]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'riscv-for-linus-5.15-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 struct file *file_in;
627 loff_t off_out;
628 loff_t off_in;
629 u64 len;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 {
1208 struct io_kiocb *req;
1209
1210 if (task && head->task != task)
1211 return false;
1212 if (cancel_all)
1213 return true;
1214
1215 io_for_each_link(req, head) {
1216 if (req->flags & REQ_F_INFLIGHT)
1217 return true;
1218 }
1219 return false;
1220 }
1221
1222 static inline void req_set_fail(struct io_kiocb *req)
1223 {
1224 req->flags |= REQ_F_FAIL;
1225 }
1226
1227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1228 {
1229 req_set_fail(req);
1230 req->result = res;
1231 }
1232
1233 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1234 {
1235 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1236
1237 complete(&ctx->ref_comp);
1238 }
1239
1240 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1241 {
1242 return !req->timeout.off;
1243 }
1244
1245 static void io_fallback_req_func(struct work_struct *work)
1246 {
1247 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1248 fallback_work.work);
1249 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1250 struct io_kiocb *req, *tmp;
1251 bool locked = false;
1252
1253 percpu_ref_get(&ctx->refs);
1254 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1255 req->io_task_work.func(req, &locked);
1256
1257 if (locked) {
1258 if (ctx->submit_state.compl_nr)
1259 io_submit_flush_completions(ctx);
1260 mutex_unlock(&ctx->uring_lock);
1261 }
1262 percpu_ref_put(&ctx->refs);
1263
1264 }
1265
1266 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1267 {
1268 struct io_ring_ctx *ctx;
1269 int hash_bits;
1270
1271 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1272 if (!ctx)
1273 return NULL;
1274
1275 /*
1276 * Use 5 bits less than the max cq entries, that should give us around
1277 * 32 entries per hash list if totally full and uniformly spread.
1278 */
1279 hash_bits = ilog2(p->cq_entries);
1280 hash_bits -= 5;
1281 if (hash_bits <= 0)
1282 hash_bits = 1;
1283 ctx->cancel_hash_bits = hash_bits;
1284 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1285 GFP_KERNEL);
1286 if (!ctx->cancel_hash)
1287 goto err;
1288 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1289
1290 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1291 if (!ctx->dummy_ubuf)
1292 goto err;
1293 /* set invalid range, so io_import_fixed() fails meeting it */
1294 ctx->dummy_ubuf->ubuf = -1UL;
1295
1296 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1297 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1298 goto err;
1299
1300 ctx->flags = p->flags;
1301 init_waitqueue_head(&ctx->sqo_sq_wait);
1302 INIT_LIST_HEAD(&ctx->sqd_list);
1303 init_waitqueue_head(&ctx->poll_wait);
1304 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1305 init_completion(&ctx->ref_comp);
1306 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1307 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1308 mutex_init(&ctx->uring_lock);
1309 init_waitqueue_head(&ctx->cq_wait);
1310 spin_lock_init(&ctx->completion_lock);
1311 spin_lock_init(&ctx->timeout_lock);
1312 INIT_LIST_HEAD(&ctx->iopoll_list);
1313 INIT_LIST_HEAD(&ctx->defer_list);
1314 INIT_LIST_HEAD(&ctx->timeout_list);
1315 INIT_LIST_HEAD(&ctx->ltimeout_list);
1316 spin_lock_init(&ctx->rsrc_ref_lock);
1317 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1318 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1319 init_llist_head(&ctx->rsrc_put_llist);
1320 INIT_LIST_HEAD(&ctx->tctx_list);
1321 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1322 INIT_LIST_HEAD(&ctx->locked_free_list);
1323 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1324 return ctx;
1325 err:
1326 kfree(ctx->dummy_ubuf);
1327 kfree(ctx->cancel_hash);
1328 kfree(ctx);
1329 return NULL;
1330 }
1331
1332 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1333 {
1334 struct io_rings *r = ctx->rings;
1335
1336 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1337 ctx->cq_extra--;
1338 }
1339
1340 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1341 {
1342 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1343 struct io_ring_ctx *ctx = req->ctx;
1344
1345 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1346 }
1347
1348 return false;
1349 }
1350
1351 #define FFS_ASYNC_READ 0x1UL
1352 #define FFS_ASYNC_WRITE 0x2UL
1353 #ifdef CONFIG_64BIT
1354 #define FFS_ISREG 0x4UL
1355 #else
1356 #define FFS_ISREG 0x0UL
1357 #endif
1358 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1359
1360 static inline bool io_req_ffs_set(struct io_kiocb *req)
1361 {
1362 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1363 }
1364
1365 static void io_req_track_inflight(struct io_kiocb *req)
1366 {
1367 if (!(req->flags & REQ_F_INFLIGHT)) {
1368 req->flags |= REQ_F_INFLIGHT;
1369 atomic_inc(&current->io_uring->inflight_tracked);
1370 }
1371 }
1372
1373 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1374 {
1375 if (WARN_ON_ONCE(!req->link))
1376 return NULL;
1377
1378 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1379 req->flags |= REQ_F_LINK_TIMEOUT;
1380
1381 /* linked timeouts should have two refs once prep'ed */
1382 io_req_set_refcount(req);
1383 __io_req_set_refcount(req->link, 2);
1384 return req->link;
1385 }
1386
1387 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1388 {
1389 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1390 return NULL;
1391 return __io_prep_linked_timeout(req);
1392 }
1393
1394 static void io_prep_async_work(struct io_kiocb *req)
1395 {
1396 const struct io_op_def *def = &io_op_defs[req->opcode];
1397 struct io_ring_ctx *ctx = req->ctx;
1398
1399 if (!(req->flags & REQ_F_CREDS)) {
1400 req->flags |= REQ_F_CREDS;
1401 req->creds = get_current_cred();
1402 }
1403
1404 req->work.list.next = NULL;
1405 req->work.flags = 0;
1406 if (req->flags & REQ_F_FORCE_ASYNC)
1407 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1408
1409 if (req->flags & REQ_F_ISREG) {
1410 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1411 io_wq_hash_work(&req->work, file_inode(req->file));
1412 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1413 if (def->unbound_nonreg_file)
1414 req->work.flags |= IO_WQ_WORK_UNBOUND;
1415 }
1416
1417 switch (req->opcode) {
1418 case IORING_OP_SPLICE:
1419 case IORING_OP_TEE:
1420 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1421 req->work.flags |= IO_WQ_WORK_UNBOUND;
1422 break;
1423 }
1424 }
1425
1426 static void io_prep_async_link(struct io_kiocb *req)
1427 {
1428 struct io_kiocb *cur;
1429
1430 if (req->flags & REQ_F_LINK_TIMEOUT) {
1431 struct io_ring_ctx *ctx = req->ctx;
1432
1433 spin_lock(&ctx->completion_lock);
1434 io_for_each_link(cur, req)
1435 io_prep_async_work(cur);
1436 spin_unlock(&ctx->completion_lock);
1437 } else {
1438 io_for_each_link(cur, req)
1439 io_prep_async_work(cur);
1440 }
1441 }
1442
1443 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1444 {
1445 struct io_ring_ctx *ctx = req->ctx;
1446 struct io_kiocb *link = io_prep_linked_timeout(req);
1447 struct io_uring_task *tctx = req->task->io_uring;
1448
1449 /* must not take the lock, NULL it as a precaution */
1450 locked = NULL;
1451
1452 BUG_ON(!tctx);
1453 BUG_ON(!tctx->io_wq);
1454
1455 /* init ->work of the whole link before punting */
1456 io_prep_async_link(req);
1457
1458 /*
1459 * Not expected to happen, but if we do have a bug where this _can_
1460 * happen, catch it here and ensure the request is marked as
1461 * canceled. That will make io-wq go through the usual work cancel
1462 * procedure rather than attempt to run this request (or create a new
1463 * worker for it).
1464 */
1465 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1466 req->work.flags |= IO_WQ_WORK_CANCEL;
1467
1468 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1469 &req->work, req->flags);
1470 io_wq_enqueue(tctx->io_wq, &req->work);
1471 if (link)
1472 io_queue_linked_timeout(link);
1473 }
1474
1475 static void io_kill_timeout(struct io_kiocb *req, int status)
1476 __must_hold(&req->ctx->completion_lock)
1477 __must_hold(&req->ctx->timeout_lock)
1478 {
1479 struct io_timeout_data *io = req->async_data;
1480
1481 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1482 if (status)
1483 req_set_fail(req);
1484 atomic_set(&req->ctx->cq_timeouts,
1485 atomic_read(&req->ctx->cq_timeouts) + 1);
1486 list_del_init(&req->timeout.list);
1487 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1488 io_put_req_deferred(req);
1489 }
1490 }
1491
1492 static void io_queue_deferred(struct io_ring_ctx *ctx)
1493 {
1494 while (!list_empty(&ctx->defer_list)) {
1495 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1496 struct io_defer_entry, list);
1497
1498 if (req_need_defer(de->req, de->seq))
1499 break;
1500 list_del_init(&de->list);
1501 io_req_task_queue(de->req);
1502 kfree(de);
1503 }
1504 }
1505
1506 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1507 __must_hold(&ctx->completion_lock)
1508 {
1509 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1510
1511 spin_lock_irq(&ctx->timeout_lock);
1512 while (!list_empty(&ctx->timeout_list)) {
1513 u32 events_needed, events_got;
1514 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1515 struct io_kiocb, timeout.list);
1516
1517 if (io_is_timeout_noseq(req))
1518 break;
1519
1520 /*
1521 * Since seq can easily wrap around over time, subtract
1522 * the last seq at which timeouts were flushed before comparing.
1523 * Assuming not more than 2^31-1 events have happened since,
1524 * these subtractions won't have wrapped, so we can check if
1525 * target is in [last_seq, current_seq] by comparing the two.
1526 */
1527 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1528 events_got = seq - ctx->cq_last_tm_flush;
1529 if (events_got < events_needed)
1530 break;
1531
1532 list_del_init(&req->timeout.list);
1533 io_kill_timeout(req, 0);
1534 }
1535 ctx->cq_last_tm_flush = seq;
1536 spin_unlock_irq(&ctx->timeout_lock);
1537 }
1538
1539 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1540 {
1541 if (ctx->off_timeout_used)
1542 io_flush_timeouts(ctx);
1543 if (ctx->drain_active)
1544 io_queue_deferred(ctx);
1545 }
1546
1547 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1548 {
1549 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1550 __io_commit_cqring_flush(ctx);
1551 /* order cqe stores with ring update */
1552 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1553 }
1554
1555 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1556 {
1557 struct io_rings *r = ctx->rings;
1558
1559 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1560 }
1561
1562 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1563 {
1564 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1565 }
1566
1567 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1568 {
1569 struct io_rings *rings = ctx->rings;
1570 unsigned tail, mask = ctx->cq_entries - 1;
1571
1572 /*
1573 * writes to the cq entry need to come after reading head; the
1574 * control dependency is enough as we're using WRITE_ONCE to
1575 * fill the cq entry
1576 */
1577 if (__io_cqring_events(ctx) == ctx->cq_entries)
1578 return NULL;
1579
1580 tail = ctx->cached_cq_tail++;
1581 return &rings->cqes[tail & mask];
1582 }
1583
1584 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1585 {
1586 if (likely(!ctx->cq_ev_fd))
1587 return false;
1588 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1589 return false;
1590 return !ctx->eventfd_async || io_wq_current_is_worker();
1591 }
1592
1593 /*
1594 * This should only get called when at least one event has been posted.
1595 * Some applications rely on the eventfd notification count only changing
1596 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1597 * 1:1 relationship between how many times this function is called (and
1598 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1599 */
1600 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1601 {
1602 /*
1603 * wake_up_all() may seem excessive, but io_wake_function() and
1604 * io_should_wake() handle the termination of the loop and only
1605 * wake as many waiters as we need to.
1606 */
1607 if (wq_has_sleeper(&ctx->cq_wait))
1608 wake_up_all(&ctx->cq_wait);
1609 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1610 wake_up(&ctx->sq_data->wait);
1611 if (io_should_trigger_evfd(ctx))
1612 eventfd_signal(ctx->cq_ev_fd, 1);
1613 if (waitqueue_active(&ctx->poll_wait))
1614 wake_up_interruptible(&ctx->poll_wait);
1615 }
1616
1617 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1618 {
1619 /* see waitqueue_active() comment */
1620 smp_mb();
1621
1622 if (ctx->flags & IORING_SETUP_SQPOLL) {
1623 if (waitqueue_active(&ctx->cq_wait))
1624 wake_up_all(&ctx->cq_wait);
1625 }
1626 if (io_should_trigger_evfd(ctx))
1627 eventfd_signal(ctx->cq_ev_fd, 1);
1628 if (waitqueue_active(&ctx->poll_wait))
1629 wake_up_interruptible(&ctx->poll_wait);
1630 }
1631
1632 /* Returns true if there are no backlogged entries after the flush */
1633 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1634 {
1635 bool all_flushed, posted;
1636
1637 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1638 return false;
1639
1640 posted = false;
1641 spin_lock(&ctx->completion_lock);
1642 while (!list_empty(&ctx->cq_overflow_list)) {
1643 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1644 struct io_overflow_cqe *ocqe;
1645
1646 if (!cqe && !force)
1647 break;
1648 ocqe = list_first_entry(&ctx->cq_overflow_list,
1649 struct io_overflow_cqe, list);
1650 if (cqe)
1651 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1652 else
1653 io_account_cq_overflow(ctx);
1654
1655 posted = true;
1656 list_del(&ocqe->list);
1657 kfree(ocqe);
1658 }
1659
1660 all_flushed = list_empty(&ctx->cq_overflow_list);
1661 if (all_flushed) {
1662 clear_bit(0, &ctx->check_cq_overflow);
1663 WRITE_ONCE(ctx->rings->sq_flags,
1664 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1665 }
1666
1667 if (posted)
1668 io_commit_cqring(ctx);
1669 spin_unlock(&ctx->completion_lock);
1670 if (posted)
1671 io_cqring_ev_posted(ctx);
1672 return all_flushed;
1673 }
1674
1675 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1676 {
1677 bool ret = true;
1678
1679 if (test_bit(0, &ctx->check_cq_overflow)) {
1680 /* iopoll syncs against uring_lock, not completion_lock */
1681 if (ctx->flags & IORING_SETUP_IOPOLL)
1682 mutex_lock(&ctx->uring_lock);
1683 ret = __io_cqring_overflow_flush(ctx, false);
1684 if (ctx->flags & IORING_SETUP_IOPOLL)
1685 mutex_unlock(&ctx->uring_lock);
1686 }
1687
1688 return ret;
1689 }
1690
1691 /* must to be called somewhat shortly after putting a request */
1692 static inline void io_put_task(struct task_struct *task, int nr)
1693 {
1694 struct io_uring_task *tctx = task->io_uring;
1695
1696 if (likely(task == current)) {
1697 tctx->cached_refs += nr;
1698 } else {
1699 percpu_counter_sub(&tctx->inflight, nr);
1700 if (unlikely(atomic_read(&tctx->in_idle)))
1701 wake_up(&tctx->wait);
1702 put_task_struct_many(task, nr);
1703 }
1704 }
1705
1706 static void io_task_refs_refill(struct io_uring_task *tctx)
1707 {
1708 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1709
1710 percpu_counter_add(&tctx->inflight, refill);
1711 refcount_add(refill, &current->usage);
1712 tctx->cached_refs += refill;
1713 }
1714
1715 static inline void io_get_task_refs(int nr)
1716 {
1717 struct io_uring_task *tctx = current->io_uring;
1718
1719 tctx->cached_refs -= nr;
1720 if (unlikely(tctx->cached_refs < 0))
1721 io_task_refs_refill(tctx);
1722 }
1723
1724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1725 long res, unsigned int cflags)
1726 {
1727 struct io_overflow_cqe *ocqe;
1728
1729 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1730 if (!ocqe) {
1731 /*
1732 * If we're in ring overflow flush mode, or in task cancel mode,
1733 * or cannot allocate an overflow entry, then we need to drop it
1734 * on the floor.
1735 */
1736 io_account_cq_overflow(ctx);
1737 return false;
1738 }
1739 if (list_empty(&ctx->cq_overflow_list)) {
1740 set_bit(0, &ctx->check_cq_overflow);
1741 WRITE_ONCE(ctx->rings->sq_flags,
1742 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1743
1744 }
1745 ocqe->cqe.user_data = user_data;
1746 ocqe->cqe.res = res;
1747 ocqe->cqe.flags = cflags;
1748 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1749 return true;
1750 }
1751
1752 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1753 long res, unsigned int cflags)
1754 {
1755 struct io_uring_cqe *cqe;
1756
1757 trace_io_uring_complete(ctx, user_data, res, cflags);
1758
1759 /*
1760 * If we can't get a cq entry, userspace overflowed the
1761 * submission (by quite a lot). Increment the overflow count in
1762 * the ring.
1763 */
1764 cqe = io_get_cqe(ctx);
1765 if (likely(cqe)) {
1766 WRITE_ONCE(cqe->user_data, user_data);
1767 WRITE_ONCE(cqe->res, res);
1768 WRITE_ONCE(cqe->flags, cflags);
1769 return true;
1770 }
1771 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1772 }
1773
1774 /* not as hot to bloat with inlining */
1775 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1776 long res, unsigned int cflags)
1777 {
1778 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1779 }
1780
1781 static void io_req_complete_post(struct io_kiocb *req, long res,
1782 unsigned int cflags)
1783 {
1784 struct io_ring_ctx *ctx = req->ctx;
1785
1786 spin_lock(&ctx->completion_lock);
1787 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1788 /*
1789 * If we're the last reference to this request, add to our locked
1790 * free_list cache.
1791 */
1792 if (req_ref_put_and_test(req)) {
1793 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1794 if (req->flags & IO_DISARM_MASK)
1795 io_disarm_next(req);
1796 if (req->link) {
1797 io_req_task_queue(req->link);
1798 req->link = NULL;
1799 }
1800 }
1801 io_dismantle_req(req);
1802 io_put_task(req->task, 1);
1803 list_add(&req->inflight_entry, &ctx->locked_free_list);
1804 ctx->locked_free_nr++;
1805 } else {
1806 if (!percpu_ref_tryget(&ctx->refs))
1807 req = NULL;
1808 }
1809 io_commit_cqring(ctx);
1810 spin_unlock(&ctx->completion_lock);
1811
1812 if (req) {
1813 io_cqring_ev_posted(ctx);
1814 percpu_ref_put(&ctx->refs);
1815 }
1816 }
1817
1818 static inline bool io_req_needs_clean(struct io_kiocb *req)
1819 {
1820 return req->flags & IO_REQ_CLEAN_FLAGS;
1821 }
1822
1823 static void io_req_complete_state(struct io_kiocb *req, long res,
1824 unsigned int cflags)
1825 {
1826 if (io_req_needs_clean(req))
1827 io_clean_op(req);
1828 req->result = res;
1829 req->compl.cflags = cflags;
1830 req->flags |= REQ_F_COMPLETE_INLINE;
1831 }
1832
1833 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1834 long res, unsigned cflags)
1835 {
1836 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1837 io_req_complete_state(req, res, cflags);
1838 else
1839 io_req_complete_post(req, res, cflags);
1840 }
1841
1842 static inline void io_req_complete(struct io_kiocb *req, long res)
1843 {
1844 __io_req_complete(req, 0, res, 0);
1845 }
1846
1847 static void io_req_complete_failed(struct io_kiocb *req, long res)
1848 {
1849 req_set_fail(req);
1850 io_req_complete_post(req, res, 0);
1851 }
1852
1853 static void io_req_complete_fail_submit(struct io_kiocb *req)
1854 {
1855 /*
1856 * We don't submit, fail them all, for that replace hardlinks with
1857 * normal links. Extra REQ_F_LINK is tolerated.
1858 */
1859 req->flags &= ~REQ_F_HARDLINK;
1860 req->flags |= REQ_F_LINK;
1861 io_req_complete_failed(req, req->result);
1862 }
1863
1864 /*
1865 * Don't initialise the fields below on every allocation, but do that in
1866 * advance and keep them valid across allocations.
1867 */
1868 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1869 {
1870 req->ctx = ctx;
1871 req->link = NULL;
1872 req->async_data = NULL;
1873 /* not necessary, but safer to zero */
1874 req->result = 0;
1875 }
1876
1877 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1878 struct io_submit_state *state)
1879 {
1880 spin_lock(&ctx->completion_lock);
1881 list_splice_init(&ctx->locked_free_list, &state->free_list);
1882 ctx->locked_free_nr = 0;
1883 spin_unlock(&ctx->completion_lock);
1884 }
1885
1886 /* Returns true IFF there are requests in the cache */
1887 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1888 {
1889 struct io_submit_state *state = &ctx->submit_state;
1890 int nr;
1891
1892 /*
1893 * If we have more than a batch's worth of requests in our IRQ side
1894 * locked cache, grab the lock and move them over to our submission
1895 * side cache.
1896 */
1897 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1898 io_flush_cached_locked_reqs(ctx, state);
1899
1900 nr = state->free_reqs;
1901 while (!list_empty(&state->free_list)) {
1902 struct io_kiocb *req = list_first_entry(&state->free_list,
1903 struct io_kiocb, inflight_entry);
1904
1905 list_del(&req->inflight_entry);
1906 state->reqs[nr++] = req;
1907 if (nr == ARRAY_SIZE(state->reqs))
1908 break;
1909 }
1910
1911 state->free_reqs = nr;
1912 return nr != 0;
1913 }
1914
1915 /*
1916 * A request might get retired back into the request caches even before opcode
1917 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1918 * Because of that, io_alloc_req() should be called only under ->uring_lock
1919 * and with extra caution to not get a request that is still worked on.
1920 */
1921 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1922 __must_hold(&ctx->uring_lock)
1923 {
1924 struct io_submit_state *state = &ctx->submit_state;
1925 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1926 int ret, i;
1927
1928 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1929
1930 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1931 goto got_req;
1932
1933 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1934 state->reqs);
1935
1936 /*
1937 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1938 * retry single alloc to be on the safe side.
1939 */
1940 if (unlikely(ret <= 0)) {
1941 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1942 if (!state->reqs[0])
1943 return NULL;
1944 ret = 1;
1945 }
1946
1947 for (i = 0; i < ret; i++)
1948 io_preinit_req(state->reqs[i], ctx);
1949 state->free_reqs = ret;
1950 got_req:
1951 state->free_reqs--;
1952 return state->reqs[state->free_reqs];
1953 }
1954
1955 static inline void io_put_file(struct file *file)
1956 {
1957 if (file)
1958 fput(file);
1959 }
1960
1961 static void io_dismantle_req(struct io_kiocb *req)
1962 {
1963 unsigned int flags = req->flags;
1964
1965 if (io_req_needs_clean(req))
1966 io_clean_op(req);
1967 if (!(flags & REQ_F_FIXED_FILE))
1968 io_put_file(req->file);
1969 if (req->fixed_rsrc_refs)
1970 percpu_ref_put(req->fixed_rsrc_refs);
1971 if (req->async_data) {
1972 kfree(req->async_data);
1973 req->async_data = NULL;
1974 }
1975 }
1976
1977 static void __io_free_req(struct io_kiocb *req)
1978 {
1979 struct io_ring_ctx *ctx = req->ctx;
1980
1981 io_dismantle_req(req);
1982 io_put_task(req->task, 1);
1983
1984 spin_lock(&ctx->completion_lock);
1985 list_add(&req->inflight_entry, &ctx->locked_free_list);
1986 ctx->locked_free_nr++;
1987 spin_unlock(&ctx->completion_lock);
1988
1989 percpu_ref_put(&ctx->refs);
1990 }
1991
1992 static inline void io_remove_next_linked(struct io_kiocb *req)
1993 {
1994 struct io_kiocb *nxt = req->link;
1995
1996 req->link = nxt->link;
1997 nxt->link = NULL;
1998 }
1999
2000 static bool io_kill_linked_timeout(struct io_kiocb *req)
2001 __must_hold(&req->ctx->completion_lock)
2002 __must_hold(&req->ctx->timeout_lock)
2003 {
2004 struct io_kiocb *link = req->link;
2005
2006 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2007 struct io_timeout_data *io = link->async_data;
2008
2009 io_remove_next_linked(req);
2010 link->timeout.head = NULL;
2011 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2012 list_del(&link->timeout.list);
2013 io_cqring_fill_event(link->ctx, link->user_data,
2014 -ECANCELED, 0);
2015 io_put_req_deferred(link);
2016 return true;
2017 }
2018 }
2019 return false;
2020 }
2021
2022 static void io_fail_links(struct io_kiocb *req)
2023 __must_hold(&req->ctx->completion_lock)
2024 {
2025 struct io_kiocb *nxt, *link = req->link;
2026
2027 req->link = NULL;
2028 while (link) {
2029 long res = -ECANCELED;
2030
2031 if (link->flags & REQ_F_FAIL)
2032 res = link->result;
2033
2034 nxt = link->link;
2035 link->link = NULL;
2036
2037 trace_io_uring_fail_link(req, link);
2038 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2039 io_put_req_deferred(link);
2040 link = nxt;
2041 }
2042 }
2043
2044 static bool io_disarm_next(struct io_kiocb *req)
2045 __must_hold(&req->ctx->completion_lock)
2046 {
2047 bool posted = false;
2048
2049 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2050 struct io_kiocb *link = req->link;
2051
2052 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2053 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2054 io_remove_next_linked(req);
2055 io_cqring_fill_event(link->ctx, link->user_data,
2056 -ECANCELED, 0);
2057 io_put_req_deferred(link);
2058 posted = true;
2059 }
2060 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2061 struct io_ring_ctx *ctx = req->ctx;
2062
2063 spin_lock_irq(&ctx->timeout_lock);
2064 posted = io_kill_linked_timeout(req);
2065 spin_unlock_irq(&ctx->timeout_lock);
2066 }
2067 if (unlikely((req->flags & REQ_F_FAIL) &&
2068 !(req->flags & REQ_F_HARDLINK))) {
2069 posted |= (req->link != NULL);
2070 io_fail_links(req);
2071 }
2072 return posted;
2073 }
2074
2075 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2076 {
2077 struct io_kiocb *nxt;
2078
2079 /*
2080 * If LINK is set, we have dependent requests in this chain. If we
2081 * didn't fail this request, queue the first one up, moving any other
2082 * dependencies to the next request. In case of failure, fail the rest
2083 * of the chain.
2084 */
2085 if (req->flags & IO_DISARM_MASK) {
2086 struct io_ring_ctx *ctx = req->ctx;
2087 bool posted;
2088
2089 spin_lock(&ctx->completion_lock);
2090 posted = io_disarm_next(req);
2091 if (posted)
2092 io_commit_cqring(req->ctx);
2093 spin_unlock(&ctx->completion_lock);
2094 if (posted)
2095 io_cqring_ev_posted(ctx);
2096 }
2097 nxt = req->link;
2098 req->link = NULL;
2099 return nxt;
2100 }
2101
2102 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2103 {
2104 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2105 return NULL;
2106 return __io_req_find_next(req);
2107 }
2108
2109 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2110 {
2111 if (!ctx)
2112 return;
2113 if (*locked) {
2114 if (ctx->submit_state.compl_nr)
2115 io_submit_flush_completions(ctx);
2116 mutex_unlock(&ctx->uring_lock);
2117 *locked = false;
2118 }
2119 percpu_ref_put(&ctx->refs);
2120 }
2121
2122 static void tctx_task_work(struct callback_head *cb)
2123 {
2124 bool locked = false;
2125 struct io_ring_ctx *ctx = NULL;
2126 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2127 task_work);
2128
2129 while (1) {
2130 struct io_wq_work_node *node;
2131
2132 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2133 io_submit_flush_completions(ctx);
2134
2135 spin_lock_irq(&tctx->task_lock);
2136 node = tctx->task_list.first;
2137 INIT_WQ_LIST(&tctx->task_list);
2138 if (!node)
2139 tctx->task_running = false;
2140 spin_unlock_irq(&tctx->task_lock);
2141 if (!node)
2142 break;
2143
2144 do {
2145 struct io_wq_work_node *next = node->next;
2146 struct io_kiocb *req = container_of(node, struct io_kiocb,
2147 io_task_work.node);
2148
2149 if (req->ctx != ctx) {
2150 ctx_flush_and_put(ctx, &locked);
2151 ctx = req->ctx;
2152 /* if not contended, grab and improve batching */
2153 locked = mutex_trylock(&ctx->uring_lock);
2154 percpu_ref_get(&ctx->refs);
2155 }
2156 req->io_task_work.func(req, &locked);
2157 node = next;
2158 } while (node);
2159
2160 cond_resched();
2161 }
2162
2163 ctx_flush_and_put(ctx, &locked);
2164 }
2165
2166 static void io_req_task_work_add(struct io_kiocb *req)
2167 {
2168 struct task_struct *tsk = req->task;
2169 struct io_uring_task *tctx = tsk->io_uring;
2170 enum task_work_notify_mode notify;
2171 struct io_wq_work_node *node;
2172 unsigned long flags;
2173 bool running;
2174
2175 WARN_ON_ONCE(!tctx);
2176
2177 spin_lock_irqsave(&tctx->task_lock, flags);
2178 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2179 running = tctx->task_running;
2180 if (!running)
2181 tctx->task_running = true;
2182 spin_unlock_irqrestore(&tctx->task_lock, flags);
2183
2184 /* task_work already pending, we're done */
2185 if (running)
2186 return;
2187
2188 /*
2189 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2190 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2191 * processing task_work. There's no reliable way to tell if TWA_RESUME
2192 * will do the job.
2193 */
2194 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2195 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2196 wake_up_process(tsk);
2197 return;
2198 }
2199
2200 spin_lock_irqsave(&tctx->task_lock, flags);
2201 tctx->task_running = false;
2202 node = tctx->task_list.first;
2203 INIT_WQ_LIST(&tctx->task_list);
2204 spin_unlock_irqrestore(&tctx->task_lock, flags);
2205
2206 while (node) {
2207 req = container_of(node, struct io_kiocb, io_task_work.node);
2208 node = node->next;
2209 if (llist_add(&req->io_task_work.fallback_node,
2210 &req->ctx->fallback_llist))
2211 schedule_delayed_work(&req->ctx->fallback_work, 1);
2212 }
2213 }
2214
2215 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2216 {
2217 struct io_ring_ctx *ctx = req->ctx;
2218
2219 /* not needed for normal modes, but SQPOLL depends on it */
2220 io_tw_lock(ctx, locked);
2221 io_req_complete_failed(req, req->result);
2222 }
2223
2224 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2225 {
2226 struct io_ring_ctx *ctx = req->ctx;
2227
2228 io_tw_lock(ctx, locked);
2229 /* req->task == current here, checking PF_EXITING is safe */
2230 if (likely(!(req->task->flags & PF_EXITING)))
2231 __io_queue_sqe(req);
2232 else
2233 io_req_complete_failed(req, -EFAULT);
2234 }
2235
2236 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2237 {
2238 req->result = ret;
2239 req->io_task_work.func = io_req_task_cancel;
2240 io_req_task_work_add(req);
2241 }
2242
2243 static void io_req_task_queue(struct io_kiocb *req)
2244 {
2245 req->io_task_work.func = io_req_task_submit;
2246 io_req_task_work_add(req);
2247 }
2248
2249 static void io_req_task_queue_reissue(struct io_kiocb *req)
2250 {
2251 req->io_task_work.func = io_queue_async_work;
2252 io_req_task_work_add(req);
2253 }
2254
2255 static inline void io_queue_next(struct io_kiocb *req)
2256 {
2257 struct io_kiocb *nxt = io_req_find_next(req);
2258
2259 if (nxt)
2260 io_req_task_queue(nxt);
2261 }
2262
2263 static void io_free_req(struct io_kiocb *req)
2264 {
2265 io_queue_next(req);
2266 __io_free_req(req);
2267 }
2268
2269 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2270 {
2271 io_free_req(req);
2272 }
2273
2274 struct req_batch {
2275 struct task_struct *task;
2276 int task_refs;
2277 int ctx_refs;
2278 };
2279
2280 static inline void io_init_req_batch(struct req_batch *rb)
2281 {
2282 rb->task_refs = 0;
2283 rb->ctx_refs = 0;
2284 rb->task = NULL;
2285 }
2286
2287 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2288 struct req_batch *rb)
2289 {
2290 if (rb->ctx_refs)
2291 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2292 if (rb->task)
2293 io_put_task(rb->task, rb->task_refs);
2294 }
2295
2296 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2297 struct io_submit_state *state)
2298 {
2299 io_queue_next(req);
2300 io_dismantle_req(req);
2301
2302 if (req->task != rb->task) {
2303 if (rb->task)
2304 io_put_task(rb->task, rb->task_refs);
2305 rb->task = req->task;
2306 rb->task_refs = 0;
2307 }
2308 rb->task_refs++;
2309 rb->ctx_refs++;
2310
2311 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2312 state->reqs[state->free_reqs++] = req;
2313 else
2314 list_add(&req->inflight_entry, &state->free_list);
2315 }
2316
2317 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2318 __must_hold(&ctx->uring_lock)
2319 {
2320 struct io_submit_state *state = &ctx->submit_state;
2321 int i, nr = state->compl_nr;
2322 struct req_batch rb;
2323
2324 spin_lock(&ctx->completion_lock);
2325 for (i = 0; i < nr; i++) {
2326 struct io_kiocb *req = state->compl_reqs[i];
2327
2328 __io_cqring_fill_event(ctx, req->user_data, req->result,
2329 req->compl.cflags);
2330 }
2331 io_commit_cqring(ctx);
2332 spin_unlock(&ctx->completion_lock);
2333 io_cqring_ev_posted(ctx);
2334
2335 io_init_req_batch(&rb);
2336 for (i = 0; i < nr; i++) {
2337 struct io_kiocb *req = state->compl_reqs[i];
2338
2339 if (req_ref_put_and_test(req))
2340 io_req_free_batch(&rb, req, &ctx->submit_state);
2341 }
2342
2343 io_req_free_batch_finish(ctx, &rb);
2344 state->compl_nr = 0;
2345 }
2346
2347 /*
2348 * Drop reference to request, return next in chain (if there is one) if this
2349 * was the last reference to this request.
2350 */
2351 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2352 {
2353 struct io_kiocb *nxt = NULL;
2354
2355 if (req_ref_put_and_test(req)) {
2356 nxt = io_req_find_next(req);
2357 __io_free_req(req);
2358 }
2359 return nxt;
2360 }
2361
2362 static inline void io_put_req(struct io_kiocb *req)
2363 {
2364 if (req_ref_put_and_test(req))
2365 io_free_req(req);
2366 }
2367
2368 static inline void io_put_req_deferred(struct io_kiocb *req)
2369 {
2370 if (req_ref_put_and_test(req)) {
2371 req->io_task_work.func = io_free_req_work;
2372 io_req_task_work_add(req);
2373 }
2374 }
2375
2376 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2377 {
2378 /* See comment at the top of this file */
2379 smp_rmb();
2380 return __io_cqring_events(ctx);
2381 }
2382
2383 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2384 {
2385 struct io_rings *rings = ctx->rings;
2386
2387 /* make sure SQ entry isn't read before tail */
2388 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2389 }
2390
2391 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2392 {
2393 unsigned int cflags;
2394
2395 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2396 cflags |= IORING_CQE_F_BUFFER;
2397 req->flags &= ~REQ_F_BUFFER_SELECTED;
2398 kfree(kbuf);
2399 return cflags;
2400 }
2401
2402 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2403 {
2404 struct io_buffer *kbuf;
2405
2406 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2407 return 0;
2408 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2409 return io_put_kbuf(req, kbuf);
2410 }
2411
2412 static inline bool io_run_task_work(void)
2413 {
2414 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2415 __set_current_state(TASK_RUNNING);
2416 tracehook_notify_signal();
2417 return true;
2418 }
2419
2420 return false;
2421 }
2422
2423 /*
2424 * Find and free completed poll iocbs
2425 */
2426 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2427 struct list_head *done)
2428 {
2429 struct req_batch rb;
2430 struct io_kiocb *req;
2431
2432 /* order with ->result store in io_complete_rw_iopoll() */
2433 smp_rmb();
2434
2435 io_init_req_batch(&rb);
2436 while (!list_empty(done)) {
2437 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2438 list_del(&req->inflight_entry);
2439
2440 __io_cqring_fill_event(ctx, req->user_data, req->result,
2441 io_put_rw_kbuf(req));
2442 (*nr_events)++;
2443
2444 if (req_ref_put_and_test(req))
2445 io_req_free_batch(&rb, req, &ctx->submit_state);
2446 }
2447
2448 io_commit_cqring(ctx);
2449 io_cqring_ev_posted_iopoll(ctx);
2450 io_req_free_batch_finish(ctx, &rb);
2451 }
2452
2453 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2454 long min)
2455 {
2456 struct io_kiocb *req, *tmp;
2457 LIST_HEAD(done);
2458 bool spin;
2459
2460 /*
2461 * Only spin for completions if we don't have multiple devices hanging
2462 * off our complete list, and we're under the requested amount.
