]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: truncate lengths larger than MAX_RW_COUNT on provide buffers
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92
93 /*
94 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
95 */
96 #define IORING_FILE_TABLE_SHIFT 9
97 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
98 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
99 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
101 IORING_REGISTER_LAST + IORING_OP_LAST)
102
103 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
104 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
105 IOSQE_BUFFER_SELECT)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 enum io_uring_cmd_flags {
191 IO_URING_F_NONBLOCK = 1,
192 IO_URING_F_COMPLETE_DEFER = 2,
193 };
194
195 struct io_mapped_ubuf {
196 u64 ubuf;
197 u64 ubuf_end;
198 unsigned int nr_bvecs;
199 unsigned long acct_pages;
200 struct bio_vec bvec[];
201 };
202
203 struct io_ring_ctx;
204
205 struct io_overflow_cqe {
206 struct io_uring_cqe cqe;
207 struct list_head list;
208 };
209
210 struct io_fixed_file {
211 /* file * with additional FFS_* flags */
212 unsigned long file_ptr;
213 };
214
215 struct io_rsrc_put {
216 struct list_head list;
217 u64 tag;
218 union {
219 void *rsrc;
220 struct file *file;
221 struct io_mapped_ubuf *buf;
222 };
223 };
224
225 struct io_file_table {
226 /* two level table */
227 struct io_fixed_file **files;
228 };
229
230 struct io_rsrc_node {
231 struct percpu_ref refs;
232 struct list_head node;
233 struct list_head rsrc_list;
234 struct io_rsrc_data *rsrc_data;
235 struct llist_node llist;
236 bool done;
237 };
238
239 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
240
241 struct io_rsrc_data {
242 struct io_ring_ctx *ctx;
243
244 u64 *tags;
245 rsrc_put_fn *do_put;
246 atomic_t refs;
247 struct completion done;
248 bool quiesce;
249 };
250
251 struct io_buffer {
252 struct list_head list;
253 __u64 addr;
254 __u32 len;
255 __u16 bid;
256 };
257
258 struct io_restriction {
259 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
260 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
261 u8 sqe_flags_allowed;
262 u8 sqe_flags_required;
263 bool registered;
264 };
265
266 enum {
267 IO_SQ_THREAD_SHOULD_STOP = 0,
268 IO_SQ_THREAD_SHOULD_PARK,
269 };
270
271 struct io_sq_data {
272 refcount_t refs;
273 atomic_t park_pending;
274 struct mutex lock;
275
276 /* ctx's that are using this sqd */
277 struct list_head ctx_list;
278
279 struct task_struct *thread;
280 struct wait_queue_head wait;
281
282 unsigned sq_thread_idle;
283 int sq_cpu;
284 pid_t task_pid;
285 pid_t task_tgid;
286
287 unsigned long state;
288 struct completion exited;
289 struct callback_head *park_task_work;
290 };
291
292 #define IO_IOPOLL_BATCH 8
293 #define IO_COMPL_BATCH 32
294 #define IO_REQ_CACHE_SIZE 32
295 #define IO_REQ_ALLOC_BATCH 8
296
297 struct io_comp_state {
298 struct io_kiocb *reqs[IO_COMPL_BATCH];
299 unsigned int nr;
300 unsigned int locked_free_nr;
301 /* inline/task_work completion list, under ->uring_lock */
302 struct list_head free_list;
303 /* IRQ completion list, under ->completion_lock */
304 struct list_head locked_free_list;
305 };
306
307 struct io_submit_link {
308 struct io_kiocb *head;
309 struct io_kiocb *last;
310 };
311
312 struct io_submit_state {
313 struct blk_plug plug;
314 struct io_submit_link link;
315
316 /*
317 * io_kiocb alloc cache
318 */
319 void *reqs[IO_REQ_CACHE_SIZE];
320 unsigned int free_reqs;
321
322 bool plug_started;
323
324 /*
325 * Batch completion logic
326 */
327 struct io_comp_state comp;
328
329 /*
330 * File reference cache
331 */
332 struct file *file;
333 unsigned int fd;
334 unsigned int file_refs;
335 unsigned int ios_left;
336 };
337
338 struct io_ring_ctx {
339 struct {
340 struct percpu_ref refs;
341 } ____cacheline_aligned_in_smp;
342
343 struct {
344 unsigned int flags;
345 unsigned int compat: 1;
346 unsigned int drain_next: 1;
347 unsigned int eventfd_async: 1;
348 unsigned int restricted: 1;
349
350 /*
351 * Ring buffer of indices into array of io_uring_sqe, which is
352 * mmapped by the application using the IORING_OFF_SQES offset.
353 *
354 * This indirection could e.g. be used to assign fixed
355 * io_uring_sqe entries to operations and only submit them to
356 * the queue when needed.
357 *
358 * The kernel modifies neither the indices array nor the entries
359 * array.
360 */
361 u32 *sq_array;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 unsigned sq_mask;
365 unsigned sq_thread_idle;
366 unsigned cached_sq_dropped;
367 unsigned cached_cq_overflow;
368 unsigned long sq_check_overflow;
369
370 /* hashed buffered write serialization */
371 struct io_wq_hash *hash_map;
372
373 struct list_head defer_list;
374 struct list_head timeout_list;
375 struct list_head cq_overflow_list;
376
377 struct io_uring_sqe *sq_sqes;
378 } ____cacheline_aligned_in_smp;
379
380 struct {
381 struct mutex uring_lock;
382 wait_queue_head_t wait;
383 } ____cacheline_aligned_in_smp;
384
385 struct io_submit_state submit_state;
386
387 struct io_rings *rings;
388
389 /* Only used for accounting purposes */
390 struct mm_struct *mm_account;
391
392 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
393 struct io_sq_data *sq_data; /* if using sq thread polling */
394
395 struct wait_queue_head sqo_sq_wait;
396 struct list_head sqd_list;
397
398 /*
399 * If used, fixed file set. Writers must ensure that ->refs is dead,
400 * readers must ensure that ->refs is alive as long as the file* is
401 * used. Only updated through io_uring_register(2).
402 */
403 struct io_rsrc_data *file_data;
404 struct io_file_table file_table;
405 unsigned nr_user_files;
406
407 /* if used, fixed mapped user buffers */
408 struct io_rsrc_data *buf_data;
409 unsigned nr_user_bufs;
410 struct io_mapped_ubuf **user_bufs;
411
412 struct user_struct *user;
413
414 struct completion ref_comp;
415
416 #if defined(CONFIG_UNIX)
417 struct socket *ring_sock;
418 #endif
419
420 struct xarray io_buffers;
421
422 struct xarray personalities;
423 u32 pers_next;
424
425 struct {
426 unsigned cached_cq_tail;
427 unsigned cq_entries;
428 unsigned cq_mask;
429 atomic_t cq_timeouts;
430 unsigned cq_last_tm_flush;
431 unsigned cq_extra;
432 unsigned long cq_check_overflow;
433 struct wait_queue_head cq_wait;
434 struct fasync_struct *cq_fasync;
435 struct eventfd_ctx *cq_ev_fd;
436 } ____cacheline_aligned_in_smp;
437
438 struct {
439 spinlock_t completion_lock;
440
441 /*
442 * ->iopoll_list is protected by the ctx->uring_lock for
443 * io_uring instances that don't use IORING_SETUP_SQPOLL.
444 * For SQPOLL, only the single threaded io_sq_thread() will
445 * manipulate the list, hence no extra locking is needed there.
446 */
447 struct list_head iopoll_list;
448 struct hlist_head *cancel_hash;
449 unsigned cancel_hash_bits;
450 bool poll_multi_file;
451 } ____cacheline_aligned_in_smp;
452
453 struct delayed_work rsrc_put_work;
454 struct llist_head rsrc_put_llist;
455 struct list_head rsrc_ref_list;
456 spinlock_t rsrc_ref_lock;
457 struct io_rsrc_node *rsrc_node;
458 struct io_rsrc_node *rsrc_backup_node;
459 struct io_mapped_ubuf *dummy_ubuf;
460
461 struct io_restriction restrictions;
462
463 /* exit task_work */
464 struct callback_head *exit_task_work;
465
466 /* Keep this last, we don't need it for the fast path */
467 struct work_struct exit_work;
468 struct list_head tctx_list;
469 };
470
471 struct io_uring_task {
472 /* submission side */
473 struct xarray xa;
474 struct wait_queue_head wait;
475 const struct io_ring_ctx *last;
476 struct io_wq *io_wq;
477 struct percpu_counter inflight;
478 atomic_t inflight_tracked;
479 atomic_t in_idle;
480
481 spinlock_t task_lock;
482 struct io_wq_work_list task_list;
483 unsigned long task_state;
484 struct callback_head task_work;
485 };
486
487 /*
488 * First field must be the file pointer in all the
489 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
490 */
491 struct io_poll_iocb {
492 struct file *file;
493 struct wait_queue_head *head;
494 __poll_t events;
495 bool done;
496 bool canceled;
497 struct wait_queue_entry wait;
498 };
499
500 struct io_poll_update {
501 struct file *file;
502 u64 old_user_data;
503 u64 new_user_data;
504 __poll_t events;
505 bool update_events;
506 bool update_user_data;
507 };
508
509 struct io_close {
510 struct file *file;
511 int fd;
512 };
513
514 struct io_timeout_data {
515 struct io_kiocb *req;
516 struct hrtimer timer;
517 struct timespec64 ts;
518 enum hrtimer_mode mode;
519 };
520
521 struct io_accept {
522 struct file *file;
523 struct sockaddr __user *addr;
524 int __user *addr_len;
525 int flags;
526 unsigned long nofile;
527 };
528
529 struct io_sync {
530 struct file *file;
531 loff_t len;
532 loff_t off;
533 int flags;
534 int mode;
535 };
536
537 struct io_cancel {
538 struct file *file;
539 u64 addr;
540 };
541
542 struct io_timeout {
543 struct file *file;
544 u32 off;
545 u32 target_seq;
546 struct list_head list;
547 /* head of the link, used by linked timeouts only */
548 struct io_kiocb *head;
549 };
550
551 struct io_timeout_rem {
552 struct file *file;
553 u64 addr;
554
555 /* timeout update */
556 struct timespec64 ts;
557 u32 flags;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 struct filename *filename;
590 struct open_how how;
591 unsigned long nofile;
592 };
593
594 struct io_rsrc_update {
595 struct file *file;
596 u64 arg;
597 u32 nr_args;
598 u32 offset;
599 };
600
601 struct io_fadvise {
602 struct file *file;
603 u64 offset;
604 u32 len;
605 u32 advice;
606 };
607
608 struct io_madvise {
609 struct file *file;
610 u64 addr;
611 u32 len;
612 u32 advice;
613 };
614
615 struct io_epoll {
616 struct file *file;
617 int epfd;
618 int op;
619 int fd;
620 struct epoll_event event;
621 };
622
623 struct io_splice {
624 struct file *file_out;
625 struct file *file_in;
626 loff_t off_out;
627 loff_t off_in;
628 u64 len;
629 unsigned int flags;
630 };
631
632 struct io_provide_buf {
633 struct file *file;
634 __u64 addr;
635 __u32 len;
636 __u32 bgid;
637 __u16 nbufs;
638 __u16 bid;
639 };
640
641 struct io_statx {
642 struct file *file;
643 int dfd;
644 unsigned int mask;
645 unsigned int flags;
646 const char __user *filename;
647 struct statx __user *buffer;
648 };
649
650 struct io_shutdown {
651 struct file *file;
652 int how;
653 };
654
655 struct io_rename {
656 struct file *file;
657 int old_dfd;
658 int new_dfd;
659 struct filename *oldpath;
660 struct filename *newpath;
661 int flags;
662 };
663
664 struct io_unlink {
665 struct file *file;
666 int dfd;
667 int flags;
668 struct filename *filename;
669 };
670
671 struct io_completion {
672 struct file *file;
673 struct list_head list;
674 u32 cflags;
675 };
676
677 struct io_async_connect {
678 struct sockaddr_storage address;
679 };
680
681 struct io_async_msghdr {
682 struct iovec fast_iov[UIO_FASTIOV];
683 /* points to an allocated iov, if NULL we use fast_iov instead */
684 struct iovec *free_iov;
685 struct sockaddr __user *uaddr;
686 struct msghdr msg;
687 struct sockaddr_storage addr;
688 };
689
690 struct io_async_rw {
691 struct iovec fast_iov[UIO_FASTIOV];
692 const struct iovec *free_iovec;
693 struct iov_iter iter;
694 size_t bytes_done;
695 struct wait_page_queue wpq;
696 };
697
698 enum {
699 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
700 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
701 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
702 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
703 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
704 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
705
706 /* first byte is taken by user flags, shift it to not overlap */
707 REQ_F_FAIL_LINK_BIT = 8,
708 REQ_F_INFLIGHT_BIT,
709 REQ_F_CUR_POS_BIT,
710 REQ_F_NOWAIT_BIT,
711 REQ_F_LINK_TIMEOUT_BIT,
712 REQ_F_NEED_CLEANUP_BIT,
713 REQ_F_POLLED_BIT,
714 REQ_F_BUFFER_SELECTED_BIT,
715 REQ_F_LTIMEOUT_ACTIVE_BIT,
716 REQ_F_COMPLETE_INLINE_BIT,
717 REQ_F_REISSUE_BIT,
718 REQ_F_DONT_REISSUE_BIT,
719 /* keep async read/write and isreg together and in order */
720 REQ_F_ASYNC_READ_BIT,
721 REQ_F_ASYNC_WRITE_BIT,
722 REQ_F_ISREG_BIT,
723
724 /* not a real bit, just to check we're not overflowing the space */
725 __REQ_F_LAST_BIT,
726 };
727
728 enum {
729 /* ctx owns file */
730 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
731 /* drain existing IO first */
732 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
733 /* linked sqes */
734 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
735 /* doesn't sever on completion < 0 */
736 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
737 /* IOSQE_ASYNC */
738 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
739 /* IOSQE_BUFFER_SELECT */
740 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
741
742 /* fail rest of links */
743 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
744 /* on inflight list, should be cancelled and waited on exit reliably */
745 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
746 /* read/write uses file position */
747 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
748 /* must not punt to workers */
749 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
750 /* has or had linked timeout */
751 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
752 /* needs cleanup */
753 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
754 /* already went through poll handler */
755 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
756 /* buffer already selected */
757 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
758 /* linked timeout is active, i.e. prepared by link's head */
759 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
760 /* completion is deferred through io_comp_state */
761 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
762 /* caller should reissue async */
763 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
764 /* don't attempt request reissue, see io_rw_reissue() */
765 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
766 /* supports async reads */
767 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
768 /* supports async writes */
769 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
770 /* regular file */
771 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
772 };
773
774 struct async_poll {
775 struct io_poll_iocb poll;
776 struct io_poll_iocb *double_poll;
777 };
778
779 struct io_task_work {
780 struct io_wq_work_node node;
781 task_work_func_t func;
782 };
783
784 /*
785 * NOTE! Each of the iocb union members has the file pointer
786 * as the first entry in their struct definition. So you can
787 * access the file pointer through any of the sub-structs,
788 * or directly as just 'ki_filp' in this struct.
789 */
790 struct io_kiocb {
791 union {
792 struct file *file;
793 struct io_rw rw;
794 struct io_poll_iocb poll;
795 struct io_poll_update poll_update;
796 struct io_accept accept;
797 struct io_sync sync;
798 struct io_cancel cancel;
799 struct io_timeout timeout;
800 struct io_timeout_rem timeout_rem;
801 struct io_connect connect;
802 struct io_sr_msg sr_msg;
803 struct io_open open;
804 struct io_close close;
805 struct io_rsrc_update rsrc_update;
806 struct io_fadvise fadvise;
807 struct io_madvise madvise;
808 struct io_epoll epoll;
809 struct io_splice splice;
810 struct io_provide_buf pbuf;
811 struct io_statx statx;
812 struct io_shutdown shutdown;
813 struct io_rename rename;
814 struct io_unlink unlink;
815 /* use only after cleaning per-op data, see io_clean_op() */
816 struct io_completion compl;
817 };
818
819 /* opcode allocated if it needs to store data for async defer */
820 void *async_data;
821 u8 opcode;
822 /* polled IO has completed */
823 u8 iopoll_completed;
824
825 u16 buf_index;
826 u32 result;
827
828 struct io_ring_ctx *ctx;
829 unsigned int flags;
830 atomic_t refs;
831 struct task_struct *task;
832 u64 user_data;
833
834 struct io_kiocb *link;
835 struct percpu_ref *fixed_rsrc_refs;
836
837 /* used with ctx->iopoll_list with reads/writes */
838 struct list_head inflight_entry;
839 union {
840 struct io_task_work io_task_work;
841 struct callback_head task_work;
842 };
843 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
844 struct hlist_node hash_node;
845 struct async_poll *apoll;
846 struct io_wq_work work;
847 /* store used ubuf, so we can prevent reloading */
848 struct io_mapped_ubuf *imu;
849 };
850
851 struct io_tctx_node {
852 struct list_head ctx_node;
853 struct task_struct *task;
854 struct io_ring_ctx *ctx;
855 };
856
857 struct io_defer_entry {
858 struct list_head list;
859 struct io_kiocb *req;
860 u32 seq;
861 };
862
863 struct io_op_def {
864 /* needs req->file assigned */
865 unsigned needs_file : 1;
866 /* hash wq insertion if file is a regular file */
867 unsigned hash_reg_file : 1;
868 /* unbound wq insertion if file is a non-regular file */
869 unsigned unbound_nonreg_file : 1;
870 /* opcode is not supported by this kernel */
871 unsigned not_supported : 1;
872 /* set if opcode supports polled "wait" */
873 unsigned pollin : 1;
874 unsigned pollout : 1;
875 /* op supports buffer selection */
876 unsigned buffer_select : 1;
877 /* do prep async if is going to be punted */
878 unsigned needs_async_setup : 1;
879 /* should block plug */
880 unsigned plug : 1;
881 /* size of async data needed, if any */
882 unsigned short async_size;
883 };
884
885 static const struct io_op_def io_op_defs[] = {
886 [IORING_OP_NOP] = {},
887 [IORING_OP_READV] = {
888 .needs_file = 1,
889 .unbound_nonreg_file = 1,
890 .pollin = 1,
891 .buffer_select = 1,
892 .needs_async_setup = 1,
893 .plug = 1,
894 .async_size = sizeof(struct io_async_rw),
895 },
896 [IORING_OP_WRITEV] = {
897 .needs_file = 1,
898 .hash_reg_file = 1,
899 .unbound_nonreg_file = 1,
900 .pollout = 1,
901 .needs_async_setup = 1,
902 .plug = 1,
903 .async_size = sizeof(struct io_async_rw),
904 },
905 [IORING_OP_FSYNC] = {
906 .needs_file = 1,
907 },
908 [IORING_OP_READ_FIXED] = {
909 .needs_file = 1,
910 .unbound_nonreg_file = 1,
911 .pollin = 1,
912 .plug = 1,
913 .async_size = sizeof(struct io_async_rw),
914 },
915 [IORING_OP_WRITE_FIXED] = {
916 .needs_file = 1,
917 .hash_reg_file = 1,
918 .unbound_nonreg_file = 1,
919 .pollout = 1,
920 .plug = 1,
921 .async_size = sizeof(struct io_async_rw),
922 },
923 [IORING_OP_POLL_ADD] = {
924 .needs_file = 1,
925 .unbound_nonreg_file = 1,
926 },
927 [IORING_OP_POLL_REMOVE] = {},
928 [IORING_OP_SYNC_FILE_RANGE] = {
929 .needs_file = 1,
930 },
931 [IORING_OP_SENDMSG] = {
932 .needs_file = 1,
933 .unbound_nonreg_file = 1,
934 .pollout = 1,
935 .needs_async_setup = 1,
936 .async_size = sizeof(struct io_async_msghdr),
937 },
938 [IORING_OP_RECVMSG] = {
939 .needs_file = 1,
940 .unbound_nonreg_file = 1,
941 .pollin = 1,
942 .buffer_select = 1,
943 .needs_async_setup = 1,
944 .async_size = sizeof(struct io_async_msghdr),
945 },
946 [IORING_OP_TIMEOUT] = {
947 .async_size = sizeof(struct io_timeout_data),
948 },
949 [IORING_OP_TIMEOUT_REMOVE] = {
950 /* used by timeout updates' prep() */
951 },
952 [IORING_OP_ACCEPT] = {
953 .needs_file = 1,
954 .unbound_nonreg_file = 1,
955 .pollin = 1,
956 },
957 [IORING_OP_ASYNC_CANCEL] = {},
958 [IORING_OP_LINK_TIMEOUT] = {
959 .async_size = sizeof(struct io_timeout_data),
960 },
961 [IORING_OP_CONNECT] = {
962 .needs_file = 1,
963 .unbound_nonreg_file = 1,
964 .pollout = 1,
965 .needs_async_setup = 1,
966 .async_size = sizeof(struct io_async_connect),
967 },
968 [IORING_OP_FALLOCATE] = {
969 .needs_file = 1,
970 },
971 [IORING_OP_OPENAT] = {},
972 [IORING_OP_CLOSE] = {},
973 [IORING_OP_FILES_UPDATE] = {},
974 [IORING_OP_STATX] = {},
975 [IORING_OP_READ] = {
976 .needs_file = 1,
977 .unbound_nonreg_file = 1,
978 .pollin = 1,
979 .buffer_select = 1,
980 .plug = 1,
981 .async_size = sizeof(struct io_async_rw),
982 },
983 [IORING_OP_WRITE] = {
984 .needs_file = 1,
985 .unbound_nonreg_file = 1,
986 .pollout = 1,
987 .plug = 1,
988 .async_size = sizeof(struct io_async_rw),
989 },
990 [IORING_OP_FADVISE] = {
991 .needs_file = 1,
992 },
993 [IORING_OP_MADVISE] = {},
994 [IORING_OP_SEND] = {
995 .needs_file = 1,
996 .unbound_nonreg_file = 1,
997 .pollout = 1,
998 },
999 [IORING_OP_RECV] = {
1000 .needs_file = 1,
1001 .unbound_nonreg_file = 1,
1002 .pollin = 1,
1003 .buffer_select = 1,
1004 },
1005 [IORING_OP_OPENAT2] = {
1006 },
1007 [IORING_OP_EPOLL_CTL] = {
1008 .unbound_nonreg_file = 1,
1009 },
1010 [IORING_OP_SPLICE] = {
1011 .needs_file = 1,
1012 .hash_reg_file = 1,
1013 .unbound_nonreg_file = 1,
1014 },
1015 [IORING_OP_PROVIDE_BUFFERS] = {},
1016 [IORING_OP_REMOVE_BUFFERS] = {},
1017 [IORING_OP_TEE] = {
1018 .needs_file = 1,
1019 .hash_reg_file = 1,
1020 .unbound_nonreg_file = 1,
1021 },
1022 [IORING_OP_SHUTDOWN] = {
1023 .needs_file = 1,
1024 },
1025 [IORING_OP_RENAMEAT] = {},
1026 [IORING_OP_UNLINKAT] = {},
1027 };
1028
1029 static bool io_disarm_next(struct io_kiocb *req);
1030 static void io_uring_del_task_file(unsigned long index);
1031 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1032 struct task_struct *task,
1033 struct files_struct *files);
1034 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd);
1035 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1036
1037 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1038 long res, unsigned int cflags);
1039 static void io_put_req(struct io_kiocb *req);
1040 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1041 static void io_dismantle_req(struct io_kiocb *req);
1042 static void io_put_task(struct task_struct *task, int nr);
1043 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1044 static void io_queue_linked_timeout(struct io_kiocb *req);
1045 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1046 struct io_uring_rsrc_update2 *up,
1047 unsigned nr_args);
1048 static void io_clean_op(struct io_kiocb *req);
1049 static struct file *io_file_get(struct io_submit_state *state,
1050 struct io_kiocb *req, int fd, bool fixed);
1051 static void __io_queue_sqe(struct io_kiocb *req);
1052 static void io_rsrc_put_work(struct work_struct *work);
1053
1054 static void io_req_task_queue(struct io_kiocb *req);
1055 static void io_submit_flush_completions(struct io_comp_state *cs,
1056 struct io_ring_ctx *ctx);
1057 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1058 static int io_req_prep_async(struct io_kiocb *req);
1059
1060 static struct kmem_cache *req_cachep;
1061
1062 static const struct file_operations io_uring_fops;
1063
1064 struct sock *io_uring_get_socket(struct file *file)
1065 {
1066 #if defined(CONFIG_UNIX)
1067 if (file->f_op == &io_uring_fops) {
1068 struct io_ring_ctx *ctx = file->private_data;
1069
1070 return ctx->ring_sock->sk;
1071 }
1072 #endif
1073 return NULL;
1074 }
1075 EXPORT_SYMBOL(io_uring_get_socket);
1076
1077 #define io_for_each_link(pos, head) \
1078 for (pos = (head); pos; pos = pos->link)
1079
1080 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1081 {
1082 struct io_ring_ctx *ctx = req->ctx;
1083
1084 if (!req->fixed_rsrc_refs) {
1085 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1086 percpu_ref_get(req->fixed_rsrc_refs);
1087 }
1088 }
1089
1090 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1091 {
1092 bool got = percpu_ref_tryget(ref);
1093
1094 /* already at zero, wait for ->release() */
1095 if (!got)
1096 wait_for_completion(compl);
1097 percpu_ref_resurrect(ref);
1098 if (got)
1099 percpu_ref_put(ref);
1100 }
1101
1102 static bool io_match_task(struct io_kiocb *head,
1103 struct task_struct *task,
1104 struct files_struct *files)
1105 {
1106 struct io_kiocb *req;
1107
1108 if (task && head->task != task)
1109 return false;
1110 if (!files)
1111 return true;
1112
1113 io_for_each_link(req, head) {
1114 if (req->flags & REQ_F_INFLIGHT)
1115 return true;
1116 }
1117 return false;
1118 }
1119
1120 static inline void req_set_fail_links(struct io_kiocb *req)
1121 {
1122 if (req->flags & REQ_F_LINK)
1123 req->flags |= REQ_F_FAIL_LINK;
1124 }
1125
1126 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1127 {
1128 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1129
1130 complete(&ctx->ref_comp);
1131 }
1132
1133 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1134 {
1135 return !req->timeout.off;
1136 }
1137
1138 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1139 {
1140 struct io_ring_ctx *ctx;
1141 int hash_bits;
1142
1143 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1144 if (!ctx)
1145 return NULL;
1146
1147 /*
1148 * Use 5 bits less than the max cq entries, that should give us around
1149 * 32 entries per hash list if totally full and uniformly spread.
1150 */
1151 hash_bits = ilog2(p->cq_entries);
1152 hash_bits -= 5;
1153 if (hash_bits <= 0)
1154 hash_bits = 1;
1155 ctx->cancel_hash_bits = hash_bits;
1156 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1157 GFP_KERNEL);
1158 if (!ctx->cancel_hash)
1159 goto err;
1160 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1161
1162 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1163 if (!ctx->dummy_ubuf)
1164 goto err;
1165 /* set invalid range, so io_import_fixed() fails meeting it */
1166 ctx->dummy_ubuf->ubuf = -1UL;
1167
1168 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1169 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1170 goto err;
1171
1172 ctx->flags = p->flags;
1173 init_waitqueue_head(&ctx->sqo_sq_wait);
1174 INIT_LIST_HEAD(&ctx->sqd_list);
1175 init_waitqueue_head(&ctx->cq_wait);
1176 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1177 init_completion(&ctx->ref_comp);
1178 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1179 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1180 mutex_init(&ctx->uring_lock);
1181 init_waitqueue_head(&ctx->wait);
1182 spin_lock_init(&ctx->completion_lock);
1183 INIT_LIST_HEAD(&ctx->iopoll_list);
1184 INIT_LIST_HEAD(&ctx->defer_list);
1185 INIT_LIST_HEAD(&ctx->timeout_list);
1186 spin_lock_init(&ctx->rsrc_ref_lock);
1187 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1188 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1189 init_llist_head(&ctx->rsrc_put_llist);
1190 INIT_LIST_HEAD(&ctx->tctx_list);
1191 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1192 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1193 return ctx;
1194 err:
1195 kfree(ctx->dummy_ubuf);
1196 kfree(ctx->cancel_hash);
1197 kfree(ctx);
1198 return NULL;
1199 }
1200
1201 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1202 {
1203 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1204 struct io_ring_ctx *ctx = req->ctx;
1205
1206 return seq + ctx->cq_extra != ctx->cached_cq_tail
1207 + READ_ONCE(ctx->cached_cq_overflow);
1208 }
1209
1210 return false;
1211 }
1212
1213 static void io_req_track_inflight(struct io_kiocb *req)
1214 {
1215 if (!(req->flags & REQ_F_INFLIGHT)) {
1216 req->flags |= REQ_F_INFLIGHT;
1217 atomic_inc(&current->io_uring->inflight_tracked);
1218 }
1219 }
1220
1221 static void io_prep_async_work(struct io_kiocb *req)
1222 {
1223 const struct io_op_def *def = &io_op_defs[req->opcode];
1224 struct io_ring_ctx *ctx = req->ctx;
1225
1226 if (!req->work.creds)
1227 req->work.creds = get_current_cred();
1228
1229 req->work.list.next = NULL;
1230 req->work.flags = 0;
1231 if (req->flags & REQ_F_FORCE_ASYNC)
1232 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1233
1234 if (req->flags & REQ_F_ISREG) {
1235 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1236 io_wq_hash_work(&req->work, file_inode(req->file));
1237 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1238 if (def->unbound_nonreg_file)
1239 req->work.flags |= IO_WQ_WORK_UNBOUND;
1240 }
1241
1242 switch (req->opcode) {
1243 case IORING_OP_SPLICE:
1244 case IORING_OP_TEE:
1245 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1246 req->work.flags |= IO_WQ_WORK_UNBOUND;
1247 break;
1248 }
1249 }
1250
1251 static void io_prep_async_link(struct io_kiocb *req)
1252 {
1253 struct io_kiocb *cur;
1254
1255 io_for_each_link(cur, req)
1256 io_prep_async_work(cur);
1257 }
1258
1259 static void io_queue_async_work(struct io_kiocb *req)
1260 {
1261 struct io_ring_ctx *ctx = req->ctx;
1262 struct io_kiocb *link = io_prep_linked_timeout(req);
1263 struct io_uring_task *tctx = req->task->io_uring;
1264
1265 BUG_ON(!tctx);
1266 BUG_ON(!tctx->io_wq);
1267
1268 /* init ->work of the whole link before punting */
1269 io_prep_async_link(req);
1270 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1271 &req->work, req->flags);
1272 io_wq_enqueue(tctx->io_wq, &req->work);
1273 if (link)
1274 io_queue_linked_timeout(link);
1275 }
1276
1277 static void io_kill_timeout(struct io_kiocb *req, int status)
1278 __must_hold(&req->ctx->completion_lock)
1279 {
1280 struct io_timeout_data *io = req->async_data;
1281
1282 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1283 atomic_set(&req->ctx->cq_timeouts,
1284 atomic_read(&req->ctx->cq_timeouts) + 1);
1285 list_del_init(&req->timeout.list);
1286 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1287 io_put_req_deferred(req, 1);
1288 }
1289 }
1290
1291 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1292 {
1293 do {
1294 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1295 struct io_defer_entry, list);
1296
1297 if (req_need_defer(de->req, de->seq))
1298 break;
1299 list_del_init(&de->list);
1300 io_req_task_queue(de->req);
1301 kfree(de);
1302 } while (!list_empty(&ctx->defer_list));
1303 }
1304
1305 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1306 {
1307 u32 seq;
1308
1309 if (list_empty(&ctx->timeout_list))
1310 return;
1311
1312 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1313
1314 do {
1315 u32 events_needed, events_got;
1316 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1317 struct io_kiocb, timeout.list);
1318
1319 if (io_is_timeout_noseq(req))
1320 break;
1321
1322 /*
1323 * Since seq can easily wrap around over time, subtract
1324 * the last seq at which timeouts were flushed before comparing.
1325 * Assuming not more than 2^31-1 events have happened since,
1326 * these subtractions won't have wrapped, so we can check if
1327 * target is in [last_seq, current_seq] by comparing the two.
1328 */
1329 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1330 events_got = seq - ctx->cq_last_tm_flush;
1331 if (events_got < events_needed)
1332 break;
1333
1334 list_del_init(&req->timeout.list);
1335 io_kill_timeout(req, 0);
1336 } while (!list_empty(&ctx->timeout_list));
1337
1338 ctx->cq_last_tm_flush = seq;
1339 }
1340
1341 static void io_commit_cqring(struct io_ring_ctx *ctx)
1342 {
1343 io_flush_timeouts(ctx);
1344
1345 /* order cqe stores with ring update */
1346 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1347
1348 if (unlikely(!list_empty(&ctx->defer_list)))
1349 __io_queue_deferred(ctx);
1350 }
1351
1352 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1353 {
1354 struct io_rings *r = ctx->rings;
1355
1356 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1357 }
1358
1359 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1360 {
1361 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1362 }
1363
1364 static inline struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1365 {
1366 struct io_rings *rings = ctx->rings;
1367 unsigned tail;
1368
1369 /*
1370 * writes to the cq entry need to come after reading head; the
1371 * control dependency is enough as we're using WRITE_ONCE to
1372 * fill the cq entry
1373 */
1374 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1375 return NULL;
1376
1377 tail = ctx->cached_cq_tail++;
1378 return &rings->cqes[tail & ctx->cq_mask];
1379 }
1380
1381 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1382 {
1383 if (likely(!ctx->cq_ev_fd))
1384 return false;
1385 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1386 return false;
1387 return !ctx->eventfd_async || io_wq_current_is_worker();
1388 }
1389
1390 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1391 {
1392 /* see waitqueue_active() comment */
1393 smp_mb();
1394
1395 if (waitqueue_active(&ctx->wait))
1396 wake_up(&ctx->wait);
1397 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1398 wake_up(&ctx->sq_data->wait);
1399 if (io_should_trigger_evfd(ctx))
1400 eventfd_signal(ctx->cq_ev_fd, 1);
1401 if (waitqueue_active(&ctx->cq_wait)) {
1402 wake_up_interruptible(&ctx->cq_wait);
1403 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1404 }
1405 }
1406
1407 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1408 {
1409 /* see waitqueue_active() comment */
1410 smp_mb();
1411
1412 if (ctx->flags & IORING_SETUP_SQPOLL) {
1413 if (waitqueue_active(&ctx->wait))
1414 wake_up(&ctx->wait);
1415 }
1416 if (io_should_trigger_evfd(ctx))
1417 eventfd_signal(ctx->cq_ev_fd, 1);
1418 if (waitqueue_active(&ctx->cq_wait)) {
1419 wake_up_interruptible(&ctx->cq_wait);
1420 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1421 }
1422 }
1423
1424 /* Returns true if there are no backlogged entries after the flush */
1425 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1426 {
1427 struct io_rings *rings = ctx->rings;
1428 unsigned long flags;
1429 bool all_flushed, posted;
1430
1431 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1432 return false;
1433
1434 posted = false;
1435 spin_lock_irqsave(&ctx->completion_lock, flags);
1436 while (!list_empty(&ctx->cq_overflow_list)) {
1437 struct io_uring_cqe *cqe = io_get_cqring(ctx);
1438 struct io_overflow_cqe *ocqe;
1439
1440 if (!cqe && !force)
1441 break;
1442 ocqe = list_first_entry(&ctx->cq_overflow_list,
1443 struct io_overflow_cqe, list);
1444 if (cqe)
1445 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1446 else
1447 WRITE_ONCE(ctx->rings->cq_overflow,
1448 ++ctx->cached_cq_overflow);
1449 posted = true;
1450 list_del(&ocqe->list);
1451 kfree(ocqe);
1452 }
1453
1454 all_flushed = list_empty(&ctx->cq_overflow_list);
1455 if (all_flushed) {
1456 clear_bit(0, &ctx->sq_check_overflow);
1457 clear_bit(0, &ctx->cq_check_overflow);
1458 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1459 }
1460
1461 if (posted)
1462 io_commit_cqring(ctx);
1463 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1464 if (posted)
1465 io_cqring_ev_posted(ctx);
1466 return all_flushed;
1467 }
1468
1469 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1470 {
1471 bool ret = true;
1472
1473 if (test_bit(0, &ctx->cq_check_overflow)) {
1474 /* iopoll syncs against uring_lock, not completion_lock */
1475 if (ctx->flags & IORING_SETUP_IOPOLL)
1476 mutex_lock(&ctx->uring_lock);
1477 ret = __io_cqring_overflow_flush(ctx, force);
1478 if (ctx->flags & IORING_SETUP_IOPOLL)
1479 mutex_unlock(&ctx->uring_lock);
1480 }
1481
1482 return ret;
1483 }
1484
1485 /*
1486 * Shamelessly stolen from the mm implementation of page reference checking,
1487 * see commit f958d7b528b1 for details.
