
6045 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6046 {
6047 struct io_ring_ctx *ctx = req->ctx;
6048 struct io_uring_rsrc_update up;
6049 int ret;
6050
6051 if (issue_flags & IO_URING_F_NONBLOCK)
6052 return -EAGAIN;
6053
6054 up.offset = req->rsrc_update.offset;
6055 up.data = req->rsrc_update.arg;
6056
6057 mutex_lock(&ctx->uring_lock);
6058 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
6059 mutex_unlock(&ctx->uring_lock);
6060
6061 if (ret < 0)
6062 req_set_fail_links(req);
6063 __io_req_complete(req, issue_flags, ret, 0);
6064 return 0;
6065 }
6066
6067 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6068 {
6069 switch (req->opcode) {
6070 case IORING_OP_NOP:
6071 return 0;
6072 case IORING_OP_READV:
6073 case IORING_OP_READ_FIXED:
6074 case IORING_OP_READ:
6075 return io_read_prep(req, sqe);
6076 case IORING_OP_WRITEV:
6077 case IORING_OP_WRITE_FIXED:
6078 case IORING_OP_WRITE:
6079 return io_write_prep(req, sqe);
6080 case IORING_OP_POLL_ADD:
6081 return io_poll_add_prep(req, sqe);
6082 case IORING_OP_POLL_REMOVE:
6083 return io_poll_remove_prep(req, sqe);
6084 case IORING_OP_FSYNC:
6085 return io_fsync_prep(req, sqe);
6086 case IORING_OP_SYNC_FILE_RANGE:
6087 return io_sfr_prep(req, sqe);
6088 case IORING_OP_SENDMSG:
6089 case IORING_OP_SEND:
6090 return io_sendmsg_prep(req, sqe);
6091 case IORING_OP_RECVMSG:
6092 case IORING_OP_RECV:
6093 return io_recvmsg_prep(req, sqe);
6094 case IORING_OP_CONNECT:
6095 return io_connect_prep(req, sqe);
6096 case IORING_OP_TIMEOUT:
6097 return io_timeout_prep(req, sqe, false);
6098 case IORING_OP_TIMEOUT_REMOVE:
6099 return io_timeout_remove_prep(req, sqe);
6100 case IORING_OP_ASYNC_CANCEL:
6101 return io_async_cancel_prep(req, sqe);
6102 case IORING_OP_LINK_TIMEOUT:
6103 return io_timeout_prep(req, sqe, true);
6104 case IORING_OP_ACCEPT:
6105 return io_accept_prep(req, sqe);
6106 case IORING_OP_FALLOCATE:
6107 return io_fallocate_prep(req, sqe);
6108 case IORING_OP_OPENAT:
6109 return io_openat_prep(req, sqe);
6110 case IORING_OP_CLOSE:
6111 return io_close_prep(req, sqe);
6112 case IORING_OP_FILES_UPDATE:
6113 return io_rsrc_update_prep(req, sqe);
6114 case IORING_OP_STATX:
6115 return io_statx_prep(req, sqe);
6116 case IORING_OP_FADVISE:
6117 return io_fadvise_prep(req, sqe);
6118 case IORING_OP_MADVISE:
6119 return io_madvise_prep(req, sqe);
6120 case IORING_OP_OPENAT2:
6121 return io_openat2_prep(req, sqe);
6122 case IORING_OP_EPOLL_CTL:
6123 return io_epoll_ctl_prep(req, sqe);
6124 case IORING_OP_SPLICE:
6125 return io_splice_prep(req, sqe);
6126 case IORING_OP_PROVIDE_BUFFERS:
6127 return io_provide_buffers_prep(req, sqe);
6128 case IORING_OP_REMOVE_BUFFERS:
6129 return io_remove_buffers_prep(req, sqe);
6130 case IORING_OP_TEE:
6131 return io_tee_prep(req, sqe);
6132 case IORING_OP_SHUTDOWN:
6133 return io_shutdown_prep(req, sqe);
6134 case IORING_OP_RENAMEAT:
6135 return io_renameat_prep(req, sqe);
6136 case IORING_OP_UNLINKAT:
6137 return io_unlinkat_prep(req, sqe);
6138 }
6139
6140 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6141 req->opcode);
6142 return-EINVAL;
6143 }
6144
6145 static int io_req_defer_prep(struct io_kiocb *req,
6146 const struct io_uring_sqe *sqe)
6147 {
6148 if (!sqe)
6149 return 0;
6150 if (io_alloc_async_data(req))
6151 return -EAGAIN;
6152 return io_req_prep(req, sqe);
6153 }
6154
6155 static u32 io_get_sequence(struct io_kiocb *req)
6156 {
6157 struct io_kiocb *pos;
6158 struct io_ring_ctx *ctx = req->ctx;
6159 u32 total_submitted, nr_reqs = 0;
6160
6161 io_for_each_link(pos, req)
6162 nr_reqs++;
6163
6164 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6165 return total_submitted - nr_reqs;
6166 }
6167
6168 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6169 {
6170 struct io_ring_ctx *ctx = req->ctx;
6171 struct io_defer_entry *de;
6172 int ret;
6173 u32 seq;
6174
6175 /* Still need defer if there is pending req in defer list. */
6176 if (likely(list_empty_careful(&ctx->defer_list) &&
6177 !(req->flags & REQ_F_IO_DRAIN)))
6178 return 0;
6179
6180 seq = io_get_sequence(req);
6181 /* Still a chance to pass the sequence check */
6182 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6183 return 0;
6184
6185 if (!req->async_data) {
6186 ret = io_req_defer_prep(req, sqe);
6187 if (ret)
6188 return ret;
6189 }
6190 io_prep_async_link(req);
6191 de = kmalloc(sizeof(*de), GFP_KERNEL);
6192 if (!de)
6193 return -ENOMEM;
6194
6195 spin_lock_irq(&ctx->completion_lock);
6196 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6197 spin_unlock_irq(&ctx->completion_lock);
6198 kfree(de);
6199 io_queue_async_work(req);
6200 return -EIOCBQUEUED;
6201 }
6202
6203 trace_io_uring_defer(ctx, req, req->user_data);
6204 de->req = req;
6205 de->seq = seq;
6206 list_add_tail(&de->list, &ctx->defer_list);
6207 spin_unlock_irq(&ctx->completion_lock);
6208 return -EIOCBQUEUED;
6209 }
6210
6211 static void __io_clean_op(struct io_kiocb *req)
6212 {
6213 if (req->flags & REQ_F_BUFFER_SELECTED) {
6214 switch (req->opcode) {
6215 case IORING_OP_READV:
6216 case IORING_OP_READ_FIXED:
6217 case IORING_OP_READ:
6218 kfree((void *)(unsigned long)req->rw.addr);
6219 break;
6220 case IORING_OP_RECVMSG:
6221 case IORING_OP_RECV:
6222 kfree(req->sr_msg.kbuf);
6223 break;
6224 }
6225 req->flags &= ~REQ_F_BUFFER_SELECTED;
6226 }
6227
6228 if (req->flags & REQ_F_NEED_CLEANUP) {
6229 switch (req->opcode) {
6230 case IORING_OP_READV:
6231 case IORING_OP_READ_FIXED:
6232 case IORING_OP_READ:
6233 case IORING_OP_WRITEV:
6234 case IORING_OP_WRITE_FIXED:
6235 case IORING_OP_WRITE: {
6236 struct io_async_rw *io = req->async_data;
6237 if (io->free_iovec)
6238 kfree(io->free_iovec);
6239 break;
6240 }
6241 case IORING_OP_RECVMSG:
6242 case IORING_OP_SENDMSG: {
6243 struct io_async_msghdr *io = req->async_data;
6244
6245 kfree(io->free_iov);
6246 break;
6247 }
6248 case IORING_OP_SPLICE:
6249 case IORING_OP_TEE:
6250 io_put_file(req, req->splice.file_in,
6251 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6252 break;
6253 case IORING_OP_OPENAT:
6254 case IORING_OP_OPENAT2:
6255 if (req->open.filename)
6256 putname(req->open.filename);
6257 break;
6258 case IORING_OP_RENAMEAT:
6259 putname(req->rename.oldpath);
6260 putname(req->rename.newpath);
6261 break;
6262 case IORING_OP_UNLINKAT:
6263 putname(req->unlink.filename);
6264 break;
6265 }
6266 req->flags &= ~REQ_F_NEED_CLEANUP;
6267 }
6268 }
6269
6270 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6271 {
6272 struct io_ring_ctx *ctx = req->ctx;
6273 int ret;
6274
6275 switch (req->opcode) {
6276 case IORING_OP_NOP:
6277 ret = io_nop(req, issue_flags);
6278 break;
6279 case IORING_OP_READV:
6280 case IORING_OP_READ_FIXED:
6281 case IORING_OP_READ:
6282 ret = io_read(req, issue_flags);
6283 break;
6284 case IORING_OP_WRITEV:
6285 case IORING_OP_WRITE_FIXED:
6286 case IORING_OP_WRITE:
6287 ret = io_write(req, issue_flags);
6288 break;
6289 case IORING_OP_FSYNC:
6290 ret = io_fsync(req, issue_flags);
6291 break;
6292 case IORING_OP_POLL_ADD:
6293 ret = io_poll_add(req, issue_flags);
6294 break;
6295 case IORING_OP_POLL_REMOVE:
6296 ret = io_poll_remove(req, issue_flags);
6297 break;
6298 case IORING_OP_SYNC_FILE_RANGE:
6299 ret = io_sync_file_range(req, issue_flags);
6300 break;
6301 case IORING_OP_SENDMSG:
6302 ret = io_sendmsg(req, issue_flags);
6303 break;
6304 case IORING_OP_SEND:
6305 ret = io_send(req, issue_flags);
6306 break;
6307 case IORING_OP_RECVMSG:
6308 ret = io_recvmsg(req, issue_flags);
6309 break;
6310 case IORING_OP_RECV:
6311 ret = io_recv(req, issue_flags);
6312 break;
6313 case IORING_OP_TIMEOUT:
6314 ret = io_timeout(req, issue_flags);
6315 break;
6316 case IORING_OP_TIMEOUT_REMOVE:
6317 ret = io_timeout_remove(req, issue_flags);
6318 break;
6319 case IORING_OP_ACCEPT:
6320 ret = io_accept(req, issue_flags);
6321 break;
6322 case IORING_OP_CONNECT:
6323 ret = io_connect(req, issue_flags);
6324 break;
6325 case IORING_OP_ASYNC_CANCEL:
6326 ret = io_async_cancel(req, issue_flags);
6327 break;
6328 case IORING_OP_FALLOCATE:
6329 ret = io_fallocate(req, issue_flags);
6330 break;
6331 case IORING_OP_OPENAT:
6332 ret = io_openat(req, issue_flags);
6333 break;
6334 case IORING_OP_CLOSE:
6335 ret = io_close(req, issue_flags);
6336 break;
6337 case IORING_OP_FILES_UPDATE:
6338 ret = io_files_update(req, issue_flags);
6339 break;
6340 case IORING_OP_STATX:
6341 ret = io_statx(req, issue_flags);
6342 break;
6343 case IORING_OP_FADVISE:
6344 ret = io_fadvise(req, issue_flags);
6345 break;
6346 case IORING_OP_MADVISE:
6347 ret = io_madvise(req, issue_flags);
6348 break;
6349 case IORING_OP_OPENAT2:
6350 ret = io_openat2(req, issue_flags);
6351 break;
6352 case IORING_OP_EPOLL_CTL:
6353 ret = io_epoll_ctl(req, issue_flags);
6354 break;
6355 case IORING_OP_SPLICE:
6356 ret = io_splice(req, issue_flags);
6357 break;
6358 case IORING_OP_PROVIDE_BUFFERS:
6359 ret = io_provide_buffers(req, issue_flags);
6360 break;
6361 case IORING_OP_REMOVE_BUFFERS:
6362 ret = io_remove_buffers(req, issue_flags);
6363 break;
6364 case IORING_OP_TEE:
6365 ret = io_tee(req, issue_flags);
6366 break;
6367 case IORING_OP_SHUTDOWN:
6368 ret = io_shutdown(req, issue_flags);
6369 break;
6370 case IORING_OP_RENAMEAT:
6371 ret = io_renameat(req, issue_flags);
6372 break;
6373 case IORING_OP_UNLINKAT:
6374 ret = io_unlinkat(req, issue_flags);
6375 break;
6376 default:
6377 ret = -EINVAL;
6378 break;
6379 }
6380
6381 if (ret)
6382 return ret;
6383
6384 /* If the op doesn't have a file, we're not polling for it */
6385 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6386 const bool in_async = io_wq_current_is_worker();
6387
6388 /* workqueue context doesn't hold uring_lock, grab it now */
6389 if (in_async)
6390 mutex_lock(&ctx->uring_lock);
6391
6392 io_iopoll_req_issued(req, in_async);
6393
6394 if (in_async)
6395 mutex_unlock(&ctx->uring_lock);
6396 }
6397
6398 return 0;
6399 }
6400
6401 static void io_wq_submit_work(struct io_wq_work *work)
6402 {
6403 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6404 struct io_kiocb *timeout;
6405 int ret = 0;
6406
6407 timeout = io_prep_linked_timeout(req);
6408 if (timeout)
6409 io_queue_linked_timeout(timeout);
6410
6411 if (work->flags & IO_WQ_WORK_CANCEL)
6412 ret = -ECANCELED;
6413
6414 if (!ret) {
6415 do {
6416 ret = io_issue_sqe(req, 0);
6417 /*
6418 * We can get EAGAIN for polled IO even though we're
6419 * forcing a sync submission from here, since we can't
6420 * wait for request slots on the block side.
6421 */
6422 if (ret != -EAGAIN)
6423 break;
6424 cond_resched();
6425 } while (1);
6426 }
6427
6428 if (ret) {
6429 struct io_ring_ctx *lock_ctx = NULL;
6430
6431 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6432 lock_ctx = req->ctx;
6433
6434 /*
6435 * io_iopoll_complete() does not hold completion_lock to
6436 * complete polled io, so here for polled io, we can not call
6437 * io_req_complete() directly, otherwise there maybe concurrent
6438 * access to cqring, defer_list, etc, which is not safe. Given
6439 * that io_iopoll_complete() is always called under uring_lock,
6440 * so here for polled io, we also get uring_lock to complete
6441 * it.
6442 */
6443 if (lock_ctx)
6444 mutex_lock(&lock_ctx->uring_lock);
6445
6446 req_set_fail_links(req);
6447 io_req_complete(req, ret);
6448
6449 if (lock_ctx)
6450 mutex_unlock(&lock_ctx->uring_lock);
6451 }
6452 }
6453
6454 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6455 int index)
6456 {
6457 struct fixed_rsrc_table *table;
6458
6459 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6460 return table->files[index & IORING_FILE_TABLE_MASK];
6461 }
6462
6463 static struct file *io_file_get(struct io_submit_state *state,
6464 struct io_kiocb *req, int fd, bool fixed)
6465 {
6466 struct io_ring_ctx *ctx = req->ctx;
6467 struct file *file;
6468
6469 if (fixed) {
6470 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6471 return NULL;
6472 fd = array_index_nospec(fd, ctx->nr_user_files);
6473 file = io_file_from_index(ctx, fd);
6474 io_set_resource_node(req);
6475 } else {
6476 trace_io_uring_file_get(ctx, fd);
6477 file = __io_file_get(state, fd);
6478 }
6479
6480 if (file && unlikely(file->f_op == &io_uring_fops))
6481 io_req_track_inflight(req);
6482 return file;
6483 }
6484
6485 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6486 {
6487 struct io_timeout_data *data = container_of(timer,
6488 struct io_timeout_data, timer);
6489 struct io_kiocb *prev, *req = data->req;
6490 struct io_ring_ctx *ctx = req->ctx;
6491 unsigned long flags;
6492
6493 spin_lock_irqsave(&ctx->completion_lock, flags);
6494 prev = req->timeout.head;
6495 req->timeout.head = NULL;
6496
6497 /*
6498 * We don't expect the list to be empty, that will only happen if we
6499 * race with the completion of the linked work.