2463 */
2464 spin = !ctx->poll_multi_queue && *nr_events < min;
2465
2466 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2467 struct kiocb *kiocb = &req->rw.kiocb;
2468 int ret;
2469
2470 /*
2471 * Move completed and retryable entries to our local lists.
2472 * If we find a request that requires polling, break out
2473 * and complete those lists first, if we have entries there.
2474 */
2475 if (READ_ONCE(req->iopoll_completed)) {
2476 list_move_tail(&req->inflight_entry, &done);
2477 continue;
2478 }
2479 if (!list_empty(&done))
2480 break;
2481
2482 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2483 if (unlikely(ret < 0))
2484 return ret;
2485 else if (ret)
2486 spin = false;
2487
2488 /* iopoll may have completed current req */
2489 if (READ_ONCE(req->iopoll_completed))
2490 list_move_tail(&req->inflight_entry, &done);
2491 }
2492
2493 if (!list_empty(&done))
2494 io_iopoll_complete(ctx, nr_events, &done);
2495
2496 return 0;
2497 }
2498
2499 /*
2500 * We can't just wait for polled events to come to us, we have to actively
2501 * find and complete them.
2502 */
2503 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2504 {
2505 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2506 return;
2507
2508 mutex_lock(&ctx->uring_lock);
2509 while (!list_empty(&ctx->iopoll_list)) {
2510 unsigned int nr_events = 0;
2511
2512 io_do_iopoll(ctx, &nr_events, 0);
2513
2514 /* let it sleep and repeat later if can't complete a request */
2515 if (nr_events == 0)
2516 break;
2517 /*
2518 * Ensure we allow local-to-the-cpu processing to take place,
2519 * in this case we need to ensure that we reap all events.
2520 * Also let task_work, etc. to progress by releasing the mutex
2521 */
2522 if (need_resched()) {
2523 mutex_unlock(&ctx->uring_lock);
2524 cond_resched();
2525 mutex_lock(&ctx->uring_lock);
2526 }
2527 }
2528 mutex_unlock(&ctx->uring_lock);
2529 }
2530
2531 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2532 {
2533 unsigned int nr_events = 0;
2534 int ret = 0;
2535
2536 /*
2537 * We disallow the app entering submit/complete with polling, but we
2538 * still need to lock the ring to prevent racing with polled issue
2539 * that got punted to a workqueue.
2540 */
2541 mutex_lock(&ctx->uring_lock);
2542 /*
2543 * Don't enter poll loop if we already have events pending.
2544 * If we do, we can potentially be spinning for commands that
2545 * already triggered a CQE (eg in error).
2546 */
2547 if (test_bit(0, &ctx->check_cq_overflow))
2548 __io_cqring_overflow_flush(ctx, false);
2549 if (io_cqring_events(ctx))
2550 goto out;
2551 do {
2552 /*
2553 * If a submit got punted to a workqueue, we can have the
2554 * application entering polling for a command before it gets
2555 * issued. That app will hold the uring_lock for the duration
2556 * of the poll right here, so we need to take a breather every
2557 * now and then to ensure that the issue has a chance to add
2558 * the poll to the issued list. Otherwise we can spin here
2559 * forever, while the workqueue is stuck trying to acquire the
2560 * very same mutex.
2561 */
2562 if (list_empty(&ctx->iopoll_list)) {
2563 u32 tail = ctx->cached_cq_tail;
2564
2565 mutex_unlock(&ctx->uring_lock);
2566 io_run_task_work();
2567 mutex_lock(&ctx->uring_lock);
2568
2569 /* some requests don't go through iopoll_list */
2570 if (tail != ctx->cached_cq_tail ||
2571 list_empty(&ctx->iopoll_list))
2572 break;
2573 }
2574 ret = io_do_iopoll(ctx, &nr_events, min);
2575 } while (!ret && nr_events < min && !need_resched());
2576 out:
2577 mutex_unlock(&ctx->uring_lock);
2578 return ret;
2579 }
2580
2581 static void kiocb_end_write(struct io_kiocb *req)
2582 {
2583 /*
2584 * Tell lockdep we inherited freeze protection from submission
2585 * thread.
2586 */
2587 if (req->flags & REQ_F_ISREG) {
2588 struct super_block *sb = file_inode(req->file)->i_sb;
2589
2590 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2591 sb_end_write(sb);
2592 }
2593 }
2594
2595 #ifdef CONFIG_BLOCK
2596 static bool io_resubmit_prep(struct io_kiocb *req)
2597 {
2598 struct io_async_rw *rw = req->async_data;
2599
2600 if (!rw)
2601 return !io_req_prep_async(req);
2602 iov_iter_restore(&rw->iter, &rw->iter_state);
2603 return true;
2604 }
2605
2606 static bool io_rw_should_reissue(struct io_kiocb *req)
2607 {
2608 umode_t mode = file_inode(req->file)->i_mode;
2609 struct io_ring_ctx *ctx = req->ctx;
2610
2611 if (!S_ISBLK(mode) && !S_ISREG(mode))
2612 return false;
2613 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2614 !(ctx->flags & IORING_SETUP_IOPOLL)))
2615 return false;
2616 /*
2617 * If ref is dying, we might be running poll reap from the exit work.
2618 * Don't attempt to reissue from that path, just let it fail with
2619 * -EAGAIN.
2620 */
2621 if (percpu_ref_is_dying(&ctx->refs))
2622 return false;
2623 /*
2624 * Play it safe and assume not safe to re-import and reissue if we're
2625 * not in the original thread group (or in task context).
2626 */
2627 if (!same_thread_group(req->task, current) || !in_task())
2628 return false;
2629 return true;
2630 }
2631 #else
2632 static bool io_resubmit_prep(struct io_kiocb *req)
2633 {
2634 return false;
2635 }
2636 static bool io_rw_should_reissue(struct io_kiocb *req)
2637 {
2638 return false;
2639 }
2640 #endif
2641
2642 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2643 {
2644 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2645 kiocb_end_write(req);
2646 if (res != req->result) {
2647 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2648 io_rw_should_reissue(req)) {
2649 req->flags |= REQ_F_REISSUE;
2650 return true;
2651 }
2652 req_set_fail(req);
2653 req->result = res;
2654 }
2655 return false;
2656 }
2657
2658 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2659 {
2660 unsigned int cflags = io_put_rw_kbuf(req);
2661 long res = req->result;
2662
2663 if (*locked) {
2664 struct io_ring_ctx *ctx = req->ctx;
2665 struct io_submit_state *state = &ctx->submit_state;
2666
2667 io_req_complete_state(req, res, cflags);
2668 state->compl_reqs[state->compl_nr++] = req;
2669 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2670 io_submit_flush_completions(ctx);
2671 } else {
2672 io_req_complete_post(req, res, cflags);
2673 }
2674 }
2675
2676 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2677 unsigned int issue_flags)
2678 {
2679 if (__io_complete_rw_common(req, res))
2680 return;
2681 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2682 }
2683
2684 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2685 {
2686 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2687
2688 if (__io_complete_rw_common(req, res))
2689 return;
2690 req->result = res;
2691 req->io_task_work.func = io_req_task_complete;
2692 io_req_task_work_add(req);
2693 }
2694
2695 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2696 {
2697 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2698
2699 if (kiocb->ki_flags & IOCB_WRITE)
2700 kiocb_end_write(req);
2701 if (unlikely(res != req->result)) {
2702 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2703 req->flags |= REQ_F_REISSUE;
2704 return;
2705 }
2706 }
2707
2708 WRITE_ONCE(req->result, res);
2709 /* order with io_iopoll_complete() checking ->result */
2710 smp_wmb();
2711 WRITE_ONCE(req->iopoll_completed, 1);
2712 }
2713
2714 /*
2715 * After the iocb has been issued, it's safe to be found on the poll list.
2716 * Adding the kiocb to the list AFTER submission ensures that we don't
2717 * find it from a io_do_iopoll() thread before the issuer is done
2718 * accessing the kiocb cookie.
2719 */
2720 static void io_iopoll_req_issued(struct io_kiocb *req)
2721 {
2722 struct io_ring_ctx *ctx = req->ctx;
2723 const bool in_async = io_wq_current_is_worker();
2724
2725 /* workqueue context doesn't hold uring_lock, grab it now */
2726 if (unlikely(in_async))
2727 mutex_lock(&ctx->uring_lock);
2728
2729 /*
2730 * Track whether we have multiple files in our lists. This will impact
2731 * how we do polling eventually, not spinning if we're on potentially
2732 * different devices.
2733 */
2734 if (list_empty(&ctx->iopoll_list)) {
2735 ctx->poll_multi_queue = false;
2736 } else if (!ctx->poll_multi_queue) {
2737 struct io_kiocb *list_req;
2738 unsigned int queue_num0, queue_num1;
2739
2740 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2741 inflight_entry);
2742
2743 if (list_req->file != req->file) {
2744 ctx->poll_multi_queue = true;
2745 } else {
2746 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2747 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2748 if (queue_num0 != queue_num1)
2749 ctx->poll_multi_queue = true;
2750 }
2751 }
2752
2753 /*
2754 * For fast devices, IO may have already completed. If it has, add
2755 * it to the front so we find it first.
2756 */
2757 if (READ_ONCE(req->iopoll_completed))
2758 list_add(&req->inflight_entry, &ctx->iopoll_list);
2759 else
2760 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2761
2762 if (unlikely(in_async)) {
2763 /*
2764 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2765 * in sq thread task context or in io worker task context. If
2766 * current task context is sq thread, we don't need to check
2767 * whether should wake up sq thread.
2768 */
2769 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2770 wq_has_sleeper(&ctx->sq_data->wait))
2771 wake_up(&ctx->sq_data->wait);
2772
2773 mutex_unlock(&ctx->uring_lock);
2774 }
2775 }
2776
2777 static bool io_bdev_nowait(struct block_device *bdev)
2778 {
2779 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2780 }
2781
2782 /*
2783 * If we tracked the file through the SCM inflight mechanism, we could support
2784 * any file. For now, just ensure that anything potentially problematic is done
2785 * inline.
2786 */
2787 static bool __io_file_supports_nowait(struct file *file, int rw)
2788 {
2789 umode_t mode = file_inode(file)->i_mode;
2790
2791 if (S_ISBLK(mode)) {
2792 if (IS_ENABLED(CONFIG_BLOCK) &&
2793 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2794 return true;
2795 return false;
2796 }
2797 if (S_ISSOCK(mode))
2798 return true;
2799 if (S_ISREG(mode)) {
2800 if (IS_ENABLED(CONFIG_BLOCK) &&
2801 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2802 file->f_op != &io_uring_fops)
2803 return true;
2804 return false;
2805 }
2806
2807 /* any ->read/write should understand O_NONBLOCK */
2808 if (file->f_flags & O_NONBLOCK)
2809 return true;
2810
2811 if (!(file->f_mode & FMODE_NOWAIT))
2812 return false;
2813
2814 if (rw == READ)
2815 return file->f_op->read_iter != NULL;
2816
2817 return file->f_op->write_iter != NULL;
2818 }
2819
2820 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2821 {
2822 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2823 return true;
2824 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2825 return true;
2826
2827 return __io_file_supports_nowait(req->file, rw);
2828 }
2829
2830 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2831 int rw)
2832 {
2833 struct io_ring_ctx *ctx = req->ctx;
2834 struct kiocb *kiocb = &req->rw.kiocb;
2835 struct file *file = req->file;
2836 unsigned ioprio;
2837 int ret;
2838
2839 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2840 req->flags |= REQ_F_ISREG;
2841
2842 kiocb->ki_pos = READ_ONCE(sqe->off);
2843 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2844 req->flags |= REQ_F_CUR_POS;
2845 kiocb->ki_pos = file->f_pos;
2846 }
2847 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2848 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2849 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2850 if (unlikely(ret))
2851 return ret;
2852
2853 /*
2854 * If the file is marked O_NONBLOCK, still allow retry for it if it
2855 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2856 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2857 */
2858 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2859 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2860 req->flags |= REQ_F_NOWAIT;
2861
2862 ioprio = READ_ONCE(sqe->ioprio);
2863 if (ioprio) {
2864 ret = ioprio_check_cap(ioprio);
2865 if (ret)
2866 return ret;
2867
2868 kiocb->ki_ioprio = ioprio;
2869 } else
2870 kiocb->ki_ioprio = get_current_ioprio();
2871
2872 if (ctx->flags & IORING_SETUP_IOPOLL) {
2873 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2874 !kiocb->ki_filp->f_op->iopoll)
2875 return -EOPNOTSUPP;
2876
2877 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2878 kiocb->ki_complete = io_complete_rw_iopoll;
2879 req->iopoll_completed = 0;
2880 } else {
2881 if (kiocb->ki_flags & IOCB_HIPRI)
2882 return -EINVAL;
2883 kiocb->ki_complete = io_complete_rw;
2884 }
2885
2886 if (req->opcode == IORING_OP_READ_FIXED ||
2887 req->opcode == IORING_OP_WRITE_FIXED) {
2888 req->imu = NULL;
2889 io_req_set_rsrc_node(req);
2890 }
2891
2892 req->rw.addr = READ_ONCE(sqe->addr);
2893 req->rw.len = READ_ONCE(sqe->len);
2894 req->buf_index = READ_ONCE(sqe->buf_index);
2895 return 0;
2896 }
2897
2898 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2899 {
2900 switch (ret) {
2901 case -EIOCBQUEUED:
2902 break;
2903 case -ERESTARTSYS:
2904 case -ERESTARTNOINTR:
2905 case -ERESTARTNOHAND:
2906 case -ERESTART_RESTARTBLOCK:
2907 /*
2908 * We can't just restart the syscall, since previously
2909 * submitted sqes may already be in progress. Just fail this
2910 * IO with EINTR.
2911 */
2912 ret = -EINTR;
2913 fallthrough;
2914 default:
2915 kiocb->ki_complete(kiocb, ret, 0);
2916 }
2917 }
2918
2919 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2920 unsigned int issue_flags)
2921 {
2922 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2923 struct io_async_rw *io = req->async_data;
2924
2925 /* add previously done IO, if any */
2926 if (io && io->bytes_done > 0) {
2927 if (ret < 0)
2928 ret = io->bytes_done;
2929 else
2930 ret += io->bytes_done;
2931 }
2932
2933 if (req->flags & REQ_F_CUR_POS)
2934 req->file->f_pos = kiocb->ki_pos;
2935 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2936 __io_complete_rw(req, ret, 0, issue_flags);
2937 else
2938 io_rw_done(kiocb, ret);
2939
2940 if (req->flags & REQ_F_REISSUE) {
2941 req->flags &= ~REQ_F_REISSUE;
2942 if (io_resubmit_prep(req)) {
2943 io_req_task_queue_reissue(req);
2944 } else {
2945 unsigned int cflags = io_put_rw_kbuf(req);
2946 struct io_ring_ctx *ctx = req->ctx;
2947
2948 req_set_fail(req);
2949 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
2950 mutex_lock(&ctx->uring_lock);
2951 __io_req_complete(req, issue_flags, ret, cflags);
2952 mutex_unlock(&ctx->uring_lock);
2953 } else {
2954 __io_req_complete(req, issue_flags, ret, cflags);
2955 }
2956 }
2957 }
2958 }
2959
2960 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2961 struct io_mapped_ubuf *imu)
2962 {
2963 size_t len = req->rw.len;
2964 u64 buf_end, buf_addr = req->rw.addr;
2965 size_t offset;
2966
2967 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2968 return -EFAULT;
2969 /* not inside the mapped region */
2970 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2971 return -EFAULT;
2972
2973 /*
2974 * May not be a start of buffer, set size appropriately
2975 * and advance us to the beginning.
2976 */
2977 offset = buf_addr - imu->ubuf;
2978 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2979
2980 if (offset) {
2981 /*
2982 * Don't use iov_iter_advance() here, as it's really slow for
2983 * using the latter parts of a big fixed buffer - it iterates
2984 * over each segment manually. We can cheat a bit here, because
2985 * we know that:
2986 *
2987 * 1) it's a BVEC iter, we set it up
2988 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2989 * first and last bvec
2990 *
2991 * So just find our index, and adjust the iterator afterwards.
2992 * If the offset is within the first bvec (or the whole first
2993 * bvec, just use iov_iter_advance(). This makes it easier
2994 * since we can just skip the first segment, which may not
2995 * be PAGE_SIZE aligned.
2996 */
2997 const struct bio_vec *bvec = imu->bvec;
2998
2999 if (offset <= bvec->bv_len) {
3000 iov_iter_advance(iter, offset);
3001 } else {
3002 unsigned long seg_skip;
3003
3004 /* skip first vec */
3005 offset -= bvec->bv_len;
3006 seg_skip = 1 + (offset >> PAGE_SHIFT);
3007
3008 iter->bvec = bvec + seg_skip;
3009 iter->nr_segs -= seg_skip;
3010 iter->count -= bvec->bv_len + offset;
3011 iter->iov_offset = offset & ~PAGE_MASK;
3012 }
3013 }
3014
3015 return 0;
3016 }
3017
3018 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3019 {
3020 struct io_ring_ctx *ctx = req->ctx;
3021 struct io_mapped_ubuf *imu = req->imu;
3022 u16 index, buf_index = req->buf_index;
3023
3024 if (likely(!imu)) {
3025 if (unlikely(buf_index >= ctx->nr_user_bufs))
3026 return -EFAULT;
3027 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3028 imu = READ_ONCE(ctx->user_bufs[index]);
3029 req->imu = imu;
3030 }
3031 return __io_import_fixed(req, rw, iter, imu);
3032 }
3033
3034 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3035 {
3036 if (needs_lock)
3037 mutex_unlock(&ctx->uring_lock);
3038 }
3039
3040 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3041 {
3042 /*
3043 * "Normal" inline submissions always hold the uring_lock, since we
3044 * grab it from the system call. Same is true for the SQPOLL offload.
3045 * The only exception is when we've detached the request and issue it
3046 * from an async worker thread, grab the lock for that case.
3047 */
3048 if (needs_lock)
3049 mutex_lock(&ctx->uring_lock);
3050 }
3051
3052 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3053 int bgid, struct io_buffer *kbuf,
3054 bool needs_lock)
3055 {
3056 struct io_buffer *head;
3057
3058 if (req->flags & REQ_F_BUFFER_SELECTED)
3059 return kbuf;
3060
3061 io_ring_submit_lock(req->ctx, needs_lock);
3062
3063 lockdep_assert_held(&req->ctx->uring_lock);
3064
3065 head = xa_load(&req->ctx->io_buffers, bgid);
3066 if (head) {
3067 if (!list_empty(&head->list)) {
3068 kbuf = list_last_entry(&head->list, struct io_buffer,
3069 list);
3070 list_del(&kbuf->list);
3071 } else {
3072 kbuf = head;
3073 xa_erase(&req->ctx->io_buffers, bgid);
3074 }
3075 if (*len > kbuf->len)
3076 *len = kbuf->len;
3077 } else {
3078 kbuf = ERR_PTR(-ENOBUFS);
3079 }
3080
3081 io_ring_submit_unlock(req->ctx, needs_lock);
3082
3083 return kbuf;
3084 }
3085
3086 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3087 bool needs_lock)
3088 {
3089 struct io_buffer *kbuf;
3090 u16 bgid;
3091
3092 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3093 bgid = req->buf_index;
3094 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3095 if (IS_ERR(kbuf))
3096 return kbuf;
3097 req->rw.addr = (u64) (unsigned long) kbuf;
3098 req->flags |= REQ_F_BUFFER_SELECTED;
3099 return u64_to_user_ptr(kbuf->addr);
3100 }
3101
3102 #ifdef CONFIG_COMPAT
3103 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3104 bool needs_lock)
3105 {
3106 struct compat_iovec __user *uiov;
3107 compat_ssize_t clen;
3108 void __user *buf;
3109 ssize_t len;
3110
3111 uiov = u64_to_user_ptr(req->rw.addr);
3112 if (!access_ok(uiov, sizeof(*uiov)))
3113 return -EFAULT;
3114 if (__get_user(clen, &uiov->iov_len))
3115 return -EFAULT;
3116 if (clen < 0)
3117 return -EINVAL;
3118
3119 len = clen;
3120 buf = io_rw_buffer_select(req, &len, needs_lock);
3121 if (IS_ERR(buf))
3122 return PTR_ERR(buf);
3123 iov[0].iov_base = buf;
3124 iov[0].iov_len = (compat_size_t) len;
3125 return 0;
3126 }
3127 #endif
3128
3129 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3130 bool needs_lock)
3131 {
3132 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3133 void __user *buf;
3134 ssize_t len;
3135
3136 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3137 return -EFAULT;
3138
3139 len = iov[0].iov_len;
3140 if (len < 0)
3141 return -EINVAL;
3142 buf = io_rw_buffer_select(req, &len, needs_lock);
3143 if (IS_ERR(buf))
3144 return PTR_ERR(buf);
3145 iov[0].iov_base = buf;
3146 iov[0].iov_len = len;
3147 return 0;
3148 }
3149
3150 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3151 bool needs_lock)
3152 {
3153 if (req->flags & REQ_F_BUFFER_SELECTED) {
3154 struct io_buffer *kbuf;
3155
3156 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3157 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3158 iov[0].iov_len = kbuf->len;
3159 return 0;
3160 }
3161 if (req->rw.len != 1)
3162 return -EINVAL;
3163
3164 #ifdef CONFIG_COMPAT
3165 if (req->ctx->compat)
3166 return io_compat_import(req, iov, needs_lock);
3167 #endif
3168
3169 return __io_iov_buffer_select(req, iov, needs_lock);
3170 }
3171
3172 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3173 struct iov_iter *iter, bool needs_lock)
3174 {
3175 void __user *buf = u64_to_user_ptr(req->rw.addr);
3176 size_t sqe_len = req->rw.len;
3177 u8 opcode = req->opcode;
3178 ssize_t ret;
3179
3180 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3181 *iovec = NULL;
3182 return io_import_fixed(req, rw, iter);
3183 }
3184
3185 /* buffer index only valid with fixed read/write, or buffer select */
3186 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3187 return -EINVAL;
3188
3189 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3190 if (req->flags & REQ_F_BUFFER_SELECT) {
3191 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3192 if (IS_ERR(buf))
3193 return PTR_ERR(buf);
3194 req->rw.len = sqe_len;
3195 }
3196
3197 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3198 *iovec = NULL;
3199 return ret;
3200 }
3201
3202 if (req->flags & REQ_F_BUFFER_SELECT) {
3203 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3204 if (!ret)
3205 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3206 *iovec = NULL;
3207 return ret;
3208 }
3209
3210 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3211 req->ctx->compat);
3212 }
3213
3214 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3215 {
3216 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3217 }
3218
3219 /*
3220 * For files that don't have ->read_iter() and ->write_iter(), handle them
3221 * by looping over ->read() or ->write() manually.
3222 */
3223 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3224 {
3225 struct kiocb *kiocb = &req->rw.kiocb;
3226 struct file *file = req->file;
3227 ssize_t ret = 0;
3228
3229 /*
3230 * Don't support polled IO through this interface, and we can't
3231 * support non-blocking either. For the latter, this just causes
3232 * the kiocb to be handled from an async context.
3233 */
3234 if (kiocb->ki_flags & IOCB_HIPRI)
3235 return -EOPNOTSUPP;
3236 if (kiocb->ki_flags & IOCB_NOWAIT)
3237 return -EAGAIN;
3238
3239 while (iov_iter_count(iter)) {
3240 struct iovec iovec;
3241 ssize_t nr;
3242
3243 if (!iov_iter_is_bvec(iter)) {
3244 iovec = iov_iter_iovec(iter);
3245 } else {
3246 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3247 iovec.iov_len = req->rw.len;
3248 }
3249
3250 if (rw == READ) {
3251 nr = file->f_op->read(file, iovec.iov_base,
3252 iovec.iov_len, io_kiocb_ppos(kiocb));
3253 } else {
3254 nr = file->f_op->write(file, iovec.iov_base,
3255 iovec.iov_len, io_kiocb_ppos(kiocb));
3256 }
3257
3258 if (nr < 0) {
3259 if (!ret)
3260 ret = nr;
3261 break;
3262 }
3263 if (!iov_iter_is_bvec(iter)) {
3264 iov_iter_advance(iter, nr);
3265 } else {
3266 req->rw.len -= nr;
3267 req->rw.addr += nr;
3268 }
3269 ret += nr;
3270 if (nr != iovec.iov_len)
3271 break;
3272 }
3273
3274 return ret;
3275 }
3276
3277 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3278 const struct iovec *fast_iov, struct iov_iter *iter)
3279 {
3280 struct io_async_rw *rw = req->async_data;
3281
3282 memcpy(&rw->iter, iter, sizeof(*iter));
3283 rw->free_iovec = iovec;
3284 rw->bytes_done = 0;
3285 /* can only be fixed buffers, no need to do anything */
3286 if (iov_iter_is_bvec(iter))
3287 return;
3288 if (!iovec) {
3289 unsigned iov_off = 0;
3290
3291 rw->iter.iov = rw->fast_iov;
3292 if (iter->iov != fast_iov) {
3293 iov_off = iter->iov - fast_iov;
3294 rw->iter.iov += iov_off;
3295 }
3296 if (rw->fast_iov != fast_iov)
3297 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3298 sizeof(struct iovec) * iter->nr_segs);
3299 } else {
3300 req->flags |= REQ_F_NEED_CLEANUP;
3301 }
3302 }
3303
3304 static inline int io_alloc_async_data(struct io_kiocb *req)
3305 {
3306 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3307 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3308 return req->async_data == NULL;
3309 }
3310
3311 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3312 const struct iovec *fast_iov,
3313 struct iov_iter *iter, bool force)
3314 {
3315 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3316 return 0;
3317 if (!req->async_data) {
3318 struct io_async_rw *iorw;
3319
3320 if (io_alloc_async_data(req)) {
3321 kfree(iovec);
3322 return -ENOMEM;
3323 }
3324
3325 io_req_map_rw(req, iovec, fast_iov, iter);
3326 iorw = req->async_data;
3327 /* we've copied and mapped the iter, ensure state is saved */
3328 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3329 }
3330 return 0;
3331 }
3332
3333 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3334 {
3335 struct io_async_rw *iorw = req->async_data;
3336 struct iovec *iov = iorw->fast_iov;
3337 int ret;
3338
3339 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3340 if (unlikely(ret < 0))
3341 return ret;
3342
3343 iorw->bytes_done = 0;
3344 iorw->free_iovec = iov;
3345 if (iov)
3346 req->flags |= REQ_F_NEED_CLEANUP;
3347 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3348 return 0;
3349 }
3350
3351 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3352 {
3353 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3354 return -EBADF;
3355 return io_prep_rw(req, sqe, READ);
3356 }
3357
3358 /*
3359 * This is our waitqueue callback handler, registered through lock_page_async()
3360 * when we initially tried to do the IO with the iocb armed our waitqueue.
3361 * This gets called when the page is unlocked, and we generally expect that to
3362 * happen when the page IO is completed and the page is now uptodate. This will
3363 * queue a task_work based retry of the operation, attempting to copy the data
3364 * again. If the latter fails because the page was NOT uptodate, then we will
3365 * do a thread based blocking retry of the operation. That's the unexpected
3366 * slow path.
3367 */
3368 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3369 int sync, void *arg)
3370 {
3371 struct wait_page_queue *wpq;
3372 struct io_kiocb *req = wait->private;
3373 struct wait_page_key *key = arg;
3374
3375 wpq = container_of(wait, struct wait_page_queue, wait);
3376
3377 if (!wake_page_match(wpq, key))
3378 return 0;
3379
3380 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3381 list_del_init(&wait->entry);
3382 io_req_task_queue(req);
3383 return 1;
3384 }
3385
3386 /*
3387 * This controls whether a given IO request should be armed for async page
3388 * based retry. If we return false here, the request is handed to the async
3389 * worker threads for retry. If we're doing buffered reads on a regular file,
3390 * we prepare a private wait_page_queue entry and retry the operation. This
3391 * will either succeed because the page is now uptodate and unlocked, or it
3392 * will register a callback when the page is unlocked at IO completion. Through
3393 * that callback, io_uring uses task_work to setup a retry of the operation.
3394 * That retry will attempt the buffered read again. The retry will generally
3395 * succeed, or in rare cases where it fails, we then fall back to using the
3396 * async worker threads for a blocking retry.
3397 */
3398 static bool io_rw_should_retry(struct io_kiocb *req)
3399 {
3400 struct io_async_rw *rw = req->async_data;
3401 struct wait_page_queue *wait = &rw->wpq;
3402 struct kiocb *kiocb = &req->rw.kiocb;
3403
3404 /* never retry for NOWAIT, we just complete with -EAGAIN */
3405 if (req->flags & REQ_F_NOWAIT)
3406 return false;
3407
3408 /* Only for buffered IO */
3409 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3410 return false;
3411
3412 /*
3413 * just use poll if we can, and don't attempt if the fs doesn't
3414 * support callback based unlocks
3415 */
3416 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3417 return false;
3418
3419 wait->wait.func = io_async_buf_func;
3420 wait->wait.private = req;
3421 wait->wait.flags = 0;
3422 INIT_LIST_HEAD(&wait->wait.entry);
3423 kiocb->ki_flags |= IOCB_WAITQ;
3424 kiocb->ki_flags &= ~IOCB_NOWAIT;
3425 kiocb->ki_waitq = wait;
3426 return true;
3427 }
3428
3429 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3430 {
3431 if (req->file->f_op->read_iter)
3432 return call_read_iter(req->file, &req->rw.kiocb, iter);
3433 else if (req->file->f_op->read)
3434 return loop_rw_iter(READ, req, iter);
3435 else
3436 return -EINVAL;
3437 }
3438
3439 static bool need_read_all(struct io_kiocb *req)
3440 {
3441 return req->flags & REQ_F_ISREG ||
3442 S_ISBLK(file_inode(req->file)->i_mode);
3443 }
3444
3445 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3446 {
3447 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3448 struct kiocb *kiocb = &req->rw.kiocb;
3449 struct iov_iter __iter, *iter = &__iter;
3450 struct io_async_rw *rw = req->async_data;
3451 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3452 struct iov_iter_state __state, *state;
3453 ssize_t ret, ret2;
3454
3455 if (rw) {
3456 iter = &rw->iter;
3457 state = &rw->iter_state;
3458 /*
3459 * We come here from an earlier attempt, restore our state to
3460 * match in case it doesn't. It's cheap enough that we don't
3461 * need to make this conditional.
3462 */
3463 iov_iter_restore(iter, state);
3464 iovec = NULL;
3465 } else {
3466 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3467 if (ret < 0)
3468 return ret;
3469 state = &__state;
3470 iov_iter_save_state(iter, state);
3471 }
3472 req->result = iov_iter_count(iter);
3473
3474 /* Ensure we clear previously set non-block flag */
3475 if (!force_nonblock)
3476 kiocb->ki_flags &= ~IOCB_NOWAIT;
3477 else
3478 kiocb->ki_flags |= IOCB_NOWAIT;
3479
3480 /* If the file doesn't support async, just async punt */
3481 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3482 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3483 return ret ?: -EAGAIN;
3484 }
3485
3486 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3487 if (unlikely(ret)) {
3488 kfree(iovec);
3489 return ret;
3490 }
3491
3492 ret = io_iter_do_read(req, iter);
3493
3494 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3495 req->flags &= ~REQ_F_REISSUE;
3496 /* IOPOLL retry should happen for io-wq threads */
3497 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3498 goto done;
3499 /* no retry on NONBLOCK nor RWF_NOWAIT */
3500 if (req->flags & REQ_F_NOWAIT)
3501 goto done;
3502 ret = 0;
3503 } else if (ret == -EIOCBQUEUED) {
3504 goto out_free;
3505 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3506 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3507 /* read all, failed, already did sync or don't want to retry */
3508 goto done;
3509 }
3510
3511 /*
3512 * Don't depend on the iter state matching what was consumed, or being
3513 * untouched in case of error. Restore it and we'll advance it
3514 * manually if we need to.
3515 */
3516 iov_iter_restore(iter, state);
3517
3518 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3519 if (ret2)
3520 return ret2;
3521
3522 iovec = NULL;
3523 rw = req->async_data;
3524 /*
3525 * Now use our persistent iterator and state, if we aren't already.
3526 * We've restored and mapped the iter to match.
3527 */
3528 if (iter != &rw->iter) {
3529 iter = &rw->iter;
3530 state = &rw->iter_state;
3531 }
3532
3533 do {
3534 /*
3535 * We end up here because of a partial read, either from
3536 * above or inside this loop. Advance the iter by the bytes
3537 * that were consumed.
3538 */
3539 iov_iter_advance(iter, ret);
3540 if (!iov_iter_count(iter))
3541 break;
3542 rw->bytes_done += ret;
3543 iov_iter_save_state(iter, state);
3544
3545 /* if we can retry, do so with the callbacks armed */
3546 if (!io_rw_should_retry(req)) {
3547 kiocb->ki_flags &= ~IOCB_WAITQ;
3548 return -EAGAIN;
3549 }
3550
3551 /*
3552 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3553 * we get -EIOCBQUEUED, then we'll get a notification when the
3554 * desired page gets unlocked. We can also get a partial read
3555 * here, and if we do, then just retry at the new offset.
3556 */
3557 ret = io_iter_do_read(req, iter);
3558 if (ret == -EIOCBQUEUED)
3559 return 0;
3560 /* we got some bytes, but not all. retry. */
3561 kiocb->ki_flags &= ~IOCB_WAITQ;
3562 iov_iter_restore(iter, state);
3563 } while (ret > 0);
3564 done:
3565 kiocb_done(kiocb, ret, issue_flags);
3566 out_free:
3567 /* it's faster to check here then delegate to kfree */
3568 if (iovec)
3569 kfree(iovec);
3570 return 0;
3571 }
3572
3573 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3574 {
3575 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3576 return -EBADF;
3577 return io_prep_rw(req, sqe, WRITE);
3578 }
3579
3580 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3581 {
3582 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3583 struct kiocb *kiocb = &req->rw.kiocb;
3584 struct iov_iter __iter, *iter = &__iter;
3585 struct io_async_rw *rw = req->async_data;
3586 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3587 struct iov_iter_state __state, *state;
3588 ssize_t ret, ret2;
3589
3590 if (rw) {
3591 iter = &rw->iter;
3592 state = &rw->iter_state;
3593 iov_iter_restore(iter, state);
3594 iovec = NULL;
3595 } else {
3596 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3597 if (ret < 0)
3598 return ret;
3599 state = &__state;
3600 iov_iter_save_state(iter, state);
3601 }
3602 req->result = iov_iter_count(iter);
3603
3604 /* Ensure we clear previously set non-block flag */
3605 if (!force_nonblock)
3606 kiocb->ki_flags &= ~IOCB_NOWAIT;
3607 else
3608 kiocb->ki_flags |= IOCB_NOWAIT;
3609
3610 /* If the file doesn't support async, just async punt */
3611 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3612 goto copy_iov;
3613
3614 /* file path doesn't support NOWAIT for non-direct_IO */
3615 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3616 (req->flags & REQ_F_ISREG))
3617 goto copy_iov;
3618
3619 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3620 if (unlikely(ret))
3621 goto out_free;
3622
3623 /*
3624 * Open-code file_start_write here to grab freeze protection,
3625 * which will be released by another thread in
3626 * io_complete_rw(). Fool lockdep by telling it the lock got
3627 * released so that it doesn't complain about the held lock when
3628 * we return to userspace.