1488 */
1489 #define req_ref_zero_or_close_to_overflow(req) \
1490 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1491
1492 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1493 {
1494 return atomic_inc_not_zero(&req->refs);
1495 }
1496
1497 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1498 {
1499 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1500 return atomic_sub_and_test(refs, &req->refs);
1501 }
1502
1503 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1504 {
1505 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1506 return atomic_dec_and_test(&req->refs);
1507 }
1508
1509 static inline void req_ref_put(struct io_kiocb *req)
1510 {
1511 WARN_ON_ONCE(req_ref_put_and_test(req));
1512 }
1513
1514 static inline void req_ref_get(struct io_kiocb *req)
1515 {
1516 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1517 atomic_inc(&req->refs);
1518 }
1519
1520 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1521 long res, unsigned int cflags)
1522 {
1523 struct io_overflow_cqe *ocqe;
1524
1525 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1526 if (!ocqe) {
1527 /*
1528 * If we're in ring overflow flush mode, or in task cancel mode,
1529 * or cannot allocate an overflow entry, then we need to drop it
1530 * on the floor.
1531 */
1532 WRITE_ONCE(ctx->rings->cq_overflow, ++ctx->cached_cq_overflow);
1533 return false;
1534 }
1535 if (list_empty(&ctx->cq_overflow_list)) {
1536 set_bit(0, &ctx->sq_check_overflow);
1537 set_bit(0, &ctx->cq_check_overflow);
1538 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1539 }
1540 ocqe->cqe.user_data = user_data;
1541 ocqe->cqe.res = res;
1542 ocqe->cqe.flags = cflags;
1543 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1544 return true;
1545 }
1546
1547 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1548 long res, unsigned int cflags)
1549 {
1550 struct io_uring_cqe *cqe;
1551
1552 trace_io_uring_complete(ctx, user_data, res, cflags);
1553
1554 /*
1555 * If we can't get a cq entry, userspace overflowed the
1556 * submission (by quite a lot). Increment the overflow count in
1557 * the ring.
1558 */
1559 cqe = io_get_cqring(ctx);
1560 if (likely(cqe)) {
1561 WRITE_ONCE(cqe->user_data, user_data);
1562 WRITE_ONCE(cqe->res, res);
1563 WRITE_ONCE(cqe->flags, cflags);
1564 return true;
1565 }
1566 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1567 }
1568
1569 /* not as hot to bloat with inlining */
1570 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1571 long res, unsigned int cflags)
1572 {
1573 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1574 }
1575
1576 static void io_req_complete_post(struct io_kiocb *req, long res,
1577 unsigned int cflags)
1578 {
1579 struct io_ring_ctx *ctx = req->ctx;
1580 unsigned long flags;
1581
1582 spin_lock_irqsave(&ctx->completion_lock, flags);
1583 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1584 /*
1585 * If we're the last reference to this request, add to our locked
1586 * free_list cache.
1587 */
1588 if (req_ref_put_and_test(req)) {
1589 struct io_comp_state *cs = &ctx->submit_state.comp;
1590
1591 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1592 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK))
1593 io_disarm_next(req);
1594 if (req->link) {
1595 io_req_task_queue(req->link);
1596 req->link = NULL;
1597 }
1598 }
1599 io_dismantle_req(req);
1600 io_put_task(req->task, 1);
1601 list_add(&req->compl.list, &cs->locked_free_list);
1602 cs->locked_free_nr++;
1603 } else {
1604 if (!percpu_ref_tryget(&ctx->refs))
1605 req = NULL;
1606 }
1607 io_commit_cqring(ctx);
1608 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1609
1610 if (req) {
1611 io_cqring_ev_posted(ctx);
1612 percpu_ref_put(&ctx->refs);
1613 }
1614 }
1615
1616 static inline bool io_req_needs_clean(struct io_kiocb *req)
1617 {
1618 return req->flags & (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP |
1619 REQ_F_POLLED | REQ_F_INFLIGHT);
1620 }
1621
1622 static void io_req_complete_state(struct io_kiocb *req, long res,
1623 unsigned int cflags)
1624 {
1625 if (io_req_needs_clean(req))
1626 io_clean_op(req);
1627 req->result = res;
1628 req->compl.cflags = cflags;
1629 req->flags |= REQ_F_COMPLETE_INLINE;
1630 }
1631
1632 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1633 long res, unsigned cflags)
1634 {
1635 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1636 io_req_complete_state(req, res, cflags);
1637 else
1638 io_req_complete_post(req, res, cflags);
1639 }
1640
1641 static inline void io_req_complete(struct io_kiocb *req, long res)
1642 {
1643 __io_req_complete(req, 0, res, 0);
1644 }
1645
1646 static void io_req_complete_failed(struct io_kiocb *req, long res)
1647 {
1648 req_set_fail_links(req);
1649 io_put_req(req);
1650 io_req_complete_post(req, res, 0);
1651 }
1652
1653 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1654 struct io_comp_state *cs)
1655 {
1656 spin_lock_irq(&ctx->completion_lock);
1657 list_splice_init(&cs->locked_free_list, &cs->free_list);
1658 cs->locked_free_nr = 0;
1659 spin_unlock_irq(&ctx->completion_lock);
1660 }
1661
1662 /* Returns true IFF there are requests in the cache */
1663 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1664 {
1665 struct io_submit_state *state = &ctx->submit_state;
1666 struct io_comp_state *cs = &state->comp;
1667 int nr;
1668
1669 /*
1670 * If we have more than a batch's worth of requests in our IRQ side
1671 * locked cache, grab the lock and move them over to our submission
1672 * side cache.
1673 */
1674 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH)
1675 io_flush_cached_locked_reqs(ctx, cs);
1676
1677 nr = state->free_reqs;
1678 while (!list_empty(&cs->free_list)) {
1679 struct io_kiocb *req = list_first_entry(&cs->free_list,
1680 struct io_kiocb, compl.list);
1681
1682 list_del(&req->compl.list);
1683 state->reqs[nr++] = req;
1684 if (nr == ARRAY_SIZE(state->reqs))
1685 break;
1686 }
1687
1688 state->free_reqs = nr;
1689 return nr != 0;
1690 }
1691
1692 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1693 {
1694 struct io_submit_state *state = &ctx->submit_state;
1695
1696 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
1697
1698 if (!state->free_reqs) {
1699 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1700 int ret;
1701
1702 if (io_flush_cached_reqs(ctx))
1703 goto got_req;
1704
1705 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1706 state->reqs);
1707
1708 /*
1709 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1710 * retry single alloc to be on the safe side.
1711 */
1712 if (unlikely(ret <= 0)) {
1713 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1714 if (!state->reqs[0])
1715 return NULL;
1716 ret = 1;
1717 }
1718 state->free_reqs = ret;
1719 }
1720 got_req:
1721 state->free_reqs--;
1722 return state->reqs[state->free_reqs];
1723 }
1724
1725 static inline void io_put_file(struct file *file)
1726 {
1727 if (file)
1728 fput(file);
1729 }
1730
1731 static void io_dismantle_req(struct io_kiocb *req)
1732 {
1733 unsigned int flags = req->flags;
1734
1735 if (io_req_needs_clean(req))
1736 io_clean_op(req);
1737 if (!(flags & REQ_F_FIXED_FILE))
1738 io_put_file(req->file);
1739 if (req->fixed_rsrc_refs)
1740 percpu_ref_put(req->fixed_rsrc_refs);
1741 if (req->async_data)
1742 kfree(req->async_data);
1743 if (req->work.creds) {
1744 put_cred(req->work.creds);
1745 req->work.creds = NULL;
1746 }
1747 }
1748
1749 /* must to be called somewhat shortly after putting a request */
1750 static inline void io_put_task(struct task_struct *task, int nr)
1751 {
1752 struct io_uring_task *tctx = task->io_uring;
1753
1754 percpu_counter_sub(&tctx->inflight, nr);
1755 if (unlikely(atomic_read(&tctx->in_idle)))
1756 wake_up(&tctx->wait);
1757 put_task_struct_many(task, nr);
1758 }
1759
1760 static void __io_free_req(struct io_kiocb *req)
1761 {
1762 struct io_ring_ctx *ctx = req->ctx;
1763
1764 io_dismantle_req(req);
1765 io_put_task(req->task, 1);
1766
1767 kmem_cache_free(req_cachep, req);
1768 percpu_ref_put(&ctx->refs);
1769 }
1770
1771 static inline void io_remove_next_linked(struct io_kiocb *req)
1772 {
1773 struct io_kiocb *nxt = req->link;
1774
1775 req->link = nxt->link;
1776 nxt->link = NULL;
1777 }
1778
1779 static bool io_kill_linked_timeout(struct io_kiocb *req)
1780 __must_hold(&req->ctx->completion_lock)
1781 {
1782 struct io_kiocb *link = req->link;
1783
1784 /*
1785 * Can happen if a linked timeout fired and link had been like
1786 * req -> link t-out -> link t-out [-> ...]
1787 */
1788 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1789 struct io_timeout_data *io = link->async_data;
1790
1791 io_remove_next_linked(req);
1792 link->timeout.head = NULL;
1793 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1794 io_cqring_fill_event(link->ctx, link->user_data,
1795 -ECANCELED, 0);
1796 io_put_req_deferred(link, 1);
1797 return true;
1798 }
1799 }
1800 return false;
1801 }
1802
1803 static void io_fail_links(struct io_kiocb *req)
1804 __must_hold(&req->ctx->completion_lock)
1805 {
1806 struct io_kiocb *nxt, *link = req->link;
1807
1808 req->link = NULL;
1809 while (link) {
1810 nxt = link->link;
1811 link->link = NULL;
1812
1813 trace_io_uring_fail_link(req, link);
1814 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1815 io_put_req_deferred(link, 2);
1816 link = nxt;
1817 }
1818 }
1819
1820 static bool io_disarm_next(struct io_kiocb *req)
1821 __must_hold(&req->ctx->completion_lock)
1822 {
1823 bool posted = false;
1824
1825 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1826 posted = io_kill_linked_timeout(req);
1827 if (unlikely((req->flags & REQ_F_FAIL_LINK) &&
1828 !(req->flags & REQ_F_HARDLINK))) {
1829 posted |= (req->link != NULL);
1830 io_fail_links(req);
1831 }
1832 return posted;
1833 }
1834
1835 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1836 {
1837 struct io_kiocb *nxt;
1838
1839 /*
1840 * If LINK is set, we have dependent requests in this chain. If we
1841 * didn't fail this request, queue the first one up, moving any other
1842 * dependencies to the next request. In case of failure, fail the rest
1843 * of the chain.
1844 */
1845 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL_LINK)) {
1846 struct io_ring_ctx *ctx = req->ctx;
1847 unsigned long flags;
1848 bool posted;
1849
1850 spin_lock_irqsave(&ctx->completion_lock, flags);
1851 posted = io_disarm_next(req);
1852 if (posted)
1853 io_commit_cqring(req->ctx);
1854 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1855 if (posted)
1856 io_cqring_ev_posted(ctx);
1857 }
1858 nxt = req->link;
1859 req->link = NULL;
1860 return nxt;
1861 }
1862
1863 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1864 {
1865 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1866 return NULL;
1867 return __io_req_find_next(req);
1868 }
1869
1870 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1871 {
1872 if (!ctx)
1873 return;
1874 if (ctx->submit_state.comp.nr) {
1875 mutex_lock(&ctx->uring_lock);
1876 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
1877 mutex_unlock(&ctx->uring_lock);
1878 }
1879 percpu_ref_put(&ctx->refs);
1880 }
1881
1882 static bool __tctx_task_work(struct io_uring_task *tctx)
1883 {
1884 struct io_ring_ctx *ctx = NULL;
1885 struct io_wq_work_list list;
1886 struct io_wq_work_node *node;
1887
1888 if (wq_list_empty(&tctx->task_list))
1889 return false;
1890
1891 spin_lock_irq(&tctx->task_lock);
1892 list = tctx->task_list;
1893 INIT_WQ_LIST(&tctx->task_list);
1894 spin_unlock_irq(&tctx->task_lock);
1895
1896 node = list.first;
1897 while (node) {
1898 struct io_wq_work_node *next = node->next;
1899 struct io_kiocb *req;
1900
1901 req = container_of(node, struct io_kiocb, io_task_work.node);
1902 if (req->ctx != ctx) {
1903 ctx_flush_and_put(ctx);
1904 ctx = req->ctx;
1905 percpu_ref_get(&ctx->refs);
1906 }
1907
1908 req->task_work.func(&req->task_work);
1909 node = next;
1910 }
1911
1912 ctx_flush_and_put(ctx);
1913 return list.first != NULL;
1914 }
1915
1916 static void tctx_task_work(struct callback_head *cb)
1917 {
1918 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
1919
1920 clear_bit(0, &tctx->task_state);
1921
1922 while (__tctx_task_work(tctx))
1923 cond_resched();
1924 }
1925
1926 static int io_req_task_work_add(struct io_kiocb *req)
1927 {
1928 struct task_struct *tsk = req->task;
1929 struct io_uring_task *tctx = tsk->io_uring;
1930 enum task_work_notify_mode notify;
1931 struct io_wq_work_node *node, *prev;
1932 unsigned long flags;
1933 int ret = 0;
1934
1935 if (unlikely(tsk->flags & PF_EXITING))
1936 return -ESRCH;
1937
1938 WARN_ON_ONCE(!tctx);
1939
1940 spin_lock_irqsave(&tctx->task_lock, flags);
1941 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1942 spin_unlock_irqrestore(&tctx->task_lock, flags);
1943
1944 /* task_work already pending, we're done */
1945 if (test_bit(0, &tctx->task_state) ||
1946 test_and_set_bit(0, &tctx->task_state))
1947 return 0;
1948
1949 /*
1950 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1951 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1952 * processing task_work. There's no reliable way to tell if TWA_RESUME
1953 * will do the job.
1954 */
1955 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1956
1957 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1958 wake_up_process(tsk);
1959 return 0;
1960 }
1961
1962 /*
1963 * Slow path - we failed, find and delete work. if the work is not
1964 * in the list, it got run and we're fine.
1965 */
1966 spin_lock_irqsave(&tctx->task_lock, flags);
1967 wq_list_for_each(node, prev, &tctx->task_list) {
1968 if (&req->io_task_work.node == node) {
1969 wq_list_del(&tctx->task_list, node, prev);
1970 ret = 1;
1971 break;
1972 }
1973 }
1974 spin_unlock_irqrestore(&tctx->task_lock, flags);
1975 clear_bit(0, &tctx->task_state);
1976 return ret;
1977 }
1978
1979 static bool io_run_task_work_head(struct callback_head **work_head)
1980 {
1981 struct callback_head *work, *next;
1982 bool executed = false;
1983
1984 do {
1985 work = xchg(work_head, NULL);
1986 if (!work)
1987 break;
1988
1989 do {
1990 next = work->next;
1991 work->func(work);
1992 work = next;
1993 cond_resched();
1994 } while (work);
1995 executed = true;
1996 } while (1);
1997
1998 return executed;
1999 }
2000
2001 static void io_task_work_add_head(struct callback_head **work_head,
2002 struct callback_head *task_work)
2003 {
2004 struct callback_head *head;
2005
2006 do {
2007 head = READ_ONCE(*work_head);
2008 task_work->next = head;
2009 } while (cmpxchg(work_head, head, task_work) != head);
2010 }
2011
2012 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2013 task_work_func_t cb)
2014 {
2015 init_task_work(&req->task_work, cb);
2016 io_task_work_add_head(&req->ctx->exit_task_work, &req->task_work);
2017 }
2018
2019 static void io_req_task_cancel(struct callback_head *cb)
2020 {
2021 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2022 struct io_ring_ctx *ctx = req->ctx;
2023
2024 /* ctx is guaranteed to stay alive while we hold uring_lock */
2025 mutex_lock(&ctx->uring_lock);
2026 io_req_complete_failed(req, req->result);
2027 mutex_unlock(&ctx->uring_lock);
2028 }
2029
2030 static void __io_req_task_submit(struct io_kiocb *req)
2031 {
2032 struct io_ring_ctx *ctx = req->ctx;
2033
2034 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2035 mutex_lock(&ctx->uring_lock);
2036 if (!(current->flags & PF_EXITING) && !current->in_execve)
2037 __io_queue_sqe(req);
2038 else
2039 io_req_complete_failed(req, -EFAULT);
2040 mutex_unlock(&ctx->uring_lock);
2041 }
2042
2043 static void io_req_task_submit(struct callback_head *cb)
2044 {
2045 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2046
2047 __io_req_task_submit(req);
2048 }
2049
2050 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2051 {
2052 req->result = ret;
2053 req->task_work.func = io_req_task_cancel;
2054
2055 if (unlikely(io_req_task_work_add(req)))
2056 io_req_task_work_add_fallback(req, io_req_task_cancel);
2057 }
2058
2059 static void io_req_task_queue(struct io_kiocb *req)
2060 {
2061 req->task_work.func = io_req_task_submit;
2062
2063 if (unlikely(io_req_task_work_add(req)))
2064 io_req_task_queue_fail(req, -ECANCELED);
2065 }
2066
2067 static inline void io_queue_next(struct io_kiocb *req)
2068 {
2069 struct io_kiocb *nxt = io_req_find_next(req);
2070
2071 if (nxt)
2072 io_req_task_queue(nxt);
2073 }
2074
2075 static void io_free_req(struct io_kiocb *req)
2076 {
2077 io_queue_next(req);
2078 __io_free_req(req);
2079 }
2080
2081 struct req_batch {
2082 struct task_struct *task;
2083 int task_refs;
2084 int ctx_refs;
2085 };
2086
2087 static inline void io_init_req_batch(struct req_batch *rb)
2088 {
2089 rb->task_refs = 0;
2090 rb->ctx_refs = 0;
2091 rb->task = NULL;
2092 }
2093
2094 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2095 struct req_batch *rb)
2096 {
2097 if (rb->task)
2098 io_put_task(rb->task, rb->task_refs);
2099 if (rb->ctx_refs)
2100 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2101 }
2102
2103 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2104 struct io_submit_state *state)
2105 {
2106 io_queue_next(req);
2107 io_dismantle_req(req);
2108
2109 if (req->task != rb->task) {
2110 if (rb->task)
2111 io_put_task(rb->task, rb->task_refs);
2112 rb->task = req->task;
2113 rb->task_refs = 0;
2114 }
2115 rb->task_refs++;
2116 rb->ctx_refs++;
2117
2118 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2119 state->reqs[state->free_reqs++] = req;
2120 else
2121 list_add(&req->compl.list, &state->comp.free_list);
2122 }
2123
2124 static void io_submit_flush_completions(struct io_comp_state *cs,
2125 struct io_ring_ctx *ctx)
2126 {
2127 int i, nr = cs->nr;
2128 struct io_kiocb *req;
2129 struct req_batch rb;
2130
2131 io_init_req_batch(&rb);
2132 spin_lock_irq(&ctx->completion_lock);
2133 for (i = 0; i < nr; i++) {
2134 req = cs->reqs[i];
2135 __io_cqring_fill_event(ctx, req->user_data, req->result,
2136 req->compl.cflags);
2137 }
2138 io_commit_cqring(ctx);
2139 spin_unlock_irq(&ctx->completion_lock);
2140
2141 io_cqring_ev_posted(ctx);
2142 for (i = 0; i < nr; i++) {
2143 req = cs->reqs[i];
2144
2145 /* submission and completion refs */
2146 if (req_ref_sub_and_test(req, 2))
2147 io_req_free_batch(&rb, req, &ctx->submit_state);
2148 }
2149
2150 io_req_free_batch_finish(ctx, &rb);
2151 cs->nr = 0;
2152 }
2153
2154 /*
2155 * Drop reference to request, return next in chain (if there is one) if this
2156 * was the last reference to this request.
2157 */
2158 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2159 {
2160 struct io_kiocb *nxt = NULL;
2161
2162 if (req_ref_put_and_test(req)) {
2163 nxt = io_req_find_next(req);
2164 __io_free_req(req);
2165 }
2166 return nxt;
2167 }
2168
2169 static inline void io_put_req(struct io_kiocb *req)
2170 {
2171 if (req_ref_put_and_test(req))
2172 io_free_req(req);
2173 }
2174
2175 static void io_put_req_deferred_cb(struct callback_head *cb)
2176 {
2177 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2178
2179 io_free_req(req);
2180 }
2181
2182 static void io_free_req_deferred(struct io_kiocb *req)
2183 {
2184 req->task_work.func = io_put_req_deferred_cb;
2185 if (unlikely(io_req_task_work_add(req)))
2186 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2187 }
2188
2189 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2190 {
2191 if (req_ref_sub_and_test(req, refs))
2192 io_free_req_deferred(req);
2193 }
2194
2195 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2196 {
2197 /* See comment at the top of this file */
2198 smp_rmb();
2199 return __io_cqring_events(ctx);
2200 }
2201
2202 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2203 {
2204 struct io_rings *rings = ctx->rings;
2205
2206 /* make sure SQ entry isn't read before tail */
2207 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2208 }
2209
2210 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2211 {
2212 unsigned int cflags;
2213
2214 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2215 cflags |= IORING_CQE_F_BUFFER;
2216 req->flags &= ~REQ_F_BUFFER_SELECTED;
2217 kfree(kbuf);
2218 return cflags;
2219 }
2220
2221 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2222 {
2223 struct io_buffer *kbuf;
2224
2225 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2226 return io_put_kbuf(req, kbuf);
2227 }
2228
2229 static inline bool io_run_task_work(void)
2230 {
2231 /*
2232 * Not safe to run on exiting task, and the task_work handling will
2233 * not add work to such a task.
2234 */
2235 if (unlikely(current->flags & PF_EXITING))
2236 return false;
2237 if (current->task_works) {
2238 __set_current_state(TASK_RUNNING);
2239 task_work_run();
2240 return true;
2241 }
2242
2243 return false;
2244 }
2245
2246 /*
2247 * Find and free completed poll iocbs
2248 */
2249 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2250 struct list_head *done)
2251 {
2252 struct req_batch rb;
2253 struct io_kiocb *req;
2254
2255 /* order with ->result store in io_complete_rw_iopoll() */
2256 smp_rmb();
2257
2258 io_init_req_batch(&rb);
2259 while (!list_empty(done)) {
2260 int cflags = 0;
2261
2262 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2263 list_del(&req->inflight_entry);
2264
2265 if (READ_ONCE(req->result) == -EAGAIN &&
2266 !(req->flags & REQ_F_DONT_REISSUE)) {
2267 req->iopoll_completed = 0;
2268 req_ref_get(req);
2269 io_queue_async_work(req);
2270 continue;
2271 }
2272
2273 if (req->flags & REQ_F_BUFFER_SELECTED)
2274 cflags = io_put_rw_kbuf(req);
2275
2276 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2277 (*nr_events)++;
2278
2279 if (req_ref_put_and_test(req))
2280 io_req_free_batch(&rb, req, &ctx->submit_state);
2281 }
2282
2283 io_commit_cqring(ctx);
2284 io_cqring_ev_posted_iopoll(ctx);
2285 io_req_free_batch_finish(ctx, &rb);
2286 }
2287
2288 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2289 long min)
2290 {
2291 struct io_kiocb *req, *tmp;
2292 LIST_HEAD(done);
2293 bool spin;
2294 int ret;
2295
2296 /*
2297 * Only spin for completions if we don't have multiple devices hanging
2298 * off our complete list, and we're under the requested amount.
2299 */
2300 spin = !ctx->poll_multi_file && *nr_events < min;
2301
2302 ret = 0;
2303 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2304 struct kiocb *kiocb = &req->rw.kiocb;
2305
2306 /*
2307 * Move completed and retryable entries to our local lists.
2308 * If we find a request that requires polling, break out
2309 * and complete those lists first, if we have entries there.
2310 */
2311 if (READ_ONCE(req->iopoll_completed)) {
2312 list_move_tail(&req->inflight_entry, &done);
2313 continue;
2314 }
2315 if (!list_empty(&done))
2316 break;
2317
2318 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2319 if (ret < 0)
2320 break;
2321
2322 /* iopoll may have completed current req */
2323 if (READ_ONCE(req->iopoll_completed))
2324 list_move_tail(&req->inflight_entry, &done);
2325
2326 if (ret && spin)
2327 spin = false;
2328 ret = 0;
2329 }
2330
2331 if (!list_empty(&done))
2332 io_iopoll_complete(ctx, nr_events, &done);
2333
2334 return ret;
2335 }
2336
2337 /*
2338 * We can't just wait for polled events to come to us, we have to actively
2339 * find and complete them.
2340 */
2341 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2342 {
2343 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2344 return;
2345
2346 mutex_lock(&ctx->uring_lock);
2347 while (!list_empty(&ctx->iopoll_list)) {
2348 unsigned int nr_events = 0;
2349
2350 io_do_iopoll(ctx, &nr_events, 0);
2351
2352 /* let it sleep and repeat later if can't complete a request */
2353 if (nr_events == 0)
2354 break;
2355 /*
2356 * Ensure we allow local-to-the-cpu processing to take place,
2357 * in this case we need to ensure that we reap all events.
2358 * Also let task_work, etc. to progress by releasing the mutex
2359 */
2360 if (need_resched()) {
2361 mutex_unlock(&ctx->uring_lock);
2362 cond_resched();
2363 mutex_lock(&ctx->uring_lock);
2364 }
2365 }
2366 mutex_unlock(&ctx->uring_lock);
2367 }
2368
2369 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2370 {
2371 unsigned int nr_events = 0;
2372 int ret = 0;
2373
2374 /*
2375 * We disallow the app entering submit/complete with polling, but we
2376 * still need to lock the ring to prevent racing with polled issue
2377 * that got punted to a workqueue.
2378 */
2379 mutex_lock(&ctx->uring_lock);
2380 /*
2381 * Don't enter poll loop if we already have events pending.
2382 * If we do, we can potentially be spinning for commands that
2383 * already triggered a CQE (eg in error).
2384 */
2385 if (test_bit(0, &ctx->cq_check_overflow))
2386 __io_cqring_overflow_flush(ctx, false);
2387 if (io_cqring_events(ctx))
2388 goto out;
2389 do {
2390 /*
2391 * If a submit got punted to a workqueue, we can have the
2392 * application entering polling for a command before it gets
2393 * issued. That app will hold the uring_lock for the duration
2394 * of the poll right here, so we need to take a breather every
2395 * now and then to ensure that the issue has a chance to add
2396 * the poll to the issued list. Otherwise we can spin here
2397 * forever, while the workqueue is stuck trying to acquire the
2398 * very same mutex.
2399 */
2400 if (list_empty(&ctx->iopoll_list)) {
2401 mutex_unlock(&ctx->uring_lock);
2402 io_run_task_work();
2403 mutex_lock(&ctx->uring_lock);
2404
2405 if (list_empty(&ctx->iopoll_list))
2406 break;
2407 }
2408 ret = io_do_iopoll(ctx, &nr_events, min);
2409 } while (!ret && nr_events < min && !need_resched());
2410 out:
2411 mutex_unlock(&ctx->uring_lock);
2412 return ret;
2413 }
2414
2415 static void kiocb_end_write(struct io_kiocb *req)
2416 {
2417 /*
2418 * Tell lockdep we inherited freeze protection from submission
2419 * thread.
2420 */
2421 if (req->flags & REQ_F_ISREG) {
2422 struct super_block *sb = file_inode(req->file)->i_sb;
2423
2424 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2425 sb_end_write(sb);
2426 }
2427 }
2428
2429 #ifdef CONFIG_BLOCK
2430 static bool io_resubmit_prep(struct io_kiocb *req)
2431 {
2432 struct io_async_rw *rw = req->async_data;
2433
2434 if (!rw)
2435 return !io_req_prep_async(req);
2436 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2437 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2438 return true;
2439 }
2440
2441 static bool io_rw_should_reissue(struct io_kiocb *req)
2442 {
2443 umode_t mode = file_inode(req->file)->i_mode;
2444 struct io_ring_ctx *ctx = req->ctx;
2445
2446 if (!S_ISBLK(mode) && !S_ISREG(mode))
2447 return false;
2448 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2449 !(ctx->flags & IORING_SETUP_IOPOLL)))
2450 return false;
2451 /*
2452 * If ref is dying, we might be running poll reap from the exit work.
2453 * Don't attempt to reissue from that path, just let it fail with
2454 * -EAGAIN.
2455 */
2456 if (percpu_ref_is_dying(&ctx->refs))
2457 return false;
2458 return true;
2459 }
2460 #else
2461 static bool io_resubmit_prep(struct io_kiocb *req)
2462 {
2463 return false;
2464 }
2465 static bool io_rw_should_reissue(struct io_kiocb *req)
2466 {
2467 return false;
2468 }
2469 #endif
2470
2471 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2472 unsigned int issue_flags)
2473 {
2474 int cflags = 0;
2475
2476 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2477 kiocb_end_write(req);
2478 if (res != req->result) {
2479 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2480 io_rw_should_reissue(req)) {
2481 req->flags |= REQ_F_REISSUE;
2482 return;
2483 }
2484 req_set_fail_links(req);
2485 }
2486 if (req->flags & REQ_F_BUFFER_SELECTED)
2487 cflags = io_put_rw_kbuf(req);
2488 __io_req_complete(req, issue_flags, res, cflags);
2489 }
2490
2491 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2492 {
2493 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2494
2495 __io_complete_rw(req, res, res2, 0);
2496 }
2497
2498 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2499 {
2500 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2501
2502 if (kiocb->ki_flags & IOCB_WRITE)
2503 kiocb_end_write(req);
2504 if (unlikely(res != req->result)) {
2505 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2506 io_resubmit_prep(req))) {
2507 req_set_fail_links(req);
2508 req->flags |= REQ_F_DONT_REISSUE;
2509 }
2510 }
2511
2512 WRITE_ONCE(req->result, res);
2513 /* order with io_iopoll_complete() checking ->result */
2514 smp_wmb();
2515 WRITE_ONCE(req->iopoll_completed, 1);
2516 }
2517
2518 /*
2519 * After the iocb has been issued, it's safe to be found on the poll list.
2520 * Adding the kiocb to the list AFTER submission ensures that we don't
2521 * find it from a io_do_iopoll() thread before the issuer is done
2522 * accessing the kiocb cookie.
2523 */
2524 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2525 {
2526 struct io_ring_ctx *ctx = req->ctx;
2527
2528 /*
2529 * Track whether we have multiple files in our lists. This will impact
2530 * how we do polling eventually, not spinning if we're on potentially
2531 * different devices.
2532 */
2533 if (list_empty(&ctx->iopoll_list)) {
2534 ctx->poll_multi_file = false;
2535 } else if (!ctx->poll_multi_file) {
2536 struct io_kiocb *list_req;
2537
2538 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2539 inflight_entry);
2540 if (list_req->file != req->file)
2541 ctx->poll_multi_file = true;
2542 }
2543
2544 /*
2545 * For fast devices, IO may have already completed. If it has, add
2546 * it to the front so we find it first.
2547 */
2548 if (READ_ONCE(req->iopoll_completed))
2549 list_add(&req->inflight_entry, &ctx->iopoll_list);
2550 else
2551 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2552
2553 /*
2554 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2555 * task context or in io worker task context. If current task context is
2556 * sq thread, we don't need to check whether should wake up sq thread.
2557 */
2558 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2559 wq_has_sleeper(&ctx->sq_data->wait))
2560 wake_up(&ctx->sq_data->wait);
2561 }
2562
2563 static inline void io_state_file_put(struct io_submit_state *state)
2564 {
2565 if (state->file_refs) {
2566 fput_many(state->file, state->file_refs);
2567 state->file_refs = 0;
2568 }
2569 }
2570
2571 /*
2572 * Get as many references to a file as we have IOs left in this submission,
2573 * assuming most submissions are for one file, or at least that each file
2574 * has more than one submission.
2575 */
2576 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2577 {
2578 if (!state)
2579 return fget(fd);
2580
2581 if (state->file_refs) {
2582 if (state->fd == fd) {
2583 state->file_refs--;
2584 return state->file;
2585 }
2586 io_state_file_put(state);
2587 }
2588 state->file = fget_many(fd, state->ios_left);
2589 if (unlikely(!state->file))
2590 return NULL;
2591
2592 state->fd = fd;
2593 state->file_refs = state->ios_left - 1;
2594 return state->file;
2595 }
2596
2597 static bool io_bdev_nowait(struct block_device *bdev)
2598 {
2599 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2600 }
2601
2602 /*
2603 * If we tracked the file through the SCM inflight mechanism, we could support
2604 * any file. For now, just ensure that anything potentially problematic is done
2605 * inline.
2606 */
2607 static bool __io_file_supports_async(struct file *file, int rw)
2608 {
2609 umode_t mode = file_inode(file)->i_mode;
2610
2611 if (S_ISBLK(mode)) {
2612 if (IS_ENABLED(CONFIG_BLOCK) &&
2613 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2614 return true;
2615 return false;
2616 }
2617 if (S_ISCHR(mode) || S_ISSOCK(mode))
2618 return true;
2619 if (S_ISREG(mode)) {
2620 if (IS_ENABLED(CONFIG_BLOCK) &&
2621 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2622 file->f_op != &io_uring_fops)
2623 return true;
2624 return false;
2625 }
2626
2627 /* any ->read/write should understand O_NONBLOCK */
2628 if (file->f_flags & O_NONBLOCK)
2629 return true;
2630
2631 if (!(file->f_mode & FMODE_NOWAIT))
2632 return false;
2633
2634 if (rw == READ)
2635 return file->f_op->read_iter != NULL;
2636
2637 return file->f_op->write_iter != NULL;
2638 }
2639
2640 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2641 {
2642 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2643 return true;
2644 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2645 return true;
2646
2647 return __io_file_supports_async(req->file, rw);
2648 }
2649
2650 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2651 {
2652 struct io_ring_ctx *ctx = req->ctx;
2653 struct kiocb *kiocb = &req->rw.kiocb;
2654 struct file *file = req->file;
2655 unsigned ioprio;
2656 int ret;
2657
2658 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2659 req->flags |= REQ_F_ISREG;
2660
2661 kiocb->ki_pos = READ_ONCE(sqe->off);
2662 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2663 req->flags |= REQ_F_CUR_POS;
2664 kiocb->ki_pos = file->f_pos;
2665 }
2666 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2667 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2668 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2669 if (unlikely(ret))
2670 return ret;
2671
2672 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2673 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2674 req->flags |= REQ_F_NOWAIT;
2675
2676 ioprio = READ_ONCE(sqe->ioprio);
2677 if (ioprio) {
2678 ret = ioprio_check_cap(ioprio);
2679 if (ret)
2680 return ret;
2681
2682 kiocb->ki_ioprio = ioprio;
2683 } else
2684 kiocb->ki_ioprio = get_current_ioprio();
2685
2686 if (ctx->flags & IORING_SETUP_IOPOLL) {
2687 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2688 !kiocb->ki_filp->f_op->iopoll)
2689 return -EOPNOTSUPP;
2690
2691 kiocb->ki_flags |= IOCB_HIPRI;
2692 kiocb->ki_complete = io_complete_rw_iopoll;
2693 req->iopoll_completed = 0;
2694 } else {
2695 if (kiocb->ki_flags & IOCB_HIPRI)
2696 return -EINVAL;
2697 kiocb->ki_complete = io_complete_rw;
2698 }
2699
2700 if (req->opcode == IORING_OP_READ_FIXED ||
2701 req->opcode == IORING_OP_WRITE_FIXED) {
2702 req->imu = NULL;
2703 io_req_set_rsrc_node(req);
2704 }
2705
2706 req->rw.addr = READ_ONCE(sqe->addr);
2707 req->rw.len = READ_ONCE(sqe->len);
2708 req->buf_index = READ_ONCE(sqe->buf_index);
2709 return 0;
2710 }
2711
2712 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2713 {
2714 switch (ret) {
2715 case -EIOCBQUEUED:
2716 break;
2717 case -ERESTARTSYS:
2718 case -ERESTARTNOINTR:
2719 case -ERESTARTNOHAND:
2720 case -ERESTART_RESTARTBLOCK:
2721 /*
2722 * We can't just restart the syscall, since previously
2723 * submitted sqes may already be in progress. Just fail this
2724 * IO with EINTR.
