]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
Merge tag 'nfs-for-5.11-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned cq_last_tm_flush;
358 unsigned long cq_check_overflow;
359 struct wait_queue_head cq_wait;
360 struct fasync_struct *cq_fasync;
361 struct eventfd_ctx *cq_ev_fd;
362 } ____cacheline_aligned_in_smp;
363
364 struct {
365 struct mutex uring_lock;
366 wait_queue_head_t wait;
367 } ____cacheline_aligned_in_smp;
368
369 struct {
370 spinlock_t completion_lock;
371
372 /*
373 * ->iopoll_list is protected by the ctx->uring_lock for
374 * io_uring instances that don't use IORING_SETUP_SQPOLL.
375 * For SQPOLL, only the single threaded io_sq_thread() will
376 * manipulate the list, hence no extra locking is needed there.
377 */
378 struct list_head iopoll_list;
379 struct hlist_head *cancel_hash;
380 unsigned cancel_hash_bits;
381 bool poll_multi_file;
382
383 spinlock_t inflight_lock;
384 struct list_head inflight_list;
385 } ____cacheline_aligned_in_smp;
386
387 struct delayed_work file_put_work;
388 struct llist_head file_put_llist;
389
390 struct work_struct exit_work;
391 struct io_restriction restrictions;
392 };
393
394 /*
395 * First field must be the file pointer in all the
396 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 */
398 struct io_poll_iocb {
399 struct file *file;
400 struct wait_queue_head *head;
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_poll_remove {
408 struct file *file;
409 u64 addr;
410 };
411
412 struct io_close {
413 struct file *file;
414 struct file *put_file;
415 int fd;
416 };
417
418 struct io_timeout_data {
419 struct io_kiocb *req;
420 struct hrtimer timer;
421 struct timespec64 ts;
422 enum hrtimer_mode mode;
423 };
424
425 struct io_accept {
426 struct file *file;
427 struct sockaddr __user *addr;
428 int __user *addr_len;
429 int flags;
430 unsigned long nofile;
431 };
432
433 struct io_sync {
434 struct file *file;
435 loff_t len;
436 loff_t off;
437 int flags;
438 int mode;
439 };
440
441 struct io_cancel {
442 struct file *file;
443 u64 addr;
444 };
445
446 struct io_timeout {
447 struct file *file;
448 u32 off;
449 u32 target_seq;
450 struct list_head list;
451 /* head of the link, used by linked timeouts only */
452 struct io_kiocb *head;
453 };
454
455 struct io_timeout_rem {
456 struct file *file;
457 u64 addr;
458
459 /* timeout update */
460 struct timespec64 ts;
461 u32 flags;
462 };
463
464 struct io_rw {
465 /* NOTE: kiocb has the file as the first member, so don't do it here */
466 struct kiocb kiocb;
467 u64 addr;
468 u64 len;
469 };
470
471 struct io_connect {
472 struct file *file;
473 struct sockaddr __user *addr;
474 int addr_len;
475 };
476
477 struct io_sr_msg {
478 struct file *file;
479 union {
480 struct user_msghdr __user *umsg;
481 void __user *buf;
482 };
483 int msg_flags;
484 int bgid;
485 size_t len;
486 struct io_buffer *kbuf;
487 };
488
489 struct io_open {
490 struct file *file;
491 int dfd;
492 bool ignore_nonblock;
493 struct filename *filename;
494 struct open_how how;
495 unsigned long nofile;
496 };
497
498 struct io_files_update {
499 struct file *file;
500 u64 arg;
501 u32 nr_args;
502 u32 offset;
503 };
504
505 struct io_fadvise {
506 struct file *file;
507 u64 offset;
508 u32 len;
509 u32 advice;
510 };
511
512 struct io_madvise {
513 struct file *file;
514 u64 addr;
515 u32 len;
516 u32 advice;
517 };
518
519 struct io_epoll {
520 struct file *file;
521 int epfd;
522 int op;
523 int fd;
524 struct epoll_event event;
525 };
526
527 struct io_splice {
528 struct file *file_out;
529 struct file *file_in;
530 loff_t off_out;
531 loff_t off_in;
532 u64 len;
533 unsigned int flags;
534 };
535
536 struct io_provide_buf {
537 struct file *file;
538 __u64 addr;
539 __s32 len;
540 __u32 bgid;
541 __u16 nbufs;
542 __u16 bid;
543 };
544
545 struct io_statx {
546 struct file *file;
547 int dfd;
548 unsigned int mask;
549 unsigned int flags;
550 const char __user *filename;
551 struct statx __user *buffer;
552 };
553
554 struct io_shutdown {
555 struct file *file;
556 int how;
557 };
558
559 struct io_rename {
560 struct file *file;
561 int old_dfd;
562 int new_dfd;
563 struct filename *oldpath;
564 struct filename *newpath;
565 int flags;
566 };
567
568 struct io_unlink {
569 struct file *file;
570 int dfd;
571 int flags;
572 struct filename *filename;
573 };
574
575 struct io_completion {
576 struct file *file;
577 struct list_head list;
578 int cflags;
579 };
580
581 struct io_async_connect {
582 struct sockaddr_storage address;
583 };
584
585 struct io_async_msghdr {
586 struct iovec fast_iov[UIO_FASTIOV];
587 struct iovec *iov;
588 struct sockaddr __user *uaddr;
589 struct msghdr msg;
590 struct sockaddr_storage addr;
591 };
592
593 struct io_async_rw {
594 struct iovec fast_iov[UIO_FASTIOV];
595 const struct iovec *free_iovec;
596 struct iov_iter iter;
597 size_t bytes_done;
598 struct wait_page_queue wpq;
599 };
600
601 enum {
602 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
603 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
604 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
605 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
606 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
607 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
608
609 REQ_F_FAIL_LINK_BIT,
610 REQ_F_INFLIGHT_BIT,
611 REQ_F_CUR_POS_BIT,
612 REQ_F_NOWAIT_BIT,
613 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_ISREG_BIT,
615 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_POLLED_BIT,
617 REQ_F_BUFFER_SELECTED_BIT,
618 REQ_F_NO_FILE_TABLE_BIT,
619 REQ_F_WORK_INITIALIZED_BIT,
620 REQ_F_LTIMEOUT_ACTIVE_BIT,
621
622 /* not a real bit, just to check we're not overflowing the space */
623 __REQ_F_LAST_BIT,
624 };
625
626 enum {
627 /* ctx owns file */
628 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
629 /* drain existing IO first */
630 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 /* linked sqes */
632 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
633 /* doesn't sever on completion < 0 */
634 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 /* IOSQE_ASYNC */
636 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
637 /* IOSQE_BUFFER_SELECT */
638 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639
640 /* fail rest of links */
641 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
642 /* on inflight list */
643 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
644 /* read/write uses file position */
645 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
646 /* must not punt to workers */
647 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
648 /* has or had linked timeout */
649 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 /* regular file */
651 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 /* needs cleanup */
653 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
654 /* already went through poll handler */
655 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
656 /* buffer already selected */
657 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
658 /* doesn't need file table for this request */
659 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
660 /* io_wq_work is initialized */
661 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
662 /* linked timeout is active, i.e. prepared by link's head */
663 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
664 };
665
666 struct async_poll {
667 struct io_poll_iocb poll;
668 struct io_poll_iocb *double_poll;
669 };
670
671 /*
672 * NOTE! Each of the iocb union members has the file pointer
673 * as the first entry in their struct definition. So you can
674 * access the file pointer through any of the sub-structs,
675 * or directly as just 'ki_filp' in this struct.
676 */
677 struct io_kiocb {
678 union {
679 struct file *file;
680 struct io_rw rw;
681 struct io_poll_iocb poll;
682 struct io_poll_remove poll_remove;
683 struct io_accept accept;
684 struct io_sync sync;
685 struct io_cancel cancel;
686 struct io_timeout timeout;
687 struct io_timeout_rem timeout_rem;
688 struct io_connect connect;
689 struct io_sr_msg sr_msg;
690 struct io_open open;
691 struct io_close close;
692 struct io_files_update files_update;
693 struct io_fadvise fadvise;
694 struct io_madvise madvise;
695 struct io_epoll epoll;
696 struct io_splice splice;
697 struct io_provide_buf pbuf;
698 struct io_statx statx;
699 struct io_shutdown shutdown;
700 struct io_rename rename;
701 struct io_unlink unlink;
702 /* use only after cleaning per-op data, see io_clean_op() */
703 struct io_completion compl;
704 };
705
706 /* opcode allocated if it needs to store data for async defer */
707 void *async_data;
708 u8 opcode;
709 /* polled IO has completed */
710 u8 iopoll_completed;
711
712 u16 buf_index;
713 u32 result;
714
715 struct io_ring_ctx *ctx;
716 unsigned int flags;
717 refcount_t refs;
718 struct task_struct *task;
719 u64 user_data;
720
721 struct io_kiocb *link;
722 struct percpu_ref *fixed_file_refs;
723
724 /*
725 * 1. used with ctx->iopoll_list with reads/writes
726 * 2. to track reqs with ->files (see io_op_def::file_table)
727 */
728 struct list_head inflight_entry;
729 struct callback_head task_work;
730 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
731 struct hlist_node hash_node;
732 struct async_poll *apoll;
733 struct io_wq_work work;
734 };
735
736 struct io_defer_entry {
737 struct list_head list;
738 struct io_kiocb *req;
739 u32 seq;
740 };
741
742 #define IO_IOPOLL_BATCH 8
743
744 struct io_comp_state {
745 unsigned int nr;
746 struct list_head list;
747 struct io_ring_ctx *ctx;
748 };
749
750 struct io_submit_state {
751 struct blk_plug plug;
752
753 /*
754 * io_kiocb alloc cache
755 */
756 void *reqs[IO_IOPOLL_BATCH];
757 unsigned int free_reqs;
758
759 bool plug_started;
760
761 /*
762 * Batch completion logic
763 */
764 struct io_comp_state comp;
765
766 /*
767 * File reference cache
768 */
769 struct file *file;
770 unsigned int fd;
771 unsigned int file_refs;
772 unsigned int ios_left;
773 };
774
775 struct io_op_def {
776 /* needs req->file assigned */
777 unsigned needs_file : 1;
778 /* don't fail if file grab fails */
779 unsigned needs_file_no_error : 1;
780 /* hash wq insertion if file is a regular file */
781 unsigned hash_reg_file : 1;
782 /* unbound wq insertion if file is a non-regular file */
783 unsigned unbound_nonreg_file : 1;
784 /* opcode is not supported by this kernel */
785 unsigned not_supported : 1;
786 /* set if opcode supports polled "wait" */
787 unsigned pollin : 1;
788 unsigned pollout : 1;
789 /* op supports buffer selection */
790 unsigned buffer_select : 1;
791 /* must always have async data allocated */
792 unsigned needs_async_data : 1;
793 /* should block plug */
794 unsigned plug : 1;
795 /* size of async data needed, if any */
796 unsigned short async_size;
797 unsigned work_flags;
798 };
799
800 static const struct io_op_def io_op_defs[] = {
801 [IORING_OP_NOP] = {},
802 [IORING_OP_READV] = {
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 .needs_async_data = 1,
808 .plug = 1,
809 .async_size = sizeof(struct io_async_rw),
810 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_WRITEV] = {
813 .needs_file = 1,
814 .hash_reg_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .plug = 1,
819 .async_size = sizeof(struct io_async_rw),
820 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 IO_WQ_WORK_FSIZE,
822 },
823 [IORING_OP_FSYNC] = {
824 .needs_file = 1,
825 .work_flags = IO_WQ_WORK_BLKCG,
826 },
827 [IORING_OP_READ_FIXED] = {
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .plug = 1,
832 .async_size = sizeof(struct io_async_rw),
833 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 },
835 [IORING_OP_WRITE_FIXED] = {
836 .needs_file = 1,
837 .hash_reg_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 .plug = 1,
841 .async_size = sizeof(struct io_async_rw),
842 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 IO_WQ_WORK_MM,
844 },
845 [IORING_OP_POLL_ADD] = {
846 .needs_file = 1,
847 .unbound_nonreg_file = 1,
848 },
849 [IORING_OP_POLL_REMOVE] = {},
850 [IORING_OP_SYNC_FILE_RANGE] = {
851 .needs_file = 1,
852 .work_flags = IO_WQ_WORK_BLKCG,
853 },
854 [IORING_OP_SENDMSG] = {
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollout = 1,
858 .needs_async_data = 1,
859 .async_size = sizeof(struct io_async_msghdr),
860 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
861 },
862 [IORING_OP_RECVMSG] = {
863 .needs_file = 1,
864 .unbound_nonreg_file = 1,
865 .pollin = 1,
866 .buffer_select = 1,
867 .needs_async_data = 1,
868 .async_size = sizeof(struct io_async_msghdr),
869 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
870 },
871 [IORING_OP_TIMEOUT] = {
872 .needs_async_data = 1,
873 .async_size = sizeof(struct io_timeout_data),
874 .work_flags = IO_WQ_WORK_MM,
875 },
876 [IORING_OP_TIMEOUT_REMOVE] = {
877 /* used by timeout updates' prep() */
878 .work_flags = IO_WQ_WORK_MM,
879 },
880 [IORING_OP_ACCEPT] = {
881 .needs_file = 1,
882 .unbound_nonreg_file = 1,
883 .pollin = 1,
884 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
885 },
886 [IORING_OP_ASYNC_CANCEL] = {},
887 [IORING_OP_LINK_TIMEOUT] = {
888 .needs_async_data = 1,
889 .async_size = sizeof(struct io_timeout_data),
890 .work_flags = IO_WQ_WORK_MM,
891 },
892 [IORING_OP_CONNECT] = {
893 .needs_file = 1,
894 .unbound_nonreg_file = 1,
895 .pollout = 1,
896 .needs_async_data = 1,
897 .async_size = sizeof(struct io_async_connect),
898 .work_flags = IO_WQ_WORK_MM,
899 },
900 [IORING_OP_FALLOCATE] = {
901 .needs_file = 1,
902 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
903 },
904 [IORING_OP_OPENAT] = {
905 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
906 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
907 },
908 [IORING_OP_CLOSE] = {
909 .needs_file = 1,
910 .needs_file_no_error = 1,
911 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
912 },
913 [IORING_OP_FILES_UPDATE] = {
914 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
915 },
916 [IORING_OP_STATX] = {
917 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
918 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
919 },
920 [IORING_OP_READ] = {
921 .needs_file = 1,
922 .unbound_nonreg_file = 1,
923 .pollin = 1,
924 .buffer_select = 1,
925 .plug = 1,
926 .async_size = sizeof(struct io_async_rw),
927 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
928 },
929 [IORING_OP_WRITE] = {
930 .needs_file = 1,
931 .unbound_nonreg_file = 1,
932 .pollout = 1,
933 .plug = 1,
934 .async_size = sizeof(struct io_async_rw),
935 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
936 IO_WQ_WORK_FSIZE,
937 },
938 [IORING_OP_FADVISE] = {
939 .needs_file = 1,
940 .work_flags = IO_WQ_WORK_BLKCG,
941 },
942 [IORING_OP_MADVISE] = {
943 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
944 },
945 [IORING_OP_SEND] = {
946 .needs_file = 1,
947 .unbound_nonreg_file = 1,
948 .pollout = 1,
949 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
950 },
951 [IORING_OP_RECV] = {
952 .needs_file = 1,
953 .unbound_nonreg_file = 1,
954 .pollin = 1,
955 .buffer_select = 1,
956 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
957 },
958 [IORING_OP_OPENAT2] = {
959 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
960 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
961 },
962 [IORING_OP_EPOLL_CTL] = {
963 .unbound_nonreg_file = 1,
964 .work_flags = IO_WQ_WORK_FILES,
965 },
966 [IORING_OP_SPLICE] = {
967 .needs_file = 1,
968 .hash_reg_file = 1,
969 .unbound_nonreg_file = 1,
970 .work_flags = IO_WQ_WORK_BLKCG,
971 },
972 [IORING_OP_PROVIDE_BUFFERS] = {},
973 [IORING_OP_REMOVE_BUFFERS] = {},
974 [IORING_OP_TEE] = {
975 .needs_file = 1,
976 .hash_reg_file = 1,
977 .unbound_nonreg_file = 1,
978 },
979 [IORING_OP_SHUTDOWN] = {
980 .needs_file = 1,
981 },
982 [IORING_OP_RENAMEAT] = {
983 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
984 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_UNLINKAT] = {
987 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
988 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
989 },
990 };
991
992 enum io_mem_account {
993 ACCT_LOCKED,
994 ACCT_PINNED,
995 };
996
997 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
998 struct task_struct *task);
999
1000 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1001 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1002 struct io_ring_ctx *ctx);
1003
1004 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1005 struct io_comp_state *cs);
1006 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1007 static void io_put_req(struct io_kiocb *req);
1008 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1009 static void io_double_put_req(struct io_kiocb *req);
1010 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1011 static void __io_queue_linked_timeout(struct io_kiocb *req);
1012 static void io_queue_linked_timeout(struct io_kiocb *req);
1013 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1014 struct io_uring_files_update *ip,
1015 unsigned nr_args);
1016 static void __io_clean_op(struct io_kiocb *req);
1017 static struct file *io_file_get(struct io_submit_state *state,
1018 struct io_kiocb *req, int fd, bool fixed);
1019 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1020 static void io_file_put_work(struct work_struct *work);
1021
1022 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1023 struct iovec **iovec, struct iov_iter *iter,
1024 bool needs_lock);
1025 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1026 const struct iovec *fast_iov,
1027 struct iov_iter *iter, bool force);
1028 static void io_req_drop_files(struct io_kiocb *req);
1029 static void io_req_task_queue(struct io_kiocb *req);
1030
1031 static struct kmem_cache *req_cachep;
1032
1033 static const struct file_operations io_uring_fops;
1034
1035 struct sock *io_uring_get_socket(struct file *file)
1036 {
1037 #if defined(CONFIG_UNIX)
1038 if (file->f_op == &io_uring_fops) {
1039 struct io_ring_ctx *ctx = file->private_data;
1040
1041 return ctx->ring_sock->sk;
1042 }
1043 #endif
1044 return NULL;
1045 }
1046 EXPORT_SYMBOL(io_uring_get_socket);
1047
1048 #define io_for_each_link(pos, head) \
1049 for (pos = (head); pos; pos = pos->link)
1050
1051 static inline void io_clean_op(struct io_kiocb *req)
1052 {
1053 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1054 __io_clean_op(req);
1055 }
1056
1057 static inline void io_set_resource_node(struct io_kiocb *req)
1058 {
1059 struct io_ring_ctx *ctx = req->ctx;
1060
1061 if (!req->fixed_file_refs) {
1062 req->fixed_file_refs = &ctx->file_data->node->refs;
1063 percpu_ref_get(req->fixed_file_refs);
1064 }
1065 }
1066
1067 static bool io_match_task(struct io_kiocb *head,
1068 struct task_struct *task,
1069 struct files_struct *files)
1070 {
1071 struct io_kiocb *req;
1072
1073 if (task && head->task != task) {
1074 /* in terms of cancelation, always match if req task is dead */
1075 if (head->task->flags & PF_EXITING)
1076 return true;
1077 return false;
1078 }
1079 if (!files)
1080 return true;
1081
1082 io_for_each_link(req, head) {
1083 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1084 continue;
1085 if (req->file && req->file->f_op == &io_uring_fops)
1086 return true;
1087 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1088 req->work.identity->files == files)
1089 return true;
1090 }
1091 return false;
1092 }
1093
1094 static void io_sq_thread_drop_mm_files(void)
1095 {
1096 struct files_struct *files = current->files;
1097 struct mm_struct *mm = current->mm;
1098
1099 if (mm) {
1100 kthread_unuse_mm(mm);
1101 mmput(mm);
1102 current->mm = NULL;
1103 }
1104 if (files) {
1105 struct nsproxy *nsproxy = current->nsproxy;
1106
1107 task_lock(current);
1108 current->files = NULL;
1109 current->nsproxy = NULL;
1110 task_unlock(current);
1111 put_files_struct(files);
1112 put_nsproxy(nsproxy);
1113 }
1114 }
1115
1116 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1117 {
1118 if (current->flags & PF_EXITING)
1119 return -EFAULT;
1120
1121 if (!current->files) {
1122 struct files_struct *files;
1123 struct nsproxy *nsproxy;
1124
1125 task_lock(ctx->sqo_task);
1126 files = ctx->sqo_task->files;
1127 if (!files) {
1128 task_unlock(ctx->sqo_task);
1129 return -EOWNERDEAD;
1130 }
1131 atomic_inc(&files->count);
1132 get_nsproxy(ctx->sqo_task->nsproxy);
1133 nsproxy = ctx->sqo_task->nsproxy;
1134 task_unlock(ctx->sqo_task);
1135
1136 task_lock(current);
1137 current->files = files;
1138 current->nsproxy = nsproxy;
1139 task_unlock(current);
1140 }
1141 return 0;
1142 }
1143
1144 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1145 {
1146 struct mm_struct *mm;
1147
1148 if (current->flags & PF_EXITING)
1149 return -EFAULT;
1150 if (current->mm)
1151 return 0;
1152
1153 /* Should never happen */
1154 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1155 return -EFAULT;
1156
1157 task_lock(ctx->sqo_task);
1158 mm = ctx->sqo_task->mm;
1159 if (unlikely(!mm || !mmget_not_zero(mm)))
1160 mm = NULL;
1161 task_unlock(ctx->sqo_task);
1162
1163 if (mm) {
1164 kthread_use_mm(mm);
1165 return 0;
1166 }
1167
1168 return -EFAULT;
1169 }
1170
1171 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1172 struct io_kiocb *req)
1173 {
1174 const struct io_op_def *def = &io_op_defs[req->opcode];
1175 int ret;
1176
1177 if (def->work_flags & IO_WQ_WORK_MM) {
1178 ret = __io_sq_thread_acquire_mm(ctx);
1179 if (unlikely(ret))
1180 return ret;
1181 }
1182
1183 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1184 ret = __io_sq_thread_acquire_files(ctx);
1185 if (unlikely(ret))
1186 return ret;
1187 }
1188
1189 return 0;
1190 }
1191
1192 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1193 struct cgroup_subsys_state **cur_css)
1194
1195 {
1196 #ifdef CONFIG_BLK_CGROUP
1197 /* puts the old one when swapping */
1198 if (*cur_css != ctx->sqo_blkcg_css) {
1199 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1200 *cur_css = ctx->sqo_blkcg_css;
1201 }
1202 #endif
1203 }
1204
1205 static void io_sq_thread_unassociate_blkcg(void)
1206 {
1207 #ifdef CONFIG_BLK_CGROUP
1208 kthread_associate_blkcg(NULL);
1209 #endif
1210 }
1211
1212 static inline void req_set_fail_links(struct io_kiocb *req)
1213 {
1214 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1215 req->flags |= REQ_F_FAIL_LINK;
1216 }
1217
1218 /*
1219 * None of these are dereferenced, they are simply used to check if any of
1220 * them have changed. If we're under current and check they are still the
1221 * same, we're fine to grab references to them for actual out-of-line use.
1222 */
1223 static void io_init_identity(struct io_identity *id)
1224 {
1225 id->files = current->files;
1226 id->mm = current->mm;
1227 #ifdef CONFIG_BLK_CGROUP
1228 rcu_read_lock();
1229 id->blkcg_css = blkcg_css();
1230 rcu_read_unlock();
1231 #endif
1232 id->creds = current_cred();
1233 id->nsproxy = current->nsproxy;
1234 id->fs = current->fs;
1235 id->fsize = rlimit(RLIMIT_FSIZE);
1236 #ifdef CONFIG_AUDIT
1237 id->loginuid = current->loginuid;
1238 id->sessionid = current->sessionid;
1239 #endif
1240 refcount_set(&id->count, 1);
1241 }
1242
1243 static inline void __io_req_init_async(struct io_kiocb *req)
1244 {
1245 memset(&req->work, 0, sizeof(req->work));
1246 req->flags |= REQ_F_WORK_INITIALIZED;
1247 }
1248
1249 /*
1250 * Note: must call io_req_init_async() for the first time you
1251 * touch any members of io_wq_work.
1252 */
1253 static inline void io_req_init_async(struct io_kiocb *req)
1254 {
1255 struct io_uring_task *tctx = current->io_uring;
1256
1257 if (req->flags & REQ_F_WORK_INITIALIZED)
1258 return;
1259
1260 __io_req_init_async(req);
1261
1262 /* Grab a ref if this isn't our static identity */
1263 req->work.identity = tctx->identity;
1264 if (tctx->identity != &tctx->__identity)
1265 refcount_inc(&req->work.identity->count);
1266 }
1267
1268 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1269 {
1270 return ctx->flags & IORING_SETUP_SQPOLL;
1271 }
1272
1273 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1274 {
1275 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1276
1277 complete(&ctx->ref_comp);
1278 }
1279
1280 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1281 {
1282 return !req->timeout.off;
1283 }
1284
1285 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1286 {
1287 struct io_ring_ctx *ctx;
1288 int hash_bits;
1289
1290 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1291 if (!ctx)
1292 return NULL;
1293
1294 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1295 if (!ctx->fallback_req)
1296 goto err;
1297
1298 /*
1299 * Use 5 bits less than the max cq entries, that should give us around
1300 * 32 entries per hash list if totally full and uniformly spread.
1301 */
1302 hash_bits = ilog2(p->cq_entries);
1303 hash_bits -= 5;
1304 if (hash_bits <= 0)
1305 hash_bits = 1;
1306 ctx->cancel_hash_bits = hash_bits;
1307 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1308 GFP_KERNEL);
1309 if (!ctx->cancel_hash)
1310 goto err;
1311 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1312
1313 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1314 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1315 goto err;
1316
1317 ctx->flags = p->flags;
1318 init_waitqueue_head(&ctx->sqo_sq_wait);
1319 INIT_LIST_HEAD(&ctx->sqd_list);
1320 init_waitqueue_head(&ctx->cq_wait);
1321 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1322 init_completion(&ctx->ref_comp);
1323 init_completion(&ctx->sq_thread_comp);
1324 idr_init(&ctx->io_buffer_idr);
1325 idr_init(&ctx->personality_idr);
1326 mutex_init(&ctx->uring_lock);
1327 init_waitqueue_head(&ctx->wait);
1328 spin_lock_init(&ctx->completion_lock);
1329 INIT_LIST_HEAD(&ctx->iopoll_list);
1330 INIT_LIST_HEAD(&ctx->defer_list);
1331 INIT_LIST_HEAD(&ctx->timeout_list);
1332 spin_lock_init(&ctx->inflight_lock);
1333 INIT_LIST_HEAD(&ctx->inflight_list);
1334 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1335 init_llist_head(&ctx->file_put_llist);
1336 return ctx;
1337 err:
1338 if (ctx->fallback_req)
1339 kmem_cache_free(req_cachep, ctx->fallback_req);
1340 kfree(ctx->cancel_hash);
1341 kfree(ctx);
1342 return NULL;
1343 }
1344
1345 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1346 {
1347 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1348 struct io_ring_ctx *ctx = req->ctx;
1349
1350 return seq != ctx->cached_cq_tail
1351 + READ_ONCE(ctx->cached_cq_overflow);
1352 }
1353
1354 return false;
1355 }
1356
1357 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1358 {
1359 struct io_rings *rings = ctx->rings;
1360
1361 /* order cqe stores with ring update */
1362 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1363 }
1364
1365 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1366 {
1367 if (req->work.identity == &tctx->__identity)
1368 return;
1369 if (refcount_dec_and_test(&req->work.identity->count))
1370 kfree(req->work.identity);
1371 }
1372
1373 static void io_req_clean_work(struct io_kiocb *req)
1374 {
1375 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1376 return;
1377
1378 req->flags &= ~REQ_F_WORK_INITIALIZED;
1379
1380 if (req->work.flags & IO_WQ_WORK_MM) {
1381 mmdrop(req->work.identity->mm);
1382 req->work.flags &= ~IO_WQ_WORK_MM;
1383 }
1384 #ifdef CONFIG_BLK_CGROUP
1385 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1386 css_put(req->work.identity->blkcg_css);
1387 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1388 }
1389 #endif
1390 if (req->work.flags & IO_WQ_WORK_CREDS) {
1391 put_cred(req->work.identity->creds);
1392 req->work.flags &= ~IO_WQ_WORK_CREDS;
1393 }
1394 if (req->work.flags & IO_WQ_WORK_FS) {
1395 struct fs_struct *fs = req->work.identity->fs;
1396
1397 spin_lock(&req->work.identity->fs->lock);
1398 if (--fs->users)
1399 fs = NULL;
1400 spin_unlock(&req->work.identity->fs->lock);
1401 if (fs)
1402 free_fs_struct(fs);
1403 req->work.flags &= ~IO_WQ_WORK_FS;
1404 }
1405 if (req->flags & REQ_F_INFLIGHT)
1406 io_req_drop_files(req);
1407
1408 io_put_identity(req->task->io_uring, req);
1409 }
1410
1411 /*
1412 * Create a private copy of io_identity, since some fields don't match
1413 * the current context.
1414 */
1415 static bool io_identity_cow(struct io_kiocb *req)
1416 {
1417 struct io_uring_task *tctx = current->io_uring;
1418 const struct cred *creds = NULL;
1419 struct io_identity *id;
1420
1421 if (req->work.flags & IO_WQ_WORK_CREDS)
1422 creds = req->work.identity->creds;
1423
1424 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1425 if (unlikely(!id)) {
1426 req->work.flags |= IO_WQ_WORK_CANCEL;
1427 return false;
1428 }
1429
1430 /*
1431 * We can safely just re-init the creds we copied Either the field
1432 * matches the current one, or we haven't grabbed it yet. The only
1433 * exception is ->creds, through registered personalities, so handle
1434 * that one separately.
1435 */
1436 io_init_identity(id);
1437 if (creds)
1438 id->creds = creds;
1439
1440 /* add one for this request */
1441 refcount_inc(&id->count);
1442
1443 /* drop tctx and req identity references, if needed */
1444 if (tctx->identity != &tctx->__identity &&
1445 refcount_dec_and_test(&tctx->identity->count))
1446 kfree(tctx->identity);
1447 if (req->work.identity != &tctx->__identity &&
1448 refcount_dec_and_test(&req->work.identity->count))
1449 kfree(req->work.identity);
1450
1451 req->work.identity = id;
1452 tctx->identity = id;
1453 return true;
1454 }
1455
1456 static bool io_grab_identity(struct io_kiocb *req)
1457 {
1458 const struct io_op_def *def = &io_op_defs[req->opcode];
1459 struct io_identity *id = req->work.identity;
1460 struct io_ring_ctx *ctx = req->ctx;
1461
1462 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1463 if (id->fsize != rlimit(RLIMIT_FSIZE))
1464 return false;
1465 req->work.flags |= IO_WQ_WORK_FSIZE;
1466 }
1467 #ifdef CONFIG_BLK_CGROUP
1468 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1469 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1470 rcu_read_lock();
1471 if (id->blkcg_css != blkcg_css()) {
1472 rcu_read_unlock();
1473 return false;
1474 }
1475 /*
1476 * This should be rare, either the cgroup is dying or the task
1477 * is moving cgroups. Just punt to root for the handful of ios.
1478 */
1479 if (css_tryget_online(id->blkcg_css))
1480 req->work.flags |= IO_WQ_WORK_BLKCG;
1481 rcu_read_unlock();
1482 }
1483 #endif
1484 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1485 if (id->creds != current_cred())
1486 return false;
1487 get_cred(id->creds);
1488 req->work.flags |= IO_WQ_WORK_CREDS;
1489 }
1490 #ifdef CONFIG_AUDIT
1491 if (!uid_eq(current->loginuid, id->loginuid) ||
1492 current->sessionid != id->sessionid)
1493 return false;
1494 #endif
1495 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1496 (def->work_flags & IO_WQ_WORK_FS)) {
1497 if (current->fs != id->fs)
1498 return false;
1499 spin_lock(&id->fs->lock);
1500 if (!id->fs->in_exec) {
1501 id->fs->users++;
1502 req->work.flags |= IO_WQ_WORK_FS;
1503 } else {
1504 req->work.flags |= IO_WQ_WORK_CANCEL;
1505 }
1506 spin_unlock(&current->fs->lock);
1507 }
1508 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1509 (def->work_flags & IO_WQ_WORK_FILES) &&
1510 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1511 if (id->files != current->files ||
1512 id->nsproxy != current->nsproxy)
1513 return false;
1514 atomic_inc(&id->files->count);
1515 get_nsproxy(id->nsproxy);
1516
1517 if (!(req->flags & REQ_F_INFLIGHT)) {
1518 req->flags |= REQ_F_INFLIGHT;
1519
1520 spin_lock_irq(&ctx->inflight_lock);
1521 list_add(&req->inflight_entry, &ctx->inflight_list);
1522 spin_unlock_irq(&ctx->inflight_lock);
1523 }
1524 req->work.flags |= IO_WQ_WORK_FILES;
1525 }
1526 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1527 (def->work_flags & IO_WQ_WORK_MM)) {
1528 if (id->mm != current->mm)
1529 return false;
1530 mmgrab(id->mm);
1531 req->work.flags |= IO_WQ_WORK_MM;
1532 }
1533
1534 return true;
1535 }
1536
1537 static void io_prep_async_work(struct io_kiocb *req)
1538 {
1539 const struct io_op_def *def = &io_op_defs[req->opcode];
1540 struct io_ring_ctx *ctx = req->ctx;
1541
1542 io_req_init_async(req);
1543
1544 if (req->flags & REQ_F_FORCE_ASYNC)
1545 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1546
1547 if (req->flags & REQ_F_ISREG) {
1548 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1549 io_wq_hash_work(&req->work, file_inode(req->file));
1550 } else {
1551 if (def->unbound_nonreg_file)
1552 req->work.flags |= IO_WQ_WORK_UNBOUND;
1553 }
1554
1555 /* if we fail grabbing identity, we must COW, regrab, and retry */
1556 if (io_grab_identity(req))
1557 return;
1558
1559 if (!io_identity_cow(req))
1560 return;
1561
1562 /* can't fail at this point */
1563 if (!io_grab_identity(req))
1564 WARN_ON(1);
1565 }
1566
1567 static void io_prep_async_link(struct io_kiocb *req)
1568 {
1569 struct io_kiocb *cur;
1570
1571 io_for_each_link(cur, req)
1572 io_prep_async_work(cur);
1573 }
1574
1575 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1576 {
1577 struct io_ring_ctx *ctx = req->ctx;
1578 struct io_kiocb *link = io_prep_linked_timeout(req);
1579
1580 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1581 &req->work, req->flags);
1582 io_wq_enqueue(ctx->io_wq, &req->work);
1583 return link;
1584 }
1585
1586 static void io_queue_async_work(struct io_kiocb *req)
1587 {
1588 struct io_kiocb *link;
1589
1590 /* init ->work of the whole link before punting */
1591 io_prep_async_link(req);
1592 link = __io_queue_async_work(req);
1593
1594 if (link)
1595 io_queue_linked_timeout(link);
1596 }
1597
1598 static void io_kill_timeout(struct io_kiocb *req)
1599 {
1600 struct io_timeout_data *io = req->async_data;
1601 int ret;
1602
1603 ret = hrtimer_try_to_cancel(&io->timer);
1604 if (ret != -1) {
1605 atomic_set(&req->ctx->cq_timeouts,
1606 atomic_read(&req->ctx->cq_timeouts) + 1);
1607 list_del_init(&req->timeout.list);
1608 io_cqring_fill_event(req, 0);
1609 io_put_req_deferred(req, 1);
1610 }
1611 }
1612
1613 /*
1614 * Returns true if we found and killed one or more timeouts
1615 */
1616 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1617 struct files_struct *files)
1618 {
1619 struct io_kiocb *req, *tmp;
1620 int canceled = 0;
1621
1622 spin_lock_irq(&ctx->completion_lock);
1623 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1624 if (io_match_task(req, tsk, files)) {
1625 io_kill_timeout(req);
1626 canceled++;
1627 }
1628 }
1629 spin_unlock_irq(&ctx->completion_lock);
1630 return canceled != 0;
1631 }
1632
1633 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1634 {
1635 do {
1636 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1637 struct io_defer_entry, list);
1638
1639 if (req_need_defer(de->req, de->seq))
1640 break;
1641 list_del_init(&de->list);
1642 io_req_task_queue(de->req);
1643 kfree(de);
1644 } while (!list_empty(&ctx->defer_list));
1645 }
1646
1647 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1648 {
1649 u32 seq;
1650
1651 if (list_empty(&ctx->timeout_list))
1652 return;
1653
1654 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1655
1656 do {
1657 u32 events_needed, events_got;
1658 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1659 struct io_kiocb, timeout.list);
1660
1661 if (io_is_timeout_noseq(req))
1662 break;
1663
1664 /*
1665 * Since seq can easily wrap around over time, subtract
1666 * the last seq at which timeouts were flushed before comparing.