3629 */
3630 if (req->flags & REQ_F_ISREG) {
3631 sb_start_write(file_inode(req->file)->i_sb);
3632 __sb_writers_release(file_inode(req->file)->i_sb,
3633 SB_FREEZE_WRITE);
3634 }
3635 kiocb->ki_flags |= IOCB_WRITE;
3636
3637 if (req->file->f_op->write_iter)
3638 ret2 = call_write_iter(req->file, kiocb, iter);
3639 else if (req->file->f_op->write)
3640 ret2 = loop_rw_iter(WRITE, req, iter);
3641 else
3642 ret2 = -EINVAL;
3643
3644 if (req->flags & REQ_F_REISSUE) {
3645 req->flags &= ~REQ_F_REISSUE;
3646 ret2 = -EAGAIN;
3647 }
3648
3649 /*
3650 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3651 * retry them without IOCB_NOWAIT.
3652 */
3653 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3654 ret2 = -EAGAIN;
3655 /* no retry on NONBLOCK nor RWF_NOWAIT */
3656 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3657 goto done;
3658 if (!force_nonblock || ret2 != -EAGAIN) {
3659 /* IOPOLL retry should happen for io-wq threads */
3660 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3661 goto copy_iov;
3662 done:
3663 kiocb_done(kiocb, ret2, issue_flags);
3664 } else {
3665 copy_iov:
3666 iov_iter_restore(iter, state);
3667 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3668 return ret ?: -EAGAIN;
3669 }
3670 out_free:
3671 /* it's reportedly faster than delegating the null check to kfree() */
3672 if (iovec)
3673 kfree(iovec);
3674 return ret;
3675 }
3676
3677 static int io_renameat_prep(struct io_kiocb *req,
3678 const struct io_uring_sqe *sqe)
3679 {
3680 struct io_rename *ren = &req->rename;
3681 const char __user *oldf, *newf;
3682
3683 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3684 return -EINVAL;
3685 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3686 return -EINVAL;
3687 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3688 return -EBADF;
3689
3690 ren->old_dfd = READ_ONCE(sqe->fd);
3691 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3692 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3693 ren->new_dfd = READ_ONCE(sqe->len);
3694 ren->flags = READ_ONCE(sqe->rename_flags);
3695
3696 ren->oldpath = getname(oldf);
3697 if (IS_ERR(ren->oldpath))
3698 return PTR_ERR(ren->oldpath);
3699
3700 ren->newpath = getname(newf);
3701 if (IS_ERR(ren->newpath)) {
3702 putname(ren->oldpath);
3703 return PTR_ERR(ren->newpath);
3704 }
3705
3706 req->flags |= REQ_F_NEED_CLEANUP;
3707 return 0;
3708 }
3709
3710 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3711 {
3712 struct io_rename *ren = &req->rename;
3713 int ret;
3714
3715 if (issue_flags & IO_URING_F_NONBLOCK)
3716 return -EAGAIN;
3717
3718 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3719 ren->newpath, ren->flags);
3720
3721 req->flags &= ~REQ_F_NEED_CLEANUP;
3722 if (ret < 0)
3723 req_set_fail(req);
3724 io_req_complete(req, ret);
3725 return 0;
3726 }
3727
3728 static int io_unlinkat_prep(struct io_kiocb *req,
3729 const struct io_uring_sqe *sqe)
3730 {
3731 struct io_unlink *un = &req->unlink;
3732 const char __user *fname;
3733
3734 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3735 return -EINVAL;
3736 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3737 sqe->splice_fd_in)
3738 return -EINVAL;
3739 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3740 return -EBADF;
3741
3742 un->dfd = READ_ONCE(sqe->fd);
3743
3744 un->flags = READ_ONCE(sqe->unlink_flags);
3745 if (un->flags & ~AT_REMOVEDIR)
3746 return -EINVAL;
3747
3748 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3749 un->filename = getname(fname);
3750 if (IS_ERR(un->filename))
3751 return PTR_ERR(un->filename);
3752
3753 req->flags |= REQ_F_NEED_CLEANUP;
3754 return 0;
3755 }
3756
3757 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3758 {
3759 struct io_unlink *un = &req->unlink;
3760 int ret;
3761
3762 if (issue_flags & IO_URING_F_NONBLOCK)
3763 return -EAGAIN;
3764
3765 if (un->flags & AT_REMOVEDIR)
3766 ret = do_rmdir(un->dfd, un->filename);
3767 else
3768 ret = do_unlinkat(un->dfd, un->filename);
3769
3770 req->flags &= ~REQ_F_NEED_CLEANUP;
3771 if (ret < 0)
3772 req_set_fail(req);
3773 io_req_complete(req, ret);
3774 return 0;
3775 }
3776
3777 static int io_mkdirat_prep(struct io_kiocb *req,
3778 const struct io_uring_sqe *sqe)
3779 {
3780 struct io_mkdir *mkd = &req->mkdir;
3781 const char __user *fname;
3782
3783 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3784 return -EINVAL;
3785 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3786 sqe->splice_fd_in)
3787 return -EINVAL;
3788 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3789 return -EBADF;
3790
3791 mkd->dfd = READ_ONCE(sqe->fd);
3792 mkd->mode = READ_ONCE(sqe->len);
3793
3794 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3795 mkd->filename = getname(fname);
3796 if (IS_ERR(mkd->filename))
3797 return PTR_ERR(mkd->filename);
3798
3799 req->flags |= REQ_F_NEED_CLEANUP;
3800 return 0;
3801 }
3802
3803 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3804 {
3805 struct io_mkdir *mkd = &req->mkdir;
3806 int ret;
3807
3808 if (issue_flags & IO_URING_F_NONBLOCK)
3809 return -EAGAIN;
3810
3811 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3812
3813 req->flags &= ~REQ_F_NEED_CLEANUP;
3814 if (ret < 0)
3815 req_set_fail(req);
3816 io_req_complete(req, ret);
3817 return 0;
3818 }
3819
3820 static int io_symlinkat_prep(struct io_kiocb *req,
3821 const struct io_uring_sqe *sqe)
3822 {
3823 struct io_symlink *sl = &req->symlink;
3824 const char __user *oldpath, *newpath;
3825
3826 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3827 return -EINVAL;
3828 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3829 sqe->splice_fd_in)
3830 return -EINVAL;
3831 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3832 return -EBADF;
3833
3834 sl->new_dfd = READ_ONCE(sqe->fd);
3835 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3836 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3837
3838 sl->oldpath = getname(oldpath);
3839 if (IS_ERR(sl->oldpath))
3840 return PTR_ERR(sl->oldpath);
3841
3842 sl->newpath = getname(newpath);
3843 if (IS_ERR(sl->newpath)) {
3844 putname(sl->oldpath);
3845 return PTR_ERR(sl->newpath);
3846 }
3847
3848 req->flags |= REQ_F_NEED_CLEANUP;
3849 return 0;
3850 }
3851
3852 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3853 {
3854 struct io_symlink *sl = &req->symlink;
3855 int ret;
3856
3857 if (issue_flags & IO_URING_F_NONBLOCK)
3858 return -EAGAIN;
3859
3860 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3861
3862 req->flags &= ~REQ_F_NEED_CLEANUP;
3863 if (ret < 0)
3864 req_set_fail(req);
3865 io_req_complete(req, ret);
3866 return 0;
3867 }
3868
3869 static int io_linkat_prep(struct io_kiocb *req,
3870 const struct io_uring_sqe *sqe)
3871 {
3872 struct io_hardlink *lnk = &req->hardlink;
3873 const char __user *oldf, *newf;
3874
3875 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3876 return -EINVAL;
3877 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3878 return -EINVAL;
3879 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3880 return -EBADF;
3881
3882 lnk->old_dfd = READ_ONCE(sqe->fd);
3883 lnk->new_dfd = READ_ONCE(sqe->len);
3884 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3885 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3886 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3887
3888 lnk->oldpath = getname(oldf);
3889 if (IS_ERR(lnk->oldpath))
3890 return PTR_ERR(lnk->oldpath);
3891
3892 lnk->newpath = getname(newf);
3893 if (IS_ERR(lnk->newpath)) {
3894 putname(lnk->oldpath);
3895 return PTR_ERR(lnk->newpath);
3896 }
3897
3898 req->flags |= REQ_F_NEED_CLEANUP;
3899 return 0;
3900 }
3901
3902 static int io_linkat(struct io_kiocb *req, int issue_flags)
3903 {
3904 struct io_hardlink *lnk = &req->hardlink;
3905 int ret;
3906
3907 if (issue_flags & IO_URING_F_NONBLOCK)
3908 return -EAGAIN;
3909
3910 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3911 lnk->newpath, lnk->flags);
3912
3913 req->flags &= ~REQ_F_NEED_CLEANUP;
3914 if (ret < 0)
3915 req_set_fail(req);
3916 io_req_complete(req, ret);
3917 return 0;
3918 }
3919
3920 static int io_shutdown_prep(struct io_kiocb *req,
3921 const struct io_uring_sqe *sqe)
3922 {
3923 #if defined(CONFIG_NET)
3924 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3925 return -EINVAL;
3926 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3927 sqe->buf_index || sqe->splice_fd_in))
3928 return -EINVAL;
3929
3930 req->shutdown.how = READ_ONCE(sqe->len);
3931 return 0;
3932 #else
3933 return -EOPNOTSUPP;
3934 #endif
3935 }
3936
3937 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3938 {
3939 #if defined(CONFIG_NET)
3940 struct socket *sock;
3941 int ret;
3942
3943 if (issue_flags & IO_URING_F_NONBLOCK)
3944 return -EAGAIN;
3945
3946 sock = sock_from_file(req->file);
3947 if (unlikely(!sock))
3948 return -ENOTSOCK;
3949
3950 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3951 if (ret < 0)
3952 req_set_fail(req);
3953 io_req_complete(req, ret);
3954 return 0;
3955 #else
3956 return -EOPNOTSUPP;
3957 #endif
3958 }
3959
3960 static int __io_splice_prep(struct io_kiocb *req,
3961 const struct io_uring_sqe *sqe)
3962 {
3963 struct io_splice *sp = &req->splice;
3964 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3965
3966 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3967 return -EINVAL;
3968
3969 sp->file_in = NULL;
3970 sp->len = READ_ONCE(sqe->len);
3971 sp->flags = READ_ONCE(sqe->splice_flags);
3972
3973 if (unlikely(sp->flags & ~valid_flags))
3974 return -EINVAL;
3975
3976 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
3977 (sp->flags & SPLICE_F_FD_IN_FIXED));
3978 if (!sp->file_in)
3979 return -EBADF;
3980 req->flags |= REQ_F_NEED_CLEANUP;
3981 return 0;
3982 }
3983
3984 static int io_tee_prep(struct io_kiocb *req,
3985 const struct io_uring_sqe *sqe)
3986 {
3987 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3988 return -EINVAL;
3989 return __io_splice_prep(req, sqe);
3990 }
3991
3992 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3993 {
3994 struct io_splice *sp = &req->splice;
3995 struct file *in = sp->file_in;
3996 struct file *out = sp->file_out;
3997 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3998 long ret = 0;
3999
4000 if (issue_flags & IO_URING_F_NONBLOCK)
4001 return -EAGAIN;
4002 if (sp->len)
4003 ret = do_tee(in, out, sp->len, flags);
4004
4005 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4006 io_put_file(in);
4007 req->flags &= ~REQ_F_NEED_CLEANUP;
4008
4009 if (ret != sp->len)
4010 req_set_fail(req);
4011 io_req_complete(req, ret);
4012 return 0;
4013 }
4014
4015 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 {
4017 struct io_splice *sp = &req->splice;
4018
4019 sp->off_in = READ_ONCE(sqe->splice_off_in);
4020 sp->off_out = READ_ONCE(sqe->off);
4021 return __io_splice_prep(req, sqe);
4022 }
4023
4024 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4025 {
4026 struct io_splice *sp = &req->splice;
4027 struct file *in = sp->file_in;
4028 struct file *out = sp->file_out;
4029 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4030 loff_t *poff_in, *poff_out;
4031 long ret = 0;
4032
4033 if (issue_flags & IO_URING_F_NONBLOCK)
4034 return -EAGAIN;
4035
4036 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4037 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4038
4039 if (sp->len)
4040 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4041
4042 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4043 io_put_file(in);
4044 req->flags &= ~REQ_F_NEED_CLEANUP;
4045
4046 if (ret != sp->len)
4047 req_set_fail(req);
4048 io_req_complete(req, ret);
4049 return 0;
4050 }
4051
4052 /*
4053 * IORING_OP_NOP just posts a completion event, nothing else.
4054 */
4055 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4056 {
4057 struct io_ring_ctx *ctx = req->ctx;
4058
4059 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4060 return -EINVAL;
4061
4062 __io_req_complete(req, issue_flags, 0, 0);
4063 return 0;
4064 }
4065
4066 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4067 {
4068 struct io_ring_ctx *ctx = req->ctx;
4069
4070 if (!req->file)
4071 return -EBADF;
4072
4073 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4074 return -EINVAL;
4075 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4076 sqe->splice_fd_in))
4077 return -EINVAL;
4078
4079 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4080 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4081 return -EINVAL;
4082
4083 req->sync.off = READ_ONCE(sqe->off);
4084 req->sync.len = READ_ONCE(sqe->len);
4085 return 0;
4086 }
4087
4088 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4089 {
4090 loff_t end = req->sync.off + req->sync.len;
4091 int ret;
4092
4093 /* fsync always requires a blocking context */
4094 if (issue_flags & IO_URING_F_NONBLOCK)
4095 return -EAGAIN;
4096
4097 ret = vfs_fsync_range(req->file, req->sync.off,
4098 end > 0 ? end : LLONG_MAX,
4099 req->sync.flags & IORING_FSYNC_DATASYNC);
4100 if (ret < 0)
4101 req_set_fail(req);
4102 io_req_complete(req, ret);
4103 return 0;
4104 }
4105
4106 static int io_fallocate_prep(struct io_kiocb *req,
4107 const struct io_uring_sqe *sqe)
4108 {
4109 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4110 sqe->splice_fd_in)
4111 return -EINVAL;
4112 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4113 return -EINVAL;
4114
4115 req->sync.off = READ_ONCE(sqe->off);
4116 req->sync.len = READ_ONCE(sqe->addr);
4117 req->sync.mode = READ_ONCE(sqe->len);
4118 return 0;
4119 }
4120
4121 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4122 {
4123 int ret;
4124
4125 /* fallocate always requiring blocking context */
4126 if (issue_flags & IO_URING_F_NONBLOCK)
4127 return -EAGAIN;
4128 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4129 req->sync.len);
4130 if (ret < 0)
4131 req_set_fail(req);
4132 io_req_complete(req, ret);
4133 return 0;
4134 }
4135
4136 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4137 {
4138 const char __user *fname;
4139 int ret;
4140
4141 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4142 return -EINVAL;
4143 if (unlikely(sqe->ioprio || sqe->buf_index))
4144 return -EINVAL;
4145 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4146 return -EBADF;
4147
4148 /* open.how should be already initialised */
4149 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4150 req->open.how.flags |= O_LARGEFILE;
4151
4152 req->open.dfd = READ_ONCE(sqe->fd);
4153 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4154 req->open.filename = getname(fname);
4155 if (IS_ERR(req->open.filename)) {
4156 ret = PTR_ERR(req->open.filename);
4157 req->open.filename = NULL;
4158 return ret;
4159 }
4160
4161 req->open.file_slot = READ_ONCE(sqe->file_index);
4162 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4163 return -EINVAL;
4164
4165 req->open.nofile = rlimit(RLIMIT_NOFILE);
4166 req->flags |= REQ_F_NEED_CLEANUP;
4167 return 0;
4168 }
4169
4170 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4171 {
4172 u64 mode = READ_ONCE(sqe->len);
4173 u64 flags = READ_ONCE(sqe->open_flags);
4174
4175 req->open.how = build_open_how(flags, mode);
4176 return __io_openat_prep(req, sqe);
4177 }
4178
4179 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4180 {
4181 struct open_how __user *how;
4182 size_t len;
4183 int ret;
4184
4185 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4186 len = READ_ONCE(sqe->len);
4187 if (len < OPEN_HOW_SIZE_VER0)
4188 return -EINVAL;
4189
4190 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4191 len);
4192 if (ret)
4193 return ret;
4194
4195 return __io_openat_prep(req, sqe);
4196 }
4197
4198 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4199 {
4200 struct open_flags op;
4201 struct file *file;
4202 bool resolve_nonblock, nonblock_set;
4203 bool fixed = !!req->open.file_slot;
4204 int ret;
4205
4206 ret = build_open_flags(&req->open.how, &op);
4207 if (ret)
4208 goto err;
4209 nonblock_set = op.open_flag & O_NONBLOCK;
4210 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4211 if (issue_flags & IO_URING_F_NONBLOCK) {
4212 /*
4213 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4214 * it'll always -EAGAIN
4215 */
4216 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4217 return -EAGAIN;
4218 op.lookup_flags |= LOOKUP_CACHED;
4219 op.open_flag |= O_NONBLOCK;
4220 }
4221
4222 if (!fixed) {
4223 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4224 if (ret < 0)
4225 goto err;
4226 }
4227
4228 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4229 if (IS_ERR(file)) {
4230 /*
4231 * We could hang on to this 'fd' on retrying, but seems like
4232 * marginal gain for something that is now known to be a slower
4233 * path. So just put it, and we'll get a new one when we retry.
4234 */
4235 if (!fixed)
4236 put_unused_fd(ret);
4237
4238 ret = PTR_ERR(file);
4239 /* only retry if RESOLVE_CACHED wasn't already set by application */
4240 if (ret == -EAGAIN &&
4241 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4242 return -EAGAIN;
4243 goto err;
4244 }
4245
4246 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4247 file->f_flags &= ~O_NONBLOCK;
4248 fsnotify_open(file);
4249
4250 if (!fixed)
4251 fd_install(ret, file);
4252 else
4253 ret = io_install_fixed_file(req, file, issue_flags,
4254 req->open.file_slot - 1);
4255 err:
4256 putname(req->open.filename);
4257 req->flags &= ~REQ_F_NEED_CLEANUP;
4258 if (ret < 0)
4259 req_set_fail(req);
4260 __io_req_complete(req, issue_flags, ret, 0);
4261 return 0;
4262 }
4263
4264 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4265 {
4266 return io_openat2(req, issue_flags);
4267 }
4268
4269 static int io_remove_buffers_prep(struct io_kiocb *req,
4270 const struct io_uring_sqe *sqe)
4271 {
4272 struct io_provide_buf *p = &req->pbuf;
4273 u64 tmp;
4274
4275 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4276 sqe->splice_fd_in)
4277 return -EINVAL;
4278
4279 tmp = READ_ONCE(sqe->fd);
4280 if (!tmp || tmp > USHRT_MAX)
4281 return -EINVAL;
4282
4283 memset(p, 0, sizeof(*p));
4284 p->nbufs = tmp;
4285 p->bgid = READ_ONCE(sqe->buf_group);
4286 return 0;
4287 }
4288
4289 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4290 int bgid, unsigned nbufs)
4291 {
4292 unsigned i = 0;
4293
4294 /* shouldn't happen */
4295 if (!nbufs)
4296 return 0;
4297
4298 /* the head kbuf is the list itself */
4299 while (!list_empty(&buf->list)) {
4300 struct io_buffer *nxt;
4301
4302 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4303 list_del(&nxt->list);
4304 kfree(nxt);
4305 if (++i == nbufs)
4306 return i;
4307 }
4308 i++;
4309 kfree(buf);
4310 xa_erase(&ctx->io_buffers, bgid);
4311
4312 return i;
4313 }
4314
4315 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4316 {
4317 struct io_provide_buf *p = &req->pbuf;
4318 struct io_ring_ctx *ctx = req->ctx;
4319 struct io_buffer *head;
4320 int ret = 0;
4321 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4322
4323 io_ring_submit_lock(ctx, !force_nonblock);
4324
4325 lockdep_assert_held(&ctx->uring_lock);
4326
4327 ret = -ENOENT;
4328 head = xa_load(&ctx->io_buffers, p->bgid);
4329 if (head)
4330 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4331 if (ret < 0)
4332 req_set_fail(req);
4333
4334 /* complete before unlock, IOPOLL may need the lock */
4335 __io_req_complete(req, issue_flags, ret, 0);
4336 io_ring_submit_unlock(ctx, !force_nonblock);
4337 return 0;
4338 }
4339
4340 static int io_provide_buffers_prep(struct io_kiocb *req,
4341 const struct io_uring_sqe *sqe)
4342 {
4343 unsigned long size, tmp_check;
4344 struct io_provide_buf *p = &req->pbuf;
4345 u64 tmp;
4346
4347 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4348 return -EINVAL;
4349
4350 tmp = READ_ONCE(sqe->fd);
4351 if (!tmp || tmp > USHRT_MAX)
4352 return -E2BIG;
4353 p->nbufs = tmp;
4354 p->addr = READ_ONCE(sqe->addr);
4355 p->len = READ_ONCE(sqe->len);
4356
4357 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4358 &size))
4359 return -EOVERFLOW;
4360 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4361 return -EOVERFLOW;
4362
4363 size = (unsigned long)p->len * p->nbufs;
4364 if (!access_ok(u64_to_user_ptr(p->addr), size))
4365 return -EFAULT;
4366
4367 p->bgid = READ_ONCE(sqe->buf_group);
4368 tmp = READ_ONCE(sqe->off);
4369 if (tmp > USHRT_MAX)
4370 return -E2BIG;
4371 p->bid = tmp;
4372 return 0;
4373 }
4374
4375 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4376 {
4377 struct io_buffer *buf;
4378 u64 addr = pbuf->addr;
4379 int i, bid = pbuf->bid;
4380
4381 for (i = 0; i < pbuf->nbufs; i++) {
4382 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4383 if (!buf)
4384 break;
4385
4386 buf->addr = addr;
4387 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4388 buf->bid = bid;
4389 addr += pbuf->len;
4390 bid++;
4391 if (!*head) {
4392 INIT_LIST_HEAD(&buf->list);
4393 *head = buf;
4394 } else {
4395 list_add_tail(&buf->list, &(*head)->list);
4396 }
4397 }
4398
4399 return i ? i : -ENOMEM;
4400 }
4401
4402 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4403 {
4404 struct io_provide_buf *p = &req->pbuf;
4405 struct io_ring_ctx *ctx = req->ctx;
4406 struct io_buffer *head, *list;
4407 int ret = 0;
4408 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4409
4410 io_ring_submit_lock(ctx, !force_nonblock);
4411
4412 lockdep_assert_held(&ctx->uring_lock);
4413
4414 list = head = xa_load(&ctx->io_buffers, p->bgid);
4415
4416 ret = io_add_buffers(p, &head);
4417 if (ret >= 0 && !list) {
4418 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4419 if (ret < 0)
4420 __io_remove_buffers(ctx, head, p->bgid, -1U);
4421 }
4422 if (ret < 0)
4423 req_set_fail(req);
4424 /* complete before unlock, IOPOLL may need the lock */
4425 __io_req_complete(req, issue_flags, ret, 0);
4426 io_ring_submit_unlock(ctx, !force_nonblock);
4427 return 0;
4428 }
4429
4430 static int io_epoll_ctl_prep(struct io_kiocb *req,
4431 const struct io_uring_sqe *sqe)
4432 {
4433 #if defined(CONFIG_EPOLL)
4434 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4435 return -EINVAL;
4436 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4437 return -EINVAL;
4438
4439 req->epoll.epfd = READ_ONCE(sqe->fd);
4440 req->epoll.op = READ_ONCE(sqe->len);
4441 req->epoll.fd = READ_ONCE(sqe->off);
4442
4443 if (ep_op_has_event(req->epoll.op)) {
4444 struct epoll_event __user *ev;
4445
4446 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4447 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4448 return -EFAULT;
4449 }
4450
4451 return 0;
4452 #else
4453 return -EOPNOTSUPP;
4454 #endif
4455 }
4456
4457 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4458 {
4459 #if defined(CONFIG_EPOLL)
4460 struct io_epoll *ie = &req->epoll;
4461 int ret;
4462 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4463
4464 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4465 if (force_nonblock && ret == -EAGAIN)
4466 return -EAGAIN;
4467
4468 if (ret < 0)
4469 req_set_fail(req);
4470 __io_req_complete(req, issue_flags, ret, 0);
4471 return 0;
4472 #else
4473 return -EOPNOTSUPP;
4474 #endif
4475 }
4476
4477 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4478 {
4479 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4480 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4481 return -EINVAL;
4482 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4483 return -EINVAL;
4484
4485 req->madvise.addr = READ_ONCE(sqe->addr);
4486 req->madvise.len = READ_ONCE(sqe->len);
4487 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4488 return 0;
4489 #else
4490 return -EOPNOTSUPP;
4491 #endif
4492 }
4493
4494 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4495 {
4496 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4497 struct io_madvise *ma = &req->madvise;
4498 int ret;
4499
4500 if (issue_flags & IO_URING_F_NONBLOCK)
4501 return -EAGAIN;
4502
4503 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4504 if (ret < 0)
4505 req_set_fail(req);
4506 io_req_complete(req, ret);
4507 return 0;
4508 #else
4509 return -EOPNOTSUPP;
4510 #endif
4511 }
4512
4513 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4514 {
4515 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4516 return -EINVAL;
4517 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4518 return -EINVAL;
4519
4520 req->fadvise.offset = READ_ONCE(sqe->off);
4521 req->fadvise.len = READ_ONCE(sqe->len);
4522 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4523 return 0;
4524 }
4525
4526 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4527 {
4528 struct io_fadvise *fa = &req->fadvise;
4529 int ret;
4530
4531 if (issue_flags & IO_URING_F_NONBLOCK) {
4532 switch (fa->advice) {
4533 case POSIX_FADV_NORMAL:
4534 case POSIX_FADV_RANDOM:
4535 case POSIX_FADV_SEQUENTIAL:
4536 break;
4537 default:
4538 return -EAGAIN;
4539 }
4540 }
4541
4542 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4543 if (ret < 0)
4544 req_set_fail(req);
4545 __io_req_complete(req, issue_flags, ret, 0);
4546 return 0;
4547 }
4548
4549 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4550 {
4551 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4552 return -EINVAL;
4553 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4554 return -EINVAL;
4555 if (req->flags & REQ_F_FIXED_FILE)
4556 return -EBADF;
4557
4558 req->statx.dfd = READ_ONCE(sqe->fd);
4559 req->statx.mask = READ_ONCE(sqe->len);
4560 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4561 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4562 req->statx.flags = READ_ONCE(sqe->statx_flags);
4563
4564 return 0;
4565 }
4566
4567 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4568 {
4569 struct io_statx *ctx = &req->statx;
4570 int ret;
4571
4572 if (issue_flags & IO_URING_F_NONBLOCK)
4573 return -EAGAIN;
4574
4575 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4576 ctx->buffer);
4577
4578 if (ret < 0)
4579 req_set_fail(req);
4580 io_req_complete(req, ret);
4581 return 0;
4582 }
4583
4584 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4585 {
4586 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4587 return -EINVAL;
4588 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4589 sqe->rw_flags || sqe->buf_index)
4590 return -EINVAL;
4591 if (req->flags & REQ_F_FIXED_FILE)
4592 return -EBADF;
4593
4594 req->close.fd = READ_ONCE(sqe->fd);
4595 req->close.file_slot = READ_ONCE(sqe->file_index);
4596 if (req->close.file_slot && req->close.fd)
4597 return -EINVAL;
4598
4599 return 0;
4600 }
4601
4602 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4603 {
4604 struct files_struct *files = current->files;
4605 struct io_close *close = &req->close;
4606 struct fdtable *fdt;
4607 struct file *file = NULL;
4608 int ret = -EBADF;
4609
4610 if (req->close.file_slot) {
4611 ret = io_close_fixed(req, issue_flags);
4612 goto err;
4613 }
4614
4615 spin_lock(&files->file_lock);
4616 fdt = files_fdtable(files);
4617 if (close->fd >= fdt->max_fds) {
4618 spin_unlock(&files->file_lock);
4619 goto err;
4620 }
4621 file = fdt->fd[close->fd];
4622 if (!file || file->f_op == &io_uring_fops) {
4623 spin_unlock(&files->file_lock);
4624 file = NULL;
4625 goto err;
4626 }
4627
4628 /* if the file has a flush method, be safe and punt to async */
4629 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4630 spin_unlock(&files->file_lock);
4631 return -EAGAIN;
4632 }
4633
4634 ret = __close_fd_get_file(close->fd, &file);
4635 spin_unlock(&files->file_lock);
4636 if (ret < 0) {
4637 if (ret == -ENOENT)
4638 ret = -EBADF;
4639 goto err;
4640 }
4641
4642 /* No ->flush() or already async, safely close from here */
4643 ret = filp_close(file, current->files);
4644 err:
4645 if (ret < 0)
4646 req_set_fail(req);
4647 if (file)
4648 fput(file);
4649 __io_req_complete(req, issue_flags, ret, 0);
4650 return 0;
4651 }
4652
4653 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4654 {
4655 struct io_ring_ctx *ctx = req->ctx;
4656
4657 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4658 return -EINVAL;
4659 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4660 sqe->splice_fd_in))
4661 return -EINVAL;
4662
4663 req->sync.off = READ_ONCE(sqe->off);
4664 req->sync.len = READ_ONCE(sqe->len);
4665 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4666 return 0;
4667 }
4668
4669 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4670 {
4671 int ret;
4672
4673 /* sync_file_range always requires a blocking context */
4674 if (issue_flags & IO_URING_F_NONBLOCK)
4675 return -EAGAIN;
4676
4677 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4678 req->sync.flags);
4679 if (ret < 0)
4680 req_set_fail(req);
4681 io_req_complete(req, ret);
4682 return 0;
4683 }
4684
4685 #if defined(CONFIG_NET)
4686 static int io_setup_async_msg(struct io_kiocb *req,
4687 struct io_async_msghdr *kmsg)
4688 {
4689 struct io_async_msghdr *async_msg = req->async_data;
4690
4691 if (async_msg)
4692 return -EAGAIN;
4693 if (io_alloc_async_data(req)) {
4694 kfree(kmsg->free_iov);
4695 return -ENOMEM;
4696 }
4697 async_msg = req->async_data;
4698 req->flags |= REQ_F_NEED_CLEANUP;
4699 memcpy(async_msg, kmsg, sizeof(*kmsg));
4700 async_msg->msg.msg_name = &async_msg->addr;
4701 /* if were using fast_iov, set it to the new one */
4702 if (!async_msg->free_iov)
4703 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4704
4705 return -EAGAIN;
4706 }
4707
4708 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4709 struct io_async_msghdr *iomsg)
4710 {
4711 iomsg->msg.msg_name = &iomsg->addr;
4712 iomsg->free_iov = iomsg->fast_iov;
4713 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4714 req->sr_msg.msg_flags, &iomsg->free_iov);
4715 }
4716
4717 static int io_sendmsg_prep_async(struct io_kiocb *req)
4718 {
4719 int ret;
4720
4721 ret = io_sendmsg_copy_hdr(req, req->async_data);
4722 if (!ret)
4723 req->flags |= REQ_F_NEED_CLEANUP;
4724 return ret;
4725 }
4726
4727 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4728 {
4729 struct io_sr_msg *sr = &req->sr_msg;
4730
4731 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4732 return -EINVAL;
4733
4734 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4735 sr->len = READ_ONCE(sqe->len);
4736 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4737 if (sr->msg_flags & MSG_DONTWAIT)
4738 req->flags |= REQ_F_NOWAIT;
4739
4740 #ifdef CONFIG_COMPAT
4741 if (req->ctx->compat)
4742 sr->msg_flags |= MSG_CMSG_COMPAT;
4743 #endif
4744 return 0;
4745 }
4746
4747 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4748 {
4749 struct io_async_msghdr iomsg, *kmsg;
4750 struct socket *sock;
4751 unsigned flags;
4752 int min_ret = 0;
4753 int ret;
4754
4755 sock = sock_from_file(req->file);
4756 if (unlikely(!sock))
4757 return -ENOTSOCK;
4758
4759 kmsg = req->async_data;
4760 if (!kmsg) {
4761 ret = io_sendmsg_copy_hdr(req, &iomsg);
4762 if (ret)
4763 return ret;
4764 kmsg = &iomsg;
4765 }
4766
4767 flags = req->sr_msg.msg_flags;
4768 if (issue_flags & IO_URING_F_NONBLOCK)
4769 flags |= MSG_DONTWAIT;
4770 if (flags & MSG_WAITALL)
4771 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4772
4773 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4774 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4775 return io_setup_async_msg(req, kmsg);
4776 if (ret == -ERESTARTSYS)
4777 ret = -EINTR;
4778
4779 /* fast path, check for non-NULL to avoid function call */
4780 if (kmsg->free_iov)
4781 kfree(kmsg->free_iov);
4782 req->flags &= ~REQ_F_NEED_CLEANUP;
4783 if (ret < min_ret)
4784 req_set_fail(req);
4785 __io_req_complete(req, issue_flags, ret, 0);
4786 return 0;
4787 }
4788
4789 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4790 {
4791 struct io_sr_msg *sr = &req->sr_msg;
4792 struct msghdr msg;
4793 struct iovec iov;
4794 struct socket *sock;
4795 unsigned flags;
4796 int min_ret = 0;
4797 int ret;
4798
4799 sock = sock_from_file(req->file);
4800 if (unlikely(!sock))
4801 return -ENOTSOCK;
4802
4803 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4804 if (unlikely(ret))
4805 return ret;
4806
4807 msg.msg_name = NULL;
4808 msg.msg_control = NULL;
4809 msg.msg_controllen = 0;
4810 msg.msg_namelen = 0;
4811
4812 flags = req->sr_msg.msg_flags;
4813 if (issue_flags & IO_URING_F_NONBLOCK)
4814 flags |= MSG_DONTWAIT;
4815 if (flags & MSG_WAITALL)
4816 min_ret = iov_iter_count(&msg.msg_iter);
4817
4818 msg.msg_flags = flags;
4819 ret = sock_sendmsg(sock, &msg);
4820 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4821 return -EAGAIN;
4822 if (ret == -ERESTARTSYS)
4823 ret = -EINTR;
4824
4825 if (ret < min_ret)
4826 req_set_fail(req);
4827 __io_req_complete(req, issue_flags, ret, 0);
4828 return 0;
4829 }
4830
4831 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4832 struct io_async_msghdr *iomsg)
4833 {
4834 struct io_sr_msg *sr = &req->sr_msg;
4835 struct iovec __user *uiov;
4836 size_t iov_len;
4837 int ret;
4838
4839 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4840 &iomsg->uaddr, &uiov, &iov_len);
4841 if (ret)
4842 return ret;
4843
4844 if (req->flags & REQ_F_BUFFER_SELECT) {
4845 if (iov_len > 1)
4846 return -EINVAL;
4847 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4848 return -EFAULT;
4849 sr->len = iomsg->fast_iov[0].iov_len;
4850 iomsg->free_iov = NULL;
4851 } else {
4852 iomsg->free_iov = iomsg->fast_iov;
4853 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4854 &iomsg->free_iov, &iomsg->msg.msg_iter,
4855 false);
4856 if (ret > 0)
4857 ret = 0;
4858 }
4859
4860 return ret;
4861 }
4862
4863 #ifdef CONFIG_COMPAT
4864 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4865 struct io_async_msghdr *iomsg)
4866 {
4867 struct io_sr_msg *sr = &req->sr_msg;
4868 struct compat_iovec __user *uiov;
4869 compat_uptr_t ptr;
4870 compat_size_t len;
4871 int ret;
4872
4873 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4874 &ptr, &len);
4875 if (ret)
4876 return ret;
4877
4878 uiov = compat_ptr(ptr);
4879 if (req->flags & REQ_F_BUFFER_SELECT) {
4880 compat_ssize_t clen;
4881
4882 if (len > 1)
4883 return -EINVAL;
4884 if (!access_ok(uiov, sizeof(*uiov)))
4885 return -EFAULT;
4886 if (__get_user(clen, &uiov->iov_len))
4887 return -EFAULT;
4888 if (clen < 0)
4889 return -EINVAL;
4890 sr->len = clen;
4891 iomsg->free_iov = NULL;
4892 } else {
4893 iomsg->free_iov = iomsg->fast_iov;
4894 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4895 UIO_FASTIOV, &iomsg->free_iov,
4896 &iomsg->msg.msg_iter, true);
4897 if (ret < 0)
4898 return ret;
4899 }
4900
4901 return 0;
4902 }
4903 #endif
4904
4905 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4906 struct io_async_msghdr *iomsg)
4907 {
4908 iomsg->msg.msg_name = &iomsg->addr;
4909
4910 #ifdef CONFIG_COMPAT
4911 if (req->ctx->compat)
4912 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4913 #endif
4914
4915 return __io_recvmsg_copy_hdr(req, iomsg);
4916 }
4917
4918 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4919 bool needs_lock)
4920 {
4921 struct io_sr_msg *sr = &req->sr_msg;
4922 struct io_buffer *kbuf;
4923
4924 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4925 if (IS_ERR(kbuf))
4926 return kbuf;
4927
4928 sr->kbuf = kbuf;
4929 req->flags |= REQ_F_BUFFER_SELECTED;
4930 return kbuf;
4931 }
4932
4933 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4934 {