6500 */
6501 if (prev && refcount_inc_not_zero(&prev->refs))
6502 io_remove_next_linked(prev);
6503 else
6504 prev = NULL;
6505 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6506
6507 if (prev) {
6508 req_set_fail_links(prev);
6509 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6510 io_put_req_deferred(prev, 1);
6511 } else {
6512 io_req_complete_post(req, -ETIME, 0);
6513 io_put_req_deferred(req, 1);
6514 }
6515 return HRTIMER_NORESTART;
6516 }
6517
6518 static void __io_queue_linked_timeout(struct io_kiocb *req)
6519 {
6520 /*
6521 * If the back reference is NULL, then our linked request finished
6522 * before we got a chance to setup the timer
6523 */
6524 if (req->timeout.head) {
6525 struct io_timeout_data *data = req->async_data;
6526
6527 data->timer.function = io_link_timeout_fn;
6528 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6529 data->mode);
6530 }
6531 }
6532
6533 static void io_queue_linked_timeout(struct io_kiocb *req)
6534 {
6535 struct io_ring_ctx *ctx = req->ctx;
6536
6537 spin_lock_irq(&ctx->completion_lock);
6538 __io_queue_linked_timeout(req);
6539 spin_unlock_irq(&ctx->completion_lock);
6540
6541 /* drop submission reference */
6542 io_put_req(req);
6543 }
6544
6545 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6546 {
6547 struct io_kiocb *nxt = req->link;
6548
6549 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6550 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6551 return NULL;
6552
6553 nxt->timeout.head = req;
6554 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6555 req->flags |= REQ_F_LINK_TIMEOUT;
6556 return nxt;
6557 }
6558
6559 static void __io_queue_sqe(struct io_kiocb *req)
6560 {
6561 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6562 const struct cred *old_creds = NULL;
6563 int ret;
6564
6565 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6566 (req->work.flags & IO_WQ_WORK_CREDS) &&
6567 req->work.identity->creds != current_cred())
6568 old_creds = override_creds(req->work.identity->creds);
6569
6570 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6571
6572 if (old_creds)
6573 revert_creds(old_creds);
6574
6575 /*
6576 * We async punt it if the file wasn't marked NOWAIT, or if the file
6577 * doesn't support non-blocking read/write attempts
6578 */
6579 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6580 if (!io_arm_poll_handler(req)) {
6581 /*
6582 * Queued up for async execution, worker will release
6583 * submit reference when the iocb is actually submitted.
6584 */
6585 io_queue_async_work(req);
6586 }
6587 } else if (likely(!ret)) {
6588 /* drop submission reference */
6589 if (req->flags & REQ_F_COMPLETE_INLINE) {
6590 struct io_ring_ctx *ctx = req->ctx;
6591 struct io_comp_state *cs = &ctx->submit_state.comp;
6592
6593 cs->reqs[cs->nr++] = req;
6594 if (cs->nr == ARRAY_SIZE(cs->reqs))
6595 io_submit_flush_completions(cs, ctx);
6596 } else {
6597 io_put_req(req);
6598 }
6599 } else {
6600 req_set_fail_links(req);
6601 io_put_req(req);
6602 io_req_complete(req, ret);
6603 }
6604 if (linked_timeout)
6605 io_queue_linked_timeout(linked_timeout);
6606 }
6607
6608 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6609 {
6610 int ret;
6611
6612 ret = io_req_defer(req, sqe);
6613 if (ret) {
6614 if (ret != -EIOCBQUEUED) {
6615 fail_req:
6616 req_set_fail_links(req);
6617 io_put_req(req);
6618 io_req_complete(req, ret);
6619 }
6620 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6621 if (!req->async_data) {
6622 ret = io_req_defer_prep(req, sqe);
6623 if (unlikely(ret))
6624 goto fail_req;
6625 }
6626 io_queue_async_work(req);
6627 } else {
6628 if (sqe) {
6629 ret = io_req_prep(req, sqe);
6630 if (unlikely(ret))
6631 goto fail_req;
6632 }
6633 __io_queue_sqe(req);
6634 }
6635 }
6636
6637 static inline void io_queue_link_head(struct io_kiocb *req)
6638 {
6639 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6640 io_put_req(req);
6641 io_req_complete(req, -ECANCELED);
6642 } else
6643 io_queue_sqe(req, NULL);
6644 }
6645
6646 /*
6647 * Check SQE restrictions (opcode and flags).
6648 *
6649 * Returns 'true' if SQE is allowed, 'false' otherwise.
6650 */
6651 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6652 struct io_kiocb *req,
6653 unsigned int sqe_flags)
6654 {
6655 if (!ctx->restricted)
6656 return true;
6657
6658 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6659 return false;
6660
6661 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6662 ctx->restrictions.sqe_flags_required)
6663 return false;
6664
6665 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6666 ctx->restrictions.sqe_flags_required))
6667 return false;
6668
6669 return true;
6670 }
6671
6672 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6673 const struct io_uring_sqe *sqe)
6674 {
6675 struct io_submit_state *state;
6676 unsigned int sqe_flags;
6677 int id, ret = 0;
6678
6679 req->opcode = READ_ONCE(sqe->opcode);
6680 /* same numerical values with corresponding REQ_F_*, safe to copy */
6681 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6682 req->user_data = READ_ONCE(sqe->user_data);
6683 req->async_data = NULL;
6684 req->file = NULL;
6685 req->ctx = ctx;
6686 req->link = NULL;
6687 req->fixed_rsrc_refs = NULL;
6688 /* one is dropped after submission, the other at completion */
6689 refcount_set(&req->refs, 2);
6690 req->task = current;
6691 req->result = 0;
6692
6693 /* enforce forwards compatibility on users */
6694 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6695 return -EINVAL;
6696
6697 if (unlikely(req->opcode >= IORING_OP_LAST))
6698 return -EINVAL;
6699
6700 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6701 return -EFAULT;
6702
6703 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6704 return -EACCES;
6705
6706 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6707 !io_op_defs[req->opcode].buffer_select)
6708 return -EOPNOTSUPP;
6709
6710 id = READ_ONCE(sqe->personality);
6711 if (id) {
6712 struct io_identity *iod;
6713
6714 iod = idr_find(&ctx->personality_idr, id);
6715 if (unlikely(!iod))
6716 return -EINVAL;
6717 refcount_inc(&iod->count);
6718
6719 __io_req_init_async(req);
6720 get_cred(iod->creds);
6721 req->work.identity = iod;
6722 req->work.flags |= IO_WQ_WORK_CREDS;
6723 }
6724
6725 state = &ctx->submit_state;
6726
6727 /*
6728 * Plug now if we have more than 1 IO left after this, and the target
6729 * is potentially a read/write to block based storage.
6730 */
6731 if (!state->plug_started && state->ios_left > 1 &&
6732 io_op_defs[req->opcode].plug) {
6733 blk_start_plug(&state->plug);
6734 state->plug_started = true;
6735 }
6736
6737 if (io_op_defs[req->opcode].needs_file) {
6738 bool fixed = req->flags & REQ_F_FIXED_FILE;
6739
6740 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6741 if (unlikely(!req->file))
6742 ret = -EBADF;
6743 }
6744
6745 state->ios_left--;
6746 return ret;
6747 }
6748
6749 struct io_submit_link {
6750 struct io_kiocb *head;
6751 struct io_kiocb *last;
6752 };
6753
6754 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6755 struct io_submit_link *link)
6756 {
6757 struct io_ring_ctx *ctx = req->ctx;
6758 int ret;
6759
6760 /*
6761 * If we already have a head request, queue this one for async
6762 * submittal once the head completes. If we don't have a head but
6763 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6764 * submitted sync once the chain is complete. If none of those
6765 * conditions are true (normal request), then just queue it.
6766 */
6767 if (link->head) {
6768 struct io_kiocb *head = link->head;
6769
6770 /*
6771 * Taking sequential execution of a link, draining both sides
6772 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6773 * requests in the link. So, it drains the head and the
6774 * next after the link request. The last one is done via
6775 * drain_next flag to persist the effect across calls.
6776 */
6777 if (req->flags & REQ_F_IO_DRAIN) {
6778 head->flags |= REQ_F_IO_DRAIN;
6779 ctx->drain_next = 1;
6780 }
6781 ret = io_req_defer_prep(req, sqe);
6782 if (unlikely(ret)) {
6783 /* fail even hard links since we don't submit */
6784 head->flags |= REQ_F_FAIL_LINK;
6785 return ret;
6786 }
6787 trace_io_uring_link(ctx, req, head);
6788 link->last->link = req;
6789 link->last = req;
6790
6791 /* last request of a link, enqueue the link */
6792 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6793 io_queue_link_head(head);
6794 link->head = NULL;
6795 }
6796 } else {
6797 if (unlikely(ctx->drain_next)) {
6798 req->flags |= REQ_F_IO_DRAIN;
6799 ctx->drain_next = 0;
6800 }
6801 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6802 ret = io_req_defer_prep(req, sqe);
6803 if (unlikely(ret))
6804 req->flags |= REQ_F_FAIL_LINK;
6805 link->head = req;
6806 link->last = req;
6807 } else {
6808 io_queue_sqe(req, sqe);
6809 }
6810 }
6811
6812 return 0;
6813 }
6814
6815 /*
6816 * Batched submission is done, ensure local IO is flushed out.
6817 */
6818 static void io_submit_state_end(struct io_submit_state *state,
6819 struct io_ring_ctx *ctx)
6820 {
6821 if (state->comp.nr)
6822 io_submit_flush_completions(&state->comp, ctx);
6823 if (state->plug_started)
6824 blk_finish_plug(&state->plug);
6825 io_state_file_put(state);
6826 }
6827
6828 /*
6829 * Start submission side cache.
6830 */
6831 static void io_submit_state_start(struct io_submit_state *state,
6832 unsigned int max_ios)
6833 {
6834 state->plug_started = false;
6835 state->ios_left = max_ios;
6836 }
6837
6838 static void io_commit_sqring(struct io_ring_ctx *ctx)
6839 {
6840 struct io_rings *rings = ctx->rings;
6841
6842 /*
6843 * Ensure any loads from the SQEs are done at this point,
6844 * since once we write the new head, the application could
6845 * write new data to them.
6846 */
6847 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6848 }
6849
6850 /*
6851 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6852 * that is mapped by userspace. This means that care needs to be taken to
6853 * ensure that reads are stable, as we cannot rely on userspace always
6854 * being a good citizen. If members of the sqe are validated and then later
6855 * used, it's important that those reads are done through READ_ONCE() to
6856 * prevent a re-load down the line.
6857 */
6858 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6859 {
6860 u32 *sq_array = ctx->sq_array;
6861 unsigned head;
6862
6863 /*
6864 * The cached sq head (or cq tail) serves two purposes:
6865 *
6866 * 1) allows us to batch the cost of updating the user visible
6867 * head updates.
6868 * 2) allows the kernel side to track the head on its own, even
6869 * though the application is the one updating it.
6870 */
6871 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6872 if (likely(head < ctx->sq_entries))
6873 return &ctx->sq_sqes[head];
6874
6875 /* drop invalid entries */
6876 ctx->cached_sq_dropped++;
6877 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6878 return NULL;
6879 }
6880
6881 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6882 {
6883 struct io_submit_link link;
6884 int submitted = 0;
6885
6886 /* if we have a backlog and couldn't flush it all, return BUSY */
6887 if (test_bit(0, &ctx->sq_check_overflow)) {
6888 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6889 return -EBUSY;
6890 }
6891
6892 /* make sure SQ entry isn't read before tail */
6893 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6894
6895 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6896 return -EAGAIN;
6897
6898 percpu_counter_add(&current->io_uring->inflight, nr);
6899 refcount_add(nr, &current->usage);
6900
6901 io_submit_state_start(&ctx->submit_state, nr);
6902 link.head = NULL;
6903
6904 while (submitted < nr) {
6905 const struct io_uring_sqe *sqe;
6906 struct io_kiocb *req;
6907 int err;
6908
6909 req = io_alloc_req(ctx);
6910 if (unlikely(!req)) {
6911 if (!submitted)
6912 submitted = -EAGAIN;
6913 break;
6914 }
6915 sqe = io_get_sqe(ctx);
6916 if (unlikely(!sqe)) {
6917 kmem_cache_free(req_cachep, req);
6918 break;
6919 }
6920 /* will complete beyond this point, count as submitted */
6921 submitted++;
6922
6923 err = io_init_req(ctx, req, sqe);
6924 if (unlikely(err)) {
6925 fail_req:
6926 io_put_req(req);
6927 io_req_complete(req, err);
6928 break;
6929 }
6930
6931 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6932 true, ctx->flags & IORING_SETUP_SQPOLL);
6933 err = io_submit_sqe(req, sqe, &link);
6934 if (err)
6935 goto fail_req;
6936 }
6937
6938 if (unlikely(submitted != nr)) {
6939 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6940 struct io_uring_task *tctx = current->io_uring;
6941 int unused = nr - ref_used;
6942
6943 percpu_ref_put_many(&ctx->refs, unused);
6944 percpu_counter_sub(&tctx->inflight, unused);
6945 put_task_struct_many(current, unused);
6946 }
6947 if (link.head)
6948 io_queue_link_head(link.head);
6949 io_submit_state_end(&ctx->submit_state, ctx);
6950
6951 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6952 io_commit_sqring(ctx);
6953
6954 return submitted;
6955 }
6956
6957 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6958 {
6959 /* Tell userspace we may need a wakeup call */
6960 spin_lock_irq(&ctx->completion_lock);
6961 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6962 spin_unlock_irq(&ctx->completion_lock);
6963 }
6964
6965 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6966 {
6967 spin_lock_irq(&ctx->completion_lock);
6968 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6969 spin_unlock_irq(&ctx->completion_lock);
6970 }
6971
6972 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6973 {
6974 unsigned int to_submit;
6975 int ret = 0;
6976
6977 to_submit = io_sqring_entries(ctx);
6978 /* if we're handling multiple rings, cap submit size for fairness */
6979 if (cap_entries && to_submit > 8)
6980 to_submit = 8;
6981
6982 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6983 unsigned nr_events = 0;
6984
6985 mutex_lock(&ctx->uring_lock);
6986 if (!list_empty(&ctx->iopoll_list))
6987 io_do_iopoll(ctx, &nr_events, 0);
6988
6989 if (to_submit && !ctx->sqo_dead &&
6990 likely(!percpu_ref_is_dying(&ctx->refs)))
6991 ret = io_submit_sqes(ctx, to_submit);
6992 mutex_unlock(&ctx->uring_lock);
6993 }
6994
6995 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6996 wake_up(&ctx->sqo_sq_wait);
6997
6998 return ret;
6999 }
7000
7001 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7002 {
7003 struct io_ring_ctx *ctx;
7004 unsigned sq_thread_idle = 0;
7005
7006 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7007 if (sq_thread_idle < ctx->sq_thread_idle)
7008 sq_thread_idle = ctx->sq_thread_idle;
7009 }
7010
7011 sqd->sq_thread_idle = sq_thread_idle;
7012 }
7013
7014 static void io_sqd_init_new(struct io_sq_data *sqd)
7015 {
7016 struct io_ring_ctx *ctx;
7017
7018 while (!list_empty(&sqd->ctx_new_list)) {
7019 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7020 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7021 complete(&ctx->sq_thread_comp);
7022 }
7023
7024 io_sqd_update_thread_idle(sqd);
7025 }
7026
7027 static int io_sq_thread(void *data)
7028 {
7029 struct cgroup_subsys_state *cur_css = NULL;
7030 struct files_struct *old_files = current->files;
7031 struct nsproxy *old_nsproxy = current->nsproxy;
7032 const struct cred *old_cred = NULL;
7033 struct io_sq_data *sqd = data;
7034 struct io_ring_ctx *ctx;
7035 unsigned long timeout = 0;
7036 DEFINE_WAIT(wait);
7037
7038 task_lock(current);
7039 current->files = NULL;
7040 current->nsproxy = NULL;
7041 task_unlock(current);
7042
7043 while (!kthread_should_stop()) {
7044 int ret;
7045 bool cap_entries, sqt_spin, needs_sched;
7046
7047 /*
7048 * Any changes to the sqd lists are synchronized through the
7049 * kthread parking. This synchronizes the thread vs users,
7050 * the users are synchronized on the sqd->ctx_lock.