1667 * Assuming not more than 2^31-1 events have happened since,
1668 * these subtractions won't have wrapped, so we can check if
1669 * target is in [last_seq, current_seq] by comparing the two.
1670 */
1671 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1672 events_got = seq - ctx->cq_last_tm_flush;
1673 if (events_got < events_needed)
1674 break;
1675
1676 list_del_init(&req->timeout.list);
1677 io_kill_timeout(req);
1678 } while (!list_empty(&ctx->timeout_list));
1679
1680 ctx->cq_last_tm_flush = seq;
1681 }
1682
1683 static void io_commit_cqring(struct io_ring_ctx *ctx)
1684 {
1685 io_flush_timeouts(ctx);
1686 __io_commit_cqring(ctx);
1687
1688 if (unlikely(!list_empty(&ctx->defer_list)))
1689 __io_queue_deferred(ctx);
1690 }
1691
1692 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1693 {
1694 struct io_rings *r = ctx->rings;
1695
1696 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1697 }
1698
1699 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1700 {
1701 struct io_rings *rings = ctx->rings;
1702 unsigned tail;
1703
1704 tail = ctx->cached_cq_tail;
1705 /*
1706 * writes to the cq entry need to come after reading head; the
1707 * control dependency is enough as we're using WRITE_ONCE to
1708 * fill the cq entry
1709 */
1710 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1711 return NULL;
1712
1713 ctx->cached_cq_tail++;
1714 return &rings->cqes[tail & ctx->cq_mask];
1715 }
1716
1717 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1718 {
1719 if (!ctx->cq_ev_fd)
1720 return false;
1721 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1722 return false;
1723 if (!ctx->eventfd_async)
1724 return true;
1725 return io_wq_current_is_worker();
1726 }
1727
1728 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1729 {
1730 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1731 }
1732
1733 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1734 {
1735 /* see waitqueue_active() comment */
1736 smp_mb();
1737
1738 if (waitqueue_active(&ctx->wait))
1739 wake_up(&ctx->wait);
1740 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1741 wake_up(&ctx->sq_data->wait);
1742 if (io_should_trigger_evfd(ctx))
1743 eventfd_signal(ctx->cq_ev_fd, 1);
1744 if (waitqueue_active(&ctx->cq_wait)) {
1745 wake_up_interruptible(&ctx->cq_wait);
1746 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1747 }
1748 }
1749
1750 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1751 {
1752 /* see waitqueue_active() comment */
1753 smp_mb();
1754
1755 if (ctx->flags & IORING_SETUP_SQPOLL) {
1756 if (waitqueue_active(&ctx->wait))
1757 wake_up(&ctx->wait);
1758 }
1759 if (io_should_trigger_evfd(ctx))
1760 eventfd_signal(ctx->cq_ev_fd, 1);
1761 if (waitqueue_active(&ctx->cq_wait)) {
1762 wake_up_interruptible(&ctx->cq_wait);
1763 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1764 }
1765 }
1766
1767 /* Returns true if there are no backlogged entries after the flush */
1768 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1769 struct task_struct *tsk,
1770 struct files_struct *files)
1771 {
1772 struct io_rings *rings = ctx->rings;
1773 struct io_kiocb *req, *tmp;
1774 struct io_uring_cqe *cqe;
1775 unsigned long flags;
1776 bool all_flushed, posted;
1777 LIST_HEAD(list);
1778
1779 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1780 return false;
1781
1782 posted = false;
1783 spin_lock_irqsave(&ctx->completion_lock, flags);
1784 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1785 if (!io_match_task(req, tsk, files))
1786 continue;
1787
1788 cqe = io_get_cqring(ctx);
1789 if (!cqe && !force)
1790 break;
1791
1792 list_move(&req->compl.list, &list);
1793 if (cqe) {
1794 WRITE_ONCE(cqe->user_data, req->user_data);
1795 WRITE_ONCE(cqe->res, req->result);
1796 WRITE_ONCE(cqe->flags, req->compl.cflags);
1797 } else {
1798 ctx->cached_cq_overflow++;
1799 WRITE_ONCE(ctx->rings->cq_overflow,
1800 ctx->cached_cq_overflow);
1801 }
1802 posted = true;
1803 }
1804
1805 all_flushed = list_empty(&ctx->cq_overflow_list);
1806 if (all_flushed) {
1807 clear_bit(0, &ctx->sq_check_overflow);
1808 clear_bit(0, &ctx->cq_check_overflow);
1809 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1810 }
1811
1812 if (posted)
1813 io_commit_cqring(ctx);
1814 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1815 if (posted)
1816 io_cqring_ev_posted(ctx);
1817
1818 while (!list_empty(&list)) {
1819 req = list_first_entry(&list, struct io_kiocb, compl.list);
1820 list_del(&req->compl.list);
1821 io_put_req(req);
1822 }
1823
1824 return all_flushed;
1825 }
1826
1827 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1828 struct task_struct *tsk,
1829 struct files_struct *files)
1830 {
1831 if (test_bit(0, &ctx->cq_check_overflow)) {
1832 /* iopoll syncs against uring_lock, not completion_lock */
1833 if (ctx->flags & IORING_SETUP_IOPOLL)
1834 mutex_lock(&ctx->uring_lock);
1835 __io_cqring_overflow_flush(ctx, force, tsk, files);
1836 if (ctx->flags & IORING_SETUP_IOPOLL)
1837 mutex_unlock(&ctx->uring_lock);
1838 }
1839 }
1840
1841 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1842 {
1843 struct io_ring_ctx *ctx = req->ctx;
1844 struct io_uring_cqe *cqe;
1845
1846 trace_io_uring_complete(ctx, req->user_data, res);
1847
1848 /*
1849 * If we can't get a cq entry, userspace overflowed the
1850 * submission (by quite a lot). Increment the overflow count in
1851 * the ring.
1852 */
1853 cqe = io_get_cqring(ctx);
1854 if (likely(cqe)) {
1855 WRITE_ONCE(cqe->user_data, req->user_data);
1856 WRITE_ONCE(cqe->res, res);
1857 WRITE_ONCE(cqe->flags, cflags);
1858 } else if (ctx->cq_overflow_flushed ||
1859 atomic_read(&req->task->io_uring->in_idle)) {
1860 /*
1861 * If we're in ring overflow flush mode, or in task cancel mode,
1862 * then we cannot store the request for later flushing, we need
1863 * to drop it on the floor.
1864 */
1865 ctx->cached_cq_overflow++;
1866 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1867 } else {
1868 if (list_empty(&ctx->cq_overflow_list)) {
1869 set_bit(0, &ctx->sq_check_overflow);
1870 set_bit(0, &ctx->cq_check_overflow);
1871 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1872 }
1873 io_clean_op(req);
1874 req->result = res;
1875 req->compl.cflags = cflags;
1876 refcount_inc(&req->refs);
1877 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1878 }
1879 }
1880
1881 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1882 {
1883 __io_cqring_fill_event(req, res, 0);
1884 }
1885
1886 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1887 {
1888 struct io_ring_ctx *ctx = req->ctx;
1889 unsigned long flags;
1890
1891 spin_lock_irqsave(&ctx->completion_lock, flags);
1892 __io_cqring_fill_event(req, res, cflags);
1893 io_commit_cqring(ctx);
1894 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1895
1896 io_cqring_ev_posted(ctx);
1897 }
1898
1899 static void io_submit_flush_completions(struct io_comp_state *cs)
1900 {
1901 struct io_ring_ctx *ctx = cs->ctx;
1902
1903 spin_lock_irq(&ctx->completion_lock);
1904 while (!list_empty(&cs->list)) {
1905 struct io_kiocb *req;
1906
1907 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1908 list_del(&req->compl.list);
1909 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1910
1911 /*
1912 * io_free_req() doesn't care about completion_lock unless one
1913 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1914 * because of a potential deadlock with req->work.fs->lock
1915 */
1916 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1917 |REQ_F_WORK_INITIALIZED)) {
1918 spin_unlock_irq(&ctx->completion_lock);
1919 io_put_req(req);
1920 spin_lock_irq(&ctx->completion_lock);
1921 } else {
1922 io_put_req(req);
1923 }
1924 }
1925 io_commit_cqring(ctx);
1926 spin_unlock_irq(&ctx->completion_lock);
1927
1928 io_cqring_ev_posted(ctx);
1929 cs->nr = 0;
1930 }
1931
1932 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1933 struct io_comp_state *cs)
1934 {
1935 if (!cs) {
1936 io_cqring_add_event(req, res, cflags);
1937 io_put_req(req);
1938 } else {
1939 io_clean_op(req);
1940 req->result = res;
1941 req->compl.cflags = cflags;
1942 list_add_tail(&req->compl.list, &cs->list);
1943 if (++cs->nr >= 32)
1944 io_submit_flush_completions(cs);
1945 }
1946 }
1947
1948 static void io_req_complete(struct io_kiocb *req, long res)
1949 {
1950 __io_req_complete(req, res, 0, NULL);
1951 }
1952
1953 static inline bool io_is_fallback_req(struct io_kiocb *req)
1954 {
1955 return req == (struct io_kiocb *)
1956 ((unsigned long) req->ctx->fallback_req & ~1UL);
1957 }
1958
1959 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1960 {
1961 struct io_kiocb *req;
1962
1963 req = ctx->fallback_req;
1964 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1965 return req;
1966
1967 return NULL;
1968 }
1969
1970 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1971 struct io_submit_state *state)
1972 {
1973 if (!state->free_reqs) {
1974 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1975 size_t sz;
1976 int ret;
1977
1978 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1979 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1980
1981 /*
1982 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1983 * retry single alloc to be on the safe side.
1984 */
1985 if (unlikely(ret <= 0)) {
1986 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1987 if (!state->reqs[0])
1988 goto fallback;
1989 ret = 1;
1990 }
1991 state->free_reqs = ret;
1992 }
1993
1994 state->free_reqs--;
1995 return state->reqs[state->free_reqs];
1996 fallback:
1997 return io_get_fallback_req(ctx);
1998 }
1999
2000 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2001 bool fixed)
2002 {
2003 if (!fixed)
2004 fput(file);
2005 }
2006
2007 static void io_dismantle_req(struct io_kiocb *req)
2008 {
2009 io_clean_op(req);
2010
2011 if (req->async_data)
2012 kfree(req->async_data);
2013 if (req->file)
2014 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2015 if (req->fixed_file_refs)
2016 percpu_ref_put(req->fixed_file_refs);
2017 io_req_clean_work(req);
2018 }
2019
2020 static void __io_free_req(struct io_kiocb *req)
2021 {
2022 struct io_uring_task *tctx = req->task->io_uring;
2023 struct io_ring_ctx *ctx = req->ctx;
2024
2025 io_dismantle_req(req);
2026
2027 percpu_counter_dec(&tctx->inflight);
2028 if (atomic_read(&tctx->in_idle))
2029 wake_up(&tctx->wait);
2030 put_task_struct(req->task);
2031
2032 if (likely(!io_is_fallback_req(req)))
2033 kmem_cache_free(req_cachep, req);
2034 else
2035 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2036 percpu_ref_put(&ctx->refs);
2037 }
2038
2039 static inline void io_remove_next_linked(struct io_kiocb *req)
2040 {
2041 struct io_kiocb *nxt = req->link;
2042
2043 req->link = nxt->link;
2044 nxt->link = NULL;
2045 }
2046
2047 static void io_kill_linked_timeout(struct io_kiocb *req)
2048 {
2049 struct io_ring_ctx *ctx = req->ctx;
2050 struct io_kiocb *link;
2051 bool cancelled = false;
2052 unsigned long flags;
2053
2054 spin_lock_irqsave(&ctx->completion_lock, flags);
2055 link = req->link;
2056
2057 /*
2058 * Can happen if a linked timeout fired and link had been like
2059 * req -> link t-out -> link t-out [-> ...]
2060 */
2061 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2062 struct io_timeout_data *io = link->async_data;
2063 int ret;
2064
2065 io_remove_next_linked(req);
2066 link->timeout.head = NULL;
2067 ret = hrtimer_try_to_cancel(&io->timer);
2068 if (ret != -1) {
2069 io_cqring_fill_event(link, -ECANCELED);
2070 io_commit_cqring(ctx);
2071 cancelled = true;
2072 }
2073 }
2074 req->flags &= ~REQ_F_LINK_TIMEOUT;
2075 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2076
2077 if (cancelled) {
2078 io_cqring_ev_posted(ctx);
2079 io_put_req(link);
2080 }
2081 }
2082
2083
2084 static void io_fail_links(struct io_kiocb *req)
2085 {
2086 struct io_kiocb *link, *nxt;
2087 struct io_ring_ctx *ctx = req->ctx;
2088 unsigned long flags;
2089
2090 spin_lock_irqsave(&ctx->completion_lock, flags);
2091 link = req->link;
2092 req->link = NULL;
2093
2094 while (link) {
2095 nxt = link->link;
2096 link->link = NULL;
2097
2098 trace_io_uring_fail_link(req, link);
2099 io_cqring_fill_event(link, -ECANCELED);
2100
2101 /*
2102 * It's ok to free under spinlock as they're not linked anymore,
2103 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2104 * work.fs->lock.
2105 */
2106 if (link->flags & REQ_F_WORK_INITIALIZED)
2107 io_put_req_deferred(link, 2);
2108 else
2109 io_double_put_req(link);
2110 link = nxt;
2111 }
2112 io_commit_cqring(ctx);
2113 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2114
2115 io_cqring_ev_posted(ctx);
2116 }
2117
2118 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2119 {
2120 if (req->flags & REQ_F_LINK_TIMEOUT)
2121 io_kill_linked_timeout(req);
2122
2123 /*
2124 * If LINK is set, we have dependent requests in this chain. If we
2125 * didn't fail this request, queue the first one up, moving any other
2126 * dependencies to the next request. In case of failure, fail the rest
2127 * of the chain.
2128 */
2129 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2130 struct io_kiocb *nxt = req->link;
2131
2132 req->link = NULL;
2133 return nxt;
2134 }
2135 io_fail_links(req);
2136 return NULL;
2137 }
2138
2139 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2140 {
2141 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2142 return NULL;
2143 return __io_req_find_next(req);
2144 }
2145
2146 static int io_req_task_work_add(struct io_kiocb *req)
2147 {
2148 struct task_struct *tsk = req->task;
2149 struct io_ring_ctx *ctx = req->ctx;
2150 enum task_work_notify_mode notify;
2151 int ret;
2152
2153 if (tsk->flags & PF_EXITING)
2154 return -ESRCH;
2155
2156 /*
2157 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2158 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2159 * processing task_work. There's no reliable way to tell if TWA_RESUME
2160 * will do the job.
2161 */
2162 notify = TWA_NONE;
2163 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2164 notify = TWA_SIGNAL;
2165
2166 ret = task_work_add(tsk, &req->task_work, notify);
2167 if (!ret)
2168 wake_up_process(tsk);
2169
2170 return ret;
2171 }
2172
2173 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2174 {
2175 struct io_ring_ctx *ctx = req->ctx;
2176
2177 spin_lock_irq(&ctx->completion_lock);
2178 io_cqring_fill_event(req, error);
2179 io_commit_cqring(ctx);
2180 spin_unlock_irq(&ctx->completion_lock);
2181
2182 io_cqring_ev_posted(ctx);
2183 req_set_fail_links(req);
2184 io_double_put_req(req);
2185 }
2186
2187 static void io_req_task_cancel(struct callback_head *cb)
2188 {
2189 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2190 struct io_ring_ctx *ctx = req->ctx;
2191
2192 __io_req_task_cancel(req, -ECANCELED);
2193 percpu_ref_put(&ctx->refs);
2194 }
2195
2196 static void __io_req_task_submit(struct io_kiocb *req)
2197 {
2198 struct io_ring_ctx *ctx = req->ctx;
2199
2200 mutex_lock(&ctx->uring_lock);
2201 if (!ctx->sqo_dead &&
2202 !__io_sq_thread_acquire_mm(ctx) &&
2203 !__io_sq_thread_acquire_files(ctx))
2204 __io_queue_sqe(req, NULL);
2205 else
2206 __io_req_task_cancel(req, -EFAULT);
2207 mutex_unlock(&ctx->uring_lock);
2208 }
2209
2210 static void io_req_task_submit(struct callback_head *cb)
2211 {
2212 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2213 struct io_ring_ctx *ctx = req->ctx;
2214
2215 __io_req_task_submit(req);
2216 percpu_ref_put(&ctx->refs);
2217 }
2218
2219 static void io_req_task_queue(struct io_kiocb *req)
2220 {
2221 int ret;
2222
2223 init_task_work(&req->task_work, io_req_task_submit);
2224 percpu_ref_get(&req->ctx->refs);
2225
2226 ret = io_req_task_work_add(req);
2227 if (unlikely(ret)) {
2228 struct task_struct *tsk;
2229
2230 init_task_work(&req->task_work, io_req_task_cancel);
2231 tsk = io_wq_get_task(req->ctx->io_wq);
2232 task_work_add(tsk, &req->task_work, TWA_NONE);
2233 wake_up_process(tsk);
2234 }
2235 }
2236
2237 static inline void io_queue_next(struct io_kiocb *req)
2238 {
2239 struct io_kiocb *nxt = io_req_find_next(req);
2240
2241 if (nxt)
2242 io_req_task_queue(nxt);
2243 }
2244
2245 static void io_free_req(struct io_kiocb *req)
2246 {
2247 io_queue_next(req);
2248 __io_free_req(req);
2249 }
2250
2251 struct req_batch {
2252 void *reqs[IO_IOPOLL_BATCH];
2253 int to_free;
2254
2255 struct task_struct *task;
2256 int task_refs;
2257 };
2258
2259 static inline void io_init_req_batch(struct req_batch *rb)
2260 {
2261 rb->to_free = 0;
2262 rb->task_refs = 0;
2263 rb->task = NULL;
2264 }
2265
2266 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2267 struct req_batch *rb)
2268 {
2269 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2270 percpu_ref_put_many(&ctx->refs, rb->to_free);
2271 rb->to_free = 0;
2272 }
2273
2274 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2275 struct req_batch *rb)
2276 {
2277 if (rb->to_free)
2278 __io_req_free_batch_flush(ctx, rb);
2279 if (rb->task) {
2280 struct io_uring_task *tctx = rb->task->io_uring;
2281
2282 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2283 if (atomic_read(&tctx->in_idle))
2284 wake_up(&tctx->wait);
2285 put_task_struct_many(rb->task, rb->task_refs);
2286 rb->task = NULL;
2287 }
2288 }
2289
2290 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2291 {
2292 if (unlikely(io_is_fallback_req(req))) {
2293 io_free_req(req);
2294 return;
2295 }
2296 io_queue_next(req);
2297
2298 if (req->task != rb->task) {
2299 if (rb->task) {
2300 struct io_uring_task *tctx = rb->task->io_uring;
2301
2302 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2303 if (atomic_read(&tctx->in_idle))
2304 wake_up(&tctx->wait);
2305 put_task_struct_many(rb->task, rb->task_refs);
2306 }
2307 rb->task = req->task;
2308 rb->task_refs = 0;
2309 }
2310 rb->task_refs++;
2311
2312 io_dismantle_req(req);
2313 rb->reqs[rb->to_free++] = req;
2314 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2315 __io_req_free_batch_flush(req->ctx, rb);
2316 }
2317
2318 /*
2319 * Drop reference to request, return next in chain (if there is one) if this
2320 * was the last reference to this request.
2321 */
2322 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2323 {
2324 struct io_kiocb *nxt = NULL;
2325
2326 if (refcount_dec_and_test(&req->refs)) {
2327 nxt = io_req_find_next(req);
2328 __io_free_req(req);
2329 }
2330 return nxt;
2331 }
2332
2333 static void io_put_req(struct io_kiocb *req)
2334 {
2335 if (refcount_dec_and_test(&req->refs))
2336 io_free_req(req);
2337 }
2338
2339 static void io_put_req_deferred_cb(struct callback_head *cb)
2340 {
2341 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2342
2343 io_free_req(req);
2344 }
2345
2346 static void io_free_req_deferred(struct io_kiocb *req)
2347 {
2348 int ret;
2349
2350 init_task_work(&req->task_work, io_put_req_deferred_cb);
2351 ret = io_req_task_work_add(req);
2352 if (unlikely(ret)) {
2353 struct task_struct *tsk;
2354
2355 tsk = io_wq_get_task(req->ctx->io_wq);
2356 task_work_add(tsk, &req->task_work, TWA_NONE);
2357 wake_up_process(tsk);
2358 }
2359 }
2360
2361 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2362 {
2363 if (refcount_sub_and_test(refs, &req->refs))
2364 io_free_req_deferred(req);
2365 }
2366
2367 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2368 {
2369 struct io_kiocb *nxt;
2370
2371 /*
2372 * A ref is owned by io-wq in which context we're. So, if that's the
2373 * last one, it's safe to steal next work. False negatives are Ok,
2374 * it just will be re-punted async in io_put_work()
2375 */
2376 if (refcount_read(&req->refs) != 1)
2377 return NULL;
2378
2379 nxt = io_req_find_next(req);
2380 return nxt ? &nxt->work : NULL;
2381 }
2382
2383 static void io_double_put_req(struct io_kiocb *req)
2384 {
2385 /* drop both submit and complete references */
2386 if (refcount_sub_and_test(2, &req->refs))
2387 io_free_req(req);
2388 }
2389
2390 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2391 {
2392 /* See comment at the top of this file */
2393 smp_rmb();
2394 return __io_cqring_events(ctx);
2395 }
2396
2397 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2398 {
2399 struct io_rings *rings = ctx->rings;
2400
2401 /* make sure SQ entry isn't read before tail */
2402 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2403 }
2404
2405 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2406 {
2407 unsigned int cflags;
2408
2409 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2410 cflags |= IORING_CQE_F_BUFFER;
2411 req->flags &= ~REQ_F_BUFFER_SELECTED;
2412 kfree(kbuf);
2413 return cflags;
2414 }
2415
2416 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2417 {
2418 struct io_buffer *kbuf;
2419
2420 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2421 return io_put_kbuf(req, kbuf);
2422 }
2423
2424 static inline bool io_run_task_work(void)
2425 {
2426 /*
2427 * Not safe to run on exiting task, and the task_work handling will
2428 * not add work to such a task.
2429 */
2430 if (unlikely(current->flags & PF_EXITING))
2431 return false;
2432 if (current->task_works) {
2433 __set_current_state(TASK_RUNNING);
2434 task_work_run();
2435 return true;
2436 }
2437
2438 return false;
2439 }
2440
2441 static void io_iopoll_queue(struct list_head *again)
2442 {
2443 struct io_kiocb *req;
2444
2445 do {
2446 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2447 list_del(&req->inflight_entry);
2448 __io_complete_rw(req, -EAGAIN, 0, NULL);
2449 } while (!list_empty(again));
2450 }
2451
2452 /*
2453 * Find and free completed poll iocbs
2454 */
2455 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2456 struct list_head *done)
2457 {
2458 struct req_batch rb;
2459 struct io_kiocb *req;
2460 LIST_HEAD(again);
2461
2462 /* order with ->result store in io_complete_rw_iopoll() */
2463 smp_rmb();
2464
2465 io_init_req_batch(&rb);
2466 while (!list_empty(done)) {
2467 int cflags = 0;
2468
2469 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2470 if (READ_ONCE(req->result) == -EAGAIN) {
2471 req->result = 0;
2472 req->iopoll_completed = 0;
2473 list_move_tail(&req->inflight_entry, &again);
2474 continue;
2475 }
2476 list_del(&req->inflight_entry);
2477
2478 if (req->flags & REQ_F_BUFFER_SELECTED)
2479 cflags = io_put_rw_kbuf(req);
2480
2481 __io_cqring_fill_event(req, req->result, cflags);
2482 (*nr_events)++;
2483
2484 if (refcount_dec_and_test(&req->refs))
2485 io_req_free_batch(&rb, req);
2486 }
2487
2488 io_commit_cqring(ctx);
2489 io_cqring_ev_posted_iopoll(ctx);
2490 io_req_free_batch_finish(ctx, &rb);
2491
2492 if (!list_empty(&again))
2493 io_iopoll_queue(&again);
2494 }
2495
2496 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2497 long min)
2498 {
2499 struct io_kiocb *req, *tmp;
2500 LIST_HEAD(done);
2501 bool spin;
2502 int ret;
2503
2504 /*
2505 * Only spin for completions if we don't have multiple devices hanging
2506 * off our complete list, and we're under the requested amount.
2507 */
2508 spin = !ctx->poll_multi_file && *nr_events < min;
2509
2510 ret = 0;
2511 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2512 struct kiocb *kiocb = &req->rw.kiocb;
2513
2514 /*
2515 * Move completed and retryable entries to our local lists.
2516 * If we find a request that requires polling, break out
2517 * and complete those lists first, if we have entries there.
2518 */
2519 if (READ_ONCE(req->iopoll_completed)) {
2520 list_move_tail(&req->inflight_entry, &done);
2521 continue;
2522 }
2523 if (!list_empty(&done))
2524 break;
2525
2526 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2527 if (ret < 0)
2528 break;
2529
2530 /* iopoll may have completed current req */
2531 if (READ_ONCE(req->iopoll_completed))
2532 list_move_tail(&req->inflight_entry, &done);
2533
2534 if (ret && spin)
2535 spin = false;
2536 ret = 0;
2537 }
2538
2539 if (!list_empty(&done))
2540 io_iopoll_complete(ctx, nr_events, &done);
2541
2542 return ret;
2543 }
2544
2545 /*
2546 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2547 * non-spinning poll check - we'll still enter the driver poll loop, but only
2548 * as a non-spinning completion check.
2549 */
2550 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2551 long min)
2552 {
2553 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2554 int ret;
2555
2556 ret = io_do_iopoll(ctx, nr_events, min);
2557 if (ret < 0)
2558 return ret;
2559 if (*nr_events >= min)
2560 return 0;
2561 }
2562
2563 return 1;
2564 }
2565
2566 /*
2567 * We can't just wait for polled events to come to us, we have to actively
2568 * find and complete them.
2569 */
2570 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2571 {
2572 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2573 return;
2574
2575 mutex_lock(&ctx->uring_lock);
2576 while (!list_empty(&ctx->iopoll_list)) {
2577 unsigned int nr_events = 0;
2578
2579 io_do_iopoll(ctx, &nr_events, 0);
2580
2581 /* let it sleep and repeat later if can't complete a request */
2582 if (nr_events == 0)
2583 break;
2584 /*
2585 * Ensure we allow local-to-the-cpu processing to take place,
2586 * in this case we need to ensure that we reap all events.
2587 * Also let task_work, etc. to progress by releasing the mutex
2588 */
2589 if (need_resched()) {
2590 mutex_unlock(&ctx->uring_lock);
2591 cond_resched();
2592 mutex_lock(&ctx->uring_lock);
2593 }
2594 }
2595 mutex_unlock(&ctx->uring_lock);
2596 }
2597
2598 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2599 {
2600 unsigned int nr_events = 0;
2601 int iters = 0, ret = 0;
2602
2603 /*
2604 * We disallow the app entering submit/complete with polling, but we
2605 * still need to lock the ring to prevent racing with polled issue
2606 * that got punted to a workqueue.
2607 */
2608 mutex_lock(&ctx->uring_lock);
2609 do {
2610 /*
2611 * Don't enter poll loop if we already have events pending.
2612 * If we do, we can potentially be spinning for commands that
2613 * already triggered a CQE (eg in error).
2614 */
2615 if (test_bit(0, &ctx->cq_check_overflow))
2616 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2617 if (io_cqring_events(ctx))
2618 break;
2619
2620 /*
2621 * If a submit got punted to a workqueue, we can have the
2622 * application entering polling for a command before it gets
2623 * issued. That app will hold the uring_lock for the duration
2624 * of the poll right here, so we need to take a breather every
2625 * now and then to ensure that the issue has a chance to add
2626 * the poll to the issued list. Otherwise we can spin here
2627 * forever, while the workqueue is stuck trying to acquire the
2628 * very same mutex.
2629 */
2630 if (!(++iters & 7)) {
2631 mutex_unlock(&ctx->uring_lock);
2632 io_run_task_work();
2633 mutex_lock(&ctx->uring_lock);
2634 }
2635
2636 ret = io_iopoll_getevents(ctx, &nr_events, min);
2637 if (ret <= 0)
2638 break;
2639 ret = 0;
2640 } while (min && !nr_events && !need_resched());
2641
2642 mutex_unlock(&ctx->uring_lock);
2643 return ret;
2644 }
2645
2646 static void kiocb_end_write(struct io_kiocb *req)
2647 {
2648 /*
2649 * Tell lockdep we inherited freeze protection from submission
2650 * thread.
2651 */
2652 if (req->flags & REQ_F_ISREG) {
2653 struct inode *inode = file_inode(req->file);
2654
2655 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2656 }
2657 file_end_write(req->file);
2658 }
2659
2660 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2661 struct io_comp_state *cs)
2662 {
2663 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2664 int cflags = 0;
2665
2666 if (kiocb->ki_flags & IOCB_WRITE)
2667 kiocb_end_write(req);
2668
2669 if (res != req->result)
2670 req_set_fail_links(req);
2671 if (req->flags & REQ_F_BUFFER_SELECTED)
2672 cflags = io_put_rw_kbuf(req);
2673 __io_req_complete(req, res, cflags, cs);
2674 }
2675
2676 #ifdef CONFIG_BLOCK
2677 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2678 {
2679 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2680 ssize_t ret = -ECANCELED;
2681 struct iov_iter iter;
2682 int rw;
2683
2684 if (error) {
2685 ret = error;
2686 goto end_req;
2687 }
2688
2689 switch (req->opcode) {
2690 case IORING_OP_READV:
2691 case IORING_OP_READ_FIXED:
2692 case IORING_OP_READ:
2693 rw = READ;
2694 break;
2695 case IORING_OP_WRITEV:
2696 case IORING_OP_WRITE_FIXED:
2697 case IORING_OP_WRITE:
2698 rw = WRITE;
2699 break;
2700 default:
2701 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2702 req->opcode);
2703 goto end_req;
2704 }
2705
2706 if (!req->async_data) {
2707 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2708 if (ret < 0)
2709 goto end_req;
2710 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2711 if (!ret)
2712 return true;
2713 kfree(iovec);
2714 } else {
2715 return true;
2716 }
2717 end_req:
2718 req_set_fail_links(req);
2719 return false;
2720 }
2721 #endif
2722
2723 static bool io_rw_reissue(struct io_kiocb *req, long res)
2724 {
2725 #ifdef CONFIG_BLOCK
2726 umode_t mode = file_inode(req->file)->i_mode;
2727 int ret;
2728
2729 if (!S_ISBLK(mode) && !S_ISREG(mode))
2730 return false;
2731 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2732 return false;
2733
2734 lockdep_assert_held(&req->ctx->uring_lock);
2735
2736 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2737
2738 if (io_resubmit_prep(req, ret)) {
2739 refcount_inc(&req->refs);
2740 io_queue_async_work(req);
2741 return true;
2742 }
2743
2744 #endif
2745 return false;
2746 }
2747
2748 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2749 struct io_comp_state *cs)
2750 {
2751 if (!io_rw_reissue(req, res))
2752 io_complete_rw_common(&req->rw.kiocb, res, cs);
2753 }
2754
2755 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2756 {
2757 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2758
2759 __io_complete_rw(req, res, res2, NULL);
2760 }
2761
2762 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2763 {
2764 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2765
2766 if (kiocb->ki_flags & IOCB_WRITE)
2767 kiocb_end_write(req);
2768
2769 if (res != -EAGAIN && res != req->result)
2770 req_set_fail_links(req);
2771
2772 WRITE_ONCE(req->result, res);
2773 /* order with io_poll_complete() checking ->result */
2774 smp_wmb();
2775 WRITE_ONCE(req->iopoll_completed, 1);
2776 }
2777
2778 /*
2779 * After the iocb has been issued, it's safe to be found on the poll list.
2780 * Adding the kiocb to the list AFTER submission ensures that we don't
2781 * find it from a io_iopoll_getevents() thread before the issuer is done
2782 * accessing the kiocb cookie.
2783 */
2784 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2785 {
2786 struct io_ring_ctx *ctx = req->ctx;
2787
2788 /*
2789 * Track whether we have multiple files in our lists. This will impact
2790 * how we do polling eventually, not spinning if we're on potentially
2791 * different devices.
2792 */
2793 if (list_empty(&ctx->iopoll_list)) {
2794 ctx->poll_multi_file = false;
2795 } else if (!ctx->poll_multi_file) {
2796 struct io_kiocb *list_req;
2797
2798 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2799 inflight_entry);
2800 if (list_req->file != req->file)
2801 ctx->poll_multi_file = true;
2802 }
2803
2804 /*
2805 * For fast devices, IO may have already completed. If it has, add
2806 * it to the front so we find it first.
2807 */
2808 if (READ_ONCE(req->iopoll_completed))
2809 list_add(&req->inflight_entry, &ctx->iopoll_list);
2810 else
2811 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2812
2813 /*
2814 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2815 * task context or in io worker task context. If current task context is
2816 * sq thread, we don't need to check whether should wake up sq thread.
2817 */
2818 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2819 wq_has_sleeper(&ctx->sq_data->wait))
2820 wake_up(&ctx->sq_data->wait);
2821 }
2822
2823 static inline void __io_state_file_put(struct io_submit_state *state)
2824 {
2825 fput_many(state->file, state->file_refs);
2826 state->file_refs = 0;
2827 }
2828
2829 static inline void io_state_file_put(struct io_submit_state *state)
2830 {
2831 if (state->file_refs)
2832 __io_state_file_put(state);
2833 }
2834
2835 /*
2836 * Get as many references to a file as we have IOs left in this submission,
2837 * assuming most submissions are for one file, or at least that each file
2838 * has more than one submission.
2839 */
2840 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2841 {
2842 if (!state)
2843 return fget(fd);
2844
2845 if (state->file_refs) {
2846 if (state->fd == fd) {
2847 state->file_refs--;
2848 return state->file;
2849 }
2850 __io_state_file_put(state);
2851 }
2852 state->file = fget_many(fd, state->ios_left);
2853 if (unlikely(!state->file))
2854 return NULL;
2855
2856 state->fd = fd;
2857 state->file_refs = state->ios_left - 1;
2858 return state->file;
2859 }
2860
2861 static bool io_bdev_nowait(struct block_device *bdev)
2862 {
2863 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2864 }
2865
2866 /*
2867 * If we tracked the file through the SCM inflight mechanism, we could support
2868 * any file. For now, just ensure that anything potentially problematic is done
2869 * inline.