4935 return io_put_kbuf(req, req->sr_msg.kbuf);
4936 }
4937
4938 static int io_recvmsg_prep_async(struct io_kiocb *req)
4939 {
4940 int ret;
4941
4942 ret = io_recvmsg_copy_hdr(req, req->async_data);
4943 if (!ret)
4944 req->flags |= REQ_F_NEED_CLEANUP;
4945 return ret;
4946 }
4947
4948 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4949 {
4950 struct io_sr_msg *sr = &req->sr_msg;
4951
4952 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4953 return -EINVAL;
4954
4955 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4956 sr->len = READ_ONCE(sqe->len);
4957 sr->bgid = READ_ONCE(sqe->buf_group);
4958 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4959 if (sr->msg_flags & MSG_DONTWAIT)
4960 req->flags |= REQ_F_NOWAIT;
4961
4962 #ifdef CONFIG_COMPAT
4963 if (req->ctx->compat)
4964 sr->msg_flags |= MSG_CMSG_COMPAT;
4965 #endif
4966 return 0;
4967 }
4968
4969 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4970 {
4971 struct io_async_msghdr iomsg, *kmsg;
4972 struct socket *sock;
4973 struct io_buffer *kbuf;
4974 unsigned flags;
4975 int min_ret = 0;
4976 int ret, cflags = 0;
4977 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4978
4979 sock = sock_from_file(req->file);
4980 if (unlikely(!sock))
4981 return -ENOTSOCK;
4982
4983 kmsg = req->async_data;
4984 if (!kmsg) {
4985 ret = io_recvmsg_copy_hdr(req, &iomsg);
4986 if (ret)
4987 return ret;
4988 kmsg = &iomsg;
4989 }
4990
4991 if (req->flags & REQ_F_BUFFER_SELECT) {
4992 kbuf = io_recv_buffer_select(req, !force_nonblock);
4993 if (IS_ERR(kbuf))
4994 return PTR_ERR(kbuf);
4995 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4996 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4997 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4998 1, req->sr_msg.len);
4999 }
5000
5001 flags = req->sr_msg.msg_flags;
5002 if (force_nonblock)
5003 flags |= MSG_DONTWAIT;
5004 if (flags & MSG_WAITALL)
5005 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5006
5007 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5008 kmsg->uaddr, flags);
5009 if (force_nonblock && ret == -EAGAIN)
5010 return io_setup_async_msg(req, kmsg);
5011 if (ret == -ERESTARTSYS)
5012 ret = -EINTR;
5013
5014 if (req->flags & REQ_F_BUFFER_SELECTED)
5015 cflags = io_put_recv_kbuf(req);
5016 /* fast path, check for non-NULL to avoid function call */
5017 if (kmsg->free_iov)
5018 kfree(kmsg->free_iov);
5019 req->flags &= ~REQ_F_NEED_CLEANUP;
5020 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5021 req_set_fail(req);
5022 __io_req_complete(req, issue_flags, ret, cflags);
5023 return 0;
5024 }
5025
5026 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5027 {
5028 struct io_buffer *kbuf;
5029 struct io_sr_msg *sr = &req->sr_msg;
5030 struct msghdr msg;
5031 void __user *buf = sr->buf;
5032 struct socket *sock;
5033 struct iovec iov;
5034 unsigned flags;
5035 int min_ret = 0;
5036 int ret, cflags = 0;
5037 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5038
5039 sock = sock_from_file(req->file);
5040 if (unlikely(!sock))
5041 return -ENOTSOCK;
5042
5043 if (req->flags & REQ_F_BUFFER_SELECT) {
5044 kbuf = io_recv_buffer_select(req, !force_nonblock);
5045 if (IS_ERR(kbuf))
5046 return PTR_ERR(kbuf);
5047 buf = u64_to_user_ptr(kbuf->addr);
5048 }
5049
5050 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5051 if (unlikely(ret))
5052 goto out_free;
5053
5054 msg.msg_name = NULL;
5055 msg.msg_control = NULL;
5056 msg.msg_controllen = 0;
5057 msg.msg_namelen = 0;
5058 msg.msg_iocb = NULL;
5059 msg.msg_flags = 0;
5060
5061 flags = req->sr_msg.msg_flags;
5062 if (force_nonblock)
5063 flags |= MSG_DONTWAIT;
5064 if (flags & MSG_WAITALL)
5065 min_ret = iov_iter_count(&msg.msg_iter);
5066
5067 ret = sock_recvmsg(sock, &msg, flags);
5068 if (force_nonblock && ret == -EAGAIN)
5069 return -EAGAIN;
5070 if (ret == -ERESTARTSYS)
5071 ret = -EINTR;
5072 out_free:
5073 if (req->flags & REQ_F_BUFFER_SELECTED)
5074 cflags = io_put_recv_kbuf(req);
5075 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5076 req_set_fail(req);
5077 __io_req_complete(req, issue_flags, ret, cflags);
5078 return 0;
5079 }
5080
5081 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5082 {
5083 struct io_accept *accept = &req->accept;
5084
5085 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5086 return -EINVAL;
5087 if (sqe->ioprio || sqe->len || sqe->buf_index)
5088 return -EINVAL;
5089
5090 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5091 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5092 accept->flags = READ_ONCE(sqe->accept_flags);
5093 accept->nofile = rlimit(RLIMIT_NOFILE);
5094
5095 accept->file_slot = READ_ONCE(sqe->file_index);
5096 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5097 (accept->flags & SOCK_CLOEXEC)))
5098 return -EINVAL;
5099 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5100 return -EINVAL;
5101 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5102 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5103 return 0;
5104 }
5105
5106 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5107 {
5108 struct io_accept *accept = &req->accept;
5109 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5110 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5111 bool fixed = !!accept->file_slot;
5112 struct file *file;
5113 int ret, fd;
5114
5115 if (req->file->f_flags & O_NONBLOCK)
5116 req->flags |= REQ_F_NOWAIT;
5117
5118 if (!fixed) {
5119 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5120 if (unlikely(fd < 0))
5121 return fd;
5122 }
5123 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5124 accept->flags);
5125 if (IS_ERR(file)) {
5126 if (!fixed)
5127 put_unused_fd(fd);
5128 ret = PTR_ERR(file);
5129 if (ret == -EAGAIN && force_nonblock)
5130 return -EAGAIN;
5131 if (ret == -ERESTARTSYS)
5132 ret = -EINTR;
5133 req_set_fail(req);
5134 } else if (!fixed) {
5135 fd_install(fd, file);
5136 ret = fd;
5137 } else {
5138 ret = io_install_fixed_file(req, file, issue_flags,
5139 accept->file_slot - 1);
5140 }
5141 __io_req_complete(req, issue_flags, ret, 0);
5142 return 0;
5143 }
5144
5145 static int io_connect_prep_async(struct io_kiocb *req)
5146 {
5147 struct io_async_connect *io = req->async_data;
5148 struct io_connect *conn = &req->connect;
5149
5150 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5151 }
5152
5153 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5154 {
5155 struct io_connect *conn = &req->connect;
5156
5157 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5158 return -EINVAL;
5159 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5160 sqe->splice_fd_in)
5161 return -EINVAL;
5162
5163 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5164 conn->addr_len = READ_ONCE(sqe->addr2);
5165 return 0;
5166 }
5167
5168 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5169 {
5170 struct io_async_connect __io, *io;
5171 unsigned file_flags;
5172 int ret;
5173 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5174
5175 if (req->async_data) {
5176 io = req->async_data;
5177 } else {
5178 ret = move_addr_to_kernel(req->connect.addr,
5179 req->connect.addr_len,
5180 &__io.address);
5181 if (ret)
5182 goto out;
5183 io = &__io;
5184 }
5185
5186 file_flags = force_nonblock ? O_NONBLOCK : 0;
5187
5188 ret = __sys_connect_file(req->file, &io->address,
5189 req->connect.addr_len, file_flags);
5190 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5191 if (req->async_data)
5192 return -EAGAIN;
5193 if (io_alloc_async_data(req)) {
5194 ret = -ENOMEM;
5195 goto out;
5196 }
5197 memcpy(req->async_data, &__io, sizeof(__io));
5198 return -EAGAIN;
5199 }
5200 if (ret == -ERESTARTSYS)
5201 ret = -EINTR;
5202 out:
5203 if (ret < 0)
5204 req_set_fail(req);
5205 __io_req_complete(req, issue_flags, ret, 0);
5206 return 0;
5207 }
5208 #else /* !CONFIG_NET */
5209 #define IO_NETOP_FN(op) \
5210 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5211 { \
5212 return -EOPNOTSUPP; \
5213 }
5214
5215 #define IO_NETOP_PREP(op) \
5216 IO_NETOP_FN(op) \
5217 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5218 { \
5219 return -EOPNOTSUPP; \
5220 } \
5221
5222 #define IO_NETOP_PREP_ASYNC(op) \
5223 IO_NETOP_PREP(op) \
5224 static int io_##op##_prep_async(struct io_kiocb *req) \
5225 { \
5226 return -EOPNOTSUPP; \
5227 }
5228
5229 IO_NETOP_PREP_ASYNC(sendmsg);
5230 IO_NETOP_PREP_ASYNC(recvmsg);
5231 IO_NETOP_PREP_ASYNC(connect);
5232 IO_NETOP_PREP(accept);
5233 IO_NETOP_FN(send);
5234 IO_NETOP_FN(recv);
5235 #endif /* CONFIG_NET */
5236
5237 struct io_poll_table {
5238 struct poll_table_struct pt;
5239 struct io_kiocb *req;
5240 int nr_entries;
5241 int error;
5242 };
5243
5244 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5245 __poll_t mask, io_req_tw_func_t func)
5246 {
5247 /* for instances that support it check for an event match first: */
5248 if (mask && !(mask & poll->events))
5249 return 0;
5250
5251 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5252
5253 list_del_init(&poll->wait.entry);
5254
5255 req->result = mask;
5256 req->io_task_work.func = func;
5257
5258 /*
5259 * If this fails, then the task is exiting. When a task exits, the
5260 * work gets canceled, so just cancel this request as well instead
5261 * of executing it. We can't safely execute it anyway, as we may not
5262 * have the needed state needed for it anyway.
5263 */
5264 io_req_task_work_add(req);
5265 return 1;
5266 }
5267
5268 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5269 __acquires(&req->ctx->completion_lock)
5270 {
5271 struct io_ring_ctx *ctx = req->ctx;
5272
5273 /* req->task == current here, checking PF_EXITING is safe */
5274 if (unlikely(req->task->flags & PF_EXITING))
5275 WRITE_ONCE(poll->canceled, true);
5276
5277 if (!req->result && !READ_ONCE(poll->canceled)) {
5278 struct poll_table_struct pt = { ._key = poll->events };
5279
5280 req->result = vfs_poll(req->file, &pt) & poll->events;
5281 }
5282
5283 spin_lock(&ctx->completion_lock);
5284 if (!req->result && !READ_ONCE(poll->canceled)) {
5285 add_wait_queue(poll->head, &poll->wait);
5286 return true;
5287 }
5288
5289 return false;
5290 }
5291
5292 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5293 {
5294 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5295 if (req->opcode == IORING_OP_POLL_ADD)
5296 return req->async_data;
5297 return req->apoll->double_poll;
5298 }
5299
5300 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5301 {
5302 if (req->opcode == IORING_OP_POLL_ADD)
5303 return &req->poll;
5304 return &req->apoll->poll;
5305 }
5306
5307 static void io_poll_remove_double(struct io_kiocb *req)
5308 __must_hold(&req->ctx->completion_lock)
5309 {
5310 struct io_poll_iocb *poll = io_poll_get_double(req);
5311
5312 lockdep_assert_held(&req->ctx->completion_lock);
5313
5314 if (poll && poll->head) {
5315 struct wait_queue_head *head = poll->head;
5316
5317 spin_lock_irq(&head->lock);
5318 list_del_init(&poll->wait.entry);
5319 if (poll->wait.private)
5320 req_ref_put(req);
5321 poll->head = NULL;
5322 spin_unlock_irq(&head->lock);
5323 }
5324 }
5325
5326 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5327 __must_hold(&req->ctx->completion_lock)
5328 {
5329 struct io_ring_ctx *ctx = req->ctx;
5330 unsigned flags = IORING_CQE_F_MORE;
5331 int error;
5332
5333 if (READ_ONCE(req->poll.canceled)) {
5334 error = -ECANCELED;
5335 req->poll.events |= EPOLLONESHOT;
5336 } else {
5337 error = mangle_poll(mask);
5338 }
5339 if (req->poll.events & EPOLLONESHOT)
5340 flags = 0;
5341 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5342 req->poll.events |= EPOLLONESHOT;
5343 flags = 0;
5344 }
5345 if (flags & IORING_CQE_F_MORE)
5346 ctx->cq_extra++;
5347
5348 return !(flags & IORING_CQE_F_MORE);
5349 }
5350
5351 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5352 __must_hold(&req->ctx->completion_lock)
5353 {
5354 bool done;
5355
5356 done = __io_poll_complete(req, mask);
5357 io_commit_cqring(req->ctx);
5358 return done;
5359 }
5360
5361 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5362 {
5363 struct io_ring_ctx *ctx = req->ctx;
5364 struct io_kiocb *nxt;
5365
5366 if (io_poll_rewait(req, &req->poll)) {
5367 spin_unlock(&ctx->completion_lock);
5368 } else {
5369 bool done;
5370
5371 if (req->poll.done) {
5372 spin_unlock(&ctx->completion_lock);
5373 return;
5374 }
5375 done = __io_poll_complete(req, req->result);
5376 if (done) {
5377 io_poll_remove_double(req);
5378 hash_del(&req->hash_node);
5379 req->poll.done = true;
5380 } else {
5381 req->result = 0;
5382 add_wait_queue(req->poll.head, &req->poll.wait);
5383 }
5384 io_commit_cqring(ctx);
5385 spin_unlock(&ctx->completion_lock);
5386 io_cqring_ev_posted(ctx);
5387
5388 if (done) {
5389 nxt = io_put_req_find_next(req);
5390 if (nxt)
5391 io_req_task_submit(nxt, locked);
5392 }
5393 }
5394 }
5395
5396 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5397 int sync, void *key)
5398 {
5399 struct io_kiocb *req = wait->private;
5400 struct io_poll_iocb *poll = io_poll_get_single(req);
5401 __poll_t mask = key_to_poll(key);
5402 unsigned long flags;
5403
5404 /* for instances that support it check for an event match first: */
5405 if (mask && !(mask & poll->events))
5406 return 0;
5407 if (!(poll->events & EPOLLONESHOT))
5408 return poll->wait.func(&poll->wait, mode, sync, key);
5409
5410 list_del_init(&wait->entry);
5411
5412 if (poll->head) {
5413 bool done;
5414
5415 spin_lock_irqsave(&poll->head->lock, flags);
5416 done = list_empty(&poll->wait.entry);
5417 if (!done)
5418 list_del_init(&poll->wait.entry);
5419 /* make sure double remove sees this as being gone */
5420 wait->private = NULL;
5421 spin_unlock_irqrestore(&poll->head->lock, flags);
5422 if (!done) {
5423 /* use wait func handler, so it matches the rq type */
5424 poll->wait.func(&poll->wait, mode, sync, key);
5425 }
5426 }
5427 req_ref_put(req);
5428 return 1;
5429 }
5430
5431 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5432 wait_queue_func_t wake_func)
5433 {
5434 poll->head = NULL;
5435 poll->done = false;
5436 poll->canceled = false;
5437 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5438 /* mask in events that we always want/need */
5439 poll->events = events | IO_POLL_UNMASK;
5440 INIT_LIST_HEAD(&poll->wait.entry);
5441 init_waitqueue_func_entry(&poll->wait, wake_func);
5442 }
5443
5444 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5445 struct wait_queue_head *head,
5446 struct io_poll_iocb **poll_ptr)
5447 {
5448 struct io_kiocb *req = pt->req;
5449
5450 /*
5451 * The file being polled uses multiple waitqueues for poll handling
5452 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5453 * if this happens.
5454 */
5455 if (unlikely(pt->nr_entries)) {
5456 struct io_poll_iocb *poll_one = poll;
5457
5458 /* double add on the same waitqueue head, ignore */
5459 if (poll_one->head == head)
5460 return;
5461 /* already have a 2nd entry, fail a third attempt */
5462 if (*poll_ptr) {
5463 if ((*poll_ptr)->head == head)
5464 return;
5465 pt->error = -EINVAL;
5466 return;
5467 }
5468 /*
5469 * Can't handle multishot for double wait for now, turn it
5470 * into one-shot mode.
5471 */
5472 if (!(poll_one->events & EPOLLONESHOT))
5473 poll_one->events |= EPOLLONESHOT;
5474 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5475 if (!poll) {
5476 pt->error = -ENOMEM;
5477 return;
5478 }
5479 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5480 req_ref_get(req);
5481 poll->wait.private = req;
5482 *poll_ptr = poll;
5483 }
5484
5485 pt->nr_entries++;
5486 poll->head = head;
5487
5488 if (poll->events & EPOLLEXCLUSIVE)
5489 add_wait_queue_exclusive(head, &poll->wait);
5490 else
5491 add_wait_queue(head, &poll->wait);
5492 }
5493
5494 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5495 struct poll_table_struct *p)
5496 {
5497 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5498 struct async_poll *apoll = pt->req->apoll;
5499
5500 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5501 }
5502
5503 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5504 {
5505 struct async_poll *apoll = req->apoll;
5506 struct io_ring_ctx *ctx = req->ctx;
5507
5508 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5509
5510 if (io_poll_rewait(req, &apoll->poll)) {
5511 spin_unlock(&ctx->completion_lock);
5512 return;
5513 }
5514
5515 hash_del(&req->hash_node);
5516 io_poll_remove_double(req);
5517 apoll->poll.done = true;
5518 spin_unlock(&ctx->completion_lock);
5519
5520 if (!READ_ONCE(apoll->poll.canceled))
5521 io_req_task_submit(req, locked);
5522 else
5523 io_req_complete_failed(req, -ECANCELED);
5524 }
5525
5526 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5527 void *key)
5528 {
5529 struct io_kiocb *req = wait->private;
5530 struct io_poll_iocb *poll = &req->apoll->poll;
5531
5532 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5533 key_to_poll(key));
5534
5535 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5536 }
5537
5538 static void io_poll_req_insert(struct io_kiocb *req)
5539 {
5540 struct io_ring_ctx *ctx = req->ctx;
5541 struct hlist_head *list;
5542
5543 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5544 hlist_add_head(&req->hash_node, list);
5545 }
5546
5547 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5548 struct io_poll_iocb *poll,
5549 struct io_poll_table *ipt, __poll_t mask,
5550 wait_queue_func_t wake_func)
5551 __acquires(&ctx->completion_lock)
5552 {
5553 struct io_ring_ctx *ctx = req->ctx;
5554 bool cancel = false;
5555
5556 INIT_HLIST_NODE(&req->hash_node);
5557 io_init_poll_iocb(poll, mask, wake_func);
5558 poll->file = req->file;
5559 poll->wait.private = req;
5560
5561 ipt->pt._key = mask;
5562 ipt->req = req;
5563 ipt->error = 0;
5564 ipt->nr_entries = 0;
5565
5566 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5567 if (unlikely(!ipt->nr_entries) && !ipt->error)
5568 ipt->error = -EINVAL;
5569
5570 spin_lock(&ctx->completion_lock);
5571 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5572 io_poll_remove_double(req);
5573 if (likely(poll->head)) {
5574 spin_lock_irq(&poll->head->lock);
5575 if (unlikely(list_empty(&poll->wait.entry))) {
5576 if (ipt->error)
5577 cancel = true;
5578 ipt->error = 0;
5579 mask = 0;
5580 }
5581 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5582 list_del_init(&poll->wait.entry);
5583 else if (cancel)
5584 WRITE_ONCE(poll->canceled, true);
5585 else if (!poll->done) /* actually waiting for an event */
5586 io_poll_req_insert(req);
5587 spin_unlock_irq(&poll->head->lock);
5588 }
5589
5590 return mask;
5591 }
5592
5593 enum {
5594 IO_APOLL_OK,
5595 IO_APOLL_ABORTED,
5596 IO_APOLL_READY
5597 };
5598
5599 static int io_arm_poll_handler(struct io_kiocb *req)
5600 {
5601 const struct io_op_def *def = &io_op_defs[req->opcode];
5602 struct io_ring_ctx *ctx = req->ctx;
5603 struct async_poll *apoll;
5604 struct io_poll_table ipt;
5605 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5606 int rw;
5607
5608 if (!req->file || !file_can_poll(req->file))
5609 return IO_APOLL_ABORTED;
5610 if (req->flags & REQ_F_POLLED)
5611 return IO_APOLL_ABORTED;
5612 if (!def->pollin && !def->pollout)
5613 return IO_APOLL_ABORTED;
5614
5615 if (def->pollin) {
5616 rw = READ;
5617 mask |= POLLIN | POLLRDNORM;
5618
5619 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5620 if ((req->opcode == IORING_OP_RECVMSG) &&
5621 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5622 mask &= ~POLLIN;
5623 } else {
5624 rw = WRITE;
5625 mask |= POLLOUT | POLLWRNORM;
5626 }
5627
5628 /* if we can't nonblock try, then no point in arming a poll handler */
5629 if (!io_file_supports_nowait(req, rw))
5630 return IO_APOLL_ABORTED;
5631
5632 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5633 if (unlikely(!apoll))
5634 return IO_APOLL_ABORTED;
5635 apoll->double_poll = NULL;
5636 req->apoll = apoll;
5637 req->flags |= REQ_F_POLLED;
5638 ipt.pt._qproc = io_async_queue_proc;
5639 io_req_set_refcount(req);
5640
5641 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5642 io_async_wake);
5643 spin_unlock(&ctx->completion_lock);
5644 if (ret || ipt.error)
5645 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5646
5647 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5648 mask, apoll->poll.events);
5649 return IO_APOLL_OK;
5650 }
5651
5652 static bool __io_poll_remove_one(struct io_kiocb *req,
5653 struct io_poll_iocb *poll, bool do_cancel)
5654 __must_hold(&req->ctx->completion_lock)
5655 {
5656 bool do_complete = false;
5657
5658 if (!poll->head)
5659 return false;
5660 spin_lock_irq(&poll->head->lock);
5661 if (do_cancel)
5662 WRITE_ONCE(poll->canceled, true);
5663 if (!list_empty(&poll->wait.entry)) {
5664 list_del_init(&poll->wait.entry);
5665 do_complete = true;
5666 }
5667 spin_unlock_irq(&poll->head->lock);
5668 hash_del(&req->hash_node);
5669 return do_complete;
5670 }
5671
5672 static bool io_poll_remove_one(struct io_kiocb *req)
5673 __must_hold(&req->ctx->completion_lock)
5674 {
5675 bool do_complete;
5676
5677 io_poll_remove_double(req);
5678 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5679
5680 if (do_complete) {
5681 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5682 io_commit_cqring(req->ctx);
5683 req_set_fail(req);
5684 io_put_req_deferred(req);
5685 }
5686 return do_complete;
5687 }
5688
5689 /*
5690 * Returns true if we found and killed one or more poll requests
5691 */
5692 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5693 bool cancel_all)
5694 {
5695 struct hlist_node *tmp;
5696 struct io_kiocb *req;
5697 int posted = 0, i;
5698
5699 spin_lock(&ctx->completion_lock);
5700 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5701 struct hlist_head *list;
5702
5703 list = &ctx->cancel_hash[i];
5704 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5705 if (io_match_task(req, tsk, cancel_all))
5706 posted += io_poll_remove_one(req);
5707 }
5708 }
5709 spin_unlock(&ctx->completion_lock);
5710
5711 if (posted)
5712 io_cqring_ev_posted(ctx);
5713
5714 return posted != 0;
5715 }
5716
5717 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5718 bool poll_only)
5719 __must_hold(&ctx->completion_lock)
5720 {
5721 struct hlist_head *list;
5722 struct io_kiocb *req;
5723
5724 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5725 hlist_for_each_entry(req, list, hash_node) {
5726 if (sqe_addr != req->user_data)
5727 continue;
5728 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5729 continue;
5730 return req;
5731 }
5732 return NULL;
5733 }
5734
5735 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5736 bool poll_only)
5737 __must_hold(&ctx->completion_lock)
5738 {
5739 struct io_kiocb *req;
5740
5741 req = io_poll_find(ctx, sqe_addr, poll_only);
5742 if (!req)
5743 return -ENOENT;
5744 if (io_poll_remove_one(req))
5745 return 0;
5746
5747 return -EALREADY;
5748 }
5749
5750 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5751 unsigned int flags)
5752 {
5753 u32 events;
5754
5755 events = READ_ONCE(sqe->poll32_events);
5756 #ifdef __BIG_ENDIAN
5757 events = swahw32(events);
5758 #endif
5759 if (!(flags & IORING_POLL_ADD_MULTI))
5760 events |= EPOLLONESHOT;
5761 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5762 }
5763
5764 static int io_poll_update_prep(struct io_kiocb *req,
5765 const struct io_uring_sqe *sqe)
5766 {
5767 struct io_poll_update *upd = &req->poll_update;
5768 u32 flags;
5769
5770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5771 return -EINVAL;
5772 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5773 return -EINVAL;
5774 flags = READ_ONCE(sqe->len);
5775 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5776 IORING_POLL_ADD_MULTI))
5777 return -EINVAL;
5778 /* meaningless without update */
5779 if (flags == IORING_POLL_ADD_MULTI)
5780 return -EINVAL;
5781
5782 upd->old_user_data = READ_ONCE(sqe->addr);
5783 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5784 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5785
5786 upd->new_user_data = READ_ONCE(sqe->off);
5787 if (!upd->update_user_data && upd->new_user_data)
5788 return -EINVAL;
5789 if (upd->update_events)
5790 upd->events = io_poll_parse_events(sqe, flags);
5791 else if (sqe->poll32_events)
5792 return -EINVAL;
5793
5794 return 0;
5795 }
5796
5797 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5798 void *key)
5799 {
5800 struct io_kiocb *req = wait->private;
5801 struct io_poll_iocb *poll = &req->poll;
5802
5803 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5804 }
5805
5806 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5807 struct poll_table_struct *p)
5808 {
5809 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5810
5811 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5812 }
5813
5814 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5815 {
5816 struct io_poll_iocb *poll = &req->poll;
5817 u32 flags;
5818
5819 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5820 return -EINVAL;
5821 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5822 return -EINVAL;
5823 flags = READ_ONCE(sqe->len);
5824 if (flags & ~IORING_POLL_ADD_MULTI)
5825 return -EINVAL;
5826
5827 io_req_set_refcount(req);
5828 poll->events = io_poll_parse_events(sqe, flags);
5829 return 0;
5830 }
5831
5832 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5833 {
5834 struct io_poll_iocb *poll = &req->poll;
5835 struct io_ring_ctx *ctx = req->ctx;
5836 struct io_poll_table ipt;
5837 __poll_t mask;
5838 bool done;
5839
5840 ipt.pt._qproc = io_poll_queue_proc;
5841
5842 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5843 io_poll_wake);
5844
5845 if (mask) { /* no async, we'd stolen it */
5846 ipt.error = 0;
5847 done = io_poll_complete(req, mask);
5848 }
5849 spin_unlock(&ctx->completion_lock);
5850
5851 if (mask) {
5852 io_cqring_ev_posted(ctx);
5853 if (done)
5854 io_put_req(req);
5855 }
5856 return ipt.error;
5857 }
5858
5859 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5860 {
5861 struct io_ring_ctx *ctx = req->ctx;
5862 struct io_kiocb *preq;
5863 bool completing;
5864 int ret;
5865
5866 spin_lock(&ctx->completion_lock);
5867 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5868 if (!preq) {
5869 ret = -ENOENT;
5870 goto err;
5871 }
5872
5873 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5874 completing = true;
5875 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5876 goto err;
5877 }
5878
5879 /*
5880 * Don't allow racy completion with singleshot, as we cannot safely
5881 * update those. For multishot, if we're racing with completion, just
5882 * let completion re-add it.
5883 */
5884 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5885 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5886 ret = -EALREADY;
5887 goto err;
5888 }
5889 /* we now have a detached poll request. reissue. */
5890 ret = 0;
5891 err:
5892 if (ret < 0) {
5893 spin_unlock(&ctx->completion_lock);
5894 req_set_fail(req);
5895 io_req_complete(req, ret);
5896 return 0;
5897 }
5898 /* only mask one event flags, keep behavior flags */
5899 if (req->poll_update.update_events) {
5900 preq->poll.events &= ~0xffff;
5901 preq->poll.events |= req->poll_update.events & 0xffff;
5902 preq->poll.events |= IO_POLL_UNMASK;
5903 }
5904 if (req->poll_update.update_user_data)
5905 preq->user_data = req->poll_update.new_user_data;
5906 spin_unlock(&ctx->completion_lock);
5907
5908 /* complete update request, we're done with it */
5909 io_req_complete(req, ret);
5910
5911 if (!completing) {
5912 ret = io_poll_add(preq, issue_flags);
5913 if (ret < 0) {
5914 req_set_fail(preq);
5915 io_req_complete(preq, ret);
5916 }
5917 }
5918 return 0;
5919 }
5920
5921 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5922 {
5923 req_set_fail(req);
5924 io_req_complete_post(req, -ETIME, 0);
5925 }
5926
5927 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5928 {
5929 struct io_timeout_data *data = container_of(timer,
5930 struct io_timeout_data, timer);
5931 struct io_kiocb *req = data->req;
5932 struct io_ring_ctx *ctx = req->ctx;
5933 unsigned long flags;
5934
5935 spin_lock_irqsave(&ctx->timeout_lock, flags);
5936 list_del_init(&req->timeout.list);
5937 atomic_set(&req->ctx->cq_timeouts,
5938 atomic_read(&req->ctx->cq_timeouts) + 1);
5939 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5940
5941 req->io_task_work.func = io_req_task_timeout;
5942 io_req_task_work_add(req);
5943 return HRTIMER_NORESTART;
5944 }
5945
5946 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5947 __u64 user_data)
5948 __must_hold(&ctx->timeout_lock)
5949 {
5950 struct io_timeout_data *io;
5951 struct io_kiocb *req;
5952 bool found = false;
5953
5954 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5955 found = user_data == req->user_data;
5956 if (found)
5957 break;
5958 }
5959 if (!found)
5960 return ERR_PTR(-ENOENT);
5961
5962 io = req->async_data;
5963 if (hrtimer_try_to_cancel(&io->timer) == -1)
5964 return ERR_PTR(-EALREADY);
5965 list_del_init(&req->timeout.list);
5966 return req;
5967 }
5968
5969 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5970 __must_hold(&ctx->completion_lock)
5971 __must_hold(&ctx->timeout_lock)
5972 {
5973 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5974
5975 if (IS_ERR(req))
5976 return PTR_ERR(req);
5977
5978 req_set_fail(req);
5979 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5980 io_put_req_deferred(req);
5981 return 0;
5982 }
5983
5984 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5985 {
5986 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5987 case IORING_TIMEOUT_BOOTTIME:
5988 return CLOCK_BOOTTIME;
5989 case IORING_TIMEOUT_REALTIME:
5990 return CLOCK_REALTIME;
5991 default:
5992 /* can't happen, vetted at prep time */
5993 WARN_ON_ONCE(1);
5994 fallthrough;
5995 case 0:
5996 return CLOCK_MONOTONIC;
5997 }
5998 }
5999
6000 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6001 struct timespec64 *ts, enum hrtimer_mode mode)
6002 __must_hold(&ctx->timeout_lock)
6003 {
6004 struct io_timeout_data *io;
6005 struct io_kiocb *req;
6006 bool found = false;
6007
6008 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6009 found = user_data == req->user_data;
6010 if (found)
6011 break;
6012 }
6013 if (!found)
6014 return -ENOENT;
6015
6016 io = req->async_data;
6017 if (hrtimer_try_to_cancel(&io->timer) == -1)
6018 return -EALREADY;
6019 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6020 io->timer.function = io_link_timeout_fn;
6021 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6022 return 0;
6023 }
6024
6025 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6026 struct timespec64 *ts, enum hrtimer_mode mode)
6027 __must_hold(&ctx->timeout_lock)
6028 {
6029 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6030 struct io_timeout_data *data;
6031
6032 if (IS_ERR(req))
6033 return PTR_ERR(req);
6034
6035 req->timeout.off = 0; /* noseq */
6036 data = req->async_data;
6037 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6038 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6039 data->timer.function = io_timeout_fn;
6040 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6041 return 0;
6042 }
6043
6044 static int io_timeout_remove_prep(struct io_kiocb *req,
6045 const struct io_uring_sqe *sqe)
6046 {
6047 struct io_timeout_rem *tr = &req->timeout_rem;
6048
6049 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6050 return -EINVAL;
6051 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6052 return -EINVAL;
6053 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6054 return -EINVAL;
6055
6056 tr->ltimeout = false;
6057 tr->addr = READ_ONCE(sqe->addr);
6058 tr->flags = READ_ONCE(sqe->timeout_flags);
6059 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6060 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6061 return -EINVAL;
6062 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6063 tr->ltimeout = true;
6064 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6065 return -EINVAL;
6066 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6067 return -EFAULT;
6068 } else if (tr->flags) {
6069 /* timeout removal doesn't support flags */
6070 return -EINVAL;
6071 }
6072
6073 return 0;
6074 }
6075
6076 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6077 {
6078 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6079 : HRTIMER_MODE_REL;
6080 }
6081
6082 /*
6083 * Remove or update an existing timeout command
6084 */
6085 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6086 {
6087 struct io_timeout_rem *tr = &req->timeout_rem;
6088 struct io_ring_ctx *ctx = req->ctx;
6089 int ret;
6090
6091 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6092 spin_lock(&ctx->completion_lock);
6093 spin_lock_irq(&ctx->timeout_lock);
6094 ret = io_timeout_cancel(ctx, tr->addr);
6095 spin_unlock_irq(&ctx->timeout_lock);
6096 spin_unlock(&ctx->completion_lock);
6097 } else {
6098 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6099
6100 spin_lock_irq(&ctx->timeout_lock);
6101 if (tr->ltimeout)
6102 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6103 else
6104 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6105 spin_unlock_irq(&ctx->timeout_lock);
6106 }
6107
6108 if (ret < 0)
6109 req_set_fail(req);
6110 io_req_complete_post(req, ret, 0);
6111 return 0;
6112 }
6113
6114 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6115 bool is_timeout_link)
6116 {
6117 struct io_timeout_data *data;
6118 unsigned flags;
6119 u32 off = READ_ONCE(sqe->off);
6120
6121 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6122 return -EINVAL;
6123 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6124 sqe->splice_fd_in)
6125 return -EINVAL;
6126 if (off && is_timeout_link)
6127 return -EINVAL;
6128 flags = READ_ONCE(sqe->timeout_flags);
6129 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6130 return -EINVAL;
6131 /* more than one clock specified is invalid, obviously */
6132 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6133 return -EINVAL;
6134
6135 INIT_LIST_HEAD(&req->timeout.list);
6136 req->timeout.off = off;
6137 if (unlikely(off && !req->ctx->off_timeout_used))
6138 req->ctx->off_timeout_used = true;
6139
6140 if (!req->async_data && io_alloc_async_data(req))
6141 return -ENOMEM;
6142
6143 data = req->async_data;
6144 data->req = req;
6145 data->flags = flags;
6146
6147 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6148 return -EFAULT;
6149
6150 data->mode = io_translate_timeout_mode(flags);
6151 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6152
6153 if (is_timeout_link) {
6154 struct io_submit_link *link = &req->ctx->submit_state.link;
6155
6156 if (!link->head)
6157 return -EINVAL;
6158 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6159 return -EINVAL;
6160 req->timeout.head = link->last;
6161 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6162 }
6163 return 0;
6164 }
6165
6166 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6167 {
6168 struct io_ring_ctx *ctx = req->ctx;
6169 struct io_timeout_data *data = req->async_data;
6170 struct list_head *entry;
6171 u32 tail, off = req->timeout.off;
6172
6173 spin_lock_irq(&ctx->timeout_lock);
6174
6175 /*
6176 * sqe->off holds how many events that need to occur for this
6177 * timeout event to be satisfied. If it isn't set, then this is
6178 * a pure timeout request, sequence isn't used.