2725 */
2726 ret = -EINTR;
2727 fallthrough;
2728 default:
2729 kiocb->ki_complete(kiocb, ret, 0);
2730 }
2731 }
2732
2733 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2734 unsigned int issue_flags)
2735 {
2736 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2737 struct io_async_rw *io = req->async_data;
2738 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2739
2740 /* add previously done IO, if any */
2741 if (io && io->bytes_done > 0) {
2742 if (ret < 0)
2743 ret = io->bytes_done;
2744 else
2745 ret += io->bytes_done;
2746 }
2747
2748 if (req->flags & REQ_F_CUR_POS)
2749 req->file->f_pos = kiocb->ki_pos;
2750 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2751 __io_complete_rw(req, ret, 0, issue_flags);
2752 else
2753 io_rw_done(kiocb, ret);
2754
2755 if (check_reissue && req->flags & REQ_F_REISSUE) {
2756 req->flags &= ~REQ_F_REISSUE;
2757 if (io_resubmit_prep(req)) {
2758 req_ref_get(req);
2759 io_queue_async_work(req);
2760 } else {
2761 int cflags = 0;
2762
2763 req_set_fail_links(req);
2764 if (req->flags & REQ_F_BUFFER_SELECTED)
2765 cflags = io_put_rw_kbuf(req);
2766 __io_req_complete(req, issue_flags, ret, cflags);
2767 }
2768 }
2769 }
2770
2771 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2772 struct io_mapped_ubuf *imu)
2773 {
2774 size_t len = req->rw.len;
2775 u64 buf_end, buf_addr = req->rw.addr;
2776 size_t offset;
2777
2778 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2779 return -EFAULT;
2780 /* not inside the mapped region */
2781 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2782 return -EFAULT;
2783
2784 /*
2785 * May not be a start of buffer, set size appropriately
2786 * and advance us to the beginning.
2787 */
2788 offset = buf_addr - imu->ubuf;
2789 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2790
2791 if (offset) {
2792 /*
2793 * Don't use iov_iter_advance() here, as it's really slow for
2794 * using the latter parts of a big fixed buffer - it iterates
2795 * over each segment manually. We can cheat a bit here, because
2796 * we know that:
2797 *
2798 * 1) it's a BVEC iter, we set it up
2799 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2800 * first and last bvec
2801 *
2802 * So just find our index, and adjust the iterator afterwards.
2803 * If the offset is within the first bvec (or the whole first
2804 * bvec, just use iov_iter_advance(). This makes it easier
2805 * since we can just skip the first segment, which may not
2806 * be PAGE_SIZE aligned.
2807 */
2808 const struct bio_vec *bvec = imu->bvec;
2809
2810 if (offset <= bvec->bv_len) {
2811 iov_iter_advance(iter, offset);
2812 } else {
2813 unsigned long seg_skip;
2814
2815 /* skip first vec */
2816 offset -= bvec->bv_len;
2817 seg_skip = 1 + (offset >> PAGE_SHIFT);
2818
2819 iter->bvec = bvec + seg_skip;
2820 iter->nr_segs -= seg_skip;
2821 iter->count -= bvec->bv_len + offset;
2822 iter->iov_offset = offset & ~PAGE_MASK;
2823 }
2824 }
2825
2826 return 0;
2827 }
2828
2829 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2830 {
2831 struct io_ring_ctx *ctx = req->ctx;
2832 struct io_mapped_ubuf *imu = req->imu;
2833 u16 index, buf_index = req->buf_index;
2834
2835 if (likely(!imu)) {
2836 if (unlikely(buf_index >= ctx->nr_user_bufs))
2837 return -EFAULT;
2838 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2839 imu = READ_ONCE(ctx->user_bufs[index]);
2840 req->imu = imu;
2841 }
2842 return __io_import_fixed(req, rw, iter, imu);
2843 }
2844
2845 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2846 {
2847 if (needs_lock)
2848 mutex_unlock(&ctx->uring_lock);
2849 }
2850
2851 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2852 {
2853 /*
2854 * "Normal" inline submissions always hold the uring_lock, since we
2855 * grab it from the system call. Same is true for the SQPOLL offload.
2856 * The only exception is when we've detached the request and issue it
2857 * from an async worker thread, grab the lock for that case.
2858 */
2859 if (needs_lock)
2860 mutex_lock(&ctx->uring_lock);
2861 }
2862
2863 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2864 int bgid, struct io_buffer *kbuf,
2865 bool needs_lock)
2866 {
2867 struct io_buffer *head;
2868
2869 if (req->flags & REQ_F_BUFFER_SELECTED)
2870 return kbuf;
2871
2872 io_ring_submit_lock(req->ctx, needs_lock);
2873
2874 lockdep_assert_held(&req->ctx->uring_lock);
2875
2876 head = xa_load(&req->ctx->io_buffers, bgid);
2877 if (head) {
2878 if (!list_empty(&head->list)) {
2879 kbuf = list_last_entry(&head->list, struct io_buffer,
2880 list);
2881 list_del(&kbuf->list);
2882 } else {
2883 kbuf = head;
2884 xa_erase(&req->ctx->io_buffers, bgid);
2885 }
2886 if (*len > kbuf->len)
2887 *len = kbuf->len;
2888 } else {
2889 kbuf = ERR_PTR(-ENOBUFS);
2890 }
2891
2892 io_ring_submit_unlock(req->ctx, needs_lock);
2893
2894 return kbuf;
2895 }
2896
2897 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2898 bool needs_lock)
2899 {
2900 struct io_buffer *kbuf;
2901 u16 bgid;
2902
2903 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2904 bgid = req->buf_index;
2905 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2906 if (IS_ERR(kbuf))
2907 return kbuf;
2908 req->rw.addr = (u64) (unsigned long) kbuf;
2909 req->flags |= REQ_F_BUFFER_SELECTED;
2910 return u64_to_user_ptr(kbuf->addr);
2911 }
2912
2913 #ifdef CONFIG_COMPAT
2914 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2915 bool needs_lock)
2916 {
2917 struct compat_iovec __user *uiov;
2918 compat_ssize_t clen;
2919 void __user *buf;
2920 ssize_t len;
2921
2922 uiov = u64_to_user_ptr(req->rw.addr);
2923 if (!access_ok(uiov, sizeof(*uiov)))
2924 return -EFAULT;
2925 if (__get_user(clen, &uiov->iov_len))
2926 return -EFAULT;
2927 if (clen < 0)
2928 return -EINVAL;
2929
2930 len = clen;
2931 buf = io_rw_buffer_select(req, &len, needs_lock);
2932 if (IS_ERR(buf))
2933 return PTR_ERR(buf);
2934 iov[0].iov_base = buf;
2935 iov[0].iov_len = (compat_size_t) len;
2936 return 0;
2937 }
2938 #endif
2939
2940 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2941 bool needs_lock)
2942 {
2943 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2944 void __user *buf;
2945 ssize_t len;
2946
2947 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2948 return -EFAULT;
2949
2950 len = iov[0].iov_len;
2951 if (len < 0)
2952 return -EINVAL;
2953 buf = io_rw_buffer_select(req, &len, needs_lock);
2954 if (IS_ERR(buf))
2955 return PTR_ERR(buf);
2956 iov[0].iov_base = buf;
2957 iov[0].iov_len = len;
2958 return 0;
2959 }
2960
2961 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2962 bool needs_lock)
2963 {
2964 if (req->flags & REQ_F_BUFFER_SELECTED) {
2965 struct io_buffer *kbuf;
2966
2967 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2968 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2969 iov[0].iov_len = kbuf->len;
2970 return 0;
2971 }
2972 if (req->rw.len != 1)
2973 return -EINVAL;
2974
2975 #ifdef CONFIG_COMPAT
2976 if (req->ctx->compat)
2977 return io_compat_import(req, iov, needs_lock);
2978 #endif
2979
2980 return __io_iov_buffer_select(req, iov, needs_lock);
2981 }
2982
2983 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2984 struct iov_iter *iter, bool needs_lock)
2985 {
2986 void __user *buf = u64_to_user_ptr(req->rw.addr);
2987 size_t sqe_len = req->rw.len;
2988 u8 opcode = req->opcode;
2989 ssize_t ret;
2990
2991 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2992 *iovec = NULL;
2993 return io_import_fixed(req, rw, iter);
2994 }
2995
2996 /* buffer index only valid with fixed read/write, or buffer select */
2997 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2998 return -EINVAL;
2999
3000 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3001 if (req->flags & REQ_F_BUFFER_SELECT) {
3002 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3003 if (IS_ERR(buf))
3004 return PTR_ERR(buf);
3005 req->rw.len = sqe_len;
3006 }
3007
3008 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3009 *iovec = NULL;
3010 return ret;
3011 }
3012
3013 if (req->flags & REQ_F_BUFFER_SELECT) {
3014 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3015 if (!ret)
3016 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3017 *iovec = NULL;
3018 return ret;
3019 }
3020
3021 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3022 req->ctx->compat);
3023 }
3024
3025 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3026 {
3027 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3028 }
3029
3030 /*
3031 * For files that don't have ->read_iter() and ->write_iter(), handle them
3032 * by looping over ->read() or ->write() manually.
3033 */
3034 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3035 {
3036 struct kiocb *kiocb = &req->rw.kiocb;
3037 struct file *file = req->file;
3038 ssize_t ret = 0;
3039
3040 /*
3041 * Don't support polled IO through this interface, and we can't
3042 * support non-blocking either. For the latter, this just causes
3043 * the kiocb to be handled from an async context.
3044 */
3045 if (kiocb->ki_flags & IOCB_HIPRI)
3046 return -EOPNOTSUPP;
3047 if (kiocb->ki_flags & IOCB_NOWAIT)
3048 return -EAGAIN;
3049
3050 while (iov_iter_count(iter)) {
3051 struct iovec iovec;
3052 ssize_t nr;
3053
3054 if (!iov_iter_is_bvec(iter)) {
3055 iovec = iov_iter_iovec(iter);
3056 } else {
3057 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3058 iovec.iov_len = req->rw.len;
3059 }
3060
3061 if (rw == READ) {
3062 nr = file->f_op->read(file, iovec.iov_base,
3063 iovec.iov_len, io_kiocb_ppos(kiocb));
3064 } else {
3065 nr = file->f_op->write(file, iovec.iov_base,
3066 iovec.iov_len, io_kiocb_ppos(kiocb));
3067 }
3068
3069 if (nr < 0) {
3070 if (!ret)
3071 ret = nr;
3072 break;
3073 }
3074 ret += nr;
3075 if (nr != iovec.iov_len)
3076 break;
3077 req->rw.len -= nr;
3078 req->rw.addr += nr;
3079 iov_iter_advance(iter, nr);
3080 }
3081
3082 return ret;
3083 }
3084
3085 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3086 const struct iovec *fast_iov, struct iov_iter *iter)
3087 {
3088 struct io_async_rw *rw = req->async_data;
3089
3090 memcpy(&rw->iter, iter, sizeof(*iter));
3091 rw->free_iovec = iovec;
3092 rw->bytes_done = 0;
3093 /* can only be fixed buffers, no need to do anything */
3094 if (iov_iter_is_bvec(iter))
3095 return;
3096 if (!iovec) {
3097 unsigned iov_off = 0;
3098
3099 rw->iter.iov = rw->fast_iov;
3100 if (iter->iov != fast_iov) {
3101 iov_off = iter->iov - fast_iov;
3102 rw->iter.iov += iov_off;
3103 }
3104 if (rw->fast_iov != fast_iov)
3105 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3106 sizeof(struct iovec) * iter->nr_segs);
3107 } else {
3108 req->flags |= REQ_F_NEED_CLEANUP;
3109 }
3110 }
3111
3112 static inline int io_alloc_async_data(struct io_kiocb *req)
3113 {
3114 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3115 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3116 return req->async_data == NULL;
3117 }
3118
3119 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3120 const struct iovec *fast_iov,
3121 struct iov_iter *iter, bool force)
3122 {
3123 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3124 return 0;
3125 if (!req->async_data) {
3126 if (io_alloc_async_data(req)) {
3127 kfree(iovec);
3128 return -ENOMEM;
3129 }
3130
3131 io_req_map_rw(req, iovec, fast_iov, iter);
3132 }
3133 return 0;
3134 }
3135
3136 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3137 {
3138 struct io_async_rw *iorw = req->async_data;
3139 struct iovec *iov = iorw->fast_iov;
3140 int ret;
3141
3142 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3143 if (unlikely(ret < 0))
3144 return ret;
3145
3146 iorw->bytes_done = 0;
3147 iorw->free_iovec = iov;
3148 if (iov)
3149 req->flags |= REQ_F_NEED_CLEANUP;
3150 return 0;
3151 }
3152
3153 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3154 {
3155 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3156 return -EBADF;
3157 return io_prep_rw(req, sqe);
3158 }
3159
3160 /*
3161 * This is our waitqueue callback handler, registered through lock_page_async()
3162 * when we initially tried to do the IO with the iocb armed our waitqueue.
3163 * This gets called when the page is unlocked, and we generally expect that to
3164 * happen when the page IO is completed and the page is now uptodate. This will
3165 * queue a task_work based retry of the operation, attempting to copy the data
3166 * again. If the latter fails because the page was NOT uptodate, then we will
3167 * do a thread based blocking retry of the operation. That's the unexpected
3168 * slow path.
3169 */
3170 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3171 int sync, void *arg)
3172 {
3173 struct wait_page_queue *wpq;
3174 struct io_kiocb *req = wait->private;
3175 struct wait_page_key *key = arg;
3176
3177 wpq = container_of(wait, struct wait_page_queue, wait);
3178
3179 if (!wake_page_match(wpq, key))
3180 return 0;
3181
3182 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3183 list_del_init(&wait->entry);
3184
3185 /* submit ref gets dropped, acquire a new one */
3186 req_ref_get(req);
3187 io_req_task_queue(req);
3188 return 1;
3189 }
3190
3191 /*
3192 * This controls whether a given IO request should be armed for async page
3193 * based retry. If we return false here, the request is handed to the async
3194 * worker threads for retry. If we're doing buffered reads on a regular file,
3195 * we prepare a private wait_page_queue entry and retry the operation. This
3196 * will either succeed because the page is now uptodate and unlocked, or it
3197 * will register a callback when the page is unlocked at IO completion. Through
3198 * that callback, io_uring uses task_work to setup a retry of the operation.
3199 * That retry will attempt the buffered read again. The retry will generally
3200 * succeed, or in rare cases where it fails, we then fall back to using the
3201 * async worker threads for a blocking retry.
3202 */
3203 static bool io_rw_should_retry(struct io_kiocb *req)
3204 {
3205 struct io_async_rw *rw = req->async_data;
3206 struct wait_page_queue *wait = &rw->wpq;
3207 struct kiocb *kiocb = &req->rw.kiocb;
3208
3209 /* never retry for NOWAIT, we just complete with -EAGAIN */
3210 if (req->flags & REQ_F_NOWAIT)
3211 return false;
3212
3213 /* Only for buffered IO */
3214 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3215 return false;
3216
3217 /*
3218 * just use poll if we can, and don't attempt if the fs doesn't
3219 * support callback based unlocks
3220 */
3221 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3222 return false;
3223
3224 wait->wait.func = io_async_buf_func;
3225 wait->wait.private = req;
3226 wait->wait.flags = 0;
3227 INIT_LIST_HEAD(&wait->wait.entry);
3228 kiocb->ki_flags |= IOCB_WAITQ;
3229 kiocb->ki_flags &= ~IOCB_NOWAIT;
3230 kiocb->ki_waitq = wait;
3231 return true;
3232 }
3233
3234 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3235 {
3236 if (req->file->f_op->read_iter)
3237 return call_read_iter(req->file, &req->rw.kiocb, iter);
3238 else if (req->file->f_op->read)
3239 return loop_rw_iter(READ, req, iter);
3240 else
3241 return -EINVAL;
3242 }
3243
3244 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3245 {
3246 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3247 struct kiocb *kiocb = &req->rw.kiocb;
3248 struct iov_iter __iter, *iter = &__iter;
3249 struct io_async_rw *rw = req->async_data;
3250 ssize_t io_size, ret, ret2;
3251 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3252
3253 if (rw) {
3254 iter = &rw->iter;
3255 iovec = NULL;
3256 } else {
3257 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3258 if (ret < 0)
3259 return ret;
3260 }
3261 io_size = iov_iter_count(iter);
3262 req->result = io_size;
3263
3264 /* Ensure we clear previously set non-block flag */
3265 if (!force_nonblock)
3266 kiocb->ki_flags &= ~IOCB_NOWAIT;
3267 else
3268 kiocb->ki_flags |= IOCB_NOWAIT;
3269
3270 /* If the file doesn't support async, just async punt */
3271 if (force_nonblock && !io_file_supports_async(req, READ)) {
3272 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3273 return ret ?: -EAGAIN;
3274 }
3275
3276 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3277 if (unlikely(ret)) {
3278 kfree(iovec);
3279 return ret;
3280 }
3281
3282 ret = io_iter_do_read(req, iter);
3283
3284 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3285 req->flags &= ~REQ_F_REISSUE;
3286 /* IOPOLL retry should happen for io-wq threads */
3287 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3288 goto done;
3289 /* no retry on NONBLOCK nor RWF_NOWAIT */
3290 if (req->flags & REQ_F_NOWAIT)
3291 goto done;
3292 /* some cases will consume bytes even on error returns */
3293 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3294 ret = 0;
3295 } else if (ret == -EIOCBQUEUED) {
3296 goto out_free;
3297 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3298 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3299 /* read all, failed, already did sync or don't want to retry */
3300 goto done;
3301 }
3302
3303 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3304 if (ret2)
3305 return ret2;
3306
3307 iovec = NULL;
3308 rw = req->async_data;
3309 /* now use our persistent iterator, if we aren't already */
3310 iter = &rw->iter;
3311
3312 do {
3313 io_size -= ret;
3314 rw->bytes_done += ret;
3315 /* if we can retry, do so with the callbacks armed */
3316 if (!io_rw_should_retry(req)) {
3317 kiocb->ki_flags &= ~IOCB_WAITQ;
3318 return -EAGAIN;
3319 }
3320
3321 /*
3322 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3323 * we get -EIOCBQUEUED, then we'll get a notification when the
3324 * desired page gets unlocked. We can also get a partial read
3325 * here, and if we do, then just retry at the new offset.
3326 */
3327 ret = io_iter_do_read(req, iter);
3328 if (ret == -EIOCBQUEUED)
3329 return 0;
3330 /* we got some bytes, but not all. retry. */
3331 kiocb->ki_flags &= ~IOCB_WAITQ;
3332 } while (ret > 0 && ret < io_size);
3333 done:
3334 kiocb_done(kiocb, ret, issue_flags);
3335 out_free:
3336 /* it's faster to check here then delegate to kfree */
3337 if (iovec)
3338 kfree(iovec);
3339 return 0;
3340 }
3341
3342 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3343 {
3344 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3345 return -EBADF;
3346 return io_prep_rw(req, sqe);
3347 }
3348
3349 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3350 {
3351 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3352 struct kiocb *kiocb = &req->rw.kiocb;
3353 struct iov_iter __iter, *iter = &__iter;
3354 struct io_async_rw *rw = req->async_data;
3355 ssize_t ret, ret2, io_size;
3356 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3357
3358 if (rw) {
3359 iter = &rw->iter;
3360 iovec = NULL;
3361 } else {
3362 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3363 if (ret < 0)
3364 return ret;
3365 }
3366 io_size = iov_iter_count(iter);
3367 req->result = io_size;
3368
3369 /* Ensure we clear previously set non-block flag */
3370 if (!force_nonblock)
3371 kiocb->ki_flags &= ~IOCB_NOWAIT;
3372 else
3373 kiocb->ki_flags |= IOCB_NOWAIT;
3374
3375 /* If the file doesn't support async, just async punt */
3376 if (force_nonblock && !io_file_supports_async(req, WRITE))
3377 goto copy_iov;
3378
3379 /* file path doesn't support NOWAIT for non-direct_IO */
3380 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3381 (req->flags & REQ_F_ISREG))
3382 goto copy_iov;
3383
3384 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3385 if (unlikely(ret))
3386 goto out_free;
3387
3388 /*
3389 * Open-code file_start_write here to grab freeze protection,
3390 * which will be released by another thread in
3391 * io_complete_rw(). Fool lockdep by telling it the lock got
3392 * released so that it doesn't complain about the held lock when
3393 * we return to userspace.
3394 */
3395 if (req->flags & REQ_F_ISREG) {
3396 sb_start_write(file_inode(req->file)->i_sb);
3397 __sb_writers_release(file_inode(req->file)->i_sb,
3398 SB_FREEZE_WRITE);
3399 }
3400 kiocb->ki_flags |= IOCB_WRITE;
3401
3402 if (req->file->f_op->write_iter)
3403 ret2 = call_write_iter(req->file, kiocb, iter);
3404 else if (req->file->f_op->write)
3405 ret2 = loop_rw_iter(WRITE, req, iter);
3406 else
3407 ret2 = -EINVAL;
3408
3409 if (req->flags & REQ_F_REISSUE) {
3410 req->flags &= ~REQ_F_REISSUE;
3411 ret2 = -EAGAIN;
3412 }
3413
3414 /*
3415 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3416 * retry them without IOCB_NOWAIT.
3417 */
3418 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3419 ret2 = -EAGAIN;
3420 /* no retry on NONBLOCK nor RWF_NOWAIT */
3421 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3422 goto done;
3423 if (!force_nonblock || ret2 != -EAGAIN) {
3424 /* IOPOLL retry should happen for io-wq threads */
3425 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3426 goto copy_iov;
3427 done:
3428 kiocb_done(kiocb, ret2, issue_flags);
3429 } else {
3430 copy_iov:
3431 /* some cases will consume bytes even on error returns */
3432 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3433 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3434 return ret ?: -EAGAIN;
3435 }
3436 out_free:
3437 /* it's reportedly faster than delegating the null check to kfree() */
3438 if (iovec)
3439 kfree(iovec);
3440 return ret;
3441 }
3442
3443 static int io_renameat_prep(struct io_kiocb *req,
3444 const struct io_uring_sqe *sqe)
3445 {
3446 struct io_rename *ren = &req->rename;
3447 const char __user *oldf, *newf;
3448
3449 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3450 return -EBADF;
3451
3452 ren->old_dfd = READ_ONCE(sqe->fd);
3453 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3454 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3455 ren->new_dfd = READ_ONCE(sqe->len);
3456 ren->flags = READ_ONCE(sqe->rename_flags);
3457
3458 ren->oldpath = getname(oldf);
3459 if (IS_ERR(ren->oldpath))
3460 return PTR_ERR(ren->oldpath);
3461
3462 ren->newpath = getname(newf);
3463 if (IS_ERR(ren->newpath)) {
3464 putname(ren->oldpath);
3465 return PTR_ERR(ren->newpath);
3466 }
3467
3468 req->flags |= REQ_F_NEED_CLEANUP;
3469 return 0;
3470 }
3471
3472 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3473 {
3474 struct io_rename *ren = &req->rename;
3475 int ret;
3476
3477 if (issue_flags & IO_URING_F_NONBLOCK)
3478 return -EAGAIN;
3479
3480 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3481 ren->newpath, ren->flags);
3482
3483 req->flags &= ~REQ_F_NEED_CLEANUP;
3484 if (ret < 0)
3485 req_set_fail_links(req);
3486 io_req_complete(req, ret);
3487 return 0;
3488 }
3489
3490 static int io_unlinkat_prep(struct io_kiocb *req,
3491 const struct io_uring_sqe *sqe)
3492 {
3493 struct io_unlink *un = &req->unlink;
3494 const char __user *fname;
3495
3496 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3497 return -EBADF;
3498
3499 un->dfd = READ_ONCE(sqe->fd);
3500
3501 un->flags = READ_ONCE(sqe->unlink_flags);
3502 if (un->flags & ~AT_REMOVEDIR)
3503 return -EINVAL;
3504
3505 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3506 un->filename = getname(fname);
3507 if (IS_ERR(un->filename))
3508 return PTR_ERR(un->filename);
3509
3510 req->flags |= REQ_F_NEED_CLEANUP;
3511 return 0;
3512 }
3513
3514 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3515 {
3516 struct io_unlink *un = &req->unlink;
3517 int ret;
3518
3519 if (issue_flags & IO_URING_F_NONBLOCK)
3520 return -EAGAIN;
3521
3522 if (un->flags & AT_REMOVEDIR)
3523 ret = do_rmdir(un->dfd, un->filename);
3524 else
3525 ret = do_unlinkat(un->dfd, un->filename);
3526
3527 req->flags &= ~REQ_F_NEED_CLEANUP;
3528 if (ret < 0)
3529 req_set_fail_links(req);
3530 io_req_complete(req, ret);
3531 return 0;
3532 }
3533
3534 static int io_shutdown_prep(struct io_kiocb *req,
3535 const struct io_uring_sqe *sqe)
3536 {
3537 #if defined(CONFIG_NET)
3538 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3539 return -EINVAL;
3540 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3541 sqe->buf_index)
3542 return -EINVAL;
3543
3544 req->shutdown.how = READ_ONCE(sqe->len);
3545 return 0;
3546 #else
3547 return -EOPNOTSUPP;
3548 #endif
3549 }
3550
3551 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3552 {
3553 #if defined(CONFIG_NET)
3554 struct socket *sock;
3555 int ret;
3556
3557 if (issue_flags & IO_URING_F_NONBLOCK)
3558 return -EAGAIN;
3559
3560 sock = sock_from_file(req->file);
3561 if (unlikely(!sock))
3562 return -ENOTSOCK;
3563
3564 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3565 if (ret < 0)
3566 req_set_fail_links(req);
3567 io_req_complete(req, ret);
3568 return 0;
3569 #else
3570 return -EOPNOTSUPP;
3571 #endif
3572 }
3573
3574 static int __io_splice_prep(struct io_kiocb *req,
3575 const struct io_uring_sqe *sqe)
3576 {
3577 struct io_splice* sp = &req->splice;
3578 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3579
3580 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3581 return -EINVAL;
3582
3583 sp->file_in = NULL;
3584 sp->len = READ_ONCE(sqe->len);
3585 sp->flags = READ_ONCE(sqe->splice_flags);
3586
3587 if (unlikely(sp->flags & ~valid_flags))
3588 return -EINVAL;
3589
3590 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3591 (sp->flags & SPLICE_F_FD_IN_FIXED));
3592 if (!sp->file_in)
3593 return -EBADF;
3594 req->flags |= REQ_F_NEED_CLEANUP;
3595 return 0;
3596 }
3597
3598 static int io_tee_prep(struct io_kiocb *req,
3599 const struct io_uring_sqe *sqe)
3600 {
3601 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3602 return -EINVAL;
3603 return __io_splice_prep(req, sqe);
3604 }
3605
3606 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3607 {
3608 struct io_splice *sp = &req->splice;
3609 struct file *in = sp->file_in;
3610 struct file *out = sp->file_out;
3611 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3612 long ret = 0;
3613
3614 if (issue_flags & IO_URING_F_NONBLOCK)
3615 return -EAGAIN;
3616 if (sp->len)
3617 ret = do_tee(in, out, sp->len, flags);
3618
3619 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3620 io_put_file(in);
3621 req->flags &= ~REQ_F_NEED_CLEANUP;
3622
3623 if (ret != sp->len)
3624 req_set_fail_links(req);
3625 io_req_complete(req, ret);
3626 return 0;
3627 }
3628
3629 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3630 {
3631 struct io_splice* sp = &req->splice;
3632
3633 sp->off_in = READ_ONCE(sqe->splice_off_in);
3634 sp->off_out = READ_ONCE(sqe->off);
3635 return __io_splice_prep(req, sqe);
3636 }
3637
3638 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3639 {
3640 struct io_splice *sp = &req->splice;
3641 struct file *in = sp->file_in;
3642 struct file *out = sp->file_out;
3643 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3644 loff_t *poff_in, *poff_out;
3645 long ret = 0;
3646
3647 if (issue_flags & IO_URING_F_NONBLOCK)
3648 return -EAGAIN;
3649
3650 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3651 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3652
3653 if (sp->len)
3654 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3655
3656 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3657 io_put_file(in);
3658 req->flags &= ~REQ_F_NEED_CLEANUP;
3659
3660 if (ret != sp->len)
3661 req_set_fail_links(req);
3662 io_req_complete(req, ret);
3663 return 0;
3664 }
3665
3666 /*
3667 * IORING_OP_NOP just posts a completion event, nothing else.
3668 */
3669 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3670 {
3671 struct io_ring_ctx *ctx = req->ctx;
3672
3673 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3674 return -EINVAL;
3675
3676 __io_req_complete(req, issue_flags, 0, 0);
3677 return 0;
3678 }
3679
3680 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3681 {
3682 struct io_ring_ctx *ctx = req->ctx;
3683
3684 if (!req->file)
3685 return -EBADF;
3686
3687 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3688 return -EINVAL;
3689 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3690 return -EINVAL;
3691
3692 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3693 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3694 return -EINVAL;
3695
3696 req->sync.off = READ_ONCE(sqe->off);
3697 req->sync.len = READ_ONCE(sqe->len);
3698 return 0;
3699 }
3700
3701 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3702 {
3703 loff_t end = req->sync.off + req->sync.len;
3704 int ret;
3705
3706 /* fsync always requires a blocking context */
3707 if (issue_flags & IO_URING_F_NONBLOCK)
3708 return -EAGAIN;
3709
3710 ret = vfs_fsync_range(req->file, req->sync.off,
3711 end > 0 ? end : LLONG_MAX,
3712 req->sync.flags & IORING_FSYNC_DATASYNC);
3713 if (ret < 0)
3714 req_set_fail_links(req);
3715 io_req_complete(req, ret);
3716 return 0;
3717 }
3718
3719 static int io_fallocate_prep(struct io_kiocb *req,
3720 const struct io_uring_sqe *sqe)
3721 {
3722 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3723 return -EINVAL;
3724 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3725 return -EINVAL;
3726
3727 req->sync.off = READ_ONCE(sqe->off);
3728 req->sync.len = READ_ONCE(sqe->addr);
3729 req->sync.mode = READ_ONCE(sqe->len);
3730 return 0;
3731 }
3732
3733 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3734 {
3735 int ret;
3736
3737 /* fallocate always requiring blocking context */
3738 if (issue_flags & IO_URING_F_NONBLOCK)
3739 return -EAGAIN;
3740 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3741 req->sync.len);
3742 if (ret < 0)
3743 req_set_fail_links(req);
3744 io_req_complete(req, ret);
3745 return 0;
3746 }
3747
3748 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3749 {
3750 const char __user *fname;
3751 int ret;
3752
3753 if (unlikely(sqe->ioprio || sqe->buf_index))
3754 return -EINVAL;
3755 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3756 return -EBADF;
3757
3758 /* open.how should be already initialised */
3759 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3760 req->open.how.flags |= O_LARGEFILE;
3761
3762 req->open.dfd = READ_ONCE(sqe->fd);
3763 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3764 req->open.filename = getname(fname);
3765 if (IS_ERR(req->open.filename)) {
3766 ret = PTR_ERR(req->open.filename);
3767 req->open.filename = NULL;
3768 return ret;
3769 }
3770 req->open.nofile = rlimit(RLIMIT_NOFILE);
3771 req->flags |= REQ_F_NEED_CLEANUP;
3772 return 0;
3773 }
3774
3775 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3776 {
3777 u64 flags, mode;
3778
3779 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3780 return -EINVAL;
3781 mode = READ_ONCE(sqe->len);
3782 flags = READ_ONCE(sqe->open_flags);
3783 req->open.how = build_open_how(flags, mode);
3784 return __io_openat_prep(req, sqe);
3785 }
3786
3787 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3788 {
3789 struct open_how __user *how;
3790 size_t len;
3791 int ret;
3792
3793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3794 return -EINVAL;
3795 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3796 len = READ_ONCE(sqe->len);
3797 if (len < OPEN_HOW_SIZE_VER0)
3798 return -EINVAL;
3799
3800 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3801 len);
3802 if (ret)
3803 return ret;
3804
3805 return __io_openat_prep(req, sqe);
3806 }
3807
3808 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3809 {
3810 struct open_flags op;
3811 struct file *file;
3812 bool nonblock_set;
3813 bool resolve_nonblock;
3814 int ret;
3815
3816 ret = build_open_flags(&req->open.how, &op);
3817 if (ret)
3818 goto err;
3819 nonblock_set = op.open_flag & O_NONBLOCK;
3820 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3821 if (issue_flags & IO_URING_F_NONBLOCK) {
3822 /*
3823 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3824 * it'll always -EAGAIN
3825 */
3826 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3827 return -EAGAIN;
3828 op.lookup_flags |= LOOKUP_CACHED;
3829 op.open_flag |= O_NONBLOCK;
3830 }
3831
3832 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3833 if (ret < 0)
3834 goto err;
3835
3836 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3837 /* only retry if RESOLVE_CACHED wasn't already set by application */
3838 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
3839 file == ERR_PTR(-EAGAIN)) {
3840 /*
3841 * We could hang on to this 'fd', but seems like marginal
3842 * gain for something that is now known to be a slower path.
3843 * So just put it, and we'll get a new one when we retry.