7051 */
7052 if (kthread_should_park()) {
7053 kthread_parkme();
7054 /*
7055 * When sq thread is unparked, in case the previous park operation
7056 * comes from io_put_sq_data(), which means that sq thread is going
7057 * to be stopped, so here needs to have a check.
7058 */
7059 if (kthread_should_stop())
7060 break;
7061 }
7062
7063 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7064 io_sqd_init_new(sqd);
7065 timeout = jiffies + sqd->sq_thread_idle;
7066 }
7067
7068 sqt_spin = false;
7069 cap_entries = !list_is_singular(&sqd->ctx_list);
7070 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7071 if (current->cred != ctx->creds) {
7072 if (old_cred)
7073 revert_creds(old_cred);
7074 old_cred = override_creds(ctx->creds);
7075 }
7076 io_sq_thread_associate_blkcg(ctx, &cur_css);
7077 #ifdef CONFIG_AUDIT
7078 current->loginuid = ctx->loginuid;
7079 current->sessionid = ctx->sessionid;
7080 #endif
7081
7082 ret = __io_sq_thread(ctx, cap_entries);
7083 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7084 sqt_spin = true;
7085
7086 io_sq_thread_drop_mm_files();
7087 }
7088
7089 if (sqt_spin || !time_after(jiffies, timeout)) {
7090 io_run_task_work();
7091 io_sq_thread_drop_mm_files();
7092 cond_resched();
7093 if (sqt_spin)
7094 timeout = jiffies + sqd->sq_thread_idle;
7095 continue;
7096 }
7097
7098 needs_sched = true;
7099 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7100 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7101 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7102 !list_empty_careful(&ctx->iopoll_list)) {
7103 needs_sched = false;
7104 break;
7105 }
7106 if (io_sqring_entries(ctx)) {
7107 needs_sched = false;
7108 break;
7109 }
7110 }
7111
7112 if (needs_sched && !kthread_should_park()) {
7113 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7114 io_ring_set_wakeup_flag(ctx);
7115
7116 schedule();
7117 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7118 io_ring_clear_wakeup_flag(ctx);
7119 }
7120
7121 finish_wait(&sqd->wait, &wait);
7122 timeout = jiffies + sqd->sq_thread_idle;
7123 }
7124
7125 io_run_task_work();
7126 io_sq_thread_drop_mm_files();
7127
7128 if (cur_css)
7129 io_sq_thread_unassociate_blkcg();
7130 if (old_cred)
7131 revert_creds(old_cred);
7132
7133 task_lock(current);
7134 current->files = old_files;
7135 current->nsproxy = old_nsproxy;
7136 task_unlock(current);
7137
7138 kthread_parkme();
7139
7140 return 0;
7141 }
7142
7143 struct io_wait_queue {
7144 struct wait_queue_entry wq;
7145 struct io_ring_ctx *ctx;
7146 unsigned to_wait;
7147 unsigned nr_timeouts;
7148 };
7149
7150 static inline bool io_should_wake(struct io_wait_queue *iowq)
7151 {
7152 struct io_ring_ctx *ctx = iowq->ctx;
7153
7154 /*
7155 * Wake up if we have enough events, or if a timeout occurred since we
7156 * started waiting. For timeouts, we always want to return to userspace,
7157 * regardless of event count.
7158 */
7159 return io_cqring_events(ctx) >= iowq->to_wait ||
7160 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7161 }
7162
7163 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7164 int wake_flags, void *key)
7165 {
7166 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7167 wq);
7168
7169 /*
7170 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7171 * the task, and the next invocation will do it.
7172 */
7173 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7174 return autoremove_wake_function(curr, mode, wake_flags, key);
7175 return -1;
7176 }
7177
7178 static int io_run_task_work_sig(void)
7179 {
7180 if (io_run_task_work())
7181 return 1;
7182 if (!signal_pending(current))
7183 return 0;
7184 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7185 return -ERESTARTSYS;
7186 return -EINTR;
7187 }
7188
7189 /* when returns >0, the caller should retry */
7190 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7191 struct io_wait_queue *iowq,
7192 signed long *timeout)
7193 {
7194 int ret;
7195
7196 /* make sure we run task_work before checking for signals */
7197 ret = io_run_task_work_sig();
7198 if (ret || io_should_wake(iowq))
7199 return ret;
7200 /* let the caller flush overflows, retry */
7201 if (test_bit(0, &ctx->cq_check_overflow))
7202 return 1;
7203
7204 *timeout = schedule_timeout(*timeout);
7205 return !*timeout ? -ETIME : 1;
7206 }
7207
7208 /*
7209 * Wait until events become available, if we don't already have some. The
7210 * application must reap them itself, as they reside on the shared cq ring.
7211 */
7212 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7213 const sigset_t __user *sig, size_t sigsz,
7214 struct __kernel_timespec __user *uts)
7215 {
7216 struct io_wait_queue iowq = {
7217 .wq = {
7218 .private = current,
7219 .func = io_wake_function,
7220 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7221 },
7222 .ctx = ctx,
7223 .to_wait = min_events,
7224 };
7225 struct io_rings *rings = ctx->rings;
7226 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7227 int ret;
7228
7229 do {
7230 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7231 if (io_cqring_events(ctx) >= min_events)
7232 return 0;
7233 if (!io_run_task_work())
7234 break;
7235 } while (1);
7236
7237 if (sig) {
7238 #ifdef CONFIG_COMPAT
7239 if (in_compat_syscall())
7240 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7241 sigsz);
7242 else
7243 #endif
7244 ret = set_user_sigmask(sig, sigsz);
7245
7246 if (ret)
7247 return ret;
7248 }
7249
7250 if (uts) {
7251 struct timespec64 ts;
7252
7253 if (get_timespec64(&ts, uts))
7254 return -EFAULT;
7255 timeout = timespec64_to_jiffies(&ts);
7256 }
7257
7258 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7259 trace_io_uring_cqring_wait(ctx, min_events);
7260 do {
7261 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7262 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7263 TASK_INTERRUPTIBLE);
7264 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7265 finish_wait(&ctx->wait, &iowq.wq);
7266 } while (ret > 0);
7267
7268 restore_saved_sigmask_unless(ret == -EINTR);
7269
7270 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7271 }
7272
7273 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7274 {
7275 #if defined(CONFIG_UNIX)
7276 if (ctx->ring_sock) {
7277 struct sock *sock = ctx->ring_sock->sk;
7278 struct sk_buff *skb;
7279
7280 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7281 kfree_skb(skb);
7282 }
7283 #else
7284 int i;
7285
7286 for (i = 0; i < ctx->nr_user_files; i++) {
7287 struct file *file;
7288
7289 file = io_file_from_index(ctx, i);
7290 if (file)
7291 fput(file);
7292 }
7293 #endif
7294 }
7295
7296 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7297 {
7298 struct fixed_rsrc_data *data;
7299
7300 data = container_of(ref, struct fixed_rsrc_data, refs);
7301 complete(&data->done);
7302 }
7303
7304 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7305 {
7306 spin_lock_bh(&ctx->rsrc_ref_lock);
7307 }
7308
7309 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7310 {
7311 spin_unlock_bh(&ctx->rsrc_ref_lock);
7312 }
7313
7314 static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
7315 struct fixed_rsrc_data *rsrc_data,
7316 struct fixed_rsrc_ref_node *ref_node)
7317 {
7318 io_rsrc_ref_lock(ctx);
7319 rsrc_data->node = ref_node;
7320 list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
7321 io_rsrc_ref_unlock(ctx);
7322 percpu_ref_get(&rsrc_data->refs);
7323 }
7324
7325 static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
7326 struct io_ring_ctx *ctx,
7327 struct fixed_rsrc_ref_node *backup_node)
7328 {
7329 struct fixed_rsrc_ref_node *ref_node;
7330 int ret;
7331
7332 io_rsrc_ref_lock(ctx);
7333 ref_node = data->node;
7334 io_rsrc_ref_unlock(ctx);
7335 if (ref_node)
7336 percpu_ref_kill(&ref_node->refs);
7337
7338 percpu_ref_kill(&data->refs);
7339
7340 /* wait for all refs nodes to complete */
7341 flush_delayed_work(&ctx->rsrc_put_work);
7342 do {
7343 ret = wait_for_completion_interruptible(&data->done);
7344 if (!ret)
7345 break;
7346 ret = io_run_task_work_sig();
7347 if (ret < 0) {
7348 percpu_ref_resurrect(&data->refs);
7349 reinit_completion(&data->done);
7350 io_sqe_rsrc_set_node(ctx, data, backup_node);
7351 return ret;
7352 }
7353 } while (1);
7354
7355 destroy_fixed_rsrc_ref_node(backup_node);
7356 return 0;
7357 }
7358
7359 static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
7360 {
7361 struct fixed_rsrc_data *data;
7362
7363 data = kzalloc(sizeof(*data), GFP_KERNEL);
7364 if (!data)
7365 return NULL;
7366
7367 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7368 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7369 kfree(data);
7370 return NULL;
7371 }
7372 data->ctx = ctx;
7373 init_completion(&data->done);
7374 return data;
7375 }
7376
7377 static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
7378 {
7379 percpu_ref_exit(&data->refs);
7380 kfree(data->table);
7381 kfree(data);
7382 }
7383
7384 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7385 {
7386 struct fixed_rsrc_data *data = ctx->file_data;
7387 struct fixed_rsrc_ref_node *backup_node;
7388 unsigned nr_tables, i;
7389 int ret;
7390
7391 if (!data)
7392 return -ENXIO;
7393 backup_node = alloc_fixed_rsrc_ref_node(ctx);
7394 if (!backup_node)
7395 return -ENOMEM;
7396 init_fixed_file_ref_node(ctx, backup_node);
7397
7398 ret = io_rsrc_ref_quiesce(data, ctx, backup_node);
7399 if (ret)
7400 return ret;
7401
7402 __io_sqe_files_unregister(ctx);
7403 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7404 for (i = 0; i < nr_tables; i++)
7405 kfree(data->table[i].files);
7406 free_fixed_rsrc_data(data);
7407 ctx->file_data = NULL;
7408 ctx->nr_user_files = 0;
7409 return 0;
7410 }
7411
7412 static void io_put_sq_data(struct io_sq_data *sqd)
7413 {
7414 if (refcount_dec_and_test(&sqd->refs)) {
7415 /*
7416 * The park is a bit of a work-around, without it we get
7417 * warning spews on shutdown with SQPOLL set and affinity
7418 * set to a single CPU.
7419 */
7420 if (sqd->thread) {
7421 kthread_park(sqd->thread);
7422 kthread_stop(sqd->thread);
7423 }
7424
7425 kfree(sqd);
7426 }
7427 }
7428
7429 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7430 {
7431 struct io_ring_ctx *ctx_attach;
7432 struct io_sq_data *sqd;
7433 struct fd f;
7434
7435 f = fdget(p->wq_fd);
7436 if (!f.file)
7437 return ERR_PTR(-ENXIO);
7438 if (f.file->f_op != &io_uring_fops) {
7439 fdput(f);
7440 return ERR_PTR(-EINVAL);
7441 }
7442
7443 ctx_attach = f.file->private_data;
7444 sqd = ctx_attach->sq_data;
7445 if (!sqd) {
7446 fdput(f);
7447 return ERR_PTR(-EINVAL);
7448 }
7449
7450 refcount_inc(&sqd->refs);
7451 fdput(f);
7452 return sqd;
7453 }
7454
7455 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7456 {
7457 struct io_sq_data *sqd;
7458
7459 if (p->flags & IORING_SETUP_ATTACH_WQ)
7460 return io_attach_sq_data(p);
7461
7462 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7463 if (!sqd)
7464 return ERR_PTR(-ENOMEM);
7465
7466 refcount_set(&sqd->refs, 1);
7467 INIT_LIST_HEAD(&sqd->ctx_list);
7468 INIT_LIST_HEAD(&sqd->ctx_new_list);
7469 mutex_init(&sqd->ctx_lock);
7470 mutex_init(&sqd->lock);
7471 init_waitqueue_head(&sqd->wait);
7472 return sqd;
7473 }
7474
7475 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7476 __releases(&sqd->lock)
7477 {
7478 if (!sqd->thread)
7479 return;
7480 kthread_unpark(sqd->thread);
7481 mutex_unlock(&sqd->lock);
7482 }
7483
7484 static void io_sq_thread_park(struct io_sq_data *sqd)
7485 __acquires(&sqd->lock)
7486 {
7487 if (!sqd->thread)
7488 return;
7489 mutex_lock(&sqd->lock);
7490 kthread_park(sqd->thread);
7491 }
7492
7493 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7494 {
7495 struct io_sq_data *sqd = ctx->sq_data;
7496
7497 if (sqd) {
7498 if (sqd->thread) {
7499 /*
7500 * We may arrive here from the error branch in
7501 * io_sq_offload_create() where the kthread is created
7502 * without being waked up, thus wake it up now to make
7503 * sure the wait will complete.
7504 */
7505 wake_up_process(sqd->thread);
7506 wait_for_completion(&ctx->sq_thread_comp);
7507
7508 io_sq_thread_park(sqd);
7509 }
7510
7511 mutex_lock(&sqd->ctx_lock);
7512 list_del(&ctx->sqd_list);
7513 io_sqd_update_thread_idle(sqd);
7514 mutex_unlock(&sqd->ctx_lock);
7515
7516 if (sqd->thread)
7517 io_sq_thread_unpark(sqd);
7518
7519 io_put_sq_data(sqd);
7520 ctx->sq_data = NULL;
7521 }
7522 }
7523
7524 static void io_finish_async(struct io_ring_ctx *ctx)
7525 {
7526 io_sq_thread_stop(ctx);
7527
7528 if (ctx->io_wq) {
7529 io_wq_destroy(ctx->io_wq);
7530 ctx->io_wq = NULL;
7531 }
7532 }
7533
7534 #if defined(CONFIG_UNIX)
7535 /*
7536 * Ensure the UNIX gc is aware of our file set, so we are certain that
7537 * the io_uring can be safely unregistered on process exit, even if we have
7538 * loops in the file referencing.