6179 */
6180 if (io_is_timeout_noseq(req)) {
6181 entry = ctx->timeout_list.prev;
6182 goto add;
6183 }
6184
6185 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6186 req->timeout.target_seq = tail + off;
6187
6188 /* Update the last seq here in case io_flush_timeouts() hasn't.
6189 * This is safe because ->completion_lock is held, and submissions
6190 * and completions are never mixed in the same ->completion_lock section.
6191 */
6192 ctx->cq_last_tm_flush = tail;
6193
6194 /*
6195 * Insertion sort, ensuring the first entry in the list is always
6196 * the one we need first.
6197 */
6198 list_for_each_prev(entry, &ctx->timeout_list) {
6199 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6200 timeout.list);
6201
6202 if (io_is_timeout_noseq(nxt))
6203 continue;
6204 /* nxt.seq is behind @tail, otherwise would've been completed */
6205 if (off >= nxt->timeout.target_seq - tail)
6206 break;
6207 }
6208 add:
6209 list_add(&req->timeout.list, entry);
6210 data->timer.function = io_timeout_fn;
6211 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6212 spin_unlock_irq(&ctx->timeout_lock);
6213 return 0;
6214 }
6215
6216 struct io_cancel_data {
6217 struct io_ring_ctx *ctx;
6218 u64 user_data;
6219 };
6220
6221 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6222 {
6223 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6224 struct io_cancel_data *cd = data;
6225
6226 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6227 }
6228
6229 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6230 struct io_ring_ctx *ctx)
6231 {
6232 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6233 enum io_wq_cancel cancel_ret;
6234 int ret = 0;
6235
6236 if (!tctx || !tctx->io_wq)
6237 return -ENOENT;
6238
6239 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6240 switch (cancel_ret) {
6241 case IO_WQ_CANCEL_OK:
6242 ret = 0;
6243 break;
6244 case IO_WQ_CANCEL_RUNNING:
6245 ret = -EALREADY;
6246 break;
6247 case IO_WQ_CANCEL_NOTFOUND:
6248 ret = -ENOENT;
6249 break;
6250 }
6251
6252 return ret;
6253 }
6254
6255 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6256 {
6257 struct io_ring_ctx *ctx = req->ctx;
6258 int ret;
6259
6260 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6261
6262 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6263 if (ret != -ENOENT)
6264 return ret;
6265
6266 spin_lock(&ctx->completion_lock);
6267 spin_lock_irq(&ctx->timeout_lock);
6268 ret = io_timeout_cancel(ctx, sqe_addr);
6269 spin_unlock_irq(&ctx->timeout_lock);
6270 if (ret != -ENOENT)
6271 goto out;
6272 ret = io_poll_cancel(ctx, sqe_addr, false);
6273 out:
6274 spin_unlock(&ctx->completion_lock);
6275 return ret;
6276 }
6277
6278 static int io_async_cancel_prep(struct io_kiocb *req,
6279 const struct io_uring_sqe *sqe)
6280 {
6281 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6282 return -EINVAL;
6283 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6284 return -EINVAL;
6285 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6286 sqe->splice_fd_in)
6287 return -EINVAL;
6288
6289 req->cancel.addr = READ_ONCE(sqe->addr);
6290 return 0;
6291 }
6292
6293 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6294 {
6295 struct io_ring_ctx *ctx = req->ctx;
6296 u64 sqe_addr = req->cancel.addr;
6297 struct io_tctx_node *node;
6298 int ret;
6299
6300 ret = io_try_cancel_userdata(req, sqe_addr);
6301 if (ret != -ENOENT)
6302 goto done;
6303
6304 /* slow path, try all io-wq's */
6305 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6306 ret = -ENOENT;
6307 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6308 struct io_uring_task *tctx = node->task->io_uring;
6309
6310 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6311 if (ret != -ENOENT)
6312 break;
6313 }
6314 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6315 done:
6316 if (ret < 0)
6317 req_set_fail(req);
6318 io_req_complete_post(req, ret, 0);
6319 return 0;
6320 }
6321
6322 static int io_rsrc_update_prep(struct io_kiocb *req,
6323 const struct io_uring_sqe *sqe)
6324 {
6325 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6326 return -EINVAL;
6327 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6328 return -EINVAL;
6329
6330 req->rsrc_update.offset = READ_ONCE(sqe->off);
6331 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6332 if (!req->rsrc_update.nr_args)
6333 return -EINVAL;
6334 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6335 return 0;
6336 }
6337
6338 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6339 {
6340 struct io_ring_ctx *ctx = req->ctx;
6341 struct io_uring_rsrc_update2 up;
6342 int ret;
6343
6344 up.offset = req->rsrc_update.offset;
6345 up.data = req->rsrc_update.arg;
6346 up.nr = 0;
6347 up.tags = 0;
6348 up.resv = 0;
6349
6350 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6351 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6352 &up, req->rsrc_update.nr_args);
6353 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6354
6355 if (ret < 0)
6356 req_set_fail(req);
6357 __io_req_complete(req, issue_flags, ret, 0);
6358 return 0;
6359 }
6360
6361 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6362 {
6363 switch (req->opcode) {
6364 case IORING_OP_NOP:
6365 return 0;
6366 case IORING_OP_READV:
6367 case IORING_OP_READ_FIXED:
6368 case IORING_OP_READ:
6369 return io_read_prep(req, sqe);
6370 case IORING_OP_WRITEV:
6371 case IORING_OP_WRITE_FIXED:
6372 case IORING_OP_WRITE:
6373 return io_write_prep(req, sqe);
6374 case IORING_OP_POLL_ADD:
6375 return io_poll_add_prep(req, sqe);
6376 case IORING_OP_POLL_REMOVE:
6377 return io_poll_update_prep(req, sqe);
6378 case IORING_OP_FSYNC:
6379 return io_fsync_prep(req, sqe);
6380 case IORING_OP_SYNC_FILE_RANGE:
6381 return io_sfr_prep(req, sqe);
6382 case IORING_OP_SENDMSG:
6383 case IORING_OP_SEND:
6384 return io_sendmsg_prep(req, sqe);
6385 case IORING_OP_RECVMSG:
6386 case IORING_OP_RECV:
6387 return io_recvmsg_prep(req, sqe);
6388 case IORING_OP_CONNECT:
6389 return io_connect_prep(req, sqe);
6390 case IORING_OP_TIMEOUT:
6391 return io_timeout_prep(req, sqe, false);
6392 case IORING_OP_TIMEOUT_REMOVE:
6393 return io_timeout_remove_prep(req, sqe);
6394 case IORING_OP_ASYNC_CANCEL:
6395 return io_async_cancel_prep(req, sqe);
6396 case IORING_OP_LINK_TIMEOUT:
6397 return io_timeout_prep(req, sqe, true);
6398 case IORING_OP_ACCEPT:
6399 return io_accept_prep(req, sqe);
6400 case IORING_OP_FALLOCATE:
6401 return io_fallocate_prep(req, sqe);
6402 case IORING_OP_OPENAT:
6403 return io_openat_prep(req, sqe);
6404 case IORING_OP_CLOSE:
6405 return io_close_prep(req, sqe);
6406 case IORING_OP_FILES_UPDATE:
6407 return io_rsrc_update_prep(req, sqe);
6408 case IORING_OP_STATX:
6409 return io_statx_prep(req, sqe);
6410 case IORING_OP_FADVISE:
6411 return io_fadvise_prep(req, sqe);
6412 case IORING_OP_MADVISE:
6413 return io_madvise_prep(req, sqe);
6414 case IORING_OP_OPENAT2:
6415 return io_openat2_prep(req, sqe);
6416 case IORING_OP_EPOLL_CTL:
6417 return io_epoll_ctl_prep(req, sqe);
6418 case IORING_OP_SPLICE:
6419 return io_splice_prep(req, sqe);
6420 case IORING_OP_PROVIDE_BUFFERS:
6421 return io_provide_buffers_prep(req, sqe);
6422 case IORING_OP_REMOVE_BUFFERS:
6423 return io_remove_buffers_prep(req, sqe);
6424 case IORING_OP_TEE:
6425 return io_tee_prep(req, sqe);
6426 case IORING_OP_SHUTDOWN:
6427 return io_shutdown_prep(req, sqe);
6428 case IORING_OP_RENAMEAT:
6429 return io_renameat_prep(req, sqe);
6430 case IORING_OP_UNLINKAT:
6431 return io_unlinkat_prep(req, sqe);
6432 case IORING_OP_MKDIRAT:
6433 return io_mkdirat_prep(req, sqe);
6434 case IORING_OP_SYMLINKAT:
6435 return io_symlinkat_prep(req, sqe);
6436 case IORING_OP_LINKAT:
6437 return io_linkat_prep(req, sqe);
6438 }
6439
6440 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6441 req->opcode);
6442 return -EINVAL;
6443 }
6444
6445 static int io_req_prep_async(struct io_kiocb *req)
6446 {
6447 if (!io_op_defs[req->opcode].needs_async_setup)
6448 return 0;
6449 if (WARN_ON_ONCE(req->async_data))
6450 return -EFAULT;
6451 if (io_alloc_async_data(req))
6452 return -EAGAIN;
6453
6454 switch (req->opcode) {
6455 case IORING_OP_READV:
6456 return io_rw_prep_async(req, READ);
6457 case IORING_OP_WRITEV:
6458 return io_rw_prep_async(req, WRITE);
6459 case IORING_OP_SENDMSG:
6460 return io_sendmsg_prep_async(req);
6461 case IORING_OP_RECVMSG:
6462 return io_recvmsg_prep_async(req);
6463 case IORING_OP_CONNECT:
6464 return io_connect_prep_async(req);
6465 }
6466 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6467 req->opcode);
6468 return -EFAULT;
6469 }
6470
6471 static u32 io_get_sequence(struct io_kiocb *req)
6472 {
6473 u32 seq = req->ctx->cached_sq_head;
6474
6475 /* need original cached_sq_head, but it was increased for each req */
6476 io_for_each_link(req, req)
6477 seq--;
6478 return seq;
6479 }
6480
6481 static bool io_drain_req(struct io_kiocb *req)
6482 {
6483 struct io_kiocb *pos;
6484 struct io_ring_ctx *ctx = req->ctx;
6485 struct io_defer_entry *de;
6486 int ret;
6487 u32 seq;
6488
6489 if (req->flags & REQ_F_FAIL) {
6490 io_req_complete_fail_submit(req);
6491 return true;
6492 }
6493
6494 /*
6495 * If we need to drain a request in the middle of a link, drain the
6496 * head request and the next request/link after the current link.
6497 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6498 * maintained for every request of our link.
6499 */
6500 if (ctx->drain_next) {
6501 req->flags |= REQ_F_IO_DRAIN;
6502 ctx->drain_next = false;
6503 }
6504 /* not interested in head, start from the first linked */
6505 io_for_each_link(pos, req->link) {
6506 if (pos->flags & REQ_F_IO_DRAIN) {
6507 ctx->drain_next = true;
6508 req->flags |= REQ_F_IO_DRAIN;
6509 break;
6510 }
6511 }
6512
6513 /* Still need defer if there is pending req in defer list. */
6514 if (likely(list_empty_careful(&ctx->defer_list) &&
6515 !(req->flags & REQ_F_IO_DRAIN))) {
6516 ctx->drain_active = false;
6517 return false;
6518 }
6519
6520 seq = io_get_sequence(req);
6521 /* Still a chance to pass the sequence check */
6522 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6523 return false;
6524
6525 ret = io_req_prep_async(req);
6526 if (ret)
6527 goto fail;
6528 io_prep_async_link(req);
6529 de = kmalloc(sizeof(*de), GFP_KERNEL);
6530 if (!de) {
6531 ret = -ENOMEM;
6532 fail:
6533 io_req_complete_failed(req, ret);
6534 return true;
6535 }
6536
6537 spin_lock(&ctx->completion_lock);
6538 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6539 spin_unlock(&ctx->completion_lock);
6540 kfree(de);
6541 io_queue_async_work(req, NULL);
6542 return true;
6543 }
6544
6545 trace_io_uring_defer(ctx, req, req->user_data);
6546 de->req = req;
6547 de->seq = seq;
6548 list_add_tail(&de->list, &ctx->defer_list);
6549 spin_unlock(&ctx->completion_lock);
6550 return true;
6551 }
6552
6553 static void io_clean_op(struct io_kiocb *req)
6554 {
6555 if (req->flags & REQ_F_BUFFER_SELECTED) {
6556 switch (req->opcode) {
6557 case IORING_OP_READV:
6558 case IORING_OP_READ_FIXED:
6559 case IORING_OP_READ:
6560 kfree((void *)(unsigned long)req->rw.addr);
6561 break;
6562 case IORING_OP_RECVMSG:
6563 case IORING_OP_RECV:
6564 kfree(req->sr_msg.kbuf);
6565 break;
6566 }
6567 }
6568
6569 if (req->flags & REQ_F_NEED_CLEANUP) {
6570 switch (req->opcode) {
6571 case IORING_OP_READV:
6572 case IORING_OP_READ_FIXED:
6573 case IORING_OP_READ:
6574 case IORING_OP_WRITEV:
6575 case IORING_OP_WRITE_FIXED:
6576 case IORING_OP_WRITE: {
6577 struct io_async_rw *io = req->async_data;
6578
6579 kfree(io->free_iovec);
6580 break;
6581 }
6582 case IORING_OP_RECVMSG:
6583 case IORING_OP_SENDMSG: {
6584 struct io_async_msghdr *io = req->async_data;
6585
6586 kfree(io->free_iov);
6587 break;
6588 }
6589 case IORING_OP_SPLICE:
6590 case IORING_OP_TEE:
6591 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6592 io_put_file(req->splice.file_in);
6593 break;
6594 case IORING_OP_OPENAT:
6595 case IORING_OP_OPENAT2:
6596 if (req->open.filename)
6597 putname(req->open.filename);
6598 break;
6599 case IORING_OP_RENAMEAT:
6600 putname(req->rename.oldpath);
6601 putname(req->rename.newpath);
6602 break;
6603 case IORING_OP_UNLINKAT:
6604 putname(req->unlink.filename);
6605 break;
6606 case IORING_OP_MKDIRAT:
6607 putname(req->mkdir.filename);
6608 break;
6609 case IORING_OP_SYMLINKAT:
6610 putname(req->symlink.oldpath);
6611 putname(req->symlink.newpath);
6612 break;
6613 case IORING_OP_LINKAT:
6614 putname(req->hardlink.oldpath);
6615 putname(req->hardlink.newpath);
6616 break;
6617 }
6618 }
6619 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6620 kfree(req->apoll->double_poll);
6621 kfree(req->apoll);
6622 req->apoll = NULL;
6623 }
6624 if (req->flags & REQ_F_INFLIGHT) {
6625 struct io_uring_task *tctx = req->task->io_uring;
6626
6627 atomic_dec(&tctx->inflight_tracked);
6628 }
6629 if (req->flags & REQ_F_CREDS)
6630 put_cred(req->creds);
6631
6632 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6633 }
6634
6635 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6636 {
6637 struct io_ring_ctx *ctx = req->ctx;
6638 const struct cred *creds = NULL;
6639 int ret;
6640
6641 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6642 creds = override_creds(req->creds);
6643
6644 switch (req->opcode) {
6645 case IORING_OP_NOP:
6646 ret = io_nop(req, issue_flags);
6647 break;
6648 case IORING_OP_READV:
6649 case IORING_OP_READ_FIXED:
6650 case IORING_OP_READ:
6651 ret = io_read(req, issue_flags);
6652 break;
6653 case IORING_OP_WRITEV:
6654 case IORING_OP_WRITE_FIXED:
6655 case IORING_OP_WRITE:
6656 ret = io_write(req, issue_flags);
6657 break;
6658 case IORING_OP_FSYNC:
6659 ret = io_fsync(req, issue_flags);
6660 break;
6661 case IORING_OP_POLL_ADD:
6662 ret = io_poll_add(req, issue_flags);
6663 break;
6664 case IORING_OP_POLL_REMOVE:
6665 ret = io_poll_update(req, issue_flags);
6666 break;
6667 case IORING_OP_SYNC_FILE_RANGE:
6668 ret = io_sync_file_range(req, issue_flags);
6669 break;
6670 case IORING_OP_SENDMSG:
6671 ret = io_sendmsg(req, issue_flags);
6672 break;
6673 case IORING_OP_SEND:
6674 ret = io_send(req, issue_flags);
6675 break;
6676 case IORING_OP_RECVMSG:
6677 ret = io_recvmsg(req, issue_flags);
6678 break;
6679 case IORING_OP_RECV:
6680 ret = io_recv(req, issue_flags);
6681 break;
6682 case IORING_OP_TIMEOUT:
6683 ret = io_timeout(req, issue_flags);
6684 break;
6685 case IORING_OP_TIMEOUT_REMOVE:
6686 ret = io_timeout_remove(req, issue_flags);
6687 break;
6688 case IORING_OP_ACCEPT:
6689 ret = io_accept(req, issue_flags);
6690 break;
6691 case IORING_OP_CONNECT:
6692 ret = io_connect(req, issue_flags);
6693 break;
6694 case IORING_OP_ASYNC_CANCEL:
6695 ret = io_async_cancel(req, issue_flags);
6696 break;
6697 case IORING_OP_FALLOCATE:
6698 ret = io_fallocate(req, issue_flags);
6699 break;
6700 case IORING_OP_OPENAT:
6701 ret = io_openat(req, issue_flags);
6702 break;
6703 case IORING_OP_CLOSE:
6704 ret = io_close(req, issue_flags);
6705 break;
6706 case IORING_OP_FILES_UPDATE:
6707 ret = io_files_update(req, issue_flags);
6708 break;
6709 case IORING_OP_STATX:
6710 ret = io_statx(req, issue_flags);
6711 break;
6712 case IORING_OP_FADVISE:
6713 ret = io_fadvise(req, issue_flags);
6714 break;
6715 case IORING_OP_MADVISE:
6716 ret = io_madvise(req, issue_flags);
6717 break;
6718 case IORING_OP_OPENAT2:
6719 ret = io_openat2(req, issue_flags);
6720 break;
6721 case IORING_OP_EPOLL_CTL:
6722 ret = io_epoll_ctl(req, issue_flags);
6723 break;
6724 case IORING_OP_SPLICE:
6725 ret = io_splice(req, issue_flags);
6726 break;
6727 case IORING_OP_PROVIDE_BUFFERS:
6728 ret = io_provide_buffers(req, issue_flags);
6729 break;
6730 case IORING_OP_REMOVE_BUFFERS:
6731 ret = io_remove_buffers(req, issue_flags);
6732 break;
6733 case IORING_OP_TEE:
6734 ret = io_tee(req, issue_flags);
6735 break;
6736 case IORING_OP_SHUTDOWN:
6737 ret = io_shutdown(req, issue_flags);
6738 break;
6739 case IORING_OP_RENAMEAT:
6740 ret = io_renameat(req, issue_flags);
6741 break;
6742 case IORING_OP_UNLINKAT:
6743 ret = io_unlinkat(req, issue_flags);
6744 break;
6745 case IORING_OP_MKDIRAT:
6746 ret = io_mkdirat(req, issue_flags);
6747 break;
6748 case IORING_OP_SYMLINKAT:
6749 ret = io_symlinkat(req, issue_flags);
6750 break;
6751 case IORING_OP_LINKAT:
6752 ret = io_linkat(req, issue_flags);
6753 break;
6754 default:
6755 ret = -EINVAL;
6756 break;
6757 }
6758
6759 if (creds)
6760 revert_creds(creds);
6761 if (ret)
6762 return ret;
6763 /* If the op doesn't have a file, we're not polling for it */
6764 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6765 io_iopoll_req_issued(req);
6766
6767 return 0;
6768 }
6769
6770 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6771 {
6772 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6773
6774 req = io_put_req_find_next(req);
6775 return req ? &req->work : NULL;
6776 }
6777
6778 static void io_wq_submit_work(struct io_wq_work *work)
6779 {
6780 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6781 struct io_kiocb *timeout;
6782 int ret = 0;
6783
6784 /* one will be dropped by ->io_free_work() after returning to io-wq */
6785 if (!(req->flags & REQ_F_REFCOUNT))
6786 __io_req_set_refcount(req, 2);
6787 else
6788 req_ref_get(req);
6789
6790 timeout = io_prep_linked_timeout(req);
6791 if (timeout)
6792 io_queue_linked_timeout(timeout);
6793
6794 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6795 if (work->flags & IO_WQ_WORK_CANCEL)
6796 ret = -ECANCELED;
6797
6798 if (!ret) {
6799 do {
6800 ret = io_issue_sqe(req, 0);
6801 /*
6802 * We can get EAGAIN for polled IO even though we're
6803 * forcing a sync submission from here, since we can't
6804 * wait for request slots on the block side.
6805 */
6806 if (ret != -EAGAIN)
6807 break;
6808 cond_resched();
6809 } while (1);
6810 }
6811
6812 /* avoid locking problems by failing it from a clean context */
6813 if (ret)
6814 io_req_task_queue_fail(req, ret);
6815 }
6816
6817 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6818 unsigned i)
6819 {
6820 return &table->files[i];
6821 }
6822
6823 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6824 int index)
6825 {
6826 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6827
6828 return (struct file *) (slot->file_ptr & FFS_MASK);
6829 }
6830
6831 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6832 {
6833 unsigned long file_ptr = (unsigned long) file;
6834
6835 if (__io_file_supports_nowait(file, READ))
6836 file_ptr |= FFS_ASYNC_READ;
6837 if (__io_file_supports_nowait(file, WRITE))
6838 file_ptr |= FFS_ASYNC_WRITE;
6839 if (S_ISREG(file_inode(file)->i_mode))
6840 file_ptr |= FFS_ISREG;
6841 file_slot->file_ptr = file_ptr;
6842 }
6843
6844 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6845 struct io_kiocb *req, int fd)
6846 {
6847 struct file *file;
6848 unsigned long file_ptr;
6849
6850 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6851 return NULL;
6852 fd = array_index_nospec(fd, ctx->nr_user_files);
6853 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6854 file = (struct file *) (file_ptr & FFS_MASK);
6855 file_ptr &= ~FFS_MASK;
6856 /* mask in overlapping REQ_F and FFS bits */
6857 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6858 io_req_set_rsrc_node(req);
6859 return file;
6860 }
6861
6862 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6863 struct io_kiocb *req, int fd)
6864 {
6865 struct file *file = fget(fd);
6866
6867 trace_io_uring_file_get(ctx, fd);
6868
6869 /* we don't allow fixed io_uring files */
6870 if (file && unlikely(file->f_op == &io_uring_fops))
6871 io_req_track_inflight(req);
6872 return file;
6873 }
6874
6875 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6876 struct io_kiocb *req, int fd, bool fixed)
6877 {
6878 if (fixed)
6879 return io_file_get_fixed(ctx, req, fd);
6880 else
6881 return io_file_get_normal(ctx, req, fd);
6882 }
6883
6884 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6885 {
6886 struct io_kiocb *prev = req->timeout.prev;
6887 int ret;
6888
6889 if (prev) {
6890 ret = io_try_cancel_userdata(req, prev->user_data);
6891 io_req_complete_post(req, ret ?: -ETIME, 0);
6892 io_put_req(prev);
6893 } else {
6894 io_req_complete_post(req, -ETIME, 0);
6895 }
6896 }
6897
6898 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6899 {
6900 struct io_timeout_data *data = container_of(timer,
6901 struct io_timeout_data, timer);
6902 struct io_kiocb *prev, *req = data->req;
6903 struct io_ring_ctx *ctx = req->ctx;
6904 unsigned long flags;
6905
6906 spin_lock_irqsave(&ctx->timeout_lock, flags);
6907 prev = req->timeout.head;
6908 req->timeout.head = NULL;
6909
6910 /*
6911 * We don't expect the list to be empty, that will only happen if we
6912 * race with the completion of the linked work.
6913 */
6914 if (prev) {
6915 io_remove_next_linked(prev);
6916 if (!req_ref_inc_not_zero(prev))
6917 prev = NULL;
6918 }
6919 list_del(&req->timeout.list);
6920 req->timeout.prev = prev;
6921 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6922
6923 req->io_task_work.func = io_req_task_link_timeout;
6924 io_req_task_work_add(req);
6925 return HRTIMER_NORESTART;
6926 }
6927
6928 static void io_queue_linked_timeout(struct io_kiocb *req)
6929 {
6930 struct io_ring_ctx *ctx = req->ctx;
6931
6932 spin_lock_irq(&ctx->timeout_lock);
6933 /*
6934 * If the back reference is NULL, then our linked request finished
6935 * before we got a chance to setup the timer
6936 */
6937 if (req->timeout.head) {
6938 struct io_timeout_data *data = req->async_data;
6939
6940 data->timer.function = io_link_timeout_fn;
6941 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6942 data->mode);
6943 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6944 }
6945 spin_unlock_irq(&ctx->timeout_lock);
6946 /* drop submission reference */
6947 io_put_req(req);
6948 }
6949
6950 static void __io_queue_sqe(struct io_kiocb *req)
6951 __must_hold(&req->ctx->uring_lock)
6952 {
6953 struct io_kiocb *linked_timeout;
6954 int ret;
6955
6956 issue_sqe:
6957 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6958
6959 /*
6960 * We async punt it if the file wasn't marked NOWAIT, or if the file
6961 * doesn't support non-blocking read/write attempts
6962 */
6963 if (likely(!ret)) {
6964 if (req->flags & REQ_F_COMPLETE_INLINE) {
6965 struct io_ring_ctx *ctx = req->ctx;
6966 struct io_submit_state *state = &ctx->submit_state;
6967
6968 state->compl_reqs[state->compl_nr++] = req;
6969 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6970 io_submit_flush_completions(ctx);
6971 return;
6972 }
6973
6974 linked_timeout = io_prep_linked_timeout(req);
6975 if (linked_timeout)
6976 io_queue_linked_timeout(linked_timeout);
6977 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6978 linked_timeout = io_prep_linked_timeout(req);
6979
6980 switch (io_arm_poll_handler(req)) {
6981 case IO_APOLL_READY:
6982 if (linked_timeout)
6983 io_queue_linked_timeout(linked_timeout);
6984 goto issue_sqe;
6985 case IO_APOLL_ABORTED:
6986 /*
6987 * Queued up for async execution, worker will release
6988 * submit reference when the iocb is actually submitted.
6989 */
6990 io_queue_async_work(req, NULL);
6991 break;
6992 }
6993
6994 if (linked_timeout)
6995 io_queue_linked_timeout(linked_timeout);
6996 } else {
6997 io_req_complete_failed(req, ret);
6998 }
6999 }
7000
7001 static inline void io_queue_sqe(struct io_kiocb *req)
7002 __must_hold(&req->ctx->uring_lock)
7003 {
7004 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7005 return;
7006
7007 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7008 __io_queue_sqe(req);
7009 } else if (req->flags & REQ_F_FAIL) {
7010 io_req_complete_fail_submit(req);
7011 } else {
7012 int ret = io_req_prep_async(req);
7013
7014 if (unlikely(ret))
7015 io_req_complete_failed(req, ret);
7016 else
7017 io_queue_async_work(req, NULL);
7018 }
7019 }
7020
7021 /*
7022 * Check SQE restrictions (opcode and flags).
7023 *
7024 * Returns 'true' if SQE is allowed, 'false' otherwise.
7025 */
7026 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7027 struct io_kiocb *req,
7028 unsigned int sqe_flags)
7029 {
7030 if (likely(!ctx->restricted))
7031 return true;
7032
7033 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7034 return false;
7035
7036 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7037 ctx->restrictions.sqe_flags_required)
7038 return false;
7039
7040 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7041 ctx->restrictions.sqe_flags_required))
7042 return false;
7043
7044 return true;
7045 }
7046
7047 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7048 const struct io_uring_sqe *sqe)
7049 __must_hold(&ctx->uring_lock)
7050 {
7051 struct io_submit_state *state;
7052 unsigned int sqe_flags;
7053 int personality, ret = 0;
7054
7055 /* req is partially pre-initialised, see io_preinit_req() */
7056 req->opcode = READ_ONCE(sqe->opcode);
7057 /* same numerical values with corresponding REQ_F_*, safe to copy */
7058 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7059 req->user_data = READ_ONCE(sqe->user_data);
7060 req->file = NULL;
7061 req->fixed_rsrc_refs = NULL;
7062 req->task = current;
7063
7064 /* enforce forwards compatibility on users */
7065 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7066 return -EINVAL;
7067 if (unlikely(req->opcode >= IORING_OP_LAST))
7068 return -EINVAL;
7069 if (!io_check_restriction(ctx, req, sqe_flags))
7070 return -EACCES;
7071
7072 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7073 !io_op_defs[req->opcode].buffer_select)
7074 return -EOPNOTSUPP;
7075 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7076 ctx->drain_active = true;
7077
7078 personality = READ_ONCE(sqe->personality);
7079 if (personality) {
7080 req->creds = xa_load(&ctx->personalities, personality);
7081 if (!req->creds)
7082 return -EINVAL;
7083 get_cred(req->creds);
7084 req->flags |= REQ_F_CREDS;
7085 }
7086 state = &ctx->submit_state;
7087
7088 /*
7089 * Plug now if we have more than 1 IO left after this, and the target
7090 * is potentially a read/write to block based storage.
7091 */
7092 if (!state->plug_started && state->ios_left > 1 &&
7093 io_op_defs[req->opcode].plug) {
7094 blk_start_plug(&state->plug);
7095 state->plug_started = true;
7096 }
7097
7098 if (io_op_defs[req->opcode].needs_file) {
7099 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7100 (sqe_flags & IOSQE_FIXED_FILE));
7101 if (unlikely(!req->file))
7102 ret = -EBADF;
7103 }
7104
7105 state->ios_left--;
7106 return ret;
7107 }
7108
7109 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7110 const struct io_uring_sqe *sqe)
7111 __must_hold(&ctx->uring_lock)
7112 {
7113 struct io_submit_link *link = &ctx->submit_state.link;
7114 int ret;
7115
7116 ret = io_init_req(ctx, req, sqe);
7117 if (unlikely(ret)) {
7118 fail_req:
7119 /* fail even hard links since we don't submit */
7120 if (link->head) {
7121 /*
7122 * we can judge a link req is failed or cancelled by if
7123 * REQ_F_FAIL is set, but the head is an exception since
7124 * it may be set REQ_F_FAIL because of other req's failure
7125 * so let's leverage req->result to distinguish if a head
7126 * is set REQ_F_FAIL because of its failure or other req's
7127 * failure so that we can set the correct ret code for it.
7128 * init result here to avoid affecting the normal path.
7129 */
7130 if (!(link->head->flags & REQ_F_FAIL))
7131 req_fail_link_node(link->head, -ECANCELED);
7132 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7133 /*
7134 * the current req is a normal req, we should return
7135 * error and thus break the submittion loop.
7136 */
7137 io_req_complete_failed(req, ret);
7138 return ret;
7139 }
7140 req_fail_link_node(req, ret);
7141 } else {
7142 ret = io_req_prep(req, sqe);
7143 if (unlikely(ret))
7144 goto fail_req;
7145 }
7146
7147 /* don't need @sqe from now on */
7148 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7149 req->flags, true,
7150 ctx->flags & IORING_SETUP_SQPOLL);
7151
7152 /*
7153 * If we already have a head request, queue this one for async
7154 * submittal once the head completes. If we don't have a head but
7155 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7156 * submitted sync once the chain is complete. If none of those
7157 * conditions are true (normal request), then just queue it.
7158 */
7159 if (link->head) {
7160 struct io_kiocb *head = link->head;
7161
7162 if (!(req->flags & REQ_F_FAIL)) {
7163 ret = io_req_prep_async(req);
7164 if (unlikely(ret)) {
7165 req_fail_link_node(req, ret);
7166 if (!(head->flags & REQ_F_FAIL))
7167 req_fail_link_node(head, -ECANCELED);
7168 }
7169 }
7170 trace_io_uring_link(ctx, req, head);
7171 link->last->link = req;
7172 link->last = req;
7173
7174 /* last request of a link, enqueue the link */
7175 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7176 link->head = NULL;
7177 io_queue_sqe(head);
7178 }
7179 } else {
7180 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7181 link->head = req;
7182 link->last = req;
7183 } else {
7184 io_queue_sqe(req);
7185 }
7186 }
7187
7188 return 0;
7189 }
7190
7191 /*
7192 * Batched submission is done, ensure local IO is flushed out.
7193 */
7194 static void io_submit_state_end(struct io_submit_state *state,
7195 struct io_ring_ctx *ctx)
7196 {
7197 if (state->link.head)
7198 io_queue_sqe(state->link.head);
7199 if (state->compl_nr)
7200 io_submit_flush_completions(ctx);
7201 if (state->plug_started)
7202 blk_finish_plug(&state->plug);
7203 }
7204
7205 /*
7206 * Start submission side cache.