2870 */
2871 static bool io_file_supports_async(struct file *file, int rw)
2872 {
2873 umode_t mode = file_inode(file)->i_mode;
2874
2875 if (S_ISBLK(mode)) {
2876 if (IS_ENABLED(CONFIG_BLOCK) &&
2877 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2878 return true;
2879 return false;
2880 }
2881 if (S_ISCHR(mode) || S_ISSOCK(mode))
2882 return true;
2883 if (S_ISREG(mode)) {
2884 if (IS_ENABLED(CONFIG_BLOCK) &&
2885 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2886 file->f_op != &io_uring_fops)
2887 return true;
2888 return false;
2889 }
2890
2891 /* any ->read/write should understand O_NONBLOCK */
2892 if (file->f_flags & O_NONBLOCK)
2893 return true;
2894
2895 if (!(file->f_mode & FMODE_NOWAIT))
2896 return false;
2897
2898 if (rw == READ)
2899 return file->f_op->read_iter != NULL;
2900
2901 return file->f_op->write_iter != NULL;
2902 }
2903
2904 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2905 {
2906 struct io_ring_ctx *ctx = req->ctx;
2907 struct kiocb *kiocb = &req->rw.kiocb;
2908 unsigned ioprio;
2909 int ret;
2910
2911 if (S_ISREG(file_inode(req->file)->i_mode))
2912 req->flags |= REQ_F_ISREG;
2913
2914 kiocb->ki_pos = READ_ONCE(sqe->off);
2915 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2916 req->flags |= REQ_F_CUR_POS;
2917 kiocb->ki_pos = req->file->f_pos;
2918 }
2919 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2920 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2921 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2922 if (unlikely(ret))
2923 return ret;
2924
2925 ioprio = READ_ONCE(sqe->ioprio);
2926 if (ioprio) {
2927 ret = ioprio_check_cap(ioprio);
2928 if (ret)
2929 return ret;
2930
2931 kiocb->ki_ioprio = ioprio;
2932 } else
2933 kiocb->ki_ioprio = get_current_ioprio();
2934
2935 /* don't allow async punt if RWF_NOWAIT was requested */
2936 if (kiocb->ki_flags & IOCB_NOWAIT)
2937 req->flags |= REQ_F_NOWAIT;
2938
2939 if (ctx->flags & IORING_SETUP_IOPOLL) {
2940 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2941 !kiocb->ki_filp->f_op->iopoll)
2942 return -EOPNOTSUPP;
2943
2944 kiocb->ki_flags |= IOCB_HIPRI;
2945 kiocb->ki_complete = io_complete_rw_iopoll;
2946 req->iopoll_completed = 0;
2947 } else {
2948 if (kiocb->ki_flags & IOCB_HIPRI)
2949 return -EINVAL;
2950 kiocb->ki_complete = io_complete_rw;
2951 }
2952
2953 req->rw.addr = READ_ONCE(sqe->addr);
2954 req->rw.len = READ_ONCE(sqe->len);
2955 req->buf_index = READ_ONCE(sqe->buf_index);
2956 return 0;
2957 }
2958
2959 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2960 {
2961 switch (ret) {
2962 case -EIOCBQUEUED:
2963 break;
2964 case -ERESTARTSYS:
2965 case -ERESTARTNOINTR:
2966 case -ERESTARTNOHAND:
2967 case -ERESTART_RESTARTBLOCK:
2968 /*
2969 * We can't just restart the syscall, since previously
2970 * submitted sqes may already be in progress. Just fail this
2971 * IO with EINTR.
2972 */
2973 ret = -EINTR;
2974 fallthrough;
2975 default:
2976 kiocb->ki_complete(kiocb, ret, 0);
2977 }
2978 }
2979
2980 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2981 struct io_comp_state *cs)
2982 {
2983 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2984 struct io_async_rw *io = req->async_data;
2985
2986 /* add previously done IO, if any */
2987 if (io && io->bytes_done > 0) {
2988 if (ret < 0)
2989 ret = io->bytes_done;
2990 else
2991 ret += io->bytes_done;
2992 }
2993
2994 if (req->flags & REQ_F_CUR_POS)
2995 req->file->f_pos = kiocb->ki_pos;
2996 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2997 __io_complete_rw(req, ret, 0, cs);
2998 else
2999 io_rw_done(kiocb, ret);
3000 }
3001
3002 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
3003 struct iov_iter *iter)
3004 {
3005 struct io_ring_ctx *ctx = req->ctx;
3006 size_t len = req->rw.len;
3007 struct io_mapped_ubuf *imu;
3008 u16 index, buf_index = req->buf_index;
3009 size_t offset;
3010 u64 buf_addr;
3011
3012 if (unlikely(buf_index >= ctx->nr_user_bufs))
3013 return -EFAULT;
3014 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3015 imu = &ctx->user_bufs[index];
3016 buf_addr = req->rw.addr;
3017
3018 /* overflow */
3019 if (buf_addr + len < buf_addr)
3020 return -EFAULT;
3021 /* not inside the mapped region */
3022 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3023 return -EFAULT;
3024
3025 /*
3026 * May not be a start of buffer, set size appropriately
3027 * and advance us to the beginning.
3028 */
3029 offset = buf_addr - imu->ubuf;
3030 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3031
3032 if (offset) {
3033 /*
3034 * Don't use iov_iter_advance() here, as it's really slow for
3035 * using the latter parts of a big fixed buffer - it iterates
3036 * over each segment manually. We can cheat a bit here, because
3037 * we know that:
3038 *
3039 * 1) it's a BVEC iter, we set it up
3040 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3041 * first and last bvec
3042 *
3043 * So just find our index, and adjust the iterator afterwards.
3044 * If the offset is within the first bvec (or the whole first
3045 * bvec, just use iov_iter_advance(). This makes it easier
3046 * since we can just skip the first segment, which may not
3047 * be PAGE_SIZE aligned.
3048 */
3049 const struct bio_vec *bvec = imu->bvec;
3050
3051 if (offset <= bvec->bv_len) {
3052 iov_iter_advance(iter, offset);
3053 } else {
3054 unsigned long seg_skip;
3055
3056 /* skip first vec */
3057 offset -= bvec->bv_len;
3058 seg_skip = 1 + (offset >> PAGE_SHIFT);
3059
3060 iter->bvec = bvec + seg_skip;
3061 iter->nr_segs -= seg_skip;
3062 iter->count -= bvec->bv_len + offset;
3063 iter->iov_offset = offset & ~PAGE_MASK;
3064 }
3065 }
3066
3067 return len;
3068 }
3069
3070 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3071 {
3072 if (needs_lock)
3073 mutex_unlock(&ctx->uring_lock);
3074 }
3075
3076 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3077 {
3078 /*
3079 * "Normal" inline submissions always hold the uring_lock, since we
3080 * grab it from the system call. Same is true for the SQPOLL offload.
3081 * The only exception is when we've detached the request and issue it
3082 * from an async worker thread, grab the lock for that case.
3083 */
3084 if (needs_lock)
3085 mutex_lock(&ctx->uring_lock);
3086 }
3087
3088 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3089 int bgid, struct io_buffer *kbuf,
3090 bool needs_lock)
3091 {
3092 struct io_buffer *head;
3093
3094 if (req->flags & REQ_F_BUFFER_SELECTED)
3095 return kbuf;
3096
3097 io_ring_submit_lock(req->ctx, needs_lock);
3098
3099 lockdep_assert_held(&req->ctx->uring_lock);
3100
3101 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3102 if (head) {
3103 if (!list_empty(&head->list)) {
3104 kbuf = list_last_entry(&head->list, struct io_buffer,
3105 list);
3106 list_del(&kbuf->list);
3107 } else {
3108 kbuf = head;
3109 idr_remove(&req->ctx->io_buffer_idr, bgid);
3110 }
3111 if (*len > kbuf->len)
3112 *len = kbuf->len;
3113 } else {
3114 kbuf = ERR_PTR(-ENOBUFS);
3115 }
3116
3117 io_ring_submit_unlock(req->ctx, needs_lock);
3118
3119 return kbuf;
3120 }
3121
3122 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3123 bool needs_lock)
3124 {
3125 struct io_buffer *kbuf;
3126 u16 bgid;
3127
3128 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3129 bgid = req->buf_index;
3130 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3131 if (IS_ERR(kbuf))
3132 return kbuf;
3133 req->rw.addr = (u64) (unsigned long) kbuf;
3134 req->flags |= REQ_F_BUFFER_SELECTED;
3135 return u64_to_user_ptr(kbuf->addr);
3136 }
3137
3138 #ifdef CONFIG_COMPAT
3139 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3140 bool needs_lock)
3141 {
3142 struct compat_iovec __user *uiov;
3143 compat_ssize_t clen;
3144 void __user *buf;
3145 ssize_t len;
3146
3147 uiov = u64_to_user_ptr(req->rw.addr);
3148 if (!access_ok(uiov, sizeof(*uiov)))
3149 return -EFAULT;
3150 if (__get_user(clen, &uiov->iov_len))
3151 return -EFAULT;
3152 if (clen < 0)
3153 return -EINVAL;
3154
3155 len = clen;
3156 buf = io_rw_buffer_select(req, &len, needs_lock);
3157 if (IS_ERR(buf))
3158 return PTR_ERR(buf);
3159 iov[0].iov_base = buf;
3160 iov[0].iov_len = (compat_size_t) len;
3161 return 0;
3162 }
3163 #endif
3164
3165 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3166 bool needs_lock)
3167 {
3168 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3169 void __user *buf;
3170 ssize_t len;
3171
3172 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3173 return -EFAULT;
3174
3175 len = iov[0].iov_len;
3176 if (len < 0)
3177 return -EINVAL;
3178 buf = io_rw_buffer_select(req, &len, needs_lock);
3179 if (IS_ERR(buf))
3180 return PTR_ERR(buf);
3181 iov[0].iov_base = buf;
3182 iov[0].iov_len = len;
3183 return 0;
3184 }
3185
3186 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3187 bool needs_lock)
3188 {
3189 if (req->flags & REQ_F_BUFFER_SELECTED) {
3190 struct io_buffer *kbuf;
3191
3192 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3193 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3194 iov[0].iov_len = kbuf->len;
3195 return 0;
3196 }
3197 if (req->rw.len != 1)
3198 return -EINVAL;
3199
3200 #ifdef CONFIG_COMPAT
3201 if (req->ctx->compat)
3202 return io_compat_import(req, iov, needs_lock);
3203 #endif
3204
3205 return __io_iov_buffer_select(req, iov, needs_lock);
3206 }
3207
3208 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3209 struct iovec **iovec, struct iov_iter *iter,
3210 bool needs_lock)
3211 {
3212 void __user *buf = u64_to_user_ptr(req->rw.addr);
3213 size_t sqe_len = req->rw.len;
3214 ssize_t ret;
3215 u8 opcode;
3216
3217 opcode = req->opcode;
3218 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3219 *iovec = NULL;
3220 return io_import_fixed(req, rw, iter);
3221 }
3222
3223 /* buffer index only valid with fixed read/write, or buffer select */
3224 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3225 return -EINVAL;
3226
3227 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3228 if (req->flags & REQ_F_BUFFER_SELECT) {
3229 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3230 if (IS_ERR(buf))
3231 return PTR_ERR(buf);
3232 req->rw.len = sqe_len;
3233 }
3234
3235 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3236 *iovec = NULL;
3237 return ret;
3238 }
3239
3240 if (req->flags & REQ_F_BUFFER_SELECT) {
3241 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3242 if (!ret) {
3243 ret = (*iovec)->iov_len;
3244 iov_iter_init(iter, rw, *iovec, 1, ret);
3245 }
3246 *iovec = NULL;
3247 return ret;
3248 }
3249
3250 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3251 req->ctx->compat);
3252 }
3253
3254 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3255 {
3256 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3257 }
3258
3259 /*
3260 * For files that don't have ->read_iter() and ->write_iter(), handle them
3261 * by looping over ->read() or ->write() manually.
3262 */
3263 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3264 {
3265 struct kiocb *kiocb = &req->rw.kiocb;
3266 struct file *file = req->file;
3267 ssize_t ret = 0;
3268
3269 /*
3270 * Don't support polled IO through this interface, and we can't
3271 * support non-blocking either. For the latter, this just causes
3272 * the kiocb to be handled from an async context.
3273 */
3274 if (kiocb->ki_flags & IOCB_HIPRI)
3275 return -EOPNOTSUPP;
3276 if (kiocb->ki_flags & IOCB_NOWAIT)
3277 return -EAGAIN;
3278
3279 while (iov_iter_count(iter)) {
3280 struct iovec iovec;
3281 ssize_t nr;
3282
3283 if (!iov_iter_is_bvec(iter)) {
3284 iovec = iov_iter_iovec(iter);
3285 } else {
3286 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3287 iovec.iov_len = req->rw.len;
3288 }
3289
3290 if (rw == READ) {
3291 nr = file->f_op->read(file, iovec.iov_base,
3292 iovec.iov_len, io_kiocb_ppos(kiocb));
3293 } else {
3294 nr = file->f_op->write(file, iovec.iov_base,
3295 iovec.iov_len, io_kiocb_ppos(kiocb));
3296 }
3297
3298 if (nr < 0) {
3299 if (!ret)
3300 ret = nr;
3301 break;
3302 }
3303 ret += nr;
3304 if (nr != iovec.iov_len)
3305 break;
3306 req->rw.len -= nr;
3307 req->rw.addr += nr;
3308 iov_iter_advance(iter, nr);
3309 }
3310
3311 return ret;
3312 }
3313
3314 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3315 const struct iovec *fast_iov, struct iov_iter *iter)
3316 {
3317 struct io_async_rw *rw = req->async_data;
3318
3319 memcpy(&rw->iter, iter, sizeof(*iter));
3320 rw->free_iovec = iovec;
3321 rw->bytes_done = 0;
3322 /* can only be fixed buffers, no need to do anything */
3323 if (iov_iter_is_bvec(iter))
3324 return;
3325 if (!iovec) {
3326 unsigned iov_off = 0;
3327
3328 rw->iter.iov = rw->fast_iov;
3329 if (iter->iov != fast_iov) {
3330 iov_off = iter->iov - fast_iov;
3331 rw->iter.iov += iov_off;
3332 }
3333 if (rw->fast_iov != fast_iov)
3334 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3335 sizeof(struct iovec) * iter->nr_segs);
3336 } else {
3337 req->flags |= REQ_F_NEED_CLEANUP;
3338 }
3339 }
3340
3341 static inline int __io_alloc_async_data(struct io_kiocb *req)
3342 {
3343 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3344 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3345 return req->async_data == NULL;
3346 }
3347
3348 static int io_alloc_async_data(struct io_kiocb *req)
3349 {
3350 if (!io_op_defs[req->opcode].needs_async_data)
3351 return 0;
3352
3353 return __io_alloc_async_data(req);
3354 }
3355
3356 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3357 const struct iovec *fast_iov,
3358 struct iov_iter *iter, bool force)
3359 {
3360 if (!force && !io_op_defs[req->opcode].needs_async_data)
3361 return 0;
3362 if (!req->async_data) {
3363 if (__io_alloc_async_data(req))
3364 return -ENOMEM;
3365
3366 io_req_map_rw(req, iovec, fast_iov, iter);
3367 }
3368 return 0;
3369 }
3370
3371 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3372 {
3373 struct io_async_rw *iorw = req->async_data;
3374 struct iovec *iov = iorw->fast_iov;
3375 ssize_t ret;
3376
3377 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3378 if (unlikely(ret < 0))
3379 return ret;
3380
3381 iorw->bytes_done = 0;
3382 iorw->free_iovec = iov;
3383 if (iov)
3384 req->flags |= REQ_F_NEED_CLEANUP;
3385 return 0;
3386 }
3387
3388 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3389 {
3390 ssize_t ret;
3391
3392 ret = io_prep_rw(req, sqe);
3393 if (ret)
3394 return ret;
3395
3396 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3397 return -EBADF;
3398
3399 /* either don't need iovec imported or already have it */
3400 if (!req->async_data)
3401 return 0;
3402 return io_rw_prep_async(req, READ);
3403 }
3404
3405 /*
3406 * This is our waitqueue callback handler, registered through lock_page_async()
3407 * when we initially tried to do the IO with the iocb armed our waitqueue.
3408 * This gets called when the page is unlocked, and we generally expect that to
3409 * happen when the page IO is completed and the page is now uptodate. This will
3410 * queue a task_work based retry of the operation, attempting to copy the data
3411 * again. If the latter fails because the page was NOT uptodate, then we will
3412 * do a thread based blocking retry of the operation. That's the unexpected
3413 * slow path.
3414 */
3415 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3416 int sync, void *arg)
3417 {
3418 struct wait_page_queue *wpq;
3419 struct io_kiocb *req = wait->private;
3420 struct wait_page_key *key = arg;
3421 int ret;
3422
3423 wpq = container_of(wait, struct wait_page_queue, wait);
3424
3425 if (!wake_page_match(wpq, key))
3426 return 0;
3427
3428 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3429 list_del_init(&wait->entry);
3430
3431 init_task_work(&req->task_work, io_req_task_submit);
3432 percpu_ref_get(&req->ctx->refs);
3433
3434 /* submit ref gets dropped, acquire a new one */
3435 refcount_inc(&req->refs);
3436 ret = io_req_task_work_add(req);
3437 if (unlikely(ret)) {
3438 struct task_struct *tsk;
3439
3440 /* queue just for cancelation */
3441 init_task_work(&req->task_work, io_req_task_cancel);
3442 tsk = io_wq_get_task(req->ctx->io_wq);
3443 task_work_add(tsk, &req->task_work, TWA_NONE);
3444 wake_up_process(tsk);
3445 }
3446 return 1;
3447 }
3448
3449 /*
3450 * This controls whether a given IO request should be armed for async page
3451 * based retry. If we return false here, the request is handed to the async
3452 * worker threads for retry. If we're doing buffered reads on a regular file,
3453 * we prepare a private wait_page_queue entry and retry the operation. This
3454 * will either succeed because the page is now uptodate and unlocked, or it
3455 * will register a callback when the page is unlocked at IO completion. Through
3456 * that callback, io_uring uses task_work to setup a retry of the operation.
3457 * That retry will attempt the buffered read again. The retry will generally
3458 * succeed, or in rare cases where it fails, we then fall back to using the
3459 * async worker threads for a blocking retry.
3460 */
3461 static bool io_rw_should_retry(struct io_kiocb *req)
3462 {
3463 struct io_async_rw *rw = req->async_data;
3464 struct wait_page_queue *wait = &rw->wpq;
3465 struct kiocb *kiocb = &req->rw.kiocb;
3466
3467 /* never retry for NOWAIT, we just complete with -EAGAIN */
3468 if (req->flags & REQ_F_NOWAIT)
3469 return false;
3470
3471 /* Only for buffered IO */
3472 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3473 return false;
3474
3475 /*
3476 * just use poll if we can, and don't attempt if the fs doesn't
3477 * support callback based unlocks
3478 */
3479 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3480 return false;
3481
3482 wait->wait.func = io_async_buf_func;
3483 wait->wait.private = req;
3484 wait->wait.flags = 0;
3485 INIT_LIST_HEAD(&wait->wait.entry);
3486 kiocb->ki_flags |= IOCB_WAITQ;
3487 kiocb->ki_flags &= ~IOCB_NOWAIT;
3488 kiocb->ki_waitq = wait;
3489 return true;
3490 }
3491
3492 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3493 {
3494 if (req->file->f_op->read_iter)
3495 return call_read_iter(req->file, &req->rw.kiocb, iter);
3496 else if (req->file->f_op->read)
3497 return loop_rw_iter(READ, req, iter);
3498 else
3499 return -EINVAL;
3500 }
3501
3502 static int io_read(struct io_kiocb *req, bool force_nonblock,
3503 struct io_comp_state *cs)
3504 {
3505 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3506 struct kiocb *kiocb = &req->rw.kiocb;
3507 struct iov_iter __iter, *iter = &__iter;
3508 struct io_async_rw *rw = req->async_data;
3509 ssize_t io_size, ret, ret2;
3510 bool no_async;
3511
3512 if (rw) {
3513 iter = &rw->iter;
3514 iovec = NULL;
3515 } else {
3516 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3517 if (ret < 0)
3518 return ret;
3519 }
3520 io_size = iov_iter_count(iter);
3521 req->result = io_size;
3522 ret = 0;
3523
3524 /* Ensure we clear previously set non-block flag */
3525 if (!force_nonblock)
3526 kiocb->ki_flags &= ~IOCB_NOWAIT;
3527 else
3528 kiocb->ki_flags |= IOCB_NOWAIT;
3529
3530
3531 /* If the file doesn't support async, just async punt */
3532 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3533 if (no_async)
3534 goto copy_iov;
3535
3536 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3537 if (unlikely(ret))
3538 goto out_free;
3539
3540 ret = io_iter_do_read(req, iter);
3541
3542 if (!ret) {
3543 goto done;
3544 } else if (ret == -EIOCBQUEUED) {
3545 ret = 0;
3546 goto out_free;
3547 } else if (ret == -EAGAIN) {
3548 /* IOPOLL retry should happen for io-wq threads */
3549 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3550 goto done;
3551 /* no retry on NONBLOCK marked file */
3552 if (req->file->f_flags & O_NONBLOCK)
3553 goto done;
3554 /* some cases will consume bytes even on error returns */
3555 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3556 ret = 0;
3557 goto copy_iov;
3558 } else if (ret < 0) {
3559 /* make sure -ERESTARTSYS -> -EINTR is done */
3560 goto done;
3561 }
3562
3563 /* read it all, or we did blocking attempt. no retry. */
3564 if (!iov_iter_count(iter) || !force_nonblock ||
3565 (req->file->f_flags & O_NONBLOCK) || !(req->flags & REQ_F_ISREG))
3566 goto done;
3567
3568 io_size -= ret;
3569 copy_iov:
3570 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3571 if (ret2) {
3572 ret = ret2;
3573 goto out_free;
3574 }
3575 if (no_async)
3576 return -EAGAIN;
3577 rw = req->async_data;
3578 /* it's copied and will be cleaned with ->io */
3579 iovec = NULL;
3580 /* now use our persistent iterator, if we aren't already */
3581 iter = &rw->iter;
3582 retry:
3583 rw->bytes_done += ret;
3584 /* if we can retry, do so with the callbacks armed */
3585 if (!io_rw_should_retry(req)) {
3586 kiocb->ki_flags &= ~IOCB_WAITQ;
3587 return -EAGAIN;
3588 }
3589
3590 /*
3591 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3592 * get -EIOCBQUEUED, then we'll get a notification when the desired
3593 * page gets unlocked. We can also get a partial read here, and if we
3594 * do, then just retry at the new offset.
3595 */
3596 ret = io_iter_do_read(req, iter);
3597 if (ret == -EIOCBQUEUED) {
3598 ret = 0;
3599 goto out_free;
3600 } else if (ret > 0 && ret < io_size) {
3601 /* we got some bytes, but not all. retry. */
3602 goto retry;
3603 }
3604 done:
3605 kiocb_done(kiocb, ret, cs);
3606 ret = 0;
3607 out_free:
3608 /* it's reportedly faster than delegating the null check to kfree() */
3609 if (iovec)
3610 kfree(iovec);
3611 return ret;
3612 }
3613
3614 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3615 {
3616 ssize_t ret;
3617
3618 ret = io_prep_rw(req, sqe);
3619 if (ret)
3620 return ret;
3621
3622 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3623 return -EBADF;
3624
3625 /* either don't need iovec imported or already have it */
3626 if (!req->async_data)
3627 return 0;
3628 return io_rw_prep_async(req, WRITE);
3629 }
3630
3631 static int io_write(struct io_kiocb *req, bool force_nonblock,
3632 struct io_comp_state *cs)
3633 {
3634 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3635 struct kiocb *kiocb = &req->rw.kiocb;
3636 struct iov_iter __iter, *iter = &__iter;
3637 struct io_async_rw *rw = req->async_data;
3638 ssize_t ret, ret2, io_size;
3639
3640 if (rw) {
3641 iter = &rw->iter;
3642 iovec = NULL;
3643 } else {
3644 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3645 if (ret < 0)
3646 return ret;
3647 }
3648 io_size = iov_iter_count(iter);
3649 req->result = io_size;
3650
3651 /* Ensure we clear previously set non-block flag */
3652 if (!force_nonblock)
3653 kiocb->ki_flags &= ~IOCB_NOWAIT;
3654 else
3655 kiocb->ki_flags |= IOCB_NOWAIT;
3656
3657 /* If the file doesn't support async, just async punt */
3658 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3659 goto copy_iov;
3660
3661 /* file path doesn't support NOWAIT for non-direct_IO */
3662 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3663 (req->flags & REQ_F_ISREG))
3664 goto copy_iov;
3665
3666 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3667 if (unlikely(ret))
3668 goto out_free;
3669
3670 /*
3671 * Open-code file_start_write here to grab freeze protection,
3672 * which will be released by another thread in
3673 * io_complete_rw(). Fool lockdep by telling it the lock got
3674 * released so that it doesn't complain about the held lock when
3675 * we return to userspace.
3676 */
3677 if (req->flags & REQ_F_ISREG) {
3678 sb_start_write(file_inode(req->file)->i_sb);
3679 __sb_writers_release(file_inode(req->file)->i_sb,
3680 SB_FREEZE_WRITE);
3681 }
3682 kiocb->ki_flags |= IOCB_WRITE;
3683
3684 if (req->file->f_op->write_iter)
3685 ret2 = call_write_iter(req->file, kiocb, iter);
3686 else if (req->file->f_op->write)
3687 ret2 = loop_rw_iter(WRITE, req, iter);
3688 else
3689 ret2 = -EINVAL;
3690
3691 /*
3692 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3693 * retry them without IOCB_NOWAIT.
3694 */
3695 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3696 ret2 = -EAGAIN;
3697 /* no retry on NONBLOCK marked file */
3698 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3699 goto done;
3700 if (!force_nonblock || ret2 != -EAGAIN) {
3701 /* IOPOLL retry should happen for io-wq threads */
3702 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3703 goto copy_iov;
3704 done:
3705 kiocb_done(kiocb, ret2, cs);
3706 } else {
3707 copy_iov:
3708 /* some cases will consume bytes even on error returns */
3709 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3710 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3711 if (!ret)
3712 return -EAGAIN;
3713 }
3714 out_free:
3715 /* it's reportedly faster than delegating the null check to kfree() */
3716 if (iovec)
3717 kfree(iovec);
3718 return ret;
3719 }
3720
3721 static int io_renameat_prep(struct io_kiocb *req,
3722 const struct io_uring_sqe *sqe)
3723 {
3724 struct io_rename *ren = &req->rename;
3725 const char __user *oldf, *newf;
3726
3727 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3728 return -EBADF;
3729
3730 ren->old_dfd = READ_ONCE(sqe->fd);
3731 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3732 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3733 ren->new_dfd = READ_ONCE(sqe->len);
3734 ren->flags = READ_ONCE(sqe->rename_flags);
3735
3736 ren->oldpath = getname(oldf);
3737 if (IS_ERR(ren->oldpath))
3738 return PTR_ERR(ren->oldpath);
3739
3740 ren->newpath = getname(newf);
3741 if (IS_ERR(ren->newpath)) {
3742 putname(ren->oldpath);
3743 return PTR_ERR(ren->newpath);
3744 }
3745
3746 req->flags |= REQ_F_NEED_CLEANUP;
3747 return 0;
3748 }
3749
3750 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3751 {
3752 struct io_rename *ren = &req->rename;
3753 int ret;
3754
3755 if (force_nonblock)
3756 return -EAGAIN;
3757
3758 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3759 ren->newpath, ren->flags);
3760
3761 req->flags &= ~REQ_F_NEED_CLEANUP;
3762 if (ret < 0)
3763 req_set_fail_links(req);
3764 io_req_complete(req, ret);
3765 return 0;
3766 }
3767
3768 static int io_unlinkat_prep(struct io_kiocb *req,
3769 const struct io_uring_sqe *sqe)
3770 {
3771 struct io_unlink *un = &req->unlink;
3772 const char __user *fname;
3773
3774 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3775 return -EBADF;
3776
3777 un->dfd = READ_ONCE(sqe->fd);
3778
3779 un->flags = READ_ONCE(sqe->unlink_flags);
3780 if (un->flags & ~AT_REMOVEDIR)
3781 return -EINVAL;
3782
3783 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3784 un->filename = getname(fname);
3785 if (IS_ERR(un->filename))
3786 return PTR_ERR(un->filename);
3787
3788 req->flags |= REQ_F_NEED_CLEANUP;
3789 return 0;
3790 }
3791
3792 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3793 {
3794 struct io_unlink *un = &req->unlink;
3795 int ret;
3796
3797 if (force_nonblock)
3798 return -EAGAIN;
3799
3800 if (un->flags & AT_REMOVEDIR)
3801 ret = do_rmdir(un->dfd, un->filename);
3802 else
3803 ret = do_unlinkat(un->dfd, un->filename);
3804
3805 req->flags &= ~REQ_F_NEED_CLEANUP;
3806 if (ret < 0)
3807 req_set_fail_links(req);
3808 io_req_complete(req, ret);
3809 return 0;
3810 }
3811
3812 static int io_shutdown_prep(struct io_kiocb *req,
3813 const struct io_uring_sqe *sqe)
3814 {
3815 #if defined(CONFIG_NET)
3816 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3817 return -EINVAL;
3818 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3819 sqe->buf_index)
3820 return -EINVAL;
3821
3822 req->shutdown.how = READ_ONCE(sqe->len);
3823 return 0;
3824 #else
3825 return -EOPNOTSUPP;
3826 #endif
3827 }
3828
3829 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3830 {
3831 #if defined(CONFIG_NET)
3832 struct socket *sock;
3833 int ret;
3834
3835 if (force_nonblock)
3836 return -EAGAIN;
3837
3838 sock = sock_from_file(req->file);
3839 if (unlikely(!sock))
3840 return -ENOTSOCK;
3841
3842 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3843 if (ret < 0)
3844 req_set_fail_links(req);
3845 io_req_complete(req, ret);
3846 return 0;
3847 #else
3848 return -EOPNOTSUPP;
3849 #endif
3850 }
3851
3852 static int __io_splice_prep(struct io_kiocb *req,
3853 const struct io_uring_sqe *sqe)
3854 {
3855 struct io_splice* sp = &req->splice;
3856 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3857
3858 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3859 return -EINVAL;
3860
3861 sp->file_in = NULL;
3862 sp->len = READ_ONCE(sqe->len);
3863 sp->flags = READ_ONCE(sqe->splice_flags);
3864
3865 if (unlikely(sp->flags & ~valid_flags))
3866 return -EINVAL;
3867
3868 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3869 (sp->flags & SPLICE_F_FD_IN_FIXED));
3870 if (!sp->file_in)
3871 return -EBADF;
3872 req->flags |= REQ_F_NEED_CLEANUP;
3873
3874 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3875 /*
3876 * Splice operation will be punted aync, and here need to
3877 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3878 */
3879 io_req_init_async(req);
3880 req->work.flags |= IO_WQ_WORK_UNBOUND;
3881 }
3882
3883 return 0;
3884 }
3885
3886 static int io_tee_prep(struct io_kiocb *req,
3887 const struct io_uring_sqe *sqe)
3888 {
3889 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3890 return -EINVAL;
3891 return __io_splice_prep(req, sqe);
3892 }
3893
3894 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3895 {
3896 struct io_splice *sp = &req->splice;
3897 struct file *in = sp->file_in;
3898 struct file *out = sp->file_out;
3899 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3900 long ret = 0;
3901
3902 if (force_nonblock)
3903 return -EAGAIN;
3904 if (sp->len)
3905 ret = do_tee(in, out, sp->len, flags);
3906
3907 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3908 req->flags &= ~REQ_F_NEED_CLEANUP;
3909
3910 if (ret != sp->len)
3911 req_set_fail_links(req);
3912 io_req_complete(req, ret);
3913 return 0;
3914 }
3915
3916 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3917 {
3918 struct io_splice* sp = &req->splice;
3919
3920 sp->off_in = READ_ONCE(sqe->splice_off_in);
3921 sp->off_out = READ_ONCE(sqe->off);
3922 return __io_splice_prep(req, sqe);
3923 }
3924
3925 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3926 {
3927 struct io_splice *sp = &req->splice;
3928 struct file *in = sp->file_in;
3929 struct file *out = sp->file_out;
3930 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3931 loff_t *poff_in, *poff_out;
3932 long ret = 0;
3933
3934 if (force_nonblock)
3935 return -EAGAIN;
3936
3937 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3938 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3939
3940 if (sp->len)
3941 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3942
3943 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3944 req->flags &= ~REQ_F_NEED_CLEANUP;
3945
3946 if (ret != sp->len)
3947 req_set_fail_links(req);
3948 io_req_complete(req, ret);
3949 return 0;
3950 }
3951
3952 /*
3953 * IORING_OP_NOP just posts a completion event, nothing else.
3954 */
3955 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3956 {
3957 struct io_ring_ctx *ctx = req->ctx;
3958
3959 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3960 return -EINVAL;
3961
3962 __io_req_complete(req, 0, 0, cs);
3963 return 0;
3964 }
3965
3966 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3967 {
3968 struct io_ring_ctx *ctx = req->ctx;
3969
3970 if (!req->file)
3971 return -EBADF;
3972
3973 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3974 return -EINVAL;
3975 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3976 return -EINVAL;
3977
3978 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3979 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3980 return -EINVAL;
3981
3982 req->sync.off = READ_ONCE(sqe->off);
3983 req->sync.len = READ_ONCE(sqe->len);
3984 return 0;
3985 }
3986
3987 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3988 {
3989 loff_t end = req->sync.off + req->sync.len;
3990 int ret;
3991
3992 /* fsync always requires a blocking context */
3993 if (force_nonblock)
3994 return -EAGAIN;
3995
3996 ret = vfs_fsync_range(req->file, req->sync.off,
3997 end > 0 ? end : LLONG_MAX,
3998 req->sync.flags & IORING_FSYNC_DATASYNC);
3999 if (ret < 0)
4000 req_set_fail_links(req);
4001 io_req_complete(req, ret);
4002 return 0;
4003 }
4004
4005 static int io_fallocate_prep(struct io_kiocb *req,
4006 const struct io_uring_sqe *sqe)
4007 {
4008 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4009 return -EINVAL;
4010 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4011 return -EINVAL;
4012
4013 req->sync.off = READ_ONCE(sqe->off);
4014 req->sync.len = READ_ONCE(sqe->addr);
4015 req->sync.mode = READ_ONCE(sqe->len);
4016 return 0;
4017 }
4018
4019 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4020 {
4021 int ret;
4022
4023 /* fallocate always requiring blocking context */
4024 if (force_nonblock)
4025 return -EAGAIN;
4026 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4027 req->sync.len);
4028 if (ret < 0)
4029 req_set_fail_links(req);
4030 io_req_complete(req, ret);
4031 return 0;
4032 }
4033
4034 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4035 {
4036 const char __user *fname;
4037 int ret;
4038
4039 if (unlikely(sqe->ioprio || sqe->buf_index))
4040 return -EINVAL;
4041 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4042 return -EBADF;
4043
4044 /* open.how should be already initialised */
4045 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4046 req->open.how.flags |= O_LARGEFILE;
4047
4048 req->open.dfd = READ_ONCE(sqe->fd);
4049 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4050 req->open.filename = getname(fname);
4051 if (IS_ERR(req->open.filename)) {
4052 ret = PTR_ERR(req->open.filename);
4053 req->open.filename = NULL;
4054 return ret;
4055 }
4056 req->open.nofile = rlimit(RLIMIT_NOFILE);
4057 req->open.ignore_nonblock = false;
4058 req->flags |= REQ_F_NEED_CLEANUP;
4059 return 0;
4060 }
4061
4062 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4063 {
4064 u64 flags, mode;
4065
4066 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4067 return -EINVAL;
4068 mode = READ_ONCE(sqe->len);
4069 flags = READ_ONCE(sqe->open_flags);
4070 req->open.how = build_open_how(flags, mode);
4071 return __io_openat_prep(req, sqe);
4072 }
4073
4074 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4075 {
4076 struct open_how __user *how;
4077 size_t len;
4078 int ret;
4079
4080 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4081 return -EINVAL;
4082 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4083 len = READ_ONCE(sqe->len);
4084 if (len < OPEN_HOW_SIZE_VER0)
4085 return -EINVAL;
4086
4087 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4088 len);
4089 if (ret)
4090 return ret;
4091
4092 return __io_openat_prep(req, sqe);
4093 }
4094
4095 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4096 {
4097 struct open_flags op;
4098 struct file *file;
4099 int ret;
4100
4101 if (force_nonblock && !req->open.ignore_nonblock)
4102 return -EAGAIN;
4103
4104 ret = build_open_flags(&req->open.how, &op);
4105 if (ret)
4106 goto err;
4107
4108 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4109 if (ret < 0)
4110 goto err;
4111
4112 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4113 if (IS_ERR(file)) {
4114 put_unused_fd(ret);
4115 ret = PTR_ERR(file);
4116 /*
4117 * A work-around to ensure that /proc/self works that way
4118 * that it should - if we get -EOPNOTSUPP back, then assume
4119 * that proc_self_get_link() failed us because we're in async
4120 * context. We should be safe to retry this from the task
4121 * itself with force_nonblock == false set, as it should not
4122 * block on lookup. Would be nice to know this upfront and
4123 * avoid the async dance, but doesn't seem feasible.