7539 */
7540 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7541 {
7542 struct sock *sk = ctx->ring_sock->sk;
7543 struct scm_fp_list *fpl;
7544 struct sk_buff *skb;
7545 int i, nr_files;
7546
7547 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7548 if (!fpl)
7549 return -ENOMEM;
7550
7551 skb = alloc_skb(0, GFP_KERNEL);
7552 if (!skb) {
7553 kfree(fpl);
7554 return -ENOMEM;
7555 }
7556
7557 skb->sk = sk;
7558
7559 nr_files = 0;
7560 fpl->user = get_uid(ctx->user);
7561 for (i = 0; i < nr; i++) {
7562 struct file *file = io_file_from_index(ctx, i + offset);
7563
7564 if (!file)
7565 continue;
7566 fpl->fp[nr_files] = get_file(file);
7567 unix_inflight(fpl->user, fpl->fp[nr_files]);
7568 nr_files++;
7569 }
7570
7571 if (nr_files) {
7572 fpl->max = SCM_MAX_FD;
7573 fpl->count = nr_files;
7574 UNIXCB(skb).fp = fpl;
7575 skb->destructor = unix_destruct_scm;
7576 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7577 skb_queue_head(&sk->sk_receive_queue, skb);
7578
7579 for (i = 0; i < nr_files; i++)
7580 fput(fpl->fp[i]);
7581 } else {
7582 kfree_skb(skb);
7583 kfree(fpl);
7584 }
7585
7586 return 0;
7587 }
7588
7589 /*
7590 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7591 * causes regular reference counting to break down. We rely on the UNIX
7592 * garbage collection to take care of this problem for us.
7593 */
7594 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7595 {
7596 unsigned left, total;
7597 int ret = 0;
7598
7599 total = 0;
7600 left = ctx->nr_user_files;
7601 while (left) {
7602 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7603
7604 ret = __io_sqe_files_scm(ctx, this_files, total);
7605 if (ret)
7606 break;
7607 left -= this_files;
7608 total += this_files;
7609 }
7610
7611 if (!ret)
7612 return 0;
7613
7614 while (total < ctx->nr_user_files) {
7615 struct file *file = io_file_from_index(ctx, total);
7616
7617 if (file)
7618 fput(file);
7619 total++;
7620 }
7621
7622 return ret;
7623 }
7624 #else
7625 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7626 {
7627 return 0;
7628 }
7629 #endif
7630
7631 static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
7632 unsigned nr_tables, unsigned nr_files)
7633 {
7634 int i;
7635
7636 for (i = 0; i < nr_tables; i++) {
7637 struct fixed_rsrc_table *table = &file_data->table[i];
7638 unsigned this_files;
7639
7640 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7641 table->files = kcalloc(this_files, sizeof(struct file *),
7642 GFP_KERNEL);
7643 if (!table->files)
7644 break;
7645 nr_files -= this_files;
7646 }
7647
7648 if (i == nr_tables)
7649 return 0;
7650
7651 for (i = 0; i < nr_tables; i++) {
7652 struct fixed_rsrc_table *table = &file_data->table[i];
7653 kfree(table->files);
7654 }
7655 return 1;
7656 }
7657
7658 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7659 {
7660 struct file *file = prsrc->file;
7661 #if defined(CONFIG_UNIX)
7662 struct sock *sock = ctx->ring_sock->sk;
7663 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7664 struct sk_buff *skb;
7665 int i;
7666
7667 __skb_queue_head_init(&list);
7668
7669 /*
7670 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7671 * remove this entry and rearrange the file array.
7672 */
7673 skb = skb_dequeue(head);
7674 while (skb) {
7675 struct scm_fp_list *fp;
7676
7677 fp = UNIXCB(skb).fp;
7678 for (i = 0; i < fp->count; i++) {
7679 int left;
7680
7681 if (fp->fp[i] != file)
7682 continue;
7683
7684 unix_notinflight(fp->user, fp->fp[i]);
7685 left = fp->count - 1 - i;
7686 if (left) {
7687 memmove(&fp->fp[i], &fp->fp[i + 1],
7688 left * sizeof(struct file *));
7689 }
7690 fp->count--;
7691 if (!fp->count) {
7692 kfree_skb(skb);
7693 skb = NULL;
7694 } else {
7695 __skb_queue_tail(&list, skb);
7696 }
7697 fput(file);
7698 file = NULL;
7699 break;
7700 }
7701
7702 if (!file)
7703 break;
7704
7705 __skb_queue_tail(&list, skb);
7706
7707 skb = skb_dequeue(head);
7708 }
7709
7710 if (skb_peek(&list)) {
7711 spin_lock_irq(&head->lock);
7712 while ((skb = __skb_dequeue(&list)) != NULL)
7713 __skb_queue_tail(head, skb);
7714 spin_unlock_irq(&head->lock);
7715 }
7716 #else
7717 fput(file);
7718 #endif
7719 }
7720
7721 static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
7722 {
7723 struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
7724 struct io_ring_ctx *ctx = rsrc_data->ctx;
7725 struct io_rsrc_put *prsrc, *tmp;
7726
7727 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7728 list_del(&prsrc->list);
7729 ref_node->rsrc_put(ctx, prsrc);
7730 kfree(prsrc);
7731 }
7732
7733 percpu_ref_exit(&ref_node->refs);
7734 kfree(ref_node);
7735 percpu_ref_put(&rsrc_data->refs);
7736 }
7737
7738 static void io_rsrc_put_work(struct work_struct *work)
7739 {
7740 struct io_ring_ctx *ctx;
7741 struct llist_node *node;
7742
7743 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7744 node = llist_del_all(&ctx->rsrc_put_llist);
7745
7746 while (node) {
7747 struct fixed_rsrc_ref_node *ref_node;
7748 struct llist_node *next = node->next;
7749
7750 ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
7751 __io_rsrc_put_work(ref_node);
7752 node = next;
7753 }
7754 }
7755
7756 static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
7757 unsigned i)
7758 {
7759 struct fixed_rsrc_table *table;
7760
7761 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7762 return &table->files[i & IORING_FILE_TABLE_MASK];
7763 }
7764
7765 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7766 {
7767 struct fixed_rsrc_ref_node *ref_node;
7768 struct fixed_rsrc_data *data;
7769 struct io_ring_ctx *ctx;
7770 bool first_add = false;
7771 int delay = HZ;
7772
7773 ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
7774 data = ref_node->rsrc_data;
7775 ctx = data->ctx;
7776
7777 io_rsrc_ref_lock(ctx);
7778 ref_node->done = true;
7779
7780 while (!list_empty(&ctx->rsrc_ref_list)) {
7781 ref_node = list_first_entry(&ctx->rsrc_ref_list,
7782 struct fixed_rsrc_ref_node, node);
7783 /* recycle ref nodes in order */
7784 if (!ref_node->done)
7785 break;
7786 list_del(&ref_node->node);
7787 first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
7788 }
7789 io_rsrc_ref_unlock(ctx);
7790
7791 if (percpu_ref_is_dying(&data->refs))
7792 delay = 0;
7793
7794 if (!delay)
7795 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7796 else if (first_add)
7797 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7798 }
7799
7800 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
7801 struct io_ring_ctx *ctx)
7802 {
7803 struct fixed_rsrc_ref_node *ref_node;
7804
7805 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7806 if (!ref_node)
7807 return NULL;
7808
7809 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7810 0, GFP_KERNEL)) {
7811 kfree(ref_node);
7812 return NULL;
7813 }
7814 INIT_LIST_HEAD(&ref_node->node);
7815 INIT_LIST_HEAD(&ref_node->rsrc_list);
7816 ref_node->done = false;
7817 return ref_node;
7818 }
7819
7820 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7821 struct fixed_rsrc_ref_node *ref_node)
7822 {
7823 ref_node->rsrc_data = ctx->file_data;
7824 ref_node->rsrc_put = io_ring_file_put;
7825 }
7826
7827 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
7828 {
7829 percpu_ref_exit(&ref_node->refs);
7830 kfree(ref_node);
7831 }
7832
7833
7834 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7835 unsigned nr_args)
7836 {
7837 __s32 __user *fds = (__s32 __user *) arg;
7838 unsigned nr_tables, i;
7839 struct file *file;
7840 int fd, ret = -ENOMEM;
7841 struct fixed_rsrc_ref_node *ref_node;
7842 struct fixed_rsrc_data *file_data;
7843
7844 if (ctx->file_data)
7845 return -EBUSY;
7846 if (!nr_args)
7847 return -EINVAL;
7848 if (nr_args > IORING_MAX_FIXED_FILES)
7849 return -EMFILE;
7850
7851 file_data = alloc_fixed_rsrc_data(ctx);
7852 if (!file_data)
7853 return -ENOMEM;
7854 ctx->file_data = file_data;
7855
7856 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7857 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7858 GFP_KERNEL);
7859 if (!file_data->table)
7860 goto out_free;
7861
7862 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7863 goto out_free;
7864
7865 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7866 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7867 ret = -EFAULT;
7868 goto out_fput;
7869 }
7870 /* allow sparse sets */
7871 if (fd == -1)
7872 continue;
7873
7874 file = fget(fd);
7875 ret = -EBADF;
7876 if (!file)
7877 goto out_fput;
7878
7879 /*
7880 * Don't allow io_uring instances to be registered. If UNIX
7881 * isn't enabled, then this causes a reference cycle and this
7882 * instance can never get freed. If UNIX is enabled we'll
7883 * handle it just fine, but there's still no point in allowing
7884 * a ring fd as it doesn't support regular read/write anyway.
7885 */
7886 if (file->f_op == &io_uring_fops) {
7887 fput(file);
7888 goto out_fput;
7889 }
7890 *io_fixed_file_slot(file_data, i) = file;
7891 }
7892
7893 ret = io_sqe_files_scm(ctx);
7894 if (ret) {
7895 io_sqe_files_unregister(ctx);
7896 return ret;
7897 }
7898
7899 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7900 if (!ref_node) {
7901 io_sqe_files_unregister(ctx);
7902 return -ENOMEM;
7903 }
7904 init_fixed_file_ref_node(ctx, ref_node);
7905
7906 io_sqe_rsrc_set_node(ctx, file_data, ref_node);
7907 return ret;
7908 out_fput:
7909 for (i = 0; i < ctx->nr_user_files; i++) {
7910 file = io_file_from_index(ctx, i);
7911 if (file)
7912 fput(file);
7913 }
7914 for (i = 0; i < nr_tables; i++)
7915 kfree(file_data->table[i].files);
7916 ctx->nr_user_files = 0;
7917 out_free:
7918 free_fixed_rsrc_data(ctx->file_data);
7919 ctx->file_data = NULL;
7920 return ret;
7921 }
7922
7923 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7924 int index)
7925 {
7926 #if defined(CONFIG_UNIX)
7927 struct sock *sock = ctx->ring_sock->sk;
7928 struct sk_buff_head *head = &sock->sk_receive_queue;
7929 struct sk_buff *skb;
7930
7931 /*
7932 * See if we can merge this file into an existing skb SCM_RIGHTS
7933 * file set. If there's no room, fall back to allocating a new skb
7934 * and filling it in.
7935 */
7936 spin_lock_irq(&head->lock);
7937 skb = skb_peek(head);
7938 if (skb) {
7939 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7940
7941 if (fpl->count < SCM_MAX_FD) {
7942 __skb_unlink(skb, head);
7943 spin_unlock_irq(&head->lock);
7944 fpl->fp[fpl->count] = get_file(file);
7945 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7946 fpl->count++;
7947 spin_lock_irq(&head->lock);
7948 __skb_queue_head(head, skb);
7949 } else {
7950 skb = NULL;
7951 }
7952 }
7953 spin_unlock_irq(&head->lock);
7954
7955 if (skb) {
7956 fput(file);
7957 return 0;
7958 }
7959
7960 return __io_sqe_files_scm(ctx, 1, index);
7961 #else
7962 return 0;
7963 #endif
7964 }
7965
7966 static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
7967 {
7968 struct io_rsrc_put *prsrc;
7969 struct fixed_rsrc_ref_node *ref_node = data->node;
7970
7971 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7972 if (!prsrc)
7973 return -ENOMEM;
7974
7975 prsrc->rsrc = rsrc;
7976 list_add(&prsrc->list, &ref_node->rsrc_list);
7977
7978 return 0;
7979 }
7980
7981 static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
7982 struct file *file)
7983 {
7984 return io_queue_rsrc_removal(data, (void *)file);
7985 }
7986
7987 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7988 struct io_uring_rsrc_update *up,
7989 unsigned nr_args)
7990 {
7991 struct fixed_rsrc_data *data = ctx->file_data;
7992 struct fixed_rsrc_ref_node *ref_node;
7993 struct file *file, **file_slot;
7994 __s32 __user *fds;
7995 int fd, i, err;
7996 __u32 done;
7997 bool needs_switch = false;
7998
7999 if (check_add_overflow(up->offset, nr_args, &done))
8000 return -EOVERFLOW;
8001 if (done > ctx->nr_user_files)
8002 return -EINVAL;
8003
8004 ref_node = alloc_fixed_rsrc_ref_node(ctx);
8005 if (!ref_node)
8006 return -ENOMEM;
8007 init_fixed_file_ref_node(ctx, ref_node);
8008
8009 fds = u64_to_user_ptr(up->data);
8010 for (done = 0; done < nr_args; done++) {
8011 err = 0;
8012 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8013 err = -EFAULT;
8014 break;
8015 }
8016 if (fd == IORING_REGISTER_FILES_SKIP)
8017 continue;
8018
8019 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8020 file_slot = io_fixed_file_slot(ctx->file_data, i);
8021
8022 if (*file_slot) {
8023 err = io_queue_file_removal(data, *file_slot);
8024 if (err)
8025 break;
8026 *file_slot = NULL;
8027 needs_switch = true;
8028 }
8029 if (fd != -1) {
8030 file = fget(fd);
8031 if (!file) {
8032 err = -EBADF;
8033 break;
8034 }
8035 /*
8036 * Don't allow io_uring instances to be registered. If
8037 * UNIX isn't enabled, then this causes a reference
8038 * cycle and this instance can never get freed. If UNIX
8039 * is enabled we'll handle it just fine, but there's
8040 * still no point in allowing a ring fd as it doesn't
8041 * support regular read/write anyway.