7207 */
7208 static void io_submit_state_start(struct io_submit_state *state,
7209 unsigned int max_ios)
7210 {
7211 state->plug_started = false;
7212 state->ios_left = max_ios;
7213 /* set only head, no need to init link_last in advance */
7214 state->link.head = NULL;
7215 }
7216
7217 static void io_commit_sqring(struct io_ring_ctx *ctx)
7218 {
7219 struct io_rings *rings = ctx->rings;
7220
7221 /*
7222 * Ensure any loads from the SQEs are done at this point,
7223 * since once we write the new head, the application could
7224 * write new data to them.
7225 */
7226 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7227 }
7228
7229 /*
7230 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7231 * that is mapped by userspace. This means that care needs to be taken to
7232 * ensure that reads are stable, as we cannot rely on userspace always
7233 * being a good citizen. If members of the sqe are validated and then later
7234 * used, it's important that those reads are done through READ_ONCE() to
7235 * prevent a re-load down the line.
7236 */
7237 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7238 {
7239 unsigned head, mask = ctx->sq_entries - 1;
7240 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7241
7242 /*
7243 * The cached sq head (or cq tail) serves two purposes:
7244 *
7245 * 1) allows us to batch the cost of updating the user visible
7246 * head updates.
7247 * 2) allows the kernel side to track the head on its own, even
7248 * though the application is the one updating it.
7249 */
7250 head = READ_ONCE(ctx->sq_array[sq_idx]);
7251 if (likely(head < ctx->sq_entries))
7252 return &ctx->sq_sqes[head];
7253
7254 /* drop invalid entries */
7255 ctx->cq_extra--;
7256 WRITE_ONCE(ctx->rings->sq_dropped,
7257 READ_ONCE(ctx->rings->sq_dropped) + 1);
7258 return NULL;
7259 }
7260
7261 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7262 __must_hold(&ctx->uring_lock)
7263 {
7264 int submitted = 0;
7265
7266 /* make sure SQ entry isn't read before tail */
7267 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7268 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7269 return -EAGAIN;
7270 io_get_task_refs(nr);
7271
7272 io_submit_state_start(&ctx->submit_state, nr);
7273 while (submitted < nr) {
7274 const struct io_uring_sqe *sqe;
7275 struct io_kiocb *req;
7276
7277 req = io_alloc_req(ctx);
7278 if (unlikely(!req)) {
7279 if (!submitted)
7280 submitted = -EAGAIN;
7281 break;
7282 }
7283 sqe = io_get_sqe(ctx);
7284 if (unlikely(!sqe)) {
7285 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7286 break;
7287 }
7288 /* will complete beyond this point, count as submitted */
7289 submitted++;
7290 if (io_submit_sqe(ctx, req, sqe))
7291 break;
7292 }
7293
7294 if (unlikely(submitted != nr)) {
7295 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7296 int unused = nr - ref_used;
7297
7298 current->io_uring->cached_refs += unused;
7299 percpu_ref_put_many(&ctx->refs, unused);
7300 }
7301
7302 io_submit_state_end(&ctx->submit_state, ctx);
7303 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7304 io_commit_sqring(ctx);
7305
7306 return submitted;
7307 }
7308
7309 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7310 {
7311 return READ_ONCE(sqd->state);
7312 }
7313
7314 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7315 {
7316 /* Tell userspace we may need a wakeup call */
7317 spin_lock(&ctx->completion_lock);
7318 WRITE_ONCE(ctx->rings->sq_flags,
7319 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7320 spin_unlock(&ctx->completion_lock);
7321 }
7322
7323 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7324 {
7325 spin_lock(&ctx->completion_lock);
7326 WRITE_ONCE(ctx->rings->sq_flags,
7327 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7328 spin_unlock(&ctx->completion_lock);
7329 }
7330
7331 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7332 {
7333 unsigned int to_submit;
7334 int ret = 0;
7335
7336 to_submit = io_sqring_entries(ctx);
7337 /* if we're handling multiple rings, cap submit size for fairness */
7338 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7339 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7340
7341 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7342 unsigned nr_events = 0;
7343 const struct cred *creds = NULL;
7344
7345 if (ctx->sq_creds != current_cred())
7346 creds = override_creds(ctx->sq_creds);
7347
7348 mutex_lock(&ctx->uring_lock);
7349 if (!list_empty(&ctx->iopoll_list))
7350 io_do_iopoll(ctx, &nr_events, 0);
7351
7352 /*
7353 * Don't submit if refs are dying, good for io_uring_register(),
7354 * but also it is relied upon by io_ring_exit_work()
7355 */
7356 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7357 !(ctx->flags & IORING_SETUP_R_DISABLED))
7358 ret = io_submit_sqes(ctx, to_submit);
7359 mutex_unlock(&ctx->uring_lock);
7360
7361 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7362 wake_up(&ctx->sqo_sq_wait);
7363 if (creds)
7364 revert_creds(creds);
7365 }
7366
7367 return ret;
7368 }
7369
7370 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7371 {
7372 struct io_ring_ctx *ctx;
7373 unsigned sq_thread_idle = 0;
7374
7375 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7376 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7377 sqd->sq_thread_idle = sq_thread_idle;
7378 }
7379
7380 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7381 {
7382 bool did_sig = false;
7383 struct ksignal ksig;
7384
7385 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7386 signal_pending(current)) {
7387 mutex_unlock(&sqd->lock);
7388 if (signal_pending(current))
7389 did_sig = get_signal(&ksig);
7390 cond_resched();
7391 mutex_lock(&sqd->lock);
7392 }
7393 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7394 }
7395
7396 static int io_sq_thread(void *data)
7397 {
7398 struct io_sq_data *sqd = data;
7399 struct io_ring_ctx *ctx;
7400 unsigned long timeout = 0;
7401 char buf[TASK_COMM_LEN];
7402 DEFINE_WAIT(wait);
7403
7404 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7405 set_task_comm(current, buf);
7406
7407 if (sqd->sq_cpu != -1)
7408 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7409 else
7410 set_cpus_allowed_ptr(current, cpu_online_mask);
7411 current->flags |= PF_NO_SETAFFINITY;
7412
7413 mutex_lock(&sqd->lock);
7414 while (1) {
7415 bool cap_entries, sqt_spin = false;
7416
7417 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7418 if (io_sqd_handle_event(sqd))
7419 break;
7420 timeout = jiffies + sqd->sq_thread_idle;
7421 }
7422
7423 cap_entries = !list_is_singular(&sqd->ctx_list);
7424 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7425 int ret = __io_sq_thread(ctx, cap_entries);
7426
7427 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7428 sqt_spin = true;
7429 }
7430 if (io_run_task_work())
7431 sqt_spin = true;
7432
7433 if (sqt_spin || !time_after(jiffies, timeout)) {
7434 cond_resched();
7435 if (sqt_spin)
7436 timeout = jiffies + sqd->sq_thread_idle;
7437 continue;
7438 }
7439
7440 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7441 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7442 bool needs_sched = true;
7443
7444 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7445 io_ring_set_wakeup_flag(ctx);
7446
7447 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7448 !list_empty_careful(&ctx->iopoll_list)) {
7449 needs_sched = false;
7450 break;
7451 }
7452 if (io_sqring_entries(ctx)) {
7453 needs_sched = false;
7454 break;
7455 }
7456 }
7457
7458 if (needs_sched) {
7459 mutex_unlock(&sqd->lock);
7460 schedule();
7461 mutex_lock(&sqd->lock);
7462 }
7463 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7464 io_ring_clear_wakeup_flag(ctx);
7465 }
7466
7467 finish_wait(&sqd->wait, &wait);
7468 timeout = jiffies + sqd->sq_thread_idle;
7469 }
7470
7471 io_uring_cancel_generic(true, sqd);
7472 sqd->thread = NULL;
7473 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7474 io_ring_set_wakeup_flag(ctx);
7475 io_run_task_work();
7476 mutex_unlock(&sqd->lock);
7477
7478 complete(&sqd->exited);
7479 do_exit(0);
7480 }
7481
7482 struct io_wait_queue {
7483 struct wait_queue_entry wq;
7484 struct io_ring_ctx *ctx;
7485 unsigned cq_tail;
7486 unsigned nr_timeouts;
7487 };
7488
7489 static inline bool io_should_wake(struct io_wait_queue *iowq)
7490 {
7491 struct io_ring_ctx *ctx = iowq->ctx;
7492 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7493
7494 /*
7495 * Wake up if we have enough events, or if a timeout occurred since we
7496 * started waiting. For timeouts, we always want to return to userspace,
7497 * regardless of event count.
7498 */
7499 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7500 }
7501
7502 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7503 int wake_flags, void *key)
7504 {
7505 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7506 wq);
7507
7508 /*
7509 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7510 * the task, and the next invocation will do it.
7511 */
7512 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7513 return autoremove_wake_function(curr, mode, wake_flags, key);
7514 return -1;
7515 }
7516
7517 static int io_run_task_work_sig(void)
7518 {
7519 if (io_run_task_work())
7520 return 1;
7521 if (!signal_pending(current))
7522 return 0;
7523 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7524 return -ERESTARTSYS;
7525 return -EINTR;
7526 }
7527
7528 /* when returns >0, the caller should retry */
7529 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7530 struct io_wait_queue *iowq,
7531 signed long *timeout)
7532 {
7533 int ret;
7534
7535 /* make sure we run task_work before checking for signals */
7536 ret = io_run_task_work_sig();
7537 if (ret || io_should_wake(iowq))
7538 return ret;
7539 /* let the caller flush overflows, retry */
7540 if (test_bit(0, &ctx->check_cq_overflow))
7541 return 1;
7542
7543 *timeout = schedule_timeout(*timeout);
7544 return !*timeout ? -ETIME : 1;
7545 }
7546
7547 /*
7548 * Wait until events become available, if we don't already have some. The
7549 * application must reap them itself, as they reside on the shared cq ring.
7550 */
7551 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7552 const sigset_t __user *sig, size_t sigsz,
7553 struct __kernel_timespec __user *uts)
7554 {
7555 struct io_wait_queue iowq;
7556 struct io_rings *rings = ctx->rings;
7557 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7558 int ret;
7559
7560 do {
7561 io_cqring_overflow_flush(ctx);
7562 if (io_cqring_events(ctx) >= min_events)
7563 return 0;
7564 if (!io_run_task_work())
7565 break;
7566 } while (1);
7567
7568 if (uts) {
7569 struct timespec64 ts;
7570
7571 if (get_timespec64(&ts, uts))
7572 return -EFAULT;
7573 timeout = timespec64_to_jiffies(&ts);
7574 }
7575
7576 if (sig) {
7577 #ifdef CONFIG_COMPAT
7578 if (in_compat_syscall())
7579 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7580 sigsz);
7581 else
7582 #endif
7583 ret = set_user_sigmask(sig, sigsz);
7584
7585 if (ret)
7586 return ret;
7587 }
7588
7589 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7590 iowq.wq.private = current;
7591 INIT_LIST_HEAD(&iowq.wq.entry);
7592 iowq.ctx = ctx;
7593 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7594 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7595
7596 trace_io_uring_cqring_wait(ctx, min_events);
7597 do {
7598 /* if we can't even flush overflow, don't wait for more */
7599 if (!io_cqring_overflow_flush(ctx)) {
7600 ret = -EBUSY;
7601 break;
7602 }
7603 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7604 TASK_INTERRUPTIBLE);
7605 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7606 finish_wait(&ctx->cq_wait, &iowq.wq);
7607 cond_resched();
7608 } while (ret > 0);
7609
7610 restore_saved_sigmask_unless(ret == -EINTR);
7611
7612 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7613 }
7614
7615 static void io_free_page_table(void **table, size_t size)
7616 {
7617 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7618
7619 for (i = 0; i < nr_tables; i++)
7620 kfree(table[i]);
7621 kfree(table);
7622 }
7623
7624 static void **io_alloc_page_table(size_t size)
7625 {
7626 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7627 size_t init_size = size;
7628 void **table;
7629
7630 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7631 if (!table)
7632 return NULL;
7633
7634 for (i = 0; i < nr_tables; i++) {
7635 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7636
7637 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7638 if (!table[i]) {
7639 io_free_page_table(table, init_size);
7640 return NULL;
7641 }
7642 size -= this_size;
7643 }
7644 return table;
7645 }
7646
7647 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7648 {
7649 percpu_ref_exit(&ref_node->refs);
7650 kfree(ref_node);
7651 }
7652
7653 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7654 {
7655 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7656 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7657 unsigned long flags;
7658 bool first_add = false;
7659
7660 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7661 node->done = true;
7662
7663 while (!list_empty(&ctx->rsrc_ref_list)) {
7664 node = list_first_entry(&ctx->rsrc_ref_list,
7665 struct io_rsrc_node, node);
7666 /* recycle ref nodes in order */
7667 if (!node->done)
7668 break;
7669 list_del(&node->node);
7670 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7671 }
7672 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7673
7674 if (first_add)
7675 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7676 }
7677
7678 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7679 {
7680 struct io_rsrc_node *ref_node;
7681
7682 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7683 if (!ref_node)
7684 return NULL;
7685
7686 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7687 0, GFP_KERNEL)) {
7688 kfree(ref_node);
7689 return NULL;
7690 }
7691 INIT_LIST_HEAD(&ref_node->node);
7692 INIT_LIST_HEAD(&ref_node->rsrc_list);
7693 ref_node->done = false;
7694 return ref_node;
7695 }
7696
7697 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7698 struct io_rsrc_data *data_to_kill)
7699 {
7700 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7701 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7702
7703 if (data_to_kill) {
7704 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7705
7706 rsrc_node->rsrc_data = data_to_kill;
7707 spin_lock_irq(&ctx->rsrc_ref_lock);
7708 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7709 spin_unlock_irq(&ctx->rsrc_ref_lock);
7710
7711 atomic_inc(&data_to_kill->refs);
7712 percpu_ref_kill(&rsrc_node->refs);
7713 ctx->rsrc_node = NULL;
7714 }
7715
7716 if (!ctx->rsrc_node) {
7717 ctx->rsrc_node = ctx->rsrc_backup_node;
7718 ctx->rsrc_backup_node = NULL;
7719 }
7720 }
7721
7722 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7723 {
7724 if (ctx->rsrc_backup_node)
7725 return 0;
7726 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7727 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7728 }
7729
7730 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7731 {
7732 int ret;
7733
7734 /* As we may drop ->uring_lock, other task may have started quiesce */
7735 if (data->quiesce)
7736 return -ENXIO;
7737
7738 data->quiesce = true;
7739 do {
7740 ret = io_rsrc_node_switch_start(ctx);
7741 if (ret)
7742 break;
7743 io_rsrc_node_switch(ctx, data);
7744
7745 /* kill initial ref, already quiesced if zero */
7746 if (atomic_dec_and_test(&data->refs))
7747 break;
7748 mutex_unlock(&ctx->uring_lock);
7749 flush_delayed_work(&ctx->rsrc_put_work);
7750 ret = wait_for_completion_interruptible(&data->done);
7751 if (!ret) {
7752 mutex_lock(&ctx->uring_lock);
7753 break;
7754 }
7755
7756 atomic_inc(&data->refs);
7757 /* wait for all works potentially completing data->done */
7758 flush_delayed_work(&ctx->rsrc_put_work);
7759 reinit_completion(&data->done);
7760
7761 ret = io_run_task_work_sig();
7762 mutex_lock(&ctx->uring_lock);
7763 } while (ret >= 0);
7764 data->quiesce = false;
7765
7766 return ret;
7767 }
7768
7769 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7770 {
7771 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7772 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7773
7774 return &data->tags[table_idx][off];
7775 }
7776
7777 static void io_rsrc_data_free(struct io_rsrc_data *data)
7778 {
7779 size_t size = data->nr * sizeof(data->tags[0][0]);
7780
7781 if (data->tags)
7782 io_free_page_table((void **)data->tags, size);
7783 kfree(data);
7784 }
7785
7786 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7787 u64 __user *utags, unsigned nr,
7788 struct io_rsrc_data **pdata)
7789 {
7790 struct io_rsrc_data *data;
7791 int ret = -ENOMEM;
7792 unsigned i;
7793
7794 data = kzalloc(sizeof(*data), GFP_KERNEL);
7795 if (!data)
7796 return -ENOMEM;
7797 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7798 if (!data->tags) {
7799 kfree(data);
7800 return -ENOMEM;
7801 }
7802
7803 data->nr = nr;
7804 data->ctx = ctx;
7805 data->do_put = do_put;
7806 if (utags) {
7807 ret = -EFAULT;
7808 for (i = 0; i < nr; i++) {
7809 u64 *tag_slot = io_get_tag_slot(data, i);
7810
7811 if (copy_from_user(tag_slot, &utags[i],
7812 sizeof(*tag_slot)))
7813 goto fail;
7814 }
7815 }
7816
7817 atomic_set(&data->refs, 1);
7818 init_completion(&data->done);
7819 *pdata = data;
7820 return 0;
7821 fail:
7822 io_rsrc_data_free(data);
7823 return ret;
7824 }
7825
7826 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7827 {
7828 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7829 GFP_KERNEL_ACCOUNT);
7830 return !!table->files;
7831 }
7832
7833 static void io_free_file_tables(struct io_file_table *table)
7834 {
7835 kvfree(table->files);
7836 table->files = NULL;
7837 }
7838
7839 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7840 {
7841 #if defined(CONFIG_UNIX)
7842 if (ctx->ring_sock) {
7843 struct sock *sock = ctx->ring_sock->sk;
7844 struct sk_buff *skb;
7845
7846 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7847 kfree_skb(skb);
7848 }
7849 #else
7850 int i;
7851
7852 for (i = 0; i < ctx->nr_user_files; i++) {
7853 struct file *file;
7854
7855 file = io_file_from_index(ctx, i);
7856 if (file)
7857 fput(file);
7858 }
7859 #endif
7860 io_free_file_tables(&ctx->file_table);
7861 io_rsrc_data_free(ctx->file_data);
7862 ctx->file_data = NULL;
7863 ctx->nr_user_files = 0;
7864 }
7865
7866 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7867 {
7868 int ret;
7869
7870 if (!ctx->file_data)
7871 return -ENXIO;
7872 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7873 if (!ret)
7874 __io_sqe_files_unregister(ctx);
7875 return ret;
7876 }
7877
7878 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7879 __releases(&sqd->lock)
7880 {
7881 WARN_ON_ONCE(sqd->thread == current);
7882
7883 /*
7884 * Do the dance but not conditional clear_bit() because it'd race with
7885 * other threads incrementing park_pending and setting the bit.
7886 */
7887 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7888 if (atomic_dec_return(&sqd->park_pending))
7889 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7890 mutex_unlock(&sqd->lock);
7891 }
7892
7893 static void io_sq_thread_park(struct io_sq_data *sqd)
7894 __acquires(&sqd->lock)
7895 {
7896 WARN_ON_ONCE(sqd->thread == current);
7897
7898 atomic_inc(&sqd->park_pending);
7899 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7900 mutex_lock(&sqd->lock);
7901 if (sqd->thread)
7902 wake_up_process(sqd->thread);
7903 }
7904
7905 static void io_sq_thread_stop(struct io_sq_data *sqd)
7906 {
7907 WARN_ON_ONCE(sqd->thread == current);
7908 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7909
7910 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7911 mutex_lock(&sqd->lock);
7912 if (sqd->thread)
7913 wake_up_process(sqd->thread);
7914 mutex_unlock(&sqd->lock);
7915 wait_for_completion(&sqd->exited);
7916 }
7917
7918 static void io_put_sq_data(struct io_sq_data *sqd)
7919 {
7920 if (refcount_dec_and_test(&sqd->refs)) {
7921 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7922
7923 io_sq_thread_stop(sqd);
7924 kfree(sqd);
7925 }
7926 }
7927
7928 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7929 {
7930 struct io_sq_data *sqd = ctx->sq_data;
7931
7932 if (sqd) {
7933 io_sq_thread_park(sqd);
7934 list_del_init(&ctx->sqd_list);
7935 io_sqd_update_thread_idle(sqd);
7936 io_sq_thread_unpark(sqd);
7937
7938 io_put_sq_data(sqd);
7939 ctx->sq_data = NULL;
7940 }
7941 }
7942
7943 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7944 {
7945 struct io_ring_ctx *ctx_attach;
7946 struct io_sq_data *sqd;
7947 struct fd f;
7948
7949 f = fdget(p->wq_fd);
7950 if (!f.file)
7951 return ERR_PTR(-ENXIO);
7952 if (f.file->f_op != &io_uring_fops) {
7953 fdput(f);
7954 return ERR_PTR(-EINVAL);
7955 }
7956
7957 ctx_attach = f.file->private_data;
7958 sqd = ctx_attach->sq_data;
7959 if (!sqd) {
7960 fdput(f);
7961 return ERR_PTR(-EINVAL);
7962 }
7963 if (sqd->task_tgid != current->tgid) {
7964 fdput(f);
7965 return ERR_PTR(-EPERM);
7966 }
7967
7968 refcount_inc(&sqd->refs);
7969 fdput(f);
7970 return sqd;
7971 }
7972
7973 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7974 bool *attached)
7975 {
7976 struct io_sq_data *sqd;
7977
7978 *attached = false;
7979 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7980 sqd = io_attach_sq_data(p);
7981 if (!IS_ERR(sqd)) {
7982 *attached = true;
7983 return sqd;
7984 }
7985 /* fall through for EPERM case, setup new sqd/task */
7986 if (PTR_ERR(sqd) != -EPERM)
7987 return sqd;
7988 }
7989
7990 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7991 if (!sqd)
7992 return ERR_PTR(-ENOMEM);
7993
7994 atomic_set(&sqd->park_pending, 0);
7995 refcount_set(&sqd->refs, 1);
7996 INIT_LIST_HEAD(&sqd->ctx_list);
7997 mutex_init(&sqd->lock);
7998 init_waitqueue_head(&sqd->wait);
7999 init_completion(&sqd->exited);
8000 return sqd;
8001 }
8002
8003 #if defined(CONFIG_UNIX)
8004 /*
8005 * Ensure the UNIX gc is aware of our file set, so we are certain that
8006 * the io_uring can be safely unregistered on process exit, even if we have
8007 * loops in the file referencing.
8008 */
8009 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8010 {
8011 struct sock *sk = ctx->ring_sock->sk;
8012 struct scm_fp_list *fpl;
8013 struct sk_buff *skb;
8014 int i, nr_files;
8015
8016 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8017 if (!fpl)
8018 return -ENOMEM;
8019
8020 skb = alloc_skb(0, GFP_KERNEL);
8021 if (!skb) {
8022 kfree(fpl);
8023 return -ENOMEM;
8024 }
8025
8026 skb->sk = sk;
8027
8028 nr_files = 0;
8029 fpl->user = get_uid(current_user());
8030 for (i = 0; i < nr; i++) {
8031 struct file *file = io_file_from_index(ctx, i + offset);
8032
8033 if (!file)
8034 continue;
8035 fpl->fp[nr_files] = get_file(file);
8036 unix_inflight(fpl->user, fpl->fp[nr_files]);
8037 nr_files++;
8038 }
8039
8040 if (nr_files) {
8041 fpl->max = SCM_MAX_FD;
8042 fpl->count = nr_files;
8043 UNIXCB(skb).fp = fpl;
8044 skb->destructor = unix_destruct_scm;
8045 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8046 skb_queue_head(&sk->sk_receive_queue, skb);
8047
8048 for (i = 0; i < nr_files; i++)
8049 fput(fpl->fp[i]);
8050 } else {
8051 kfree_skb(skb);
8052 kfree(fpl);
8053 }
8054
8055 return 0;
8056 }
8057
8058 /*
8059 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8060 * causes regular reference counting to break down. We rely on the UNIX
8061 * garbage collection to take care of this problem for us.
8062 */
8063 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8064 {
8065 unsigned left, total;
8066 int ret = 0;
8067
8068 total = 0;
8069 left = ctx->nr_user_files;
8070 while (left) {
8071 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8072
8073 ret = __io_sqe_files_scm(ctx, this_files, total);
8074 if (ret)
8075 break;
8076 left -= this_files;
8077 total += this_files;
8078 }
8079
8080 if (!ret)
8081 return 0;
8082
8083 while (total < ctx->nr_user_files) {
8084 struct file *file = io_file_from_index(ctx, total);
8085
8086 if (file)
8087 fput(file);
8088 total++;
8089 }
8090
8091 return ret;
8092 }
8093 #else
8094 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8095 {
8096 return 0;
8097 }
8098 #endif
8099
8100 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8101 {
8102 struct file *file = prsrc->file;
8103 #if defined(CONFIG_UNIX)
8104 struct sock *sock = ctx->ring_sock->sk;
8105 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8106 struct sk_buff *skb;
8107 int i;
8108
8109 __skb_queue_head_init(&list);
8110
8111 /*
8112 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8113 * remove this entry and rearrange the file array.
8114 */
8115 skb = skb_dequeue(head);
8116 while (skb) {
8117 struct scm_fp_list *fp;
8118
8119 fp = UNIXCB(skb).fp;
8120 for (i = 0; i < fp->count; i++) {
8121 int left;
8122
8123 if (fp->fp[i] != file)
8124 continue;
8125
8126 unix_notinflight(fp->user, fp->fp[i]);
8127 left = fp->count - 1 - i;
8128 if (left) {
8129 memmove(&fp->fp[i], &fp->fp[i + 1],
8130 left * sizeof(struct file *));
8131 }
8132 fp->count--;
8133 if (!fp->count) {
8134 kfree_skb(skb);
8135 skb = NULL;
8136 } else {
8137 __skb_queue_tail(&list, skb);
8138 }
8139 fput(file);
8140 file = NULL;
8141 break;
8142 }
8143
8144 if (!file)
8145 break;
8146
8147 __skb_queue_tail(&list, skb);
8148
8149 skb = skb_dequeue(head);
8150 }
8151
8152 if (skb_peek(&list)) {
8153 spin_lock_irq(&head->lock);
8154 while ((skb = __skb_dequeue(&list)) != NULL)
8155 __skb_queue_tail(head, skb);
8156 spin_unlock_irq(&head->lock);
8157 }
8158 #else
8159 fput(file);
8160 #endif
8161 }
8162
8163 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8164 {
8165 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8166 struct io_ring_ctx *ctx = rsrc_data->ctx;
8167 struct io_rsrc_put *prsrc, *tmp;
8168
8169 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8170 list_del(&prsrc->list);
8171
8172 if (prsrc->tag) {
8173 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8174
8175 io_ring_submit_lock(ctx, lock_ring);
8176 spin_lock(&ctx->completion_lock);
8177 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8178 ctx->cq_extra++;
8179 io_commit_cqring(ctx);
8180 spin_unlock(&ctx->completion_lock);
8181 io_cqring_ev_posted(ctx);
8182 io_ring_submit_unlock(ctx, lock_ring);
8183 }
8184
8185 rsrc_data->do_put(ctx, prsrc);
8186 kfree(prsrc);
8187 }
8188
8189 io_rsrc_node_destroy(ref_node);
8190 if (atomic_dec_and_test(&rsrc_data->refs))
8191 complete(&rsrc_data->done);
8192 }
8193
8194 static void io_rsrc_put_work(struct work_struct *work)
8195 {
8196 struct io_ring_ctx *ctx;
8197 struct llist_node *node;
8198
8199 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8200 node = llist_del_all(&ctx->rsrc_put_llist);
8201
8202 while (node) {
8203 struct io_rsrc_node *ref_node;
8204 struct llist_node *next = node->next;
8205
8206 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8207 __io_rsrc_put_work(ref_node);
8208 node = next;
8209 }
8210 }
8211
8212 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8213 unsigned nr_args, u64 __user *tags)
8214 {
8215 __s32 __user *fds = (__s32 __user *) arg;
8216 struct file *file;
8217 int fd, ret;
8218 unsigned i;
8219
8220 if (ctx->file_data)
8221 return -EBUSY;
8222 if (!nr_args)
8223 return -EINVAL;
8224 if (nr_args > IORING_MAX_FIXED_FILES)
8225 return -EMFILE;
8226 if (nr_args > rlimit(RLIMIT_NOFILE))
8227 return -EMFILE;
8228 ret = io_rsrc_node_switch_start(ctx);
8229 if (ret)
8230 return ret;
8231 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8232 &ctx->file_data);
8233 if (ret)
8234 return ret;
8235
8236 ret = -ENOMEM;
8237 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8238 goto out_free;
8239
8240 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8241 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8242 ret = -EFAULT;
8243 goto out_fput;
8244 }
8245 /* allow sparse sets */
8246 if (fd == -1) {
8247 ret = -EINVAL;
8248 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8249 goto out_fput;
8250 continue;
8251 }
8252
8253 file = fget(fd);
8254 ret = -EBADF;
8255 if (unlikely(!file))
8256 goto out_fput;
8257
8258 /*
8259 * Don't allow io_uring instances to be registered. If UNIX
8260 * isn't enabled, then this causes a reference cycle and this
8261 * instance can never get freed. If UNIX is enabled we'll
8262 * handle it just fine, but there's still no point in allowing
8263 * a ring fd as it doesn't support regular read/write anyway.
8264 */
8265 if (file->f_op == &io_uring_fops) {
8266 fput(file);
8267 goto out_fput;
8268 }
8269 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8270 }
8271
8272 ret = io_sqe_files_scm(ctx);
8273 if (ret) {
8274 __io_sqe_files_unregister(ctx);
8275 return ret;
8276 }
8277
8278 io_rsrc_node_switch(ctx, NULL);
8279 return ret;
8280 out_fput:
8281 for (i = 0; i < ctx->nr_user_files; i++) {
8282 file = io_file_from_index(ctx, i);
8283 if (file)
8284 fput(file);
8285 }
8286 io_free_file_tables(&ctx->file_table);
8287 ctx->nr_user_files = 0;
8288 out_free:
8289 io_rsrc_data_free(ctx->file_data);
8290 ctx->file_data = NULL;
8291 return ret;
8292 }
8293
8294 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8295 int index)
8296 {
8297 #if defined(CONFIG_UNIX)
8298 struct sock *sock = ctx->ring_sock->sk;
8299 struct sk_buff_head *head = &sock->sk_receive_queue;
8300 struct sk_buff *skb;
8301
8302 /*
8303 * See if we can merge this file into an existing skb SCM_RIGHTS
8304 * file set. If there's no room, fall back to allocating a new skb
8305 * and filling it in.
8306 */
8307 spin_lock_irq(&head->lock);
8308 skb = skb_peek(head);
8309 if (skb) {
8310 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8311
8312 if (fpl->count < SCM_MAX_FD) {
8313 __skb_unlink(skb, head);
8314 spin_unlock_irq(&head->lock);
8315 fpl->fp[fpl->count] = get_file(file);
8316 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8317 fpl->count++;
8318 spin_lock_irq(&head->lock);
8319 __skb_queue_head(head, skb);
8320 } else {
8321 skb = NULL;
8322 }
8323 }
8324 spin_unlock_irq(&head->lock);
8325
8326 if (skb) {
8327 fput(file);
8328 return 0;
8329 }
8330
8331 return __io_sqe_files_scm(ctx, 1, index);
8332 #else
8333 return 0;
8334 #endif
8335 }
8336
8337 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8338 struct io_rsrc_node *node, void *rsrc)
8339 {
8340 struct io_rsrc_put *prsrc;
8341
8342 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8343 if (!prsrc)
8344 return -ENOMEM;
8345
8346 prsrc->tag = *io_get_tag_slot(data, idx);
8347 prsrc->rsrc = rsrc;
8348 list_add(&prsrc->list, &node->rsrc_list);
8349 return 0;
8350 }
8351
8352 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8353 unsigned int issue_flags, u32 slot_index)
8354 {
8355 struct io_ring_ctx *ctx = req->ctx;
8356 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8357 bool needs_switch = false;
8358 struct io_fixed_file *file_slot;
8359 int ret = -EBADF;
8360
8361 io_ring_submit_lock(ctx, !force_nonblock);
8362 if (file->f_op == &io_uring_fops)
8363 goto err;
8364 ret = -ENXIO;
8365 if (!ctx->file_data)
8366 goto err;
8367 ret = -EINVAL;
8368 if (slot_index >= ctx->nr_user_files)
8369 goto err;
8370
8371 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8372 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8373
8374 if (file_slot->file_ptr) {
8375 struct file *old_file;
8376
8377 ret = io_rsrc_node_switch_start(ctx);
8378 if (ret)
8379 goto err;
8380
8381 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8382 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8383 ctx->rsrc_node, old_file);
8384 if (ret)
8385 goto err;
8386 file_slot->file_ptr = 0;
8387 needs_switch = true;
8388 }
8389
8390 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8391 io_fixed_file_set(file_slot, file);
8392 ret = io_sqe_file_register(ctx, file, slot_index);
8393 if (ret) {
8394 file_slot->file_ptr = 0;
8395 goto err;
8396 }
8397
8398 ret = 0;
8399 err:
8400 if (needs_switch)
8401 io_rsrc_node_switch(ctx, ctx->file_data);
8402 io_ring_submit_unlock(ctx, !force_nonblock);
8403 if (ret)
8404 fput(file);
8405 return ret;
8406 }
8407
8408 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8409 {
8410 unsigned int offset = req->close.file_slot - 1;
8411 struct io_ring_ctx *ctx = req->ctx;
8412 struct io_fixed_file *file_slot;
8413 struct file *file;
8414 int ret, i;
8415
8416 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8417 ret = -ENXIO;
8418 if (unlikely(!ctx->file_data))
8419 goto out;
8420 ret = -EINVAL;
8421 if (offset >= ctx->nr_user_files)
8422 goto out;
8423 ret = io_rsrc_node_switch_start(ctx);
8424 if (ret)
8425 goto out;
8426
8427 i = array_index_nospec(offset, ctx->nr_user_files);
8428 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8429 ret = -EBADF;
8430 if (!file_slot->file_ptr)
8431 goto out;
8432
8433 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8434 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8435 if (ret)
8436 goto out;
8437
8438 file_slot->file_ptr = 0;
8439 io_rsrc_node_switch(ctx, ctx->file_data);
8440 ret = 0;
8441 out:
8442 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8443 return ret;
8444 }
8445
8446 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8447 struct io_uring_rsrc_update2 *up,
8448 unsigned nr_args)
8449 {
8450 u64 __user *tags = u64_to_user_ptr(up->tags);
8451 __s32 __user *fds = u64_to_user_ptr(up->data);
8452 struct io_rsrc_data *data = ctx->file_data;
8453 struct io_fixed_file *file_slot;
8454 struct file *file;
8455 int fd, i, err = 0;
8456 unsigned int done;
8457 bool needs_switch = false;
8458
8459 if (!ctx->file_data)
8460 return -ENXIO;
8461 if (up->offset + nr_args > ctx->nr_user_files)
8462 return -EINVAL;
8463
8464 for (done = 0; done < nr_args; done++) {
8465 u64 tag = 0;
8466
8467 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8468 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8469 err = -EFAULT;
8470 break;
8471 }
8472 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8473 err = -EINVAL;
8474 break;
8475 }
8476 if (fd == IORING_REGISTER_FILES_SKIP)
8477 continue;
8478
8479 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8480 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8481
8482 if (file_slot->file_ptr) {
8483 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8484 err = io_queue_rsrc_removal(data, up->offset + done,
8485 ctx->rsrc_node, file);
8486 if (err)
8487 break;
8488 file_slot->file_ptr = 0;
8489 needs_switch = true;
8490 }
8491 if (fd != -1) {
8492 file = fget(fd);
8493 if (!file) {
8494 err = -EBADF;
8495 break;
8496 }
8497 /*
8498 * Don't allow io_uring instances to be registered. If
8499 * UNIX isn't enabled, then this causes a reference
8500 * cycle and this instance can never get freed. If UNIX
8501 * is enabled we'll handle it just fine, but there's
8502 * still no point in allowing a ring fd as it doesn't
8503 * support regular read/write anyway.