3844 */
3845 put_unused_fd(ret);
3846 return -EAGAIN;
3847 }
3848
3849 if (IS_ERR(file)) {
3850 put_unused_fd(ret);
3851 ret = PTR_ERR(file);
3852 } else {
3853 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3854 file->f_flags &= ~O_NONBLOCK;
3855 fsnotify_open(file);
3856 fd_install(ret, file);
3857 }
3858 err:
3859 putname(req->open.filename);
3860 req->flags &= ~REQ_F_NEED_CLEANUP;
3861 if (ret < 0)
3862 req_set_fail_links(req);
3863 __io_req_complete(req, issue_flags, ret, 0);
3864 return 0;
3865 }
3866
3867 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3868 {
3869 return io_openat2(req, issue_flags);
3870 }
3871
3872 static int io_remove_buffers_prep(struct io_kiocb *req,
3873 const struct io_uring_sqe *sqe)
3874 {
3875 struct io_provide_buf *p = &req->pbuf;
3876 u64 tmp;
3877
3878 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3879 return -EINVAL;
3880
3881 tmp = READ_ONCE(sqe->fd);
3882 if (!tmp || tmp > USHRT_MAX)
3883 return -EINVAL;
3884
3885 memset(p, 0, sizeof(*p));
3886 p->nbufs = tmp;
3887 p->bgid = READ_ONCE(sqe->buf_group);
3888 return 0;
3889 }
3890
3891 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3892 int bgid, unsigned nbufs)
3893 {
3894 unsigned i = 0;
3895
3896 /* shouldn't happen */
3897 if (!nbufs)
3898 return 0;
3899
3900 /* the head kbuf is the list itself */
3901 while (!list_empty(&buf->list)) {
3902 struct io_buffer *nxt;
3903
3904 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3905 list_del(&nxt->list);
3906 kfree(nxt);
3907 if (++i == nbufs)
3908 return i;
3909 }
3910 i++;
3911 kfree(buf);
3912 xa_erase(&ctx->io_buffers, bgid);
3913
3914 return i;
3915 }
3916
3917 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3918 {
3919 struct io_provide_buf *p = &req->pbuf;
3920 struct io_ring_ctx *ctx = req->ctx;
3921 struct io_buffer *head;
3922 int ret = 0;
3923 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3924
3925 io_ring_submit_lock(ctx, !force_nonblock);
3926
3927 lockdep_assert_held(&ctx->uring_lock);
3928
3929 ret = -ENOENT;
3930 head = xa_load(&ctx->io_buffers, p->bgid);
3931 if (head)
3932 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3933 if (ret < 0)
3934 req_set_fail_links(req);
3935
3936 /* complete before unlock, IOPOLL may need the lock */
3937 __io_req_complete(req, issue_flags, ret, 0);
3938 io_ring_submit_unlock(ctx, !force_nonblock);
3939 return 0;
3940 }
3941
3942 static int io_provide_buffers_prep(struct io_kiocb *req,
3943 const struct io_uring_sqe *sqe)
3944 {
3945 unsigned long size, tmp_check;
3946 struct io_provide_buf *p = &req->pbuf;
3947 u64 tmp;
3948
3949 if (sqe->ioprio || sqe->rw_flags)
3950 return -EINVAL;
3951
3952 tmp = READ_ONCE(sqe->fd);
3953 if (!tmp || tmp > USHRT_MAX)
3954 return -E2BIG;
3955 p->nbufs = tmp;
3956 p->addr = READ_ONCE(sqe->addr);
3957 p->len = READ_ONCE(sqe->len);
3958
3959 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3960 &size))
3961 return -EOVERFLOW;
3962 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3963 return -EOVERFLOW;
3964
3965 size = (unsigned long)p->len * p->nbufs;
3966 if (!access_ok(u64_to_user_ptr(p->addr), size))
3967 return -EFAULT;
3968
3969 p->bgid = READ_ONCE(sqe->buf_group);
3970 tmp = READ_ONCE(sqe->off);
3971 if (tmp > USHRT_MAX)
3972 return -E2BIG;
3973 p->bid = tmp;
3974 return 0;
3975 }
3976
3977 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3978 {
3979 struct io_buffer *buf;
3980 u64 addr = pbuf->addr;
3981 int i, bid = pbuf->bid;
3982
3983 for (i = 0; i < pbuf->nbufs; i++) {
3984 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3985 if (!buf)
3986 break;
3987
3988 buf->addr = addr;
3989 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
3990 buf->bid = bid;
3991 addr += pbuf->len;
3992 bid++;
3993 if (!*head) {
3994 INIT_LIST_HEAD(&buf->list);
3995 *head = buf;
3996 } else {
3997 list_add_tail(&buf->list, &(*head)->list);
3998 }
3999 }
4000
4001 return i ? i : -ENOMEM;
4002 }
4003
4004 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4005 {
4006 struct io_provide_buf *p = &req->pbuf;
4007 struct io_ring_ctx *ctx = req->ctx;
4008 struct io_buffer *head, *list;
4009 int ret = 0;
4010 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4011
4012 io_ring_submit_lock(ctx, !force_nonblock);
4013
4014 lockdep_assert_held(&ctx->uring_lock);
4015
4016 list = head = xa_load(&ctx->io_buffers, p->bgid);
4017
4018 ret = io_add_buffers(p, &head);
4019 if (ret >= 0 && !list) {
4020 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4021 if (ret < 0)
4022 __io_remove_buffers(ctx, head, p->bgid, -1U);
4023 }
4024 if (ret < 0)
4025 req_set_fail_links(req);
4026 /* complete before unlock, IOPOLL may need the lock */
4027 __io_req_complete(req, issue_flags, ret, 0);
4028 io_ring_submit_unlock(ctx, !force_nonblock);
4029 return 0;
4030 }
4031
4032 static int io_epoll_ctl_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4034 {
4035 #if defined(CONFIG_EPOLL)
4036 if (sqe->ioprio || sqe->buf_index)
4037 return -EINVAL;
4038 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4039 return -EINVAL;
4040
4041 req->epoll.epfd = READ_ONCE(sqe->fd);
4042 req->epoll.op = READ_ONCE(sqe->len);
4043 req->epoll.fd = READ_ONCE(sqe->off);
4044
4045 if (ep_op_has_event(req->epoll.op)) {
4046 struct epoll_event __user *ev;
4047
4048 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4049 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4050 return -EFAULT;
4051 }
4052
4053 return 0;
4054 #else
4055 return -EOPNOTSUPP;
4056 #endif
4057 }
4058
4059 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4060 {
4061 #if defined(CONFIG_EPOLL)
4062 struct io_epoll *ie = &req->epoll;
4063 int ret;
4064 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4065
4066 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4067 if (force_nonblock && ret == -EAGAIN)
4068 return -EAGAIN;
4069
4070 if (ret < 0)
4071 req_set_fail_links(req);
4072 __io_req_complete(req, issue_flags, ret, 0);
4073 return 0;
4074 #else
4075 return -EOPNOTSUPP;
4076 #endif
4077 }
4078
4079 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4080 {
4081 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4082 if (sqe->ioprio || sqe->buf_index || sqe->off)
4083 return -EINVAL;
4084 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4085 return -EINVAL;
4086
4087 req->madvise.addr = READ_ONCE(sqe->addr);
4088 req->madvise.len = READ_ONCE(sqe->len);
4089 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4090 return 0;
4091 #else
4092 return -EOPNOTSUPP;
4093 #endif
4094 }
4095
4096 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4097 {
4098 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4099 struct io_madvise *ma = &req->madvise;
4100 int ret;
4101
4102 if (issue_flags & IO_URING_F_NONBLOCK)
4103 return -EAGAIN;
4104
4105 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4106 if (ret < 0)
4107 req_set_fail_links(req);
4108 io_req_complete(req, ret);
4109 return 0;
4110 #else
4111 return -EOPNOTSUPP;
4112 #endif
4113 }
4114
4115 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4116 {
4117 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4118 return -EINVAL;
4119 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4120 return -EINVAL;
4121
4122 req->fadvise.offset = READ_ONCE(sqe->off);
4123 req->fadvise.len = READ_ONCE(sqe->len);
4124 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4125 return 0;
4126 }
4127
4128 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4129 {
4130 struct io_fadvise *fa = &req->fadvise;
4131 int ret;
4132
4133 if (issue_flags & IO_URING_F_NONBLOCK) {
4134 switch (fa->advice) {
4135 case POSIX_FADV_NORMAL:
4136 case POSIX_FADV_RANDOM:
4137 case POSIX_FADV_SEQUENTIAL:
4138 break;
4139 default:
4140 return -EAGAIN;
4141 }
4142 }
4143
4144 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4145 if (ret < 0)
4146 req_set_fail_links(req);
4147 __io_req_complete(req, issue_flags, ret, 0);
4148 return 0;
4149 }
4150
4151 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4152 {
4153 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4154 return -EINVAL;
4155 if (sqe->ioprio || sqe->buf_index)
4156 return -EINVAL;
4157 if (req->flags & REQ_F_FIXED_FILE)
4158 return -EBADF;
4159
4160 req->statx.dfd = READ_ONCE(sqe->fd);
4161 req->statx.mask = READ_ONCE(sqe->len);
4162 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4163 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4164 req->statx.flags = READ_ONCE(sqe->statx_flags);
4165
4166 return 0;
4167 }
4168
4169 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4170 {
4171 struct io_statx *ctx = &req->statx;
4172 int ret;
4173
4174 if (issue_flags & IO_URING_F_NONBLOCK)
4175 return -EAGAIN;
4176
4177 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4178 ctx->buffer);
4179
4180 if (ret < 0)
4181 req_set_fail_links(req);
4182 io_req_complete(req, ret);
4183 return 0;
4184 }
4185
4186 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4187 {
4188 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4189 return -EINVAL;
4190 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4191 sqe->rw_flags || sqe->buf_index)
4192 return -EINVAL;
4193 if (req->flags & REQ_F_FIXED_FILE)
4194 return -EBADF;
4195
4196 req->close.fd = READ_ONCE(sqe->fd);
4197 return 0;
4198 }
4199
4200 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4201 {
4202 struct files_struct *files = current->files;
4203 struct io_close *close = &req->close;
4204 struct fdtable *fdt;
4205 struct file *file = NULL;
4206 int ret = -EBADF;
4207
4208 spin_lock(&files->file_lock);
4209 fdt = files_fdtable(files);
4210 if (close->fd >= fdt->max_fds) {
4211 spin_unlock(&files->file_lock);
4212 goto err;
4213 }
4214 file = fdt->fd[close->fd];
4215 if (!file || file->f_op == &io_uring_fops) {
4216 spin_unlock(&files->file_lock);
4217 file = NULL;
4218 goto err;
4219 }
4220
4221 /* if the file has a flush method, be safe and punt to async */
4222 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4223 spin_unlock(&files->file_lock);
4224 return -EAGAIN;
4225 }
4226
4227 ret = __close_fd_get_file(close->fd, &file);
4228 spin_unlock(&files->file_lock);
4229 if (ret < 0) {
4230 if (ret == -ENOENT)
4231 ret = -EBADF;
4232 goto err;
4233 }
4234
4235 /* No ->flush() or already async, safely close from here */
4236 ret = filp_close(file, current->files);
4237 err:
4238 if (ret < 0)
4239 req_set_fail_links(req);
4240 if (file)
4241 fput(file);
4242 __io_req_complete(req, issue_flags, ret, 0);
4243 return 0;
4244 }
4245
4246 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4247 {
4248 struct io_ring_ctx *ctx = req->ctx;
4249
4250 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4251 return -EINVAL;
4252 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4253 return -EINVAL;
4254
4255 req->sync.off = READ_ONCE(sqe->off);
4256 req->sync.len = READ_ONCE(sqe->len);
4257 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4258 return 0;
4259 }
4260
4261 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4262 {
4263 int ret;
4264
4265 /* sync_file_range always requires a blocking context */
4266 if (issue_flags & IO_URING_F_NONBLOCK)
4267 return -EAGAIN;
4268
4269 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4270 req->sync.flags);
4271 if (ret < 0)
4272 req_set_fail_links(req);
4273 io_req_complete(req, ret);
4274 return 0;
4275 }
4276
4277 #if defined(CONFIG_NET)
4278 static int io_setup_async_msg(struct io_kiocb *req,
4279 struct io_async_msghdr *kmsg)
4280 {
4281 struct io_async_msghdr *async_msg = req->async_data;
4282
4283 if (async_msg)
4284 return -EAGAIN;
4285 if (io_alloc_async_data(req)) {
4286 kfree(kmsg->free_iov);
4287 return -ENOMEM;
4288 }
4289 async_msg = req->async_data;
4290 req->flags |= REQ_F_NEED_CLEANUP;
4291 memcpy(async_msg, kmsg, sizeof(*kmsg));
4292 async_msg->msg.msg_name = &async_msg->addr;
4293 /* if were using fast_iov, set it to the new one */
4294 if (!async_msg->free_iov)
4295 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4296
4297 return -EAGAIN;
4298 }
4299
4300 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4301 struct io_async_msghdr *iomsg)
4302 {
4303 iomsg->msg.msg_name = &iomsg->addr;
4304 iomsg->free_iov = iomsg->fast_iov;
4305 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4306 req->sr_msg.msg_flags, &iomsg->free_iov);
4307 }
4308
4309 static int io_sendmsg_prep_async(struct io_kiocb *req)
4310 {
4311 int ret;
4312
4313 ret = io_sendmsg_copy_hdr(req, req->async_data);
4314 if (!ret)
4315 req->flags |= REQ_F_NEED_CLEANUP;
4316 return ret;
4317 }
4318
4319 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4320 {
4321 struct io_sr_msg *sr = &req->sr_msg;
4322
4323 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4324 return -EINVAL;
4325
4326 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4327 sr->len = READ_ONCE(sqe->len);
4328 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4329 if (sr->msg_flags & MSG_DONTWAIT)
4330 req->flags |= REQ_F_NOWAIT;
4331
4332 #ifdef CONFIG_COMPAT
4333 if (req->ctx->compat)
4334 sr->msg_flags |= MSG_CMSG_COMPAT;
4335 #endif
4336 return 0;
4337 }
4338
4339 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4340 {
4341 struct io_async_msghdr iomsg, *kmsg;
4342 struct socket *sock;
4343 unsigned flags;
4344 int min_ret = 0;
4345 int ret;
4346
4347 sock = sock_from_file(req->file);
4348 if (unlikely(!sock))
4349 return -ENOTSOCK;
4350
4351 kmsg = req->async_data;
4352 if (!kmsg) {
4353 ret = io_sendmsg_copy_hdr(req, &iomsg);
4354 if (ret)
4355 return ret;
4356 kmsg = &iomsg;
4357 }
4358
4359 flags = req->sr_msg.msg_flags;
4360 if (issue_flags & IO_URING_F_NONBLOCK)
4361 flags |= MSG_DONTWAIT;
4362 if (flags & MSG_WAITALL)
4363 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4364
4365 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4366 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4367 return io_setup_async_msg(req, kmsg);
4368 if (ret == -ERESTARTSYS)
4369 ret = -EINTR;
4370
4371 /* fast path, check for non-NULL to avoid function call */
4372 if (kmsg->free_iov)
4373 kfree(kmsg->free_iov);
4374 req->flags &= ~REQ_F_NEED_CLEANUP;
4375 if (ret < min_ret)
4376 req_set_fail_links(req);
4377 __io_req_complete(req, issue_flags, ret, 0);
4378 return 0;
4379 }
4380
4381 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4382 {
4383 struct io_sr_msg *sr = &req->sr_msg;
4384 struct msghdr msg;
4385 struct iovec iov;
4386 struct socket *sock;
4387 unsigned flags;
4388 int min_ret = 0;
4389 int ret;
4390
4391 sock = sock_from_file(req->file);
4392 if (unlikely(!sock))
4393 return -ENOTSOCK;
4394
4395 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4396 if (unlikely(ret))
4397 return ret;
4398
4399 msg.msg_name = NULL;
4400 msg.msg_control = NULL;
4401 msg.msg_controllen = 0;
4402 msg.msg_namelen = 0;
4403
4404 flags = req->sr_msg.msg_flags;
4405 if (issue_flags & IO_URING_F_NONBLOCK)
4406 flags |= MSG_DONTWAIT;
4407 if (flags & MSG_WAITALL)
4408 min_ret = iov_iter_count(&msg.msg_iter);
4409
4410 msg.msg_flags = flags;
4411 ret = sock_sendmsg(sock, &msg);
4412 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4413 return -EAGAIN;
4414 if (ret == -ERESTARTSYS)
4415 ret = -EINTR;
4416
4417 if (ret < min_ret)
4418 req_set_fail_links(req);
4419 __io_req_complete(req, issue_flags, ret, 0);
4420 return 0;
4421 }
4422
4423 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4424 struct io_async_msghdr *iomsg)
4425 {
4426 struct io_sr_msg *sr = &req->sr_msg;
4427 struct iovec __user *uiov;
4428 size_t iov_len;
4429 int ret;
4430
4431 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4432 &iomsg->uaddr, &uiov, &iov_len);
4433 if (ret)
4434 return ret;
4435
4436 if (req->flags & REQ_F_BUFFER_SELECT) {
4437 if (iov_len > 1)
4438 return -EINVAL;
4439 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4440 return -EFAULT;
4441 sr->len = iomsg->fast_iov[0].iov_len;
4442 iomsg->free_iov = NULL;
4443 } else {
4444 iomsg->free_iov = iomsg->fast_iov;
4445 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4446 &iomsg->free_iov, &iomsg->msg.msg_iter,
4447 false);
4448 if (ret > 0)
4449 ret = 0;
4450 }
4451
4452 return ret;
4453 }
4454
4455 #ifdef CONFIG_COMPAT
4456 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4457 struct io_async_msghdr *iomsg)
4458 {
4459 struct io_sr_msg *sr = &req->sr_msg;
4460 struct compat_iovec __user *uiov;
4461 compat_uptr_t ptr;
4462 compat_size_t len;
4463 int ret;
4464
4465 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4466 &ptr, &len);
4467 if (ret)
4468 return ret;
4469
4470 uiov = compat_ptr(ptr);
4471 if (req->flags & REQ_F_BUFFER_SELECT) {
4472 compat_ssize_t clen;
4473
4474 if (len > 1)
4475 return -EINVAL;
4476 if (!access_ok(uiov, sizeof(*uiov)))
4477 return -EFAULT;
4478 if (__get_user(clen, &uiov->iov_len))
4479 return -EFAULT;
4480 if (clen < 0)
4481 return -EINVAL;
4482 sr->len = clen;
4483 iomsg->free_iov = NULL;
4484 } else {
4485 iomsg->free_iov = iomsg->fast_iov;
4486 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4487 UIO_FASTIOV, &iomsg->free_iov,
4488 &iomsg->msg.msg_iter, true);
4489 if (ret < 0)
4490 return ret;
4491 }
4492
4493 return 0;
4494 }
4495 #endif
4496
4497 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4498 struct io_async_msghdr *iomsg)
4499 {
4500 iomsg->msg.msg_name = &iomsg->addr;
4501
4502 #ifdef CONFIG_COMPAT
4503 if (req->ctx->compat)
4504 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4505 #endif
4506
4507 return __io_recvmsg_copy_hdr(req, iomsg);
4508 }
4509
4510 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4511 bool needs_lock)
4512 {
4513 struct io_sr_msg *sr = &req->sr_msg;
4514 struct io_buffer *kbuf;
4515
4516 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4517 if (IS_ERR(kbuf))
4518 return kbuf;
4519
4520 sr->kbuf = kbuf;
4521 req->flags |= REQ_F_BUFFER_SELECTED;
4522 return kbuf;
4523 }
4524
4525 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4526 {
4527 return io_put_kbuf(req, req->sr_msg.kbuf);
4528 }
4529
4530 static int io_recvmsg_prep_async(struct io_kiocb *req)
4531 {
4532 int ret;
4533
4534 ret = io_recvmsg_copy_hdr(req, req->async_data);
4535 if (!ret)
4536 req->flags |= REQ_F_NEED_CLEANUP;
4537 return ret;
4538 }
4539
4540 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4541 {
4542 struct io_sr_msg *sr = &req->sr_msg;
4543
4544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4545 return -EINVAL;
4546
4547 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4548 sr->len = READ_ONCE(sqe->len);
4549 sr->bgid = READ_ONCE(sqe->buf_group);
4550 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4551 if (sr->msg_flags & MSG_DONTWAIT)
4552 req->flags |= REQ_F_NOWAIT;
4553
4554 #ifdef CONFIG_COMPAT
4555 if (req->ctx->compat)
4556 sr->msg_flags |= MSG_CMSG_COMPAT;
4557 #endif
4558 return 0;
4559 }
4560
4561 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4562 {
4563 struct io_async_msghdr iomsg, *kmsg;
4564 struct socket *sock;
4565 struct io_buffer *kbuf;
4566 unsigned flags;
4567 int min_ret = 0;
4568 int ret, cflags = 0;
4569 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4570
4571 sock = sock_from_file(req->file);
4572 if (unlikely(!sock))
4573 return -ENOTSOCK;
4574
4575 kmsg = req->async_data;
4576 if (!kmsg) {
4577 ret = io_recvmsg_copy_hdr(req, &iomsg);
4578 if (ret)
4579 return ret;
4580 kmsg = &iomsg;
4581 }
4582
4583 if (req->flags & REQ_F_BUFFER_SELECT) {
4584 kbuf = io_recv_buffer_select(req, !force_nonblock);
4585 if (IS_ERR(kbuf))
4586 return PTR_ERR(kbuf);
4587 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4588 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4589 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4590 1, req->sr_msg.len);
4591 }
4592
4593 flags = req->sr_msg.msg_flags;
4594 if (force_nonblock)
4595 flags |= MSG_DONTWAIT;
4596 if (flags & MSG_WAITALL)
4597 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4598
4599 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4600 kmsg->uaddr, flags);
4601 if (force_nonblock && ret == -EAGAIN)
4602 return io_setup_async_msg(req, kmsg);
4603 if (ret == -ERESTARTSYS)
4604 ret = -EINTR;
4605
4606 if (req->flags & REQ_F_BUFFER_SELECTED)
4607 cflags = io_put_recv_kbuf(req);
4608 /* fast path, check for non-NULL to avoid function call */
4609 if (kmsg->free_iov)
4610 kfree(kmsg->free_iov);
4611 req->flags &= ~REQ_F_NEED_CLEANUP;
4612 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4613 req_set_fail_links(req);
4614 __io_req_complete(req, issue_flags, ret, cflags);
4615 return 0;
4616 }
4617
4618 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4619 {
4620 struct io_buffer *kbuf;
4621 struct io_sr_msg *sr = &req->sr_msg;
4622 struct msghdr msg;
4623 void __user *buf = sr->buf;
4624 struct socket *sock;
4625 struct iovec iov;
4626 unsigned flags;
4627 int min_ret = 0;
4628 int ret, cflags = 0;
4629 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4630
4631 sock = sock_from_file(req->file);
4632 if (unlikely(!sock))
4633 return -ENOTSOCK;
4634
4635 if (req->flags & REQ_F_BUFFER_SELECT) {
4636 kbuf = io_recv_buffer_select(req, !force_nonblock);
4637 if (IS_ERR(kbuf))
4638 return PTR_ERR(kbuf);
4639 buf = u64_to_user_ptr(kbuf->addr);
4640 }
4641
4642 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4643 if (unlikely(ret))
4644 goto out_free;
4645
4646 msg.msg_name = NULL;
4647 msg.msg_control = NULL;
4648 msg.msg_controllen = 0;
4649 msg.msg_namelen = 0;
4650 msg.msg_iocb = NULL;
4651 msg.msg_flags = 0;
4652
4653 flags = req->sr_msg.msg_flags;
4654 if (force_nonblock)
4655 flags |= MSG_DONTWAIT;
4656 if (flags & MSG_WAITALL)
4657 min_ret = iov_iter_count(&msg.msg_iter);
4658
4659 ret = sock_recvmsg(sock, &msg, flags);
4660 if (force_nonblock && ret == -EAGAIN)
4661 return -EAGAIN;
4662 if (ret == -ERESTARTSYS)
4663 ret = -EINTR;
4664 out_free:
4665 if (req->flags & REQ_F_BUFFER_SELECTED)
4666 cflags = io_put_recv_kbuf(req);
4667 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4668 req_set_fail_links(req);
4669 __io_req_complete(req, issue_flags, ret, cflags);
4670 return 0;
4671 }
4672
4673 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4674 {
4675 struct io_accept *accept = &req->accept;
4676
4677 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4678 return -EINVAL;
4679 if (sqe->ioprio || sqe->len || sqe->buf_index)
4680 return -EINVAL;
4681
4682 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4683 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4684 accept->flags = READ_ONCE(sqe->accept_flags);
4685 accept->nofile = rlimit(RLIMIT_NOFILE);
4686 return 0;
4687 }
4688
4689 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4690 {
4691 struct io_accept *accept = &req->accept;
4692 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4693 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4694 int ret;
4695
4696 if (req->file->f_flags & O_NONBLOCK)
4697 req->flags |= REQ_F_NOWAIT;
4698
4699 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4700 accept->addr_len, accept->flags,
4701 accept->nofile);
4702 if (ret == -EAGAIN && force_nonblock)
4703 return -EAGAIN;
4704 if (ret < 0) {
4705 if (ret == -ERESTARTSYS)
4706 ret = -EINTR;
4707 req_set_fail_links(req);
4708 }
4709 __io_req_complete(req, issue_flags, ret, 0);
4710 return 0;
4711 }
4712
4713 static int io_connect_prep_async(struct io_kiocb *req)
4714 {
4715 struct io_async_connect *io = req->async_data;
4716 struct io_connect *conn = &req->connect;
4717
4718 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4719 }
4720
4721 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4722 {
4723 struct io_connect *conn = &req->connect;
4724
4725 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4726 return -EINVAL;
4727 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4728 return -EINVAL;
4729
4730 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4731 conn->addr_len = READ_ONCE(sqe->addr2);
4732 return 0;
4733 }
4734
4735 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4736 {
4737 struct io_async_connect __io, *io;
4738 unsigned file_flags;
4739 int ret;
4740 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4741
4742 if (req->async_data) {
4743 io = req->async_data;
4744 } else {
4745 ret = move_addr_to_kernel(req->connect.addr,
4746 req->connect.addr_len,
4747 &__io.address);
4748 if (ret)
4749 goto out;
4750 io = &__io;
4751 }
4752
4753 file_flags = force_nonblock ? O_NONBLOCK : 0;
4754
4755 ret = __sys_connect_file(req->file, &io->address,
4756 req->connect.addr_len, file_flags);
4757 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4758 if (req->async_data)
4759 return -EAGAIN;
4760 if (io_alloc_async_data(req)) {
4761 ret = -ENOMEM;
4762 goto out;
4763 }
4764 memcpy(req->async_data, &__io, sizeof(__io));
4765 return -EAGAIN;
4766 }
4767 if (ret == -ERESTARTSYS)
4768 ret = -EINTR;
4769 out:
4770 if (ret < 0)
4771 req_set_fail_links(req);
4772 __io_req_complete(req, issue_flags, ret, 0);
4773 return 0;
4774 }
4775 #else /* !CONFIG_NET */
4776 #define IO_NETOP_FN(op) \
4777 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4778 { \
4779 return -EOPNOTSUPP; \
4780 }
4781
4782 #define IO_NETOP_PREP(op) \
4783 IO_NETOP_FN(op) \
4784 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4785 { \
4786 return -EOPNOTSUPP; \
4787 } \
4788
4789 #define IO_NETOP_PREP_ASYNC(op) \
4790 IO_NETOP_PREP(op) \
4791 static int io_##op##_prep_async(struct io_kiocb *req) \
4792 { \
4793 return -EOPNOTSUPP; \
4794 }
4795
4796 IO_NETOP_PREP_ASYNC(sendmsg);
4797 IO_NETOP_PREP_ASYNC(recvmsg);
4798 IO_NETOP_PREP_ASYNC(connect);
4799 IO_NETOP_PREP(accept);
4800 IO_NETOP_FN(send);
4801 IO_NETOP_FN(recv);
4802 #endif /* CONFIG_NET */
4803
4804 struct io_poll_table {
4805 struct poll_table_struct pt;
4806 struct io_kiocb *req;
4807 int error;
4808 };
4809
4810 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4811 __poll_t mask, task_work_func_t func)
4812 {
4813 int ret;
4814
4815 /* for instances that support it check for an event match first: */
4816 if (mask && !(mask & poll->events))
4817 return 0;
4818
4819 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4820
4821 list_del_init(&poll->wait.entry);
4822
4823 req->result = mask;
4824 req->task_work.func = func;
4825
4826 /*
4827 * If this fails, then the task is exiting. When a task exits, the
4828 * work gets canceled, so just cancel this request as well instead
4829 * of executing it. We can't safely execute it anyway, as we may not
4830 * have the needed state needed for it anyway.
4831 */
4832 ret = io_req_task_work_add(req);
4833 if (unlikely(ret)) {
4834 WRITE_ONCE(poll->canceled, true);
4835 io_req_task_work_add_fallback(req, func);
4836 }
4837 return 1;
4838 }
4839
4840 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4841 __acquires(&req->ctx->completion_lock)
4842 {
4843 struct io_ring_ctx *ctx = req->ctx;
4844
4845 if (!req->result && !READ_ONCE(poll->canceled)) {
4846 struct poll_table_struct pt = { ._key = poll->events };
4847
4848 req->result = vfs_poll(req->file, &pt) & poll->events;
4849 }
4850
4851 spin_lock_irq(&ctx->completion_lock);
4852 if (!req->result && !READ_ONCE(poll->canceled)) {
4853 add_wait_queue(poll->head, &poll->wait);
4854 return true;
4855 }
4856
4857 return false;
4858 }
4859
4860 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4861 {
4862 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4863 if (req->opcode == IORING_OP_POLL_ADD)
4864 return req->async_data;
4865 return req->apoll->double_poll;
4866 }
4867
4868 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4869 {
4870 if (req->opcode == IORING_OP_POLL_ADD)
4871 return &req->poll;
4872 return &req->apoll->poll;
4873 }
4874
4875 static void io_poll_remove_double(struct io_kiocb *req)
4876 __must_hold(&req->ctx->completion_lock)
4877 {
4878 struct io_poll_iocb *poll = io_poll_get_double(req);
4879
4880 lockdep_assert_held(&req->ctx->completion_lock);
4881
4882 if (poll && poll->head) {
4883 struct wait_queue_head *head = poll->head;
4884
4885 spin_lock(&head->lock);
4886 list_del_init(&poll->wait.entry);
4887 if (poll->wait.private)
4888 req_ref_put(req);
4889 poll->head = NULL;
4890 spin_unlock(&head->lock);
4891 }
4892 }
4893
4894 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4895 __must_hold(&req->ctx->completion_lock)
4896 {
4897 struct io_ring_ctx *ctx = req->ctx;
4898 unsigned flags = IORING_CQE_F_MORE;
4899 int error;
4900
4901 if (READ_ONCE(req->poll.canceled)) {
4902 error = -ECANCELED;
4903 req->poll.events |= EPOLLONESHOT;
4904 } else {
4905 error = mangle_poll(mask);
4906 }
4907 if (req->poll.events & EPOLLONESHOT)
4908 flags = 0;
4909 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4910 io_poll_remove_waitqs(req);
4911 req->poll.done = true;
4912 flags = 0;
4913 }
4914 if (flags & IORING_CQE_F_MORE)
4915 ctx->cq_extra++;
4916
4917 io_commit_cqring(ctx);
4918 return !(flags & IORING_CQE_F_MORE);
4919 }
4920
4921 static void io_poll_task_func(struct callback_head *cb)
4922 {
4923 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4924 struct io_ring_ctx *ctx = req->ctx;
4925 struct io_kiocb *nxt;
4926
4927 if (io_poll_rewait(req, &req->poll)) {
4928 spin_unlock_irq(&ctx->completion_lock);
4929 } else {
4930 bool done;
4931
4932 done = io_poll_complete(req, req->result);
4933 if (done) {
4934 hash_del(&req->hash_node);
4935 } else {
4936 req->result = 0;
4937 add_wait_queue(req->poll.head, &req->poll.wait);
4938 }
4939 spin_unlock_irq(&ctx->completion_lock);
4940 io_cqring_ev_posted(ctx);
4941
4942 if (done) {
4943 nxt = io_put_req_find_next(req);
4944 if (nxt)
4945 __io_req_task_submit(nxt);
4946 }
4947 }
4948 }
4949
4950 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4951 int sync, void *key)
4952 {
4953 struct io_kiocb *req = wait->private;
4954 struct io_poll_iocb *poll = io_poll_get_single(req);
4955 __poll_t mask = key_to_poll(key);
4956
4957 /* for instances that support it check for an event match first: */
4958 if (mask && !(mask & poll->events))
4959 return 0;
4960 if (!(poll->events & EPOLLONESHOT))
4961 return poll->wait.func(&poll->wait, mode, sync, key);
4962
4963 list_del_init(&wait->entry);
4964
4965 if (poll && poll->head) {
4966 bool done;
4967
4968 spin_lock(&poll->head->lock);
4969 done = list_empty(&poll->wait.entry);
4970 if (!done)
4971 list_del_init(&poll->wait.entry);
4972 /* make sure double remove sees this as being gone */
4973 wait->private = NULL;
4974 spin_unlock(&poll->head->lock);
4975 if (!done) {
4976 /* use wait func handler, so it matches the rq type */
4977 poll->wait.func(&poll->wait, mode, sync, key);
4978 }
4979 }
4980 req_ref_put(req);
4981 return 1;
4982 }
4983
4984 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4985 wait_queue_func_t wake_func)
4986 {
4987 poll->head = NULL;
4988 poll->done = false;
4989 poll->canceled = false;
4990 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
4991 /* mask in events that we always want/need */
4992 poll->events = events | IO_POLL_UNMASK;
4993 INIT_LIST_HEAD(&poll->wait.entry);
4994 init_waitqueue_func_entry(&poll->wait, wake_func);
4995 }
4996
4997 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4998 struct wait_queue_head *head,
4999 struct io_poll_iocb **poll_ptr)
5000 {
5001 struct io_kiocb *req = pt->req;
5002
5003 /*
5004 * If poll->head is already set, it's because the file being polled
5005 * uses multiple waitqueues for poll handling (eg one for read, one
5006 * for write). Setup a separate io_poll_iocb if this happens.
5007 */
5008 if (unlikely(poll->head)) {
5009 struct io_poll_iocb *poll_one = poll;
5010
5011 /* already have a 2nd entry, fail a third attempt */
5012 if (*poll_ptr) {
5013 pt->error = -EINVAL;
5014 return;
5015 }
5016 /*
5017 * Can't handle multishot for double wait for now, turn it
5018 * into one-shot mode.