8042 */
8043 if (file->f_op == &io_uring_fops) {
8044 fput(file);
8045 err = -EBADF;
8046 break;
8047 }
8048 *file_slot = file;
8049 err = io_sqe_file_register(ctx, file, i);
8050 if (err) {
8051 *file_slot = NULL;
8052 fput(file);
8053 break;
8054 }
8055 }
8056 }
8057
8058 if (needs_switch) {
8059 percpu_ref_kill(&data->node->refs);
8060 io_sqe_rsrc_set_node(ctx, data, ref_node);
8061 } else
8062 destroy_fixed_rsrc_ref_node(ref_node);
8063
8064 return done ? done : err;
8065 }
8066
8067 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8068 unsigned nr_args)
8069 {
8070 struct io_uring_rsrc_update up;
8071
8072 if (!ctx->file_data)
8073 return -ENXIO;
8074 if (!nr_args)
8075 return -EINVAL;
8076 if (copy_from_user(&up, arg, sizeof(up)))
8077 return -EFAULT;
8078 if (up.resv)
8079 return -EINVAL;
8080
8081 return __io_sqe_files_update(ctx, &up, nr_args);
8082 }
8083
8084 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8085 {
8086 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8087
8088 req = io_put_req_find_next(req);
8089 return req ? &req->work : NULL;
8090 }
8091
8092 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8093 struct io_uring_params *p)
8094 {
8095 struct io_wq_data data;
8096 struct fd f;
8097 struct io_ring_ctx *ctx_attach;
8098 unsigned int concurrency;
8099 int ret = 0;
8100
8101 data.user = ctx->user;
8102 data.free_work = io_free_work;
8103 data.do_work = io_wq_submit_work;
8104
8105 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8106 /* Do QD, or 4 * CPUS, whatever is smallest */
8107 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8108
8109 ctx->io_wq = io_wq_create(concurrency, &data);
8110 if (IS_ERR(ctx->io_wq)) {
8111 ret = PTR_ERR(ctx->io_wq);
8112 ctx->io_wq = NULL;
8113 }
8114 return ret;
8115 }
8116
8117 f = fdget(p->wq_fd);
8118 if (!f.file)
8119 return -EBADF;
8120
8121 if (f.file->f_op != &io_uring_fops) {
8122 ret = -EINVAL;
8123 goto out_fput;
8124 }
8125
8126 ctx_attach = f.file->private_data;
8127 /* @io_wq is protected by holding the fd */
8128 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8129 ret = -EINVAL;
8130 goto out_fput;
8131 }
8132
8133 ctx->io_wq = ctx_attach->io_wq;
8134 out_fput:
8135 fdput(f);
8136 return ret;
8137 }
8138
8139 static int io_uring_alloc_task_context(struct task_struct *task)
8140 {
8141 struct io_uring_task *tctx;
8142 int ret;
8143
8144 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8145 if (unlikely(!tctx))
8146 return -ENOMEM;
8147
8148 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8149 if (unlikely(ret)) {
8150 kfree(tctx);
8151 return ret;
8152 }
8153
8154 xa_init(&tctx->xa);
8155 init_waitqueue_head(&tctx->wait);
8156 tctx->last = NULL;
8157 atomic_set(&tctx->in_idle, 0);
8158 tctx->sqpoll = false;
8159 io_init_identity(&tctx->__identity);
8160 tctx->identity = &tctx->__identity;
8161 task->io_uring = tctx;
8162 spin_lock_init(&tctx->task_lock);
8163 INIT_WQ_LIST(&tctx->task_list);
8164 tctx->task_state = 0;
8165 init_task_work(&tctx->task_work, tctx_task_work);
8166 return 0;
8167 }
8168
8169 void __io_uring_free(struct task_struct *tsk)
8170 {
8171 struct io_uring_task *tctx = tsk->io_uring;
8172
8173 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8174 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8175 if (tctx->identity != &tctx->__identity)
8176 kfree(tctx->identity);
8177 percpu_counter_destroy(&tctx->inflight);
8178 kfree(tctx);
8179 tsk->io_uring = NULL;
8180 }
8181
8182 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8183 struct io_uring_params *p)
8184 {
8185 int ret;
8186
8187 if (ctx->flags & IORING_SETUP_SQPOLL) {
8188 struct io_sq_data *sqd;
8189
8190 ret = -EPERM;
8191 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8192 goto err;
8193
8194 sqd = io_get_sq_data(p);
8195 if (IS_ERR(sqd)) {
8196 ret = PTR_ERR(sqd);
8197 goto err;
8198 }
8199
8200 ctx->sq_data = sqd;
8201 io_sq_thread_park(sqd);
8202 mutex_lock(&sqd->ctx_lock);
8203 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8204 mutex_unlock(&sqd->ctx_lock);
8205 io_sq_thread_unpark(sqd);
8206
8207 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8208 if (!ctx->sq_thread_idle)
8209 ctx->sq_thread_idle = HZ;
8210
8211 if (sqd->thread)
8212 goto done;
8213
8214 if (p->flags & IORING_SETUP_SQ_AFF) {
8215 int cpu = p->sq_thread_cpu;
8216
8217 ret = -EINVAL;
8218 if (cpu >= nr_cpu_ids)
8219 goto err;
8220 if (!cpu_online(cpu))
8221 goto err;
8222
8223 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8224 cpu, "io_uring-sq");
8225 } else {
8226 sqd->thread = kthread_create(io_sq_thread, sqd,
8227 "io_uring-sq");
8228 }
8229 if (IS_ERR(sqd->thread)) {
8230 ret = PTR_ERR(sqd->thread);
8231 sqd->thread = NULL;
8232 goto err;
8233 }
8234 ret = io_uring_alloc_task_context(sqd->thread);
8235 if (ret)
8236 goto err;
8237 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8238 /* Can't have SQ_AFF without SQPOLL */
8239 ret = -EINVAL;
8240 goto err;
8241 }
8242
8243 done:
8244 ret = io_init_wq_offload(ctx, p);
8245 if (ret)
8246 goto err;
8247
8248 return 0;
8249 err:
8250 io_finish_async(ctx);
8251 return ret;
8252 }
8253
8254 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8255 {
8256 struct io_sq_data *sqd = ctx->sq_data;
8257
8258 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8259 wake_up_process(sqd->thread);
8260 }
8261
8262 static inline void __io_unaccount_mem(struct user_struct *user,
8263 unsigned long nr_pages)
8264 {
8265 atomic_long_sub(nr_pages, &user->locked_vm);
8266 }
8267
8268 static inline int __io_account_mem(struct user_struct *user,
8269 unsigned long nr_pages)
8270 {
8271 unsigned long page_limit, cur_pages, new_pages;
8272
8273 /* Don't allow more pages than we can safely lock */
8274 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8275
8276 do {
8277 cur_pages = atomic_long_read(&user->locked_vm);
8278 new_pages = cur_pages + nr_pages;
8279 if (new_pages > page_limit)
8280 return -ENOMEM;
8281 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8282 new_pages) != cur_pages);
8283
8284 return 0;
8285 }
8286
8287 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8288 {
8289 if (ctx->limit_mem)
8290 __io_unaccount_mem(ctx->user, nr_pages);
8291
8292 if (ctx->mm_account)
8293 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8294 }
8295
8296 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8297 {
8298 int ret;
8299
8300 if (ctx->limit_mem) {
8301 ret = __io_account_mem(ctx->user, nr_pages);
8302 if (ret)
8303 return ret;
8304 }
8305
8306 if (ctx->mm_account)
8307 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8308
8309 return 0;
8310 }
8311
8312 static void io_mem_free(void *ptr)
8313 {
8314 struct page *page;
8315
8316 if (!ptr)
8317 return;
8318
8319 page = virt_to_head_page(ptr);
8320 if (put_page_testzero(page))
8321 free_compound_page(page);
8322 }
8323
8324 static void *io_mem_alloc(size_t size)
8325 {
8326 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8327 __GFP_NORETRY | __GFP_ACCOUNT;
8328
8329 return (void *) __get_free_pages(gfp_flags, get_order(size));
8330 }
8331
8332 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8333 size_t *sq_offset)
8334 {
8335 struct io_rings *rings;
8336 size_t off, sq_array_size;
8337
8338 off = struct_size(rings, cqes, cq_entries);
8339 if (off == SIZE_MAX)
8340 return SIZE_MAX;
8341
8342 #ifdef CONFIG_SMP
8343 off = ALIGN(off, SMP_CACHE_BYTES);
8344 if (off == 0)
8345 return SIZE_MAX;
8346 #endif
8347
8348 if (sq_offset)
8349 *sq_offset = off;
8350
8351 sq_array_size = array_size(sizeof(u32), sq_entries);
8352 if (sq_array_size == SIZE_MAX)
8353 return SIZE_MAX;
8354
8355 if (check_add_overflow(off, sq_array_size, &off))
8356 return SIZE_MAX;
8357
8358 return off;
8359 }
8360
8361 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8362 {
8363 int i, j;
8364
8365 if (!ctx->user_bufs)
8366 return -ENXIO;
8367
8368 for (i = 0; i < ctx->nr_user_bufs; i++) {
8369 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8370
8371 for (j = 0; j < imu->nr_bvecs; j++)
8372 unpin_user_page(imu->bvec[j].bv_page);
8373
8374 if (imu->acct_pages)
8375 io_unaccount_mem(ctx, imu->acct_pages);
8376 kvfree(imu->bvec);
8377 imu->nr_bvecs = 0;
8378 }
8379
8380 kfree(ctx->user_bufs);
8381 ctx->user_bufs = NULL;
8382 ctx->nr_user_bufs = 0;
8383 return 0;
8384 }
8385
8386 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8387 void __user *arg, unsigned index)
8388 {
8389 struct iovec __user *src;
8390
8391 #ifdef CONFIG_COMPAT
8392 if (ctx->compat) {
8393 struct compat_iovec __user *ciovs;
8394 struct compat_iovec ciov;
8395
8396 ciovs = (struct compat_iovec __user *) arg;
8397 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8398 return -EFAULT;
8399
8400 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8401 dst->iov_len = ciov.iov_len;
8402 return 0;
8403 }
8404 #endif
8405 src = (struct iovec __user *) arg;
8406 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8407 return -EFAULT;
8408 return 0;
8409 }
8410
8411 /*
8412 * Not super efficient, but this is just a registration time. And we do cache
8413 * the last compound head, so generally we'll only do a full search if we don't
8414 * match that one.
8415 *
8416 * We check if the given compound head page has already been accounted, to
8417 * avoid double accounting it. This allows us to account the full size of the
8418 * page, not just the constituent pages of a huge page.
8419 */
8420 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8421 int nr_pages, struct page *hpage)
8422 {
8423 int i, j;
8424
8425 /* check current page array */
8426 for (i = 0; i < nr_pages; i++) {
8427 if (!PageCompound(pages[i]))
8428 continue;
8429 if (compound_head(pages[i]) == hpage)
8430 return true;
8431 }
8432
8433 /* check previously registered pages */
8434 for (i = 0; i < ctx->nr_user_bufs; i++) {
8435 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8436
8437 for (j = 0; j < imu->nr_bvecs; j++) {
8438 if (!PageCompound(imu->bvec[j].bv_page))
8439 continue;
8440 if (compound_head(imu->bvec[j].bv_page) == hpage)
8441 return true;
8442 }
8443 }
8444
8445 return false;
8446 }
8447
8448 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8449 int nr_pages, struct io_mapped_ubuf *imu,
8450 struct page **last_hpage)
8451 {
8452 int i, ret;
8453
8454 for (i = 0; i < nr_pages; i++) {
8455 if (!PageCompound(pages[i])) {
8456 imu->acct_pages++;
8457 } else {
8458 struct page *hpage;
8459
8460 hpage = compound_head(pages[i]);
8461 if (hpage == *last_hpage)
8462 continue;
8463 *last_hpage = hpage;
8464 if (headpage_already_acct(ctx, pages, i, hpage))
8465 continue;
8466 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8467 }
8468 }
8469
8470 if (!imu->acct_pages)
8471 return 0;
8472
8473 ret = io_account_mem(ctx, imu->acct_pages);
8474 if (ret)
8475 imu->acct_pages = 0;
8476 return ret;
8477 }
8478
8479 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8480 struct io_mapped_ubuf *imu,
8481 struct page **last_hpage)
8482 {
8483 struct vm_area_struct **vmas = NULL;
8484 struct page **pages = NULL;
8485 unsigned long off, start, end, ubuf;
8486 size_t size;
8487 int ret, pret, nr_pages, i;
8488
8489 ubuf = (unsigned long) iov->iov_base;
8490 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8491 start = ubuf >> PAGE_SHIFT;
8492 nr_pages = end - start;
8493
8494 ret = -ENOMEM;
8495
8496 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8497 if (!pages)
8498 goto done;
8499
8500 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8501 GFP_KERNEL);
8502 if (!vmas)
8503 goto done;
8504
8505 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8506 GFP_KERNEL);
8507 if (!imu->bvec)
8508 goto done;
8509
8510 ret = 0;
8511 mmap_read_lock(current->mm);
8512 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8513 pages, vmas);
8514 if (pret == nr_pages) {
8515 /* don't support file backed memory */
8516 for (i = 0; i < nr_pages; i++) {
8517 struct vm_area_struct *vma = vmas[i];
8518
8519 if (vma->vm_file &&
8520 !is_file_hugepages(vma->vm_file)) {
8521 ret = -EOPNOTSUPP;
8522 break;
8523 }
8524 }
8525 } else {
8526 ret = pret < 0 ? pret : -EFAULT;
8527 }
8528 mmap_read_unlock(current->mm);
8529 if (ret) {
8530 /*
8531 * if we did partial map, or found file backed vmas,
8532 * release any pages we did get
8533 */
8534 if (pret > 0)
8535 unpin_user_pages(pages, pret);
8536 kvfree(imu->bvec);
8537 goto done;
8538 }
8539
8540 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8541 if (ret) {
8542 unpin_user_pages(pages, pret);
8543 kvfree(imu->bvec);
8544 goto done;
8545 }
8546
8547 off = ubuf & ~PAGE_MASK;
8548 size = iov->iov_len;
8549 for (i = 0; i < nr_pages; i++) {
8550 size_t vec_len;
8551
8552 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8553 imu->bvec[i].bv_page = pages[i];
8554 imu->bvec[i].bv_len = vec_len;
8555 imu->bvec[i].bv_offset = off;
8556 off = 0;
8557 size -= vec_len;
8558 }
8559 /* store original address for later verification */
8560 imu->ubuf = ubuf;
8561 imu->len = iov->iov_len;
8562 imu->nr_bvecs = nr_pages;
8563 ret = 0;
8564 done:
8565 kvfree(pages);
8566 kvfree(vmas);
8567 return ret;
8568 }
8569
8570 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8571 {
8572 if (ctx->user_bufs)
8573 return -EBUSY;
8574 if (!nr_args || nr_args > UIO_MAXIOV)
8575 return -EINVAL;
8576
8577 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8578 GFP_KERNEL);
8579 if (!ctx->user_bufs)
8580 return -ENOMEM;
8581
8582 return 0;
8583 }
8584
8585 static int io_buffer_validate(struct iovec *iov)
8586 {
8587 /*
8588 * Don't impose further limits on the size and buffer
8589 * constraints here, we'll -EINVAL later when IO is
8590 * submitted if they are wrong.