8504 */
8505 if (file->f_op == &io_uring_fops) {
8506 fput(file);
8507 err = -EBADF;
8508 break;
8509 }
8510 *io_get_tag_slot(data, up->offset + done) = tag;
8511 io_fixed_file_set(file_slot, file);
8512 err = io_sqe_file_register(ctx, file, i);
8513 if (err) {
8514 file_slot->file_ptr = 0;
8515 fput(file);
8516 break;
8517 }
8518 }
8519 }
8520
8521 if (needs_switch)
8522 io_rsrc_node_switch(ctx, data);
8523 return done ? done : err;
8524 }
8525
8526 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8527 struct task_struct *task)
8528 {
8529 struct io_wq_hash *hash;
8530 struct io_wq_data data;
8531 unsigned int concurrency;
8532
8533 mutex_lock(&ctx->uring_lock);
8534 hash = ctx->hash_map;
8535 if (!hash) {
8536 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8537 if (!hash) {
8538 mutex_unlock(&ctx->uring_lock);
8539 return ERR_PTR(-ENOMEM);
8540 }
8541 refcount_set(&hash->refs, 1);
8542 init_waitqueue_head(&hash->wait);
8543 ctx->hash_map = hash;
8544 }
8545 mutex_unlock(&ctx->uring_lock);
8546
8547 data.hash = hash;
8548 data.task = task;
8549 data.free_work = io_wq_free_work;
8550 data.do_work = io_wq_submit_work;
8551
8552 /* Do QD, or 4 * CPUS, whatever is smallest */
8553 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8554
8555 return io_wq_create(concurrency, &data);
8556 }
8557
8558 static int io_uring_alloc_task_context(struct task_struct *task,
8559 struct io_ring_ctx *ctx)
8560 {
8561 struct io_uring_task *tctx;
8562 int ret;
8563
8564 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8565 if (unlikely(!tctx))
8566 return -ENOMEM;
8567
8568 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8569 if (unlikely(ret)) {
8570 kfree(tctx);
8571 return ret;
8572 }
8573
8574 tctx->io_wq = io_init_wq_offload(ctx, task);
8575 if (IS_ERR(tctx->io_wq)) {
8576 ret = PTR_ERR(tctx->io_wq);
8577 percpu_counter_destroy(&tctx->inflight);
8578 kfree(tctx);
8579 return ret;
8580 }
8581
8582 xa_init(&tctx->xa);
8583 init_waitqueue_head(&tctx->wait);
8584 atomic_set(&tctx->in_idle, 0);
8585 atomic_set(&tctx->inflight_tracked, 0);
8586 task->io_uring = tctx;
8587 spin_lock_init(&tctx->task_lock);
8588 INIT_WQ_LIST(&tctx->task_list);
8589 init_task_work(&tctx->task_work, tctx_task_work);
8590 return 0;
8591 }
8592
8593 void __io_uring_free(struct task_struct *tsk)
8594 {
8595 struct io_uring_task *tctx = tsk->io_uring;
8596
8597 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8598 WARN_ON_ONCE(tctx->io_wq);
8599 WARN_ON_ONCE(tctx->cached_refs);
8600
8601 percpu_counter_destroy(&tctx->inflight);
8602 kfree(tctx);
8603 tsk->io_uring = NULL;
8604 }
8605
8606 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8607 struct io_uring_params *p)
8608 {
8609 int ret;
8610
8611 /* Retain compatibility with failing for an invalid attach attempt */
8612 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8613 IORING_SETUP_ATTACH_WQ) {
8614 struct fd f;
8615
8616 f = fdget(p->wq_fd);
8617 if (!f.file)
8618 return -ENXIO;
8619 if (f.file->f_op != &io_uring_fops) {
8620 fdput(f);
8621 return -EINVAL;
8622 }
8623 fdput(f);
8624 }
8625 if (ctx->flags & IORING_SETUP_SQPOLL) {
8626 struct task_struct *tsk;
8627 struct io_sq_data *sqd;
8628 bool attached;
8629
8630 sqd = io_get_sq_data(p, &attached);
8631 if (IS_ERR(sqd)) {
8632 ret = PTR_ERR(sqd);
8633 goto err;
8634 }
8635
8636 ctx->sq_creds = get_current_cred();
8637 ctx->sq_data = sqd;
8638 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8639 if (!ctx->sq_thread_idle)
8640 ctx->sq_thread_idle = HZ;
8641
8642 io_sq_thread_park(sqd);
8643 list_add(&ctx->sqd_list, &sqd->ctx_list);
8644 io_sqd_update_thread_idle(sqd);
8645 /* don't attach to a dying SQPOLL thread, would be racy */
8646 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8647 io_sq_thread_unpark(sqd);
8648
8649 if (ret < 0)
8650 goto err;
8651 if (attached)
8652 return 0;
8653
8654 if (p->flags & IORING_SETUP_SQ_AFF) {
8655 int cpu = p->sq_thread_cpu;
8656
8657 ret = -EINVAL;
8658 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8659 goto err_sqpoll;
8660 sqd->sq_cpu = cpu;
8661 } else {
8662 sqd->sq_cpu = -1;
8663 }
8664
8665 sqd->task_pid = current->pid;
8666 sqd->task_tgid = current->tgid;
8667 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8668 if (IS_ERR(tsk)) {
8669 ret = PTR_ERR(tsk);
8670 goto err_sqpoll;
8671 }
8672
8673 sqd->thread = tsk;
8674 ret = io_uring_alloc_task_context(tsk, ctx);
8675 wake_up_new_task(tsk);
8676 if (ret)
8677 goto err;
8678 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8679 /* Can't have SQ_AFF without SQPOLL */
8680 ret = -EINVAL;
8681 goto err;
8682 }
8683
8684 return 0;
8685 err_sqpoll:
8686 complete(&ctx->sq_data->exited);
8687 err:
8688 io_sq_thread_finish(ctx);
8689 return ret;
8690 }
8691
8692 static inline void __io_unaccount_mem(struct user_struct *user,
8693 unsigned long nr_pages)
8694 {
8695 atomic_long_sub(nr_pages, &user->locked_vm);
8696 }
8697
8698 static inline int __io_account_mem(struct user_struct *user,
8699 unsigned long nr_pages)
8700 {
8701 unsigned long page_limit, cur_pages, new_pages;
8702
8703 /* Don't allow more pages than we can safely lock */
8704 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8705
8706 do {
8707 cur_pages = atomic_long_read(&user->locked_vm);
8708 new_pages = cur_pages + nr_pages;
8709 if (new_pages > page_limit)
8710 return -ENOMEM;
8711 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8712 new_pages) != cur_pages);
8713
8714 return 0;
8715 }
8716
8717 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8718 {
8719 if (ctx->user)
8720 __io_unaccount_mem(ctx->user, nr_pages);
8721
8722 if (ctx->mm_account)
8723 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8724 }
8725
8726 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8727 {
8728 int ret;
8729
8730 if (ctx->user) {
8731 ret = __io_account_mem(ctx->user, nr_pages);
8732 if (ret)
8733 return ret;
8734 }
8735
8736 if (ctx->mm_account)
8737 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8738
8739 return 0;
8740 }
8741
8742 static void io_mem_free(void *ptr)
8743 {
8744 struct page *page;
8745
8746 if (!ptr)
8747 return;
8748
8749 page = virt_to_head_page(ptr);
8750 if (put_page_testzero(page))
8751 free_compound_page(page);
8752 }
8753
8754 static void *io_mem_alloc(size_t size)
8755 {
8756 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8757 __GFP_NORETRY | __GFP_ACCOUNT;
8758
8759 return (void *) __get_free_pages(gfp_flags, get_order(size));
8760 }
8761
8762 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8763 size_t *sq_offset)
8764 {
8765 struct io_rings *rings;
8766 size_t off, sq_array_size;
8767
8768 off = struct_size(rings, cqes, cq_entries);
8769 if (off == SIZE_MAX)
8770 return SIZE_MAX;
8771
8772 #ifdef CONFIG_SMP
8773 off = ALIGN(off, SMP_CACHE_BYTES);
8774 if (off == 0)
8775 return SIZE_MAX;
8776 #endif
8777
8778 if (sq_offset)
8779 *sq_offset = off;
8780
8781 sq_array_size = array_size(sizeof(u32), sq_entries);
8782 if (sq_array_size == SIZE_MAX)
8783 return SIZE_MAX;
8784
8785 if (check_add_overflow(off, sq_array_size, &off))
8786 return SIZE_MAX;
8787
8788 return off;
8789 }
8790
8791 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8792 {
8793 struct io_mapped_ubuf *imu = *slot;
8794 unsigned int i;
8795
8796 if (imu != ctx->dummy_ubuf) {
8797 for (i = 0; i < imu->nr_bvecs; i++)
8798 unpin_user_page(imu->bvec[i].bv_page);
8799 if (imu->acct_pages)
8800 io_unaccount_mem(ctx, imu->acct_pages);
8801 kvfree(imu);
8802 }
8803 *slot = NULL;
8804 }
8805
8806 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8807 {
8808 io_buffer_unmap(ctx, &prsrc->buf);
8809 prsrc->buf = NULL;
8810 }
8811
8812 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8813 {
8814 unsigned int i;
8815
8816 for (i = 0; i < ctx->nr_user_bufs; i++)
8817 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8818 kfree(ctx->user_bufs);
8819 io_rsrc_data_free(ctx->buf_data);
8820 ctx->user_bufs = NULL;
8821 ctx->buf_data = NULL;
8822 ctx->nr_user_bufs = 0;
8823 }
8824
8825 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8826 {
8827 int ret;
8828
8829 if (!ctx->buf_data)
8830 return -ENXIO;
8831
8832 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8833 if (!ret)
8834 __io_sqe_buffers_unregister(ctx);
8835 return ret;
8836 }
8837
8838 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8839 void __user *arg, unsigned index)
8840 {
8841 struct iovec __user *src;
8842
8843 #ifdef CONFIG_COMPAT
8844 if (ctx->compat) {
8845 struct compat_iovec __user *ciovs;
8846 struct compat_iovec ciov;
8847
8848 ciovs = (struct compat_iovec __user *) arg;
8849 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8850 return -EFAULT;
8851
8852 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8853 dst->iov_len = ciov.iov_len;
8854 return 0;
8855 }
8856 #endif
8857 src = (struct iovec __user *) arg;
8858 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8859 return -EFAULT;
8860 return 0;
8861 }
8862
8863 /*
8864 * Not super efficient, but this is just a registration time. And we do cache
8865 * the last compound head, so generally we'll only do a full search if we don't
8866 * match that one.
8867 *
8868 * We check if the given compound head page has already been accounted, to
8869 * avoid double accounting it. This allows us to account the full size of the
8870 * page, not just the constituent pages of a huge page.
8871 */
8872 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8873 int nr_pages, struct page *hpage)
8874 {
8875 int i, j;
8876
8877 /* check current page array */
8878 for (i = 0; i < nr_pages; i++) {
8879 if (!PageCompound(pages[i]))
8880 continue;
8881 if (compound_head(pages[i]) == hpage)
8882 return true;
8883 }
8884
8885 /* check previously registered pages */
8886 for (i = 0; i < ctx->nr_user_bufs; i++) {
8887 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8888
8889 for (j = 0; j < imu->nr_bvecs; j++) {
8890 if (!PageCompound(imu->bvec[j].bv_page))
8891 continue;
8892 if (compound_head(imu->bvec[j].bv_page) == hpage)
8893 return true;
8894 }
8895 }
8896
8897 return false;
8898 }
8899
8900 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8901 int nr_pages, struct io_mapped_ubuf *imu,
8902 struct page **last_hpage)
8903 {
8904 int i, ret;
8905
8906 imu->acct_pages = 0;
8907 for (i = 0; i < nr_pages; i++) {
8908 if (!PageCompound(pages[i])) {
8909 imu->acct_pages++;
8910 } else {
8911 struct page *hpage;
8912
8913 hpage = compound_head(pages[i]);
8914 if (hpage == *last_hpage)
8915 continue;
8916 *last_hpage = hpage;
8917 if (headpage_already_acct(ctx, pages, i, hpage))
8918 continue;
8919 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8920 }
8921 }
8922
8923 if (!imu->acct_pages)
8924 return 0;
8925
8926 ret = io_account_mem(ctx, imu->acct_pages);
8927 if (ret)
8928 imu->acct_pages = 0;
8929 return ret;
8930 }
8931
8932 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8933 struct io_mapped_ubuf **pimu,
8934 struct page **last_hpage)
8935 {
8936 struct io_mapped_ubuf *imu = NULL;
8937 struct vm_area_struct **vmas = NULL;
8938 struct page **pages = NULL;
8939 unsigned long off, start, end, ubuf;
8940 size_t size;
8941 int ret, pret, nr_pages, i;
8942
8943 if (!iov->iov_base) {
8944 *pimu = ctx->dummy_ubuf;
8945 return 0;
8946 }
8947
8948 ubuf = (unsigned long) iov->iov_base;
8949 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8950 start = ubuf >> PAGE_SHIFT;
8951 nr_pages = end - start;
8952
8953 *pimu = NULL;
8954 ret = -ENOMEM;
8955
8956 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8957 if (!pages)
8958 goto done;
8959
8960 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8961 GFP_KERNEL);
8962 if (!vmas)
8963 goto done;
8964
8965 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8966 if (!imu)
8967 goto done;
8968
8969 ret = 0;
8970 mmap_read_lock(current->mm);
8971 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8972 pages, vmas);
8973 if (pret == nr_pages) {
8974 /* don't support file backed memory */
8975 for (i = 0; i < nr_pages; i++) {
8976 struct vm_area_struct *vma = vmas[i];
8977
8978 if (vma_is_shmem(vma))
8979 continue;
8980 if (vma->vm_file &&
8981 !is_file_hugepages(vma->vm_file)) {
8982 ret = -EOPNOTSUPP;
8983 break;
8984 }
8985 }
8986 } else {
8987 ret = pret < 0 ? pret : -EFAULT;
8988 }
8989 mmap_read_unlock(current->mm);
8990 if (ret) {
8991 /*
8992 * if we did partial map, or found file backed vmas,
8993 * release any pages we did get
8994 */
8995 if (pret > 0)
8996 unpin_user_pages(pages, pret);
8997 goto done;
8998 }
8999
9000 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9001 if (ret) {
9002 unpin_user_pages(pages, pret);
9003 goto done;
9004 }
9005
9006 off = ubuf & ~PAGE_MASK;
9007 size = iov->iov_len;
9008 for (i = 0; i < nr_pages; i++) {
9009 size_t vec_len;
9010
9011 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9012 imu->bvec[i].bv_page = pages[i];
9013 imu->bvec[i].bv_len = vec_len;
9014 imu->bvec[i].bv_offset = off;
9015 off = 0;
9016 size -= vec_len;
9017 }
9018 /* store original address for later verification */
9019 imu->ubuf = ubuf;
9020 imu->ubuf_end = ubuf + iov->iov_len;
9021 imu->nr_bvecs = nr_pages;
9022 *pimu = imu;
9023 ret = 0;
9024 done:
9025 if (ret)
9026 kvfree(imu);
9027 kvfree(pages);
9028 kvfree(vmas);
9029 return ret;
9030 }
9031
9032 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9033 {
9034 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9035 return ctx->user_bufs ? 0 : -ENOMEM;
9036 }
9037
9038 static int io_buffer_validate(struct iovec *iov)
9039 {
9040 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9041
9042 /*
9043 * Don't impose further limits on the size and buffer
9044 * constraints here, we'll -EINVAL later when IO is
9045 * submitted if they are wrong.
9046 */
9047 if (!iov->iov_base)
9048 return iov->iov_len ? -EFAULT : 0;
9049 if (!iov->iov_len)
9050 return -EFAULT;
9051
9052 /* arbitrary limit, but we need something */
9053 if (iov->iov_len > SZ_1G)
9054 return -EFAULT;
9055
9056 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9057 return -EOVERFLOW;
9058
9059 return 0;
9060 }
9061
9062 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9063 unsigned int nr_args, u64 __user *tags)
9064 {
9065 struct page *last_hpage = NULL;
9066 struct io_rsrc_data *data;
9067 int i, ret;
9068 struct iovec iov;
9069
9070 if (ctx->user_bufs)
9071 return -EBUSY;
9072 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9073 return -EINVAL;
9074 ret = io_rsrc_node_switch_start(ctx);
9075 if (ret)
9076 return ret;
9077 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9078 if (ret)
9079 return ret;
9080 ret = io_buffers_map_alloc(ctx, nr_args);
9081 if (ret) {
9082 io_rsrc_data_free(data);
9083 return ret;
9084 }
9085
9086 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9087 ret = io_copy_iov(ctx, &iov, arg, i);
9088 if (ret)
9089 break;
9090 ret = io_buffer_validate(&iov);
9091 if (ret)
9092 break;
9093 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9094 ret = -EINVAL;
9095 break;
9096 }
9097
9098 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9099 &last_hpage);
9100 if (ret)
9101 break;
9102 }
9103
9104 WARN_ON_ONCE(ctx->buf_data);
9105
9106 ctx->buf_data = data;
9107 if (ret)
9108 __io_sqe_buffers_unregister(ctx);
9109 else
9110 io_rsrc_node_switch(ctx, NULL);
9111 return ret;
9112 }
9113
9114 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9115 struct io_uring_rsrc_update2 *up,
9116 unsigned int nr_args)
9117 {
9118 u64 __user *tags = u64_to_user_ptr(up->tags);
9119 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9120 struct page *last_hpage = NULL;
9121 bool needs_switch = false;
9122 __u32 done;
9123 int i, err;
9124
9125 if (!ctx->buf_data)
9126 return -ENXIO;
9127 if (up->offset + nr_args > ctx->nr_user_bufs)
9128 return -EINVAL;
9129
9130 for (done = 0; done < nr_args; done++) {
9131 struct io_mapped_ubuf *imu;
9132 int offset = up->offset + done;
9133 u64 tag = 0;
9134
9135 err = io_copy_iov(ctx, &iov, iovs, done);
9136 if (err)
9137 break;
9138 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9139 err = -EFAULT;
9140 break;
9141 }
9142 err = io_buffer_validate(&iov);
9143 if (err)
9144 break;
9145 if (!iov.iov_base && tag) {
9146 err = -EINVAL;
9147 break;
9148 }
9149 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9150 if (err)
9151 break;
9152
9153 i = array_index_nospec(offset, ctx->nr_user_bufs);
9154 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9155 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9156 ctx->rsrc_node, ctx->user_bufs[i]);
9157 if (unlikely(err)) {
9158 io_buffer_unmap(ctx, &imu);
9159 break;
9160 }
9161 ctx->user_bufs[i] = NULL;
9162 needs_switch = true;
9163 }
9164
9165 ctx->user_bufs[i] = imu;
9166 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9167 }
9168
9169 if (needs_switch)
9170 io_rsrc_node_switch(ctx, ctx->buf_data);
9171 return done ? done : err;
9172 }
9173
9174 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9175 {
9176 __s32 __user *fds = arg;
9177 int fd;
9178
9179 if (ctx->cq_ev_fd)
9180 return -EBUSY;
9181
9182 if (copy_from_user(&fd, fds, sizeof(*fds)))
9183 return -EFAULT;
9184
9185 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9186 if (IS_ERR(ctx->cq_ev_fd)) {
9187 int ret = PTR_ERR(ctx->cq_ev_fd);
9188
9189 ctx->cq_ev_fd = NULL;
9190 return ret;
9191 }
9192
9193 return 0;
9194 }
9195
9196 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9197 {
9198 if (ctx->cq_ev_fd) {
9199 eventfd_ctx_put(ctx->cq_ev_fd);
9200 ctx->cq_ev_fd = NULL;
9201 return 0;
9202 }
9203
9204 return -ENXIO;
9205 }
9206
9207 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9208 {
9209 struct io_buffer *buf;
9210 unsigned long index;
9211
9212 xa_for_each(&ctx->io_buffers, index, buf) {
9213 __io_remove_buffers(ctx, buf, index, -1U);
9214 cond_resched();
9215 }
9216 }
9217
9218 static void io_req_cache_free(struct list_head *list)
9219 {
9220 struct io_kiocb *req, *nxt;
9221
9222 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9223 list_del(&req->inflight_entry);
9224 kmem_cache_free(req_cachep, req);
9225 }
9226 }
9227
9228 static void io_req_caches_free(struct io_ring_ctx *ctx)
9229 {
9230 struct io_submit_state *state = &ctx->submit_state;
9231
9232 mutex_lock(&ctx->uring_lock);
9233
9234 if (state->free_reqs) {
9235 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9236 state->free_reqs = 0;
9237 }
9238
9239 io_flush_cached_locked_reqs(ctx, state);
9240 io_req_cache_free(&state->free_list);
9241 mutex_unlock(&ctx->uring_lock);
9242 }
9243
9244 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9245 {
9246 if (data && !atomic_dec_and_test(&data->refs))
9247 wait_for_completion(&data->done);
9248 }
9249
9250 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9251 {
9252 io_sq_thread_finish(ctx);
9253
9254 if (ctx->mm_account) {
9255 mmdrop(ctx->mm_account);
9256 ctx->mm_account = NULL;
9257 }
9258
9259 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9260 io_wait_rsrc_data(ctx->buf_data);
9261 io_wait_rsrc_data(ctx->file_data);
9262
9263 mutex_lock(&ctx->uring_lock);
9264 if (ctx->buf_data)
9265 __io_sqe_buffers_unregister(ctx);
9266 if (ctx->file_data)
9267 __io_sqe_files_unregister(ctx);
9268 if (ctx->rings)
9269 __io_cqring_overflow_flush(ctx, true);
9270 mutex_unlock(&ctx->uring_lock);
9271 io_eventfd_unregister(ctx);
9272 io_destroy_buffers(ctx);
9273 if (ctx->sq_creds)
9274 put_cred(ctx->sq_creds);
9275
9276 /* there are no registered resources left, nobody uses it */
9277 if (ctx->rsrc_node)
9278 io_rsrc_node_destroy(ctx->rsrc_node);
9279 if (ctx->rsrc_backup_node)
9280 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9281 flush_delayed_work(&ctx->rsrc_put_work);
9282
9283 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9284 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9285
9286 #if defined(CONFIG_UNIX)
9287 if (ctx->ring_sock) {
9288 ctx->ring_sock->file = NULL; /* so that iput() is called */
9289 sock_release(ctx->ring_sock);
9290 }
9291 #endif
9292 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9293
9294 io_mem_free(ctx->rings);
9295 io_mem_free(ctx->sq_sqes);
9296
9297 percpu_ref_exit(&ctx->refs);
9298 free_uid(ctx->user);
9299 io_req_caches_free(ctx);
9300 if (ctx->hash_map)
9301 io_wq_put_hash(ctx->hash_map);
9302 kfree(ctx->cancel_hash);
9303 kfree(ctx->dummy_ubuf);
9304 kfree(ctx);
9305 }
9306
9307 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9308 {
9309 struct io_ring_ctx *ctx = file->private_data;
9310 __poll_t mask = 0;
9311
9312 poll_wait(file, &ctx->poll_wait, wait);
9313 /*
9314 * synchronizes with barrier from wq_has_sleeper call in
9315 * io_commit_cqring
9316 */
9317 smp_rmb();
9318 if (!io_sqring_full(ctx))
9319 mask |= EPOLLOUT | EPOLLWRNORM;
9320
9321 /*
9322 * Don't flush cqring overflow list here, just do a simple check.
9323 * Otherwise there could possible be ABBA deadlock:
9324 * CPU0 CPU1
9325 * ---- ----
9326 * lock(&ctx->uring_lock);
9327 * lock(&ep->mtx);
9328 * lock(&ctx->uring_lock);
9329 * lock(&ep->mtx);
9330 *
9331 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9332 * pushs them to do the flush.
9333 */
9334 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9335 mask |= EPOLLIN | EPOLLRDNORM;
9336
9337 return mask;
9338 }
9339
9340 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9341 {
9342 const struct cred *creds;
9343
9344 creds = xa_erase(&ctx->personalities, id);
9345 if (creds) {
9346 put_cred(creds);
9347 return 0;
9348 }
9349
9350 return -EINVAL;
9351 }
9352
9353 struct io_tctx_exit {
9354 struct callback_head task_work;
9355 struct completion completion;
9356 struct io_ring_ctx *ctx;
9357 };
9358
9359 static void io_tctx_exit_cb(struct callback_head *cb)
9360 {
9361 struct io_uring_task *tctx = current->io_uring;
9362 struct io_tctx_exit *work;
9363
9364 work = container_of(cb, struct io_tctx_exit, task_work);
9365 /*
9366 * When @in_idle, we're in cancellation and it's racy to remove the
9367 * node. It'll be removed by the end of cancellation, just ignore it.
9368 */
9369 if (!atomic_read(&tctx->in_idle))
9370 io_uring_del_tctx_node((unsigned long)work->ctx);
9371 complete(&work->completion);
9372 }
9373
9374 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9375 {
9376 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9377
9378 return req->ctx == data;
9379 }
9380
9381 static void io_ring_exit_work(struct work_struct *work)
9382 {
9383 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9384 unsigned long timeout = jiffies + HZ * 60 * 5;
9385 unsigned long interval = HZ / 20;
9386 struct io_tctx_exit exit;
9387 struct io_tctx_node *node;
9388 int ret;
9389
9390 /*
9391 * If we're doing polled IO and end up having requests being
9392 * submitted async (out-of-line), then completions can come in while
9393 * we're waiting for refs to drop. We need to reap these manually,
9394 * as nobody else will be looking for them.
9395 */
9396 do {
9397 io_uring_try_cancel_requests(ctx, NULL, true);
9398 if (ctx->sq_data) {
9399 struct io_sq_data *sqd = ctx->sq_data;
9400 struct task_struct *tsk;
9401
9402 io_sq_thread_park(sqd);
9403 tsk = sqd->thread;
9404 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9405 io_wq_cancel_cb(tsk->io_uring->io_wq,
9406 io_cancel_ctx_cb, ctx, true);
9407 io_sq_thread_unpark(sqd);
9408 }
9409
9410 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9411 /* there is little hope left, don't run it too often */
9412 interval = HZ * 60;
9413 }
9414 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9415
9416 init_completion(&exit.completion);
9417 init_task_work(&exit.task_work, io_tctx_exit_cb);
9418 exit.ctx = ctx;
9419 /*
9420 * Some may use context even when all refs and requests have been put,
9421 * and they are free to do so while still holding uring_lock or
9422 * completion_lock, see io_req_task_submit(). Apart from other work,
9423 * this lock/unlock section also waits them to finish.
9424 */
9425 mutex_lock(&ctx->uring_lock);
9426 while (!list_empty(&ctx->tctx_list)) {
9427 WARN_ON_ONCE(time_after(jiffies, timeout));
9428
9429 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9430 ctx_node);
9431 /* don't spin on a single task if cancellation failed */
9432 list_rotate_left(&ctx->tctx_list);
9433 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9434 if (WARN_ON_ONCE(ret))
9435 continue;
9436 wake_up_process(node->task);
9437
9438 mutex_unlock(&ctx->uring_lock);
9439 wait_for_completion(&exit.completion);
9440 mutex_lock(&ctx->uring_lock);
9441 }
9442 mutex_unlock(&ctx->uring_lock);
9443 spin_lock(&ctx->completion_lock);
9444 spin_unlock(&ctx->completion_lock);
9445
9446 io_ring_ctx_free(ctx);
9447 }
9448
9449 /* Returns true if we found and killed one or more timeouts */
9450 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9451 bool cancel_all)
9452 {
9453 struct io_kiocb *req, *tmp;
9454 int canceled = 0;
9455
9456 spin_lock(&ctx->completion_lock);
9457 spin_lock_irq(&ctx->timeout_lock);
9458 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9459 if (io_match_task(req, tsk, cancel_all)) {
9460 io_kill_timeout(req, -ECANCELED);
9461 canceled++;
9462 }
9463 }
9464 spin_unlock_irq(&ctx->timeout_lock);
9465 if (canceled != 0)
9466 io_commit_cqring(ctx);
9467 spin_unlock(&ctx->completion_lock);
9468 if (canceled != 0)
9469 io_cqring_ev_posted(ctx);
9470 return canceled != 0;
9471 }
9472
9473 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9474 {
9475 unsigned long index;
9476 struct creds *creds;
9477
9478 mutex_lock(&ctx->uring_lock);
9479 percpu_ref_kill(&ctx->refs);
9480 if (ctx->rings)
9481 __io_cqring_overflow_flush(ctx, true);
9482 xa_for_each(&ctx->personalities, index, creds)
9483 io_unregister_personality(ctx, index);
9484 mutex_unlock(&ctx->uring_lock);
9485
9486 io_kill_timeouts(ctx, NULL, true);
9487 io_poll_remove_all(ctx, NULL, true);
9488
9489 /* if we failed setting up the ctx, we might not have any rings */
9490 io_iopoll_try_reap_events(ctx);
9491
9492 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9493 /*
9494 * Use system_unbound_wq to avoid spawning tons of event kworkers
9495 * if we're exiting a ton of rings at the same time. It just adds
9496 * noise and overhead, there's no discernable change in runtime
9497 * over using system_wq.
9498 */
9499 queue_work(system_unbound_wq, &ctx->exit_work);
9500 }
9501
9502 static int io_uring_release(struct inode *inode, struct file *file)
9503 {
9504 struct io_ring_ctx *ctx = file->private_data;
9505
9506 file->private_data = NULL;
9507 io_ring_ctx_wait_and_kill(ctx);
9508 return 0;
9509 }
9510
9511 struct io_task_cancel {
9512 struct task_struct *task;
9513 bool all;
9514 };
9515
9516 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9517 {
9518 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9519 struct io_task_cancel *cancel = data;
9520 bool ret;
9521
9522 if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
9523 struct io_ring_ctx *ctx = req->ctx;
9524
9525 /* protect against races with linked timeouts */
9526 spin_lock(&ctx->completion_lock);
9527 ret = io_match_task(req, cancel->task, cancel->all);
9528 spin_unlock(&ctx->completion_lock);
9529 } else {
9530 ret = io_match_task(req, cancel->task, cancel->all);
9531 }
9532 return ret;
9533 }
9534
9535 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9536 struct task_struct *task, bool cancel_all)
9537 {
9538 struct io_defer_entry *de;
9539 LIST_HEAD(list);
9540
9541 spin_lock(&ctx->completion_lock);
9542 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9543 if (io_match_task(de->req, task, cancel_all)) {
9544 list_cut_position(&list, &ctx->defer_list, &de->list);
9545 break;
9546 }
9547 }
9548 spin_unlock(&ctx->completion_lock);
9549 if (list_empty(&list))
9550 return false;
9551
9552 while (!list_empty(&list)) {
9553 de = list_first_entry(&list, struct io_defer_entry, list);
9554 list_del_init(&de->list);
9555 io_req_complete_failed(de->req, -ECANCELED);
9556 kfree(de);
9557 }
9558 return true;
9559 }
9560
9561 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9562 {
9563 struct io_tctx_node *node;
9564 enum io_wq_cancel cret;
9565 bool ret = false;
9566
9567 mutex_lock(&ctx->uring_lock);
9568 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9569 struct io_uring_task *tctx = node->task->io_uring;
9570
9571 /*
9572 * io_wq will stay alive while we hold uring_lock, because it's
9573 * killed after ctx nodes, which requires to take the lock.
9574 */
9575 if (!tctx || !tctx->io_wq)
9576 continue;
9577 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9578 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9579 }
9580 mutex_unlock(&ctx->uring_lock);
9581
9582 return ret;
9583 }
9584
9585 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9586 struct task_struct *task,
9587 bool cancel_all)
9588 {
9589 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9590 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9591
9592 while (1) {
9593 enum io_wq_cancel cret;
9594 bool ret = false;
9595
9596 if (!task) {
9597 ret |= io_uring_try_cancel_iowq(ctx);
9598 } else if (tctx && tctx->io_wq) {
9599 /*
9600 * Cancels requests of all rings, not only @ctx, but
9601 * it's fine as the task is in exit/exec.
9602 */
9603 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9604 &cancel, true);
9605 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9606 }
9607
9608 /* SQPOLL thread does its own polling */
9609 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9610 (ctx->sq_data && ctx->sq_data->thread == current)) {
9611 while (!list_empty_careful(&ctx->iopoll_list)) {
9612 io_iopoll_try_reap_events(ctx);
9613 ret = true;
9614 }
9615 }
9616
9617 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9618 ret |= io_poll_remove_all(ctx, task, cancel_all);
9619 ret |= io_kill_timeouts(ctx, task, cancel_all);
9620 if (task)
9621 ret |= io_run_task_work();
9622 if (!ret)
9623 break;
9624 cond_resched();
9625 }
9626 }
9627
9628 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9629 {
9630 struct io_uring_task *tctx = current->io_uring;
9631 struct io_tctx_node *node;
9632 int ret;
9633
9634 if (unlikely(!tctx)) {
9635 ret = io_uring_alloc_task_context(current, ctx);
9636 if (unlikely(ret))
9637 return ret;
9638
9639 tctx = current->io_uring;
9640 if (ctx->iowq_limits_set) {
9641 unsigned int limits[2] = { ctx->iowq_limits[0],
9642 ctx->iowq_limits[1], };
9643
9644 ret = io_wq_max_workers(tctx->io_wq, limits);
9645 if (ret)
9646 return ret;
9647 }
9648 }
9649 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9650 node = kmalloc(sizeof(*node), GFP_KERNEL);
9651 if (!node)
9652 return -ENOMEM;
9653 node->ctx = ctx;
9654 node->task = current;
9655
9656 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9657 node, GFP_KERNEL));
9658 if (ret) {
9659 kfree(node);
9660 return ret;
9661 }
9662
9663 mutex_lock(&ctx->uring_lock);
9664 list_add(&node->ctx_node, &ctx->tctx_list);
9665 mutex_unlock(&ctx->uring_lock);
9666 }
9667 tctx->last = ctx;
9668 return 0;
9669 }
9670
9671 /*
9672 * Note that this task has used io_uring. We use it for cancelation purposes.
9673 */
9674 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9675 {
9676 struct io_uring_task *tctx = current->io_uring;
9677
9678 if (likely(tctx && tctx->last == ctx))
9679 return 0;
9680 return __io_uring_add_tctx_node(ctx);
9681 }
9682
9683 /*
9684 * Remove this io_uring_file -> task mapping.