4124 */
4125 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4126 req->open.ignore_nonblock = true;
4127 refcount_inc(&req->refs);
4128 io_req_task_queue(req);
4129 return 0;
4130 }
4131 } else {
4132 fsnotify_open(file);
4133 fd_install(ret, file);
4134 }
4135 err:
4136 putname(req->open.filename);
4137 req->flags &= ~REQ_F_NEED_CLEANUP;
4138 if (ret < 0)
4139 req_set_fail_links(req);
4140 io_req_complete(req, ret);
4141 return 0;
4142 }
4143
4144 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4145 {
4146 return io_openat2(req, force_nonblock);
4147 }
4148
4149 static int io_remove_buffers_prep(struct io_kiocb *req,
4150 const struct io_uring_sqe *sqe)
4151 {
4152 struct io_provide_buf *p = &req->pbuf;
4153 u64 tmp;
4154
4155 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4156 return -EINVAL;
4157
4158 tmp = READ_ONCE(sqe->fd);
4159 if (!tmp || tmp > USHRT_MAX)
4160 return -EINVAL;
4161
4162 memset(p, 0, sizeof(*p));
4163 p->nbufs = tmp;
4164 p->bgid = READ_ONCE(sqe->buf_group);
4165 return 0;
4166 }
4167
4168 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4169 int bgid, unsigned nbufs)
4170 {
4171 unsigned i = 0;
4172
4173 /* shouldn't happen */
4174 if (!nbufs)
4175 return 0;
4176
4177 /* the head kbuf is the list itself */
4178 while (!list_empty(&buf->list)) {
4179 struct io_buffer *nxt;
4180
4181 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4182 list_del(&nxt->list);
4183 kfree(nxt);
4184 if (++i == nbufs)
4185 return i;
4186 }
4187 i++;
4188 kfree(buf);
4189 idr_remove(&ctx->io_buffer_idr, bgid);
4190
4191 return i;
4192 }
4193
4194 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4195 struct io_comp_state *cs)
4196 {
4197 struct io_provide_buf *p = &req->pbuf;
4198 struct io_ring_ctx *ctx = req->ctx;
4199 struct io_buffer *head;
4200 int ret = 0;
4201
4202 io_ring_submit_lock(ctx, !force_nonblock);
4203
4204 lockdep_assert_held(&ctx->uring_lock);
4205
4206 ret = -ENOENT;
4207 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4208 if (head)
4209 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4210 if (ret < 0)
4211 req_set_fail_links(req);
4212
4213 /* need to hold the lock to complete IOPOLL requests */
4214 if (ctx->flags & IORING_SETUP_IOPOLL) {
4215 __io_req_complete(req, ret, 0, cs);
4216 io_ring_submit_unlock(ctx, !force_nonblock);
4217 } else {
4218 io_ring_submit_unlock(ctx, !force_nonblock);
4219 __io_req_complete(req, ret, 0, cs);
4220 }
4221 return 0;
4222 }
4223
4224 static int io_provide_buffers_prep(struct io_kiocb *req,
4225 const struct io_uring_sqe *sqe)
4226 {
4227 struct io_provide_buf *p = &req->pbuf;
4228 u64 tmp;
4229
4230 if (sqe->ioprio || sqe->rw_flags)
4231 return -EINVAL;
4232
4233 tmp = READ_ONCE(sqe->fd);
4234 if (!tmp || tmp > USHRT_MAX)
4235 return -E2BIG;
4236 p->nbufs = tmp;
4237 p->addr = READ_ONCE(sqe->addr);
4238 p->len = READ_ONCE(sqe->len);
4239
4240 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4241 return -EFAULT;
4242
4243 p->bgid = READ_ONCE(sqe->buf_group);
4244 tmp = READ_ONCE(sqe->off);
4245 if (tmp > USHRT_MAX)
4246 return -E2BIG;
4247 p->bid = tmp;
4248 return 0;
4249 }
4250
4251 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4252 {
4253 struct io_buffer *buf;
4254 u64 addr = pbuf->addr;
4255 int i, bid = pbuf->bid;
4256
4257 for (i = 0; i < pbuf->nbufs; i++) {
4258 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4259 if (!buf)
4260 break;
4261
4262 buf->addr = addr;
4263 buf->len = pbuf->len;
4264 buf->bid = bid;
4265 addr += pbuf->len;
4266 bid++;
4267 if (!*head) {
4268 INIT_LIST_HEAD(&buf->list);
4269 *head = buf;
4270 } else {
4271 list_add_tail(&buf->list, &(*head)->list);
4272 }
4273 }
4274
4275 return i ? i : -ENOMEM;
4276 }
4277
4278 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4279 struct io_comp_state *cs)
4280 {
4281 struct io_provide_buf *p = &req->pbuf;
4282 struct io_ring_ctx *ctx = req->ctx;
4283 struct io_buffer *head, *list;
4284 int ret = 0;
4285
4286 io_ring_submit_lock(ctx, !force_nonblock);
4287
4288 lockdep_assert_held(&ctx->uring_lock);
4289
4290 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4291
4292 ret = io_add_buffers(p, &head);
4293 if (ret < 0)
4294 goto out;
4295
4296 if (!list) {
4297 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4298 GFP_KERNEL);
4299 if (ret < 0) {
4300 __io_remove_buffers(ctx, head, p->bgid, -1U);
4301 goto out;
4302 }
4303 }
4304 out:
4305 if (ret < 0)
4306 req_set_fail_links(req);
4307
4308 /* need to hold the lock to complete IOPOLL requests */
4309 if (ctx->flags & IORING_SETUP_IOPOLL) {
4310 __io_req_complete(req, ret, 0, cs);
4311 io_ring_submit_unlock(ctx, !force_nonblock);
4312 } else {
4313 io_ring_submit_unlock(ctx, !force_nonblock);
4314 __io_req_complete(req, ret, 0, cs);
4315 }
4316 return 0;
4317 }
4318
4319 static int io_epoll_ctl_prep(struct io_kiocb *req,
4320 const struct io_uring_sqe *sqe)
4321 {
4322 #if defined(CONFIG_EPOLL)
4323 if (sqe->ioprio || sqe->buf_index)
4324 return -EINVAL;
4325 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4326 return -EINVAL;
4327
4328 req->epoll.epfd = READ_ONCE(sqe->fd);
4329 req->epoll.op = READ_ONCE(sqe->len);
4330 req->epoll.fd = READ_ONCE(sqe->off);
4331
4332 if (ep_op_has_event(req->epoll.op)) {
4333 struct epoll_event __user *ev;
4334
4335 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4336 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4337 return -EFAULT;
4338 }
4339
4340 return 0;
4341 #else
4342 return -EOPNOTSUPP;
4343 #endif
4344 }
4345
4346 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4347 struct io_comp_state *cs)
4348 {
4349 #if defined(CONFIG_EPOLL)
4350 struct io_epoll *ie = &req->epoll;
4351 int ret;
4352
4353 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4354 if (force_nonblock && ret == -EAGAIN)
4355 return -EAGAIN;
4356
4357 if (ret < 0)
4358 req_set_fail_links(req);
4359 __io_req_complete(req, ret, 0, cs);
4360 return 0;
4361 #else
4362 return -EOPNOTSUPP;
4363 #endif
4364 }
4365
4366 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4367 {
4368 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4369 if (sqe->ioprio || sqe->buf_index || sqe->off)
4370 return -EINVAL;
4371 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4372 return -EINVAL;
4373
4374 req->madvise.addr = READ_ONCE(sqe->addr);
4375 req->madvise.len = READ_ONCE(sqe->len);
4376 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4377 return 0;
4378 #else
4379 return -EOPNOTSUPP;
4380 #endif
4381 }
4382
4383 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4384 {
4385 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4386 struct io_madvise *ma = &req->madvise;
4387 int ret;
4388
4389 if (force_nonblock)
4390 return -EAGAIN;
4391
4392 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4393 if (ret < 0)
4394 req_set_fail_links(req);
4395 io_req_complete(req, ret);
4396 return 0;
4397 #else
4398 return -EOPNOTSUPP;
4399 #endif
4400 }
4401
4402 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4403 {
4404 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4405 return -EINVAL;
4406 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4407 return -EINVAL;
4408
4409 req->fadvise.offset = READ_ONCE(sqe->off);
4410 req->fadvise.len = READ_ONCE(sqe->len);
4411 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4412 return 0;
4413 }
4414
4415 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4416 {
4417 struct io_fadvise *fa = &req->fadvise;
4418 int ret;
4419
4420 if (force_nonblock) {
4421 switch (fa->advice) {
4422 case POSIX_FADV_NORMAL:
4423 case POSIX_FADV_RANDOM:
4424 case POSIX_FADV_SEQUENTIAL:
4425 break;
4426 default:
4427 return -EAGAIN;
4428 }
4429 }
4430
4431 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4432 if (ret < 0)
4433 req_set_fail_links(req);
4434 io_req_complete(req, ret);
4435 return 0;
4436 }
4437
4438 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4439 {
4440 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4441 return -EINVAL;
4442 if (sqe->ioprio || sqe->buf_index)
4443 return -EINVAL;
4444 if (req->flags & REQ_F_FIXED_FILE)
4445 return -EBADF;
4446
4447 req->statx.dfd = READ_ONCE(sqe->fd);
4448 req->statx.mask = READ_ONCE(sqe->len);
4449 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4450 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4451 req->statx.flags = READ_ONCE(sqe->statx_flags);
4452
4453 return 0;
4454 }
4455
4456 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4457 {
4458 struct io_statx *ctx = &req->statx;
4459 int ret;
4460
4461 if (force_nonblock) {
4462 /* only need file table for an actual valid fd */
4463 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4464 req->flags |= REQ_F_NO_FILE_TABLE;
4465 return -EAGAIN;
4466 }
4467
4468 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4469 ctx->buffer);
4470
4471 if (ret < 0)
4472 req_set_fail_links(req);
4473 io_req_complete(req, ret);
4474 return 0;
4475 }
4476
4477 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4478 {
4479 /*
4480 * If we queue this for async, it must not be cancellable. That would
4481 * leave the 'file' in an undeterminate state, and here need to modify
4482 * io_wq_work.flags, so initialize io_wq_work firstly.
4483 */
4484 io_req_init_async(req);
4485
4486 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4487 return -EINVAL;
4488 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4489 sqe->rw_flags || sqe->buf_index)
4490 return -EINVAL;
4491 if (req->flags & REQ_F_FIXED_FILE)
4492 return -EBADF;
4493
4494 req->close.fd = READ_ONCE(sqe->fd);
4495 if ((req->file && req->file->f_op == &io_uring_fops))
4496 return -EBADF;
4497
4498 req->close.put_file = NULL;
4499 return 0;
4500 }
4501
4502 static int io_close(struct io_kiocb *req, bool force_nonblock,
4503 struct io_comp_state *cs)
4504 {
4505 struct io_close *close = &req->close;
4506 int ret;
4507
4508 /* might be already done during nonblock submission */
4509 if (!close->put_file) {
4510 ret = close_fd_get_file(close->fd, &close->put_file);
4511 if (ret < 0)
4512 return (ret == -ENOENT) ? -EBADF : ret;
4513 }
4514
4515 /* if the file has a flush method, be safe and punt to async */
4516 if (close->put_file->f_op->flush && force_nonblock) {
4517 /* not safe to cancel at this point */
4518 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4519 /* was never set, but play safe */
4520 req->flags &= ~REQ_F_NOWAIT;
4521 /* avoid grabbing files - we don't need the files */
4522 req->flags |= REQ_F_NO_FILE_TABLE;
4523 return -EAGAIN;
4524 }
4525
4526 /* No ->flush() or already async, safely close from here */
4527 ret = filp_close(close->put_file, req->work.identity->files);
4528 if (ret < 0)
4529 req_set_fail_links(req);
4530 fput(close->put_file);
4531 close->put_file = NULL;
4532 __io_req_complete(req, ret, 0, cs);
4533 return 0;
4534 }
4535
4536 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4537 {
4538 struct io_ring_ctx *ctx = req->ctx;
4539
4540 if (!req->file)
4541 return -EBADF;
4542
4543 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4544 return -EINVAL;
4545 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4546 return -EINVAL;
4547
4548 req->sync.off = READ_ONCE(sqe->off);
4549 req->sync.len = READ_ONCE(sqe->len);
4550 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4551 return 0;
4552 }
4553
4554 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4555 {
4556 int ret;
4557
4558 /* sync_file_range always requires a blocking context */
4559 if (force_nonblock)
4560 return -EAGAIN;
4561
4562 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4563 req->sync.flags);
4564 if (ret < 0)
4565 req_set_fail_links(req);
4566 io_req_complete(req, ret);
4567 return 0;
4568 }
4569
4570 #if defined(CONFIG_NET)
4571 static int io_setup_async_msg(struct io_kiocb *req,
4572 struct io_async_msghdr *kmsg)
4573 {
4574 struct io_async_msghdr *async_msg = req->async_data;
4575
4576 if (async_msg)
4577 return -EAGAIN;
4578 if (io_alloc_async_data(req)) {
4579 if (kmsg->iov != kmsg->fast_iov)
4580 kfree(kmsg->iov);
4581 return -ENOMEM;
4582 }
4583 async_msg = req->async_data;
4584 req->flags |= REQ_F_NEED_CLEANUP;
4585 memcpy(async_msg, kmsg, sizeof(*kmsg));
4586 return -EAGAIN;
4587 }
4588
4589 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4590 struct io_async_msghdr *iomsg)
4591 {
4592 iomsg->iov = iomsg->fast_iov;
4593 iomsg->msg.msg_name = &iomsg->addr;
4594 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4595 req->sr_msg.msg_flags, &iomsg->iov);
4596 }
4597
4598 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4599 {
4600 struct io_async_msghdr *async_msg = req->async_data;
4601 struct io_sr_msg *sr = &req->sr_msg;
4602 int ret;
4603
4604 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4605 return -EINVAL;
4606
4607 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4608 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4609 sr->len = READ_ONCE(sqe->len);
4610
4611 #ifdef CONFIG_COMPAT
4612 if (req->ctx->compat)
4613 sr->msg_flags |= MSG_CMSG_COMPAT;
4614 #endif
4615
4616 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4617 return 0;
4618 ret = io_sendmsg_copy_hdr(req, async_msg);
4619 if (!ret)
4620 req->flags |= REQ_F_NEED_CLEANUP;
4621 return ret;
4622 }
4623
4624 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4625 struct io_comp_state *cs)
4626 {
4627 struct io_async_msghdr iomsg, *kmsg;
4628 struct socket *sock;
4629 unsigned flags;
4630 int ret;
4631
4632 sock = sock_from_file(req->file);
4633 if (unlikely(!sock))
4634 return -ENOTSOCK;
4635
4636 if (req->async_data) {
4637 kmsg = req->async_data;
4638 kmsg->msg.msg_name = &kmsg->addr;
4639 /* if iov is set, it's allocated already */
4640 if (!kmsg->iov)
4641 kmsg->iov = kmsg->fast_iov;
4642 kmsg->msg.msg_iter.iov = kmsg->iov;
4643 } else {
4644 ret = io_sendmsg_copy_hdr(req, &iomsg);
4645 if (ret)
4646 return ret;
4647 kmsg = &iomsg;
4648 }
4649
4650 flags = req->sr_msg.msg_flags;
4651 if (flags & MSG_DONTWAIT)
4652 req->flags |= REQ_F_NOWAIT;
4653 else if (force_nonblock)
4654 flags |= MSG_DONTWAIT;
4655
4656 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4657 if (force_nonblock && ret == -EAGAIN)
4658 return io_setup_async_msg(req, kmsg);
4659 if (ret == -ERESTARTSYS)
4660 ret = -EINTR;
4661
4662 if (kmsg->iov != kmsg->fast_iov)
4663 kfree(kmsg->iov);
4664 req->flags &= ~REQ_F_NEED_CLEANUP;
4665 if (ret < 0)
4666 req_set_fail_links(req);
4667 __io_req_complete(req, ret, 0, cs);
4668 return 0;
4669 }
4670
4671 static int io_send(struct io_kiocb *req, bool force_nonblock,
4672 struct io_comp_state *cs)
4673 {
4674 struct io_sr_msg *sr = &req->sr_msg;
4675 struct msghdr msg;
4676 struct iovec iov;
4677 struct socket *sock;
4678 unsigned flags;
4679 int ret;
4680
4681 sock = sock_from_file(req->file);
4682 if (unlikely(!sock))
4683 return -ENOTSOCK;
4684
4685 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4686 if (unlikely(ret))
4687 return ret;
4688
4689 msg.msg_name = NULL;
4690 msg.msg_control = NULL;
4691 msg.msg_controllen = 0;
4692 msg.msg_namelen = 0;
4693
4694 flags = req->sr_msg.msg_flags;
4695 if (flags & MSG_DONTWAIT)
4696 req->flags |= REQ_F_NOWAIT;
4697 else if (force_nonblock)
4698 flags |= MSG_DONTWAIT;
4699
4700 msg.msg_flags = flags;
4701 ret = sock_sendmsg(sock, &msg);
4702 if (force_nonblock && ret == -EAGAIN)
4703 return -EAGAIN;
4704 if (ret == -ERESTARTSYS)
4705 ret = -EINTR;
4706
4707 if (ret < 0)
4708 req_set_fail_links(req);
4709 __io_req_complete(req, ret, 0, cs);
4710 return 0;
4711 }
4712
4713 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4714 struct io_async_msghdr *iomsg)
4715 {
4716 struct io_sr_msg *sr = &req->sr_msg;
4717 struct iovec __user *uiov;
4718 size_t iov_len;
4719 int ret;
4720
4721 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4722 &iomsg->uaddr, &uiov, &iov_len);
4723 if (ret)
4724 return ret;
4725
4726 if (req->flags & REQ_F_BUFFER_SELECT) {
4727 if (iov_len > 1)
4728 return -EINVAL;
4729 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4730 return -EFAULT;
4731 sr->len = iomsg->iov[0].iov_len;
4732 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4733 sr->len);
4734 iomsg->iov = NULL;
4735 } else {
4736 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4737 &iomsg->iov, &iomsg->msg.msg_iter,
4738 false);
4739 if (ret > 0)
4740 ret = 0;
4741 }
4742
4743 return ret;
4744 }
4745
4746 #ifdef CONFIG_COMPAT
4747 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4748 struct io_async_msghdr *iomsg)
4749 {
4750 struct compat_msghdr __user *msg_compat;
4751 struct io_sr_msg *sr = &req->sr_msg;
4752 struct compat_iovec __user *uiov;
4753 compat_uptr_t ptr;
4754 compat_size_t len;
4755 int ret;
4756
4757 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4758 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4759 &ptr, &len);
4760 if (ret)
4761 return ret;
4762
4763 uiov = compat_ptr(ptr);
4764 if (req->flags & REQ_F_BUFFER_SELECT) {
4765 compat_ssize_t clen;
4766
4767 if (len > 1)
4768 return -EINVAL;
4769 if (!access_ok(uiov, sizeof(*uiov)))
4770 return -EFAULT;
4771 if (__get_user(clen, &uiov->iov_len))
4772 return -EFAULT;
4773 if (clen < 0)
4774 return -EINVAL;
4775 sr->len = clen;
4776 iomsg->iov[0].iov_len = clen;
4777 iomsg->iov = NULL;
4778 } else {
4779 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4780 UIO_FASTIOV, &iomsg->iov,
4781 &iomsg->msg.msg_iter, true);
4782 if (ret < 0)
4783 return ret;
4784 }
4785
4786 return 0;
4787 }
4788 #endif
4789
4790 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4791 struct io_async_msghdr *iomsg)
4792 {
4793 iomsg->msg.msg_name = &iomsg->addr;
4794 iomsg->iov = iomsg->fast_iov;
4795
4796 #ifdef CONFIG_COMPAT
4797 if (req->ctx->compat)
4798 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4799 #endif
4800
4801 return __io_recvmsg_copy_hdr(req, iomsg);
4802 }
4803
4804 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4805 bool needs_lock)
4806 {
4807 struct io_sr_msg *sr = &req->sr_msg;
4808 struct io_buffer *kbuf;
4809
4810 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4811 if (IS_ERR(kbuf))
4812 return kbuf;
4813
4814 sr->kbuf = kbuf;
4815 req->flags |= REQ_F_BUFFER_SELECTED;
4816 return kbuf;
4817 }
4818
4819 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4820 {
4821 return io_put_kbuf(req, req->sr_msg.kbuf);
4822 }
4823
4824 static int io_recvmsg_prep(struct io_kiocb *req,
4825 const struct io_uring_sqe *sqe)
4826 {
4827 struct io_async_msghdr *async_msg = req->async_data;
4828 struct io_sr_msg *sr = &req->sr_msg;
4829 int ret;
4830
4831 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4832 return -EINVAL;
4833
4834 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4835 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4836 sr->len = READ_ONCE(sqe->len);
4837 sr->bgid = READ_ONCE(sqe->buf_group);
4838
4839 #ifdef CONFIG_COMPAT
4840 if (req->ctx->compat)
4841 sr->msg_flags |= MSG_CMSG_COMPAT;
4842 #endif
4843
4844 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4845 return 0;
4846 ret = io_recvmsg_copy_hdr(req, async_msg);
4847 if (!ret)
4848 req->flags |= REQ_F_NEED_CLEANUP;
4849 return ret;
4850 }
4851
4852 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4853 struct io_comp_state *cs)
4854 {
4855 struct io_async_msghdr iomsg, *kmsg;
4856 struct socket *sock;
4857 struct io_buffer *kbuf;
4858 unsigned flags;
4859 int ret, cflags = 0;
4860
4861 sock = sock_from_file(req->file);
4862 if (unlikely(!sock))
4863 return -ENOTSOCK;
4864
4865 if (req->async_data) {
4866 kmsg = req->async_data;
4867 kmsg->msg.msg_name = &kmsg->addr;
4868 /* if iov is set, it's allocated already */
4869 if (!kmsg->iov)
4870 kmsg->iov = kmsg->fast_iov;
4871 kmsg->msg.msg_iter.iov = kmsg->iov;
4872 } else {
4873 ret = io_recvmsg_copy_hdr(req, &iomsg);
4874 if (ret)
4875 return ret;
4876 kmsg = &iomsg;
4877 }
4878
4879 if (req->flags & REQ_F_BUFFER_SELECT) {
4880 kbuf = io_recv_buffer_select(req, !force_nonblock);
4881 if (IS_ERR(kbuf))
4882 return PTR_ERR(kbuf);
4883 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4884 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4885 1, req->sr_msg.len);
4886 }
4887
4888 flags = req->sr_msg.msg_flags;
4889 if (flags & MSG_DONTWAIT)
4890 req->flags |= REQ_F_NOWAIT;
4891 else if (force_nonblock)
4892 flags |= MSG_DONTWAIT;
4893
4894 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4895 kmsg->uaddr, flags);
4896 if (force_nonblock && ret == -EAGAIN)
4897 return io_setup_async_msg(req, kmsg);
4898 if (ret == -ERESTARTSYS)
4899 ret = -EINTR;
4900
4901 if (req->flags & REQ_F_BUFFER_SELECTED)
4902 cflags = io_put_recv_kbuf(req);
4903 if (kmsg->iov != kmsg->fast_iov)
4904 kfree(kmsg->iov);
4905 req->flags &= ~REQ_F_NEED_CLEANUP;
4906 if (ret < 0)
4907 req_set_fail_links(req);
4908 __io_req_complete(req, ret, cflags, cs);
4909 return 0;
4910 }
4911
4912 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4913 struct io_comp_state *cs)
4914 {
4915 struct io_buffer *kbuf;
4916 struct io_sr_msg *sr = &req->sr_msg;
4917 struct msghdr msg;
4918 void __user *buf = sr->buf;
4919 struct socket *sock;
4920 struct iovec iov;
4921 unsigned flags;
4922 int ret, cflags = 0;
4923
4924 sock = sock_from_file(req->file);
4925 if (unlikely(!sock))
4926 return -ENOTSOCK;
4927
4928 if (req->flags & REQ_F_BUFFER_SELECT) {
4929 kbuf = io_recv_buffer_select(req, !force_nonblock);
4930 if (IS_ERR(kbuf))
4931 return PTR_ERR(kbuf);
4932 buf = u64_to_user_ptr(kbuf->addr);
4933 }
4934
4935 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4936 if (unlikely(ret))
4937 goto out_free;
4938
4939 msg.msg_name = NULL;
4940 msg.msg_control = NULL;
4941 msg.msg_controllen = 0;
4942 msg.msg_namelen = 0;
4943 msg.msg_iocb = NULL;
4944 msg.msg_flags = 0;
4945
4946 flags = req->sr_msg.msg_flags;
4947 if (flags & MSG_DONTWAIT)
4948 req->flags |= REQ_F_NOWAIT;
4949 else if (force_nonblock)
4950 flags |= MSG_DONTWAIT;
4951
4952 ret = sock_recvmsg(sock, &msg, flags);
4953 if (force_nonblock && ret == -EAGAIN)
4954 return -EAGAIN;
4955 if (ret == -ERESTARTSYS)
4956 ret = -EINTR;
4957 out_free:
4958 if (req->flags & REQ_F_BUFFER_SELECTED)
4959 cflags = io_put_recv_kbuf(req);
4960 if (ret < 0)
4961 req_set_fail_links(req);
4962 __io_req_complete(req, ret, cflags, cs);
4963 return 0;
4964 }
4965
4966 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4967 {
4968 struct io_accept *accept = &req->accept;
4969
4970 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4971 return -EINVAL;
4972 if (sqe->ioprio || sqe->len || sqe->buf_index)
4973 return -EINVAL;
4974
4975 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4976 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4977 accept->flags = READ_ONCE(sqe->accept_flags);
4978 accept->nofile = rlimit(RLIMIT_NOFILE);
4979 return 0;
4980 }
4981
4982 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4983 struct io_comp_state *cs)
4984 {
4985 struct io_accept *accept = &req->accept;
4986 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4987 int ret;
4988
4989 if (req->file->f_flags & O_NONBLOCK)
4990 req->flags |= REQ_F_NOWAIT;
4991
4992 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4993 accept->addr_len, accept->flags,
4994 accept->nofile);
4995 if (ret == -EAGAIN && force_nonblock)
4996 return -EAGAIN;
4997 if (ret < 0) {
4998 if (ret == -ERESTARTSYS)
4999 ret = -EINTR;
5000 req_set_fail_links(req);
5001 }
5002 __io_req_complete(req, ret, 0, cs);
5003 return 0;
5004 }
5005
5006 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5007 {
5008 struct io_connect *conn = &req->connect;
5009 struct io_async_connect *io = req->async_data;
5010
5011 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5012 return -EINVAL;
5013 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5014 return -EINVAL;
5015
5016 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5017 conn->addr_len = READ_ONCE(sqe->addr2);
5018
5019 if (!io)
5020 return 0;
5021
5022 return move_addr_to_kernel(conn->addr, conn->addr_len,
5023 &io->address);
5024 }
5025
5026 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5027 struct io_comp_state *cs)
5028 {
5029 struct io_async_connect __io, *io;
5030 unsigned file_flags;
5031 int ret;
5032
5033 if (req->async_data) {
5034 io = req->async_data;
5035 } else {
5036 ret = move_addr_to_kernel(req->connect.addr,
5037 req->connect.addr_len,
5038 &__io.address);
5039 if (ret)
5040 goto out;
5041 io = &__io;
5042 }
5043
5044 file_flags = force_nonblock ? O_NONBLOCK : 0;
5045
5046 ret = __sys_connect_file(req->file, &io->address,
5047 req->connect.addr_len, file_flags);
5048 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5049 if (req->async_data)
5050 return -EAGAIN;
5051 if (io_alloc_async_data(req)) {
5052 ret = -ENOMEM;
5053 goto out;
5054 }
5055 io = req->async_data;
5056 memcpy(req->async_data, &__io, sizeof(__io));
5057 return -EAGAIN;
5058 }
5059 if (ret == -ERESTARTSYS)
5060 ret = -EINTR;
5061 out:
5062 if (ret < 0)
5063 req_set_fail_links(req);
5064 __io_req_complete(req, ret, 0, cs);
5065 return 0;
5066 }
5067 #else /* !CONFIG_NET */
5068 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5069 {
5070 return -EOPNOTSUPP;
5071 }
5072
5073 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5074 struct io_comp_state *cs)
5075 {
5076 return -EOPNOTSUPP;
5077 }
5078
5079 static int io_send(struct io_kiocb *req, bool force_nonblock,
5080 struct io_comp_state *cs)
5081 {
5082 return -EOPNOTSUPP;
5083 }
5084
5085 static int io_recvmsg_prep(struct io_kiocb *req,
5086 const struct io_uring_sqe *sqe)
5087 {
5088 return -EOPNOTSUPP;
5089 }
5090
5091 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5092 struct io_comp_state *cs)
5093 {
5094 return -EOPNOTSUPP;
5095 }
5096
5097 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5098 struct io_comp_state *cs)
5099 {
5100 return -EOPNOTSUPP;
5101 }
5102
5103 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5104 {
5105 return -EOPNOTSUPP;
5106 }
5107
5108 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5109 struct io_comp_state *cs)
5110 {
5111 return -EOPNOTSUPP;
5112 }
5113
5114 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5115 {
5116 return -EOPNOTSUPP;
5117 }
5118
5119 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5120 struct io_comp_state *cs)
5121 {
5122 return -EOPNOTSUPP;
5123 }
5124 #endif /* CONFIG_NET */
5125
5126 struct io_poll_table {
5127 struct poll_table_struct pt;
5128 struct io_kiocb *req;
5129 int error;
5130 };
5131
5132 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5133 __poll_t mask, task_work_func_t func)
5134 {
5135 int ret;
5136
5137 /* for instances that support it check for an event match first: */
5138 if (mask && !(mask & poll->events))
5139 return 0;
5140
5141 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5142
5143 list_del_init(&poll->wait.entry);
5144
5145 req->result = mask;
5146 init_task_work(&req->task_work, func);
5147 percpu_ref_get(&req->ctx->refs);
5148
5149 /*
5150 * If this fails, then the task is exiting. When a task exits, the
5151 * work gets canceled, so just cancel this request as well instead
5152 * of executing it. We can't safely execute it anyway, as we may not
5153 * have the needed state needed for it anyway.
5154 */
5155 ret = io_req_task_work_add(req);
5156 if (unlikely(ret)) {
5157 struct task_struct *tsk;
5158
5159 WRITE_ONCE(poll->canceled, true);
5160 tsk = io_wq_get_task(req->ctx->io_wq);
5161 task_work_add(tsk, &req->task_work, TWA_NONE);
5162 wake_up_process(tsk);
5163 }
5164 return 1;
5165 }
5166
5167 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5168 __acquires(&req->ctx->completion_lock)
5169 {
5170 struct io_ring_ctx *ctx = req->ctx;
5171
5172 if (!req->result && !READ_ONCE(poll->canceled)) {
5173 struct poll_table_struct pt = { ._key = poll->events };
5174
5175 req->result = vfs_poll(req->file, &pt) & poll->events;
5176 }
5177
5178 spin_lock_irq(&ctx->completion_lock);
5179 if (!req->result && !READ_ONCE(poll->canceled)) {
5180 add_wait_queue(poll->head, &poll->wait);
5181 return true;
5182 }
5183
5184 return false;
5185 }
5186
5187 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5188 {
5189 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5190 if (req->opcode == IORING_OP_POLL_ADD)
5191 return req->async_data;
5192 return req->apoll->double_poll;
5193 }
5194
5195 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5196 {
5197 if (req->opcode == IORING_OP_POLL_ADD)
5198 return &req->poll;
5199 return &req->apoll->poll;
5200 }
5201
5202 static void io_poll_remove_double(struct io_kiocb *req)
5203 {
5204 struct io_poll_iocb *poll = io_poll_get_double(req);
5205
5206 lockdep_assert_held(&req->ctx->completion_lock);
5207
5208 if (poll && poll->head) {
5209 struct wait_queue_head *head = poll->head;
5210
5211 spin_lock(&head->lock);
5212 list_del_init(&poll->wait.entry);
5213 if (poll->wait.private)
5214 refcount_dec(&req->refs);
5215 poll->head = NULL;
5216 spin_unlock(&head->lock);
5217 }
5218 }
5219
5220 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5221 {
5222 struct io_ring_ctx *ctx = req->ctx;
5223
5224 io_poll_remove_double(req);
5225 req->poll.done = true;
5226 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5227 io_commit_cqring(ctx);
5228 }
5229
5230 static void io_poll_task_func(struct callback_head *cb)
5231 {
5232 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5233 struct io_ring_ctx *ctx = req->ctx;
5234 struct io_kiocb *nxt;
5235
5236 if (io_poll_rewait(req, &req->poll)) {
5237 spin_unlock_irq(&ctx->completion_lock);
5238 } else {
5239 hash_del(&req->hash_node);
5240 io_poll_complete(req, req->result, 0);
5241 spin_unlock_irq(&ctx->completion_lock);
5242
5243 nxt = io_put_req_find_next(req);
5244 io_cqring_ev_posted(ctx);
5245 if (nxt)
5246 __io_req_task_submit(nxt);
5247 }
5248
5249 percpu_ref_put(&ctx->refs);
5250 }
5251
5252 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5253 int sync, void *key)
5254 {
5255 struct io_kiocb *req = wait->private;
5256 struct io_poll_iocb *poll = io_poll_get_single(req);
5257 __poll_t mask = key_to_poll(key);
5258
5259 /* for instances that support it check for an event match first: */
5260 if (mask && !(mask & poll->events))
5261 return 0;
5262
5263 list_del_init(&wait->entry);
5264
5265 if (poll && poll->head) {
5266 bool done;
5267
5268 spin_lock(&poll->head->lock);
5269 done = list_empty(&poll->wait.entry);
5270 if (!done)
5271 list_del_init(&poll->wait.entry);
5272 /* make sure double remove sees this as being gone */
5273 wait->private = NULL;
5274 spin_unlock(&poll->head->lock);
5275 if (!done) {
5276 /* use wait func handler, so it matches the rq type */
5277 poll->wait.func(&poll->wait, mode, sync, key);
5278 }
5279 }
5280 refcount_dec(&req->refs);
5281 return 1;
5282 }
5283
5284 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5285 wait_queue_func_t wake_func)
5286 {
5287 poll->head = NULL;
5288 poll->done = false;
5289 poll->canceled = false;
5290 poll->events = events;
5291 INIT_LIST_HEAD(&poll->wait.entry);
5292 init_waitqueue_func_entry(&poll->wait, wake_func);
5293 }
5294
5295 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5296 struct wait_queue_head *head,
5297 struct io_poll_iocb **poll_ptr)
5298 {
5299 struct io_kiocb *req = pt->req;
5300
5301 /*
5302 * If poll->head is already set, it's because the file being polled
5303 * uses multiple waitqueues for poll handling (eg one for read, one
5304 * for write). Setup a separate io_poll_iocb if this happens.