8591 */
8592 if (!iov->iov_base || !iov->iov_len)
8593 return -EFAULT;
8594
8595 /* arbitrary limit, but we need something */
8596 if (iov->iov_len > SZ_1G)
8597 return -EFAULT;
8598
8599 return 0;
8600 }
8601
8602 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8603 unsigned int nr_args)
8604 {
8605 int i, ret;
8606 struct iovec iov;
8607 struct page *last_hpage = NULL;
8608
8609 ret = io_buffers_map_alloc(ctx, nr_args);
8610 if (ret)
8611 return ret;
8612
8613 for (i = 0; i < nr_args; i++) {
8614 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8615
8616 ret = io_copy_iov(ctx, &iov, arg, i);
8617 if (ret)
8618 break;
8619
8620 ret = io_buffer_validate(&iov);
8621 if (ret)
8622 break;
8623
8624 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8625 if (ret)
8626 break;
8627
8628 ctx->nr_user_bufs++;
8629 }
8630
8631 if (ret)
8632 io_sqe_buffers_unregister(ctx);
8633
8634 return ret;
8635 }
8636
8637 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8638 {
8639 __s32 __user *fds = arg;
8640 int fd;
8641
8642 if (ctx->cq_ev_fd)
8643 return -EBUSY;
8644
8645 if (copy_from_user(&fd, fds, sizeof(*fds)))
8646 return -EFAULT;
8647
8648 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8649 if (IS_ERR(ctx->cq_ev_fd)) {
8650 int ret = PTR_ERR(ctx->cq_ev_fd);
8651 ctx->cq_ev_fd = NULL;
8652 return ret;
8653 }
8654
8655 return 0;
8656 }
8657
8658 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8659 {
8660 if (ctx->cq_ev_fd) {
8661 eventfd_ctx_put(ctx->cq_ev_fd);
8662 ctx->cq_ev_fd = NULL;
8663 return 0;
8664 }
8665
8666 return -ENXIO;
8667 }
8668
8669 static int __io_destroy_buffers(int id, void *p, void *data)
8670 {
8671 struct io_ring_ctx *ctx = data;
8672 struct io_buffer *buf = p;
8673
8674 __io_remove_buffers(ctx, buf, id, -1U);
8675 return 0;
8676 }
8677
8678 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8679 {
8680 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8681 idr_destroy(&ctx->io_buffer_idr);
8682 }
8683
8684 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8685 {
8686 struct io_kiocb *req, *nxt;
8687
8688 list_for_each_entry_safe(req, nxt, list, compl.list) {
8689 if (tsk && req->task != tsk)
8690 continue;
8691 list_del(&req->compl.list);
8692 kmem_cache_free(req_cachep, req);
8693 }
8694 }
8695
8696 static void io_req_caches_free(struct io_ring_ctx *ctx, struct task_struct *tsk)
8697 {
8698 struct io_submit_state *submit_state = &ctx->submit_state;
8699
8700 mutex_lock(&ctx->uring_lock);
8701
8702 if (submit_state->free_reqs)
8703 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8704 submit_state->reqs);
8705
8706 io_req_cache_free(&submit_state->comp.free_list, NULL);
8707
8708 spin_lock_irq(&ctx->completion_lock);
8709 io_req_cache_free(&submit_state->comp.locked_free_list, NULL);
8710 spin_unlock_irq(&ctx->completion_lock);
8711
8712 mutex_unlock(&ctx->uring_lock);
8713 }
8714
8715 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8716 {
8717 /*
8718 * Some may use context even when all refs and requests have been put,
8719 * and they are free to do so while still holding uring_lock, see
8720 * __io_req_task_submit(). Wait for them to finish.
8721 */
8722 mutex_lock(&ctx->uring_lock);
8723 mutex_unlock(&ctx->uring_lock);
8724
8725 io_finish_async(ctx);
8726 io_sqe_buffers_unregister(ctx);
8727
8728 if (ctx->sqo_task) {
8729 put_task_struct(ctx->sqo_task);
8730 ctx->sqo_task = NULL;
8731 mmdrop(ctx->mm_account);
8732 ctx->mm_account = NULL;
8733 }
8734
8735 #ifdef CONFIG_BLK_CGROUP
8736 if (ctx->sqo_blkcg_css)
8737 css_put(ctx->sqo_blkcg_css);
8738 #endif
8739
8740 io_sqe_files_unregister(ctx);
8741 io_eventfd_unregister(ctx);
8742 io_destroy_buffers(ctx);
8743 idr_destroy(&ctx->personality_idr);
8744
8745 #if defined(CONFIG_UNIX)
8746 if (ctx->ring_sock) {
8747 ctx->ring_sock->file = NULL; /* so that iput() is called */
8748 sock_release(ctx->ring_sock);
8749 }
8750 #endif
8751
8752 io_mem_free(ctx->rings);
8753 io_mem_free(ctx->sq_sqes);
8754
8755 percpu_ref_exit(&ctx->refs);
8756 free_uid(ctx->user);
8757 put_cred(ctx->creds);
8758 io_req_caches_free(ctx, NULL);
8759 kfree(ctx->cancel_hash);
8760 kfree(ctx);
8761 }
8762
8763 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8764 {
8765 struct io_ring_ctx *ctx = file->private_data;
8766 __poll_t mask = 0;
8767
8768 poll_wait(file, &ctx->cq_wait, wait);
8769 /*
8770 * synchronizes with barrier from wq_has_sleeper call in
8771 * io_commit_cqring
8772 */
8773 smp_rmb();
8774 if (!io_sqring_full(ctx))
8775 mask |= EPOLLOUT | EPOLLWRNORM;
8776
8777 /*
8778 * Don't flush cqring overflow list here, just do a simple check.
8779 * Otherwise there could possible be ABBA deadlock:
8780 * CPU0 CPU1
8781 * ---- ----
8782 * lock(&ctx->uring_lock);
8783 * lock(&ep->mtx);
8784 * lock(&ctx->uring_lock);
8785 * lock(&ep->mtx);
8786 *
8787 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8788 * pushs them to do the flush.
8789 */
8790 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8791 mask |= EPOLLIN | EPOLLRDNORM;
8792
8793 return mask;
8794 }
8795
8796 static int io_uring_fasync(int fd, struct file *file, int on)
8797 {
8798 struct io_ring_ctx *ctx = file->private_data;
8799
8800 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8801 }
8802
8803 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8804 {
8805 struct io_identity *iod;
8806
8807 iod = idr_remove(&ctx->personality_idr, id);
8808 if (iod) {
8809 put_cred(iod->creds);
8810 if (refcount_dec_and_test(&iod->count))
8811 kfree(iod);
8812 return 0;
8813 }
8814
8815 return -EINVAL;
8816 }
8817
8818 static int io_remove_personalities(int id, void *p, void *data)
8819 {
8820 struct io_ring_ctx *ctx = data;
8821
8822 io_unregister_personality(ctx, id);
8823 return 0;
8824 }
8825
8826 static void io_ring_exit_work(struct work_struct *work)
8827 {
8828 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8829 exit_work);
8830
8831 /*
8832 * If we're doing polled IO and end up having requests being
8833 * submitted async (out-of-line), then completions can come in while
8834 * we're waiting for refs to drop. We need to reap these manually,
8835 * as nobody else will be looking for them.
8836 */
8837 do {
8838 io_uring_try_cancel_requests(ctx, NULL, NULL);
8839 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8840 io_ring_ctx_free(ctx);
8841 }
8842
8843 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8844 {
8845 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8846
8847 return req->ctx == data;
8848 }
8849
8850 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8851 {
8852 mutex_lock(&ctx->uring_lock);
8853 percpu_ref_kill(&ctx->refs);
8854
8855 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8856 ctx->sqo_dead = 1;
8857
8858 /* if force is set, the ring is going away. always drop after that */
8859 ctx->cq_overflow_flushed = 1;
8860 if (ctx->rings)
8861 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8862 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8863 mutex_unlock(&ctx->uring_lock);
8864
8865 io_kill_timeouts(ctx, NULL, NULL);
8866 io_poll_remove_all(ctx, NULL, NULL);
8867
8868 if (ctx->io_wq)
8869 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8870
8871 /* if we failed setting up the ctx, we might not have any rings */
8872 io_iopoll_try_reap_events(ctx);
8873
8874 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8875 /*
8876 * Use system_unbound_wq to avoid spawning tons of event kworkers
8877 * if we're exiting a ton of rings at the same time. It just adds
8878 * noise and overhead, there's no discernable change in runtime
8879 * over using system_wq.
8880 */
8881 queue_work(system_unbound_wq, &ctx->exit_work);
8882 }
8883
8884 static int io_uring_release(struct inode *inode, struct file *file)
8885 {
8886 struct io_ring_ctx *ctx = file->private_data;
8887
8888 file->private_data = NULL;
8889 io_ring_ctx_wait_and_kill(ctx);
8890 return 0;
8891 }
8892
8893 struct io_task_cancel {
8894 struct task_struct *task;
8895 struct files_struct *files;
8896 };
8897
8898 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8899 {
8900 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8901 struct io_task_cancel *cancel = data;
8902 bool ret;
8903
8904 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8905 unsigned long flags;
8906 struct io_ring_ctx *ctx = req->ctx;
8907
8908 /* protect against races with linked timeouts */
8909 spin_lock_irqsave(&ctx->completion_lock, flags);
8910 ret = io_match_task(req, cancel->task, cancel->files);
8911 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8912 } else {
8913 ret = io_match_task(req, cancel->task, cancel->files);
8914 }
8915 return ret;
8916 }
8917
8918 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8919 struct task_struct *task,
8920 struct files_struct *files)
8921 {
8922 struct io_defer_entry *de = NULL;
8923 LIST_HEAD(list);
8924
8925 spin_lock_irq(&ctx->completion_lock);
8926 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8927 if (io_match_task(de->req, task, files)) {
8928 list_cut_position(&list, &ctx->defer_list, &de->list);
8929 break;
8930 }
8931 }
8932 spin_unlock_irq(&ctx->completion_lock);
8933
8934 while (!list_empty(&list)) {
8935 de = list_first_entry(&list, struct io_defer_entry, list);
8936 list_del_init(&de->list);
8937 req_set_fail_links(de->req);
8938 io_put_req(de->req);
8939 io_req_complete(de->req, -ECANCELED);
8940 kfree(de);
8941 }
8942 }
8943
8944 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8945 struct task_struct *task,
8946 struct files_struct *files)
8947 {
8948 struct io_task_cancel cancel = { .task = task, .files = files, };
8949
8950 while (1) {
8951 enum io_wq_cancel cret;
8952 bool ret = false;
8953
8954 if (ctx->io_wq) {
8955 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8956 &cancel, true);
8957 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8958 }
8959
8960 /* SQPOLL thread does its own polling */
8961 if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
8962 while (!list_empty_careful(&ctx->iopoll_list)) {
8963 io_iopoll_try_reap_events(ctx);
8964 ret = true;
8965 }
8966 }
8967
8968 ret |= io_poll_remove_all(ctx, task, files);
8969 ret |= io_kill_timeouts(ctx, task, files);
8970 ret |= io_run_task_work();
8971 io_cqring_overflow_flush(ctx, true, task, files);
8972 if (!ret)
8973 break;
8974 cond_resched();
8975 }
8976 }
8977
8978 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8979 struct task_struct *task,
8980 struct files_struct *files)
8981 {
8982 struct io_kiocb *req;
8983 int cnt = 0;
8984
8985 spin_lock_irq(&ctx->inflight_lock);
8986 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8987 cnt += io_match_task(req, task, files);
8988 spin_unlock_irq(&ctx->inflight_lock);
8989 return cnt;
8990 }
8991
8992 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8993 struct task_struct *task,
8994 struct files_struct *files)
8995 {
8996 while (!list_empty_careful(&ctx->inflight_list)) {
8997 DEFINE_WAIT(wait);
8998 int inflight;
8999
9000 inflight = io_uring_count_inflight(ctx, task, files);
9001 if (!inflight)
9002 break;
9003
9004 io_uring_try_cancel_requests(ctx, task, files);
9005
9006 if (ctx->sq_data)
9007 io_sq_thread_unpark(ctx->sq_data);
9008 prepare_to_wait(&task->io_uring->wait, &wait,
9009 TASK_UNINTERRUPTIBLE);
9010 if (inflight == io_uring_count_inflight(ctx, task, files))
9011 schedule();
9012 finish_wait(&task->io_uring->wait, &wait);
9013 if (ctx->sq_data)
9014 io_sq_thread_park(ctx->sq_data);
9015 }
9016 }
9017
9018 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9019 {
9020 mutex_lock(&ctx->uring_lock);
9021 ctx->sqo_dead = 1;
9022 mutex_unlock(&ctx->uring_lock);
9023
9024 /* make sure callers enter the ring to get error */
9025 if (ctx->rings)
9026 io_ring_set_wakeup_flag(ctx);
9027 }
9028
9029 /*
9030 * We need to iteratively cancel requests, in case a request has dependent
9031 * hard links. These persist even for failure of cancelations, hence keep
9032 * looping until none are found.
9033 */
9034 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9035 struct files_struct *files)
9036 {
9037 struct task_struct *task = current;
9038
9039 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9040 io_disable_sqo_submit(ctx);
9041 task = ctx->sq_data->thread;
9042 atomic_inc(&task->io_uring->in_idle);
9043 io_sq_thread_park(ctx->sq_data);
9044 }
9045
9046 io_cancel_defer_files(ctx, task, files);
9047
9048 io_uring_cancel_files(ctx, task, files);
9049 if (!files)
9050 io_uring_try_cancel_requests(ctx, task, NULL);
9051
9052 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9053 atomic_dec(&task->io_uring->in_idle);
9054 /*
9055 * If the files that are going away are the ones in the thread
9056 * identity, clear them out.
9057 */
9058 if (task->io_uring->identity->files == files)
9059 task->io_uring->identity->files = NULL;
9060 io_sq_thread_unpark(ctx->sq_data);
9061 }
9062 }
9063
9064 /*
9065 * Note that this task has used io_uring. We use it for cancelation purposes.
9066 */
9067 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9068 {
9069 struct io_uring_task *tctx = current->io_uring;
9070 int ret;
9071
9072 if (unlikely(!tctx)) {
9073 ret = io_uring_alloc_task_context(current);
9074 if (unlikely(ret))
9075 return ret;
9076 tctx = current->io_uring;
9077 }
9078 if (tctx->last != file) {
9079 void *old = xa_load(&tctx->xa, (unsigned long)file);
9080
9081 if (!old) {
9082 get_file(file);
9083 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9084 file, GFP_KERNEL));
9085 if (ret) {
9086 fput(file);
9087 return ret;
9088 }
9089
9090 /* one and only SQPOLL file note, held by sqo_task */
9091 WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
9092 current != ctx->sqo_task);
9093 }
9094 tctx->last = file;
9095 }
9096
9097 /*
9098 * This is race safe in that the task itself is doing this, hence it
9099 * cannot be going through the exit/cancel paths at the same time.
9100 * This cannot be modified while exit/cancel is running.
9101 */
9102 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9103 tctx->sqpoll = true;
9104
9105 return 0;
9106 }
9107
9108 /*
9109 * Remove this io_uring_file -> task mapping.
9110 */
9111 static void io_uring_del_task_file(struct file *file)
9112 {
9113 struct io_uring_task *tctx = current->io_uring;
9114
9115 if (tctx->last == file)
9116 tctx->last = NULL;
9117 file = xa_erase(&tctx->xa, (unsigned long)file);
9118 if (file)
9119 fput(file);
9120 }
9121
9122 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9123 {
9124 struct file *file;
9125 unsigned long index;
9126
9127 xa_for_each(&tctx->xa, index, file)
9128 io_uring_del_task_file(file);
9129 }
9130
9131 void __io_uring_files_cancel(struct files_struct *files)
9132 {
9133 struct io_uring_task *tctx = current->io_uring;
9134 struct file *file;
9135 unsigned long index;
9136
9137 /* make sure overflow events are dropped */
9138 atomic_inc(&tctx->in_idle);
9139 xa_for_each(&tctx->xa, index, file)
9140 io_uring_cancel_task_requests(file->private_data, files);
9141 atomic_dec(&tctx->in_idle);
9142
9143 if (files)
9144 io_uring_remove_task_files(tctx);
9145 }
9146
9147 static s64 tctx_inflight(struct io_uring_task *tctx)
9148 {
9149 return percpu_counter_sum(&tctx->inflight);
9150 }
9151
9152 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
9153 {
9154 struct io_uring_task *tctx;
9155 s64 inflight;
9156 DEFINE_WAIT(wait);
9157
9158 if (!ctx->sq_data)
9159 return;
9160 tctx = ctx->sq_data->thread->io_uring;
9161 io_disable_sqo_submit(ctx);
9162
9163 atomic_inc(&tctx->in_idle);
9164 do {
9165 /* read completions before cancelations */
9166 inflight = tctx_inflight(tctx);
9167 if (!inflight)
9168 break;
9169 io_uring_cancel_task_requests(ctx, NULL);
9170
9171 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9172 /*
9173 * If we've seen completions, retry without waiting. This
9174 * avoids a race where a completion comes in before we did
9175 * prepare_to_wait().