5019 */
5020 if (!(req->poll.events & EPOLLONESHOT))
5021 req->poll.events |= EPOLLONESHOT;
5022 /* double add on the same waitqueue head, ignore */
5023 if (poll->head == head)
5024 return;
5025 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5026 if (!poll) {
5027 pt->error = -ENOMEM;
5028 return;
5029 }
5030 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5031 req_ref_get(req);
5032 poll->wait.private = req;
5033 *poll_ptr = poll;
5034 }
5035
5036 pt->error = 0;
5037 poll->head = head;
5038
5039 if (poll->events & EPOLLEXCLUSIVE)
5040 add_wait_queue_exclusive(head, &poll->wait);
5041 else
5042 add_wait_queue(head, &poll->wait);
5043 }
5044
5045 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5046 struct poll_table_struct *p)
5047 {
5048 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5049 struct async_poll *apoll = pt->req->apoll;
5050
5051 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5052 }
5053
5054 static void io_async_task_func(struct callback_head *cb)
5055 {
5056 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5057 struct async_poll *apoll = req->apoll;
5058 struct io_ring_ctx *ctx = req->ctx;
5059
5060 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5061
5062 if (io_poll_rewait(req, &apoll->poll)) {
5063 spin_unlock_irq(&ctx->completion_lock);
5064 return;
5065 }
5066
5067 hash_del(&req->hash_node);
5068 io_poll_remove_double(req);
5069 spin_unlock_irq(&ctx->completion_lock);
5070
5071 if (!READ_ONCE(apoll->poll.canceled))
5072 __io_req_task_submit(req);
5073 else
5074 io_req_complete_failed(req, -ECANCELED);
5075 }
5076
5077 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5078 void *key)
5079 {
5080 struct io_kiocb *req = wait->private;
5081 struct io_poll_iocb *poll = &req->apoll->poll;
5082
5083 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5084 key_to_poll(key));
5085
5086 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5087 }
5088
5089 static void io_poll_req_insert(struct io_kiocb *req)
5090 {
5091 struct io_ring_ctx *ctx = req->ctx;
5092 struct hlist_head *list;
5093
5094 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5095 hlist_add_head(&req->hash_node, list);
5096 }
5097
5098 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5099 struct io_poll_iocb *poll,
5100 struct io_poll_table *ipt, __poll_t mask,
5101 wait_queue_func_t wake_func)
5102 __acquires(&ctx->completion_lock)
5103 {
5104 struct io_ring_ctx *ctx = req->ctx;
5105 bool cancel = false;
5106
5107 INIT_HLIST_NODE(&req->hash_node);
5108 io_init_poll_iocb(poll, mask, wake_func);
5109 poll->file = req->file;
5110 poll->wait.private = req;
5111
5112 ipt->pt._key = mask;
5113 ipt->req = req;
5114 ipt->error = -EINVAL;
5115
5116 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5117
5118 spin_lock_irq(&ctx->completion_lock);
5119 if (likely(poll->head)) {
5120 spin_lock(&poll->head->lock);
5121 if (unlikely(list_empty(&poll->wait.entry))) {
5122 if (ipt->error)
5123 cancel = true;
5124 ipt->error = 0;
5125 mask = 0;
5126 }
5127 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5128 list_del_init(&poll->wait.entry);
5129 else if (cancel)
5130 WRITE_ONCE(poll->canceled, true);
5131 else if (!poll->done) /* actually waiting for an event */
5132 io_poll_req_insert(req);
5133 spin_unlock(&poll->head->lock);
5134 }
5135
5136 return mask;
5137 }
5138
5139 static bool io_arm_poll_handler(struct io_kiocb *req)
5140 {
5141 const struct io_op_def *def = &io_op_defs[req->opcode];
5142 struct io_ring_ctx *ctx = req->ctx;
5143 struct async_poll *apoll;
5144 struct io_poll_table ipt;
5145 __poll_t mask, ret;
5146 int rw;
5147
5148 if (!req->file || !file_can_poll(req->file))
5149 return false;
5150 if (req->flags & REQ_F_POLLED)
5151 return false;
5152 if (def->pollin)
5153 rw = READ;
5154 else if (def->pollout)
5155 rw = WRITE;
5156 else
5157 return false;
5158 /* if we can't nonblock try, then no point in arming a poll handler */
5159 if (!io_file_supports_async(req, rw))
5160 return false;
5161
5162 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5163 if (unlikely(!apoll))
5164 return false;
5165 apoll->double_poll = NULL;
5166
5167 req->flags |= REQ_F_POLLED;
5168 req->apoll = apoll;
5169
5170 mask = EPOLLONESHOT;
5171 if (def->pollin)
5172 mask |= POLLIN | POLLRDNORM;
5173 if (def->pollout)
5174 mask |= POLLOUT | POLLWRNORM;
5175
5176 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5177 if ((req->opcode == IORING_OP_RECVMSG) &&
5178 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5179 mask &= ~POLLIN;
5180
5181 mask |= POLLERR | POLLPRI;
5182
5183 ipt.pt._qproc = io_async_queue_proc;
5184
5185 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5186 io_async_wake);
5187 if (ret || ipt.error) {
5188 io_poll_remove_double(req);
5189 spin_unlock_irq(&ctx->completion_lock);
5190 return false;
5191 }
5192 spin_unlock_irq(&ctx->completion_lock);
5193 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5194 apoll->poll.events);
5195 return true;
5196 }
5197
5198 static bool __io_poll_remove_one(struct io_kiocb *req,
5199 struct io_poll_iocb *poll, bool do_cancel)
5200 __must_hold(&req->ctx->completion_lock)
5201 {
5202 bool do_complete = false;
5203
5204 if (!poll->head)
5205 return false;
5206 spin_lock(&poll->head->lock);
5207 if (do_cancel)
5208 WRITE_ONCE(poll->canceled, true);
5209 if (!list_empty(&poll->wait.entry)) {
5210 list_del_init(&poll->wait.entry);
5211 do_complete = true;
5212 }
5213 spin_unlock(&poll->head->lock);
5214 hash_del(&req->hash_node);
5215 return do_complete;
5216 }
5217
5218 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5219 __must_hold(&req->ctx->completion_lock)
5220 {
5221 bool do_complete;
5222
5223 io_poll_remove_double(req);
5224 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5225
5226 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5227 /* non-poll requests have submit ref still */
5228 req_ref_put(req);
5229 }
5230 return do_complete;
5231 }
5232
5233 static bool io_poll_remove_one(struct io_kiocb *req)
5234 __must_hold(&req->ctx->completion_lock)
5235 {
5236 bool do_complete;
5237
5238 do_complete = io_poll_remove_waitqs(req);
5239 if (do_complete) {
5240 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5241 io_commit_cqring(req->ctx);
5242 req_set_fail_links(req);
5243 io_put_req_deferred(req, 1);
5244 }
5245
5246 return do_complete;
5247 }
5248
5249 /*
5250 * Returns true if we found and killed one or more poll requests
5251 */
5252 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5253 struct files_struct *files)
5254 {
5255 struct hlist_node *tmp;
5256 struct io_kiocb *req;
5257 int posted = 0, i;
5258
5259 spin_lock_irq(&ctx->completion_lock);
5260 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5261 struct hlist_head *list;
5262
5263 list = &ctx->cancel_hash[i];
5264 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5265 if (io_match_task(req, tsk, files))
5266 posted += io_poll_remove_one(req);
5267 }
5268 }
5269 spin_unlock_irq(&ctx->completion_lock);
5270
5271 if (posted)
5272 io_cqring_ev_posted(ctx);
5273
5274 return posted != 0;
5275 }
5276
5277 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5278 bool poll_only)
5279 __must_hold(&ctx->completion_lock)
5280 {
5281 struct hlist_head *list;
5282 struct io_kiocb *req;
5283
5284 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5285 hlist_for_each_entry(req, list, hash_node) {
5286 if (sqe_addr != req->user_data)
5287 continue;
5288 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5289 continue;
5290 return req;
5291 }
5292 return NULL;
5293 }
5294
5295 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5296 bool poll_only)
5297 __must_hold(&ctx->completion_lock)
5298 {
5299 struct io_kiocb *req;
5300
5301 req = io_poll_find(ctx, sqe_addr, poll_only);
5302 if (!req)
5303 return -ENOENT;
5304 if (io_poll_remove_one(req))
5305 return 0;
5306
5307 return -EALREADY;
5308 }
5309
5310 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5311 unsigned int flags)
5312 {
5313 u32 events;
5314
5315 events = READ_ONCE(sqe->poll32_events);
5316 #ifdef __BIG_ENDIAN
5317 events = swahw32(events);
5318 #endif
5319 if (!(flags & IORING_POLL_ADD_MULTI))
5320 events |= EPOLLONESHOT;
5321 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5322 }
5323
5324 static int io_poll_update_prep(struct io_kiocb *req,
5325 const struct io_uring_sqe *sqe)
5326 {
5327 struct io_poll_update *upd = &req->poll_update;
5328 u32 flags;
5329
5330 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5331 return -EINVAL;
5332 if (sqe->ioprio || sqe->buf_index)
5333 return -EINVAL;
5334 flags = READ_ONCE(sqe->len);
5335 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5336 IORING_POLL_ADD_MULTI))
5337 return -EINVAL;
5338 /* meaningless without update */
5339 if (flags == IORING_POLL_ADD_MULTI)
5340 return -EINVAL;
5341
5342 upd->old_user_data = READ_ONCE(sqe->addr);
5343 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5344 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5345
5346 upd->new_user_data = READ_ONCE(sqe->off);
5347 if (!upd->update_user_data && upd->new_user_data)
5348 return -EINVAL;
5349 if (upd->update_events)
5350 upd->events = io_poll_parse_events(sqe, flags);
5351 else if (sqe->poll32_events)
5352 return -EINVAL;
5353
5354 return 0;
5355 }
5356
5357 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5358 void *key)
5359 {
5360 struct io_kiocb *req = wait->private;
5361 struct io_poll_iocb *poll = &req->poll;
5362
5363 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5364 }
5365
5366 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5367 struct poll_table_struct *p)
5368 {
5369 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5370
5371 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5372 }
5373
5374 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5375 {
5376 struct io_poll_iocb *poll = &req->poll;
5377 u32 flags;
5378
5379 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5380 return -EINVAL;
5381 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5382 return -EINVAL;
5383 flags = READ_ONCE(sqe->len);
5384 if (flags & ~IORING_POLL_ADD_MULTI)
5385 return -EINVAL;
5386
5387 poll->events = io_poll_parse_events(sqe, flags);
5388 return 0;
5389 }
5390
5391 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5392 {
5393 struct io_poll_iocb *poll = &req->poll;
5394 struct io_ring_ctx *ctx = req->ctx;
5395 struct io_poll_table ipt;
5396 __poll_t mask;
5397
5398 ipt.pt._qproc = io_poll_queue_proc;
5399
5400 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5401 io_poll_wake);
5402
5403 if (mask) { /* no async, we'd stolen it */
5404 ipt.error = 0;
5405 io_poll_complete(req, mask);
5406 }
5407 spin_unlock_irq(&ctx->completion_lock);
5408
5409 if (mask) {
5410 io_cqring_ev_posted(ctx);
5411 if (poll->events & EPOLLONESHOT)
5412 io_put_req(req);
5413 }
5414 return ipt.error;
5415 }
5416
5417 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5418 {
5419 struct io_ring_ctx *ctx = req->ctx;
5420 struct io_kiocb *preq;
5421 bool completing;
5422 int ret;
5423
5424 spin_lock_irq(&ctx->completion_lock);
5425 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5426 if (!preq) {
5427 ret = -ENOENT;
5428 goto err;
5429 }
5430
5431 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5432 completing = true;
5433 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5434 goto err;
5435 }
5436
5437 /*
5438 * Don't allow racy completion with singleshot, as we cannot safely
5439 * update those. For multishot, if we're racing with completion, just
5440 * let completion re-add it.
5441 */
5442 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5443 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5444 ret = -EALREADY;
5445 goto err;
5446 }
5447 /* we now have a detached poll request. reissue. */
5448 ret = 0;
5449 err:
5450 if (ret < 0) {
5451 spin_unlock_irq(&ctx->completion_lock);
5452 req_set_fail_links(req);
5453 io_req_complete(req, ret);
5454 return 0;
5455 }
5456 /* only mask one event flags, keep behavior flags */
5457 if (req->poll_update.update_events) {
5458 preq->poll.events &= ~0xffff;
5459 preq->poll.events |= req->poll_update.events & 0xffff;
5460 preq->poll.events |= IO_POLL_UNMASK;
5461 }
5462 if (req->poll_update.update_user_data)
5463 preq->user_data = req->poll_update.new_user_data;
5464 spin_unlock_irq(&ctx->completion_lock);
5465
5466 /* complete update request, we're done with it */
5467 io_req_complete(req, ret);
5468
5469 if (!completing) {
5470 ret = io_poll_add(preq, issue_flags);
5471 if (ret < 0) {
5472 req_set_fail_links(preq);
5473 io_req_complete(preq, ret);
5474 }
5475 }
5476 return 0;
5477 }
5478
5479 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5480 {
5481 struct io_timeout_data *data = container_of(timer,
5482 struct io_timeout_data, timer);
5483 struct io_kiocb *req = data->req;
5484 struct io_ring_ctx *ctx = req->ctx;
5485 unsigned long flags;
5486
5487 spin_lock_irqsave(&ctx->completion_lock, flags);
5488 list_del_init(&req->timeout.list);
5489 atomic_set(&req->ctx->cq_timeouts,
5490 atomic_read(&req->ctx->cq_timeouts) + 1);
5491
5492 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5493 io_commit_cqring(ctx);
5494 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5495
5496 io_cqring_ev_posted(ctx);
5497 req_set_fail_links(req);
5498 io_put_req(req);
5499 return HRTIMER_NORESTART;
5500 }
5501
5502 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5503 __u64 user_data)
5504 __must_hold(&ctx->completion_lock)
5505 {
5506 struct io_timeout_data *io;
5507 struct io_kiocb *req;
5508 bool found = false;
5509
5510 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5511 found = user_data == req->user_data;
5512 if (found)
5513 break;
5514 }
5515 if (!found)
5516 return ERR_PTR(-ENOENT);
5517
5518 io = req->async_data;
5519 if (hrtimer_try_to_cancel(&io->timer) == -1)
5520 return ERR_PTR(-EALREADY);
5521 list_del_init(&req->timeout.list);
5522 return req;
5523 }
5524
5525 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5526 __must_hold(&ctx->completion_lock)
5527 {
5528 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5529
5530 if (IS_ERR(req))
5531 return PTR_ERR(req);
5532
5533 req_set_fail_links(req);
5534 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5535 io_put_req_deferred(req, 1);
5536 return 0;
5537 }
5538
5539 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5540 struct timespec64 *ts, enum hrtimer_mode mode)
5541 __must_hold(&ctx->completion_lock)
5542 {
5543 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5544 struct io_timeout_data *data;
5545
5546 if (IS_ERR(req))
5547 return PTR_ERR(req);
5548
5549 req->timeout.off = 0; /* noseq */
5550 data = req->async_data;
5551 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5552 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5553 data->timer.function = io_timeout_fn;
5554 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5555 return 0;
5556 }
5557
5558 static int io_timeout_remove_prep(struct io_kiocb *req,
5559 const struct io_uring_sqe *sqe)
5560 {
5561 struct io_timeout_rem *tr = &req->timeout_rem;
5562
5563 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5564 return -EINVAL;
5565 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5566 return -EINVAL;
5567 if (sqe->ioprio || sqe->buf_index || sqe->len)
5568 return -EINVAL;
5569
5570 tr->addr = READ_ONCE(sqe->addr);
5571 tr->flags = READ_ONCE(sqe->timeout_flags);
5572 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5573 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5574 return -EINVAL;
5575 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5576 return -EFAULT;
5577 } else if (tr->flags) {
5578 /* timeout removal doesn't support flags */
5579 return -EINVAL;
5580 }
5581
5582 return 0;
5583 }
5584
5585 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5586 {
5587 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5588 : HRTIMER_MODE_REL;
5589 }
5590
5591 /*
5592 * Remove or update an existing timeout command
5593 */
5594 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5595 {
5596 struct io_timeout_rem *tr = &req->timeout_rem;
5597 struct io_ring_ctx *ctx = req->ctx;
5598 int ret;
5599
5600 spin_lock_irq(&ctx->completion_lock);
5601 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5602 ret = io_timeout_cancel(ctx, tr->addr);
5603 else
5604 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5605 io_translate_timeout_mode(tr->flags));
5606
5607 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5608 io_commit_cqring(ctx);
5609 spin_unlock_irq(&ctx->completion_lock);
5610 io_cqring_ev_posted(ctx);
5611 if (ret < 0)
5612 req_set_fail_links(req);
5613 io_put_req(req);
5614 return 0;
5615 }
5616
5617 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5618 bool is_timeout_link)
5619 {
5620 struct io_timeout_data *data;
5621 unsigned flags;
5622 u32 off = READ_ONCE(sqe->off);
5623
5624 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5625 return -EINVAL;
5626 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5627 return -EINVAL;
5628 if (off && is_timeout_link)
5629 return -EINVAL;
5630 flags = READ_ONCE(sqe->timeout_flags);
5631 if (flags & ~IORING_TIMEOUT_ABS)
5632 return -EINVAL;
5633
5634 req->timeout.off = off;
5635
5636 if (!req->async_data && io_alloc_async_data(req))
5637 return -ENOMEM;
5638
5639 data = req->async_data;
5640 data->req = req;
5641
5642 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5643 return -EFAULT;
5644
5645 data->mode = io_translate_timeout_mode(flags);
5646 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5647 if (is_timeout_link)
5648 io_req_track_inflight(req);
5649 return 0;
5650 }
5651
5652 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5653 {
5654 struct io_ring_ctx *ctx = req->ctx;
5655 struct io_timeout_data *data = req->async_data;
5656 struct list_head *entry;
5657 u32 tail, off = req->timeout.off;
5658
5659 spin_lock_irq(&ctx->completion_lock);
5660
5661 /*
5662 * sqe->off holds how many events that need to occur for this
5663 * timeout event to be satisfied. If it isn't set, then this is
5664 * a pure timeout request, sequence isn't used.
5665 */
5666 if (io_is_timeout_noseq(req)) {
5667 entry = ctx->timeout_list.prev;
5668 goto add;
5669 }
5670
5671 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5672 req->timeout.target_seq = tail + off;
5673
5674 /* Update the last seq here in case io_flush_timeouts() hasn't.
5675 * This is safe because ->completion_lock is held, and submissions
5676 * and completions are never mixed in the same ->completion_lock section.
5677 */
5678 ctx->cq_last_tm_flush = tail;
5679
5680 /*
5681 * Insertion sort, ensuring the first entry in the list is always
5682 * the one we need first.
5683 */
5684 list_for_each_prev(entry, &ctx->timeout_list) {
5685 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5686 timeout.list);
5687
5688 if (io_is_timeout_noseq(nxt))
5689 continue;
5690 /* nxt.seq is behind @tail, otherwise would've been completed */
5691 if (off >= nxt->timeout.target_seq - tail)
5692 break;
5693 }
5694 add:
5695 list_add(&req->timeout.list, entry);
5696 data->timer.function = io_timeout_fn;
5697 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5698 spin_unlock_irq(&ctx->completion_lock);
5699 return 0;
5700 }
5701
5702 struct io_cancel_data {
5703 struct io_ring_ctx *ctx;
5704 u64 user_data;
5705 };
5706
5707 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5708 {
5709 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5710 struct io_cancel_data *cd = data;
5711
5712 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5713 }
5714
5715 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5716 struct io_ring_ctx *ctx)
5717 {
5718 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5719 enum io_wq_cancel cancel_ret;
5720 int ret = 0;
5721
5722 if (!tctx || !tctx->io_wq)
5723 return -ENOENT;
5724
5725 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5726 switch (cancel_ret) {
5727 case IO_WQ_CANCEL_OK:
5728 ret = 0;
5729 break;
5730 case IO_WQ_CANCEL_RUNNING:
5731 ret = -EALREADY;
5732 break;
5733 case IO_WQ_CANCEL_NOTFOUND:
5734 ret = -ENOENT;
5735 break;
5736 }
5737
5738 return ret;
5739 }
5740
5741 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5742 struct io_kiocb *req, __u64 sqe_addr,
5743 int success_ret)
5744 {
5745 unsigned long flags;
5746 int ret;
5747
5748 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5749 spin_lock_irqsave(&ctx->completion_lock, flags);
5750 if (ret != -ENOENT)
5751 goto done;
5752 ret = io_timeout_cancel(ctx, sqe_addr);
5753 if (ret != -ENOENT)
5754 goto done;
5755 ret = io_poll_cancel(ctx, sqe_addr, false);
5756 done:
5757 if (!ret)
5758 ret = success_ret;
5759 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5760 io_commit_cqring(ctx);
5761 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5762 io_cqring_ev_posted(ctx);
5763
5764 if (ret < 0)
5765 req_set_fail_links(req);
5766 }
5767
5768 static int io_async_cancel_prep(struct io_kiocb *req,
5769 const struct io_uring_sqe *sqe)
5770 {
5771 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5772 return -EINVAL;
5773 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5774 return -EINVAL;
5775 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5776 return -EINVAL;
5777
5778 req->cancel.addr = READ_ONCE(sqe->addr);
5779 return 0;
5780 }
5781
5782 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5783 {
5784 struct io_ring_ctx *ctx = req->ctx;
5785 u64 sqe_addr = req->cancel.addr;
5786 struct io_tctx_node *node;
5787 int ret;
5788
5789 /* tasks should wait for their io-wq threads, so safe w/o sync */
5790 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5791 spin_lock_irq(&ctx->completion_lock);
5792 if (ret != -ENOENT)
5793 goto done;
5794 ret = io_timeout_cancel(ctx, sqe_addr);
5795 if (ret != -ENOENT)
5796 goto done;
5797 ret = io_poll_cancel(ctx, sqe_addr, false);
5798 if (ret != -ENOENT)
5799 goto done;
5800 spin_unlock_irq(&ctx->completion_lock);
5801
5802 /* slow path, try all io-wq's */
5803 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5804 ret = -ENOENT;
5805 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5806 struct io_uring_task *tctx = node->task->io_uring;
5807
5808 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5809 if (ret != -ENOENT)
5810 break;
5811 }
5812 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5813
5814 spin_lock_irq(&ctx->completion_lock);
5815 done:
5816 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5817 io_commit_cqring(ctx);
5818 spin_unlock_irq(&ctx->completion_lock);
5819 io_cqring_ev_posted(ctx);
5820
5821 if (ret < 0)
5822 req_set_fail_links(req);
5823 io_put_req(req);
5824 return 0;
5825 }
5826
5827 static int io_rsrc_update_prep(struct io_kiocb *req,
5828 const struct io_uring_sqe *sqe)
5829 {
5830 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5831 return -EINVAL;
5832 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5833 return -EINVAL;
5834 if (sqe->ioprio || sqe->rw_flags)
5835 return -EINVAL;
5836
5837 req->rsrc_update.offset = READ_ONCE(sqe->off);
5838 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5839 if (!req->rsrc_update.nr_args)
5840 return -EINVAL;
5841 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5842 return 0;
5843 }
5844
5845 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5846 {
5847 struct io_ring_ctx *ctx = req->ctx;
5848 struct io_uring_rsrc_update2 up;
5849 int ret;
5850
5851 if (issue_flags & IO_URING_F_NONBLOCK)
5852 return -EAGAIN;
5853
5854 up.offset = req->rsrc_update.offset;
5855 up.data = req->rsrc_update.arg;
5856 up.nr = 0;
5857 up.tags = 0;
5858 up.resv = 0;
5859
5860 mutex_lock(&ctx->uring_lock);
5861 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5862 &up, req->rsrc_update.nr_args);
5863 mutex_unlock(&ctx->uring_lock);
5864
5865 if (ret < 0)
5866 req_set_fail_links(req);
5867 __io_req_complete(req, issue_flags, ret, 0);
5868 return 0;
5869 }
5870
5871 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5872 {
5873 switch (req->opcode) {
5874 case IORING_OP_NOP:
5875 return 0;
5876 case IORING_OP_READV:
5877 case IORING_OP_READ_FIXED:
5878 case IORING_OP_READ:
5879 return io_read_prep(req, sqe);
5880 case IORING_OP_WRITEV:
5881 case IORING_OP_WRITE_FIXED:
5882 case IORING_OP_WRITE:
5883 return io_write_prep(req, sqe);
5884 case IORING_OP_POLL_ADD:
5885 return io_poll_add_prep(req, sqe);
5886 case IORING_OP_POLL_REMOVE:
5887 return io_poll_update_prep(req, sqe);
5888 case IORING_OP_FSYNC:
5889 return io_fsync_prep(req, sqe);
5890 case IORING_OP_SYNC_FILE_RANGE:
5891 return io_sfr_prep(req, sqe);
5892 case IORING_OP_SENDMSG:
5893 case IORING_OP_SEND:
5894 return io_sendmsg_prep(req, sqe);
5895 case IORING_OP_RECVMSG:
5896 case IORING_OP_RECV:
5897 return io_recvmsg_prep(req, sqe);
5898 case IORING_OP_CONNECT:
5899 return io_connect_prep(req, sqe);
5900 case IORING_OP_TIMEOUT:
5901 return io_timeout_prep(req, sqe, false);
5902 case IORING_OP_TIMEOUT_REMOVE:
5903 return io_timeout_remove_prep(req, sqe);
5904 case IORING_OP_ASYNC_CANCEL:
5905 return io_async_cancel_prep(req, sqe);
5906 case IORING_OP_LINK_TIMEOUT:
5907 return io_timeout_prep(req, sqe, true);
5908 case IORING_OP_ACCEPT:
5909 return io_accept_prep(req, sqe);
5910 case IORING_OP_FALLOCATE:
5911 return io_fallocate_prep(req, sqe);
5912 case IORING_OP_OPENAT:
5913 return io_openat_prep(req, sqe);
5914 case IORING_OP_CLOSE:
5915 return io_close_prep(req, sqe);
5916 case IORING_OP_FILES_UPDATE:
5917 return io_rsrc_update_prep(req, sqe);
5918 case IORING_OP_STATX:
5919 return io_statx_prep(req, sqe);
5920 case IORING_OP_FADVISE:
5921 return io_fadvise_prep(req, sqe);
5922 case IORING_OP_MADVISE:
5923 return io_madvise_prep(req, sqe);
5924 case IORING_OP_OPENAT2:
5925 return io_openat2_prep(req, sqe);
5926 case IORING_OP_EPOLL_CTL:
5927 return io_epoll_ctl_prep(req, sqe);
5928 case IORING_OP_SPLICE:
5929 return io_splice_prep(req, sqe);
5930 case IORING_OP_PROVIDE_BUFFERS:
5931 return io_provide_buffers_prep(req, sqe);
5932 case IORING_OP_REMOVE_BUFFERS:
5933 return io_remove_buffers_prep(req, sqe);
5934 case IORING_OP_TEE:
5935 return io_tee_prep(req, sqe);
5936 case IORING_OP_SHUTDOWN:
5937 return io_shutdown_prep(req, sqe);
5938 case IORING_OP_RENAMEAT:
5939 return io_renameat_prep(req, sqe);
5940 case IORING_OP_UNLINKAT:
5941 return io_unlinkat_prep(req, sqe);
5942 }
5943
5944 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5945 req->opcode);
5946 return -EINVAL;
5947 }
5948
5949 static int io_req_prep_async(struct io_kiocb *req)
5950 {
5951 if (!io_op_defs[req->opcode].needs_async_setup)
5952 return 0;
5953 if (WARN_ON_ONCE(req->async_data))
5954 return -EFAULT;
5955 if (io_alloc_async_data(req))
5956 return -EAGAIN;
5957
5958 switch (req->opcode) {
5959 case IORING_OP_READV:
5960 return io_rw_prep_async(req, READ);
5961 case IORING_OP_WRITEV:
5962 return io_rw_prep_async(req, WRITE);
5963 case IORING_OP_SENDMSG:
5964 return io_sendmsg_prep_async(req);
5965 case IORING_OP_RECVMSG:
5966 return io_recvmsg_prep_async(req);
5967 case IORING_OP_CONNECT:
5968 return io_connect_prep_async(req);
5969 }
5970 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5971 req->opcode);
5972 return -EFAULT;
5973 }
5974
5975 static u32 io_get_sequence(struct io_kiocb *req)
5976 {
5977 struct io_kiocb *pos;
5978 struct io_ring_ctx *ctx = req->ctx;
5979 u32 total_submitted, nr_reqs = 0;
5980
5981 io_for_each_link(pos, req)
5982 nr_reqs++;
5983
5984 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5985 return total_submitted - nr_reqs;
5986 }
5987
5988 static int io_req_defer(struct io_kiocb *req)
5989 {
5990 struct io_ring_ctx *ctx = req->ctx;
5991 struct io_defer_entry *de;
5992 int ret;
5993 u32 seq;
5994
5995 /* Still need defer if there is pending req in defer list. */
5996 if (likely(list_empty_careful(&ctx->defer_list) &&
5997 !(req->flags & REQ_F_IO_DRAIN)))
5998 return 0;
5999
6000 seq = io_get_sequence(req);
6001 /* Still a chance to pass the sequence check */
6002 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6003 return 0;
6004
6005 ret = io_req_prep_async(req);
6006 if (ret)
6007 return ret;
6008 io_prep_async_link(req);
6009 de = kmalloc(sizeof(*de), GFP_KERNEL);
6010 if (!de)
6011 return -ENOMEM;
6012
6013 spin_lock_irq(&ctx->completion_lock);
6014 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6015 spin_unlock_irq(&ctx->completion_lock);
6016 kfree(de);
6017 io_queue_async_work(req);
6018 return -EIOCBQUEUED;
6019 }
6020
6021 trace_io_uring_defer(ctx, req, req->user_data);
6022 de->req = req;
6023 de->seq = seq;
6024 list_add_tail(&de->list, &ctx->defer_list);
6025 spin_unlock_irq(&ctx->completion_lock);
6026 return -EIOCBQUEUED;
6027 }
6028
6029 static void io_clean_op(struct io_kiocb *req)
6030 {
6031 if (req->flags & REQ_F_BUFFER_SELECTED) {
6032 switch (req->opcode) {
6033 case IORING_OP_READV:
6034 case IORING_OP_READ_FIXED:
6035 case IORING_OP_READ:
6036 kfree((void *)(unsigned long)req->rw.addr);
6037 break;
6038 case IORING_OP_RECVMSG:
6039 case IORING_OP_RECV:
6040 kfree(req->sr_msg.kbuf);
6041 break;
6042 }
6043 req->flags &= ~REQ_F_BUFFER_SELECTED;
6044 }
6045
6046 if (req->flags & REQ_F_NEED_CLEANUP) {
6047 switch (req->opcode) {
6048 case IORING_OP_READV:
6049 case IORING_OP_READ_FIXED:
6050 case IORING_OP_READ:
6051 case IORING_OP_WRITEV:
6052 case IORING_OP_WRITE_FIXED:
6053 case IORING_OP_WRITE: {
6054 struct io_async_rw *io = req->async_data;
6055 if (io->free_iovec)
6056 kfree(io->free_iovec);
6057 break;
6058 }
6059 case IORING_OP_RECVMSG:
6060 case IORING_OP_SENDMSG: {
6061 struct io_async_msghdr *io = req->async_data;
6062
6063 kfree(io->free_iov);
6064 break;
6065 }
6066 case IORING_OP_SPLICE:
6067 case IORING_OP_TEE:
6068 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6069 io_put_file(req->splice.file_in);
6070 break;
6071 case IORING_OP_OPENAT:
6072 case IORING_OP_OPENAT2:
6073 if (req->open.filename)
6074 putname(req->open.filename);
6075 break;
6076 case IORING_OP_RENAMEAT:
6077 putname(req->rename.oldpath);
6078 putname(req->rename.newpath);
6079 break;
6080 case IORING_OP_UNLINKAT:
6081 putname(req->unlink.filename);
6082 break;
6083 }
6084 req->flags &= ~REQ_F_NEED_CLEANUP;
6085 }
6086 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6087 kfree(req->apoll->double_poll);
6088 kfree(req->apoll);
6089 req->apoll = NULL;
6090 }
6091 if (req->flags & REQ_F_INFLIGHT) {
6092 struct io_uring_task *tctx = req->task->io_uring;
6093
6094 atomic_dec(&tctx->inflight_tracked);
6095 req->flags &= ~REQ_F_INFLIGHT;
6096 }
6097 }
6098
6099 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6100 {
6101 struct io_ring_ctx *ctx = req->ctx;
6102 const struct cred *creds = NULL;
6103 int ret;
6104
6105 if (req->work.creds && req->work.creds != current_cred())
6106 creds = override_creds(req->work.creds);
6107
6108 switch (req->opcode) {
6109 case IORING_OP_NOP:
6110 ret = io_nop(req, issue_flags);
6111 break;
6112 case IORING_OP_READV:
6113 case IORING_OP_READ_FIXED:
6114 case IORING_OP_READ:
6115 ret = io_read(req, issue_flags);
6116 break;
6117 case IORING_OP_WRITEV:
6118 case IORING_OP_WRITE_FIXED:
6119 case IORING_OP_WRITE:
6120 ret = io_write(req, issue_flags);
6121 break;
6122 case IORING_OP_FSYNC:
6123 ret = io_fsync(req, issue_flags);
6124 break;
6125 case IORING_OP_POLL_ADD:
6126 ret = io_poll_add(req, issue_flags);
6127 break;
6128 case IORING_OP_POLL_REMOVE:
6129 ret = io_poll_update(req, issue_flags);
6130 break;
6131 case IORING_OP_SYNC_FILE_RANGE:
6132 ret = io_sync_file_range(req, issue_flags);
6133 break;
6134 case IORING_OP_SENDMSG:
6135 ret = io_sendmsg(req, issue_flags);
6136 break;
6137 case IORING_OP_SEND:
6138 ret = io_send(req, issue_flags);
6139 break;
6140 case IORING_OP_RECVMSG:
6141 ret = io_recvmsg(req, issue_flags);
6142 break;
6143 case IORING_OP_RECV:
6144 ret = io_recv(req, issue_flags);
6145 break;
6146 case IORING_OP_TIMEOUT:
6147 ret = io_timeout(req, issue_flags);
6148 break;
6149 case IORING_OP_TIMEOUT_REMOVE:
6150 ret = io_timeout_remove(req, issue_flags);
6151 break;
6152 case IORING_OP_ACCEPT:
6153 ret = io_accept(req, issue_flags);
6154 break;
6155 case IORING_OP_CONNECT:
6156 ret = io_connect(req, issue_flags);
6157 break;
6158 case IORING_OP_ASYNC_CANCEL:
6159 ret = io_async_cancel(req, issue_flags);
6160 break;
6161 case IORING_OP_FALLOCATE:
6162 ret = io_fallocate(req, issue_flags);
6163 break;
6164 case IORING_OP_OPENAT:
6165 ret = io_openat(req, issue_flags);
6166 break;
6167 case IORING_OP_CLOSE:
6168 ret = io_close(req, issue_flags);
6169 break;
6170 case IORING_OP_FILES_UPDATE:
6171 ret = io_files_update(req, issue_flags);
6172 break;
6173 case IORING_OP_STATX:
6174 ret = io_statx(req, issue_flags);
6175 break;
6176 case IORING_OP_FADVISE:
6177 ret = io_fadvise(req, issue_flags);
6178 break;
6179 case IORING_OP_MADVISE:
6180 ret = io_madvise(req, issue_flags);
6181 break;
6182 case IORING_OP_OPENAT2:
6183 ret = io_openat2(req, issue_flags);
6184 break;
6185 case IORING_OP_EPOLL_CTL:
6186 ret = io_epoll_ctl(req, issue_flags);
6187 break;
6188 case IORING_OP_SPLICE:
6189 ret = io_splice(req, issue_flags);
6190 break;
6191 case IORING_OP_PROVIDE_BUFFERS:
6192 ret = io_provide_buffers(req, issue_flags);
6193 break;
6194 case IORING_OP_REMOVE_BUFFERS:
6195 ret = io_remove_buffers(req, issue_flags);
6196 break;
6197 case IORING_OP_TEE:
6198 ret = io_tee(req, issue_flags);
6199 break;
6200 case IORING_OP_SHUTDOWN:
6201 ret = io_shutdown(req, issue_flags);
6202 break;
6203 case IORING_OP_RENAMEAT:
6204 ret = io_renameat(req, issue_flags);
6205 break;
6206 case IORING_OP_UNLINKAT:
6207 ret = io_unlinkat(req, issue_flags);
6208 break;
6209 default:
6210 ret = -EINVAL;
6211 break;
6212 }
6213
6214 if (creds)
6215 revert_creds(creds);
6216
6217 if (ret)
6218 return ret;
6219
6220 /* If the op doesn't have a file, we're not polling for it */
6221 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6222 const bool in_async = io_wq_current_is_worker();
6223
6224 /* workqueue context doesn't hold uring_lock, grab it now */
6225 if (in_async)
6226 mutex_lock(&ctx->uring_lock);
6227
6228 io_iopoll_req_issued(req, in_async);
6229
6230 if (in_async)
6231 mutex_unlock(&ctx->uring_lock);
6232 }
6233
6234 return 0;
6235 }
6236
6237 static void io_wq_submit_work(struct io_wq_work *work)
6238 {
6239 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6240 struct io_kiocb *timeout;
6241 int ret = 0;
6242
6243 timeout = io_prep_linked_timeout(req);
6244 if (timeout)
6245 io_queue_linked_timeout(timeout);
6246
6247 if (work->flags & IO_WQ_WORK_CANCEL)
6248 ret = -ECANCELED;
6249
6250 if (!ret) {
6251 do {
6252 ret = io_issue_sqe(req, 0);
6253 /*
6254 * We can get EAGAIN for polled IO even though we're
6255 * forcing a sync submission from here, since we can't
6256 * wait for request slots on the block side.
6257 */
6258 if (ret != -EAGAIN)
6259 break;
6260 cond_resched();
6261 } while (1);
6262 }
6263
6264 /* avoid locking problems by failing it from a clean context */
6265 if (ret) {
6266 /* io-wq is going to take one down */
6267 req_ref_get(req);
6268 io_req_task_queue_fail(req, ret);
6269 }
6270 }
6271
6272 #define FFS_ASYNC_READ 0x1UL
6273 #define FFS_ASYNC_WRITE 0x2UL
6274 #ifdef CONFIG_64BIT
6275 #define FFS_ISREG 0x4UL
6276 #else
6277 #define FFS_ISREG 0x0UL
6278 #endif
6279 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6280
6281 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6282 unsigned i)
6283 {
6284 struct io_fixed_file *table_l2;
6285
6286 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6287 return &table_l2[i & IORING_FILE_TABLE_MASK];
6288 }
6289
6290 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6291 int index)
6292 {
6293 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6294
6295 return (struct file *) (slot->file_ptr & FFS_MASK);
6296 }
6297
6298 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6299 {
6300 unsigned long file_ptr = (unsigned long) file;
6301
6302 if (__io_file_supports_async(file, READ))
6303 file_ptr |= FFS_ASYNC_READ;
6304 if (__io_file_supports_async(file, WRITE))
6305 file_ptr |= FFS_ASYNC_WRITE;
6306 if (S_ISREG(file_inode(file)->i_mode))
6307 file_ptr |= FFS_ISREG;
6308 file_slot->file_ptr = file_ptr;
6309 }
6310
6311 static struct file *io_file_get(struct io_submit_state *state,
6312 struct io_kiocb *req, int fd, bool fixed)
6313 {
6314 struct io_ring_ctx *ctx = req->ctx;
6315 struct file *file;
6316
6317 if (fixed) {
6318 unsigned long file_ptr;
6319
6320 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6321 return NULL;
6322 fd = array_index_nospec(fd, ctx->nr_user_files);
6323 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6324 file = (struct file *) (file_ptr & FFS_MASK);
6325 file_ptr &= ~FFS_MASK;
6326 /* mask in overlapping REQ_F and FFS bits */
6327 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6328 io_req_set_rsrc_node(req);
6329 } else {
6330 trace_io_uring_file_get(ctx, fd);
6331 file = __io_file_get(state, fd);
6332
6333 /* we don't allow fixed io_uring files */
6334 if (file && unlikely(file->f_op == &io_uring_fops))
6335 io_req_track_inflight(req);
6336 }
6337
6338 return file;
6339 }
6340
6341 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6342 {
6343 struct io_timeout_data *data = container_of(timer,
6344 struct io_timeout_data, timer);
6345 struct io_kiocb *prev, *req = data->req;
6346 struct io_ring_ctx *ctx = req->ctx;
6347 unsigned long flags;
6348
6349 spin_lock_irqsave(&ctx->completion_lock, flags);
6350 prev = req->timeout.head;
6351 req->timeout.head = NULL;
6352
6353 /*
6354 * We don't expect the list to be empty, that will only happen if we
6355 * race with the completion of the linked work.