5305 */
5306 if (unlikely(poll->head)) {
5307 struct io_poll_iocb *poll_one = poll;
5308
5309 /* already have a 2nd entry, fail a third attempt */
5310 if (*poll_ptr) {
5311 pt->error = -EINVAL;
5312 return;
5313 }
5314 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5315 if (!poll) {
5316 pt->error = -ENOMEM;
5317 return;
5318 }
5319 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5320 refcount_inc(&req->refs);
5321 poll->wait.private = req;
5322 *poll_ptr = poll;
5323 }
5324
5325 pt->error = 0;
5326 poll->head = head;
5327
5328 if (poll->events & EPOLLEXCLUSIVE)
5329 add_wait_queue_exclusive(head, &poll->wait);
5330 else
5331 add_wait_queue(head, &poll->wait);
5332 }
5333
5334 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5335 struct poll_table_struct *p)
5336 {
5337 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5338 struct async_poll *apoll = pt->req->apoll;
5339
5340 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5341 }
5342
5343 static void io_async_task_func(struct callback_head *cb)
5344 {
5345 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5346 struct async_poll *apoll = req->apoll;
5347 struct io_ring_ctx *ctx = req->ctx;
5348
5349 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5350
5351 if (io_poll_rewait(req, &apoll->poll)) {
5352 spin_unlock_irq(&ctx->completion_lock);
5353 percpu_ref_put(&ctx->refs);
5354 return;
5355 }
5356
5357 /* If req is still hashed, it cannot have been canceled. Don't check. */
5358 if (hash_hashed(&req->hash_node))
5359 hash_del(&req->hash_node);
5360
5361 io_poll_remove_double(req);
5362 spin_unlock_irq(&ctx->completion_lock);
5363
5364 if (!READ_ONCE(apoll->poll.canceled))
5365 __io_req_task_submit(req);
5366 else
5367 __io_req_task_cancel(req, -ECANCELED);
5368
5369 percpu_ref_put(&ctx->refs);
5370 kfree(apoll->double_poll);
5371 kfree(apoll);
5372 }
5373
5374 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5375 void *key)
5376 {
5377 struct io_kiocb *req = wait->private;
5378 struct io_poll_iocb *poll = &req->apoll->poll;
5379
5380 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5381 key_to_poll(key));
5382
5383 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5384 }
5385
5386 static void io_poll_req_insert(struct io_kiocb *req)
5387 {
5388 struct io_ring_ctx *ctx = req->ctx;
5389 struct hlist_head *list;
5390
5391 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5392 hlist_add_head(&req->hash_node, list);
5393 }
5394
5395 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5396 struct io_poll_iocb *poll,
5397 struct io_poll_table *ipt, __poll_t mask,
5398 wait_queue_func_t wake_func)
5399 __acquires(&ctx->completion_lock)
5400 {
5401 struct io_ring_ctx *ctx = req->ctx;
5402 bool cancel = false;
5403
5404 INIT_HLIST_NODE(&req->hash_node);
5405 io_init_poll_iocb(poll, mask, wake_func);
5406 poll->file = req->file;
5407 poll->wait.private = req;
5408
5409 ipt->pt._key = mask;
5410 ipt->req = req;
5411 ipt->error = -EINVAL;
5412
5413 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5414
5415 spin_lock_irq(&ctx->completion_lock);
5416 if (likely(poll->head)) {
5417 spin_lock(&poll->head->lock);
5418 if (unlikely(list_empty(&poll->wait.entry))) {
5419 if (ipt->error)
5420 cancel = true;
5421 ipt->error = 0;
5422 mask = 0;
5423 }
5424 if (mask || ipt->error)
5425 list_del_init(&poll->wait.entry);
5426 else if (cancel)
5427 WRITE_ONCE(poll->canceled, true);
5428 else if (!poll->done) /* actually waiting for an event */
5429 io_poll_req_insert(req);
5430 spin_unlock(&poll->head->lock);
5431 }
5432
5433 return mask;
5434 }
5435
5436 static bool io_arm_poll_handler(struct io_kiocb *req)
5437 {
5438 const struct io_op_def *def = &io_op_defs[req->opcode];
5439 struct io_ring_ctx *ctx = req->ctx;
5440 struct async_poll *apoll;
5441 struct io_poll_table ipt;
5442 __poll_t mask, ret;
5443 int rw;
5444
5445 if (!req->file || !file_can_poll(req->file))
5446 return false;
5447 if (req->flags & REQ_F_POLLED)
5448 return false;
5449 if (def->pollin)
5450 rw = READ;
5451 else if (def->pollout)
5452 rw = WRITE;
5453 else
5454 return false;
5455 /* if we can't nonblock try, then no point in arming a poll handler */
5456 if (!io_file_supports_async(req->file, rw))
5457 return false;
5458
5459 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5460 if (unlikely(!apoll))
5461 return false;
5462 apoll->double_poll = NULL;
5463
5464 req->flags |= REQ_F_POLLED;
5465 req->apoll = apoll;
5466
5467 mask = 0;
5468 if (def->pollin)
5469 mask |= POLLIN | POLLRDNORM;
5470 if (def->pollout)
5471 mask |= POLLOUT | POLLWRNORM;
5472
5473 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5474 if ((req->opcode == IORING_OP_RECVMSG) &&
5475 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5476 mask &= ~POLLIN;
5477
5478 mask |= POLLERR | POLLPRI;
5479
5480 ipt.pt._qproc = io_async_queue_proc;
5481
5482 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5483 io_async_wake);
5484 if (ret || ipt.error) {
5485 io_poll_remove_double(req);
5486 spin_unlock_irq(&ctx->completion_lock);
5487 kfree(apoll->double_poll);
5488 kfree(apoll);
5489 return false;
5490 }
5491 spin_unlock_irq(&ctx->completion_lock);
5492 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5493 apoll->poll.events);
5494 return true;
5495 }
5496
5497 static bool __io_poll_remove_one(struct io_kiocb *req,
5498 struct io_poll_iocb *poll)
5499 {
5500 bool do_complete = false;
5501
5502 spin_lock(&poll->head->lock);
5503 WRITE_ONCE(poll->canceled, true);
5504 if (!list_empty(&poll->wait.entry)) {
5505 list_del_init(&poll->wait.entry);
5506 do_complete = true;
5507 }
5508 spin_unlock(&poll->head->lock);
5509 hash_del(&req->hash_node);
5510 return do_complete;
5511 }
5512
5513 static bool io_poll_remove_one(struct io_kiocb *req)
5514 {
5515 bool do_complete;
5516
5517 io_poll_remove_double(req);
5518
5519 if (req->opcode == IORING_OP_POLL_ADD) {
5520 do_complete = __io_poll_remove_one(req, &req->poll);
5521 } else {
5522 struct async_poll *apoll = req->apoll;
5523
5524 /* non-poll requests have submit ref still */
5525 do_complete = __io_poll_remove_one(req, &apoll->poll);
5526 if (do_complete) {
5527 io_put_req(req);
5528 kfree(apoll->double_poll);
5529 kfree(apoll);
5530 }
5531 }
5532
5533 if (do_complete) {
5534 io_cqring_fill_event(req, -ECANCELED);
5535 io_commit_cqring(req->ctx);
5536 req_set_fail_links(req);
5537 io_put_req_deferred(req, 1);
5538 }
5539
5540 return do_complete;
5541 }
5542
5543 /*
5544 * Returns true if we found and killed one or more poll requests
5545 */
5546 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5547 struct files_struct *files)
5548 {
5549 struct hlist_node *tmp;
5550 struct io_kiocb *req;
5551 int posted = 0, i;
5552
5553 spin_lock_irq(&ctx->completion_lock);
5554 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5555 struct hlist_head *list;
5556
5557 list = &ctx->cancel_hash[i];
5558 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5559 if (io_match_task(req, tsk, files))
5560 posted += io_poll_remove_one(req);
5561 }
5562 }
5563 spin_unlock_irq(&ctx->completion_lock);
5564
5565 if (posted)
5566 io_cqring_ev_posted(ctx);
5567
5568 return posted != 0;
5569 }
5570
5571 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5572 {
5573 struct hlist_head *list;
5574 struct io_kiocb *req;
5575
5576 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5577 hlist_for_each_entry(req, list, hash_node) {
5578 if (sqe_addr != req->user_data)
5579 continue;
5580 if (io_poll_remove_one(req))
5581 return 0;
5582 return -EALREADY;
5583 }
5584
5585 return -ENOENT;
5586 }
5587
5588 static int io_poll_remove_prep(struct io_kiocb *req,
5589 const struct io_uring_sqe *sqe)
5590 {
5591 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5592 return -EINVAL;
5593 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5594 sqe->poll_events)
5595 return -EINVAL;
5596
5597 req->poll_remove.addr = READ_ONCE(sqe->addr);
5598 return 0;
5599 }
5600
5601 /*
5602 * Find a running poll command that matches one specified in sqe->addr,
5603 * and remove it if found.
5604 */
5605 static int io_poll_remove(struct io_kiocb *req)
5606 {
5607 struct io_ring_ctx *ctx = req->ctx;
5608 int ret;
5609
5610 spin_lock_irq(&ctx->completion_lock);
5611 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5612 spin_unlock_irq(&ctx->completion_lock);
5613
5614 if (ret < 0)
5615 req_set_fail_links(req);
5616 io_req_complete(req, ret);
5617 return 0;
5618 }
5619
5620 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5621 void *key)
5622 {
5623 struct io_kiocb *req = wait->private;
5624 struct io_poll_iocb *poll = &req->poll;
5625
5626 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5627 }
5628
5629 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5630 struct poll_table_struct *p)
5631 {
5632 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5633
5634 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5635 }
5636
5637 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5638 {
5639 struct io_poll_iocb *poll = &req->poll;
5640 u32 events;
5641
5642 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5643 return -EINVAL;
5644 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5645 return -EINVAL;
5646
5647 events = READ_ONCE(sqe->poll32_events);
5648 #ifdef __BIG_ENDIAN
5649 events = swahw32(events);
5650 #endif
5651 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5652 (events & EPOLLEXCLUSIVE);
5653 return 0;
5654 }
5655
5656 static int io_poll_add(struct io_kiocb *req)
5657 {
5658 struct io_poll_iocb *poll = &req->poll;
5659 struct io_ring_ctx *ctx = req->ctx;
5660 struct io_poll_table ipt;
5661 __poll_t mask;
5662
5663 ipt.pt._qproc = io_poll_queue_proc;
5664
5665 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5666 io_poll_wake);
5667
5668 if (mask) { /* no async, we'd stolen it */
5669 ipt.error = 0;
5670 io_poll_complete(req, mask, 0);
5671 }
5672 spin_unlock_irq(&ctx->completion_lock);
5673
5674 if (mask) {
5675 io_cqring_ev_posted(ctx);
5676 io_put_req(req);
5677 }
5678 return ipt.error;
5679 }
5680
5681 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5682 {
5683 struct io_timeout_data *data = container_of(timer,
5684 struct io_timeout_data, timer);
5685 struct io_kiocb *req = data->req;
5686 struct io_ring_ctx *ctx = req->ctx;
5687 unsigned long flags;
5688
5689 spin_lock_irqsave(&ctx->completion_lock, flags);
5690 list_del_init(&req->timeout.list);
5691 atomic_set(&req->ctx->cq_timeouts,
5692 atomic_read(&req->ctx->cq_timeouts) + 1);
5693
5694 io_cqring_fill_event(req, -ETIME);
5695 io_commit_cqring(ctx);
5696 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5697
5698 io_cqring_ev_posted(ctx);
5699 req_set_fail_links(req);
5700 io_put_req(req);
5701 return HRTIMER_NORESTART;
5702 }
5703
5704 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5705 __u64 user_data)
5706 {
5707 struct io_timeout_data *io;
5708 struct io_kiocb *req;
5709 int ret = -ENOENT;
5710
5711 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5712 if (user_data == req->user_data) {
5713 ret = 0;
5714 break;
5715 }
5716 }
5717
5718 if (ret == -ENOENT)
5719 return ERR_PTR(ret);
5720
5721 io = req->async_data;
5722 ret = hrtimer_try_to_cancel(&io->timer);
5723 if (ret == -1)
5724 return ERR_PTR(-EALREADY);
5725 list_del_init(&req->timeout.list);
5726 return req;
5727 }
5728
5729 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5730 {
5731 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5732
5733 if (IS_ERR(req))
5734 return PTR_ERR(req);
5735
5736 req_set_fail_links(req);
5737 io_cqring_fill_event(req, -ECANCELED);
5738 io_put_req_deferred(req, 1);
5739 return 0;
5740 }
5741
5742 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5743 struct timespec64 *ts, enum hrtimer_mode mode)
5744 {
5745 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5746 struct io_timeout_data *data;
5747
5748 if (IS_ERR(req))
5749 return PTR_ERR(req);
5750
5751 req->timeout.off = 0; /* noseq */
5752 data = req->async_data;
5753 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5754 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5755 data->timer.function = io_timeout_fn;
5756 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5757 return 0;
5758 }
5759
5760 static int io_timeout_remove_prep(struct io_kiocb *req,
5761 const struct io_uring_sqe *sqe)
5762 {
5763 struct io_timeout_rem *tr = &req->timeout_rem;
5764
5765 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5766 return -EINVAL;
5767 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5768 return -EINVAL;
5769 if (sqe->ioprio || sqe->buf_index || sqe->len)
5770 return -EINVAL;
5771
5772 tr->addr = READ_ONCE(sqe->addr);
5773 tr->flags = READ_ONCE(sqe->timeout_flags);
5774 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5775 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5776 return -EINVAL;
5777 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5778 return -EFAULT;
5779 } else if (tr->flags) {
5780 /* timeout removal doesn't support flags */
5781 return -EINVAL;
5782 }
5783
5784 return 0;
5785 }
5786
5787 /*
5788 * Remove or update an existing timeout command
5789 */
5790 static int io_timeout_remove(struct io_kiocb *req)
5791 {
5792 struct io_timeout_rem *tr = &req->timeout_rem;
5793 struct io_ring_ctx *ctx = req->ctx;
5794 int ret;
5795
5796 spin_lock_irq(&ctx->completion_lock);
5797 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5798 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5799 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5800
5801 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5802 } else {
5803 ret = io_timeout_cancel(ctx, tr->addr);
5804 }
5805
5806 io_cqring_fill_event(req, ret);
5807 io_commit_cqring(ctx);
5808 spin_unlock_irq(&ctx->completion_lock);
5809 io_cqring_ev_posted(ctx);
5810 if (ret < 0)
5811 req_set_fail_links(req);
5812 io_put_req(req);
5813 return 0;
5814 }
5815
5816 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5817 bool is_timeout_link)
5818 {
5819 struct io_timeout_data *data;
5820 unsigned flags;
5821 u32 off = READ_ONCE(sqe->off);
5822
5823 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5824 return -EINVAL;
5825 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5826 return -EINVAL;
5827 if (off && is_timeout_link)
5828 return -EINVAL;
5829 flags = READ_ONCE(sqe->timeout_flags);
5830 if (flags & ~IORING_TIMEOUT_ABS)
5831 return -EINVAL;
5832
5833 req->timeout.off = off;
5834
5835 if (!req->async_data && io_alloc_async_data(req))
5836 return -ENOMEM;
5837
5838 data = req->async_data;
5839 data->req = req;
5840
5841 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5842 return -EFAULT;
5843
5844 if (flags & IORING_TIMEOUT_ABS)
5845 data->mode = HRTIMER_MODE_ABS;
5846 else
5847 data->mode = HRTIMER_MODE_REL;
5848
5849 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5850 return 0;
5851 }
5852
5853 static int io_timeout(struct io_kiocb *req)
5854 {
5855 struct io_ring_ctx *ctx = req->ctx;
5856 struct io_timeout_data *data = req->async_data;
5857 struct list_head *entry;
5858 u32 tail, off = req->timeout.off;
5859
5860 spin_lock_irq(&ctx->completion_lock);
5861
5862 /*
5863 * sqe->off holds how many events that need to occur for this
5864 * timeout event to be satisfied. If it isn't set, then this is
5865 * a pure timeout request, sequence isn't used.
5866 */
5867 if (io_is_timeout_noseq(req)) {
5868 entry = ctx->timeout_list.prev;
5869 goto add;
5870 }
5871
5872 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5873 req->timeout.target_seq = tail + off;
5874
5875 /* Update the last seq here in case io_flush_timeouts() hasn't.
5876 * This is safe because ->completion_lock is held, and submissions
5877 * and completions are never mixed in the same ->completion_lock section.
5878 */
5879 ctx->cq_last_tm_flush = tail;
5880
5881 /*
5882 * Insertion sort, ensuring the first entry in the list is always
5883 * the one we need first.
5884 */
5885 list_for_each_prev(entry, &ctx->timeout_list) {
5886 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5887 timeout.list);
5888
5889 if (io_is_timeout_noseq(nxt))
5890 continue;
5891 /* nxt.seq is behind @tail, otherwise would've been completed */
5892 if (off >= nxt->timeout.target_seq - tail)
5893 break;
5894 }
5895 add:
5896 list_add(&req->timeout.list, entry);
5897 data->timer.function = io_timeout_fn;
5898 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5899 spin_unlock_irq(&ctx->completion_lock);
5900 return 0;
5901 }
5902
5903 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5904 {
5905 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5906
5907 return req->user_data == (unsigned long) data;
5908 }
5909
5910 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5911 {
5912 enum io_wq_cancel cancel_ret;
5913 int ret = 0;
5914
5915 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5916 switch (cancel_ret) {
5917 case IO_WQ_CANCEL_OK:
5918 ret = 0;
5919 break;
5920 case IO_WQ_CANCEL_RUNNING:
5921 ret = -EALREADY;
5922 break;
5923 case IO_WQ_CANCEL_NOTFOUND:
5924 ret = -ENOENT;
5925 break;
5926 }
5927
5928 return ret;
5929 }
5930
5931 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5932 struct io_kiocb *req, __u64 sqe_addr,
5933 int success_ret)
5934 {
5935 unsigned long flags;
5936 int ret;
5937
5938 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5939 if (ret != -ENOENT) {
5940 spin_lock_irqsave(&ctx->completion_lock, flags);
5941 goto done;
5942 }
5943
5944 spin_lock_irqsave(&ctx->completion_lock, flags);
5945 ret = io_timeout_cancel(ctx, sqe_addr);
5946 if (ret != -ENOENT)
5947 goto done;
5948 ret = io_poll_cancel(ctx, sqe_addr);
5949 done:
5950 if (!ret)
5951 ret = success_ret;
5952 io_cqring_fill_event(req, ret);
5953 io_commit_cqring(ctx);
5954 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5955 io_cqring_ev_posted(ctx);
5956
5957 if (ret < 0)
5958 req_set_fail_links(req);
5959 io_put_req(req);
5960 }
5961
5962 static int io_async_cancel_prep(struct io_kiocb *req,
5963 const struct io_uring_sqe *sqe)
5964 {
5965 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5966 return -EINVAL;
5967 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5968 return -EINVAL;
5969 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5970 return -EINVAL;
5971
5972 req->cancel.addr = READ_ONCE(sqe->addr);
5973 return 0;
5974 }
5975
5976 static int io_async_cancel(struct io_kiocb *req)
5977 {
5978 struct io_ring_ctx *ctx = req->ctx;
5979
5980 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5981 return 0;
5982 }
5983
5984 static int io_files_update_prep(struct io_kiocb *req,
5985 const struct io_uring_sqe *sqe)
5986 {
5987 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5988 return -EINVAL;
5989 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5990 return -EINVAL;
5991 if (sqe->ioprio || sqe->rw_flags)
5992 return -EINVAL;
5993
5994 req->files_update.offset = READ_ONCE(sqe->off);
5995 req->files_update.nr_args = READ_ONCE(sqe->len);
5996 if (!req->files_update.nr_args)
5997 return -EINVAL;
5998 req->files_update.arg = READ_ONCE(sqe->addr);
5999 return 0;
6000 }
6001
6002 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
6003 struct io_comp_state *cs)
6004 {
6005 struct io_ring_ctx *ctx = req->ctx;
6006 struct io_uring_files_update up;
6007 int ret;
6008
6009 if (force_nonblock)
6010 return -EAGAIN;
6011
6012 up.offset = req->files_update.offset;
6013 up.fds = req->files_update.arg;
6014
6015 mutex_lock(&ctx->uring_lock);
6016 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6017 mutex_unlock(&ctx->uring_lock);
6018
6019 if (ret < 0)
6020 req_set_fail_links(req);
6021 __io_req_complete(req, ret, 0, cs);
6022 return 0;
6023 }
6024
6025 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6026 {
6027 switch (req->opcode) {
6028 case IORING_OP_NOP:
6029 return 0;
6030 case IORING_OP_READV:
6031 case IORING_OP_READ_FIXED:
6032 case IORING_OP_READ:
6033 return io_read_prep(req, sqe);
6034 case IORING_OP_WRITEV:
6035 case IORING_OP_WRITE_FIXED:
6036 case IORING_OP_WRITE:
6037 return io_write_prep(req, sqe);
6038 case IORING_OP_POLL_ADD:
6039 return io_poll_add_prep(req, sqe);
6040 case IORING_OP_POLL_REMOVE:
6041 return io_poll_remove_prep(req, sqe);
6042 case IORING_OP_FSYNC:
6043 return io_prep_fsync(req, sqe);
6044 case IORING_OP_SYNC_FILE_RANGE:
6045 return io_prep_sfr(req, sqe);
6046 case IORING_OP_SENDMSG:
6047 case IORING_OP_SEND:
6048 return io_sendmsg_prep(req, sqe);
6049 case IORING_OP_RECVMSG:
6050 case IORING_OP_RECV:
6051 return io_recvmsg_prep(req, sqe);
6052 case IORING_OP_CONNECT:
6053 return io_connect_prep(req, sqe);
6054 case IORING_OP_TIMEOUT:
6055 return io_timeout_prep(req, sqe, false);
6056 case IORING_OP_TIMEOUT_REMOVE:
6057 return io_timeout_remove_prep(req, sqe);
6058 case IORING_OP_ASYNC_CANCEL:
6059 return io_async_cancel_prep(req, sqe);
6060 case IORING_OP_LINK_TIMEOUT:
6061 return io_timeout_prep(req, sqe, true);
6062 case IORING_OP_ACCEPT:
6063 return io_accept_prep(req, sqe);
6064 case IORING_OP_FALLOCATE:
6065 return io_fallocate_prep(req, sqe);
6066 case IORING_OP_OPENAT:
6067 return io_openat_prep(req, sqe);
6068 case IORING_OP_CLOSE:
6069 return io_close_prep(req, sqe);
6070 case IORING_OP_FILES_UPDATE:
6071 return io_files_update_prep(req, sqe);
6072 case IORING_OP_STATX:
6073 return io_statx_prep(req, sqe);
6074 case IORING_OP_FADVISE:
6075 return io_fadvise_prep(req, sqe);
6076 case IORING_OP_MADVISE:
6077 return io_madvise_prep(req, sqe);
6078 case IORING_OP_OPENAT2:
6079 return io_openat2_prep(req, sqe);
6080 case IORING_OP_EPOLL_CTL:
6081 return io_epoll_ctl_prep(req, sqe);
6082 case IORING_OP_SPLICE:
6083 return io_splice_prep(req, sqe);
6084 case IORING_OP_PROVIDE_BUFFERS:
6085 return io_provide_buffers_prep(req, sqe);
6086 case IORING_OP_REMOVE_BUFFERS:
6087 return io_remove_buffers_prep(req, sqe);
6088 case IORING_OP_TEE:
6089 return io_tee_prep(req, sqe);
6090 case IORING_OP_SHUTDOWN:
6091 return io_shutdown_prep(req, sqe);
6092 case IORING_OP_RENAMEAT:
6093 return io_renameat_prep(req, sqe);
6094 case IORING_OP_UNLINKAT:
6095 return io_unlinkat_prep(req, sqe);
6096 }
6097
6098 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6099 req->opcode);
6100 return-EINVAL;
6101 }
6102
6103 static int io_req_defer_prep(struct io_kiocb *req,
6104 const struct io_uring_sqe *sqe)
6105 {
6106 if (!sqe)
6107 return 0;
6108 if (io_alloc_async_data(req))
6109 return -EAGAIN;
6110 return io_req_prep(req, sqe);
6111 }
6112
6113 static u32 io_get_sequence(struct io_kiocb *req)
6114 {
6115 struct io_kiocb *pos;
6116 struct io_ring_ctx *ctx = req->ctx;
6117 u32 total_submitted, nr_reqs = 0;
6118
6119 io_for_each_link(pos, req)
6120 nr_reqs++;
6121
6122 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6123 return total_submitted - nr_reqs;
6124 }
6125
6126 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6127 {
6128 struct io_ring_ctx *ctx = req->ctx;
6129 struct io_defer_entry *de;
6130 int ret;
6131 u32 seq;
6132
6133 /* Still need defer if there is pending req in defer list. */
6134 if (likely(list_empty_careful(&ctx->defer_list) &&
6135 !(req->flags & REQ_F_IO_DRAIN)))
6136 return 0;
6137
6138 seq = io_get_sequence(req);
6139 /* Still a chance to pass the sequence check */
6140 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6141 return 0;
6142
6143 if (!req->async_data) {
6144 ret = io_req_defer_prep(req, sqe);
6145 if (ret)
6146 return ret;
6147 }
6148 io_prep_async_link(req);
6149 de = kmalloc(sizeof(*de), GFP_KERNEL);
6150 if (!de)
6151 return -ENOMEM;
6152
6153 spin_lock_irq(&ctx->completion_lock);
6154 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6155 spin_unlock_irq(&ctx->completion_lock);
6156 kfree(de);
6157 io_queue_async_work(req);
6158 return -EIOCBQUEUED;
6159 }
6160
6161 trace_io_uring_defer(ctx, req, req->user_data);
6162 de->req = req;
6163 de->seq = seq;
6164 list_add_tail(&de->list, &ctx->defer_list);
6165 spin_unlock_irq(&ctx->completion_lock);
6166 return -EIOCBQUEUED;
6167 }
6168
6169 static void io_req_drop_files(struct io_kiocb *req)
6170 {
6171 struct io_ring_ctx *ctx = req->ctx;
6172 struct io_uring_task *tctx = req->task->io_uring;
6173 unsigned long flags;
6174
6175 if (req->work.flags & IO_WQ_WORK_FILES) {
6176 put_files_struct(req->work.identity->files);
6177 put_nsproxy(req->work.identity->nsproxy);
6178 }
6179 spin_lock_irqsave(&ctx->inflight_lock, flags);
6180 list_del(&req->inflight_entry);
6181 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6182 req->flags &= ~REQ_F_INFLIGHT;
6183 req->work.flags &= ~IO_WQ_WORK_FILES;
6184 if (atomic_read(&tctx->in_idle))
6185 wake_up(&tctx->wait);
6186 }
6187
6188 static void __io_clean_op(struct io_kiocb *req)
6189 {
6190 if (req->flags & REQ_F_BUFFER_SELECTED) {
6191 switch (req->opcode) {
6192 case IORING_OP_READV:
6193 case IORING_OP_READ_FIXED:
6194 case IORING_OP_READ:
6195 kfree((void *)(unsigned long)req->rw.addr);
6196 break;
6197 case IORING_OP_RECVMSG:
6198 case IORING_OP_RECV:
6199 kfree(req->sr_msg.kbuf);
6200 break;
6201 }
6202 req->flags &= ~REQ_F_BUFFER_SELECTED;
6203 }
6204
6205 if (req->flags & REQ_F_NEED_CLEANUP) {
6206 switch (req->opcode) {
6207 case IORING_OP_READV:
6208 case IORING_OP_READ_FIXED:
6209 case IORING_OP_READ:
6210 case IORING_OP_WRITEV:
6211 case IORING_OP_WRITE_FIXED:
6212 case IORING_OP_WRITE: {
6213 struct io_async_rw *io = req->async_data;
6214 if (io->free_iovec)
6215 kfree(io->free_iovec);
6216 break;
6217 }
6218 case IORING_OP_RECVMSG:
6219 case IORING_OP_SENDMSG: {
6220 struct io_async_msghdr *io = req->async_data;
6221 if (io->iov != io->fast_iov)
6222 kfree(io->iov);
6223 break;
6224 }
6225 case IORING_OP_SPLICE:
6226 case IORING_OP_TEE:
6227 io_put_file(req, req->splice.file_in,
6228 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6229 break;
6230 case IORING_OP_OPENAT:
6231 case IORING_OP_OPENAT2:
6232 if (req->open.filename)
6233 putname(req->open.filename);
6234 break;
6235 case IORING_OP_RENAMEAT:
6236 putname(req->rename.oldpath);
6237 putname(req->rename.newpath);
6238 break;
6239 case IORING_OP_UNLINKAT:
6240 putname(req->unlink.filename);
6241 break;
6242 }
6243 req->flags &= ~REQ_F_NEED_CLEANUP;
6244 }
6245 }
6246
6247 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6248 struct io_comp_state *cs)
6249 {
6250 struct io_ring_ctx *ctx = req->ctx;
6251 int ret;
6252
6253 switch (req->opcode) {
6254 case IORING_OP_NOP:
6255 ret = io_nop(req, cs);
6256 break;
6257 case IORING_OP_READV:
6258 case IORING_OP_READ_FIXED:
6259 case IORING_OP_READ:
6260 ret = io_read(req, force_nonblock, cs);
6261 break;
6262 case IORING_OP_WRITEV:
6263 case IORING_OP_WRITE_FIXED:
6264 case IORING_OP_WRITE:
6265 ret = io_write(req, force_nonblock, cs);
6266 break;
6267 case IORING_OP_FSYNC:
6268 ret = io_fsync(req, force_nonblock);
6269 break;
6270 case IORING_OP_POLL_ADD:
6271 ret = io_poll_add(req);
6272 break;
6273 case IORING_OP_POLL_REMOVE:
6274 ret = io_poll_remove(req);
6275 break;
6276 case IORING_OP_SYNC_FILE_RANGE:
6277 ret = io_sync_file_range(req, force_nonblock);
6278 break;
6279 case IORING_OP_SENDMSG:
6280 ret = io_sendmsg(req, force_nonblock, cs);
6281 break;
6282 case IORING_OP_SEND:
6283 ret = io_send(req, force_nonblock, cs);
6284 break;
6285 case IORING_OP_RECVMSG:
6286 ret = io_recvmsg(req, force_nonblock, cs);
6287 break;
6288 case IORING_OP_RECV:
6289 ret = io_recv(req, force_nonblock, cs);
6290 break;
6291 case IORING_OP_TIMEOUT:
6292 ret = io_timeout(req);
6293 break;
6294 case IORING_OP_TIMEOUT_REMOVE:
6295 ret = io_timeout_remove(req);
6296 break;
6297 case IORING_OP_ACCEPT:
6298 ret = io_accept(req, force_nonblock, cs);
6299 break;
6300 case IORING_OP_CONNECT:
6301 ret = io_connect(req, force_nonblock, cs);
6302 break;
6303 case IORING_OP_ASYNC_CANCEL:
6304 ret = io_async_cancel(req);
6305 break;
6306 case IORING_OP_FALLOCATE:
6307 ret = io_fallocate(req, force_nonblock);
6308 break;
6309 case IORING_OP_OPENAT:
6310 ret = io_openat(req, force_nonblock);
6311 break;
6312 case IORING_OP_CLOSE:
6313 ret = io_close(req, force_nonblock, cs);
6314 break;
6315 case IORING_OP_FILES_UPDATE:
6316 ret = io_files_update(req, force_nonblock, cs);
6317 break;
6318 case IORING_OP_STATX:
6319 ret = io_statx(req, force_nonblock);
6320 break;
6321 case IORING_OP_FADVISE:
6322 ret = io_fadvise(req, force_nonblock);
6323 break;
6324 case IORING_OP_MADVISE:
6325 ret = io_madvise(req, force_nonblock);
6326 break;
6327 case IORING_OP_OPENAT2:
6328 ret = io_openat2(req, force_nonblock);
6329 break;
6330 case IORING_OP_EPOLL_CTL:
6331 ret = io_epoll_ctl(req, force_nonblock, cs);
6332 break;
6333 case IORING_OP_SPLICE:
6334 ret = io_splice(req, force_nonblock);
6335 break;
6336 case IORING_OP_PROVIDE_BUFFERS:
6337 ret = io_provide_buffers(req, force_nonblock, cs);
6338 break;
6339 case IORING_OP_REMOVE_BUFFERS:
6340 ret = io_remove_buffers(req, force_nonblock, cs);
6341 break;
6342 case IORING_OP_TEE:
6343 ret = io_tee(req, force_nonblock);
6344 break;
6345 case IORING_OP_SHUTDOWN:
6346 ret = io_shutdown(req, force_nonblock);
6347 break;
6348 case IORING_OP_RENAMEAT:
6349 ret = io_renameat(req, force_nonblock);
6350 break;
6351 case IORING_OP_UNLINKAT:
6352 ret = io_unlinkat(req, force_nonblock);
6353 break;
6354 default:
6355 ret = -EINVAL;
6356 break;
6357 }
6358
6359 if (ret)
6360 return ret;
6361
6362 /* If the op doesn't have a file, we're not polling for it */
6363 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6364 const bool in_async = io_wq_current_is_worker();
6365
6366 /* workqueue context doesn't hold uring_lock, grab it now */
6367 if (in_async)
6368 mutex_lock(&ctx->uring_lock);
6369
6370 io_iopoll_req_issued(req, in_async);
6371
6372 if (in_async)
6373 mutex_unlock(&ctx->uring_lock);
6374 }
6375
6376 return 0;
6377 }
6378
6379 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6380 {
6381 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6382 struct io_kiocb *timeout;
6383 int ret = 0;
6384
6385 timeout = io_prep_linked_timeout(req);
6386 if (timeout)
6387 io_queue_linked_timeout(timeout);
6388
6389 /* if NO_CANCEL is set, we must still run the work */
6390 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6391 IO_WQ_WORK_CANCEL) {
6392 ret = -ECANCELED;
6393 }
6394
6395 if (!ret) {
6396 do {
6397 ret = io_issue_sqe(req, false, NULL);
6398 /*
6399 * We can get EAGAIN for polled IO even though we're
6400 * forcing a sync submission from here, since we can't
6401 * wait for request slots on the block side.
6402 */
6403 if (ret != -EAGAIN)
6404 break;
6405 cond_resched();
6406 } while (1);
6407 }
6408
6409 if (ret) {
6410 struct io_ring_ctx *lock_ctx = NULL;
6411
6412 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6413 lock_ctx = req->ctx;
6414
6415 /*
6416 * io_iopoll_complete() does not hold completion_lock to
6417 * complete polled io, so here for polled io, we can not call
6418 * io_req_complete() directly, otherwise there maybe concurrent
6419 * access to cqring, defer_list, etc, which is not safe. Given
6420 * that io_iopoll_complete() is always called under uring_lock,
6421 * so here for polled io, we also get uring_lock to complete
6422 * it.