9176 */
9177 if (inflight == tctx_inflight(tctx))
9178 schedule();
9179 finish_wait(&tctx->wait, &wait);
9180 } while (1);
9181 atomic_dec(&tctx->in_idle);
9182 }
9183
9184 /*
9185 * Find any io_uring fd that this task has registered or done IO on, and cancel
9186 * requests.
9187 */
9188 void __io_uring_task_cancel(void)
9189 {
9190 struct io_uring_task *tctx = current->io_uring;
9191 DEFINE_WAIT(wait);
9192 s64 inflight;
9193
9194 /* make sure overflow events are dropped */
9195 atomic_inc(&tctx->in_idle);
9196
9197 /* trigger io_disable_sqo_submit() */
9198 if (tctx->sqpoll) {
9199 struct file *file;
9200 unsigned long index;
9201
9202 xa_for_each(&tctx->xa, index, file)
9203 io_uring_cancel_sqpoll(file->private_data);
9204 }
9205
9206 do {
9207 /* read completions before cancelations */
9208 inflight = tctx_inflight(tctx);
9209 if (!inflight)
9210 break;
9211 __io_uring_files_cancel(NULL);
9212
9213 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9214
9215 /*
9216 * If we've seen completions, retry without waiting. This
9217 * avoids a race where a completion comes in before we did
9218 * prepare_to_wait().
9219 */
9220 if (inflight == tctx_inflight(tctx))
9221 schedule();
9222 finish_wait(&tctx->wait, &wait);
9223 } while (1);
9224
9225 atomic_dec(&tctx->in_idle);
9226
9227 io_uring_remove_task_files(tctx);
9228 }
9229
9230 static int io_uring_flush(struct file *file, void *data)
9231 {
9232 struct io_uring_task *tctx = current->io_uring;
9233 struct io_ring_ctx *ctx = file->private_data;
9234
9235 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
9236 io_uring_cancel_task_requests(ctx, NULL);
9237 io_req_caches_free(ctx, current);
9238 }
9239
9240 if (!tctx)
9241 return 0;
9242
9243 /* we should have cancelled and erased it before PF_EXITING */
9244 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9245 xa_load(&tctx->xa, (unsigned long)file));
9246
9247 /*
9248 * fput() is pending, will be 2 if the only other ref is our potential
9249 * task file note. If the task is exiting, drop regardless of count.
9250 */
9251 if (atomic_long_read(&file->f_count) != 2)
9252 return 0;
9253
9254 if (ctx->flags & IORING_SETUP_SQPOLL) {
9255 /* there is only one file note, which is owned by sqo_task */
9256 WARN_ON_ONCE(ctx->sqo_task != current &&
9257 xa_load(&tctx->xa, (unsigned long)file));
9258 /* sqo_dead check is for when this happens after cancellation */
9259 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9260 !xa_load(&tctx->xa, (unsigned long)file));
9261
9262 io_disable_sqo_submit(ctx);
9263 }
9264
9265 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9266 io_uring_del_task_file(file);
9267 return 0;
9268 }
9269
9270 static void *io_uring_validate_mmap_request(struct file *file,
9271 loff_t pgoff, size_t sz)
9272 {
9273 struct io_ring_ctx *ctx = file->private_data;
9274 loff_t offset = pgoff << PAGE_SHIFT;
9275 struct page *page;
9276 void *ptr;
9277
9278 switch (offset) {
9279 case IORING_OFF_SQ_RING:
9280 case IORING_OFF_CQ_RING:
9281 ptr = ctx->rings;
9282 break;
9283 case IORING_OFF_SQES:
9284 ptr = ctx->sq_sqes;
9285 break;
9286 default:
9287 return ERR_PTR(-EINVAL);
9288 }
9289
9290 page = virt_to_head_page(ptr);
9291 if (sz > page_size(page))
9292 return ERR_PTR(-EINVAL);
9293
9294 return ptr;
9295 }
9296
9297 #ifdef CONFIG_MMU
9298
9299 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9300 {
9301 size_t sz = vma->vm_end - vma->vm_start;
9302 unsigned long pfn;
9303 void *ptr;
9304
9305 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9306 if (IS_ERR(ptr))
9307 return PTR_ERR(ptr);
9308
9309 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9310 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9311 }
9312
9313 #else /* !CONFIG_MMU */
9314
9315 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9316 {
9317 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9318 }
9319
9320 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9321 {
9322 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9323 }
9324
9325 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9326 unsigned long addr, unsigned long len,
9327 unsigned long pgoff, unsigned long flags)
9328 {
9329 void *ptr;
9330
9331 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9332 if (IS_ERR(ptr))
9333 return PTR_ERR(ptr);
9334
9335 return (unsigned long) ptr;
9336 }
9337
9338 #endif /* !CONFIG_MMU */
9339
9340 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9341 {
9342 int ret = 0;
9343 DEFINE_WAIT(wait);
9344
9345 do {
9346 if (!io_sqring_full(ctx))
9347 break;
9348
9349 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9350
9351 if (unlikely(ctx->sqo_dead)) {
9352 ret = -EOWNERDEAD;
9353 goto out;
9354 }
9355
9356 if (!io_sqring_full(ctx))
9357 break;
9358
9359 schedule();
9360 } while (!signal_pending(current));
9361
9362 finish_wait(&ctx->sqo_sq_wait, &wait);
9363 out:
9364 return ret;
9365 }
9366
9367 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9368 struct __kernel_timespec __user **ts,
9369 const sigset_t __user **sig)
9370 {
9371 struct io_uring_getevents_arg arg;
9372
9373 /*
9374 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9375 * is just a pointer to the sigset_t.
9376 */
9377 if (!(flags & IORING_ENTER_EXT_ARG)) {
9378 *sig = (const sigset_t __user *) argp;
9379 *ts = NULL;
9380 return 0;
9381 }
9382
9383 /*
9384 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9385 * timespec and sigset_t pointers if good.
9386 */
9387 if (*argsz != sizeof(arg))
9388 return -EINVAL;
9389 if (copy_from_user(&arg, argp, sizeof(arg)))
9390 return -EFAULT;
9391 *sig = u64_to_user_ptr(arg.sigmask);
9392 *argsz = arg.sigmask_sz;
9393 *ts = u64_to_user_ptr(arg.ts);
9394 return 0;
9395 }
9396
9397 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9398 u32, min_complete, u32, flags, const void __user *, argp,
9399 size_t, argsz)
9400 {
9401 struct io_ring_ctx *ctx;
9402 long ret = -EBADF;
9403 int submitted = 0;
9404 struct fd f;
9405
9406 io_run_task_work();
9407
9408 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9409 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9410 return -EINVAL;
9411
9412 f = fdget(fd);
9413 if (!f.file)
9414 return -EBADF;
9415
9416 ret = -EOPNOTSUPP;
9417 if (f.file->f_op != &io_uring_fops)
9418 goto out_fput;
9419
9420 ret = -ENXIO;
9421 ctx = f.file->private_data;
9422 if (!percpu_ref_tryget(&ctx->refs))
9423 goto out_fput;
9424
9425 ret = -EBADFD;
9426 if (ctx->flags & IORING_SETUP_R_DISABLED)
9427 goto out;
9428
9429 /*
9430 * For SQ polling, the thread will do all submissions and completions.
9431 * Just return the requested submit count, and wake the thread if
9432 * we were asked to.
9433 */
9434 ret = 0;
9435 if (ctx->flags & IORING_SETUP_SQPOLL) {
9436 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9437
9438 ret = -EOWNERDEAD;
9439 if (unlikely(ctx->sqo_dead))
9440 goto out;
9441 if (flags & IORING_ENTER_SQ_WAKEUP)
9442 wake_up(&ctx->sq_data->wait);
9443 if (flags & IORING_ENTER_SQ_WAIT) {
9444 ret = io_sqpoll_wait_sq(ctx);
9445 if (ret)
9446 goto out;
9447 }
9448 submitted = to_submit;
9449 } else if (to_submit) {
9450 ret = io_uring_add_task_file(ctx, f.file);
9451 if (unlikely(ret))
9452 goto out;
9453 mutex_lock(&ctx->uring_lock);
9454 submitted = io_submit_sqes(ctx, to_submit);
9455 mutex_unlock(&ctx->uring_lock);
9456
9457 if (submitted != to_submit)
9458 goto out;
9459 }
9460 if (flags & IORING_ENTER_GETEVENTS) {
9461 const sigset_t __user *sig;
9462 struct __kernel_timespec __user *ts;
9463
9464 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9465 if (unlikely(ret))
9466 goto out;
9467
9468 min_complete = min(min_complete, ctx->cq_entries);
9469
9470 /*
9471 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9472 * space applications don't need to do io completion events
9473 * polling again, they can rely on io_sq_thread to do polling
9474 * work, which can reduce cpu usage and uring_lock contention.
9475 */
9476 if (ctx->flags & IORING_SETUP_IOPOLL &&
9477 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9478 ret = io_iopoll_check(ctx, min_complete);
9479 } else {
9480 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9481 }
9482 }
9483
9484 out:
9485 percpu_ref_put(&ctx->refs);
9486 out_fput:
9487 fdput(f);
9488 return submitted ? submitted : ret;
9489 }
9490
9491 #ifdef CONFIG_PROC_FS
9492 static int io_uring_show_cred(int id, void *p, void *data)
9493 {
9494 struct io_identity *iod = p;
9495 const struct cred *cred = iod->creds;
9496 struct seq_file *m = data;
9497 struct user_namespace *uns = seq_user_ns(m);
9498 struct group_info *gi;
9499 kernel_cap_t cap;
9500 unsigned __capi;
9501 int g;
9502
9503 seq_printf(m, "%5d\n", id);
9504 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9505 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9506 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9507 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9508 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9509 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9510 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9511 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9512 seq_puts(m, "\n\tGroups:\t");
9513 gi = cred->group_info;
9514 for (g = 0; g < gi->ngroups; g++) {
9515 seq_put_decimal_ull(m, g ? " " : "",
9516 from_kgid_munged(uns, gi->gid[g]));
9517 }
9518 seq_puts(m, "\n\tCapEff:\t");
9519 cap = cred->cap_effective;
9520 CAP_FOR_EACH_U32(__capi)
9521 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9522 seq_putc(m, '\n');
9523 return 0;
9524 }
9525
9526 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9527 {
9528 struct io_sq_data *sq = NULL;
9529 bool has_lock;
9530 int i;
9531
9532 /*
9533 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9534 * since fdinfo case grabs it in the opposite direction of normal use
9535 * cases. If we fail to get the lock, we just don't iterate any
9536 * structures that could be going away outside the io_uring mutex.
9537 */
9538 has_lock = mutex_trylock(&ctx->uring_lock);
9539
9540 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9541 sq = ctx->sq_data;
9542
9543 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9544 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9545 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9546 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9547 struct file *f = *io_fixed_file_slot(ctx->file_data, i);
9548
9549 if (f)
9550 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9551 else
9552 seq_printf(m, "%5u: <none>\n", i);
9553 }
9554 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9555 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9556 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9557
9558 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9559 (unsigned int) buf->len);
9560 }
9561 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9562 seq_printf(m, "Personalities:\n");
9563 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9564 }
9565 seq_printf(m, "PollList:\n");
9566 spin_lock_irq(&ctx->completion_lock);
9567 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9568 struct hlist_head *list = &ctx->cancel_hash[i];
9569 struct io_kiocb *req;
9570
9571 hlist_for_each_entry(req, list, hash_node)
9572 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9573 req->task->task_works != NULL);
9574 }
9575 spin_unlock_irq(&ctx->completion_lock);
9576 if (has_lock)
9577 mutex_unlock(&ctx->uring_lock);
9578 }
9579
9580 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9581 {
9582 struct io_ring_ctx *ctx = f->private_data;
9583
9584 if (percpu_ref_tryget(&ctx->refs)) {
9585 __io_uring_show_fdinfo(ctx, m);
9586 percpu_ref_put(&ctx->refs);
9587 }
9588 }
9589 #endif
9590
9591 static const struct file_operations io_uring_fops = {
9592 .release = io_uring_release,
9593 .flush = io_uring_flush,
9594 .mmap = io_uring_mmap,
9595 #ifndef CONFIG_MMU
9596 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9597 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9598 #endif
9599 .poll = io_uring_poll,
9600 .fasync = io_uring_fasync,
9601 #ifdef CONFIG_PROC_FS
9602 .show_fdinfo = io_uring_show_fdinfo,
9603 #endif
9604 };
9605
9606 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9607 struct io_uring_params *p)
9608 {
9609 struct io_rings *rings;
9610 size_t size, sq_array_offset;
9611
9612 /* make sure these are sane, as we already accounted them */
9613 ctx->sq_entries = p->sq_entries;
9614 ctx->cq_entries = p->cq_entries;
9615
9616 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9617 if (size == SIZE_MAX)
9618 return -EOVERFLOW;
9619
9620 rings = io_mem_alloc(size);
9621 if (!rings)
9622 return -ENOMEM;
9623
9624 ctx->rings = rings;
9625 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9626 rings->sq_ring_mask = p->sq_entries - 1;
9627 rings->cq_ring_mask = p->cq_entries - 1;
9628 rings->sq_ring_entries = p->sq_entries;
9629 rings->cq_ring_entries = p->cq_entries;
9630 ctx->sq_mask = rings->sq_ring_mask;
9631 ctx->cq_mask = rings->cq_ring_mask;
9632
9633 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9634 if (size == SIZE_MAX) {
9635 io_mem_free(ctx->rings);
9636 ctx->rings = NULL;
9637 return -EOVERFLOW;
9638 }
9639
9640 ctx->sq_sqes = io_mem_alloc(size);
9641 if (!ctx->sq_sqes) {
9642 io_mem_free(ctx->rings);
9643 ctx->rings = NULL;
9644 return -ENOMEM;
9645 }
9646
9647 return 0;
9648 }
9649
9650 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9651 {
9652 int ret, fd;
9653
9654 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9655 if (fd < 0)
9656 return fd;
9657
9658 ret = io_uring_add_task_file(ctx, file);
9659 if (ret) {
9660 put_unused_fd(fd);
9661 return ret;
9662 }
9663 fd_install(fd, file);
9664 return fd;
9665 }
9666
9667 /*
9668 * Allocate an anonymous fd, this is what constitutes the application
9669 * visible backing of an io_uring instance. The application mmaps this
9670 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9671 * we have to tie this fd to a socket for file garbage collection purposes.
9672 */
9673 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9674 {
9675 struct file *file;
9676 #if defined(CONFIG_UNIX)
9677 int ret;
9678
9679 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9680 &ctx->ring_sock);
9681 if (ret)
9682 return ERR_PTR(ret);
9683 #endif
9684
9685 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9686 O_RDWR | O_CLOEXEC);
9687 #if defined(CONFIG_UNIX)
9688 if (IS_ERR(file)) {
9689 sock_release(ctx->ring_sock);
9690 ctx->ring_sock = NULL;
9691 } else {
9692 ctx->ring_sock->file = file;
9693 }
9694 #endif
9695 return file;
9696 }
9697
9698 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9699 struct io_uring_params __user *params)
9700 {
9701 struct user_struct *user = NULL;
9702 struct io_ring_ctx *ctx;
9703 struct file *file;
9704 int ret;
9705
9706 if (!entries)
9707 return -EINVAL;
9708 if (entries > IORING_MAX_ENTRIES) {
9709 if (!(p->flags & IORING_SETUP_CLAMP))
9710 return -EINVAL;
9711 entries = IORING_MAX_ENTRIES;
9712 }
9713
9714 /*
9715 * Use twice as many entries for the CQ ring. It's possible for the
9716 * application to drive a higher depth than the size of the SQ ring,
9717 * since the sqes are only used at submission time. This allows for
9718 * some flexibility in overcommitting a bit. If the application has
9719 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9720 * of CQ ring entries manually.