9685 */
9686 static void io_uring_del_tctx_node(unsigned long index)
9687 {
9688 struct io_uring_task *tctx = current->io_uring;
9689 struct io_tctx_node *node;
9690
9691 if (!tctx)
9692 return;
9693 node = xa_erase(&tctx->xa, index);
9694 if (!node)
9695 return;
9696
9697 WARN_ON_ONCE(current != node->task);
9698 WARN_ON_ONCE(list_empty(&node->ctx_node));
9699
9700 mutex_lock(&node->ctx->uring_lock);
9701 list_del(&node->ctx_node);
9702 mutex_unlock(&node->ctx->uring_lock);
9703
9704 if (tctx->last == node->ctx)
9705 tctx->last = NULL;
9706 kfree(node);
9707 }
9708
9709 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9710 {
9711 struct io_wq *wq = tctx->io_wq;
9712 struct io_tctx_node *node;
9713 unsigned long index;
9714
9715 xa_for_each(&tctx->xa, index, node) {
9716 io_uring_del_tctx_node(index);
9717 cond_resched();
9718 }
9719 if (wq) {
9720 /*
9721 * Must be after io_uring_del_task_file() (removes nodes under
9722 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9723 */
9724 io_wq_put_and_exit(wq);
9725 tctx->io_wq = NULL;
9726 }
9727 }
9728
9729 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9730 {
9731 if (tracked)
9732 return atomic_read(&tctx->inflight_tracked);
9733 return percpu_counter_sum(&tctx->inflight);
9734 }
9735
9736 static void io_uring_drop_tctx_refs(struct task_struct *task)
9737 {
9738 struct io_uring_task *tctx = task->io_uring;
9739 unsigned int refs = tctx->cached_refs;
9740
9741 if (refs) {
9742 tctx->cached_refs = 0;
9743 percpu_counter_sub(&tctx->inflight, refs);
9744 put_task_struct_many(task, refs);
9745 }
9746 }
9747
9748 /*
9749 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9750 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9751 */
9752 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9753 {
9754 struct io_uring_task *tctx = current->io_uring;
9755 struct io_ring_ctx *ctx;
9756 s64 inflight;
9757 DEFINE_WAIT(wait);
9758
9759 WARN_ON_ONCE(sqd && sqd->thread != current);
9760
9761 if (!current->io_uring)
9762 return;
9763 if (tctx->io_wq)
9764 io_wq_exit_start(tctx->io_wq);
9765
9766 atomic_inc(&tctx->in_idle);
9767 do {
9768 io_uring_drop_tctx_refs(current);
9769 /* read completions before cancelations */
9770 inflight = tctx_inflight(tctx, !cancel_all);
9771 if (!inflight)
9772 break;
9773
9774 if (!sqd) {
9775 struct io_tctx_node *node;
9776 unsigned long index;
9777
9778 xa_for_each(&tctx->xa, index, node) {
9779 /* sqpoll task will cancel all its requests */
9780 if (node->ctx->sq_data)
9781 continue;
9782 io_uring_try_cancel_requests(node->ctx, current,
9783 cancel_all);
9784 }
9785 } else {
9786 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9787 io_uring_try_cancel_requests(ctx, current,
9788 cancel_all);
9789 }
9790
9791 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9792 io_uring_drop_tctx_refs(current);
9793 /*
9794 * If we've seen completions, retry without waiting. This
9795 * avoids a race where a completion comes in before we did
9796 * prepare_to_wait().
9797 */
9798 if (inflight == tctx_inflight(tctx, !cancel_all))
9799 schedule();
9800 finish_wait(&tctx->wait, &wait);
9801 } while (1);
9802 atomic_dec(&tctx->in_idle);
9803
9804 io_uring_clean_tctx(tctx);
9805 if (cancel_all) {
9806 /* for exec all current's requests should be gone, kill tctx */
9807 __io_uring_free(current);
9808 }
9809 }
9810
9811 void __io_uring_cancel(bool cancel_all)
9812 {
9813 io_uring_cancel_generic(cancel_all, NULL);
9814 }
9815
9816 static void *io_uring_validate_mmap_request(struct file *file,
9817 loff_t pgoff, size_t sz)
9818 {
9819 struct io_ring_ctx *ctx = file->private_data;
9820 loff_t offset = pgoff << PAGE_SHIFT;
9821 struct page *page;
9822 void *ptr;
9823
9824 switch (offset) {
9825 case IORING_OFF_SQ_RING:
9826 case IORING_OFF_CQ_RING:
9827 ptr = ctx->rings;
9828 break;
9829 case IORING_OFF_SQES:
9830 ptr = ctx->sq_sqes;
9831 break;
9832 default:
9833 return ERR_PTR(-EINVAL);
9834 }
9835
9836 page = virt_to_head_page(ptr);
9837 if (sz > page_size(page))
9838 return ERR_PTR(-EINVAL);
9839
9840 return ptr;
9841 }
9842
9843 #ifdef CONFIG_MMU
9844
9845 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9846 {
9847 size_t sz = vma->vm_end - vma->vm_start;
9848 unsigned long pfn;
9849 void *ptr;
9850
9851 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9852 if (IS_ERR(ptr))
9853 return PTR_ERR(ptr);
9854
9855 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9856 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9857 }
9858
9859 #else /* !CONFIG_MMU */
9860
9861 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9862 {
9863 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9864 }
9865
9866 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9867 {
9868 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9869 }
9870
9871 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9872 unsigned long addr, unsigned long len,
9873 unsigned long pgoff, unsigned long flags)
9874 {
9875 void *ptr;
9876
9877 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9878 if (IS_ERR(ptr))
9879 return PTR_ERR(ptr);
9880
9881 return (unsigned long) ptr;
9882 }
9883
9884 #endif /* !CONFIG_MMU */
9885
9886 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9887 {
9888 DEFINE_WAIT(wait);
9889
9890 do {
9891 if (!io_sqring_full(ctx))
9892 break;
9893 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9894
9895 if (!io_sqring_full(ctx))
9896 break;
9897 schedule();
9898 } while (!signal_pending(current));
9899
9900 finish_wait(&ctx->sqo_sq_wait, &wait);
9901 return 0;
9902 }
9903
9904 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9905 struct __kernel_timespec __user **ts,
9906 const sigset_t __user **sig)
9907 {
9908 struct io_uring_getevents_arg arg;
9909
9910 /*
9911 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9912 * is just a pointer to the sigset_t.
9913 */
9914 if (!(flags & IORING_ENTER_EXT_ARG)) {
9915 *sig = (const sigset_t __user *) argp;
9916 *ts = NULL;
9917 return 0;
9918 }
9919
9920 /*
9921 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9922 * timespec and sigset_t pointers if good.
9923 */
9924 if (*argsz != sizeof(arg))
9925 return -EINVAL;
9926 if (copy_from_user(&arg, argp, sizeof(arg)))
9927 return -EFAULT;
9928 *sig = u64_to_user_ptr(arg.sigmask);
9929 *argsz = arg.sigmask_sz;
9930 *ts = u64_to_user_ptr(arg.ts);
9931 return 0;
9932 }
9933
9934 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9935 u32, min_complete, u32, flags, const void __user *, argp,
9936 size_t, argsz)
9937 {
9938 struct io_ring_ctx *ctx;
9939 int submitted = 0;
9940 struct fd f;
9941 long ret;
9942
9943 io_run_task_work();
9944
9945 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9946 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9947 return -EINVAL;
9948
9949 f = fdget(fd);
9950 if (unlikely(!f.file))
9951 return -EBADF;
9952
9953 ret = -EOPNOTSUPP;
9954 if (unlikely(f.file->f_op != &io_uring_fops))
9955 goto out_fput;
9956
9957 ret = -ENXIO;
9958 ctx = f.file->private_data;
9959 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9960 goto out_fput;
9961
9962 ret = -EBADFD;
9963 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9964 goto out;
9965
9966 /*
9967 * For SQ polling, the thread will do all submissions and completions.
9968 * Just return the requested submit count, and wake the thread if
9969 * we were asked to.
9970 */
9971 ret = 0;
9972 if (ctx->flags & IORING_SETUP_SQPOLL) {
9973 io_cqring_overflow_flush(ctx);
9974
9975 if (unlikely(ctx->sq_data->thread == NULL)) {
9976 ret = -EOWNERDEAD;
9977 goto out;
9978 }
9979 if (flags & IORING_ENTER_SQ_WAKEUP)
9980 wake_up(&ctx->sq_data->wait);
9981 if (flags & IORING_ENTER_SQ_WAIT) {
9982 ret = io_sqpoll_wait_sq(ctx);
9983 if (ret)
9984 goto out;
9985 }
9986 submitted = to_submit;
9987 } else if (to_submit) {
9988 ret = io_uring_add_tctx_node(ctx);
9989 if (unlikely(ret))
9990 goto out;
9991 mutex_lock(&ctx->uring_lock);
9992 submitted = io_submit_sqes(ctx, to_submit);
9993 mutex_unlock(&ctx->uring_lock);
9994
9995 if (submitted != to_submit)
9996 goto out;
9997 }
9998 if (flags & IORING_ENTER_GETEVENTS) {
9999 const sigset_t __user *sig;
10000 struct __kernel_timespec __user *ts;
10001
10002 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10003 if (unlikely(ret))
10004 goto out;
10005
10006 min_complete = min(min_complete, ctx->cq_entries);
10007
10008 /*
10009 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10010 * space applications don't need to do io completion events
10011 * polling again, they can rely on io_sq_thread to do polling
10012 * work, which can reduce cpu usage and uring_lock contention.
10013 */
10014 if (ctx->flags & IORING_SETUP_IOPOLL &&
10015 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10016 ret = io_iopoll_check(ctx, min_complete);
10017 } else {
10018 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10019 }
10020 }
10021
10022 out:
10023 percpu_ref_put(&ctx->refs);
10024 out_fput:
10025 fdput(f);
10026 return submitted ? submitted : ret;
10027 }
10028
10029 #ifdef CONFIG_PROC_FS
10030 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10031 const struct cred *cred)
10032 {
10033 struct user_namespace *uns = seq_user_ns(m);
10034 struct group_info *gi;
10035 kernel_cap_t cap;
10036 unsigned __capi;
10037 int g;
10038
10039 seq_printf(m, "%5d\n", id);
10040 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10041 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10042 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10043 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10044 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10045 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10046 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10047 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10048 seq_puts(m, "\n\tGroups:\t");
10049 gi = cred->group_info;
10050 for (g = 0; g < gi->ngroups; g++) {
10051 seq_put_decimal_ull(m, g ? " " : "",
10052 from_kgid_munged(uns, gi->gid[g]));
10053 }
10054 seq_puts(m, "\n\tCapEff:\t");
10055 cap = cred->cap_effective;
10056 CAP_FOR_EACH_U32(__capi)
10057 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10058 seq_putc(m, '\n');
10059 return 0;
10060 }
10061
10062 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10063 {
10064 struct io_sq_data *sq = NULL;
10065 bool has_lock;
10066 int i;
10067
10068 /*
10069 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10070 * since fdinfo case grabs it in the opposite direction of normal use
10071 * cases. If we fail to get the lock, we just don't iterate any
10072 * structures that could be going away outside the io_uring mutex.
10073 */
10074 has_lock = mutex_trylock(&ctx->uring_lock);
10075
10076 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10077 sq = ctx->sq_data;
10078 if (!sq->thread)
10079 sq = NULL;
10080 }
10081
10082 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10083 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10084 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10085 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10086 struct file *f = io_file_from_index(ctx, i);
10087
10088 if (f)
10089 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10090 else
10091 seq_printf(m, "%5u: <none>\n", i);
10092 }
10093 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10094 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10095 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10096 unsigned int len = buf->ubuf_end - buf->ubuf;
10097
10098 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10099 }
10100 if (has_lock && !xa_empty(&ctx->personalities)) {
10101 unsigned long index;
10102 const struct cred *cred;
10103
10104 seq_printf(m, "Personalities:\n");
10105 xa_for_each(&ctx->personalities, index, cred)
10106 io_uring_show_cred(m, index, cred);
10107 }
10108 seq_printf(m, "PollList:\n");
10109 spin_lock(&ctx->completion_lock);
10110 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10111 struct hlist_head *list = &ctx->cancel_hash[i];
10112 struct io_kiocb *req;
10113
10114 hlist_for_each_entry(req, list, hash_node)
10115 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10116 req->task->task_works != NULL);
10117 }
10118 spin_unlock(&ctx->completion_lock);
10119 if (has_lock)
10120 mutex_unlock(&ctx->uring_lock);
10121 }
10122
10123 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10124 {
10125 struct io_ring_ctx *ctx = f->private_data;
10126
10127 if (percpu_ref_tryget(&ctx->refs)) {
10128 __io_uring_show_fdinfo(ctx, m);
10129 percpu_ref_put(&ctx->refs);
10130 }
10131 }
10132 #endif
10133
10134 static const struct file_operations io_uring_fops = {
10135 .release = io_uring_release,
10136 .mmap = io_uring_mmap,
10137 #ifndef CONFIG_MMU
10138 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10139 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10140 #endif
10141 .poll = io_uring_poll,
10142 #ifdef CONFIG_PROC_FS
10143 .show_fdinfo = io_uring_show_fdinfo,
10144 #endif
10145 };
10146
10147 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10148 struct io_uring_params *p)
10149 {
10150 struct io_rings *rings;
10151 size_t size, sq_array_offset;
10152
10153 /* make sure these are sane, as we already accounted them */
10154 ctx->sq_entries = p->sq_entries;
10155 ctx->cq_entries = p->cq_entries;
10156
10157 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10158 if (size == SIZE_MAX)
10159 return -EOVERFLOW;
10160
10161 rings = io_mem_alloc(size);
10162 if (!rings)
10163 return -ENOMEM;
10164
10165 ctx->rings = rings;
10166 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10167 rings->sq_ring_mask = p->sq_entries - 1;
10168 rings->cq_ring_mask = p->cq_entries - 1;
10169 rings->sq_ring_entries = p->sq_entries;
10170 rings->cq_ring_entries = p->cq_entries;
10171
10172 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10173 if (size == SIZE_MAX) {
10174 io_mem_free(ctx->rings);
10175 ctx->rings = NULL;
10176 return -EOVERFLOW;
10177 }
10178
10179 ctx->sq_sqes = io_mem_alloc(size);
10180 if (!ctx->sq_sqes) {
10181 io_mem_free(ctx->rings);
10182 ctx->rings = NULL;
10183 return -ENOMEM;
10184 }
10185
10186 return 0;
10187 }
10188
10189 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10190 {
10191 int ret, fd;
10192
10193 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10194 if (fd < 0)
10195 return fd;
10196
10197 ret = io_uring_add_tctx_node(ctx);
10198 if (ret) {
10199 put_unused_fd(fd);
10200 return ret;
10201 }
10202 fd_install(fd, file);
10203 return fd;
10204 }
10205
10206 /*
10207 * Allocate an anonymous fd, this is what constitutes the application
10208 * visible backing of an io_uring instance. The application mmaps this
10209 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10210 * we have to tie this fd to a socket for file garbage collection purposes.
10211 */
10212 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10213 {
10214 struct file *file;
10215 #if defined(CONFIG_UNIX)
10216 int ret;
10217
10218 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10219 &ctx->ring_sock);
10220 if (ret)
10221 return ERR_PTR(ret);
10222 #endif
10223
10224 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10225 O_RDWR | O_CLOEXEC);
10226 #if defined(CONFIG_UNIX)
10227 if (IS_ERR(file)) {
10228 sock_release(ctx->ring_sock);
10229 ctx->ring_sock = NULL;
10230 } else {
10231 ctx->ring_sock->file = file;
10232 }
10233 #endif
10234 return file;
10235 }
10236
10237 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10238 struct io_uring_params __user *params)
10239 {
10240 struct io_ring_ctx *ctx;
10241 struct file *file;
10242 int ret;
10243
10244 if (!entries)
10245 return -EINVAL;
10246 if (entries > IORING_MAX_ENTRIES) {
10247 if (!(p->flags & IORING_SETUP_CLAMP))
10248 return -EINVAL;
10249 entries = IORING_MAX_ENTRIES;
10250 }
10251
10252 /*
10253 * Use twice as many entries for the CQ ring. It's possible for the
10254 * application to drive a higher depth than the size of the SQ ring,
10255 * since the sqes are only used at submission time. This allows for
10256 * some flexibility in overcommitting a bit. If the application has
10257 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10258 * of CQ ring entries manually.
10259 */
10260 p->sq_entries = roundup_pow_of_two(entries);
10261 if (p->flags & IORING_SETUP_CQSIZE) {
10262 /*
10263 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10264 * to a power-of-two, if it isn't already. We do NOT impose
10265 * any cq vs sq ring sizing.
10266 */
10267 if (!p->cq_entries)
10268 return -EINVAL;
10269 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10270 if (!(p->flags & IORING_SETUP_CLAMP))
10271 return -EINVAL;
10272 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10273 }
10274 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10275 if (p->cq_entries < p->sq_entries)
10276 return -EINVAL;
10277 } else {
10278 p->cq_entries = 2 * p->sq_entries;
10279 }
10280
10281 ctx = io_ring_ctx_alloc(p);
10282 if (!ctx)
10283 return -ENOMEM;
10284 ctx->compat = in_compat_syscall();
10285 if (!capable(CAP_IPC_LOCK))
10286 ctx->user = get_uid(current_user());
10287
10288 /*
10289 * This is just grabbed for accounting purposes. When a process exits,
10290 * the mm is exited and dropped before the files, hence we need to hang
10291 * on to this mm purely for the purposes of being able to unaccount
10292 * memory (locked/pinned vm). It's not used for anything else.
10293 */
10294 mmgrab(current->mm);
10295 ctx->mm_account = current->mm;
10296
10297 ret = io_allocate_scq_urings(ctx, p);
10298 if (ret)
10299 goto err;
10300
10301 ret = io_sq_offload_create(ctx, p);
10302 if (ret)
10303 goto err;
10304 /* always set a rsrc node */
10305 ret = io_rsrc_node_switch_start(ctx);
10306 if (ret)
10307 goto err;
10308 io_rsrc_node_switch(ctx, NULL);
10309
10310 memset(&p->sq_off, 0, sizeof(p->sq_off));
10311 p->sq_off.head = offsetof(struct io_rings, sq.head);
10312 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10313 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10314 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10315 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10316 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10317 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10318
10319 memset(&p->cq_off, 0, sizeof(p->cq_off));
10320 p->cq_off.head = offsetof(struct io_rings, cq.head);
10321 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10322 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10323 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10324 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10325 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10326 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10327
10328 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10329 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10330 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10331 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10332 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10333 IORING_FEAT_RSRC_TAGS;
10334
10335 if (copy_to_user(params, p, sizeof(*p))) {
10336 ret = -EFAULT;
10337 goto err;
10338 }
10339
10340 file = io_uring_get_file(ctx);
10341 if (IS_ERR(file)) {
10342 ret = PTR_ERR(file);
10343 goto err;
10344 }
10345
10346 /*
10347 * Install ring fd as the very last thing, so we don't risk someone
10348 * having closed it before we finish setup
10349 */
10350 ret = io_uring_install_fd(ctx, file);
10351 if (ret < 0) {
10352 /* fput will clean it up */
10353 fput(file);
10354 return ret;
10355 }
10356
10357 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10358 return ret;
10359 err:
10360 io_ring_ctx_wait_and_kill(ctx);
10361 return ret;
10362 }
10363
10364 /*
10365 * Sets up an aio uring context, and returns the fd. Applications asks for a
10366 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10367 * params structure passed in.
10368 */
10369 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10370 {
10371 struct io_uring_params p;
10372 int i;
10373
10374 if (copy_from_user(&p, params, sizeof(p)))
10375 return -EFAULT;
10376 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10377 if (p.resv[i])
10378 return -EINVAL;
10379 }
10380
10381 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10382 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10383 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10384 IORING_SETUP_R_DISABLED))
10385 return -EINVAL;
10386
10387 return io_uring_create(entries, &p, params);
10388 }
10389
10390 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10391 struct io_uring_params __user *, params)
10392 {
10393 return io_uring_setup(entries, params);
10394 }
10395
10396 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10397 {
10398 struct io_uring_probe *p;
10399 size_t size;
10400 int i, ret;
10401
10402 size = struct_size(p, ops, nr_args);
10403 if (size == SIZE_MAX)
10404 return -EOVERFLOW;
10405 p = kzalloc(size, GFP_KERNEL);
10406 if (!p)
10407 return -ENOMEM;
10408
10409 ret = -EFAULT;
10410 if (copy_from_user(p, arg, size))
10411 goto out;
10412 ret = -EINVAL;
10413 if (memchr_inv(p, 0, size))
10414 goto out;
10415
10416 p->last_op = IORING_OP_LAST - 1;
10417 if (nr_args > IORING_OP_LAST)
10418 nr_args = IORING_OP_LAST;
10419
10420 for (i = 0; i < nr_args; i++) {
10421 p->ops[i].op = i;
10422 if (!io_op_defs[i].not_supported)
10423 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10424 }
10425 p->ops_len = i;
10426
10427 ret = 0;
10428 if (copy_to_user(arg, p, size))
10429 ret = -EFAULT;
10430 out:
10431 kfree(p);
10432 return ret;
10433 }
10434
10435 static int io_register_personality(struct io_ring_ctx *ctx)
10436 {
10437 const struct cred *creds;
10438 u32 id;
10439 int ret;
10440
10441 creds = get_current_cred();
10442
10443 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10444 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10445 if (ret < 0) {
10446 put_cred(creds);
10447 return ret;
10448 }
10449 return id;
10450 }
10451
10452 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10453 unsigned int nr_args)
10454 {
10455 struct io_uring_restriction *res;
10456 size_t size;
10457 int i, ret;
10458
10459 /* Restrictions allowed only if rings started disabled */
10460 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10461 return -EBADFD;
10462
10463 /* We allow only a single restrictions registration */
10464 if (ctx->restrictions.registered)
10465 return -EBUSY;
10466
10467 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10468 return -EINVAL;
10469
10470 size = array_size(nr_args, sizeof(*res));
10471 if (size == SIZE_MAX)
10472 return -EOVERFLOW;
10473
10474 res = memdup_user(arg, size);
10475 if (IS_ERR(res))
10476 return PTR_ERR(res);
10477
10478 ret = 0;
10479
10480 for (i = 0; i < nr_args; i++) {
10481 switch (res[i].opcode) {
10482 case IORING_RESTRICTION_REGISTER_OP:
10483 if (res[i].register_op >= IORING_REGISTER_LAST) {
10484 ret = -EINVAL;
10485 goto out;
10486 }
10487
10488 __set_bit(res[i].register_op,
10489 ctx->restrictions.register_op);
10490 break;
10491 case IORING_RESTRICTION_SQE_OP:
10492 if (res[i].sqe_op >= IORING_OP_LAST) {
10493 ret = -EINVAL;
10494 goto out;
10495 }
10496
10497 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10498 break;
10499 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10500 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10501 break;
10502 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10503 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10504 break;
10505 default:
10506 ret = -EINVAL;
10507 goto out;
10508 }
10509 }
10510
10511 out:
10512 /* Reset all restrictions if an error happened */
10513 if (ret != 0)
10514 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10515 else
10516 ctx->restrictions.registered = true;
10517
10518 kfree(res);
10519 return ret;
10520 }
10521
10522 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10523 {
10524 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10525 return -EBADFD;
10526
10527 if (ctx->restrictions.registered)
10528 ctx->restricted = 1;
10529
10530 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10531 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10532 wake_up(&ctx->sq_data->wait);
10533 return 0;
10534 }
10535
10536 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10537 struct io_uring_rsrc_update2 *up,
10538 unsigned nr_args)
10539 {
10540 __u32 tmp;
10541 int err;
10542
10543 if (up->resv)
10544 return -EINVAL;
10545 if (check_add_overflow(up->offset, nr_args, &tmp))
10546 return -EOVERFLOW;
10547 err = io_rsrc_node_switch_start(ctx);
10548 if (err)
10549 return err;
10550
10551 switch (type) {
10552 case IORING_RSRC_FILE:
10553 return __io_sqe_files_update(ctx, up, nr_args);
10554 case IORING_RSRC_BUFFER:
10555 return __io_sqe_buffers_update(ctx, up, nr_args);
10556 }
10557 return -EINVAL;
10558 }
10559
10560 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10561 unsigned nr_args)
10562 {
10563 struct io_uring_rsrc_update2 up;
10564
10565 if (!nr_args)
10566 return -EINVAL;
10567 memset(&up, 0, sizeof(up));
10568 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10569 return -EFAULT;
10570 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10571 }
10572
10573 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10574 unsigned size, unsigned type)
10575 {
10576 struct io_uring_rsrc_update2 up;
10577
10578 if (size != sizeof(up))
10579 return -EINVAL;
10580 if (copy_from_user(&up, arg, sizeof(up)))
10581 return -EFAULT;
10582 if (!up.nr || up.resv)
10583 return -EINVAL;
10584 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10585 }
10586
10587 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10588 unsigned int size, unsigned int type)
10589 {
10590 struct io_uring_rsrc_register rr;
10591
10592 /* keep it extendible */
10593 if (size != sizeof(rr))
10594 return -EINVAL;
10595
10596 memset(&rr, 0, sizeof(rr));
10597 if (copy_from_user(&rr, arg, size))
10598 return -EFAULT;
10599 if (!rr.nr || rr.resv || rr.resv2)
10600 return -EINVAL;
10601
10602 switch (type) {
10603 case IORING_RSRC_FILE:
10604 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10605 rr.nr, u64_to_user_ptr(rr.tags));
10606 case IORING_RSRC_BUFFER:
10607 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10608 rr.nr, u64_to_user_ptr(rr.tags));
10609 }
10610 return -EINVAL;
10611 }
10612
10613 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10614 unsigned len)
10615 {
10616 struct io_uring_task *tctx = current->io_uring;
10617 cpumask_var_t new_mask;
10618 int ret;
10619
10620 if (!tctx || !tctx->io_wq)
10621 return -EINVAL;
10622
10623 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10624 return -ENOMEM;
10625
10626 cpumask_clear(new_mask);
10627 if (len > cpumask_size())
10628 len = cpumask_size();
10629
10630 if (copy_from_user(new_mask, arg, len)) {
10631 free_cpumask_var(new_mask);
10632 return -EFAULT;
10633 }
10634
10635 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10636 free_cpumask_var(new_mask);
10637 return ret;
10638 }
10639
10640 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10641 {
10642 struct io_uring_task *tctx = current->io_uring;
10643
10644 if (!tctx || !tctx->io_wq)
10645 return -EINVAL;
10646
10647 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10648 }
10649
10650 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10651 void __user *arg)
10652 __must_hold(&ctx->uring_lock)
10653 {
10654 struct io_tctx_node *node;
10655 struct io_uring_task *tctx = NULL;
10656 struct io_sq_data *sqd = NULL;
10657 __u32 new_count[2];
10658 int i, ret;
10659
10660 if (copy_from_user(new_count, arg, sizeof(new_count)))
10661 return -EFAULT;
10662 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10663 if (new_count[i] > INT_MAX)
10664 return -EINVAL;
10665
10666 if (ctx->flags & IORING_SETUP_SQPOLL) {
10667 sqd = ctx->sq_data;
10668 if (sqd) {
10669 /*
10670 * Observe the correct sqd->lock -> ctx->uring_lock
10671 * ordering. Fine to drop uring_lock here, we hold
10672 * a ref to the ctx.
10673 */
10674 refcount_inc(&sqd->refs);
10675 mutex_unlock(&ctx->uring_lock);
10676 mutex_lock(&sqd->lock);
10677 mutex_lock(&ctx->uring_lock);
10678 if (sqd->thread)
10679 tctx = sqd->thread->io_uring;
10680 }
10681 } else {
10682 tctx = current->io_uring;
10683 }
10684
10685 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10686
10687 memcpy(ctx->iowq_limits, new_count, sizeof(new_count));
10688 ctx->iowq_limits_set = true;
10689
10690 ret = -EINVAL;
10691 if (tctx && tctx->io_wq) {
10692 ret = io_wq_max_workers(tctx->io_wq, new_count);
10693 if (ret)
10694 goto err;
10695 } else {
10696 memset(new_count, 0, sizeof(new_count));
10697 }
10698
10699 if (sqd) {
10700 mutex_unlock(&sqd->lock);
10701 io_put_sq_data(sqd);
10702 }
10703
10704 if (copy_to_user(arg, new_count, sizeof(new_count)))
10705 return -EFAULT;
10706
10707 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10708 if (sqd)
10709 return 0;
10710
10711 /* now propagate the restriction to all registered users */
10712 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10713 struct io_uring_task *tctx = node->task->io_uring;
10714
10715 if (WARN_ON_ONCE(!tctx->io_wq))
10716 continue;
10717
10718 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10719 new_count[i] = ctx->iowq_limits[i];
10720 /* ignore errors, it always returns zero anyway */
10721 (void)io_wq_max_workers(tctx->io_wq, new_count);
10722 }
10723 return 0;
10724 err:
10725 if (sqd) {
10726 mutex_unlock(&sqd->lock);
10727 io_put_sq_data(sqd);
10728 }
10729 return ret;
10730 }
10731
10732 static bool io_register_op_must_quiesce(int op)
10733 {
10734 switch (op) {
10735 case IORING_REGISTER_BUFFERS:
10736 case IORING_UNREGISTER_BUFFERS:
10737 case IORING_REGISTER_FILES:
10738 case IORING_UNREGISTER_FILES:
10739 case IORING_REGISTER_FILES_UPDATE:
10740 case IORING_REGISTER_PROBE:
10741 case IORING_REGISTER_PERSONALITY:
10742 case IORING_UNREGISTER_PERSONALITY:
10743 case IORING_REGISTER_FILES2:
10744 case IORING_REGISTER_FILES_UPDATE2:
10745 case IORING_REGISTER_BUFFERS2:
10746 case IORING_REGISTER_BUFFERS_UPDATE:
10747 case IORING_REGISTER_IOWQ_AFF:
10748 case IORING_UNREGISTER_IOWQ_AFF:
10749 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10750 return false;
10751 default:
10752 return true;
10753 }
10754 }
10755
10756 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10757 {
10758 long ret;
10759
10760 percpu_ref_kill(&ctx->refs);
10761
10762 /*
10763 * Drop uring mutex before waiting for references to exit. If another
10764 * thread is currently inside io_uring_enter() it might need to grab the
10765 * uring_lock to make progress. If we hold it here across the drain
10766 * wait, then we can deadlock. It's safe to drop the mutex here, since
10767 * no new references will come in after we've killed the percpu ref.
10768 */
10769 mutex_unlock(&ctx->uring_lock);
10770 do {
10771 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10772 if (!ret)
10773 break;
10774 ret = io_run_task_work_sig();
10775 } while (ret >= 0);
10776 mutex_lock(&ctx->uring_lock);
10777
10778 if (ret)
10779 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10780 return ret;
10781 }
10782
10783 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10784 void __user *arg, unsigned nr_args)
10785 __releases(ctx->uring_lock)
10786 __acquires(ctx->uring_lock)
10787 {
10788 int ret;
10789
10790 /*
10791 * We're inside the ring mutex, if the ref is already dying, then
10792 * someone else killed the ctx or is already going through
10793 * io_uring_register().
10794 */
10795 if (percpu_ref_is_dying(&ctx->refs))
10796 return -ENXIO;
10797
10798 if (ctx->restricted) {
10799 if (opcode >= IORING_REGISTER_LAST)
10800 return -EINVAL;
10801 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10802 if (!test_bit(opcode, ctx->restrictions.register_op))
10803 return -EACCES;
10804 }
10805
10806 if (io_register_op_must_quiesce(opcode)) {
10807 ret = io_ctx_quiesce(ctx);
10808 if (ret)
10809 return ret;
10810 }
10811
10812 switch (opcode) {
10813 case IORING_REGISTER_BUFFERS:
10814 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10815 break;
10816 case IORING_UNREGISTER_BUFFERS:
10817 ret = -EINVAL;
10818 if (arg || nr_args)
10819 break;
10820 ret = io_sqe_buffers_unregister(ctx);
10821 break;
10822 case IORING_REGISTER_FILES:
10823 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10824 break;
10825 case IORING_UNREGISTER_FILES:
10826 ret = -EINVAL;
10827 if (arg || nr_args)
10828 break;
10829 ret = io_sqe_files_unregister(ctx);
10830 break;
10831 case IORING_REGISTER_FILES_UPDATE:
10832 ret = io_register_files_update(ctx, arg, nr_args);
10833 break;
10834 case IORING_REGISTER_EVENTFD:
10835 case IORING_REGISTER_EVENTFD_ASYNC:
10836 ret = -EINVAL;
10837 if (nr_args != 1)
10838 break;
10839 ret = io_eventfd_register(ctx, arg);
10840 if (ret)
10841 break;
10842 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10843 ctx->eventfd_async = 1;
10844 else
10845 ctx->eventfd_async = 0;
10846 break;
10847 case IORING_UNREGISTER_EVENTFD:
10848 ret = -EINVAL;
10849 if (arg || nr_args)
10850 break;
10851 ret = io_eventfd_unregister(ctx);
10852 break;
10853 case IORING_REGISTER_PROBE:
10854 ret = -EINVAL;
10855 if (!arg || nr_args > 256)
10856 break;
10857 ret = io_probe(ctx, arg, nr_args);
10858 break;
10859 case IORING_REGISTER_PERSONALITY:
10860 ret = -EINVAL;
10861 if (arg || nr_args)
10862 break;
10863 ret = io_register_personality(ctx);
10864 break;
10865 case IORING_UNREGISTER_PERSONALITY:
10866 ret = -EINVAL;
10867 if (arg)
10868 break;
10869 ret = io_unregister_personality(ctx, nr_args);
10870 break;
10871 case IORING_REGISTER_ENABLE_RINGS:
10872 ret = -EINVAL;
10873 if (arg || nr_args)
10874 break;
10875 ret = io_register_enable_rings(ctx);
10876 break;
10877 case IORING_REGISTER_RESTRICTIONS:
10878 ret = io_register_restrictions(ctx, arg, nr_args);
10879 break;
10880 case IORING_REGISTER_FILES2:
10881 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10882 break;
10883 case IORING_REGISTER_FILES_UPDATE2:
10884 ret = io_register_rsrc_update(ctx, arg, nr_args,
10885 IORING_RSRC_FILE);
10886 break;
10887 case IORING_REGISTER_BUFFERS2:
10888 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10889 break;
10890 case IORING_REGISTER_BUFFERS_UPDATE:
10891 ret = io_register_rsrc_update(ctx, arg, nr_args,
10892 IORING_RSRC_BUFFER);
10893 break;
10894 case IORING_REGISTER_IOWQ_AFF:
10895 ret = -EINVAL;
10896 if (!arg || !nr_args)
10897 break;
10898 ret = io_register_iowq_aff(ctx, arg, nr_args);
10899 break;
10900 case IORING_UNREGISTER_IOWQ_AFF:
10901 ret = -EINVAL;
10902 if (arg || nr_args)
10903 break;
10904 ret = io_unregister_iowq_aff(ctx);
10905 break;
10906 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10907 ret = -EINVAL;
10908 if (!arg || nr_args != 2)
10909 break;
10910 ret = io_register_iowq_max_workers(ctx, arg);
10911 break;
10912 default:
10913 ret = -EINVAL;
10914 break;
10915 }
10916
10917 if (io_register_op_must_quiesce(opcode)) {
10918 /* bring the ctx back to life */
10919 percpu_ref_reinit(&ctx->refs);
10920 reinit_completion(&ctx->ref_comp);
10921 }
10922 return ret;
10923 }
10924
10925 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10926 void __user *, arg, unsigned int, nr_args)
10927 {
10928 struct io_ring_ctx *ctx;
10929 long ret = -EBADF;
10930 struct fd f;
10931
10932 f = fdget(fd);
10933 if (!f.file)
10934 return -EBADF;
10935
10936 ret = -EOPNOTSUPP;
10937 if (f.file->f_op != &io_uring_fops)
10938 goto out_fput;
10939
10940 ctx = f.file->private_data;
10941
10942 io_run_task_work();
10943
10944 mutex_lock(&ctx->uring_lock);
10945 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10946 mutex_unlock(&ctx->uring_lock);
10947 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10948 ctx->cq_ev_fd != NULL, ret);
10949 out_fput:
10950 fdput(f);
10951 return ret;
10952 }
10953
10954 static int __init io_uring_init(void)
10955 {
10956 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10957 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10958 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10959 } while (0)
10960
10961 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10962 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10963 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10964 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10965 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10966 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10967 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10968 BUILD_BUG_SQE_ELEM(8, __u64, off);
10969 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10970 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10971 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10972 BUILD_BUG_SQE_ELEM(24, __u32, len);
10973 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10974 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10975 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10976 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10977 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10978 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10979 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10980 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10981 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10982 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10983 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10984 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10985 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10986 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10987 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10988 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10989 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10990 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10991 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10992 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10993 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
10994
10995 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10996 sizeof(struct io_uring_rsrc_update));
10997 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10998 sizeof(struct io_uring_rsrc_update2));
10999
11000 /* ->buf_index is u16 */
11001 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11002
11003 /* should fit into one byte */
11004 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11005
11006 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11007 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11008
11009 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11010 SLAB_ACCOUNT);
11011 return 0;
11012 };
11013 __initcall(io_uring_init);