6423 */
6424 if (lock_ctx)
6425 mutex_lock(&lock_ctx->uring_lock);
6426
6427 req_set_fail_links(req);
6428 io_req_complete(req, ret);
6429
6430 if (lock_ctx)
6431 mutex_unlock(&lock_ctx->uring_lock);
6432 }
6433
6434 return io_steal_work(req);
6435 }
6436
6437 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6438 int index)
6439 {
6440 struct fixed_file_table *table;
6441
6442 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6443 return table->files[index & IORING_FILE_TABLE_MASK];
6444 }
6445
6446 static struct file *io_file_get(struct io_submit_state *state,
6447 struct io_kiocb *req, int fd, bool fixed)
6448 {
6449 struct io_ring_ctx *ctx = req->ctx;
6450 struct file *file;
6451
6452 if (fixed) {
6453 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6454 return NULL;
6455 fd = array_index_nospec(fd, ctx->nr_user_files);
6456 file = io_file_from_index(ctx, fd);
6457 io_set_resource_node(req);
6458 } else {
6459 trace_io_uring_file_get(ctx, fd);
6460 file = __io_file_get(state, fd);
6461 }
6462
6463 if (file && file->f_op == &io_uring_fops &&
6464 !(req->flags & REQ_F_INFLIGHT)) {
6465 io_req_init_async(req);
6466 req->flags |= REQ_F_INFLIGHT;
6467
6468 spin_lock_irq(&ctx->inflight_lock);
6469 list_add(&req->inflight_entry, &ctx->inflight_list);
6470 spin_unlock_irq(&ctx->inflight_lock);
6471 }
6472
6473 return file;
6474 }
6475
6476 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6477 {
6478 struct io_timeout_data *data = container_of(timer,
6479 struct io_timeout_data, timer);
6480 struct io_kiocb *prev, *req = data->req;
6481 struct io_ring_ctx *ctx = req->ctx;
6482 unsigned long flags;
6483
6484 spin_lock_irqsave(&ctx->completion_lock, flags);
6485 prev = req->timeout.head;
6486 req->timeout.head = NULL;
6487
6488 /*
6489 * We don't expect the list to be empty, that will only happen if we
6490 * race with the completion of the linked work.
6491 */
6492 if (prev && refcount_inc_not_zero(&prev->refs))
6493 io_remove_next_linked(prev);
6494 else
6495 prev = NULL;
6496 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6497
6498 if (prev) {
6499 req_set_fail_links(prev);
6500 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6501 io_put_req(prev);
6502 } else {
6503 io_req_complete(req, -ETIME);
6504 }
6505 return HRTIMER_NORESTART;
6506 }
6507
6508 static void __io_queue_linked_timeout(struct io_kiocb *req)
6509 {
6510 /*
6511 * If the back reference is NULL, then our linked request finished
6512 * before we got a chance to setup the timer
6513 */
6514 if (req->timeout.head) {
6515 struct io_timeout_data *data = req->async_data;
6516
6517 data->timer.function = io_link_timeout_fn;
6518 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6519 data->mode);
6520 }
6521 }
6522
6523 static void io_queue_linked_timeout(struct io_kiocb *req)
6524 {
6525 struct io_ring_ctx *ctx = req->ctx;
6526
6527 spin_lock_irq(&ctx->completion_lock);
6528 __io_queue_linked_timeout(req);
6529 spin_unlock_irq(&ctx->completion_lock);
6530
6531 /* drop submission reference */
6532 io_put_req(req);
6533 }
6534
6535 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6536 {
6537 struct io_kiocb *nxt = req->link;
6538
6539 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6540 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6541 return NULL;
6542
6543 nxt->timeout.head = req;
6544 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6545 req->flags |= REQ_F_LINK_TIMEOUT;
6546 return nxt;
6547 }
6548
6549 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6550 {
6551 struct io_kiocb *linked_timeout;
6552 const struct cred *old_creds = NULL;
6553 int ret;
6554
6555 again:
6556 linked_timeout = io_prep_linked_timeout(req);
6557
6558 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6559 (req->work.flags & IO_WQ_WORK_CREDS) &&
6560 req->work.identity->creds != current_cred()) {
6561 if (old_creds)
6562 revert_creds(old_creds);
6563 if (old_creds == req->work.identity->creds)
6564 old_creds = NULL; /* restored original creds */
6565 else
6566 old_creds = override_creds(req->work.identity->creds);
6567 }
6568
6569 ret = io_issue_sqe(req, true, cs);
6570
6571 /*
6572 * We async punt it if the file wasn't marked NOWAIT, or if the file
6573 * doesn't support non-blocking read/write attempts
6574 */
6575 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6576 if (!io_arm_poll_handler(req)) {
6577 /*
6578 * Queued up for async execution, worker will release
6579 * submit reference when the iocb is actually submitted.
6580 */
6581 io_queue_async_work(req);
6582 }
6583
6584 if (linked_timeout)
6585 io_queue_linked_timeout(linked_timeout);
6586 } else if (likely(!ret)) {
6587 /* drop submission reference */
6588 req = io_put_req_find_next(req);
6589 if (linked_timeout)
6590 io_queue_linked_timeout(linked_timeout);
6591
6592 if (req) {
6593 if (!(req->flags & REQ_F_FORCE_ASYNC))
6594 goto again;
6595 io_queue_async_work(req);
6596 }
6597 } else {
6598 /* un-prep timeout, so it'll be killed as any other linked */
6599 req->flags &= ~REQ_F_LINK_TIMEOUT;
6600 req_set_fail_links(req);
6601 io_put_req(req);
6602 io_req_complete(req, ret);
6603 }
6604
6605 if (old_creds)
6606 revert_creds(old_creds);
6607 }
6608
6609 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6610 struct io_comp_state *cs)
6611 {
6612 int ret;
6613
6614 ret = io_req_defer(req, sqe);
6615 if (ret) {
6616 if (ret != -EIOCBQUEUED) {
6617 fail_req:
6618 req_set_fail_links(req);
6619 io_put_req(req);
6620 io_req_complete(req, ret);
6621 }
6622 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6623 if (!req->async_data) {
6624 ret = io_req_defer_prep(req, sqe);
6625 if (unlikely(ret))
6626 goto fail_req;
6627 }
6628 io_queue_async_work(req);
6629 } else {
6630 if (sqe) {
6631 ret = io_req_prep(req, sqe);
6632 if (unlikely(ret))
6633 goto fail_req;
6634 }
6635 __io_queue_sqe(req, cs);
6636 }
6637 }
6638
6639 static inline void io_queue_link_head(struct io_kiocb *req,
6640 struct io_comp_state *cs)
6641 {
6642 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6643 io_put_req(req);
6644 io_req_complete(req, -ECANCELED);
6645 } else
6646 io_queue_sqe(req, NULL, cs);
6647 }
6648
6649 struct io_submit_link {
6650 struct io_kiocb *head;
6651 struct io_kiocb *last;
6652 };
6653
6654 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6655 struct io_submit_link *link, struct io_comp_state *cs)
6656 {
6657 struct io_ring_ctx *ctx = req->ctx;
6658 int ret;
6659
6660 /*
6661 * If we already have a head request, queue this one for async
6662 * submittal once the head completes. If we don't have a head but
6663 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6664 * submitted sync once the chain is complete. If none of those
6665 * conditions are true (normal request), then just queue it.
6666 */
6667 if (link->head) {
6668 struct io_kiocb *head = link->head;
6669
6670 /*
6671 * Taking sequential execution of a link, draining both sides
6672 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6673 * requests in the link. So, it drains the head and the
6674 * next after the link request. The last one is done via
6675 * drain_next flag to persist the effect across calls.
6676 */
6677 if (req->flags & REQ_F_IO_DRAIN) {
6678 head->flags |= REQ_F_IO_DRAIN;
6679 ctx->drain_next = 1;
6680 }
6681 ret = io_req_defer_prep(req, sqe);
6682 if (unlikely(ret)) {
6683 /* fail even hard links since we don't submit */
6684 head->flags |= REQ_F_FAIL_LINK;
6685 return ret;
6686 }
6687 trace_io_uring_link(ctx, req, head);
6688 link->last->link = req;
6689 link->last = req;
6690
6691 /* last request of a link, enqueue the link */
6692 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6693 io_queue_link_head(head, cs);
6694 link->head = NULL;
6695 }
6696 } else {
6697 if (unlikely(ctx->drain_next)) {
6698 req->flags |= REQ_F_IO_DRAIN;
6699 ctx->drain_next = 0;
6700 }
6701 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6702 ret = io_req_defer_prep(req, sqe);
6703 if (unlikely(ret))
6704 req->flags |= REQ_F_FAIL_LINK;
6705 link->head = req;
6706 link->last = req;
6707 } else {
6708 io_queue_sqe(req, sqe, cs);
6709 }
6710 }
6711
6712 return 0;
6713 }
6714
6715 /*
6716 * Batched submission is done, ensure local IO is flushed out.
6717 */
6718 static void io_submit_state_end(struct io_submit_state *state)
6719 {
6720 if (!list_empty(&state->comp.list))
6721 io_submit_flush_completions(&state->comp);
6722 if (state->plug_started)
6723 blk_finish_plug(&state->plug);
6724 io_state_file_put(state);
6725 if (state->free_reqs)
6726 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6727 }
6728
6729 /*
6730 * Start submission side cache.
6731 */
6732 static void io_submit_state_start(struct io_submit_state *state,
6733 struct io_ring_ctx *ctx, unsigned int max_ios)
6734 {
6735 state->plug_started = false;
6736 state->comp.nr = 0;
6737 INIT_LIST_HEAD(&state->comp.list);
6738 state->comp.ctx = ctx;
6739 state->free_reqs = 0;
6740 state->file_refs = 0;
6741 state->ios_left = max_ios;
6742 }
6743
6744 static void io_commit_sqring(struct io_ring_ctx *ctx)
6745 {
6746 struct io_rings *rings = ctx->rings;
6747
6748 /*
6749 * Ensure any loads from the SQEs are done at this point,
6750 * since once we write the new head, the application could
6751 * write new data to them.
6752 */
6753 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6754 }
6755
6756 /*
6757 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6758 * that is mapped by userspace. This means that care needs to be taken to
6759 * ensure that reads are stable, as we cannot rely on userspace always
6760 * being a good citizen. If members of the sqe are validated and then later
6761 * used, it's important that those reads are done through READ_ONCE() to
6762 * prevent a re-load down the line.
6763 */
6764 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6765 {
6766 u32 *sq_array = ctx->sq_array;
6767 unsigned head;
6768
6769 /*
6770 * The cached sq head (or cq tail) serves two purposes:
6771 *
6772 * 1) allows us to batch the cost of updating the user visible
6773 * head updates.
6774 * 2) allows the kernel side to track the head on its own, even
6775 * though the application is the one updating it.
6776 */
6777 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6778 if (likely(head < ctx->sq_entries))
6779 return &ctx->sq_sqes[head];
6780
6781 /* drop invalid entries */
6782 ctx->cached_sq_dropped++;
6783 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6784 return NULL;
6785 }
6786
6787 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6788 {
6789 ctx->cached_sq_head++;
6790 }
6791
6792 /*
6793 * Check SQE restrictions (opcode and flags).
6794 *
6795 * Returns 'true' if SQE is allowed, 'false' otherwise.
6796 */
6797 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6798 struct io_kiocb *req,
6799 unsigned int sqe_flags)
6800 {
6801 if (!ctx->restricted)
6802 return true;
6803
6804 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6805 return false;
6806
6807 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6808 ctx->restrictions.sqe_flags_required)
6809 return false;
6810
6811 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6812 ctx->restrictions.sqe_flags_required))
6813 return false;
6814
6815 return true;
6816 }
6817
6818 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6819 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6820 IOSQE_BUFFER_SELECT)
6821
6822 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6823 const struct io_uring_sqe *sqe,
6824 struct io_submit_state *state)
6825 {
6826 unsigned int sqe_flags;
6827 int id, ret;
6828
6829 req->opcode = READ_ONCE(sqe->opcode);
6830 req->user_data = READ_ONCE(sqe->user_data);
6831 req->async_data = NULL;
6832 req->file = NULL;
6833 req->ctx = ctx;
6834 req->flags = 0;
6835 req->link = NULL;
6836 req->fixed_file_refs = NULL;
6837 /* one is dropped after submission, the other at completion */
6838 refcount_set(&req->refs, 2);
6839 req->task = current;
6840 req->result = 0;
6841
6842 if (unlikely(req->opcode >= IORING_OP_LAST))
6843 return -EINVAL;
6844
6845 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6846 return -EFAULT;
6847
6848 sqe_flags = READ_ONCE(sqe->flags);
6849 /* enforce forwards compatibility on users */
6850 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6851 return -EINVAL;
6852
6853 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6854 return -EACCES;
6855
6856 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6857 !io_op_defs[req->opcode].buffer_select)
6858 return -EOPNOTSUPP;
6859
6860 id = READ_ONCE(sqe->personality);
6861 if (id) {
6862 struct io_identity *iod;
6863
6864 iod = idr_find(&ctx->personality_idr, id);
6865 if (unlikely(!iod))
6866 return -EINVAL;
6867 refcount_inc(&iod->count);
6868
6869 __io_req_init_async(req);
6870 get_cred(iod->creds);
6871 req->work.identity = iod;
6872 req->work.flags |= IO_WQ_WORK_CREDS;
6873 }
6874
6875 /* same numerical values with corresponding REQ_F_*, safe to copy */
6876 req->flags |= sqe_flags;
6877
6878 /*
6879 * Plug now if we have more than 1 IO left after this, and the target
6880 * is potentially a read/write to block based storage.
6881 */
6882 if (!state->plug_started && state->ios_left > 1 &&
6883 io_op_defs[req->opcode].plug) {
6884 blk_start_plug(&state->plug);
6885 state->plug_started = true;
6886 }
6887
6888 ret = 0;
6889 if (io_op_defs[req->opcode].needs_file) {
6890 bool fixed = req->flags & REQ_F_FIXED_FILE;
6891
6892 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6893 if (unlikely(!req->file &&
6894 !io_op_defs[req->opcode].needs_file_no_error))
6895 ret = -EBADF;
6896 }
6897
6898 state->ios_left--;
6899 return ret;
6900 }
6901
6902 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6903 {
6904 struct io_submit_state state;
6905 struct io_submit_link link;
6906 int i, submitted = 0;
6907
6908 /* if we have a backlog and couldn't flush it all, return BUSY */
6909 if (test_bit(0, &ctx->sq_check_overflow)) {
6910 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6911 return -EBUSY;
6912 }
6913
6914 /* make sure SQ entry isn't read before tail */
6915 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6916
6917 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6918 return -EAGAIN;
6919
6920 percpu_counter_add(&current->io_uring->inflight, nr);
6921 refcount_add(nr, &current->usage);
6922
6923 io_submit_state_start(&state, ctx, nr);
6924 link.head = NULL;
6925
6926 for (i = 0; i < nr; i++) {
6927 const struct io_uring_sqe *sqe;
6928 struct io_kiocb *req;
6929 int err;
6930
6931 sqe = io_get_sqe(ctx);
6932 if (unlikely(!sqe)) {
6933 io_consume_sqe(ctx);
6934 break;
6935 }
6936 req = io_alloc_req(ctx, &state);
6937 if (unlikely(!req)) {
6938 if (!submitted)
6939 submitted = -EAGAIN;
6940 break;
6941 }
6942 io_consume_sqe(ctx);
6943 /* will complete beyond this point, count as submitted */
6944 submitted++;
6945
6946 err = io_init_req(ctx, req, sqe, &state);
6947 if (unlikely(err)) {
6948 fail_req:
6949 io_put_req(req);
6950 io_req_complete(req, err);
6951 break;
6952 }
6953
6954 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6955 true, io_async_submit(ctx));
6956 err = io_submit_sqe(req, sqe, &link, &state.comp);
6957 if (err)
6958 goto fail_req;
6959 }
6960
6961 if (unlikely(submitted != nr)) {
6962 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6963 struct io_uring_task *tctx = current->io_uring;
6964 int unused = nr - ref_used;
6965
6966 percpu_ref_put_many(&ctx->refs, unused);
6967 percpu_counter_sub(&tctx->inflight, unused);
6968 put_task_struct_many(current, unused);
6969 }
6970 if (link.head)
6971 io_queue_link_head(link.head, &state.comp);
6972 io_submit_state_end(&state);
6973
6974 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6975 io_commit_sqring(ctx);
6976
6977 return submitted;
6978 }
6979
6980 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6981 {
6982 /* Tell userspace we may need a wakeup call */
6983 spin_lock_irq(&ctx->completion_lock);
6984 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6985 spin_unlock_irq(&ctx->completion_lock);
6986 }
6987
6988 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6989 {
6990 spin_lock_irq(&ctx->completion_lock);
6991 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6992 spin_unlock_irq(&ctx->completion_lock);
6993 }
6994
6995 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6996 {
6997 unsigned int to_submit;
6998 int ret = 0;
6999
7000 to_submit = io_sqring_entries(ctx);
7001 /* if we're handling multiple rings, cap submit size for fairness */
7002 if (cap_entries && to_submit > 8)
7003 to_submit = 8;
7004
7005 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7006 unsigned nr_events = 0;
7007
7008 mutex_lock(&ctx->uring_lock);
7009 if (!list_empty(&ctx->iopoll_list))
7010 io_do_iopoll(ctx, &nr_events, 0);
7011
7012 if (to_submit && !ctx->sqo_dead &&
7013 likely(!percpu_ref_is_dying(&ctx->refs)))
7014 ret = io_submit_sqes(ctx, to_submit);
7015 mutex_unlock(&ctx->uring_lock);
7016 }
7017
7018 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7019 wake_up(&ctx->sqo_sq_wait);
7020
7021 return ret;
7022 }
7023
7024 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7025 {
7026 struct io_ring_ctx *ctx;
7027 unsigned sq_thread_idle = 0;
7028
7029 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7030 if (sq_thread_idle < ctx->sq_thread_idle)
7031 sq_thread_idle = ctx->sq_thread_idle;
7032 }
7033
7034 sqd->sq_thread_idle = sq_thread_idle;
7035 }
7036
7037 static void io_sqd_init_new(struct io_sq_data *sqd)
7038 {
7039 struct io_ring_ctx *ctx;
7040
7041 while (!list_empty(&sqd->ctx_new_list)) {
7042 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7043 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7044 complete(&ctx->sq_thread_comp);
7045 }
7046
7047 io_sqd_update_thread_idle(sqd);
7048 }
7049
7050 static int io_sq_thread(void *data)
7051 {
7052 struct cgroup_subsys_state *cur_css = NULL;
7053 struct files_struct *old_files = current->files;
7054 struct nsproxy *old_nsproxy = current->nsproxy;
7055 const struct cred *old_cred = NULL;
7056 struct io_sq_data *sqd = data;
7057 struct io_ring_ctx *ctx;
7058 unsigned long timeout = 0;
7059 DEFINE_WAIT(wait);
7060
7061 task_lock(current);
7062 current->files = NULL;
7063 current->nsproxy = NULL;
7064 task_unlock(current);
7065
7066 while (!kthread_should_stop()) {
7067 int ret;
7068 bool cap_entries, sqt_spin, needs_sched;
7069
7070 /*
7071 * Any changes to the sqd lists are synchronized through the
7072 * kthread parking. This synchronizes the thread vs users,
7073 * the users are synchronized on the sqd->ctx_lock.
7074 */
7075 if (kthread_should_park()) {
7076 kthread_parkme();
7077 /*
7078 * When sq thread is unparked, in case the previous park operation
7079 * comes from io_put_sq_data(), which means that sq thread is going
7080 * to be stopped, so here needs to have a check.
7081 */
7082 if (kthread_should_stop())
7083 break;
7084 }
7085
7086 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7087 io_sqd_init_new(sqd);
7088 timeout = jiffies + sqd->sq_thread_idle;
7089 }
7090
7091 sqt_spin = false;
7092 cap_entries = !list_is_singular(&sqd->ctx_list);
7093 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7094 if (current->cred != ctx->creds) {
7095 if (old_cred)
7096 revert_creds(old_cred);
7097 old_cred = override_creds(ctx->creds);
7098 }
7099 io_sq_thread_associate_blkcg(ctx, &cur_css);
7100 #ifdef CONFIG_AUDIT
7101 current->loginuid = ctx->loginuid;
7102 current->sessionid = ctx->sessionid;
7103 #endif
7104
7105 ret = __io_sq_thread(ctx, cap_entries);
7106 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7107 sqt_spin = true;
7108
7109 io_sq_thread_drop_mm_files();
7110 }
7111
7112 if (sqt_spin || !time_after(jiffies, timeout)) {
7113 io_run_task_work();
7114 io_sq_thread_drop_mm_files();
7115 cond_resched();
7116 if (sqt_spin)
7117 timeout = jiffies + sqd->sq_thread_idle;
7118 continue;
7119 }
7120
7121 if (kthread_should_park())
7122 continue;
7123
7124 needs_sched = true;
7125 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7126 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7127 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7128 !list_empty_careful(&ctx->iopoll_list)) {
7129 needs_sched = false;
7130 break;
7131 }
7132 if (io_sqring_entries(ctx)) {
7133 needs_sched = false;
7134 break;
7135 }
7136 }
7137
7138 if (needs_sched) {
7139 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7140 io_ring_set_wakeup_flag(ctx);
7141
7142 schedule();
7143 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7144 io_ring_clear_wakeup_flag(ctx);
7145 }
7146
7147 finish_wait(&sqd->wait, &wait);
7148 timeout = jiffies + sqd->sq_thread_idle;
7149 }
7150
7151 io_run_task_work();
7152 io_sq_thread_drop_mm_files();
7153
7154 if (cur_css)
7155 io_sq_thread_unassociate_blkcg();
7156 if (old_cred)
7157 revert_creds(old_cred);
7158
7159 task_lock(current);
7160 current->files = old_files;
7161 current->nsproxy = old_nsproxy;
7162 task_unlock(current);
7163
7164 kthread_parkme();
7165
7166 return 0;
7167 }
7168
7169 struct io_wait_queue {
7170 struct wait_queue_entry wq;
7171 struct io_ring_ctx *ctx;
7172 unsigned to_wait;
7173 unsigned nr_timeouts;
7174 };
7175
7176 static inline bool io_should_wake(struct io_wait_queue *iowq)
7177 {
7178 struct io_ring_ctx *ctx = iowq->ctx;
7179
7180 /*
7181 * Wake up if we have enough events, or if a timeout occurred since we
7182 * started waiting. For timeouts, we always want to return to userspace,
7183 * regardless of event count.
7184 */
7185 return io_cqring_events(ctx) >= iowq->to_wait ||
7186 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7187 }
7188
7189 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7190 int wake_flags, void *key)
7191 {
7192 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7193 wq);
7194
7195 /*
7196 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7197 * the task, and the next invocation will do it.
7198 */
7199 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7200 return autoremove_wake_function(curr, mode, wake_flags, key);
7201 return -1;
7202 }
7203
7204 static int io_run_task_work_sig(void)
7205 {
7206 if (io_run_task_work())
7207 return 1;
7208 if (!signal_pending(current))
7209 return 0;
7210 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7211 return -ERESTARTSYS;
7212 return -EINTR;
7213 }
7214
7215 /*
7216 * Wait until events become available, if we don't already have some. The
7217 * application must reap them itself, as they reside on the shared cq ring.
7218 */
7219 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7220 const sigset_t __user *sig, size_t sigsz,
7221 struct __kernel_timespec __user *uts)
7222 {
7223 struct io_wait_queue iowq = {
7224 .wq = {
7225 .private = current,
7226 .func = io_wake_function,
7227 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7228 },
7229 .ctx = ctx,
7230 .to_wait = min_events,
7231 };
7232 struct io_rings *rings = ctx->rings;
7233 struct timespec64 ts;
7234 signed long timeout = 0;
7235 int ret = 0;
7236
7237 do {
7238 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7239 if (io_cqring_events(ctx) >= min_events)
7240 return 0;
7241 if (!io_run_task_work())
7242 break;
7243 } while (1);
7244
7245 if (sig) {
7246 #ifdef CONFIG_COMPAT
7247 if (in_compat_syscall())
7248 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7249 sigsz);
7250 else
7251 #endif
7252 ret = set_user_sigmask(sig, sigsz);
7253
7254 if (ret)
7255 return ret;
7256 }
7257
7258 if (uts) {
7259 if (get_timespec64(&ts, uts))
7260 return -EFAULT;
7261 timeout = timespec64_to_jiffies(&ts);
7262 }
7263
7264 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7265 trace_io_uring_cqring_wait(ctx, min_events);
7266 do {
7267 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7268 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7269 TASK_INTERRUPTIBLE);
7270 /* make sure we run task_work before checking for signals */
7271 ret = io_run_task_work_sig();
7272 if (ret > 0) {
7273 finish_wait(&ctx->wait, &iowq.wq);
7274 continue;
7275 }
7276 else if (ret < 0)
7277 break;
7278 if (io_should_wake(&iowq))
7279 break;
7280 if (test_bit(0, &ctx->cq_check_overflow)) {
7281 finish_wait(&ctx->wait, &iowq.wq);
7282 continue;
7283 }
7284 if (uts) {
7285 timeout = schedule_timeout(timeout);
7286 if (timeout == 0) {
7287 ret = -ETIME;
7288 break;
7289 }
7290 } else {
7291 schedule();
7292 }
7293 } while (1);
7294 finish_wait(&ctx->wait, &iowq.wq);
7295
7296 restore_saved_sigmask_unless(ret == -EINTR);
7297
7298 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7299 }
7300
7301 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7302 {
7303 #if defined(CONFIG_UNIX)
7304 if (ctx->ring_sock) {
7305 struct sock *sock = ctx->ring_sock->sk;
7306 struct sk_buff *skb;
7307
7308 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7309 kfree_skb(skb);
7310 }
7311 #else
7312 int i;
7313
7314 for (i = 0; i < ctx->nr_user_files; i++) {
7315 struct file *file;
7316
7317 file = io_file_from_index(ctx, i);
7318 if (file)
7319 fput(file);
7320 }
7321 #endif
7322 }
7323
7324 static void io_file_ref_kill(struct percpu_ref *ref)
7325 {
7326 struct fixed_file_data *data;
7327
7328 data = container_of(ref, struct fixed_file_data, refs);
7329 complete(&data->done);
7330 }
7331
7332 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7333 struct fixed_file_ref_node *ref_node)
7334 {
7335 spin_lock_bh(&file_data->lock);
7336 file_data->node = ref_node;
7337 list_add_tail(&ref_node->node, &file_data->ref_list);
7338 spin_unlock_bh(&file_data->lock);
7339 percpu_ref_get(&file_data->refs);
7340 }
7341
7342 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7343 {
7344 struct fixed_file_data *data = ctx->file_data;
7345 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7346 unsigned nr_tables, i;
7347 int ret;
7348
7349 if (!data)
7350 return -ENXIO;
7351 backup_node = alloc_fixed_file_ref_node(ctx);
7352 if (!backup_node)
7353 return -ENOMEM;
7354
7355 spin_lock_bh(&data->lock);
7356 ref_node = data->node;
7357 spin_unlock_bh(&data->lock);
7358 if (ref_node)
7359 percpu_ref_kill(&ref_node->refs);
7360
7361 percpu_ref_kill(&data->refs);
7362
7363 /* wait for all refs nodes to complete */
7364 flush_delayed_work(&ctx->file_put_work);
7365 do {
7366 ret = wait_for_completion_interruptible(&data->done);
7367 if (!ret)
7368 break;
7369 ret = io_run_task_work_sig();
7370 if (ret < 0) {
7371 percpu_ref_resurrect(&data->refs);
7372 reinit_completion(&data->done);
7373 io_sqe_files_set_node(data, backup_node);
7374 return ret;
7375 }
7376 } while (1);
7377
7378 __io_sqe_files_unregister(ctx);
7379 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7380 for (i = 0; i < nr_tables; i++)
7381 kfree(data->table[i].files);
7382 kfree(data->table);
7383 percpu_ref_exit(&data->refs);
7384 kfree(data);
7385 ctx->file_data = NULL;
7386 ctx->nr_user_files = 0;
7387 destroy_fixed_file_ref_node(backup_node);
7388 return 0;
7389 }
7390
7391 static void io_put_sq_data(struct io_sq_data *sqd)
7392 {
7393 if (refcount_dec_and_test(&sqd->refs)) {
7394 /*
7395 * The park is a bit of a work-around, without it we get
7396 * warning spews on shutdown with SQPOLL set and affinity
7397 * set to a single CPU.
7398 */
7399 if (sqd->thread) {
7400 kthread_park(sqd->thread);
7401 kthread_stop(sqd->thread);
7402 }
7403
7404 kfree(sqd);
7405 }
7406 }
7407
7408 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7409 {
7410 struct io_ring_ctx *ctx_attach;
7411 struct io_sq_data *sqd;
7412 struct fd f;
7413
7414 f = fdget(p->wq_fd);
7415 if (!f.file)
7416 return ERR_PTR(-ENXIO);
7417 if (f.file->f_op != &io_uring_fops) {
7418 fdput(f);
7419 return ERR_PTR(-EINVAL);
7420 }
7421
7422 ctx_attach = f.file->private_data;
7423 sqd = ctx_attach->sq_data;
7424 if (!sqd) {
7425 fdput(f);
7426 return ERR_PTR(-EINVAL);
7427 }
7428
7429 refcount_inc(&sqd->refs);
7430 fdput(f);
7431 return sqd;
7432 }
7433
7434 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7435 {
7436 struct io_sq_data *sqd;
7437
7438 if (p->flags & IORING_SETUP_ATTACH_WQ)
7439 return io_attach_sq_data(p);
7440
7441 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7442 if (!sqd)
7443 return ERR_PTR(-ENOMEM);
7444
7445 refcount_set(&sqd->refs, 1);
7446 INIT_LIST_HEAD(&sqd->ctx_list);
7447 INIT_LIST_HEAD(&sqd->ctx_new_list);
7448 mutex_init(&sqd->ctx_lock);
7449 mutex_init(&sqd->lock);
7450 init_waitqueue_head(&sqd->wait);
7451 return sqd;
7452 }
7453
7454 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7455 __releases(&sqd->lock)
7456 {
7457 if (!sqd->thread)
7458 return;
7459 kthread_unpark(sqd->thread);
7460 mutex_unlock(&sqd->lock);
7461 }
7462
7463 static void io_sq_thread_park(struct io_sq_data *sqd)
7464 __acquires(&sqd->lock)
7465 {
7466 if (!sqd->thread)
7467 return;
7468 mutex_lock(&sqd->lock);
7469 kthread_park(sqd->thread);
7470 }
7471
7472 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7473 {
7474 struct io_sq_data *sqd = ctx->sq_data;
7475
7476 if (sqd) {
7477 if (sqd->thread) {
7478 /*
7479 * We may arrive here from the error branch in
7480 * io_sq_offload_create() where the kthread is created
7481 * without being waked up, thus wake it up now to make
7482 * sure the wait will complete.
7483 */
7484 wake_up_process(sqd->thread);
7485 wait_for_completion(&ctx->sq_thread_comp);
7486
7487 io_sq_thread_park(sqd);
7488 }
7489
7490 mutex_lock(&sqd->ctx_lock);
7491 list_del(&ctx->sqd_list);
7492 io_sqd_update_thread_idle(sqd);
7493 mutex_unlock(&sqd->ctx_lock);
7494
7495 if (sqd->thread)
7496 io_sq_thread_unpark(sqd);
7497
7498 io_put_sq_data(sqd);
7499 ctx->sq_data = NULL;
7500 }
7501 }
7502
7503 static void io_finish_async(struct io_ring_ctx *ctx)
7504 {
7505 io_sq_thread_stop(ctx);
7506
7507 if (ctx->io_wq) {
7508 io_wq_destroy(ctx->io_wq);
7509 ctx->io_wq = NULL;
7510 }
7511 }
7512
7513 #if defined(CONFIG_UNIX)
7514 /*
7515 * Ensure the UNIX gc is aware of our file set, so we are certain that
7516 * the io_uring can be safely unregistered on process exit, even if we have
7517 * loops in the file referencing.
7518 */
7519 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7520 {
7521 struct sock *sk = ctx->ring_sock->sk;
7522 struct scm_fp_list *fpl;
7523 struct sk_buff *skb;
7524 int i, nr_files;
7525
7526 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7527 if (!fpl)
7528 return -ENOMEM;
7529
7530 skb = alloc_skb(0, GFP_KERNEL);
7531 if (!skb) {
7532 kfree(fpl);
7533 return -ENOMEM;
7534 }
7535
7536 skb->sk = sk;
7537
7538 nr_files = 0;
7539 fpl->user = get_uid(ctx->user);
7540 for (i = 0; i < nr; i++) {
7541 struct file *file = io_file_from_index(ctx, i + offset);
7542
7543 if (!file)
7544 continue;
7545 fpl->fp[nr_files] = get_file(file);
7546 unix_inflight(fpl->user, fpl->fp[nr_files]);
7547 nr_files++;
7548 }
7549
7550 if (nr_files) {
7551 fpl->max = SCM_MAX_FD;
7552 fpl->count = nr_files;
7553 UNIXCB(skb).fp = fpl;
7554 skb->destructor = unix_destruct_scm;
7555 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7556 skb_queue_head(&sk->sk_receive_queue, skb);
7557
7558 for (i = 0; i < nr_files; i++)
7559 fput(fpl->fp[i]);
7560 } else {
7561 kfree_skb(skb);
7562 kfree(fpl);
7563 }
7564
7565 return 0;
7566 }
7567
7568 /*
7569 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7570 * causes regular reference counting to break down. We rely on the UNIX
7571 * garbage collection to take care of this problem for us.
7572 */
7573 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7574 {
7575 unsigned left, total;
7576 int ret = 0;
7577
7578 total = 0;
7579 left = ctx->nr_user_files;
7580 while (left) {
7581 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7582
7583 ret = __io_sqe_files_scm(ctx, this_files, total);
7584 if (ret)
7585 break;
7586 left -= this_files;
7587 total += this_files;
7588 }
7589
7590 if (!ret)
7591 return 0;
7592
7593 while (total < ctx->nr_user_files) {
7594 struct file *file = io_file_from_index(ctx, total);
7595
7596 if (file)
7597 fput(file);
7598 total++;
7599 }
7600
7601 return ret;
7602 }
7603 #else
7604 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7605 {
7606 return 0;
7607 }
7608 #endif
7609
7610 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7611 unsigned nr_tables, unsigned nr_files)
7612 {
7613 int i;
7614
7615 for (i = 0; i < nr_tables; i++) {
7616 struct fixed_file_table *table = &file_data->table[i];
7617 unsigned this_files;
7618
7619 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7620 table->files = kcalloc(this_files, sizeof(struct file *),
7621 GFP_KERNEL);
7622 if (!table->files)
7623 break;
7624 nr_files -= this_files;
7625 }
7626
7627 if (i == nr_tables)
7628 return 0;
7629
7630 for (i = 0; i < nr_tables; i++) {
7631 struct fixed_file_table *table = &file_data->table[i];
7632 kfree(table->files);
7633 }
7634 return 1;
7635 }
7636
7637 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7638 {
7639 #if defined(CONFIG_UNIX)
7640 struct sock *sock = ctx->ring_sock->sk;
7641 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7642 struct sk_buff *skb;
7643 int i;
7644
7645 __skb_queue_head_init(&list);
7646
7647 /*
7648 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7649 * remove this entry and rearrange the file array.