9721 */
9722 p->sq_entries = roundup_pow_of_two(entries);
9723 if (p->flags & IORING_SETUP_CQSIZE) {
9724 /*
9725 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9726 * to a power-of-two, if it isn't already. We do NOT impose
9727 * any cq vs sq ring sizing.
9728 */
9729 if (!p->cq_entries)
9730 return -EINVAL;
9731 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9732 if (!(p->flags & IORING_SETUP_CLAMP))
9733 return -EINVAL;
9734 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9735 }
9736 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9737 if (p->cq_entries < p->sq_entries)
9738 return -EINVAL;
9739 } else {
9740 p->cq_entries = 2 * p->sq_entries;
9741 }
9742
9743 user = get_uid(current_user());
9744
9745 ctx = io_ring_ctx_alloc(p);
9746 if (!ctx) {
9747 free_uid(user);
9748 return -ENOMEM;
9749 }
9750 ctx->compat = in_compat_syscall();
9751 ctx->limit_mem = !capable(CAP_IPC_LOCK);
9752 ctx->user = user;
9753 ctx->creds = get_current_cred();
9754 #ifdef CONFIG_AUDIT
9755 ctx->loginuid = current->loginuid;
9756 ctx->sessionid = current->sessionid;
9757 #endif
9758 ctx->sqo_task = get_task_struct(current);
9759
9760 /*
9761 * This is just grabbed for accounting purposes. When a process exits,
9762 * the mm is exited and dropped before the files, hence we need to hang
9763 * on to this mm purely for the purposes of being able to unaccount
9764 * memory (locked/pinned vm). It's not used for anything else.
9765 */
9766 mmgrab(current->mm);
9767 ctx->mm_account = current->mm;
9768
9769 #ifdef CONFIG_BLK_CGROUP
9770 /*
9771 * The sq thread will belong to the original cgroup it was inited in.
9772 * If the cgroup goes offline (e.g. disabling the io controller), then
9773 * issued bios will be associated with the closest cgroup later in the
9774 * block layer.
9775 */
9776 rcu_read_lock();
9777 ctx->sqo_blkcg_css = blkcg_css();
9778 ret = css_tryget_online(ctx->sqo_blkcg_css);
9779 rcu_read_unlock();
9780 if (!ret) {
9781 /* don't init against a dying cgroup, have the user try again */
9782 ctx->sqo_blkcg_css = NULL;
9783 ret = -ENODEV;
9784 goto err;
9785 }
9786 #endif
9787 ret = io_allocate_scq_urings(ctx, p);
9788 if (ret)
9789 goto err;
9790
9791 ret = io_sq_offload_create(ctx, p);
9792 if (ret)
9793 goto err;
9794
9795 if (!(p->flags & IORING_SETUP_R_DISABLED))
9796 io_sq_offload_start(ctx);
9797
9798 memset(&p->sq_off, 0, sizeof(p->sq_off));
9799 p->sq_off.head = offsetof(struct io_rings, sq.head);
9800 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9801 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9802 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9803 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9804 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9805 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9806
9807 memset(&p->cq_off, 0, sizeof(p->cq_off));
9808 p->cq_off.head = offsetof(struct io_rings, cq.head);
9809 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9810 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9811 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9812 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9813 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9814 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9815
9816 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9817 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9818 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9819 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9820 IORING_FEAT_EXT_ARG;
9821
9822 if (copy_to_user(params, p, sizeof(*p))) {
9823 ret = -EFAULT;
9824 goto err;
9825 }
9826
9827 file = io_uring_get_file(ctx);
9828 if (IS_ERR(file)) {
9829 ret = PTR_ERR(file);
9830 goto err;
9831 }
9832
9833 /*
9834 * Install ring fd as the very last thing, so we don't risk someone
9835 * having closed it before we finish setup
9836 */
9837 ret = io_uring_install_fd(ctx, file);
9838 if (ret < 0) {
9839 io_disable_sqo_submit(ctx);
9840 /* fput will clean it up */
9841 fput(file);
9842 return ret;
9843 }
9844
9845 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9846 return ret;
9847 err:
9848 io_disable_sqo_submit(ctx);
9849 io_ring_ctx_wait_and_kill(ctx);
9850 return ret;
9851 }
9852
9853 /*
9854 * Sets up an aio uring context, and returns the fd. Applications asks for a
9855 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9856 * params structure passed in.
9857 */
9858 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9859 {
9860 struct io_uring_params p;
9861 int i;
9862
9863 if (copy_from_user(&p, params, sizeof(p)))
9864 return -EFAULT;
9865 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9866 if (p.resv[i])
9867 return -EINVAL;
9868 }
9869
9870 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9871 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9872 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9873 IORING_SETUP_R_DISABLED))
9874 return -EINVAL;
9875
9876 return io_uring_create(entries, &p, params);
9877 }
9878
9879 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9880 struct io_uring_params __user *, params)
9881 {
9882 return io_uring_setup(entries, params);
9883 }
9884
9885 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9886 {
9887 struct io_uring_probe *p;
9888 size_t size;
9889 int i, ret;
9890
9891 size = struct_size(p, ops, nr_args);
9892 if (size == SIZE_MAX)
9893 return -EOVERFLOW;
9894 p = kzalloc(size, GFP_KERNEL);
9895 if (!p)
9896 return -ENOMEM;
9897
9898 ret = -EFAULT;
9899 if (copy_from_user(p, arg, size))
9900 goto out;
9901 ret = -EINVAL;
9902 if (memchr_inv(p, 0, size))
9903 goto out;
9904
9905 p->last_op = IORING_OP_LAST - 1;
9906 if (nr_args > IORING_OP_LAST)
9907 nr_args = IORING_OP_LAST;
9908
9909 for (i = 0; i < nr_args; i++) {
9910 p->ops[i].op = i;
9911 if (!io_op_defs[i].not_supported)
9912 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9913 }
9914 p->ops_len = i;
9915
9916 ret = 0;
9917 if (copy_to_user(arg, p, size))
9918 ret = -EFAULT;
9919 out:
9920 kfree(p);
9921 return ret;
9922 }
9923
9924 static int io_register_personality(struct io_ring_ctx *ctx)
9925 {
9926 struct io_identity *id;
9927 int ret;
9928
9929 id = kmalloc(sizeof(*id), GFP_KERNEL);
9930 if (unlikely(!id))
9931 return -ENOMEM;
9932
9933 io_init_identity(id);
9934 id->creds = get_current_cred();
9935
9936 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9937 if (ret < 0) {
9938 put_cred(id->creds);
9939 kfree(id);
9940 }
9941 return ret;
9942 }
9943
9944 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9945 unsigned int nr_args)
9946 {
9947 struct io_uring_restriction *res;
9948 size_t size;
9949 int i, ret;
9950
9951 /* Restrictions allowed only if rings started disabled */
9952 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9953 return -EBADFD;
9954
9955 /* We allow only a single restrictions registration */
9956 if (ctx->restrictions.registered)
9957 return -EBUSY;
9958
9959 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9960 return -EINVAL;
9961
9962 size = array_size(nr_args, sizeof(*res));
9963 if (size == SIZE_MAX)
9964 return -EOVERFLOW;
9965
9966 res = memdup_user(arg, size);
9967 if (IS_ERR(res))
9968 return PTR_ERR(res);
9969
9970 ret = 0;
9971
9972 for (i = 0; i < nr_args; i++) {
9973 switch (res[i].opcode) {
9974 case IORING_RESTRICTION_REGISTER_OP:
9975 if (res[i].register_op >= IORING_REGISTER_LAST) {
9976 ret = -EINVAL;
9977 goto out;
9978 }
9979
9980 __set_bit(res[i].register_op,
9981 ctx->restrictions.register_op);
9982 break;
9983 case IORING_RESTRICTION_SQE_OP:
9984 if (res[i].sqe_op >= IORING_OP_LAST) {
9985 ret = -EINVAL;
9986 goto out;
9987 }
9988
9989 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9990 break;
9991 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9992 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9993 break;
9994 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9995 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9996 break;
9997 default:
9998 ret = -EINVAL;
9999 goto out;
10000 }
10001 }
10002
10003 out:
10004 /* Reset all restrictions if an error happened */
10005 if (ret != 0)
10006 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10007 else
10008 ctx->restrictions.registered = true;
10009
10010 kfree(res);
10011 return ret;
10012 }
10013
10014 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10015 {
10016 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10017 return -EBADFD;
10018
10019 if (ctx->restrictions.registered)
10020 ctx->restricted = 1;
10021
10022 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10023
10024 io_sq_offload_start(ctx);
10025
10026 return 0;
10027 }
10028
10029 static bool io_register_op_must_quiesce(int op)
10030 {
10031 switch (op) {
10032 case IORING_UNREGISTER_FILES:
10033 case IORING_REGISTER_FILES_UPDATE:
10034 case IORING_REGISTER_PROBE:
10035 case IORING_REGISTER_PERSONALITY:
10036 case IORING_UNREGISTER_PERSONALITY:
10037 return false;
10038 default:
10039 return true;
10040 }
10041 }
10042
10043 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10044 void __user *arg, unsigned nr_args)
10045 __releases(ctx->uring_lock)
10046 __acquires(ctx->uring_lock)
10047 {
10048 int ret;
10049
10050 /*
10051 * We're inside the ring mutex, if the ref is already dying, then
10052 * someone else killed the ctx or is already going through
10053 * io_uring_register().
10054 */
10055 if (percpu_ref_is_dying(&ctx->refs))
10056 return -ENXIO;
10057
10058 if (io_register_op_must_quiesce(opcode)) {
10059 percpu_ref_kill(&ctx->refs);
10060
10061 /*
10062 * Drop uring mutex before waiting for references to exit. If
10063 * another thread is currently inside io_uring_enter() it might
10064 * need to grab the uring_lock to make progress. If we hold it
10065 * here across the drain wait, then we can deadlock. It's safe
10066 * to drop the mutex here, since no new references will come in
10067 * after we've killed the percpu ref.
10068 */
10069 mutex_unlock(&ctx->uring_lock);
10070 do {
10071 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10072 if (!ret)
10073 break;
10074 ret = io_run_task_work_sig();
10075 if (ret < 0)
10076 break;
10077 } while (1);
10078
10079 mutex_lock(&ctx->uring_lock);
10080
10081 if (ret) {
10082 percpu_ref_resurrect(&ctx->refs);
10083 goto out_quiesce;
10084 }
10085 }
10086
10087 if (ctx->restricted) {
10088 if (opcode >= IORING_REGISTER_LAST) {
10089 ret = -EINVAL;
10090 goto out;
10091 }
10092
10093 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10094 ret = -EACCES;
10095 goto out;
10096 }
10097 }
10098
10099 switch (opcode) {
10100 case IORING_REGISTER_BUFFERS:
10101 ret = io_sqe_buffers_register(ctx, arg, nr_args);
10102 break;
10103 case IORING_UNREGISTER_BUFFERS:
10104 ret = -EINVAL;
10105 if (arg || nr_args)
10106 break;
10107 ret = io_sqe_buffers_unregister(ctx);
10108 break;
10109 case IORING_REGISTER_FILES:
10110 ret = io_sqe_files_register(ctx, arg, nr_args);
10111 break;
10112 case IORING_UNREGISTER_FILES:
10113 ret = -EINVAL;
10114 if (arg || nr_args)
10115 break;
10116 ret = io_sqe_files_unregister(ctx);
10117 break;
10118 case IORING_REGISTER_FILES_UPDATE:
10119 ret = io_sqe_files_update(ctx, arg, nr_args);
10120 break;
10121 case IORING_REGISTER_EVENTFD:
10122 case IORING_REGISTER_EVENTFD_ASYNC:
10123 ret = -EINVAL;
10124 if (nr_args != 1)
10125 break;
10126 ret = io_eventfd_register(ctx, arg);
10127 if (ret)
10128 break;
10129 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10130 ctx->eventfd_async = 1;
10131 else
10132 ctx->eventfd_async = 0;
10133 break;
10134 case IORING_UNREGISTER_EVENTFD:
10135 ret = -EINVAL;
10136 if (arg || nr_args)
10137 break;
10138 ret = io_eventfd_unregister(ctx);
10139 break;
10140 case IORING_REGISTER_PROBE:
10141 ret = -EINVAL;
10142 if (!arg || nr_args > 256)
10143 break;
10144 ret = io_probe(ctx, arg, nr_args);
10145 break;
10146 case IORING_REGISTER_PERSONALITY:
10147 ret = -EINVAL;
10148 if (arg || nr_args)
10149 break;
10150 ret = io_register_personality(ctx);
10151 break;
10152 case IORING_UNREGISTER_PERSONALITY:
10153 ret = -EINVAL;
10154 if (arg)
10155 break;
10156 ret = io_unregister_personality(ctx, nr_args);
10157 break;
10158 case IORING_REGISTER_ENABLE_RINGS:
10159 ret = -EINVAL;
10160 if (arg || nr_args)
10161 break;
10162 ret = io_register_enable_rings(ctx);
10163 break;
10164 case IORING_REGISTER_RESTRICTIONS:
10165 ret = io_register_restrictions(ctx, arg, nr_args);
10166 break;
10167 default:
10168 ret = -EINVAL;
10169 break;
10170 }
10171
10172 out:
10173 if (io_register_op_must_quiesce(opcode)) {
10174 /* bring the ctx back to life */
10175 percpu_ref_reinit(&ctx->refs);
10176 out_quiesce:
10177 reinit_completion(&ctx->ref_comp);
10178 }
10179 return ret;
10180 }
10181
10182 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10183 void __user *, arg, unsigned int, nr_args)
10184 {
10185 struct io_ring_ctx *ctx;
10186 long ret = -EBADF;
10187 struct fd f;
10188
10189 f = fdget(fd);
10190 if (!f.file)
10191 return -EBADF;
10192
10193 ret = -EOPNOTSUPP;
10194 if (f.file->f_op != &io_uring_fops)
10195 goto out_fput;
10196
10197 ctx = f.file->private_data;
10198
10199 mutex_lock(&ctx->uring_lock);
10200 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10201 mutex_unlock(&ctx->uring_lock);
10202 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10203 ctx->cq_ev_fd != NULL, ret);
10204 out_fput:
10205 fdput(f);
10206 return ret;
10207 }
10208
10209 static int __init io_uring_init(void)
10210 {
10211 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10212 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10213 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10214 } while (0)
10215
10216 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10217 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10218 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10219 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10220 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10221 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10222 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10223 BUILD_BUG_SQE_ELEM(8, __u64, off);
10224 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10225 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10226 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10227 BUILD_BUG_SQE_ELEM(24, __u32, len);
10228 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10229 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10231 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10232 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10233 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10234 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10235 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10237 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10238 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10239 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10240 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10241 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10242 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10243 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10244 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10245 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10246 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10247
10248 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10249 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10250 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10251 SLAB_ACCOUNT);
10252 return 0;
10253 };
10254 __initcall(io_uring_init);