6356 */
6357 if (prev && req_ref_inc_not_zero(prev))
6358 io_remove_next_linked(prev);
6359 else
6360 prev = NULL;
6361 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6362
6363 if (prev) {
6364 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6365 io_put_req_deferred(prev, 1);
6366 } else {
6367 io_req_complete_post(req, -ETIME, 0);
6368 }
6369 io_put_req_deferred(req, 1);
6370 return HRTIMER_NORESTART;
6371 }
6372
6373 static void io_queue_linked_timeout(struct io_kiocb *req)
6374 {
6375 struct io_ring_ctx *ctx = req->ctx;
6376
6377 spin_lock_irq(&ctx->completion_lock);
6378 /*
6379 * If the back reference is NULL, then our linked request finished
6380 * before we got a chance to setup the timer
6381 */
6382 if (req->timeout.head) {
6383 struct io_timeout_data *data = req->async_data;
6384
6385 data->timer.function = io_link_timeout_fn;
6386 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6387 data->mode);
6388 }
6389 spin_unlock_irq(&ctx->completion_lock);
6390 /* drop submission reference */
6391 io_put_req(req);
6392 }
6393
6394 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6395 {
6396 struct io_kiocb *nxt = req->link;
6397
6398 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6399 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6400 return NULL;
6401
6402 nxt->timeout.head = req;
6403 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6404 req->flags |= REQ_F_LINK_TIMEOUT;
6405 return nxt;
6406 }
6407
6408 static void __io_queue_sqe(struct io_kiocb *req)
6409 {
6410 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6411 int ret;
6412
6413 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6414
6415 /*
6416 * We async punt it if the file wasn't marked NOWAIT, or if the file
6417 * doesn't support non-blocking read/write attempts
6418 */
6419 if (likely(!ret)) {
6420 /* drop submission reference */
6421 if (req->flags & REQ_F_COMPLETE_INLINE) {
6422 struct io_ring_ctx *ctx = req->ctx;
6423 struct io_comp_state *cs = &ctx->submit_state.comp;
6424
6425 cs->reqs[cs->nr++] = req;
6426 if (cs->nr == ARRAY_SIZE(cs->reqs))
6427 io_submit_flush_completions(cs, ctx);
6428 } else {
6429 io_put_req(req);
6430 }
6431 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6432 if (!io_arm_poll_handler(req)) {
6433 /*
6434 * Queued up for async execution, worker will release
6435 * submit reference when the iocb is actually submitted.
6436 */
6437 io_queue_async_work(req);
6438 }
6439 } else {
6440 io_req_complete_failed(req, ret);
6441 }
6442 if (linked_timeout)
6443 io_queue_linked_timeout(linked_timeout);
6444 }
6445
6446 static void io_queue_sqe(struct io_kiocb *req)
6447 {
6448 int ret;
6449
6450 ret = io_req_defer(req);
6451 if (ret) {
6452 if (ret != -EIOCBQUEUED) {
6453 fail_req:
6454 io_req_complete_failed(req, ret);
6455 }
6456 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6457 ret = io_req_prep_async(req);
6458 if (unlikely(ret))
6459 goto fail_req;
6460 io_queue_async_work(req);
6461 } else {
6462 __io_queue_sqe(req);
6463 }
6464 }
6465
6466 /*
6467 * Check SQE restrictions (opcode and flags).
6468 *
6469 * Returns 'true' if SQE is allowed, 'false' otherwise.
6470 */
6471 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6472 struct io_kiocb *req,
6473 unsigned int sqe_flags)
6474 {
6475 if (!ctx->restricted)
6476 return true;
6477
6478 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6479 return false;
6480
6481 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6482 ctx->restrictions.sqe_flags_required)
6483 return false;
6484
6485 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6486 ctx->restrictions.sqe_flags_required))
6487 return false;
6488
6489 return true;
6490 }
6491
6492 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6493 const struct io_uring_sqe *sqe)
6494 {
6495 struct io_submit_state *state;
6496 unsigned int sqe_flags;
6497 int personality, ret = 0;
6498
6499 req->opcode = READ_ONCE(sqe->opcode);
6500 /* same numerical values with corresponding REQ_F_*, safe to copy */
6501 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6502 req->user_data = READ_ONCE(sqe->user_data);
6503 req->async_data = NULL;
6504 req->file = NULL;
6505 req->ctx = ctx;
6506 req->link = NULL;
6507 req->fixed_rsrc_refs = NULL;
6508 /* one is dropped after submission, the other at completion */
6509 atomic_set(&req->refs, 2);
6510 req->task = current;
6511 req->result = 0;
6512 req->work.creds = NULL;
6513
6514 /* enforce forwards compatibility on users */
6515 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6516 return -EINVAL;
6517 if (unlikely(req->opcode >= IORING_OP_LAST))
6518 return -EINVAL;
6519 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6520 return -EACCES;
6521
6522 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6523 !io_op_defs[req->opcode].buffer_select)
6524 return -EOPNOTSUPP;
6525
6526 personality = READ_ONCE(sqe->personality);
6527 if (personality) {
6528 req->work.creds = xa_load(&ctx->personalities, personality);
6529 if (!req->work.creds)
6530 return -EINVAL;
6531 get_cred(req->work.creds);
6532 }
6533 state = &ctx->submit_state;
6534
6535 /*
6536 * Plug now if we have more than 1 IO left after this, and the target
6537 * is potentially a read/write to block based storage.
6538 */
6539 if (!state->plug_started && state->ios_left > 1 &&
6540 io_op_defs[req->opcode].plug) {
6541 blk_start_plug(&state->plug);
6542 state->plug_started = true;
6543 }
6544
6545 if (io_op_defs[req->opcode].needs_file) {
6546 bool fixed = req->flags & REQ_F_FIXED_FILE;
6547
6548 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6549 if (unlikely(!req->file))
6550 ret = -EBADF;
6551 }
6552
6553 state->ios_left--;
6554 return ret;
6555 }
6556
6557 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6558 const struct io_uring_sqe *sqe)
6559 {
6560 struct io_submit_link *link = &ctx->submit_state.link;
6561 int ret;
6562
6563 ret = io_init_req(ctx, req, sqe);
6564 if (unlikely(ret)) {
6565 fail_req:
6566 if (link->head) {
6567 /* fail even hard links since we don't submit */
6568 link->head->flags |= REQ_F_FAIL_LINK;
6569 io_req_complete_failed(link->head, -ECANCELED);
6570 link->head = NULL;
6571 }
6572 io_req_complete_failed(req, ret);
6573 return ret;
6574 }
6575 ret = io_req_prep(req, sqe);
6576 if (unlikely(ret))
6577 goto fail_req;
6578
6579 /* don't need @sqe from now on */
6580 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6581 true, ctx->flags & IORING_SETUP_SQPOLL);
6582
6583 /*
6584 * If we already have a head request, queue this one for async
6585 * submittal once the head completes. If we don't have a head but
6586 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6587 * submitted sync once the chain is complete. If none of those
6588 * conditions are true (normal request), then just queue it.
6589 */
6590 if (link->head) {
6591 struct io_kiocb *head = link->head;
6592
6593 /*
6594 * Taking sequential execution of a link, draining both sides
6595 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6596 * requests in the link. So, it drains the head and the
6597 * next after the link request. The last one is done via
6598 * drain_next flag to persist the effect across calls.
6599 */
6600 if (req->flags & REQ_F_IO_DRAIN) {
6601 head->flags |= REQ_F_IO_DRAIN;
6602 ctx->drain_next = 1;
6603 }
6604 ret = io_req_prep_async(req);
6605 if (unlikely(ret))
6606 goto fail_req;
6607 trace_io_uring_link(ctx, req, head);
6608 link->last->link = req;
6609 link->last = req;
6610
6611 /* last request of a link, enqueue the link */
6612 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6613 io_queue_sqe(head);
6614 link->head = NULL;
6615 }
6616 } else {
6617 if (unlikely(ctx->drain_next)) {
6618 req->flags |= REQ_F_IO_DRAIN;
6619 ctx->drain_next = 0;
6620 }
6621 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6622 link->head = req;
6623 link->last = req;
6624 } else {
6625 io_queue_sqe(req);
6626 }
6627 }
6628
6629 return 0;
6630 }
6631
6632 /*
6633 * Batched submission is done, ensure local IO is flushed out.
6634 */
6635 static void io_submit_state_end(struct io_submit_state *state,
6636 struct io_ring_ctx *ctx)
6637 {
6638 if (state->link.head)
6639 io_queue_sqe(state->link.head);
6640 if (state->comp.nr)
6641 io_submit_flush_completions(&state->comp, ctx);
6642 if (state->plug_started)
6643 blk_finish_plug(&state->plug);
6644 io_state_file_put(state);
6645 }
6646
6647 /*
6648 * Start submission side cache.
6649 */
6650 static void io_submit_state_start(struct io_submit_state *state,
6651 unsigned int max_ios)
6652 {
6653 state->plug_started = false;
6654 state->ios_left = max_ios;
6655 /* set only head, no need to init link_last in advance */
6656 state->link.head = NULL;
6657 }
6658
6659 static void io_commit_sqring(struct io_ring_ctx *ctx)
6660 {
6661 struct io_rings *rings = ctx->rings;
6662
6663 /*
6664 * Ensure any loads from the SQEs are done at this point,
6665 * since once we write the new head, the application could
6666 * write new data to them.
6667 */
6668 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6669 }
6670
6671 /*
6672 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6673 * that is mapped by userspace. This means that care needs to be taken to
6674 * ensure that reads are stable, as we cannot rely on userspace always
6675 * being a good citizen. If members of the sqe are validated and then later
6676 * used, it's important that those reads are done through READ_ONCE() to
6677 * prevent a re-load down the line.
6678 */
6679 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6680 {
6681 u32 *sq_array = ctx->sq_array;
6682 unsigned head;
6683
6684 /*
6685 * The cached sq head (or cq tail) serves two purposes:
6686 *
6687 * 1) allows us to batch the cost of updating the user visible
6688 * head updates.
6689 * 2) allows the kernel side to track the head on its own, even
6690 * though the application is the one updating it.
6691 */
6692 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6693 if (likely(head < ctx->sq_entries))
6694 return &ctx->sq_sqes[head];
6695
6696 /* drop invalid entries */
6697 ctx->cached_sq_dropped++;
6698 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6699 return NULL;
6700 }
6701
6702 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6703 {
6704 int submitted = 0;
6705
6706 /* make sure SQ entry isn't read before tail */
6707 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6708
6709 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6710 return -EAGAIN;
6711
6712 percpu_counter_add(&current->io_uring->inflight, nr);
6713 refcount_add(nr, &current->usage);
6714 io_submit_state_start(&ctx->submit_state, nr);
6715
6716 while (submitted < nr) {
6717 const struct io_uring_sqe *sqe;
6718 struct io_kiocb *req;
6719
6720 req = io_alloc_req(ctx);
6721 if (unlikely(!req)) {
6722 if (!submitted)
6723 submitted = -EAGAIN;
6724 break;
6725 }
6726 sqe = io_get_sqe(ctx);
6727 if (unlikely(!sqe)) {
6728 kmem_cache_free(req_cachep, req);
6729 break;
6730 }
6731 /* will complete beyond this point, count as submitted */
6732 submitted++;
6733 if (io_submit_sqe(ctx, req, sqe))
6734 break;
6735 }
6736
6737 if (unlikely(submitted != nr)) {
6738 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6739 struct io_uring_task *tctx = current->io_uring;
6740 int unused = nr - ref_used;
6741
6742 percpu_ref_put_many(&ctx->refs, unused);
6743 percpu_counter_sub(&tctx->inflight, unused);
6744 put_task_struct_many(current, unused);
6745 }
6746
6747 io_submit_state_end(&ctx->submit_state, ctx);
6748 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6749 io_commit_sqring(ctx);
6750
6751 return submitted;
6752 }
6753
6754 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6755 {
6756 /* Tell userspace we may need a wakeup call */
6757 spin_lock_irq(&ctx->completion_lock);
6758 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6759 spin_unlock_irq(&ctx->completion_lock);
6760 }
6761
6762 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6763 {
6764 spin_lock_irq(&ctx->completion_lock);
6765 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6766 spin_unlock_irq(&ctx->completion_lock);
6767 }
6768
6769 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6770 {
6771 unsigned int to_submit;
6772 int ret = 0;
6773
6774 to_submit = io_sqring_entries(ctx);
6775 /* if we're handling multiple rings, cap submit size for fairness */
6776 if (cap_entries && to_submit > 8)
6777 to_submit = 8;
6778
6779 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6780 unsigned nr_events = 0;
6781
6782 mutex_lock(&ctx->uring_lock);
6783 if (!list_empty(&ctx->iopoll_list))
6784 io_do_iopoll(ctx, &nr_events, 0);
6785
6786 /*
6787 * Don't submit if refs are dying, good for io_uring_register(),
6788 * but also it is relied upon by io_ring_exit_work()
6789 */
6790 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6791 !(ctx->flags & IORING_SETUP_R_DISABLED))
6792 ret = io_submit_sqes(ctx, to_submit);
6793 mutex_unlock(&ctx->uring_lock);
6794 }
6795
6796 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6797 wake_up(&ctx->sqo_sq_wait);
6798
6799 return ret;
6800 }
6801
6802 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6803 {
6804 struct io_ring_ctx *ctx;
6805 unsigned sq_thread_idle = 0;
6806
6807 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6808 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6809 sqd->sq_thread_idle = sq_thread_idle;
6810 }
6811
6812 static int io_sq_thread(void *data)
6813 {
6814 struct io_sq_data *sqd = data;
6815 struct io_ring_ctx *ctx;
6816 unsigned long timeout = 0;
6817 char buf[TASK_COMM_LEN];
6818 DEFINE_WAIT(wait);
6819
6820 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6821 set_task_comm(current, buf);
6822
6823 if (sqd->sq_cpu != -1)
6824 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6825 else
6826 set_cpus_allowed_ptr(current, cpu_online_mask);
6827 current->flags |= PF_NO_SETAFFINITY;
6828
6829 mutex_lock(&sqd->lock);
6830 /* a user may had exited before the thread started */
6831 io_run_task_work_head(&sqd->park_task_work);
6832
6833 while (!test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state)) {
6834 int ret;
6835 bool cap_entries, sqt_spin, needs_sched;
6836
6837 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6838 signal_pending(current)) {
6839 bool did_sig = false;
6840
6841 mutex_unlock(&sqd->lock);
6842 if (signal_pending(current)) {
6843 struct ksignal ksig;
6844
6845 did_sig = get_signal(&ksig);
6846 }
6847 cond_resched();
6848 mutex_lock(&sqd->lock);
6849 io_run_task_work();
6850 io_run_task_work_head(&sqd->park_task_work);
6851 if (did_sig)
6852 break;
6853 timeout = jiffies + sqd->sq_thread_idle;
6854 continue;
6855 }
6856 sqt_spin = false;
6857 cap_entries = !list_is_singular(&sqd->ctx_list);
6858 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6859 const struct cred *creds = NULL;
6860
6861 if (ctx->sq_creds != current_cred())
6862 creds = override_creds(ctx->sq_creds);
6863 ret = __io_sq_thread(ctx, cap_entries);
6864 if (creds)
6865 revert_creds(creds);
6866 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6867 sqt_spin = true;
6868 }
6869
6870 if (sqt_spin || !time_after(jiffies, timeout)) {
6871 io_run_task_work();
6872 cond_resched();
6873 if (sqt_spin)
6874 timeout = jiffies + sqd->sq_thread_idle;
6875 continue;
6876 }
6877
6878 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6879 if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state)) {
6880 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6881 io_ring_set_wakeup_flag(ctx);
6882
6883 needs_sched = true;
6884 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6885 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6886 !list_empty_careful(&ctx->iopoll_list)) {
6887 needs_sched = false;
6888 break;
6889 }
6890 if (io_sqring_entries(ctx)) {
6891 needs_sched = false;
6892 break;
6893 }
6894 }
6895
6896 if (needs_sched) {
6897 mutex_unlock(&sqd->lock);
6898 schedule();
6899 mutex_lock(&sqd->lock);
6900 }
6901 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6902 io_ring_clear_wakeup_flag(ctx);
6903 }
6904
6905 finish_wait(&sqd->wait, &wait);
6906 io_run_task_work_head(&sqd->park_task_work);
6907 timeout = jiffies + sqd->sq_thread_idle;
6908 }
6909
6910 io_uring_cancel_sqpoll(sqd);
6911 sqd->thread = NULL;
6912 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6913 io_ring_set_wakeup_flag(ctx);
6914 io_run_task_work();
6915 io_run_task_work_head(&sqd->park_task_work);
6916 mutex_unlock(&sqd->lock);
6917
6918 complete(&sqd->exited);
6919 do_exit(0);
6920 }
6921
6922 struct io_wait_queue {
6923 struct wait_queue_entry wq;
6924 struct io_ring_ctx *ctx;
6925 unsigned to_wait;
6926 unsigned nr_timeouts;
6927 };
6928
6929 static inline bool io_should_wake(struct io_wait_queue *iowq)
6930 {
6931 struct io_ring_ctx *ctx = iowq->ctx;
6932
6933 /*
6934 * Wake up if we have enough events, or if a timeout occurred since we
6935 * started waiting. For timeouts, we always want to return to userspace,
6936 * regardless of event count.
6937 */
6938 return io_cqring_events(ctx) >= iowq->to_wait ||
6939 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6940 }
6941
6942 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6943 int wake_flags, void *key)
6944 {
6945 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6946 wq);
6947
6948 /*
6949 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6950 * the task, and the next invocation will do it.
6951 */
6952 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
6953 return autoremove_wake_function(curr, mode, wake_flags, key);
6954 return -1;
6955 }
6956
6957 static int io_run_task_work_sig(void)
6958 {
6959 if (io_run_task_work())
6960 return 1;
6961 if (!signal_pending(current))
6962 return 0;
6963 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6964 return -ERESTARTSYS;
6965 return -EINTR;
6966 }
6967
6968 /* when returns >0, the caller should retry */
6969 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6970 struct io_wait_queue *iowq,
6971 signed long *timeout)
6972 {
6973 int ret;
6974
6975 /* make sure we run task_work before checking for signals */
6976 ret = io_run_task_work_sig();
6977 if (ret || io_should_wake(iowq))
6978 return ret;
6979 /* let the caller flush overflows, retry */
6980 if (test_bit(0, &ctx->cq_check_overflow))
6981 return 1;
6982
6983 *timeout = schedule_timeout(*timeout);
6984 return !*timeout ? -ETIME : 1;
6985 }
6986
6987 /*
6988 * Wait until events become available, if we don't already have some. The
6989 * application must reap them itself, as they reside on the shared cq ring.
6990 */
6991 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6992 const sigset_t __user *sig, size_t sigsz,
6993 struct __kernel_timespec __user *uts)
6994 {
6995 struct io_wait_queue iowq = {
6996 .wq = {
6997 .private = current,
6998 .func = io_wake_function,
6999 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7000 },
7001 .ctx = ctx,
7002 .to_wait = min_events,
7003 };
7004 struct io_rings *rings = ctx->rings;
7005 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7006 int ret;
7007
7008 do {
7009 io_cqring_overflow_flush(ctx, false);
7010 if (io_cqring_events(ctx) >= min_events)
7011 return 0;
7012 if (!io_run_task_work())
7013 break;
7014 } while (1);
7015
7016 if (sig) {
7017 #ifdef CONFIG_COMPAT
7018 if (in_compat_syscall())
7019 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7020 sigsz);
7021 else
7022 #endif
7023 ret = set_user_sigmask(sig, sigsz);
7024
7025 if (ret)
7026 return ret;
7027 }
7028
7029 if (uts) {
7030 struct timespec64 ts;
7031
7032 if (get_timespec64(&ts, uts))
7033 return -EFAULT;
7034 timeout = timespec64_to_jiffies(&ts);
7035 }
7036
7037 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7038 trace_io_uring_cqring_wait(ctx, min_events);
7039 do {
7040 /* if we can't even flush overflow, don't wait for more */
7041 if (!io_cqring_overflow_flush(ctx, false)) {
7042 ret = -EBUSY;
7043 break;
7044 }
7045 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7046 TASK_INTERRUPTIBLE);
7047 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7048 finish_wait(&ctx->wait, &iowq.wq);
7049 cond_resched();
7050 } while (ret > 0);
7051
7052 restore_saved_sigmask_unless(ret == -EINTR);
7053
7054 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7055 }
7056
7057 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7058 {
7059 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7060
7061 for (i = 0; i < nr_tables; i++)
7062 kfree(table->files[i]);
7063 kfree(table->files);
7064 table->files = NULL;
7065 }
7066
7067 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7068 {
7069 spin_lock_bh(&ctx->rsrc_ref_lock);
7070 }
7071
7072 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7073 {
7074 spin_unlock_bh(&ctx->rsrc_ref_lock);
7075 }
7076
7077 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7078 {
7079 percpu_ref_exit(&ref_node->refs);
7080 kfree(ref_node);
7081 }
7082
7083 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7084 struct io_rsrc_data *data_to_kill)
7085 {
7086 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7087 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7088
7089 if (data_to_kill) {
7090 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7091
7092 rsrc_node->rsrc_data = data_to_kill;
7093 io_rsrc_ref_lock(ctx);
7094 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7095 io_rsrc_ref_unlock(ctx);
7096
7097 atomic_inc(&data_to_kill->refs);
7098 percpu_ref_kill(&rsrc_node->refs);
7099 ctx->rsrc_node = NULL;
7100 }
7101
7102 if (!ctx->rsrc_node) {
7103 ctx->rsrc_node = ctx->rsrc_backup_node;
7104 ctx->rsrc_backup_node = NULL;
7105 }
7106 }
7107
7108 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7109 {
7110 if (ctx->rsrc_backup_node)
7111 return 0;
7112 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7113 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7114 }
7115
7116 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7117 {
7118 int ret;
7119
7120 /* As we may drop ->uring_lock, other task may have started quiesce */
7121 if (data->quiesce)
7122 return -ENXIO;
7123
7124 data->quiesce = true;
7125 do {
7126 ret = io_rsrc_node_switch_start(ctx);
7127 if (ret)
7128 break;
7129 io_rsrc_node_switch(ctx, data);
7130
7131 /* kill initial ref, already quiesced if zero */
7132 if (atomic_dec_and_test(&data->refs))
7133 break;
7134 flush_delayed_work(&ctx->rsrc_put_work);
7135 ret = wait_for_completion_interruptible(&data->done);
7136 if (!ret)
7137 break;
7138
7139 atomic_inc(&data->refs);
7140 /* wait for all works potentially completing data->done */
7141 flush_delayed_work(&ctx->rsrc_put_work);
7142 reinit_completion(&data->done);
7143
7144 mutex_unlock(&ctx->uring_lock);
7145 ret = io_run_task_work_sig();
7146 mutex_lock(&ctx->uring_lock);
7147 } while (ret >= 0);
7148 data->quiesce = false;
7149
7150 return ret;
7151 }
7152
7153 static void io_rsrc_data_free(struct io_rsrc_data *data)
7154 {
7155 kvfree(data->tags);
7156 kfree(data);
7157 }
7158
7159 static struct io_rsrc_data *io_rsrc_data_alloc(struct io_ring_ctx *ctx,
7160 rsrc_put_fn *do_put,
7161 unsigned nr)
7162 {
7163 struct io_rsrc_data *data;
7164
7165 data = kzalloc(sizeof(*data), GFP_KERNEL);
7166 if (!data)
7167 return NULL;
7168
7169 data->tags = kvcalloc(nr, sizeof(*data->tags), GFP_KERNEL);
7170 if (!data->tags) {
7171 kfree(data);
7172 return NULL;
7173 }
7174
7175 atomic_set(&data->refs, 1);
7176 data->ctx = ctx;
7177 data->do_put = do_put;
7178 init_completion(&data->done);
7179 return data;
7180 }
7181
7182 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7183 {
7184 #if defined(CONFIG_UNIX)
7185 if (ctx->ring_sock) {
7186 struct sock *sock = ctx->ring_sock->sk;
7187 struct sk_buff *skb;
7188
7189 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7190 kfree_skb(skb);
7191 }
7192 #else
7193 int i;
7194
7195 for (i = 0; i < ctx->nr_user_files; i++) {
7196 struct file *file;
7197
7198 file = io_file_from_index(ctx, i);
7199 if (file)
7200 fput(file);
7201 }
7202 #endif
7203 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7204 io_rsrc_data_free(ctx->file_data);
7205 ctx->file_data = NULL;
7206 ctx->nr_user_files = 0;
7207 }
7208
7209 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7210 {
7211 int ret;
7212
7213 if (!ctx->file_data)
7214 return -ENXIO;
7215 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7216 if (!ret)
7217 __io_sqe_files_unregister(ctx);
7218 return ret;
7219 }
7220
7221 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7222 __releases(&sqd->lock)
7223 {
7224 WARN_ON_ONCE(sqd->thread == current);
7225
7226 /*
7227 * Do the dance but not conditional clear_bit() because it'd race with
7228 * other threads incrementing park_pending and setting the bit.
7229 */
7230 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7231 if (atomic_dec_return(&sqd->park_pending))
7232 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7233 mutex_unlock(&sqd->lock);
7234 }
7235
7236 static void io_sq_thread_park(struct io_sq_data *sqd)
7237 __acquires(&sqd->lock)
7238 {
7239 WARN_ON_ONCE(sqd->thread == current);
7240
7241 atomic_inc(&sqd->park_pending);
7242 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7243 mutex_lock(&sqd->lock);
7244 if (sqd->thread)
7245 wake_up_process(sqd->thread);
7246 }
7247
7248 static void io_sq_thread_stop(struct io_sq_data *sqd)
7249 {
7250 WARN_ON_ONCE(sqd->thread == current);
7251 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7252
7253 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7254 mutex_lock(&sqd->lock);
7255 if (sqd->thread)
7256 wake_up_process(sqd->thread);
7257 mutex_unlock(&sqd->lock);
7258 wait_for_completion(&sqd->exited);
7259 }
7260
7261 static void io_put_sq_data(struct io_sq_data *sqd)
7262 {
7263 if (refcount_dec_and_test(&sqd->refs)) {
7264 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7265
7266 io_sq_thread_stop(sqd);
7267 kfree(sqd);
7268 }
7269 }
7270
7271 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7272 {
7273 struct io_sq_data *sqd = ctx->sq_data;
7274
7275 if (sqd) {
7276 io_sq_thread_park(sqd);
7277 list_del_init(&ctx->sqd_list);
7278 io_sqd_update_thread_idle(sqd);
7279 io_sq_thread_unpark(sqd);
7280
7281 io_put_sq_data(sqd);
7282 ctx->sq_data = NULL;
7283 }
7284 }
7285
7286 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7287 {
7288 struct io_ring_ctx *ctx_attach;
7289 struct io_sq_data *sqd;
7290 struct fd f;
7291
7292 f = fdget(p->wq_fd);
7293 if (!f.file)
7294 return ERR_PTR(-ENXIO);
7295 if (f.file->f_op != &io_uring_fops) {
7296 fdput(f);
7297 return ERR_PTR(-EINVAL);
7298 }
7299
7300 ctx_attach = f.file->private_data;
7301 sqd = ctx_attach->sq_data;
7302 if (!sqd) {
7303 fdput(f);
7304 return ERR_PTR(-EINVAL);
7305 }
7306 if (sqd->task_tgid != current->tgid) {
7307 fdput(f);
7308 return ERR_PTR(-EPERM);
7309 }
7310
7311 refcount_inc(&sqd->refs);
7312 fdput(f);
7313 return sqd;
7314 }
7315
7316 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7317 bool *attached)
7318 {
7319 struct io_sq_data *sqd;
7320
7321 *attached = false;
7322 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7323 sqd = io_attach_sq_data(p);
7324 if (!IS_ERR(sqd)) {
7325 *attached = true;
7326 return sqd;
7327 }
7328 /* fall through for EPERM case, setup new sqd/task */
7329 if (PTR_ERR(sqd) != -EPERM)
7330 return sqd;
7331 }
7332
7333 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7334 if (!sqd)
7335 return ERR_PTR(-ENOMEM);
7336
7337 atomic_set(&sqd->park_pending, 0);
7338 refcount_set(&sqd->refs, 1);
7339 INIT_LIST_HEAD(&sqd->ctx_list);
7340 mutex_init(&sqd->lock);
7341 init_waitqueue_head(&sqd->wait);
7342 init_completion(&sqd->exited);
7343 return sqd;
7344 }
7345
7346 #if defined(CONFIG_UNIX)
7347 /*
7348 * Ensure the UNIX gc is aware of our file set, so we are certain that
7349 * the io_uring can be safely unregistered on process exit, even if we have
7350 * loops in the file referencing.
7351 */
7352 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7353 {
7354 struct sock *sk = ctx->ring_sock->sk;
7355 struct scm_fp_list *fpl;
7356 struct sk_buff *skb;
7357 int i, nr_files;
7358
7359 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7360 if (!fpl)
7361 return -ENOMEM;
7362
7363 skb = alloc_skb(0, GFP_KERNEL);
7364 if (!skb) {
7365 kfree(fpl);
7366 return -ENOMEM;
7367 }
7368
7369 skb->sk = sk;
7370
7371 nr_files = 0;
7372 fpl->user = get_uid(current_user());
7373 for (i = 0; i < nr; i++) {
7374 struct file *file = io_file_from_index(ctx, i + offset);
7375
7376 if (!file)
7377 continue;
7378 fpl->fp[nr_files] = get_file(file);
7379 unix_inflight(fpl->user, fpl->fp[nr_files]);
7380 nr_files++;
7381 }
7382
7383 if (nr_files) {
7384 fpl->max = SCM_MAX_FD;
7385 fpl->count = nr_files;
7386 UNIXCB(skb).fp = fpl;
7387 skb->destructor = unix_destruct_scm;
7388 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7389 skb_queue_head(&sk->sk_receive_queue, skb);
7390
7391 for (i = 0; i < nr_files; i++)
7392 fput(fpl->fp[i]);
7393 } else {
7394 kfree_skb(skb);
7395 kfree(fpl);
7396 }
7397
7398 return 0;
7399 }
7400
7401 /*
7402 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7403 * causes regular reference counting to break down. We rely on the UNIX
7404 * garbage collection to take care of this problem for us.
7405 */
7406 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7407 {
7408 unsigned left, total;
7409 int ret = 0;
7410
7411 total = 0;
7412 left = ctx->nr_user_files;
7413 while (left) {
7414 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7415
7416 ret = __io_sqe_files_scm(ctx, this_files, total);
7417 if (ret)
7418 break;
7419 left -= this_files;
7420 total += this_files;
7421 }
7422
7423 if (!ret)
7424 return 0;
7425
7426 while (total < ctx->nr_user_files) {
7427 struct file *file = io_file_from_index(ctx, total);
7428
7429 if (file)
7430 fput(file);
7431 total++;
7432 }
7433
7434 return ret;
7435 }
7436 #else
7437 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7438 {
7439 return 0;
7440 }
7441 #endif
7442
7443 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7444 {
7445 unsigned i, nr_tables = DIV_ROUND_UP(nr_files, IORING_MAX_FILES_TABLE);
7446
7447 table->files = kcalloc(nr_tables, sizeof(*table->files), GFP_KERNEL);
7448 if (!table->files)
7449 return false;
7450
7451 for (i = 0; i < nr_tables; i++) {
7452 unsigned int this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7453
7454 table->files[i] = kcalloc(this_files, sizeof(*table->files[i]),
7455 GFP_KERNEL);
7456 if (!table->files[i])
7457 break;
7458 nr_files -= this_files;
7459 }
7460
7461 if (i == nr_tables)
7462 return true;
7463
7464 io_free_file_tables(table, nr_tables * IORING_MAX_FILES_TABLE);
7465 return false;
7466 }
7467
7468 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7469 {
7470 struct file *file = prsrc->file;
7471 #if defined(CONFIG_UNIX)
7472 struct sock *sock = ctx->ring_sock->sk;
7473 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7474 struct sk_buff *skb;
7475 int i;
7476
7477 __skb_queue_head_init(&list);
7478
7479 /*
7480 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7481 * remove this entry and rearrange the file array.
7482 */
7483 skb = skb_dequeue(head);
7484 while (skb) {
7485 struct scm_fp_list *fp;
7486
7487 fp = UNIXCB(skb).fp;
7488 for (i = 0; i < fp->count; i++) {
7489 int left;
7490
7491 if (fp->fp[i] != file)
7492 continue;
7493
7494 unix_notinflight(fp->user, fp->fp[i]);
7495 left = fp->count - 1 - i;
7496 if (left) {
7497 memmove(&fp->fp[i], &fp->fp[i + 1],
7498 left * sizeof(struct file *));
7499 }
7500 fp->count--;
7501 if (!fp->count) {
7502 kfree_skb(skb);
7503 skb = NULL;
7504 } else {
7505 __skb_queue_tail(&list, skb);
7506 }
7507 fput(file);
7508 file = NULL;
7509 break;
7510 }
7511
7512 if (!file)
7513 break;
7514
7515 __skb_queue_tail(&list, skb);
7516
7517 skb = skb_dequeue(head);
7518 }
7519
7520 if (skb_peek(&list)) {
7521 spin_lock_irq(&head->lock);
7522 while ((skb = __skb_dequeue(&list)) != NULL)
7523 __skb_queue_tail(head, skb);
7524 spin_unlock_irq(&head->lock);
7525 }
7526 #else
7527 fput(file);
7528 #endif
7529 }
7530
7531 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7532 {
7533 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7534 struct io_ring_ctx *ctx = rsrc_data->ctx;
7535 struct io_rsrc_put *prsrc, *tmp;
7536
7537 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7538 list_del(&prsrc->list);
7539
7540 if (prsrc->tag) {
7541 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7542 unsigned long flags;
7543
7544 io_ring_submit_lock(ctx, lock_ring);
7545 spin_lock_irqsave(&ctx->completion_lock, flags);
7546 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7547 ctx->cq_extra++;
7548 io_commit_cqring(ctx);
7549 spin_unlock_irqrestore(&ctx->completion_lock, flags);
7550 io_cqring_ev_posted(ctx);
7551 io_ring_submit_unlock(ctx, lock_ring);
7552 }
7553
7554 rsrc_data->do_put(ctx, prsrc);
7555 kfree(prsrc);
7556 }
7557
7558 io_rsrc_node_destroy(ref_node);
7559 if (atomic_dec_and_test(&rsrc_data->refs))
7560 complete(&rsrc_data->done);
7561 }
7562
7563 static void io_rsrc_put_work(struct work_struct *work)
7564 {
7565 struct io_ring_ctx *ctx;
7566 struct llist_node *node;
7567
7568 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7569 node = llist_del_all(&ctx->rsrc_put_llist);
7570
7571 while (node) {
7572 struct io_rsrc_node *ref_node;
7573 struct llist_node *next = node->next;
7574
7575 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7576 __io_rsrc_put_work(ref_node);
7577 node = next;
7578 }
7579 }
7580
7581 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7582 {
7583 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7584 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7585 bool first_add = false;
7586
7587 io_rsrc_ref_lock(ctx);
7588 node->done = true;
7589
7590 while (!list_empty(&ctx->rsrc_ref_list)) {
7591 node = list_first_entry(&ctx->rsrc_ref_list,
7592 struct io_rsrc_node, node);
7593 /* recycle ref nodes in order */
7594 if (!node->done)
7595 break;
7596 list_del(&node->node);
7597 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7598 }
7599 io_rsrc_ref_unlock(ctx);
7600
7601 if (first_add)
7602 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7603 }
7604
7605 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7606 {
7607 struct io_rsrc_node *ref_node;
7608
7609 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7610 if (!ref_node)
7611 return NULL;
7612
7613 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7614 0, GFP_KERNEL)) {
7615 kfree(ref_node);
7616 return NULL;
7617 }
7618 INIT_LIST_HEAD(&ref_node->node);
7619 INIT_LIST_HEAD(&ref_node->rsrc_list);
7620 ref_node->done = false;
7621 return ref_node;
7622 }
7623
7624 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7625 unsigned nr_args, u64 __user *tags)
7626 {
7627 __s32 __user *fds = (__s32 __user *) arg;
7628 struct file *file;
7629 int fd, ret;
7630 unsigned i;
7631 struct io_rsrc_data *file_data;
7632
7633 if (ctx->file_data)
7634 return -EBUSY;
7635 if (!nr_args)
7636 return -EINVAL;
7637 if (nr_args > IORING_MAX_FIXED_FILES)
7638 return -EMFILE;
7639 ret = io_rsrc_node_switch_start(ctx);
7640 if (ret)
7641 return ret;
7642
7643 file_data = io_rsrc_data_alloc(ctx, io_rsrc_file_put, nr_args);
7644 if (!file_data)
7645 return -ENOMEM;
7646 ctx->file_data = file_data;
7647 ret = -ENOMEM;
7648 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7649 goto out_free;
7650
7651 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7652 u64 tag = 0;
7653
7654 if ((tags && copy_from_user(&tag, &tags[i], sizeof(tag))) ||
7655 copy_from_user(&fd, &fds[i], sizeof(fd))) {
7656 ret = -EFAULT;
7657 goto out_fput;
7658 }
7659 /* allow sparse sets */
7660 if (fd == -1) {
7661 ret = -EINVAL;
7662 if (unlikely(tag))
7663 goto out_fput;
7664 continue;
7665 }
7666
7667 file = fget(fd);
7668 ret = -EBADF;
7669 if (unlikely(!file))
7670 goto out_fput;
7671
7672 /*
7673 * Don't allow io_uring instances to be registered. If UNIX
7674 * isn't enabled, then this causes a reference cycle and this
7675 * instance can never get freed. If UNIX is enabled we'll
7676 * handle it just fine, but there's still no point in allowing
7677 * a ring fd as it doesn't support regular read/write anyway.