7650 */
7651 skb = skb_dequeue(head);
7652 while (skb) {
7653 struct scm_fp_list *fp;
7654
7655 fp = UNIXCB(skb).fp;
7656 for (i = 0; i < fp->count; i++) {
7657 int left;
7658
7659 if (fp->fp[i] != file)
7660 continue;
7661
7662 unix_notinflight(fp->user, fp->fp[i]);
7663 left = fp->count - 1 - i;
7664 if (left) {
7665 memmove(&fp->fp[i], &fp->fp[i + 1],
7666 left * sizeof(struct file *));
7667 }
7668 fp->count--;
7669 if (!fp->count) {
7670 kfree_skb(skb);
7671 skb = NULL;
7672 } else {
7673 __skb_queue_tail(&list, skb);
7674 }
7675 fput(file);
7676 file = NULL;
7677 break;
7678 }
7679
7680 if (!file)
7681 break;
7682
7683 __skb_queue_tail(&list, skb);
7684
7685 skb = skb_dequeue(head);
7686 }
7687
7688 if (skb_peek(&list)) {
7689 spin_lock_irq(&head->lock);
7690 while ((skb = __skb_dequeue(&list)) != NULL)
7691 __skb_queue_tail(head, skb);
7692 spin_unlock_irq(&head->lock);
7693 }
7694 #else
7695 fput(file);
7696 #endif
7697 }
7698
7699 struct io_file_put {
7700 struct list_head list;
7701 struct file *file;
7702 };
7703
7704 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7705 {
7706 struct fixed_file_data *file_data = ref_node->file_data;
7707 struct io_ring_ctx *ctx = file_data->ctx;
7708 struct io_file_put *pfile, *tmp;
7709
7710 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7711 list_del(&pfile->list);
7712 io_ring_file_put(ctx, pfile->file);
7713 kfree(pfile);
7714 }
7715
7716 percpu_ref_exit(&ref_node->refs);
7717 kfree(ref_node);
7718 percpu_ref_put(&file_data->refs);
7719 }
7720
7721 static void io_file_put_work(struct work_struct *work)
7722 {
7723 struct io_ring_ctx *ctx;
7724 struct llist_node *node;
7725
7726 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7727 node = llist_del_all(&ctx->file_put_llist);
7728
7729 while (node) {
7730 struct fixed_file_ref_node *ref_node;
7731 struct llist_node *next = node->next;
7732
7733 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7734 __io_file_put_work(ref_node);
7735 node = next;
7736 }
7737 }
7738
7739 static void io_file_data_ref_zero(struct percpu_ref *ref)
7740 {
7741 struct fixed_file_ref_node *ref_node;
7742 struct fixed_file_data *data;
7743 struct io_ring_ctx *ctx;
7744 bool first_add = false;
7745 int delay = HZ;
7746
7747 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7748 data = ref_node->file_data;
7749 ctx = data->ctx;
7750
7751 spin_lock_bh(&data->lock);
7752 ref_node->done = true;
7753
7754 while (!list_empty(&data->ref_list)) {
7755 ref_node = list_first_entry(&data->ref_list,
7756 struct fixed_file_ref_node, node);
7757 /* recycle ref nodes in order */
7758 if (!ref_node->done)
7759 break;
7760 list_del(&ref_node->node);
7761 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7762 }
7763 spin_unlock_bh(&data->lock);
7764
7765 if (percpu_ref_is_dying(&data->refs))
7766 delay = 0;
7767
7768 if (!delay)
7769 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7770 else if (first_add)
7771 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7772 }
7773
7774 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7775 struct io_ring_ctx *ctx)
7776 {
7777 struct fixed_file_ref_node *ref_node;
7778
7779 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7780 if (!ref_node)
7781 return NULL;
7782
7783 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7784 0, GFP_KERNEL)) {
7785 kfree(ref_node);
7786 return NULL;
7787 }
7788 INIT_LIST_HEAD(&ref_node->node);
7789 INIT_LIST_HEAD(&ref_node->file_list);
7790 ref_node->file_data = ctx->file_data;
7791 ref_node->done = false;
7792 return ref_node;
7793 }
7794
7795 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7796 {
7797 percpu_ref_exit(&ref_node->refs);
7798 kfree(ref_node);
7799 }
7800
7801 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7802 unsigned nr_args)
7803 {
7804 __s32 __user *fds = (__s32 __user *) arg;
7805 unsigned nr_tables, i;
7806 struct file *file;
7807 int fd, ret = -ENOMEM;
7808 struct fixed_file_ref_node *ref_node;
7809 struct fixed_file_data *file_data;
7810
7811 if (ctx->file_data)
7812 return -EBUSY;
7813 if (!nr_args)
7814 return -EINVAL;
7815 if (nr_args > IORING_MAX_FIXED_FILES)
7816 return -EMFILE;
7817
7818 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7819 if (!file_data)
7820 return -ENOMEM;
7821 file_data->ctx = ctx;
7822 init_completion(&file_data->done);
7823 INIT_LIST_HEAD(&file_data->ref_list);
7824 spin_lock_init(&file_data->lock);
7825
7826 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7827 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7828 GFP_KERNEL);
7829 if (!file_data->table)
7830 goto out_free;
7831
7832 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7833 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7834 goto out_free;
7835
7836 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7837 goto out_ref;
7838 ctx->file_data = file_data;
7839
7840 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7841 struct fixed_file_table *table;
7842 unsigned index;
7843
7844 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7845 ret = -EFAULT;
7846 goto out_fput;
7847 }
7848 /* allow sparse sets */
7849 if (fd == -1)
7850 continue;
7851
7852 file = fget(fd);
7853 ret = -EBADF;
7854 if (!file)
7855 goto out_fput;
7856
7857 /*
7858 * Don't allow io_uring instances to be registered. If UNIX
7859 * isn't enabled, then this causes a reference cycle and this
7860 * instance can never get freed. If UNIX is enabled we'll
7861 * handle it just fine, but there's still no point in allowing
7862 * a ring fd as it doesn't support regular read/write anyway.
7863 */
7864 if (file->f_op == &io_uring_fops) {
7865 fput(file);
7866 goto out_fput;
7867 }
7868 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7869 index = i & IORING_FILE_TABLE_MASK;
7870 table->files[index] = file;
7871 }
7872
7873 ret = io_sqe_files_scm(ctx);
7874 if (ret) {
7875 io_sqe_files_unregister(ctx);
7876 return ret;
7877 }
7878
7879 ref_node = alloc_fixed_file_ref_node(ctx);
7880 if (!ref_node) {
7881 io_sqe_files_unregister(ctx);
7882 return -ENOMEM;
7883 }
7884
7885 io_sqe_files_set_node(file_data, ref_node);
7886 return ret;
7887 out_fput:
7888 for (i = 0; i < ctx->nr_user_files; i++) {
7889 file = io_file_from_index(ctx, i);
7890 if (file)
7891 fput(file);
7892 }
7893 for (i = 0; i < nr_tables; i++)
7894 kfree(file_data->table[i].files);
7895 ctx->nr_user_files = 0;
7896 out_ref:
7897 percpu_ref_exit(&file_data->refs);
7898 out_free:
7899 kfree(file_data->table);
7900 kfree(file_data);
7901 ctx->file_data = NULL;
7902 return ret;
7903 }
7904
7905 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7906 int index)
7907 {
7908 #if defined(CONFIG_UNIX)
7909 struct sock *sock = ctx->ring_sock->sk;
7910 struct sk_buff_head *head = &sock->sk_receive_queue;
7911 struct sk_buff *skb;
7912
7913 /*
7914 * See if we can merge this file into an existing skb SCM_RIGHTS
7915 * file set. If there's no room, fall back to allocating a new skb
7916 * and filling it in.
7917 */
7918 spin_lock_irq(&head->lock);
7919 skb = skb_peek(head);
7920 if (skb) {
7921 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7922
7923 if (fpl->count < SCM_MAX_FD) {
7924 __skb_unlink(skb, head);
7925 spin_unlock_irq(&head->lock);
7926 fpl->fp[fpl->count] = get_file(file);
7927 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7928 fpl->count++;
7929 spin_lock_irq(&head->lock);
7930 __skb_queue_head(head, skb);
7931 } else {
7932 skb = NULL;
7933 }
7934 }
7935 spin_unlock_irq(&head->lock);
7936
7937 if (skb) {
7938 fput(file);
7939 return 0;
7940 }
7941
7942 return __io_sqe_files_scm(ctx, 1, index);
7943 #else
7944 return 0;
7945 #endif
7946 }
7947
7948 static int io_queue_file_removal(struct fixed_file_data *data,
7949 struct file *file)
7950 {
7951 struct io_file_put *pfile;
7952 struct fixed_file_ref_node *ref_node = data->node;
7953
7954 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7955 if (!pfile)
7956 return -ENOMEM;
7957
7958 pfile->file = file;
7959 list_add(&pfile->list, &ref_node->file_list);
7960
7961 return 0;
7962 }
7963
7964 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7965 struct io_uring_files_update *up,
7966 unsigned nr_args)
7967 {
7968 struct fixed_file_data *data = ctx->file_data;
7969 struct fixed_file_ref_node *ref_node;
7970 struct file *file;
7971 __s32 __user *fds;
7972 int fd, i, err;
7973 __u32 done;
7974 bool needs_switch = false;
7975
7976 if (check_add_overflow(up->offset, nr_args, &done))
7977 return -EOVERFLOW;
7978 if (done > ctx->nr_user_files)
7979 return -EINVAL;
7980
7981 ref_node = alloc_fixed_file_ref_node(ctx);
7982 if (!ref_node)
7983 return -ENOMEM;
7984
7985 done = 0;
7986 fds = u64_to_user_ptr(up->fds);
7987 while (nr_args) {
7988 struct fixed_file_table *table;
7989 unsigned index;
7990
7991 err = 0;
7992 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7993 err = -EFAULT;
7994 break;
7995 }
7996 i = array_index_nospec(up->offset, ctx->nr_user_files);
7997 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7998 index = i & IORING_FILE_TABLE_MASK;
7999 if (table->files[index]) {
8000 file = table->files[index];
8001 err = io_queue_file_removal(data, file);
8002 if (err)
8003 break;
8004 table->files[index] = NULL;
8005 needs_switch = true;
8006 }
8007 if (fd != -1) {
8008 file = fget(fd);
8009 if (!file) {
8010 err = -EBADF;
8011 break;
8012 }
8013 /*
8014 * Don't allow io_uring instances to be registered. If
8015 * UNIX isn't enabled, then this causes a reference
8016 * cycle and this instance can never get freed. If UNIX
8017 * is enabled we'll handle it just fine, but there's
8018 * still no point in allowing a ring fd as it doesn't
8019 * support regular read/write anyway.
8020 */
8021 if (file->f_op == &io_uring_fops) {
8022 fput(file);
8023 err = -EBADF;
8024 break;
8025 }
8026 table->files[index] = file;
8027 err = io_sqe_file_register(ctx, file, i);
8028 if (err) {
8029 table->files[index] = NULL;
8030 fput(file);
8031 break;
8032 }
8033 }
8034 nr_args--;
8035 done++;
8036 up->offset++;
8037 }
8038
8039 if (needs_switch) {
8040 percpu_ref_kill(&data->node->refs);
8041 io_sqe_files_set_node(data, ref_node);
8042 } else
8043 destroy_fixed_file_ref_node(ref_node);
8044
8045 return done ? done : err;
8046 }
8047
8048 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8049 unsigned nr_args)
8050 {
8051 struct io_uring_files_update up;
8052
8053 if (!ctx->file_data)
8054 return -ENXIO;
8055 if (!nr_args)
8056 return -EINVAL;
8057 if (copy_from_user(&up, arg, sizeof(up)))
8058 return -EFAULT;
8059 if (up.resv)
8060 return -EINVAL;
8061
8062 return __io_sqe_files_update(ctx, &up, nr_args);
8063 }
8064
8065 static void io_free_work(struct io_wq_work *work)
8066 {
8067 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8068
8069 /* Consider that io_steal_work() relies on this ref */
8070 io_put_req(req);
8071 }
8072
8073 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8074 struct io_uring_params *p)
8075 {
8076 struct io_wq_data data;
8077 struct fd f;
8078 struct io_ring_ctx *ctx_attach;
8079 unsigned int concurrency;
8080 int ret = 0;
8081
8082 data.user = ctx->user;
8083 data.free_work = io_free_work;
8084 data.do_work = io_wq_submit_work;
8085
8086 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8087 /* Do QD, or 4 * CPUS, whatever is smallest */
8088 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8089
8090 ctx->io_wq = io_wq_create(concurrency, &data);
8091 if (IS_ERR(ctx->io_wq)) {
8092 ret = PTR_ERR(ctx->io_wq);
8093 ctx->io_wq = NULL;
8094 }
8095 return ret;
8096 }
8097
8098 f = fdget(p->wq_fd);
8099 if (!f.file)
8100 return -EBADF;
8101
8102 if (f.file->f_op != &io_uring_fops) {
8103 ret = -EINVAL;
8104 goto out_fput;
8105 }
8106
8107 ctx_attach = f.file->private_data;
8108 /* @io_wq is protected by holding the fd */
8109 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8110 ret = -EINVAL;
8111 goto out_fput;
8112 }
8113
8114 ctx->io_wq = ctx_attach->io_wq;
8115 out_fput:
8116 fdput(f);
8117 return ret;
8118 }
8119
8120 static int io_uring_alloc_task_context(struct task_struct *task)
8121 {
8122 struct io_uring_task *tctx;
8123 int ret;
8124
8125 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8126 if (unlikely(!tctx))
8127 return -ENOMEM;
8128
8129 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8130 if (unlikely(ret)) {
8131 kfree(tctx);
8132 return ret;
8133 }
8134
8135 xa_init(&tctx->xa);
8136 init_waitqueue_head(&tctx->wait);
8137 tctx->last = NULL;
8138 atomic_set(&tctx->in_idle, 0);
8139 tctx->sqpoll = false;
8140 io_init_identity(&tctx->__identity);
8141 tctx->identity = &tctx->__identity;
8142 task->io_uring = tctx;
8143 return 0;
8144 }
8145
8146 void __io_uring_free(struct task_struct *tsk)
8147 {
8148 struct io_uring_task *tctx = tsk->io_uring;
8149
8150 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8151 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8152 if (tctx->identity != &tctx->__identity)
8153 kfree(tctx->identity);
8154 percpu_counter_destroy(&tctx->inflight);
8155 kfree(tctx);
8156 tsk->io_uring = NULL;
8157 }
8158
8159 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8160 struct io_uring_params *p)
8161 {
8162 int ret;
8163
8164 if (ctx->flags & IORING_SETUP_SQPOLL) {
8165 struct io_sq_data *sqd;
8166
8167 ret = -EPERM;
8168 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8169 goto err;
8170
8171 sqd = io_get_sq_data(p);
8172 if (IS_ERR(sqd)) {
8173 ret = PTR_ERR(sqd);
8174 goto err;
8175 }
8176
8177 ctx->sq_data = sqd;
8178 io_sq_thread_park(sqd);
8179 mutex_lock(&sqd->ctx_lock);
8180 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8181 mutex_unlock(&sqd->ctx_lock);
8182 io_sq_thread_unpark(sqd);
8183
8184 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8185 if (!ctx->sq_thread_idle)
8186 ctx->sq_thread_idle = HZ;
8187
8188 if (sqd->thread)
8189 goto done;
8190
8191 if (p->flags & IORING_SETUP_SQ_AFF) {
8192 int cpu = p->sq_thread_cpu;
8193
8194 ret = -EINVAL;
8195 if (cpu >= nr_cpu_ids)
8196 goto err;
8197 if (!cpu_online(cpu))
8198 goto err;
8199
8200 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8201 cpu, "io_uring-sq");
8202 } else {
8203 sqd->thread = kthread_create(io_sq_thread, sqd,
8204 "io_uring-sq");
8205 }
8206 if (IS_ERR(sqd->thread)) {
8207 ret = PTR_ERR(sqd->thread);
8208 sqd->thread = NULL;
8209 goto err;
8210 }
8211 ret = io_uring_alloc_task_context(sqd->thread);
8212 if (ret)
8213 goto err;
8214 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8215 /* Can't have SQ_AFF without SQPOLL */
8216 ret = -EINVAL;
8217 goto err;
8218 }
8219
8220 done:
8221 ret = io_init_wq_offload(ctx, p);
8222 if (ret)
8223 goto err;
8224
8225 return 0;
8226 err:
8227 io_finish_async(ctx);
8228 return ret;
8229 }
8230
8231 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8232 {
8233 struct io_sq_data *sqd = ctx->sq_data;
8234
8235 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8236 wake_up_process(sqd->thread);
8237 }
8238
8239 static inline void __io_unaccount_mem(struct user_struct *user,
8240 unsigned long nr_pages)
8241 {
8242 atomic_long_sub(nr_pages, &user->locked_vm);
8243 }
8244
8245 static inline int __io_account_mem(struct user_struct *user,
8246 unsigned long nr_pages)
8247 {
8248 unsigned long page_limit, cur_pages, new_pages;
8249
8250 /* Don't allow more pages than we can safely lock */
8251 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8252
8253 do {
8254 cur_pages = atomic_long_read(&user->locked_vm);
8255 new_pages = cur_pages + nr_pages;
8256 if (new_pages > page_limit)
8257 return -ENOMEM;
8258 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8259 new_pages) != cur_pages);
8260
8261 return 0;
8262 }
8263
8264 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8265 enum io_mem_account acct)
8266 {
8267 if (ctx->limit_mem)
8268 __io_unaccount_mem(ctx->user, nr_pages);
8269
8270 if (ctx->mm_account) {
8271 if (acct == ACCT_LOCKED) {
8272 mmap_write_lock(ctx->mm_account);
8273 ctx->mm_account->locked_vm -= nr_pages;
8274 mmap_write_unlock(ctx->mm_account);
8275 }else if (acct == ACCT_PINNED) {
8276 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8277 }
8278 }
8279 }
8280
8281 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8282 enum io_mem_account acct)
8283 {
8284 int ret;
8285
8286 if (ctx->limit_mem) {
8287 ret = __io_account_mem(ctx->user, nr_pages);
8288 if (ret)
8289 return ret;
8290 }
8291
8292 if (ctx->mm_account) {
8293 if (acct == ACCT_LOCKED) {
8294 mmap_write_lock(ctx->mm_account);
8295 ctx->mm_account->locked_vm += nr_pages;
8296 mmap_write_unlock(ctx->mm_account);
8297 } else if (acct == ACCT_PINNED) {
8298 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8299 }
8300 }
8301
8302 return 0;
8303 }
8304
8305 static void io_mem_free(void *ptr)
8306 {
8307 struct page *page;
8308
8309 if (!ptr)
8310 return;
8311
8312 page = virt_to_head_page(ptr);
8313 if (put_page_testzero(page))
8314 free_compound_page(page);
8315 }
8316
8317 static void *io_mem_alloc(size_t size)
8318 {
8319 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8320 __GFP_NORETRY;
8321
8322 return (void *) __get_free_pages(gfp_flags, get_order(size));
8323 }
8324
8325 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8326 size_t *sq_offset)
8327 {
8328 struct io_rings *rings;
8329 size_t off, sq_array_size;
8330
8331 off = struct_size(rings, cqes, cq_entries);
8332 if (off == SIZE_MAX)
8333 return SIZE_MAX;
8334
8335 #ifdef CONFIG_SMP
8336 off = ALIGN(off, SMP_CACHE_BYTES);
8337 if (off == 0)
8338 return SIZE_MAX;
8339 #endif
8340
8341 if (sq_offset)
8342 *sq_offset = off;
8343
8344 sq_array_size = array_size(sizeof(u32), sq_entries);
8345 if (sq_array_size == SIZE_MAX)
8346 return SIZE_MAX;
8347
8348 if (check_add_overflow(off, sq_array_size, &off))
8349 return SIZE_MAX;
8350
8351 return off;
8352 }
8353
8354 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8355 {
8356 size_t pages;
8357
8358 pages = (size_t)1 << get_order(
8359 rings_size(sq_entries, cq_entries, NULL));
8360 pages += (size_t)1 << get_order(
8361 array_size(sizeof(struct io_uring_sqe), sq_entries));
8362
8363 return pages;
8364 }
8365
8366 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8367 {
8368 int i, j;
8369
8370 if (!ctx->user_bufs)
8371 return -ENXIO;
8372
8373 for (i = 0; i < ctx->nr_user_bufs; i++) {
8374 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8375
8376 for (j = 0; j < imu->nr_bvecs; j++)
8377 unpin_user_page(imu->bvec[j].bv_page);
8378
8379 if (imu->acct_pages)
8380 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8381 kvfree(imu->bvec);
8382 imu->nr_bvecs = 0;
8383 }
8384
8385 kfree(ctx->user_bufs);
8386 ctx->user_bufs = NULL;
8387 ctx->nr_user_bufs = 0;
8388 return 0;
8389 }
8390
8391 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8392 void __user *arg, unsigned index)
8393 {
8394 struct iovec __user *src;
8395
8396 #ifdef CONFIG_COMPAT
8397 if (ctx->compat) {
8398 struct compat_iovec __user *ciovs;
8399 struct compat_iovec ciov;
8400
8401 ciovs = (struct compat_iovec __user *) arg;
8402 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8403 return -EFAULT;
8404
8405 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8406 dst->iov_len = ciov.iov_len;
8407 return 0;
8408 }
8409 #endif
8410 src = (struct iovec __user *) arg;
8411 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8412 return -EFAULT;
8413 return 0;
8414 }
8415
8416 /*
8417 * Not super efficient, but this is just a registration time. And we do cache
8418 * the last compound head, so generally we'll only do a full search if we don't
8419 * match that one.
8420 *
8421 * We check if the given compound head page has already been accounted, to
8422 * avoid double accounting it. This allows us to account the full size of the
8423 * page, not just the constituent pages of a huge page.
8424 */
8425 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8426 int nr_pages, struct page *hpage)
8427 {
8428 int i, j;
8429
8430 /* check current page array */
8431 for (i = 0; i < nr_pages; i++) {
8432 if (!PageCompound(pages[i]))
8433 continue;
8434 if (compound_head(pages[i]) == hpage)
8435 return true;
8436 }
8437
8438 /* check previously registered pages */
8439 for (i = 0; i < ctx->nr_user_bufs; i++) {
8440 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8441
8442 for (j = 0; j < imu->nr_bvecs; j++) {
8443 if (!PageCompound(imu->bvec[j].bv_page))
8444 continue;
8445 if (compound_head(imu->bvec[j].bv_page) == hpage)
8446 return true;
8447 }
8448 }
8449
8450 return false;
8451 }
8452
8453 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8454 int nr_pages, struct io_mapped_ubuf *imu,
8455 struct page **last_hpage)
8456 {
8457 int i, ret;
8458
8459 for (i = 0; i < nr_pages; i++) {
8460 if (!PageCompound(pages[i])) {
8461 imu->acct_pages++;
8462 } else {
8463 struct page *hpage;
8464
8465 hpage = compound_head(pages[i]);
8466 if (hpage == *last_hpage)
8467 continue;
8468 *last_hpage = hpage;
8469 if (headpage_already_acct(ctx, pages, i, hpage))
8470 continue;
8471 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8472 }
8473 }
8474
8475 if (!imu->acct_pages)
8476 return 0;
8477
8478 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8479 if (ret)
8480 imu->acct_pages = 0;
8481 return ret;
8482 }
8483
8484 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8485 unsigned nr_args)
8486 {
8487 struct vm_area_struct **vmas = NULL;
8488 struct page **pages = NULL;
8489 struct page *last_hpage = NULL;
8490 int i, j, got_pages = 0;
8491 int ret = -EINVAL;
8492
8493 if (ctx->user_bufs)
8494 return -EBUSY;
8495 if (!nr_args || nr_args > UIO_MAXIOV)
8496 return -EINVAL;
8497
8498 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8499 GFP_KERNEL);
8500 if (!ctx->user_bufs)
8501 return -ENOMEM;
8502
8503 for (i = 0; i < nr_args; i++) {
8504 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8505 unsigned long off, start, end, ubuf;
8506 int pret, nr_pages;
8507 struct iovec iov;
8508 size_t size;
8509
8510 ret = io_copy_iov(ctx, &iov, arg, i);
8511 if (ret)
8512 goto err;
8513
8514 /*
8515 * Don't impose further limits on the size and buffer
8516 * constraints here, we'll -EINVAL later when IO is
8517 * submitted if they are wrong.
8518 */
8519 ret = -EFAULT;
8520 if (!iov.iov_base || !iov.iov_len)
8521 goto err;
8522
8523 /* arbitrary limit, but we need something */
8524 if (iov.iov_len > SZ_1G)
8525 goto err;
8526
8527 ubuf = (unsigned long) iov.iov_base;
8528 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8529 start = ubuf >> PAGE_SHIFT;
8530 nr_pages = end - start;
8531
8532 ret = 0;
8533 if (!pages || nr_pages > got_pages) {
8534 kvfree(vmas);
8535 kvfree(pages);
8536 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8537 GFP_KERNEL);
8538 vmas = kvmalloc_array(nr_pages,
8539 sizeof(struct vm_area_struct *),
8540 GFP_KERNEL);
8541 if (!pages || !vmas) {
8542 ret = -ENOMEM;
8543 goto err;
8544 }
8545 got_pages = nr_pages;
8546 }
8547
8548 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8549 GFP_KERNEL);
8550 ret = -ENOMEM;
8551 if (!imu->bvec)
8552 goto err;
8553
8554 ret = 0;
8555 mmap_read_lock(current->mm);
8556 pret = pin_user_pages(ubuf, nr_pages,
8557 FOLL_WRITE | FOLL_LONGTERM,
8558 pages, vmas);
8559 if (pret == nr_pages) {
8560 /* don't support file backed memory */
8561 for (j = 0; j < nr_pages; j++) {
8562 struct vm_area_struct *vma = vmas[j];
8563
8564 if (vma->vm_file &&
8565 !is_file_hugepages(vma->vm_file)) {
8566 ret = -EOPNOTSUPP;
8567 break;
8568 }
8569 }
8570 } else {
8571 ret = pret < 0 ? pret : -EFAULT;
8572 }
8573 mmap_read_unlock(current->mm);
8574 if (ret) {
8575 /*
8576 * if we did partial map, or found file backed vmas,
8577 * release any pages we did get
8578 */
8579 if (pret > 0)
8580 unpin_user_pages(pages, pret);
8581 kvfree(imu->bvec);
8582 goto err;
8583 }
8584
8585 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8586 if (ret) {
8587 unpin_user_pages(pages, pret);
8588 kvfree(imu->bvec);
8589 goto err;
8590 }
8591
8592 off = ubuf & ~PAGE_MASK;
8593 size = iov.iov_len;
8594 for (j = 0; j < nr_pages; j++) {
8595 size_t vec_len;
8596
8597 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8598 imu->bvec[j].bv_page = pages[j];
8599 imu->bvec[j].bv_len = vec_len;
8600 imu->bvec[j].bv_offset = off;
8601 off = 0;
8602 size -= vec_len;
8603 }
8604 /* store original address for later verification */
8605 imu->ubuf = ubuf;
8606 imu->len = iov.iov_len;
8607 imu->nr_bvecs = nr_pages;
8608
8609 ctx->nr_user_bufs++;
8610 }
8611 kvfree(pages);
8612 kvfree(vmas);
8613 return 0;
8614 err:
8615 kvfree(pages);
8616 kvfree(vmas);
8617 io_sqe_buffer_unregister(ctx);
8618 return ret;
8619 }
8620
8621 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8622 {
8623 __s32 __user *fds = arg;
8624 int fd;
8625
8626 if (ctx->cq_ev_fd)
8627 return -EBUSY;
8628
8629 if (copy_from_user(&fd, fds, sizeof(*fds)))
8630 return -EFAULT;
8631
8632 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8633 if (IS_ERR(ctx->cq_ev_fd)) {
8634 int ret = PTR_ERR(ctx->cq_ev_fd);
8635 ctx->cq_ev_fd = NULL;
8636 return ret;
8637 }
8638
8639 return 0;
8640 }
8641
8642 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8643 {
8644 if (ctx->cq_ev_fd) {
8645 eventfd_ctx_put(ctx->cq_ev_fd);
8646 ctx->cq_ev_fd = NULL;
8647 return 0;
8648 }
8649
8650 return -ENXIO;
8651 }
8652
8653 static int __io_destroy_buffers(int id, void *p, void *data)
8654 {
8655 struct io_ring_ctx *ctx = data;
8656 struct io_buffer *buf = p;
8657
8658 __io_remove_buffers(ctx, buf, id, -1U);
8659 return 0;
8660 }
8661
8662 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8663 {
8664 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8665 idr_destroy(&ctx->io_buffer_idr);
8666 }
8667
8668 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8669 {
8670 io_finish_async(ctx);
8671 io_sqe_buffer_unregister(ctx);
8672
8673 if (ctx->sqo_task) {
8674 put_task_struct(ctx->sqo_task);
8675 ctx->sqo_task = NULL;
8676 mmdrop(ctx->mm_account);
8677 ctx->mm_account = NULL;
8678 }
8679
8680 #ifdef CONFIG_BLK_CGROUP
8681 if (ctx->sqo_blkcg_css)
8682 css_put(ctx->sqo_blkcg_css);
8683 #endif
8684
8685 io_sqe_files_unregister(ctx);
8686 io_eventfd_unregister(ctx);
8687 io_destroy_buffers(ctx);
8688 idr_destroy(&ctx->personality_idr);
8689
8690 #if defined(CONFIG_UNIX)
8691 if (ctx->ring_sock) {
8692 ctx->ring_sock->file = NULL; /* so that iput() is called */
8693 sock_release(ctx->ring_sock);
8694 }
8695 #endif
8696
8697 io_mem_free(ctx->rings);
8698 io_mem_free(ctx->sq_sqes);
8699
8700 percpu_ref_exit(&ctx->refs);
8701 free_uid(ctx->user);
8702 put_cred(ctx->creds);
8703 kfree(ctx->cancel_hash);
8704 kmem_cache_free(req_cachep, ctx->fallback_req);
8705 kfree(ctx);
8706 }
8707
8708 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8709 {
8710 struct io_ring_ctx *ctx = file->private_data;
8711 __poll_t mask = 0;
8712
8713 poll_wait(file, &ctx->cq_wait, wait);
8714 /*
8715 * synchronizes with barrier from wq_has_sleeper call in
8716 * io_commit_cqring
8717 */
8718 smp_rmb();
8719 if (!io_sqring_full(ctx))
8720 mask |= EPOLLOUT | EPOLLWRNORM;
8721 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8722 if (io_cqring_events(ctx))
8723 mask |= EPOLLIN | EPOLLRDNORM;
8724
8725 return mask;
8726 }
8727
8728 static int io_uring_fasync(int fd, struct file *file, int on)
8729 {
8730 struct io_ring_ctx *ctx = file->private_data;
8731
8732 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8733 }
8734
8735 static int io_remove_personalities(int id, void *p, void *data)
8736 {
8737 struct io_ring_ctx *ctx = data;
8738 struct io_identity *iod;
8739
8740 iod = idr_remove(&ctx->personality_idr, id);
8741 if (iod) {
8742 put_cred(iod->creds);
8743 if (refcount_dec_and_test(&iod->count))
8744 kfree(iod);
8745 }
8746 return 0;
8747 }
8748
8749 static void io_ring_exit_work(struct work_struct *work)
8750 {
8751 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8752 exit_work);
8753
8754 /*
8755 * If we're doing polled IO and end up having requests being
8756 * submitted async (out-of-line), then completions can come in while
8757 * we're waiting for refs to drop. We need to reap these manually,
8758 * as nobody else will be looking for them.
8759 */
8760 do {
8761 __io_uring_cancel_task_requests(ctx, NULL);
8762 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8763 io_ring_ctx_free(ctx);
8764 }
8765
8766 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8767 {
8768 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8769
8770 return req->ctx == data;
8771 }
8772
8773 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8774 {
8775 mutex_lock(&ctx->uring_lock);
8776 percpu_ref_kill(&ctx->refs);
8777
8778 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8779 ctx->sqo_dead = 1;
8780
8781 /* if force is set, the ring is going away. always drop after that */
8782 ctx->cq_overflow_flushed = 1;
8783 if (ctx->rings)
8784 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8785 mutex_unlock(&ctx->uring_lock);
8786
8787 io_kill_timeouts(ctx, NULL, NULL);
8788 io_poll_remove_all(ctx, NULL, NULL);
8789
8790 if (ctx->io_wq)
8791 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8792
8793 /* if we failed setting up the ctx, we might not have any rings */
8794 io_iopoll_try_reap_events(ctx);
8795 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8796
8797 /*
8798 * Do this upfront, so we won't have a grace period where the ring
8799 * is closed but resources aren't reaped yet. This can cause
8800 * spurious failure in setting up a new ring.
8801 */
8802 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8803 ACCT_LOCKED);
8804
8805 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8806 /*
8807 * Use system_unbound_wq to avoid spawning tons of event kworkers
8808 * if we're exiting a ton of rings at the same time. It just adds
8809 * noise and overhead, there's no discernable change in runtime
8810 * over using system_wq.
8811 */
8812 queue_work(system_unbound_wq, &ctx->exit_work);
8813 }
8814
8815 static int io_uring_release(struct inode *inode, struct file *file)
8816 {
8817 struct io_ring_ctx *ctx = file->private_data;
8818
8819 file->private_data = NULL;
8820 io_ring_ctx_wait_and_kill(ctx);
8821 return 0;
8822 }
8823
8824 struct io_task_cancel {
8825 struct task_struct *task;
8826 struct files_struct *files;
8827 };
8828
8829 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8830 {
8831 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8832 struct io_task_cancel *cancel = data;
8833 bool ret;
8834
8835 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8836 unsigned long flags;
8837 struct io_ring_ctx *ctx = req->ctx;
8838
8839 /* protect against races with linked timeouts */
8840 spin_lock_irqsave(&ctx->completion_lock, flags);
8841 ret = io_match_task(req, cancel->task, cancel->files);
8842 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8843 } else {
8844 ret = io_match_task(req, cancel->task, cancel->files);
8845 }
8846 return ret;
8847 }
8848
8849 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8850 struct task_struct *task,
8851 struct files_struct *files)
8852 {
8853 struct io_defer_entry *de = NULL;
8854 LIST_HEAD(list);
8855
8856 spin_lock_irq(&ctx->completion_lock);
8857 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8858 if (io_match_task(de->req, task, files)) {
8859 list_cut_position(&list, &ctx->defer_list, &de->list);
8860 break;
8861 }
8862 }
8863 spin_unlock_irq(&ctx->completion_lock);
8864
8865 while (!list_empty(&list)) {
8866 de = list_first_entry(&list, struct io_defer_entry, list);
8867 list_del_init(&de->list);
8868 req_set_fail_links(de->req);
8869 io_put_req(de->req);
8870 io_req_complete(de->req, -ECANCELED);
8871 kfree(de);
8872 }
8873 }
8874
8875 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8876 struct task_struct *task,
8877 struct files_struct *files)
8878 {
8879 struct io_kiocb *req;
8880 int cnt = 0;
8881
8882 spin_lock_irq(&ctx->inflight_lock);
8883 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8884 cnt += io_match_task(req, task, files);
8885 spin_unlock_irq(&ctx->inflight_lock);
8886 return cnt;
8887 }
8888
8889 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8890 struct task_struct *task,
8891 struct files_struct *files)
8892 {
8893 while (!list_empty_careful(&ctx->inflight_list)) {
8894 struct io_task_cancel cancel = { .task = task, .files = files };
8895 DEFINE_WAIT(wait);
8896 int inflight;
8897
8898 inflight = io_uring_count_inflight(ctx, task, files);
8899 if (!inflight)
8900 break;
8901
8902 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8903 io_poll_remove_all(ctx, task, files);
8904 io_kill_timeouts(ctx, task, files);
8905 io_cqring_overflow_flush(ctx, true, task, files);
8906 /* cancellations _may_ trigger task work */
8907 io_run_task_work();
8908
8909 prepare_to_wait(&task->io_uring->wait, &wait,
8910 TASK_UNINTERRUPTIBLE);
8911 if (inflight == io_uring_count_inflight(ctx, task, files))
8912 schedule();
8913 finish_wait(&task->io_uring->wait, &wait);
8914 }
8915 }
8916
8917 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8918 struct task_struct *task)
8919 {
8920 while (1) {
8921 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8922 enum io_wq_cancel cret;
8923 bool ret = false;
8924
8925 if (ctx->io_wq) {
8926 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8927 &cancel, true);
8928 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8929 }
8930
8931 /* SQPOLL thread does its own polling */
8932 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8933 while (!list_empty_careful(&ctx->iopoll_list)) {
8934 io_iopoll_try_reap_events(ctx);
8935 ret = true;
8936 }
8937 }
8938
8939 ret |= io_poll_remove_all(ctx, task, NULL);
8940 ret |= io_kill_timeouts(ctx, task, NULL);
8941 ret |= io_run_task_work();
8942 if (!ret)
8943 break;
8944 cond_resched();
8945 }
8946 }
8947
8948 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8949 {
8950 mutex_lock(&ctx->uring_lock);
8951 ctx->sqo_dead = 1;
8952 mutex_unlock(&ctx->uring_lock);
8953
8954 /* make sure callers enter the ring to get error */
8955 if (ctx->rings)
8956 io_ring_set_wakeup_flag(ctx);
8957 }
8958
8959 /*
8960 * We need to iteratively cancel requests, in case a request has dependent
8961 * hard links. These persist even for failure of cancelations, hence keep
8962 * looping until none are found.