7678 */
7679 if (file->f_op == &io_uring_fops) {
7680 fput(file);
7681 goto out_fput;
7682 }
7683 ctx->file_data->tags[i] = tag;
7684 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7685 }
7686
7687 ret = io_sqe_files_scm(ctx);
7688 if (ret) {
7689 __io_sqe_files_unregister(ctx);
7690 return ret;
7691 }
7692
7693 io_rsrc_node_switch(ctx, NULL);
7694 return ret;
7695 out_fput:
7696 for (i = 0; i < ctx->nr_user_files; i++) {
7697 file = io_file_from_index(ctx, i);
7698 if (file)
7699 fput(file);
7700 }
7701 io_free_file_tables(&ctx->file_table, nr_args);
7702 ctx->nr_user_files = 0;
7703 out_free:
7704 io_rsrc_data_free(ctx->file_data);
7705 ctx->file_data = NULL;
7706 return ret;
7707 }
7708
7709 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7710 int index)
7711 {
7712 #if defined(CONFIG_UNIX)
7713 struct sock *sock = ctx->ring_sock->sk;
7714 struct sk_buff_head *head = &sock->sk_receive_queue;
7715 struct sk_buff *skb;
7716
7717 /*
7718 * See if we can merge this file into an existing skb SCM_RIGHTS
7719 * file set. If there's no room, fall back to allocating a new skb
7720 * and filling it in.
7721 */
7722 spin_lock_irq(&head->lock);
7723 skb = skb_peek(head);
7724 if (skb) {
7725 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7726
7727 if (fpl->count < SCM_MAX_FD) {
7728 __skb_unlink(skb, head);
7729 spin_unlock_irq(&head->lock);
7730 fpl->fp[fpl->count] = get_file(file);
7731 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7732 fpl->count++;
7733 spin_lock_irq(&head->lock);
7734 __skb_queue_head(head, skb);
7735 } else {
7736 skb = NULL;
7737 }
7738 }
7739 spin_unlock_irq(&head->lock);
7740
7741 if (skb) {
7742 fput(file);
7743 return 0;
7744 }
7745
7746 return __io_sqe_files_scm(ctx, 1, index);
7747 #else
7748 return 0;
7749 #endif
7750 }
7751
7752 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7753 struct io_rsrc_node *node, void *rsrc)
7754 {
7755 struct io_rsrc_put *prsrc;
7756
7757 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7758 if (!prsrc)
7759 return -ENOMEM;
7760
7761 prsrc->tag = data->tags[idx];
7762 prsrc->rsrc = rsrc;
7763 list_add(&prsrc->list, &node->rsrc_list);
7764 return 0;
7765 }
7766
7767 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7768 struct io_uring_rsrc_update2 *up,
7769 unsigned nr_args)
7770 {
7771 u64 __user *tags = u64_to_user_ptr(up->tags);
7772 __s32 __user *fds = u64_to_user_ptr(up->data);
7773 struct io_rsrc_data *data = ctx->file_data;
7774 struct io_fixed_file *file_slot;
7775 struct file *file;
7776 int fd, i, err = 0;
7777 unsigned int done;
7778 bool needs_switch = false;
7779
7780 if (!ctx->file_data)
7781 return -ENXIO;
7782 if (up->offset + nr_args > ctx->nr_user_files)
7783 return -EINVAL;
7784
7785 for (done = 0; done < nr_args; done++) {
7786 u64 tag = 0;
7787
7788 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7789 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7790 err = -EFAULT;
7791 break;
7792 }
7793 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7794 err = -EINVAL;
7795 break;
7796 }
7797 if (fd == IORING_REGISTER_FILES_SKIP)
7798 continue;
7799
7800 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7801 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7802
7803 if (file_slot->file_ptr) {
7804 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7805 err = io_queue_rsrc_removal(data, up->offset + done,
7806 ctx->rsrc_node, file);
7807 if (err)
7808 break;
7809 file_slot->file_ptr = 0;
7810 needs_switch = true;
7811 }
7812 if (fd != -1) {
7813 file = fget(fd);
7814 if (!file) {
7815 err = -EBADF;
7816 break;
7817 }
7818 /*
7819 * Don't allow io_uring instances to be registered. If
7820 * UNIX isn't enabled, then this causes a reference
7821 * cycle and this instance can never get freed. If UNIX
7822 * is enabled we'll handle it just fine, but there's
7823 * still no point in allowing a ring fd as it doesn't
7824 * support regular read/write anyway.
7825 */
7826 if (file->f_op == &io_uring_fops) {
7827 fput(file);
7828 err = -EBADF;
7829 break;
7830 }
7831 data->tags[up->offset + done] = tag;
7832 io_fixed_file_set(file_slot, file);
7833 err = io_sqe_file_register(ctx, file, i);
7834 if (err) {
7835 file_slot->file_ptr = 0;
7836 fput(file);
7837 break;
7838 }
7839 }
7840 }
7841
7842 if (needs_switch)
7843 io_rsrc_node_switch(ctx, data);
7844 return done ? done : err;
7845 }
7846
7847 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7848 {
7849 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7850
7851 req = io_put_req_find_next(req);
7852 return req ? &req->work : NULL;
7853 }
7854
7855 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7856 struct task_struct *task)
7857 {
7858 struct io_wq_hash *hash;
7859 struct io_wq_data data;
7860 unsigned int concurrency;
7861
7862 hash = ctx->hash_map;
7863 if (!hash) {
7864 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7865 if (!hash)
7866 return ERR_PTR(-ENOMEM);
7867 refcount_set(&hash->refs, 1);
7868 init_waitqueue_head(&hash->wait);
7869 ctx->hash_map = hash;
7870 }
7871
7872 data.hash = hash;
7873 data.task = task;
7874 data.free_work = io_free_work;
7875 data.do_work = io_wq_submit_work;
7876
7877 /* Do QD, or 4 * CPUS, whatever is smallest */
7878 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7879
7880 return io_wq_create(concurrency, &data);
7881 }
7882
7883 static int io_uring_alloc_task_context(struct task_struct *task,
7884 struct io_ring_ctx *ctx)
7885 {
7886 struct io_uring_task *tctx;
7887 int ret;
7888
7889 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7890 if (unlikely(!tctx))
7891 return -ENOMEM;
7892
7893 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7894 if (unlikely(ret)) {
7895 kfree(tctx);
7896 return ret;
7897 }
7898
7899 tctx->io_wq = io_init_wq_offload(ctx, task);
7900 if (IS_ERR(tctx->io_wq)) {
7901 ret = PTR_ERR(tctx->io_wq);
7902 percpu_counter_destroy(&tctx->inflight);
7903 kfree(tctx);
7904 return ret;
7905 }
7906
7907 xa_init(&tctx->xa);
7908 init_waitqueue_head(&tctx->wait);
7909 tctx->last = NULL;
7910 atomic_set(&tctx->in_idle, 0);
7911 atomic_set(&tctx->inflight_tracked, 0);
7912 task->io_uring = tctx;
7913 spin_lock_init(&tctx->task_lock);
7914 INIT_WQ_LIST(&tctx->task_list);
7915 tctx->task_state = 0;
7916 init_task_work(&tctx->task_work, tctx_task_work);
7917 return 0;
7918 }
7919
7920 void __io_uring_free(struct task_struct *tsk)
7921 {
7922 struct io_uring_task *tctx = tsk->io_uring;
7923
7924 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7925 WARN_ON_ONCE(tctx->io_wq);
7926
7927 percpu_counter_destroy(&tctx->inflight);
7928 kfree(tctx);
7929 tsk->io_uring = NULL;
7930 }
7931
7932 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7933 struct io_uring_params *p)
7934 {
7935 int ret;
7936
7937 /* Retain compatibility with failing for an invalid attach attempt */
7938 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7939 IORING_SETUP_ATTACH_WQ) {
7940 struct fd f;
7941
7942 f = fdget(p->wq_fd);
7943 if (!f.file)
7944 return -ENXIO;
7945 fdput(f);
7946 if (f.file->f_op != &io_uring_fops)
7947 return -EINVAL;
7948 }
7949 if (ctx->flags & IORING_SETUP_SQPOLL) {
7950 struct task_struct *tsk;
7951 struct io_sq_data *sqd;
7952 bool attached;
7953
7954 sqd = io_get_sq_data(p, &attached);
7955 if (IS_ERR(sqd)) {
7956 ret = PTR_ERR(sqd);
7957 goto err;
7958 }
7959
7960 ctx->sq_creds = get_current_cred();
7961 ctx->sq_data = sqd;
7962 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7963 if (!ctx->sq_thread_idle)
7964 ctx->sq_thread_idle = HZ;
7965
7966 io_sq_thread_park(sqd);
7967 list_add(&ctx->sqd_list, &sqd->ctx_list);
7968 io_sqd_update_thread_idle(sqd);
7969 /* don't attach to a dying SQPOLL thread, would be racy */
7970 ret = (attached && !sqd->thread) ? -ENXIO : 0;
7971 io_sq_thread_unpark(sqd);
7972
7973 if (ret < 0)
7974 goto err;
7975 if (attached)
7976 return 0;
7977
7978 if (p->flags & IORING_SETUP_SQ_AFF) {
7979 int cpu = p->sq_thread_cpu;
7980
7981 ret = -EINVAL;
7982 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
7983 goto err_sqpoll;
7984 sqd->sq_cpu = cpu;
7985 } else {
7986 sqd->sq_cpu = -1;
7987 }
7988
7989 sqd->task_pid = current->pid;
7990 sqd->task_tgid = current->tgid;
7991 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
7992 if (IS_ERR(tsk)) {
7993 ret = PTR_ERR(tsk);
7994 goto err_sqpoll;
7995 }
7996
7997 sqd->thread = tsk;
7998 ret = io_uring_alloc_task_context(tsk, ctx);
7999 wake_up_new_task(tsk);
8000 if (ret)
8001 goto err;
8002 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8003 /* Can't have SQ_AFF without SQPOLL */
8004 ret = -EINVAL;
8005 goto err;
8006 }
8007
8008 return 0;
8009 err_sqpoll:
8010 complete(&ctx->sq_data->exited);
8011 err:
8012 io_sq_thread_finish(ctx);
8013 return ret;
8014 }
8015
8016 static inline void __io_unaccount_mem(struct user_struct *user,
8017 unsigned long nr_pages)
8018 {
8019 atomic_long_sub(nr_pages, &user->locked_vm);
8020 }
8021
8022 static inline int __io_account_mem(struct user_struct *user,
8023 unsigned long nr_pages)
8024 {
8025 unsigned long page_limit, cur_pages, new_pages;
8026
8027 /* Don't allow more pages than we can safely lock */
8028 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8029
8030 do {
8031 cur_pages = atomic_long_read(&user->locked_vm);
8032 new_pages = cur_pages + nr_pages;
8033 if (new_pages > page_limit)
8034 return -ENOMEM;
8035 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8036 new_pages) != cur_pages);
8037
8038 return 0;
8039 }
8040
8041 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8042 {
8043 if (ctx->user)
8044 __io_unaccount_mem(ctx->user, nr_pages);
8045
8046 if (ctx->mm_account)
8047 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8048 }
8049
8050 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8051 {
8052 int ret;
8053
8054 if (ctx->user) {
8055 ret = __io_account_mem(ctx->user, nr_pages);
8056 if (ret)
8057 return ret;
8058 }
8059
8060 if (ctx->mm_account)
8061 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8062
8063 return 0;
8064 }
8065
8066 static void io_mem_free(void *ptr)
8067 {
8068 struct page *page;
8069
8070 if (!ptr)
8071 return;
8072
8073 page = virt_to_head_page(ptr);
8074 if (put_page_testzero(page))
8075 free_compound_page(page);
8076 }
8077
8078 static void *io_mem_alloc(size_t size)
8079 {
8080 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8081 __GFP_NORETRY | __GFP_ACCOUNT;
8082
8083 return (void *) __get_free_pages(gfp_flags, get_order(size));
8084 }
8085
8086 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8087 size_t *sq_offset)
8088 {
8089 struct io_rings *rings;
8090 size_t off, sq_array_size;
8091
8092 off = struct_size(rings, cqes, cq_entries);
8093 if (off == SIZE_MAX)
8094 return SIZE_MAX;
8095
8096 #ifdef CONFIG_SMP
8097 off = ALIGN(off, SMP_CACHE_BYTES);
8098 if (off == 0)
8099 return SIZE_MAX;
8100 #endif
8101
8102 if (sq_offset)
8103 *sq_offset = off;
8104
8105 sq_array_size = array_size(sizeof(u32), sq_entries);
8106 if (sq_array_size == SIZE_MAX)
8107 return SIZE_MAX;
8108
8109 if (check_add_overflow(off, sq_array_size, &off))
8110 return SIZE_MAX;
8111
8112 return off;
8113 }
8114
8115 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8116 {
8117 struct io_mapped_ubuf *imu = *slot;
8118 unsigned int i;
8119
8120 if (imu != ctx->dummy_ubuf) {
8121 for (i = 0; i < imu->nr_bvecs; i++)
8122 unpin_user_page(imu->bvec[i].bv_page);
8123 if (imu->acct_pages)
8124 io_unaccount_mem(ctx, imu->acct_pages);
8125 kvfree(imu);
8126 }
8127 *slot = NULL;
8128 }
8129
8130 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8131 {
8132 io_buffer_unmap(ctx, &prsrc->buf);
8133 prsrc->buf = NULL;
8134 }
8135
8136 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8137 {
8138 unsigned int i;
8139
8140 for (i = 0; i < ctx->nr_user_bufs; i++)
8141 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8142 kfree(ctx->user_bufs);
8143 io_rsrc_data_free(ctx->buf_data);
8144 ctx->user_bufs = NULL;
8145 ctx->buf_data = NULL;
8146 ctx->nr_user_bufs = 0;
8147 }
8148
8149 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8150 {
8151 int ret;
8152
8153 if (!ctx->buf_data)
8154 return -ENXIO;
8155
8156 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8157 if (!ret)
8158 __io_sqe_buffers_unregister(ctx);
8159 return ret;
8160 }
8161
8162 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8163 void __user *arg, unsigned index)
8164 {
8165 struct iovec __user *src;
8166
8167 #ifdef CONFIG_COMPAT
8168 if (ctx->compat) {
8169 struct compat_iovec __user *ciovs;
8170 struct compat_iovec ciov;
8171
8172 ciovs = (struct compat_iovec __user *) arg;
8173 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8174 return -EFAULT;
8175
8176 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8177 dst->iov_len = ciov.iov_len;
8178 return 0;
8179 }
8180 #endif
8181 src = (struct iovec __user *) arg;
8182 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8183 return -EFAULT;
8184 return 0;
8185 }
8186
8187 /*
8188 * Not super efficient, but this is just a registration time. And we do cache
8189 * the last compound head, so generally we'll only do a full search if we don't
8190 * match that one.
8191 *
8192 * We check if the given compound head page has already been accounted, to
8193 * avoid double accounting it. This allows us to account the full size of the
8194 * page, not just the constituent pages of a huge page.
8195 */
8196 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8197 int nr_pages, struct page *hpage)
8198 {
8199 int i, j;
8200
8201 /* check current page array */
8202 for (i = 0; i < nr_pages; i++) {
8203 if (!PageCompound(pages[i]))
8204 continue;
8205 if (compound_head(pages[i]) == hpage)
8206 return true;
8207 }
8208
8209 /* check previously registered pages */
8210 for (i = 0; i < ctx->nr_user_bufs; i++) {
8211 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8212
8213 for (j = 0; j < imu->nr_bvecs; j++) {
8214 if (!PageCompound(imu->bvec[j].bv_page))
8215 continue;
8216 if (compound_head(imu->bvec[j].bv_page) == hpage)
8217 return true;
8218 }
8219 }
8220
8221 return false;
8222 }
8223
8224 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8225 int nr_pages, struct io_mapped_ubuf *imu,
8226 struct page **last_hpage)
8227 {
8228 int i, ret;
8229
8230 for (i = 0; i < nr_pages; i++) {
8231 if (!PageCompound(pages[i])) {
8232 imu->acct_pages++;
8233 } else {
8234 struct page *hpage;
8235
8236 hpage = compound_head(pages[i]);
8237 if (hpage == *last_hpage)
8238 continue;
8239 *last_hpage = hpage;
8240 if (headpage_already_acct(ctx, pages, i, hpage))
8241 continue;
8242 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8243 }
8244 }
8245
8246 if (!imu->acct_pages)
8247 return 0;
8248
8249 ret = io_account_mem(ctx, imu->acct_pages);
8250 if (ret)
8251 imu->acct_pages = 0;
8252 return ret;
8253 }
8254
8255 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8256 struct io_mapped_ubuf **pimu,
8257 struct page **last_hpage)
8258 {
8259 struct io_mapped_ubuf *imu = NULL;
8260 struct vm_area_struct **vmas = NULL;
8261 struct page **pages = NULL;
8262 unsigned long off, start, end, ubuf;
8263 size_t size;
8264 int ret, pret, nr_pages, i;
8265
8266 if (!iov->iov_base) {
8267 *pimu = ctx->dummy_ubuf;
8268 return 0;
8269 }
8270
8271 ubuf = (unsigned long) iov->iov_base;
8272 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8273 start = ubuf >> PAGE_SHIFT;
8274 nr_pages = end - start;
8275
8276 *pimu = NULL;
8277 ret = -ENOMEM;
8278
8279 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8280 if (!pages)
8281 goto done;
8282
8283 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8284 GFP_KERNEL);
8285 if (!vmas)
8286 goto done;
8287
8288 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8289 if (!imu)
8290 goto done;
8291
8292 ret = 0;
8293 mmap_read_lock(current->mm);
8294 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8295 pages, vmas);
8296 if (pret == nr_pages) {
8297 /* don't support file backed memory */
8298 for (i = 0; i < nr_pages; i++) {
8299 struct vm_area_struct *vma = vmas[i];
8300
8301 if (vma->vm_file &&
8302 !is_file_hugepages(vma->vm_file)) {
8303 ret = -EOPNOTSUPP;
8304 break;
8305 }
8306 }
8307 } else {
8308 ret = pret < 0 ? pret : -EFAULT;
8309 }
8310 mmap_read_unlock(current->mm);
8311 if (ret) {
8312 /*
8313 * if we did partial map, or found file backed vmas,
8314 * release any pages we did get
8315 */
8316 if (pret > 0)
8317 unpin_user_pages(pages, pret);
8318 goto done;
8319 }
8320
8321 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8322 if (ret) {
8323 unpin_user_pages(pages, pret);
8324 goto done;
8325 }
8326
8327 off = ubuf & ~PAGE_MASK;
8328 size = iov->iov_len;
8329 for (i = 0; i < nr_pages; i++) {
8330 size_t vec_len;
8331
8332 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8333 imu->bvec[i].bv_page = pages[i];
8334 imu->bvec[i].bv_len = vec_len;
8335 imu->bvec[i].bv_offset = off;
8336 off = 0;
8337 size -= vec_len;
8338 }
8339 /* store original address for later verification */
8340 imu->ubuf = ubuf;
8341 imu->ubuf_end = ubuf + iov->iov_len;
8342 imu->nr_bvecs = nr_pages;
8343 *pimu = imu;
8344 ret = 0;
8345 done:
8346 if (ret)
8347 kvfree(imu);
8348 kvfree(pages);
8349 kvfree(vmas);
8350 return ret;
8351 }
8352
8353 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8354 {
8355 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8356 return ctx->user_bufs ? 0 : -ENOMEM;
8357 }
8358
8359 static int io_buffer_validate(struct iovec *iov)
8360 {
8361 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8362
8363 /*
8364 * Don't impose further limits on the size and buffer
8365 * constraints here, we'll -EINVAL later when IO is
8366 * submitted if they are wrong.
8367 */
8368 if (!iov->iov_base)
8369 return iov->iov_len ? -EFAULT : 0;
8370 if (!iov->iov_len)
8371 return -EFAULT;
8372
8373 /* arbitrary limit, but we need something */
8374 if (iov->iov_len > SZ_1G)
8375 return -EFAULT;
8376
8377 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8378 return -EOVERFLOW;
8379
8380 return 0;
8381 }
8382
8383 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8384 unsigned int nr_args, u64 __user *tags)
8385 {
8386 struct page *last_hpage = NULL;
8387 struct io_rsrc_data *data;
8388 int i, ret;
8389 struct iovec iov;
8390
8391 if (ctx->user_bufs)
8392 return -EBUSY;
8393 if (!nr_args || nr_args > UIO_MAXIOV)
8394 return -EINVAL;
8395 ret = io_rsrc_node_switch_start(ctx);
8396 if (ret)
8397 return ret;
8398 data = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, nr_args);
8399 if (!data)
8400 return -ENOMEM;
8401 ret = io_buffers_map_alloc(ctx, nr_args);
8402 if (ret) {
8403 io_rsrc_data_free(data);
8404 return ret;
8405 }
8406
8407 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8408 u64 tag = 0;
8409
8410 if (tags && copy_from_user(&tag, &tags[i], sizeof(tag))) {
8411 ret = -EFAULT;
8412 break;
8413 }
8414 ret = io_copy_iov(ctx, &iov, arg, i);
8415 if (ret)
8416 break;
8417 ret = io_buffer_validate(&iov);
8418 if (ret)
8419 break;
8420 if (!iov.iov_base && tag) {
8421 ret = -EINVAL;
8422 break;
8423 }
8424
8425 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8426 &last_hpage);
8427 if (ret)
8428 break;
8429 data->tags[i] = tag;
8430 }
8431
8432 WARN_ON_ONCE(ctx->buf_data);
8433
8434 ctx->buf_data = data;
8435 if (ret)
8436 __io_sqe_buffers_unregister(ctx);
8437 else
8438 io_rsrc_node_switch(ctx, NULL);
8439 return ret;
8440 }
8441
8442 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8443 struct io_uring_rsrc_update2 *up,
8444 unsigned int nr_args)
8445 {
8446 u64 __user *tags = u64_to_user_ptr(up->tags);
8447 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8448 struct page *last_hpage = NULL;
8449 bool needs_switch = false;
8450 __u32 done;
8451 int i, err;
8452
8453 if (!ctx->buf_data)
8454 return -ENXIO;
8455 if (up->offset + nr_args > ctx->nr_user_bufs)
8456 return -EINVAL;
8457
8458 for (done = 0; done < nr_args; done++) {
8459 struct io_mapped_ubuf *imu;
8460 int offset = up->offset + done;
8461 u64 tag = 0;
8462
8463 err = io_copy_iov(ctx, &iov, iovs, done);
8464 if (err)
8465 break;
8466 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8467 err = -EFAULT;
8468 break;
8469 }
8470 err = io_buffer_validate(&iov);
8471 if (err)
8472 break;
8473 if (!iov.iov_base && tag) {
8474 err = -EINVAL;
8475 break;
8476 }
8477 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8478 if (err)
8479 break;
8480
8481 i = array_index_nospec(offset, ctx->nr_user_bufs);
8482 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
8483 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8484 ctx->rsrc_node, ctx->user_bufs[i]);
8485 if (unlikely(err)) {
8486 io_buffer_unmap(ctx, &imu);
8487 break;
8488 }
8489 ctx->user_bufs[i] = NULL;
8490 needs_switch = true;
8491 }
8492
8493 ctx->user_bufs[i] = imu;
8494 ctx->buf_data->tags[offset] = tag;
8495 }
8496
8497 if (needs_switch)
8498 io_rsrc_node_switch(ctx, ctx->buf_data);
8499 return done ? done : err;
8500 }
8501
8502 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8503 {
8504 __s32 __user *fds = arg;
8505 int fd;
8506
8507 if (ctx->cq_ev_fd)
8508 return -EBUSY;
8509
8510 if (copy_from_user(&fd, fds, sizeof(*fds)))
8511 return -EFAULT;
8512
8513 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8514 if (IS_ERR(ctx->cq_ev_fd)) {
8515 int ret = PTR_ERR(ctx->cq_ev_fd);
8516 ctx->cq_ev_fd = NULL;
8517 return ret;
8518 }
8519
8520 return 0;
8521 }
8522
8523 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8524 {
8525 if (ctx->cq_ev_fd) {
8526 eventfd_ctx_put(ctx->cq_ev_fd);
8527 ctx->cq_ev_fd = NULL;
8528 return 0;
8529 }
8530
8531 return -ENXIO;
8532 }
8533
8534 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8535 {
8536 struct io_buffer *buf;
8537 unsigned long index;
8538
8539 xa_for_each(&ctx->io_buffers, index, buf)
8540 __io_remove_buffers(ctx, buf, index, -1U);
8541 }
8542
8543 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8544 {
8545 struct io_kiocb *req, *nxt;
8546
8547 list_for_each_entry_safe(req, nxt, list, compl.list) {
8548 if (tsk && req->task != tsk)
8549 continue;
8550 list_del(&req->compl.list);
8551 kmem_cache_free(req_cachep, req);
8552 }
8553 }
8554
8555 static void io_req_caches_free(struct io_ring_ctx *ctx)
8556 {
8557 struct io_submit_state *submit_state = &ctx->submit_state;
8558 struct io_comp_state *cs = &ctx->submit_state.comp;
8559
8560 mutex_lock(&ctx->uring_lock);
8561
8562 if (submit_state->free_reqs) {
8563 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8564 submit_state->reqs);
8565 submit_state->free_reqs = 0;
8566 }
8567
8568 io_flush_cached_locked_reqs(ctx, cs);
8569 io_req_cache_free(&cs->free_list, NULL);
8570 mutex_unlock(&ctx->uring_lock);
8571 }
8572
8573 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8574 {
8575 if (!data)
8576 return false;
8577 if (!atomic_dec_and_test(&data->refs))
8578 wait_for_completion(&data->done);
8579 return true;
8580 }
8581
8582 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8583 {
8584 io_sq_thread_finish(ctx);
8585
8586 if (ctx->mm_account) {
8587 mmdrop(ctx->mm_account);
8588 ctx->mm_account = NULL;
8589 }
8590
8591 mutex_lock(&ctx->uring_lock);
8592 if (io_wait_rsrc_data(ctx->buf_data))
8593 __io_sqe_buffers_unregister(ctx);
8594 if (io_wait_rsrc_data(ctx->file_data))
8595 __io_sqe_files_unregister(ctx);
8596 if (ctx->rings)
8597 __io_cqring_overflow_flush(ctx, true);
8598 mutex_unlock(&ctx->uring_lock);
8599 io_eventfd_unregister(ctx);
8600 io_destroy_buffers(ctx);
8601 if (ctx->sq_creds)
8602 put_cred(ctx->sq_creds);
8603
8604 /* there are no registered resources left, nobody uses it */
8605 if (ctx->rsrc_node)
8606 io_rsrc_node_destroy(ctx->rsrc_node);
8607 if (ctx->rsrc_backup_node)
8608 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8609 flush_delayed_work(&ctx->rsrc_put_work);
8610
8611 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8612 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8613
8614 #if defined(CONFIG_UNIX)
8615 if (ctx->ring_sock) {
8616 ctx->ring_sock->file = NULL; /* so that iput() is called */
8617 sock_release(ctx->ring_sock);
8618 }
8619 #endif
8620
8621 io_mem_free(ctx->rings);
8622 io_mem_free(ctx->sq_sqes);
8623
8624 percpu_ref_exit(&ctx->refs);
8625 free_uid(ctx->user);
8626 io_req_caches_free(ctx);
8627 if (ctx->hash_map)
8628 io_wq_put_hash(ctx->hash_map);
8629 kfree(ctx->cancel_hash);
8630 kfree(ctx->dummy_ubuf);
8631 kfree(ctx);
8632 }
8633
8634 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8635 {
8636 struct io_ring_ctx *ctx = file->private_data;
8637 __poll_t mask = 0;
8638
8639 poll_wait(file, &ctx->cq_wait, wait);
8640 /*
8641 * synchronizes with barrier from wq_has_sleeper call in
8642 * io_commit_cqring
8643 */
8644 smp_rmb();
8645 if (!io_sqring_full(ctx))
8646 mask |= EPOLLOUT | EPOLLWRNORM;
8647
8648 /*
8649 * Don't flush cqring overflow list here, just do a simple check.
8650 * Otherwise there could possible be ABBA deadlock:
8651 * CPU0 CPU1
8652 * ---- ----
8653 * lock(&ctx->uring_lock);
8654 * lock(&ep->mtx);
8655 * lock(&ctx->uring_lock);
8656 * lock(&ep->mtx);
8657 *
8658 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8659 * pushs them to do the flush.
8660 */
8661 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8662 mask |= EPOLLIN | EPOLLRDNORM;
8663
8664 return mask;
8665 }
8666
8667 static int io_uring_fasync(int fd, struct file *file, int on)
8668 {
8669 struct io_ring_ctx *ctx = file->private_data;
8670
8671 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8672 }
8673
8674 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8675 {
8676 const struct cred *creds;
8677
8678 creds = xa_erase(&ctx->personalities, id);
8679 if (creds) {
8680 put_cred(creds);
8681 return 0;
8682 }
8683
8684 return -EINVAL;
8685 }
8686
8687 static inline bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
8688 {
8689 return io_run_task_work_head(&ctx->exit_task_work);
8690 }
8691
8692 struct io_tctx_exit {
8693 struct callback_head task_work;
8694 struct completion completion;
8695 struct io_ring_ctx *ctx;
8696 };
8697
8698 static void io_tctx_exit_cb(struct callback_head *cb)
8699 {
8700 struct io_uring_task *tctx = current->io_uring;
8701 struct io_tctx_exit *work;
8702
8703 work = container_of(cb, struct io_tctx_exit, task_work);
8704 /*
8705 * When @in_idle, we're in cancellation and it's racy to remove the
8706 * node. It'll be removed by the end of cancellation, just ignore it.
8707 */
8708 if (!atomic_read(&tctx->in_idle))
8709 io_uring_del_task_file((unsigned long)work->ctx);
8710 complete(&work->completion);
8711 }
8712
8713 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8714 {
8715 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8716
8717 return req->ctx == data;
8718 }
8719
8720 static void io_ring_exit_work(struct work_struct *work)
8721 {
8722 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8723 unsigned long timeout = jiffies + HZ * 60 * 5;
8724 struct io_tctx_exit exit;
8725 struct io_tctx_node *node;
8726 int ret;
8727
8728 /*
8729 * If we're doing polled IO and end up having requests being
8730 * submitted async (out-of-line), then completions can come in while
8731 * we're waiting for refs to drop. We need to reap these manually,
8732 * as nobody else will be looking for them.
8733 */
8734 do {
8735 io_uring_try_cancel_requests(ctx, NULL, NULL);
8736 if (ctx->sq_data) {
8737 struct io_sq_data *sqd = ctx->sq_data;
8738 struct task_struct *tsk;
8739
8740 io_sq_thread_park(sqd);
8741 tsk = sqd->thread;
8742 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8743 io_wq_cancel_cb(tsk->io_uring->io_wq,
8744 io_cancel_ctx_cb, ctx, true);
8745 io_sq_thread_unpark(sqd);
8746 }
8747
8748 WARN_ON_ONCE(time_after(jiffies, timeout));
8749 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8750
8751 init_completion(&exit.completion);
8752 init_task_work(&exit.task_work, io_tctx_exit_cb);
8753 exit.ctx = ctx;
8754 /*
8755 * Some may use context even when all refs and requests have been put,
8756 * and they are free to do so while still holding uring_lock or
8757 * completion_lock, see __io_req_task_submit(). Apart from other work,
8758 * this lock/unlock section also waits them to finish.
8759 */
8760 mutex_lock(&ctx->uring_lock);
8761 while (!list_empty(&ctx->tctx_list)) {
8762 WARN_ON_ONCE(time_after(jiffies, timeout));
8763
8764 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8765 ctx_node);
8766 /* don't spin on a single task if cancellation failed */
8767 list_rotate_left(&ctx->tctx_list);
8768 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8769 if (WARN_ON_ONCE(ret))
8770 continue;
8771 wake_up_process(node->task);
8772
8773 mutex_unlock(&ctx->uring_lock);
8774 wait_for_completion(&exit.completion);
8775 mutex_lock(&ctx->uring_lock);
8776 }
8777 mutex_unlock(&ctx->uring_lock);
8778 spin_lock_irq(&ctx->completion_lock);
8779 spin_unlock_irq(&ctx->completion_lock);
8780
8781 io_ring_ctx_free(ctx);
8782 }
8783
8784 /* Returns true if we found and killed one or more timeouts */
8785 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8786 struct files_struct *files)
8787 {
8788 struct io_kiocb *req, *tmp;
8789 int canceled = 0;
8790
8791 spin_lock_irq(&ctx->completion_lock);
8792 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8793 if (io_match_task(req, tsk, files)) {
8794 io_kill_timeout(req, -ECANCELED);
8795 canceled++;
8796 }
8797 }
8798 if (canceled != 0)
8799 io_commit_cqring(ctx);
8800 spin_unlock_irq(&ctx->completion_lock);
8801 if (canceled != 0)
8802 io_cqring_ev_posted(ctx);
8803 return canceled != 0;
8804 }
8805
8806 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8807 {
8808 unsigned long index;
8809 struct creds *creds;
8810
8811 mutex_lock(&ctx->uring_lock);
8812 percpu_ref_kill(&ctx->refs);
8813 if (ctx->rings)
8814 __io_cqring_overflow_flush(ctx, true);
8815 xa_for_each(&ctx->personalities, index, creds)
8816 io_unregister_personality(ctx, index);
8817 mutex_unlock(&ctx->uring_lock);
8818
8819 io_kill_timeouts(ctx, NULL, NULL);
8820 io_poll_remove_all(ctx, NULL, NULL);
8821
8822 /* if we failed setting up the ctx, we might not have any rings */
8823 io_iopoll_try_reap_events(ctx);
8824
8825 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8826 /*
8827 * Use system_unbound_wq to avoid spawning tons of event kworkers
8828 * if we're exiting a ton of rings at the same time. It just adds
8829 * noise and overhead, there's no discernable change in runtime
8830 * over using system_wq.
8831 */
8832 queue_work(system_unbound_wq, &ctx->exit_work);
8833 }
8834
8835 static int io_uring_release(struct inode *inode, struct file *file)
8836 {
8837 struct io_ring_ctx *ctx = file->private_data;
8838
8839 file->private_data = NULL;
8840 io_ring_ctx_wait_and_kill(ctx);
8841 return 0;
8842 }
8843
8844 struct io_task_cancel {
8845 struct task_struct *task;
8846 struct files_struct *files;
8847 };
8848
8849 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8850 {
8851 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8852 struct io_task_cancel *cancel = data;
8853 bool ret;
8854
8855 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8856 unsigned long flags;
8857 struct io_ring_ctx *ctx = req->ctx;
8858
8859 /* protect against races with linked timeouts */
8860 spin_lock_irqsave(&ctx->completion_lock, flags);
8861 ret = io_match_task(req, cancel->task, cancel->files);
8862 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8863 } else {
8864 ret = io_match_task(req, cancel->task, cancel->files);
8865 }
8866 return ret;
8867 }
8868
8869 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8870 struct task_struct *task,
8871 struct files_struct *files)
8872 {
8873 struct io_defer_entry *de;
8874 LIST_HEAD(list);
8875
8876 spin_lock_irq(&ctx->completion_lock);
8877 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8878 if (io_match_task(de->req, task, files)) {
8879 list_cut_position(&list, &ctx->defer_list, &de->list);
8880 break;
8881 }
8882 }
8883 spin_unlock_irq(&ctx->completion_lock);
8884 if (list_empty(&list))
8885 return false;
8886
8887 while (!list_empty(&list)) {
8888 de = list_first_entry(&list, struct io_defer_entry, list);
8889 list_del_init(&de->list);
8890 io_req_complete_failed(de->req, -ECANCELED);
8891 kfree(de);
8892 }
8893 return true;
8894 }
8895
8896 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8897 {
8898 struct io_tctx_node *node;
8899 enum io_wq_cancel cret;
8900 bool ret = false;
8901
8902 mutex_lock(&ctx->uring_lock);
8903 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8904 struct io_uring_task *tctx = node->task->io_uring;
8905
8906 /*
8907 * io_wq will stay alive while we hold uring_lock, because it's
8908 * killed after ctx nodes, which requires to take the lock.
8909 */
8910 if (!tctx || !tctx->io_wq)
8911 continue;
8912 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8913 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8914 }
8915 mutex_unlock(&ctx->uring_lock);
8916
8917 return ret;
8918 }
8919
8920 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8921 struct task_struct *task,
8922 struct files_struct *files)
8923 {
8924 struct io_task_cancel cancel = { .task = task, .files = files, };
8925 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8926
8927 while (1) {
8928 enum io_wq_cancel cret;
8929 bool ret = false;
8930
8931 if (!task) {
8932 ret |= io_uring_try_cancel_iowq(ctx);
8933 } else if (tctx && tctx->io_wq) {
8934 /*
8935 * Cancels requests of all rings, not only @ctx, but
8936 * it's fine as the task is in exit/exec.
8937 */
8938 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8939 &cancel, true);
8940 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8941 }
8942
8943 /* SQPOLL thread does its own polling */
8944 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8945 (ctx->sq_data && ctx->sq_data->thread == current)) {
8946 while (!list_empty_careful(&ctx->iopoll_list)) {
8947 io_iopoll_try_reap_events(ctx);
8948 ret = true;
8949 }
8950 }
8951
8952 ret |= io_cancel_defer_files(ctx, task, files);
8953 ret |= io_poll_remove_all(ctx, task, files);
8954 ret |= io_kill_timeouts(ctx, task, files);
8955 ret |= io_run_task_work();
8956 ret |= io_run_ctx_fallback(ctx);
8957 if (!ret)
8958 break;
8959 cond_resched();
8960 }
8961 }
8962
8963 static int __io_uring_add_task_file(struct io_ring_ctx *ctx)
8964 {
8965 struct io_uring_task *tctx = current->io_uring;
8966 struct io_tctx_node *node;
8967 int ret;
8968
8969 if (unlikely(!tctx)) {
8970 ret = io_uring_alloc_task_context(current, ctx);
8971 if (unlikely(ret))
8972 return ret;
8973 tctx = current->io_uring;
8974 }
8975 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
8976 node = kmalloc(sizeof(*node), GFP_KERNEL);
8977 if (!node)
8978 return -ENOMEM;
8979 node->ctx = ctx;
8980 node->task = current;
8981
8982 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
8983 node, GFP_KERNEL));
8984 if (ret) {
8985 kfree(node);
8986 return ret;
8987 }
8988
8989 mutex_lock(&ctx->uring_lock);
8990 list_add(&node->ctx_node, &ctx->tctx_list);
8991 mutex_unlock(&ctx->uring_lock);
8992 }
8993 tctx->last = ctx;
8994 return 0;
8995 }
8996
8997 /*
8998 * Note that this task has used io_uring. We use it for cancelation purposes.
8999 */
9000 static inline int io_uring_add_task_file(struct io_ring_ctx *ctx)
9001 {
9002 struct io_uring_task *tctx = current->io_uring;
9003
9004 if (likely(tctx && tctx->last == ctx))
9005 return 0;
9006 return __io_uring_add_task_file(ctx);
9007 }
9008
9009 /*
9010 * Remove this io_uring_file -> task mapping.
9011 */
9012 static void io_uring_del_task_file(unsigned long index)
9013 {
9014 struct io_uring_task *tctx = current->io_uring;
9015 struct io_tctx_node *node;
9016
9017 if (!tctx)
9018 return;
9019 node = xa_erase(&tctx->xa, index);
9020 if (!node)
9021 return;
9022
9023 WARN_ON_ONCE(current != node->task);
9024 WARN_ON_ONCE(list_empty(&node->ctx_node));
9025
9026 mutex_lock(&node->ctx->uring_lock);
9027 list_del(&node->ctx_node);
9028 mutex_unlock(&node->ctx->uring_lock);
9029
9030 if (tctx->last == node->ctx)
9031 tctx->last = NULL;
9032 kfree(node);
9033 }
9034
9035 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9036 {
9037 struct io_tctx_node *node;
9038 unsigned long index;
9039
9040 xa_for_each(&tctx->xa, index, node)
9041 io_uring_del_task_file(index);
9042 if (tctx->io_wq) {
9043 io_wq_put_and_exit(tctx->io_wq);
9044 tctx->io_wq = NULL;
9045 }
9046 }
9047
9048 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9049 {
9050 if (tracked)
9051 return atomic_read(&tctx->inflight_tracked);
9052 return percpu_counter_sum(&tctx->inflight);
9053 }
9054
9055 static void io_uring_try_cancel(struct files_struct *files)
9056 {
9057 struct io_uring_task *tctx = current->io_uring;
9058 struct io_tctx_node *node;
9059 unsigned long index;
9060
9061 xa_for_each(&tctx->xa, index, node) {
9062 struct io_ring_ctx *ctx = node->ctx;
9063
9064 /* sqpoll task will cancel all its requests */
9065 if (!ctx->sq_data)
9066 io_uring_try_cancel_requests(ctx, current, files);
9067 }
9068 }
9069
9070 /* should only be called by SQPOLL task */
9071 static void io_uring_cancel_sqpoll(struct io_sq_data *sqd)
9072 {
9073 struct io_uring_task *tctx = current->io_uring;
9074 struct io_ring_ctx *ctx;
9075 s64 inflight;
9076 DEFINE_WAIT(wait);
9077
9078 if (!current->io_uring)
9079 return;
9080 WARN_ON_ONCE(!sqd || sqd->thread != current);
9081
9082 atomic_inc(&tctx->in_idle);
9083 do {
9084 /* read completions before cancelations */
9085 inflight = tctx_inflight(tctx, false);
9086 if (!inflight)
9087 break;
9088 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9089 io_uring_try_cancel_requests(ctx, current, NULL);
9090
9091 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9092 /*
9093 * If we've seen completions, retry without waiting. This
9094 * avoids a race where a completion comes in before we did
9095 * prepare_to_wait().
9096 */
9097 if (inflight == tctx_inflight(tctx, false))
9098 schedule();
9099 finish_wait(&tctx->wait, &wait);
9100 } while (1);
9101 atomic_dec(&tctx->in_idle);
9102 }
9103
9104 /*
9105 * Find any io_uring fd that this task has registered or done IO on, and cancel
9106 * requests.
9107 */
9108 void __io_uring_cancel(struct files_struct *files)
9109 {
9110 struct io_uring_task *tctx = current->io_uring;
9111 DEFINE_WAIT(wait);
9112 s64 inflight;
9113
9114 /* make sure overflow events are dropped */
9115 atomic_inc(&tctx->in_idle);
9116 do {
9117 /* read completions before cancelations */
9118 inflight = tctx_inflight(tctx, !!files);
9119 if (!inflight)
9120 break;
9121 io_uring_try_cancel(files);
9122 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9123
9124 /*
9125 * If we've seen completions, retry without waiting. This
9126 * avoids a race where a completion comes in before we did
9127 * prepare_to_wait().
9128 */
9129 if (inflight == tctx_inflight(tctx, !!files))
9130 schedule();
9131 finish_wait(&tctx->wait, &wait);
9132 } while (1);
9133 atomic_dec(&tctx->in_idle);
9134
9135 io_uring_clean_tctx(tctx);
9136 if (!files) {
9137 /* for exec all current's requests should be gone, kill tctx */
9138 __io_uring_free(current);
9139 }
9140 }
9141
9142 static void *io_uring_validate_mmap_request(struct file *file,
9143 loff_t pgoff, size_t sz)
9144 {
9145 struct io_ring_ctx *ctx = file->private_data;
9146 loff_t offset = pgoff << PAGE_SHIFT;
9147 struct page *page;
9148 void *ptr;
9149
9150 switch (offset) {
9151 case IORING_OFF_SQ_RING:
9152 case IORING_OFF_CQ_RING:
9153 ptr = ctx->rings;
9154 break;
9155 case IORING_OFF_SQES:
9156 ptr = ctx->sq_sqes;
9157 break;
9158 default:
9159 return ERR_PTR(-EINVAL);
9160 }
9161
9162 page = virt_to_head_page(ptr);
9163 if (sz > page_size(page))
9164 return ERR_PTR(-EINVAL);
9165
9166 return ptr;
9167 }
9168
9169 #ifdef CONFIG_MMU
9170
9171 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9172 {
9173 size_t sz = vma->vm_end - vma->vm_start;
9174 unsigned long pfn;
9175 void *ptr;
9176
9177 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9178 if (IS_ERR(ptr))
9179 return PTR_ERR(ptr);
9180
9181 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9182 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9183 }
9184
9185 #else /* !CONFIG_MMU */
9186
9187 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9188 {
9189 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9190 }
9191
9192 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9193 {
9194 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9195 }
9196
9197 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9198 unsigned long addr, unsigned long len,
9199 unsigned long pgoff, unsigned long flags)
9200 {
9201 void *ptr;
9202
9203 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9204 if (IS_ERR(ptr))
9205 return PTR_ERR(ptr);
9206
9207 return (unsigned long) ptr;
9208 }
9209
9210 #endif /* !CONFIG_MMU */
9211
9212 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9213 {
9214 DEFINE_WAIT(wait);
9215
9216 do {
9217 if (!io_sqring_full(ctx))
9218 break;
9219 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9220
9221 if (!io_sqring_full(ctx))
9222 break;
9223 schedule();
9224 } while (!signal_pending(current));
9225
9226 finish_wait(&ctx->sqo_sq_wait, &wait);
9227 return 0;
9228 }
9229
9230 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9231 struct __kernel_timespec __user **ts,
9232 const sigset_t __user **sig)
9233 {
9234 struct io_uring_getevents_arg arg;
9235
9236 /*
9237 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9238 * is just a pointer to the sigset_t.
9239 */
9240 if (!(flags & IORING_ENTER_EXT_ARG)) {
9241 *sig = (const sigset_t __user *) argp;
9242 *ts = NULL;
9243 return 0;
9244 }
9245
9246 /*
9247 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9248 * timespec and sigset_t pointers if good.
9249 */
9250 if (*argsz != sizeof(arg))
9251 return -EINVAL;
9252 if (copy_from_user(&arg, argp, sizeof(arg)))
9253 return -EFAULT;
9254 *sig = u64_to_user_ptr(arg.sigmask);
9255 *argsz = arg.sigmask_sz;
9256 *ts = u64_to_user_ptr(arg.ts);
9257 return 0;
9258 }
9259
9260 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9261 u32, min_complete, u32, flags, const void __user *, argp,
9262 size_t, argsz)
9263 {
9264 struct io_ring_ctx *ctx;
9265 int submitted = 0;
9266 struct fd f;
9267 long ret;
9268
9269 io_run_task_work();
9270
9271 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9272 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9273 return -EINVAL;
9274
9275 f = fdget(fd);
9276 if (unlikely(!f.file))
9277 return -EBADF;
9278
9279 ret = -EOPNOTSUPP;
9280 if (unlikely(f.file->f_op != &io_uring_fops))
9281 goto out_fput;
9282
9283 ret = -ENXIO;
9284 ctx = f.file->private_data;
9285 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9286 goto out_fput;
9287
9288 ret = -EBADFD;
9289 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9290 goto out;
9291
9292 /*
9293 * For SQ polling, the thread will do all submissions and completions.
9294 * Just return the requested submit count, and wake the thread if
9295 * we were asked to.
9296 */
9297 ret = 0;
9298 if (ctx->flags & IORING_SETUP_SQPOLL) {
9299 io_cqring_overflow_flush(ctx, false);
9300
9301 ret = -EOWNERDEAD;
9302 if (unlikely(ctx->sq_data->thread == NULL)) {
9303 goto out;
9304 }
9305 if (flags & IORING_ENTER_SQ_WAKEUP)
9306 wake_up(&ctx->sq_data->wait);
9307 if (flags & IORING_ENTER_SQ_WAIT) {
9308 ret = io_sqpoll_wait_sq(ctx);
9309 if (ret)
9310 goto out;
9311 }
9312 submitted = to_submit;
9313 } else if (to_submit) {
9314 ret = io_uring_add_task_file(ctx);
9315 if (unlikely(ret))
9316 goto out;
9317 mutex_lock(&ctx->uring_lock);
9318 submitted = io_submit_sqes(ctx, to_submit);
9319 mutex_unlock(&ctx->uring_lock);
9320
9321 if (submitted != to_submit)
9322 goto out;
9323 }
9324 if (flags & IORING_ENTER_GETEVENTS) {
9325 const sigset_t __user *sig;
9326 struct __kernel_timespec __user *ts;
9327
9328 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9329 if (unlikely(ret))
9330 goto out;
9331
9332 min_complete = min(min_complete, ctx->cq_entries);
9333
9334 /*
9335 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9336 * space applications don't need to do io completion events
9337 * polling again, they can rely on io_sq_thread to do polling
9338 * work, which can reduce cpu usage and uring_lock contention.
9339 */
9340 if (ctx->flags & IORING_SETUP_IOPOLL &&
9341 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9342 ret = io_iopoll_check(ctx, min_complete);
9343 } else {
9344 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9345 }
9346 }
9347
9348 out:
9349 percpu_ref_put(&ctx->refs);
9350 out_fput:
9351 fdput(f);
9352 return submitted ? submitted : ret;
9353 }
9354
9355 #ifdef CONFIG_PROC_FS
9356 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9357 const struct cred *cred)
9358 {
9359 struct user_namespace *uns = seq_user_ns(m);
9360 struct group_info *gi;
9361 kernel_cap_t cap;
9362 unsigned __capi;
9363 int g;
9364
9365 seq_printf(m, "%5d\n", id);
9366 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9367 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9368 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9369 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9370 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9371 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9372 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9373 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9374 seq_puts(m, "\n\tGroups:\t");
9375 gi = cred->group_info;
9376 for (g = 0; g < gi->ngroups; g++) {
9377 seq_put_decimal_ull(m, g ? " " : "",
9378 from_kgid_munged(uns, gi->gid[g]));
9379 }
9380 seq_puts(m, "\n\tCapEff:\t");
9381 cap = cred->cap_effective;
9382 CAP_FOR_EACH_U32(__capi)
9383 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9384 seq_putc(m, '\n');
9385 return 0;
9386 }
9387
9388 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9389 {
9390 struct io_sq_data *sq = NULL;
9391 bool has_lock;
9392 int i;
9393
9394 /*
9395 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9396 * since fdinfo case grabs it in the opposite direction of normal use
9397 * cases. If we fail to get the lock, we just don't iterate any
9398 * structures that could be going away outside the io_uring mutex.
9399 */
9400 has_lock = mutex_trylock(&ctx->uring_lock);
9401
9402 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9403 sq = ctx->sq_data;
9404 if (!sq->thread)
9405 sq = NULL;
9406 }
9407
9408 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9409 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9410 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9411 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9412 struct file *f = io_file_from_index(ctx, i);
9413
9414 if (f)
9415 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9416 else
9417 seq_printf(m, "%5u: <none>\n", i);
9418 }
9419 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9420 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9421 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9422 unsigned int len = buf->ubuf_end - buf->ubuf;
9423
9424 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9425 }
9426 if (has_lock && !xa_empty(&ctx->personalities)) {
9427 unsigned long index;
9428 const struct cred *cred;
9429
9430 seq_printf(m, "Personalities:\n");
9431 xa_for_each(&ctx->personalities, index, cred)
9432 io_uring_show_cred(m, index, cred);
9433 }
9434 seq_printf(m, "PollList:\n");
9435 spin_lock_irq(&ctx->completion_lock);
9436 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9437 struct hlist_head *list = &ctx->cancel_hash[i];
9438 struct io_kiocb *req;
9439
9440 hlist_for_each_entry(req, list, hash_node)
9441 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9442 req->task->task_works != NULL);
9443 }
9444 spin_unlock_irq(&ctx->completion_lock);
9445 if (has_lock)
9446 mutex_unlock(&ctx->uring_lock);
9447 }
9448
9449 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9450 {
9451 struct io_ring_ctx *ctx = f->private_data;
9452
9453 if (percpu_ref_tryget(&ctx->refs)) {
9454 __io_uring_show_fdinfo(ctx, m);
9455 percpu_ref_put(&ctx->refs);
9456 }
9457 }
9458 #endif
9459
9460 static const struct file_operations io_uring_fops = {
9461 .release = io_uring_release,
9462 .mmap = io_uring_mmap,
9463 #ifndef CONFIG_MMU
9464 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9465 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9466 #endif
9467 .poll = io_uring_poll,
9468 .fasync = io_uring_fasync,
9469 #ifdef CONFIG_PROC_FS
9470 .show_fdinfo = io_uring_show_fdinfo,
9471 #endif
9472 };
9473
9474 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9475 struct io_uring_params *p)
9476 {
9477 struct io_rings *rings;
9478 size_t size, sq_array_offset;
9479
9480 /* make sure these are sane, as we already accounted them */
9481 ctx->sq_entries = p->sq_entries;
9482 ctx->cq_entries = p->cq_entries;
9483
9484 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9485 if (size == SIZE_MAX)
9486 return -EOVERFLOW;
9487
9488 rings = io_mem_alloc(size);
9489 if (!rings)
9490 return -ENOMEM;
9491
9492 ctx->rings = rings;
9493 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9494 rings->sq_ring_mask = p->sq_entries - 1;
9495 rings->cq_ring_mask = p->cq_entries - 1;
9496 rings->sq_ring_entries = p->sq_entries;
9497 rings->cq_ring_entries = p->cq_entries;
9498 ctx->sq_mask = rings->sq_ring_mask;
9499 ctx->cq_mask = rings->cq_ring_mask;
9500
9501 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9502 if (size == SIZE_MAX) {
9503 io_mem_free(ctx->rings);
9504 ctx->rings = NULL;
9505 return -EOVERFLOW;
9506 }
9507
9508 ctx->sq_sqes = io_mem_alloc(size);
9509 if (!ctx->sq_sqes) {
9510 io_mem_free(ctx->rings);
9511 ctx->rings = NULL;
9512 return -ENOMEM;
9513 }
9514
9515 return 0;
9516 }
9517
9518 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9519 {
9520 int ret, fd;
9521
9522 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9523 if (fd < 0)
9524 return fd;
9525
9526 ret = io_uring_add_task_file(ctx);
9527 if (ret) {
9528 put_unused_fd(fd);
9529 return ret;
9530 }
9531 fd_install(fd, file);
9532 return fd;
9533 }
9534
9535 /*
9536 * Allocate an anonymous fd, this is what constitutes the application
9537 * visible backing of an io_uring instance. The application mmaps this
9538 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9539 * we have to tie this fd to a socket for file garbage collection purposes.
9540 */
9541 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9542 {
9543 struct file *file;
9544 #if defined(CONFIG_UNIX)
9545 int ret;
9546
9547 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9548 &ctx->ring_sock);
9549 if (ret)
9550 return ERR_PTR(ret);
9551 #endif
9552
9553 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9554 O_RDWR | O_CLOEXEC);
9555 #if defined(CONFIG_UNIX)
9556 if (IS_ERR(file)) {
9557 sock_release(ctx->ring_sock);
9558 ctx->ring_sock = NULL;
9559 } else {
9560 ctx->ring_sock->file = file;
9561 }
9562 #endif
9563 return file;
9564 }
9565
9566 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9567 struct io_uring_params __user *params)
9568 {
9569 struct io_ring_ctx *ctx;
9570 struct file *file;
9571 int ret;
9572
9573 if (!entries)
9574 return -EINVAL;
9575 if (entries > IORING_MAX_ENTRIES) {
9576 if (!(p->flags & IORING_SETUP_CLAMP))
9577 return -EINVAL;
9578 entries = IORING_MAX_ENTRIES;
9579 }
9580
9581 /*
9582 * Use twice as many entries for the CQ ring. It's possible for the
9583 * application to drive a higher depth than the size of the SQ ring,
9584 * since the sqes are only used at submission time. This allows for
9585 * some flexibility in overcommitting a bit. If the application has
9586 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9587 * of CQ ring entries manually.
9588 */
9589 p->sq_entries = roundup_pow_of_two(entries);
9590 if (p->flags & IORING_SETUP_CQSIZE) {
9591 /*
9592 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9593 * to a power-of-two, if it isn't already. We do NOT impose
9594 * any cq vs sq ring sizing.
9595 */
9596 if (!p->cq_entries)
9597 return -EINVAL;
9598 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9599 if (!(p->flags & IORING_SETUP_CLAMP))
9600 return -EINVAL;
9601 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9602 }
9603 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9604 if (p->cq_entries < p->sq_entries)
9605 return -EINVAL;
9606 } else {
9607 p->cq_entries = 2 * p->sq_entries;
9608 }
9609
9610 ctx = io_ring_ctx_alloc(p);
9611 if (!ctx)
9612 return -ENOMEM;
9613 ctx->compat = in_compat_syscall();
9614 if (!capable(CAP_IPC_LOCK))
9615 ctx->user = get_uid(current_user());
9616
9617 /*
9618 * This is just grabbed for accounting purposes. When a process exits,
9619 * the mm is exited and dropped before the files, hence we need to hang
9620 * on to this mm purely for the purposes of being able to unaccount
9621 * memory (locked/pinned vm). It's not used for anything else.
9622 */
9623 mmgrab(current->mm);
9624 ctx->mm_account = current->mm;
9625
9626 ret = io_allocate_scq_urings(ctx, p);
9627 if (ret)
9628 goto err;
9629
9630 ret = io_sq_offload_create(ctx, p);
9631 if (ret)
9632 goto err;
9633 /* always set a rsrc node */
9634 ret = io_rsrc_node_switch_start(ctx);
9635 if (ret)
9636 goto err;
9637 io_rsrc_node_switch(ctx, NULL);
9638
9639 memset(&p->sq_off, 0, sizeof(p->sq_off));
9640 p->sq_off.head = offsetof(struct io_rings, sq.head);
9641 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9642 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9643 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9644 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9645 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9646 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9647
9648 memset(&p->cq_off, 0, sizeof(p->cq_off));
9649 p->cq_off.head = offsetof(struct io_rings, cq.head);
9650 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9651 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9652 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9653 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9654 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9655 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9656
9657 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9658 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9659 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9660 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9661 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
9662
9663 if (copy_to_user(params, p, sizeof(*p))) {
9664 ret = -EFAULT;
9665 goto err;
9666 }
9667
9668 file = io_uring_get_file(ctx);
9669 if (IS_ERR(file)) {
9670 ret = PTR_ERR(file);
9671 goto err;
9672 }
9673
9674 /*
9675 * Install ring fd as the very last thing, so we don't risk someone
9676 * having closed it before we finish setup
9677 */
9678 ret = io_uring_install_fd(ctx, file);
9679 if (ret < 0) {
9680 /* fput will clean it up */
9681 fput(file);
9682 return ret;
9683 }
9684
9685 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9686 return ret;
9687 err:
9688 io_ring_ctx_wait_and_kill(ctx);
9689 return ret;
9690 }
9691
9692 /*
9693 * Sets up an aio uring context, and returns the fd. Applications asks for a
9694 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9695 * params structure passed in.
9696 */
9697 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9698 {
9699 struct io_uring_params p;
9700 int i;
9701
9702 if (copy_from_user(&p, params, sizeof(p)))
9703 return -EFAULT;
9704 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9705 if (p.resv[i])
9706 return -EINVAL;
9707 }
9708
9709 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9710 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9711 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9712 IORING_SETUP_R_DISABLED))
9713 return -EINVAL;
9714
9715 return io_uring_create(entries, &p, params);
9716 }
9717
9718 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9719 struct io_uring_params __user *, params)
9720 {
9721 return io_uring_setup(entries, params);
9722 }
9723
9724 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9725 {
9726 struct io_uring_probe *p;
9727 size_t size;
9728 int i, ret;
9729
9730 size = struct_size(p, ops, nr_args);
9731 if (size == SIZE_MAX)
9732 return -EOVERFLOW;
9733 p = kzalloc(size, GFP_KERNEL);
9734 if (!p)
9735 return -ENOMEM;
9736
9737 ret = -EFAULT;
9738 if (copy_from_user(p, arg, size))
9739 goto out;
9740 ret = -EINVAL;
9741 if (memchr_inv(p, 0, size))
9742 goto out;
9743
9744 p->last_op = IORING_OP_LAST - 1;
9745 if (nr_args > IORING_OP_LAST)
9746 nr_args = IORING_OP_LAST;
9747
9748 for (i = 0; i < nr_args; i++) {
9749 p->ops[i].op = i;
9750 if (!io_op_defs[i].not_supported)
9751 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9752 }
9753 p->ops_len = i;
9754
9755 ret = 0;
9756 if (copy_to_user(arg, p, size))
9757 ret = -EFAULT;
9758 out:
9759 kfree(p);
9760 return ret;
9761 }
9762
9763 static int io_register_personality(struct io_ring_ctx *ctx)
9764 {
9765 const struct cred *creds;
9766 u32 id;
9767 int ret;
9768
9769 creds = get_current_cred();
9770
9771 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9772 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9773 if (!ret)
9774 return id;
9775 put_cred(creds);
9776 return ret;
9777 }
9778
9779 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9780 unsigned int nr_args)
9781 {
9782 struct io_uring_restriction *res;
9783 size_t size;
9784 int i, ret;
9785
9786 /* Restrictions allowed only if rings started disabled */
9787 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9788 return -EBADFD;
9789
9790 /* We allow only a single restrictions registration */
9791 if (ctx->restrictions.registered)
9792 return -EBUSY;
9793
9794 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9795 return -EINVAL;
9796
9797 size = array_size(nr_args, sizeof(*res));
9798 if (size == SIZE_MAX)
9799 return -EOVERFLOW;
9800
9801 res = memdup_user(arg, size);
9802 if (IS_ERR(res))
9803 return PTR_ERR(res);
9804
9805 ret = 0;
9806
9807 for (i = 0; i < nr_args; i++) {
9808 switch (res[i].opcode) {
9809 case IORING_RESTRICTION_REGISTER_OP:
9810 if (res[i].register_op >= IORING_REGISTER_LAST) {
9811 ret = -EINVAL;
9812 goto out;
9813 }
9814
9815 __set_bit(res[i].register_op,
9816 ctx->restrictions.register_op);
9817 break;
9818 case IORING_RESTRICTION_SQE_OP:
9819 if (res[i].sqe_op >= IORING_OP_LAST) {
9820 ret = -EINVAL;
9821 goto out;
9822 }
9823
9824 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9825 break;
9826 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9827 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9828 break;
9829 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9830 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9831 break;
9832 default:
9833 ret = -EINVAL;
9834 goto out;
9835 }
9836 }
9837
9838 out:
9839 /* Reset all restrictions if an error happened */
9840 if (ret != 0)
9841 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9842 else
9843 ctx->restrictions.registered = true;
9844
9845 kfree(res);
9846 return ret;
9847 }
9848
9849 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9850 {
9851 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9852 return -EBADFD;
9853
9854 if (ctx->restrictions.registered)
9855 ctx->restricted = 1;
9856
9857 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9858 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9859 wake_up(&ctx->sq_data->wait);
9860 return 0;
9861 }
9862
9863 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9864 struct io_uring_rsrc_update2 *up,
9865 unsigned nr_args)
9866 {
9867 __u32 tmp;
9868 int err;
9869
9870 if (up->resv)
9871 return -EINVAL;
9872 if (check_add_overflow(up->offset, nr_args, &tmp))
9873 return -EOVERFLOW;
9874 err = io_rsrc_node_switch_start(ctx);
9875 if (err)
9876 return err;
9877
9878 switch (type) {
9879 case IORING_RSRC_FILE:
9880 return __io_sqe_files_update(ctx, up, nr_args);
9881 case IORING_RSRC_BUFFER:
9882 return __io_sqe_buffers_update(ctx, up, nr_args);
9883 }
9884 return -EINVAL;
9885 }
9886
9887 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9888 unsigned nr_args)
9889 {
9890 struct io_uring_rsrc_update2 up;
9891
9892 if (!nr_args)
9893 return -EINVAL;
9894 memset(&up, 0, sizeof(up));
9895 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9896 return -EFAULT;
9897 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9898 }
9899
9900 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9901 unsigned size)
9902 {
9903 struct io_uring_rsrc_update2 up;
9904
9905 if (size != sizeof(up))
9906 return -EINVAL;
9907 if (copy_from_user(&up, arg, sizeof(up)))
9908 return -EFAULT;
9909 if (!up.nr)
9910 return -EINVAL;
9911 return __io_register_rsrc_update(ctx, up.type, &up, up.nr);
9912 }
9913
9914 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9915 unsigned int size)
9916 {
9917 struct io_uring_rsrc_register rr;
9918
9919 /* keep it extendible */
9920 if (size != sizeof(rr))
9921 return -EINVAL;
9922
9923 memset(&rr, 0, sizeof(rr));
9924 if (copy_from_user(&rr, arg, size))
9925 return -EFAULT;
9926 if (!rr.nr)
9927 return -EINVAL;
9928
9929 switch (rr.type) {
9930 case IORING_RSRC_FILE:
9931 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9932 rr.nr, u64_to_user_ptr(rr.tags));
9933 case IORING_RSRC_BUFFER:
9934 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
9935 rr.nr, u64_to_user_ptr(rr.tags));
9936 }
9937 return -EINVAL;
9938 }
9939
9940 static bool io_register_op_must_quiesce(int op)
9941 {
9942 switch (op) {
9943 case IORING_REGISTER_BUFFERS:
9944 case IORING_UNREGISTER_BUFFERS:
9945 case IORING_REGISTER_FILES:
9946 case IORING_UNREGISTER_FILES:
9947 case IORING_REGISTER_FILES_UPDATE:
9948 case IORING_REGISTER_PROBE:
9949 case IORING_REGISTER_PERSONALITY:
9950 case IORING_UNREGISTER_PERSONALITY:
9951 case IORING_REGISTER_RSRC:
9952 case IORING_REGISTER_RSRC_UPDATE:
9953 return false;
9954 default:
9955 return true;
9956 }
9957 }
9958
9959 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9960 void __user *arg, unsigned nr_args)
9961 __releases(ctx->uring_lock)
9962 __acquires(ctx->uring_lock)
9963 {
9964 int ret;
9965
9966 /*
9967 * We're inside the ring mutex, if the ref is already dying, then
9968 * someone else killed the ctx or is already going through
9969 * io_uring_register().
9970 */
9971 if (percpu_ref_is_dying(&ctx->refs))
9972 return -ENXIO;
9973
9974 if (ctx->restricted) {
9975 if (opcode >= IORING_REGISTER_LAST)
9976 return -EINVAL;
9977 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
9978 if (!test_bit(opcode, ctx->restrictions.register_op))
9979 return -EACCES;
9980 }
9981
9982 if (io_register_op_must_quiesce(opcode)) {
9983 percpu_ref_kill(&ctx->refs);
9984
9985 /*
9986 * Drop uring mutex before waiting for references to exit. If
9987 * another thread is currently inside io_uring_enter() it might
9988 * need to grab the uring_lock to make progress. If we hold it
9989 * here across the drain wait, then we can deadlock. It's safe
9990 * to drop the mutex here, since no new references will come in
9991 * after we've killed the percpu ref.
9992 */
9993 mutex_unlock(&ctx->uring_lock);
9994 do {
9995 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9996 if (!ret)
9997 break;
9998 ret = io_run_task_work_sig();
9999 if (ret < 0)
10000 break;
10001 } while (1);
10002 mutex_lock(&ctx->uring_lock);
10003
10004 if (ret) {
10005 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10006 return ret;
10007 }
10008 }
10009
10010 switch (opcode) {
10011 case IORING_REGISTER_BUFFERS:
10012 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10013 break;
10014 case IORING_UNREGISTER_BUFFERS:
10015 ret = -EINVAL;
10016 if (arg || nr_args)
10017 break;
10018 ret = io_sqe_buffers_unregister(ctx);
10019 break;
10020 case IORING_REGISTER_FILES:
10021 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10022 break;
10023 case IORING_UNREGISTER_FILES:
10024 ret = -EINVAL;
10025 if (arg || nr_args)
10026 break;
10027 ret = io_sqe_files_unregister(ctx);
10028 break;
10029 case IORING_REGISTER_FILES_UPDATE:
10030 ret = io_register_files_update(ctx, arg, nr_args);
10031 break;
10032 case IORING_REGISTER_EVENTFD:
10033 case IORING_REGISTER_EVENTFD_ASYNC:
10034 ret = -EINVAL;
10035 if (nr_args != 1)
10036 break;
10037 ret = io_eventfd_register(ctx, arg);
10038 if (ret)
10039 break;
10040 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10041 ctx->eventfd_async = 1;
10042 else
10043 ctx->eventfd_async = 0;
10044 break;
10045 case IORING_UNREGISTER_EVENTFD:
10046 ret = -EINVAL;
10047 if (arg || nr_args)
10048 break;
10049 ret = io_eventfd_unregister(ctx);
10050 break;
10051 case IORING_REGISTER_PROBE:
10052 ret = -EINVAL;
10053 if (!arg || nr_args > 256)
10054 break;
10055 ret = io_probe(ctx, arg, nr_args);
10056 break;
10057 case IORING_REGISTER_PERSONALITY:
10058 ret = -EINVAL;
10059 if (arg || nr_args)
10060 break;
10061 ret = io_register_personality(ctx);
10062 break;
10063 case IORING_UNREGISTER_PERSONALITY:
10064 ret = -EINVAL;
10065 if (arg)
10066 break;
10067 ret = io_unregister_personality(ctx, nr_args);
10068 break;
10069 case IORING_REGISTER_ENABLE_RINGS:
10070 ret = -EINVAL;
10071 if (arg || nr_args)
10072 break;
10073 ret = io_register_enable_rings(ctx);
10074 break;
10075 case IORING_REGISTER_RESTRICTIONS:
10076 ret = io_register_restrictions(ctx, arg, nr_args);
10077 break;
10078 case IORING_REGISTER_RSRC:
10079 ret = io_register_rsrc(ctx, arg, nr_args);
10080 break;
10081 case IORING_REGISTER_RSRC_UPDATE:
10082 ret = io_register_rsrc_update(ctx, arg, nr_args);
10083 break;
10084 default:
10085 ret = -EINVAL;
10086 break;
10087 }
10088
10089 if (io_register_op_must_quiesce(opcode)) {
10090 /* bring the ctx back to life */
10091 percpu_ref_reinit(&ctx->refs);
10092 reinit_completion(&ctx->ref_comp);
10093 }
10094 return ret;
10095 }
10096
10097 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10098 void __user *, arg, unsigned int, nr_args)
10099 {
10100 struct io_ring_ctx *ctx;
10101 long ret = -EBADF;
10102 struct fd f;
10103
10104 f = fdget(fd);
10105 if (!f.file)
10106 return -EBADF;
10107
10108 ret = -EOPNOTSUPP;
10109 if (f.file->f_op != &io_uring_fops)
10110 goto out_fput;
10111
10112 ctx = f.file->private_data;
10113
10114 io_run_task_work();
10115
10116 mutex_lock(&ctx->uring_lock);
10117 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10118 mutex_unlock(&ctx->uring_lock);
10119 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10120 ctx->cq_ev_fd != NULL, ret);
10121 out_fput:
10122 fdput(f);
10123 return ret;
10124 }
10125
10126 static int __init io_uring_init(void)
10127 {
10128 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10129 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10130 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10131 } while (0)
10132
10133 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10134 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10135 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10136 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10137 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10138 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10139 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10140 BUILD_BUG_SQE_ELEM(8, __u64, off);
10141 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10142 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10143 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10144 BUILD_BUG_SQE_ELEM(24, __u32, len);
10145 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10146 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10147 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10148 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10149 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10150 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10151 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10152 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10153 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10154 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10155 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10156 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10157 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10158 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10159 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10160 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10161 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10162 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10163 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10164
10165 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10166 sizeof(struct io_uring_rsrc_update));
10167 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10168 sizeof(struct io_uring_rsrc_update2));
10169 /* should fit into one byte */
10170 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10171
10172 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10173 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10174 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10175 SLAB_ACCOUNT);
10176 return 0;
10177 };
10178 __initcall(io_uring_init);