8963 */
8964 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8965 struct files_struct *files)
8966 {
8967 struct task_struct *task = current;
8968
8969 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8970 io_disable_sqo_submit(ctx);
8971 task = ctx->sq_data->thread;
8972 atomic_inc(&task->io_uring->in_idle);
8973 io_sq_thread_park(ctx->sq_data);
8974 }
8975
8976 io_cancel_defer_files(ctx, task, files);
8977 io_cqring_overflow_flush(ctx, true, task, files);
8978
8979 io_uring_cancel_files(ctx, task, files);
8980 if (!files)
8981 __io_uring_cancel_task_requests(ctx, task);
8982
8983 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8984 atomic_dec(&task->io_uring->in_idle);
8985 /*
8986 * If the files that are going away are the ones in the thread
8987 * identity, clear them out.
8988 */
8989 if (task->io_uring->identity->files == files)
8990 task->io_uring->identity->files = NULL;
8991 io_sq_thread_unpark(ctx->sq_data);
8992 }
8993 }
8994
8995 /*
8996 * Note that this task has used io_uring. We use it for cancelation purposes.
8997 */
8998 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8999 {
9000 struct io_uring_task *tctx = current->io_uring;
9001 int ret;
9002
9003 if (unlikely(!tctx)) {
9004 ret = io_uring_alloc_task_context(current);
9005 if (unlikely(ret))
9006 return ret;
9007 tctx = current->io_uring;
9008 }
9009 if (tctx->last != file) {
9010 void *old = xa_load(&tctx->xa, (unsigned long)file);
9011
9012 if (!old) {
9013 get_file(file);
9014 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9015 file, GFP_KERNEL));
9016 if (ret) {
9017 fput(file);
9018 return ret;
9019 }
9020 }
9021 tctx->last = file;
9022 }
9023
9024 /*
9025 * This is race safe in that the task itself is doing this, hence it
9026 * cannot be going through the exit/cancel paths at the same time.
9027 * This cannot be modified while exit/cancel is running.
9028 */
9029 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9030 tctx->sqpoll = true;
9031
9032 return 0;
9033 }
9034
9035 /*
9036 * Remove this io_uring_file -> task mapping.
9037 */
9038 static void io_uring_del_task_file(struct file *file)
9039 {
9040 struct io_uring_task *tctx = current->io_uring;
9041
9042 if (tctx->last == file)
9043 tctx->last = NULL;
9044 file = xa_erase(&tctx->xa, (unsigned long)file);
9045 if (file)
9046 fput(file);
9047 }
9048
9049 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9050 {
9051 struct file *file;
9052 unsigned long index;
9053
9054 xa_for_each(&tctx->xa, index, file)
9055 io_uring_del_task_file(file);
9056 }
9057
9058 void __io_uring_files_cancel(struct files_struct *files)
9059 {
9060 struct io_uring_task *tctx = current->io_uring;
9061 struct file *file;
9062 unsigned long index;
9063
9064 /* make sure overflow events are dropped */
9065 atomic_inc(&tctx->in_idle);
9066 xa_for_each(&tctx->xa, index, file)
9067 io_uring_cancel_task_requests(file->private_data, files);
9068 atomic_dec(&tctx->in_idle);
9069
9070 if (files)
9071 io_uring_remove_task_files(tctx);
9072 }
9073
9074 static s64 tctx_inflight(struct io_uring_task *tctx)
9075 {
9076 unsigned long index;
9077 struct file *file;
9078 s64 inflight;
9079
9080 inflight = percpu_counter_sum(&tctx->inflight);
9081 if (!tctx->sqpoll)
9082 return inflight;
9083
9084 /*
9085 * If we have SQPOLL rings, then we need to iterate and find them, and
9086 * add the pending count for those.
9087 */
9088 xa_for_each(&tctx->xa, index, file) {
9089 struct io_ring_ctx *ctx = file->private_data;
9090
9091 if (ctx->flags & IORING_SETUP_SQPOLL) {
9092 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9093
9094 inflight += percpu_counter_sum(&__tctx->inflight);
9095 }
9096 }
9097
9098 return inflight;
9099 }
9100
9101 /*
9102 * Find any io_uring fd that this task has registered or done IO on, and cancel
9103 * requests.
9104 */
9105 void __io_uring_task_cancel(void)
9106 {
9107 struct io_uring_task *tctx = current->io_uring;
9108 DEFINE_WAIT(wait);
9109 s64 inflight;
9110
9111 /* make sure overflow events are dropped */
9112 atomic_inc(&tctx->in_idle);
9113
9114 /* trigger io_disable_sqo_submit() */
9115 if (tctx->sqpoll)
9116 __io_uring_files_cancel(NULL);
9117
9118 do {
9119 /* read completions before cancelations */
9120 inflight = tctx_inflight(tctx);
9121 if (!inflight)
9122 break;
9123 __io_uring_files_cancel(NULL);
9124
9125 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9126
9127 /*
9128 * If we've seen completions, retry without waiting. This
9129 * avoids a race where a completion comes in before we did
9130 * prepare_to_wait().
9131 */
9132 if (inflight == tctx_inflight(tctx))
9133 schedule();
9134 finish_wait(&tctx->wait, &wait);
9135 } while (1);
9136
9137 atomic_dec(&tctx->in_idle);
9138
9139 io_uring_remove_task_files(tctx);
9140 }
9141
9142 static int io_uring_flush(struct file *file, void *data)
9143 {
9144 struct io_uring_task *tctx = current->io_uring;
9145 struct io_ring_ctx *ctx = file->private_data;
9146
9147 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
9148 io_uring_cancel_task_requests(ctx, NULL);
9149
9150 if (!tctx)
9151 return 0;
9152
9153 /* we should have cancelled and erased it before PF_EXITING */
9154 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9155 xa_load(&tctx->xa, (unsigned long)file));
9156
9157 /*
9158 * fput() is pending, will be 2 if the only other ref is our potential
9159 * task file note. If the task is exiting, drop regardless of count.
9160 */
9161 if (atomic_long_read(&file->f_count) != 2)
9162 return 0;
9163
9164 if (ctx->flags & IORING_SETUP_SQPOLL) {
9165 /* there is only one file note, which is owned by sqo_task */
9166 WARN_ON_ONCE(ctx->sqo_task != current &&
9167 xa_load(&tctx->xa, (unsigned long)file));
9168 /* sqo_dead check is for when this happens after cancellation */
9169 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9170 !xa_load(&tctx->xa, (unsigned long)file));
9171
9172 io_disable_sqo_submit(ctx);
9173 }
9174
9175 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9176 io_uring_del_task_file(file);
9177 return 0;
9178 }
9179
9180 static void *io_uring_validate_mmap_request(struct file *file,
9181 loff_t pgoff, size_t sz)
9182 {
9183 struct io_ring_ctx *ctx = file->private_data;
9184 loff_t offset = pgoff << PAGE_SHIFT;
9185 struct page *page;
9186 void *ptr;
9187
9188 switch (offset) {
9189 case IORING_OFF_SQ_RING:
9190 case IORING_OFF_CQ_RING:
9191 ptr = ctx->rings;
9192 break;
9193 case IORING_OFF_SQES:
9194 ptr = ctx->sq_sqes;
9195 break;
9196 default:
9197 return ERR_PTR(-EINVAL);
9198 }
9199
9200 page = virt_to_head_page(ptr);
9201 if (sz > page_size(page))
9202 return ERR_PTR(-EINVAL);
9203
9204 return ptr;
9205 }
9206
9207 #ifdef CONFIG_MMU
9208
9209 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9210 {
9211 size_t sz = vma->vm_end - vma->vm_start;
9212 unsigned long pfn;
9213 void *ptr;
9214
9215 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9216 if (IS_ERR(ptr))
9217 return PTR_ERR(ptr);
9218
9219 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9220 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9221 }
9222
9223 #else /* !CONFIG_MMU */
9224
9225 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9226 {
9227 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9228 }
9229
9230 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9231 {
9232 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9233 }
9234
9235 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9236 unsigned long addr, unsigned long len,
9237 unsigned long pgoff, unsigned long flags)
9238 {
9239 void *ptr;
9240
9241 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9242 if (IS_ERR(ptr))
9243 return PTR_ERR(ptr);
9244
9245 return (unsigned long) ptr;
9246 }
9247
9248 #endif /* !CONFIG_MMU */
9249
9250 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9251 {
9252 int ret = 0;
9253 DEFINE_WAIT(wait);
9254
9255 do {
9256 if (!io_sqring_full(ctx))
9257 break;
9258
9259 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9260
9261 if (unlikely(ctx->sqo_dead)) {
9262 ret = -EOWNERDEAD;
9263 goto out;
9264 }
9265
9266 if (!io_sqring_full(ctx))
9267 break;
9268
9269 schedule();
9270 } while (!signal_pending(current));
9271
9272 finish_wait(&ctx->sqo_sq_wait, &wait);
9273 out:
9274 return ret;
9275 }
9276
9277 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9278 struct __kernel_timespec __user **ts,
9279 const sigset_t __user **sig)
9280 {
9281 struct io_uring_getevents_arg arg;
9282
9283 /*
9284 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9285 * is just a pointer to the sigset_t.
9286 */
9287 if (!(flags & IORING_ENTER_EXT_ARG)) {
9288 *sig = (const sigset_t __user *) argp;
9289 *ts = NULL;
9290 return 0;
9291 }
9292
9293 /*
9294 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9295 * timespec and sigset_t pointers if good.
9296 */
9297 if (*argsz != sizeof(arg))
9298 return -EINVAL;
9299 if (copy_from_user(&arg, argp, sizeof(arg)))
9300 return -EFAULT;
9301 *sig = u64_to_user_ptr(arg.sigmask);
9302 *argsz = arg.sigmask_sz;
9303 *ts = u64_to_user_ptr(arg.ts);
9304 return 0;
9305 }
9306
9307 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9308 u32, min_complete, u32, flags, const void __user *, argp,
9309 size_t, argsz)
9310 {
9311 struct io_ring_ctx *ctx;
9312 long ret = -EBADF;
9313 int submitted = 0;
9314 struct fd f;
9315
9316 io_run_task_work();
9317
9318 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9319 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9320 return -EINVAL;
9321
9322 f = fdget(fd);
9323 if (!f.file)
9324 return -EBADF;
9325
9326 ret = -EOPNOTSUPP;
9327 if (f.file->f_op != &io_uring_fops)
9328 goto out_fput;
9329
9330 ret = -ENXIO;
9331 ctx = f.file->private_data;
9332 if (!percpu_ref_tryget(&ctx->refs))
9333 goto out_fput;
9334
9335 ret = -EBADFD;
9336 if (ctx->flags & IORING_SETUP_R_DISABLED)
9337 goto out;
9338
9339 /*
9340 * For SQ polling, the thread will do all submissions and completions.
9341 * Just return the requested submit count, and wake the thread if
9342 * we were asked to.
9343 */
9344 ret = 0;
9345 if (ctx->flags & IORING_SETUP_SQPOLL) {
9346 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9347
9348 ret = -EOWNERDEAD;
9349 if (unlikely(ctx->sqo_dead))
9350 goto out;
9351 if (flags & IORING_ENTER_SQ_WAKEUP)
9352 wake_up(&ctx->sq_data->wait);
9353 if (flags & IORING_ENTER_SQ_WAIT) {
9354 ret = io_sqpoll_wait_sq(ctx);
9355 if (ret)
9356 goto out;
9357 }
9358 submitted = to_submit;
9359 } else if (to_submit) {
9360 ret = io_uring_add_task_file(ctx, f.file);
9361 if (unlikely(ret))
9362 goto out;
9363 mutex_lock(&ctx->uring_lock);
9364 submitted = io_submit_sqes(ctx, to_submit);
9365 mutex_unlock(&ctx->uring_lock);
9366
9367 if (submitted != to_submit)
9368 goto out;
9369 }
9370 if (flags & IORING_ENTER_GETEVENTS) {
9371 const sigset_t __user *sig;
9372 struct __kernel_timespec __user *ts;
9373
9374 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9375 if (unlikely(ret))
9376 goto out;
9377
9378 min_complete = min(min_complete, ctx->cq_entries);
9379
9380 /*
9381 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9382 * space applications don't need to do io completion events
9383 * polling again, they can rely on io_sq_thread to do polling
9384 * work, which can reduce cpu usage and uring_lock contention.
9385 */
9386 if (ctx->flags & IORING_SETUP_IOPOLL &&
9387 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9388 ret = io_iopoll_check(ctx, min_complete);
9389 } else {
9390 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9391 }
9392 }
9393
9394 out:
9395 percpu_ref_put(&ctx->refs);
9396 out_fput:
9397 fdput(f);
9398 return submitted ? submitted : ret;
9399 }
9400
9401 #ifdef CONFIG_PROC_FS
9402 static int io_uring_show_cred(int id, void *p, void *data)
9403 {
9404 struct io_identity *iod = p;
9405 const struct cred *cred = iod->creds;
9406 struct seq_file *m = data;
9407 struct user_namespace *uns = seq_user_ns(m);
9408 struct group_info *gi;
9409 kernel_cap_t cap;
9410 unsigned __capi;
9411 int g;
9412
9413 seq_printf(m, "%5d\n", id);
9414 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9415 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9416 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9417 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9418 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9419 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9420 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9421 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9422 seq_puts(m, "\n\tGroups:\t");
9423 gi = cred->group_info;
9424 for (g = 0; g < gi->ngroups; g++) {
9425 seq_put_decimal_ull(m, g ? " " : "",
9426 from_kgid_munged(uns, gi->gid[g]));
9427 }
9428 seq_puts(m, "\n\tCapEff:\t");
9429 cap = cred->cap_effective;
9430 CAP_FOR_EACH_U32(__capi)
9431 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9432 seq_putc(m, '\n');
9433 return 0;
9434 }
9435
9436 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9437 {
9438 struct io_sq_data *sq = NULL;
9439 bool has_lock;
9440 int i;
9441
9442 /*
9443 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9444 * since fdinfo case grabs it in the opposite direction of normal use
9445 * cases. If we fail to get the lock, we just don't iterate any
9446 * structures that could be going away outside the io_uring mutex.
9447 */
9448 has_lock = mutex_trylock(&ctx->uring_lock);
9449
9450 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9451 sq = ctx->sq_data;
9452
9453 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9454 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9455 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9456 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9457 struct fixed_file_table *table;
9458 struct file *f;
9459
9460 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9461 f = table->files[i & IORING_FILE_TABLE_MASK];
9462 if (f)
9463 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9464 else
9465 seq_printf(m, "%5u: <none>\n", i);
9466 }
9467 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9468 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9469 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9470
9471 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9472 (unsigned int) buf->len);
9473 }
9474 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9475 seq_printf(m, "Personalities:\n");
9476 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9477 }
9478 seq_printf(m, "PollList:\n");
9479 spin_lock_irq(&ctx->completion_lock);
9480 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9481 struct hlist_head *list = &ctx->cancel_hash[i];
9482 struct io_kiocb *req;
9483
9484 hlist_for_each_entry(req, list, hash_node)
9485 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9486 req->task->task_works != NULL);
9487 }
9488 spin_unlock_irq(&ctx->completion_lock);
9489 if (has_lock)
9490 mutex_unlock(&ctx->uring_lock);
9491 }
9492
9493 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9494 {
9495 struct io_ring_ctx *ctx = f->private_data;
9496
9497 if (percpu_ref_tryget(&ctx->refs)) {
9498 __io_uring_show_fdinfo(ctx, m);
9499 percpu_ref_put(&ctx->refs);
9500 }
9501 }
9502 #endif
9503
9504 static const struct file_operations io_uring_fops = {
9505 .release = io_uring_release,
9506 .flush = io_uring_flush,
9507 .mmap = io_uring_mmap,
9508 #ifndef CONFIG_MMU
9509 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9510 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9511 #endif
9512 .poll = io_uring_poll,
9513 .fasync = io_uring_fasync,
9514 #ifdef CONFIG_PROC_FS
9515 .show_fdinfo = io_uring_show_fdinfo,
9516 #endif
9517 };
9518
9519 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9520 struct io_uring_params *p)
9521 {
9522 struct io_rings *rings;
9523 size_t size, sq_array_offset;
9524
9525 /* make sure these are sane, as we already accounted them */
9526 ctx->sq_entries = p->sq_entries;
9527 ctx->cq_entries = p->cq_entries;
9528
9529 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9530 if (size == SIZE_MAX)
9531 return -EOVERFLOW;
9532
9533 rings = io_mem_alloc(size);
9534 if (!rings)
9535 return -ENOMEM;
9536
9537 ctx->rings = rings;
9538 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9539 rings->sq_ring_mask = p->sq_entries - 1;
9540 rings->cq_ring_mask = p->cq_entries - 1;
9541 rings->sq_ring_entries = p->sq_entries;
9542 rings->cq_ring_entries = p->cq_entries;
9543 ctx->sq_mask = rings->sq_ring_mask;
9544 ctx->cq_mask = rings->cq_ring_mask;
9545
9546 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9547 if (size == SIZE_MAX) {
9548 io_mem_free(ctx->rings);
9549 ctx->rings = NULL;
9550 return -EOVERFLOW;
9551 }
9552
9553 ctx->sq_sqes = io_mem_alloc(size);
9554 if (!ctx->sq_sqes) {
9555 io_mem_free(ctx->rings);
9556 ctx->rings = NULL;
9557 return -ENOMEM;
9558 }
9559
9560 return 0;
9561 }
9562
9563 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9564 {
9565 int ret, fd;
9566
9567 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9568 if (fd < 0)
9569 return fd;
9570
9571 ret = io_uring_add_task_file(ctx, file);
9572 if (ret) {
9573 put_unused_fd(fd);
9574 return ret;
9575 }
9576 fd_install(fd, file);
9577 return fd;
9578 }
9579
9580 /*
9581 * Allocate an anonymous fd, this is what constitutes the application
9582 * visible backing of an io_uring instance. The application mmaps this
9583 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9584 * we have to tie this fd to a socket for file garbage collection purposes.
9585 */
9586 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9587 {
9588 struct file *file;
9589 #if defined(CONFIG_UNIX)
9590 int ret;
9591
9592 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9593 &ctx->ring_sock);
9594 if (ret)
9595 return ERR_PTR(ret);
9596 #endif
9597
9598 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9599 O_RDWR | O_CLOEXEC);
9600 #if defined(CONFIG_UNIX)
9601 if (IS_ERR(file)) {
9602 sock_release(ctx->ring_sock);
9603 ctx->ring_sock = NULL;
9604 } else {
9605 ctx->ring_sock->file = file;
9606 }
9607 #endif
9608 return file;
9609 }
9610
9611 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9612 struct io_uring_params __user *params)
9613 {
9614 struct user_struct *user = NULL;
9615 struct io_ring_ctx *ctx;
9616 struct file *file;
9617 bool limit_mem;
9618 int ret;
9619
9620 if (!entries)
9621 return -EINVAL;
9622 if (entries > IORING_MAX_ENTRIES) {
9623 if (!(p->flags & IORING_SETUP_CLAMP))
9624 return -EINVAL;
9625 entries = IORING_MAX_ENTRIES;
9626 }
9627
9628 /*
9629 * Use twice as many entries for the CQ ring. It's possible for the
9630 * application to drive a higher depth than the size of the SQ ring,
9631 * since the sqes are only used at submission time. This allows for
9632 * some flexibility in overcommitting a bit. If the application has
9633 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9634 * of CQ ring entries manually.
9635 */
9636 p->sq_entries = roundup_pow_of_two(entries);
9637 if (p->flags & IORING_SETUP_CQSIZE) {
9638 /*
9639 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9640 * to a power-of-two, if it isn't already. We do NOT impose
9641 * any cq vs sq ring sizing.
9642 */
9643 if (!p->cq_entries)
9644 return -EINVAL;
9645 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9646 if (!(p->flags & IORING_SETUP_CLAMP))
9647 return -EINVAL;
9648 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9649 }
9650 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9651 if (p->cq_entries < p->sq_entries)
9652 return -EINVAL;
9653 } else {
9654 p->cq_entries = 2 * p->sq_entries;
9655 }
9656
9657 user = get_uid(current_user());
9658 limit_mem = !capable(CAP_IPC_LOCK);
9659
9660 if (limit_mem) {
9661 ret = __io_account_mem(user,
9662 ring_pages(p->sq_entries, p->cq_entries));
9663 if (ret) {
9664 free_uid(user);
9665 return ret;
9666 }
9667 }
9668
9669 ctx = io_ring_ctx_alloc(p);
9670 if (!ctx) {
9671 if (limit_mem)
9672 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9673 p->cq_entries));
9674 free_uid(user);
9675 return -ENOMEM;
9676 }
9677 ctx->compat = in_compat_syscall();
9678 ctx->user = user;
9679 ctx->creds = get_current_cred();
9680 #ifdef CONFIG_AUDIT
9681 ctx->loginuid = current->loginuid;
9682 ctx->sessionid = current->sessionid;
9683 #endif
9684 ctx->sqo_task = get_task_struct(current);
9685
9686 /*
9687 * This is just grabbed for accounting purposes. When a process exits,
9688 * the mm is exited and dropped before the files, hence we need to hang
9689 * on to this mm purely for the purposes of being able to unaccount
9690 * memory (locked/pinned vm). It's not used for anything else.
9691 */
9692 mmgrab(current->mm);
9693 ctx->mm_account = current->mm;
9694
9695 #ifdef CONFIG_BLK_CGROUP
9696 /*
9697 * The sq thread will belong to the original cgroup it was inited in.
9698 * If the cgroup goes offline (e.g. disabling the io controller), then
9699 * issued bios will be associated with the closest cgroup later in the
9700 * block layer.
9701 */
9702 rcu_read_lock();
9703 ctx->sqo_blkcg_css = blkcg_css();
9704 ret = css_tryget_online(ctx->sqo_blkcg_css);
9705 rcu_read_unlock();
9706 if (!ret) {
9707 /* don't init against a dying cgroup, have the user try again */
9708 ctx->sqo_blkcg_css = NULL;
9709 ret = -ENODEV;
9710 goto err;
9711 }
9712 #endif
9713
9714 /*
9715 * Account memory _before_ installing the file descriptor. Once
9716 * the descriptor is installed, it can get closed at any time. Also
9717 * do this before hitting the general error path, as ring freeing
9718 * will un-account as well.
9719 */
9720 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9721 ACCT_LOCKED);
9722 ctx->limit_mem = limit_mem;
9723
9724 ret = io_allocate_scq_urings(ctx, p);
9725 if (ret)
9726 goto err;
9727
9728 ret = io_sq_offload_create(ctx, p);
9729 if (ret)
9730 goto err;
9731
9732 if (!(p->flags & IORING_SETUP_R_DISABLED))
9733 io_sq_offload_start(ctx);
9734
9735 memset(&p->sq_off, 0, sizeof(p->sq_off));
9736 p->sq_off.head = offsetof(struct io_rings, sq.head);
9737 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9738 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9739 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9740 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9741 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9742 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9743
9744 memset(&p->cq_off, 0, sizeof(p->cq_off));
9745 p->cq_off.head = offsetof(struct io_rings, cq.head);
9746 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9747 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9748 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9749 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9750 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9751 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9752
9753 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9754 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9755 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9756 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9757 IORING_FEAT_EXT_ARG;
9758
9759 if (copy_to_user(params, p, sizeof(*p))) {
9760 ret = -EFAULT;
9761 goto err;
9762 }
9763
9764 file = io_uring_get_file(ctx);
9765 if (IS_ERR(file)) {
9766 ret = PTR_ERR(file);
9767 goto err;
9768 }
9769
9770 /*
9771 * Install ring fd as the very last thing, so we don't risk someone
9772 * having closed it before we finish setup
9773 */
9774 ret = io_uring_install_fd(ctx, file);
9775 if (ret < 0) {
9776 io_disable_sqo_submit(ctx);
9777 /* fput will clean it up */
9778 fput(file);
9779 return ret;
9780 }
9781
9782 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9783 return ret;
9784 err:
9785 io_disable_sqo_submit(ctx);
9786 io_ring_ctx_wait_and_kill(ctx);
9787 return ret;
9788 }
9789
9790 /*
9791 * Sets up an aio uring context, and returns the fd. Applications asks for a
9792 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9793 * params structure passed in.
9794 */
9795 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9796 {
9797 struct io_uring_params p;
9798 int i;
9799
9800 if (copy_from_user(&p, params, sizeof(p)))
9801 return -EFAULT;
9802 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9803 if (p.resv[i])
9804 return -EINVAL;
9805 }
9806
9807 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9808 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9809 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9810 IORING_SETUP_R_DISABLED))
9811 return -EINVAL;
9812
9813 return io_uring_create(entries, &p, params);
9814 }
9815
9816 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9817 struct io_uring_params __user *, params)
9818 {
9819 return io_uring_setup(entries, params);
9820 }
9821
9822 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9823 {
9824 struct io_uring_probe *p;
9825 size_t size;
9826 int i, ret;
9827
9828 size = struct_size(p, ops, nr_args);
9829 if (size == SIZE_MAX)
9830 return -EOVERFLOW;
9831 p = kzalloc(size, GFP_KERNEL);
9832 if (!p)
9833 return -ENOMEM;
9834
9835 ret = -EFAULT;
9836 if (copy_from_user(p, arg, size))
9837 goto out;
9838 ret = -EINVAL;
9839 if (memchr_inv(p, 0, size))
9840 goto out;
9841
9842 p->last_op = IORING_OP_LAST - 1;
9843 if (nr_args > IORING_OP_LAST)
9844 nr_args = IORING_OP_LAST;
9845
9846 for (i = 0; i < nr_args; i++) {
9847 p->ops[i].op = i;
9848 if (!io_op_defs[i].not_supported)
9849 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9850 }
9851 p->ops_len = i;
9852
9853 ret = 0;
9854 if (copy_to_user(arg, p, size))
9855 ret = -EFAULT;
9856 out:
9857 kfree(p);
9858 return ret;
9859 }
9860
9861 static int io_register_personality(struct io_ring_ctx *ctx)
9862 {
9863 struct io_identity *id;
9864 int ret;
9865
9866 id = kmalloc(sizeof(*id), GFP_KERNEL);
9867 if (unlikely(!id))
9868 return -ENOMEM;
9869
9870 io_init_identity(id);
9871 id->creds = get_current_cred();
9872
9873 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9874 if (ret < 0) {
9875 put_cred(id->creds);
9876 kfree(id);
9877 }
9878 return ret;
9879 }
9880
9881 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9882 {
9883 struct io_identity *iod;
9884
9885 iod = idr_remove(&ctx->personality_idr, id);
9886 if (iod) {
9887 put_cred(iod->creds);
9888 if (refcount_dec_and_test(&iod->count))
9889 kfree(iod);
9890 return 0;
9891 }
9892
9893 return -EINVAL;
9894 }
9895
9896 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9897 unsigned int nr_args)
9898 {
9899 struct io_uring_restriction *res;
9900 size_t size;
9901 int i, ret;
9902
9903 /* Restrictions allowed only if rings started disabled */
9904 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9905 return -EBADFD;
9906
9907 /* We allow only a single restrictions registration */
9908 if (ctx->restrictions.registered)
9909 return -EBUSY;
9910
9911 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9912 return -EINVAL;
9913
9914 size = array_size(nr_args, sizeof(*res));
9915 if (size == SIZE_MAX)
9916 return -EOVERFLOW;
9917
9918 res = memdup_user(arg, size);
9919 if (IS_ERR(res))
9920 return PTR_ERR(res);
9921
9922 ret = 0;
9923
9924 for (i = 0; i < nr_args; i++) {
9925 switch (res[i].opcode) {
9926 case IORING_RESTRICTION_REGISTER_OP:
9927 if (res[i].register_op >= IORING_REGISTER_LAST) {
9928 ret = -EINVAL;
9929 goto out;
9930 }
9931
9932 __set_bit(res[i].register_op,
9933 ctx->restrictions.register_op);
9934 break;
9935 case IORING_RESTRICTION_SQE_OP:
9936 if (res[i].sqe_op >= IORING_OP_LAST) {
9937 ret = -EINVAL;
9938 goto out;
9939 }
9940
9941 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9942 break;
9943 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9944 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9945 break;
9946 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9947 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9948 break;
9949 default:
9950 ret = -EINVAL;
9951 goto out;
9952 }
9953 }
9954
9955 out:
9956 /* Reset all restrictions if an error happened */
9957 if (ret != 0)
9958 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9959 else
9960 ctx->restrictions.registered = true;
9961
9962 kfree(res);
9963 return ret;
9964 }
9965
9966 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9967 {
9968 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9969 return -EBADFD;
9970
9971 if (ctx->restrictions.registered)
9972 ctx->restricted = 1;
9973
9974 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9975
9976 io_sq_offload_start(ctx);
9977
9978 return 0;
9979 }
9980
9981 static bool io_register_op_must_quiesce(int op)
9982 {
9983 switch (op) {
9984 case IORING_UNREGISTER_FILES:
9985 case IORING_REGISTER_FILES_UPDATE:
9986 case IORING_REGISTER_PROBE:
9987 case IORING_REGISTER_PERSONALITY:
9988 case IORING_UNREGISTER_PERSONALITY:
9989 return false;
9990 default:
9991 return true;
9992 }
9993 }
9994
9995 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9996 void __user *arg, unsigned nr_args)
9997 __releases(ctx->uring_lock)
9998 __acquires(ctx->uring_lock)
9999 {
10000 int ret;
10001
10002 /*
10003 * We're inside the ring mutex, if the ref is already dying, then
10004 * someone else killed the ctx or is already going through
10005 * io_uring_register().
10006 */
10007 if (percpu_ref_is_dying(&ctx->refs))
10008 return -ENXIO;
10009
10010 if (io_register_op_must_quiesce(opcode)) {
10011 percpu_ref_kill(&ctx->refs);
10012
10013 /*
10014 * Drop uring mutex before waiting for references to exit. If
10015 * another thread is currently inside io_uring_enter() it might
10016 * need to grab the uring_lock to make progress. If we hold it
10017 * here across the drain wait, then we can deadlock. It's safe
10018 * to drop the mutex here, since no new references will come in
10019 * after we've killed the percpu ref.
10020 */
10021 mutex_unlock(&ctx->uring_lock);
10022 do {
10023 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10024 if (!ret)
10025 break;
10026 ret = io_run_task_work_sig();
10027 if (ret < 0)
10028 break;
10029 } while (1);
10030
10031 mutex_lock(&ctx->uring_lock);
10032
10033 if (ret) {
10034 percpu_ref_resurrect(&ctx->refs);
10035 goto out_quiesce;
10036 }
10037 }
10038
10039 if (ctx->restricted) {
10040 if (opcode >= IORING_REGISTER_LAST) {
10041 ret = -EINVAL;
10042 goto out;
10043 }
10044
10045 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10046 ret = -EACCES;
10047 goto out;
10048 }
10049 }
10050
10051 switch (opcode) {
10052 case IORING_REGISTER_BUFFERS:
10053 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10054 break;
10055 case IORING_UNREGISTER_BUFFERS:
10056 ret = -EINVAL;
10057 if (arg || nr_args)
10058 break;
10059 ret = io_sqe_buffer_unregister(ctx);
10060 break;
10061 case IORING_REGISTER_FILES:
10062 ret = io_sqe_files_register(ctx, arg, nr_args);
10063 break;
10064 case IORING_UNREGISTER_FILES:
10065 ret = -EINVAL;
10066 if (arg || nr_args)
10067 break;
10068 ret = io_sqe_files_unregister(ctx);
10069 break;
10070 case IORING_REGISTER_FILES_UPDATE:
10071 ret = io_sqe_files_update(ctx, arg, nr_args);
10072 break;
10073 case IORING_REGISTER_EVENTFD:
10074 case IORING_REGISTER_EVENTFD_ASYNC:
10075 ret = -EINVAL;
10076 if (nr_args != 1)
10077 break;
10078 ret = io_eventfd_register(ctx, arg);
10079 if (ret)
10080 break;
10081 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10082 ctx->eventfd_async = 1;
10083 else
10084 ctx->eventfd_async = 0;
10085 break;
10086 case IORING_UNREGISTER_EVENTFD:
10087 ret = -EINVAL;
10088 if (arg || nr_args)
10089 break;
10090 ret = io_eventfd_unregister(ctx);
10091 break;
10092 case IORING_REGISTER_PROBE:
10093 ret = -EINVAL;
10094 if (!arg || nr_args > 256)
10095 break;
10096 ret = io_probe(ctx, arg, nr_args);
10097 break;
10098 case IORING_REGISTER_PERSONALITY:
10099 ret = -EINVAL;
10100 if (arg || nr_args)
10101 break;
10102 ret = io_register_personality(ctx);
10103 break;
10104 case IORING_UNREGISTER_PERSONALITY:
10105 ret = -EINVAL;
10106 if (arg)
10107 break;
10108 ret = io_unregister_personality(ctx, nr_args);
10109 break;
10110 case IORING_REGISTER_ENABLE_RINGS:
10111 ret = -EINVAL;
10112 if (arg || nr_args)
10113 break;
10114 ret = io_register_enable_rings(ctx);
10115 break;
10116 case IORING_REGISTER_RESTRICTIONS:
10117 ret = io_register_restrictions(ctx, arg, nr_args);
10118 break;
10119 default:
10120 ret = -EINVAL;
10121 break;
10122 }
10123
10124 out:
10125 if (io_register_op_must_quiesce(opcode)) {
10126 /* bring the ctx back to life */
10127 percpu_ref_reinit(&ctx->refs);
10128 out_quiesce:
10129 reinit_completion(&ctx->ref_comp);
10130 }
10131 return ret;
10132 }
10133
10134 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10135 void __user *, arg, unsigned int, nr_args)
10136 {
10137 struct io_ring_ctx *ctx;
10138 long ret = -EBADF;
10139 struct fd f;
10140
10141 f = fdget(fd);
10142 if (!f.file)
10143 return -EBADF;
10144
10145 ret = -EOPNOTSUPP;
10146 if (f.file->f_op != &io_uring_fops)
10147 goto out_fput;
10148
10149 ctx = f.file->private_data;
10150
10151 mutex_lock(&ctx->uring_lock);
10152 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10153 mutex_unlock(&ctx->uring_lock);
10154 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10155 ctx->cq_ev_fd != NULL, ret);
10156 out_fput:
10157 fdput(f);
10158 return ret;
10159 }
10160
10161 static int __init io_uring_init(void)
10162 {
10163 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10164 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10165 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10166 } while (0)
10167
10168 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10169 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10170 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10171 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10172 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10173 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10174 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10175 BUILD_BUG_SQE_ELEM(8, __u64, off);
10176 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10177 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10178 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10179 BUILD_BUG_SQE_ELEM(24, __u32, len);
10180 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10181 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10182 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10183 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10184 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10185 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10186 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10187 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10188 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10189 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10190 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10191 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10192 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10193 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10194 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10195 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10196 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10197 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10198 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10199
10200 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10201 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10202 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10203 return 0;
10204 };
10205 __initcall(io_uring_init);