]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: fix NULL-mm for linked reqs
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93
94 /*
95 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 */
97 #define IORING_FILE_TABLE_SHIFT 9
98 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
99 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
100 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101
102 struct io_uring {
103 u32 head ____cacheline_aligned_in_smp;
104 u32 tail ____cacheline_aligned_in_smp;
105 };
106
107 /*
108 * This data is shared with the application through the mmap at offsets
109 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
110 *
111 * The offsets to the member fields are published through struct
112 * io_sqring_offsets when calling io_uring_setup.
113 */
114 struct io_rings {
115 /*
116 * Head and tail offsets into the ring; the offsets need to be
117 * masked to get valid indices.
118 *
119 * The kernel controls head of the sq ring and the tail of the cq ring,
120 * and the application controls tail of the sq ring and the head of the
121 * cq ring.
122 */
123 struct io_uring sq, cq;
124 /*
125 * Bitmasks to apply to head and tail offsets (constant, equals
126 * ring_entries - 1)
127 */
128 u32 sq_ring_mask, cq_ring_mask;
129 /* Ring sizes (constant, power of 2) */
130 u32 sq_ring_entries, cq_ring_entries;
131 /*
132 * Number of invalid entries dropped by the kernel due to
133 * invalid index stored in array
134 *
135 * Written by the kernel, shouldn't be modified by the
136 * application (i.e. get number of "new events" by comparing to
137 * cached value).
138 *
139 * After a new SQ head value was read by the application this
140 * counter includes all submissions that were dropped reaching
141 * the new SQ head (and possibly more).
142 */
143 u32 sq_dropped;
144 /*
145 * Runtime SQ flags
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application.
149 *
150 * The application needs a full memory barrier before checking
151 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 */
153 u32 sq_flags;
154 /*
155 * Runtime CQ flags
156 *
157 * Written by the application, shouldn't be modified by the
158 * kernel.
159 */
160 u32 cq_flags;
161 /*
162 * Number of completion events lost because the queue was full;
163 * this should be avoided by the application by making sure
164 * there are not more requests pending than there is space in
165 * the completion queue.
166 *
167 * Written by the kernel, shouldn't be modified by the
168 * application (i.e. get number of "new events" by comparing to
169 * cached value).
170 *
171 * As completion events come in out of order this counter is not
172 * ordered with any other data.
173 */
174 u32 cq_overflow;
175 /*
176 * Ring buffer of completion events.
177 *
178 * The kernel writes completion events fresh every time they are
179 * produced, so the application is allowed to modify pending
180 * entries.
181 */
182 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
183 };
184
185 struct io_mapped_ubuf {
186 u64 ubuf;
187 size_t len;
188 struct bio_vec *bvec;
189 unsigned int nr_bvecs;
190 };
191
192 struct fixed_file_table {
193 struct file **files;
194 };
195
196 struct fixed_file_ref_node {
197 struct percpu_ref refs;
198 struct list_head node;
199 struct list_head file_list;
200 struct fixed_file_data *file_data;
201 struct llist_node llist;
202 };
203
204 struct fixed_file_data {
205 struct fixed_file_table *table;
206 struct io_ring_ctx *ctx;
207
208 struct percpu_ref *cur_refs;
209 struct percpu_ref refs;
210 struct completion done;
211 struct list_head ref_list;
212 spinlock_t lock;
213 };
214
215 struct io_buffer {
216 struct list_head list;
217 __u64 addr;
218 __s32 len;
219 __u16 bid;
220 };
221
222 struct io_ring_ctx {
223 struct {
224 struct percpu_ref refs;
225 } ____cacheline_aligned_in_smp;
226
227 struct {
228 unsigned int flags;
229 unsigned int compat: 1;
230 unsigned int limit_mem: 1;
231 unsigned int cq_overflow_flushed: 1;
232 unsigned int drain_next: 1;
233 unsigned int eventfd_async: 1;
234
235 /*
236 * Ring buffer of indices into array of io_uring_sqe, which is
237 * mmapped by the application using the IORING_OFF_SQES offset.
238 *
239 * This indirection could e.g. be used to assign fixed
240 * io_uring_sqe entries to operations and only submit them to
241 * the queue when needed.
242 *
243 * The kernel modifies neither the indices array nor the entries
244 * array.
245 */
246 u32 *sq_array;
247 unsigned cached_sq_head;
248 unsigned sq_entries;
249 unsigned sq_mask;
250 unsigned sq_thread_idle;
251 unsigned cached_sq_dropped;
252 atomic_t cached_cq_overflow;
253 unsigned long sq_check_overflow;
254
255 struct list_head defer_list;
256 struct list_head timeout_list;
257 struct list_head cq_overflow_list;
258
259 wait_queue_head_t inflight_wait;
260 struct io_uring_sqe *sq_sqes;
261 } ____cacheline_aligned_in_smp;
262
263 struct io_rings *rings;
264
265 /* IO offload */
266 struct io_wq *io_wq;
267 struct task_struct *sqo_thread; /* if using sq thread polling */
268 struct mm_struct *sqo_mm;
269 wait_queue_head_t sqo_wait;
270
271 /*
272 * If used, fixed file set. Writers must ensure that ->refs is dead,
273 * readers must ensure that ->refs is alive as long as the file* is
274 * used. Only updated through io_uring_register(2).
275 */
276 struct fixed_file_data *file_data;
277 unsigned nr_user_files;
278 int ring_fd;
279 struct file *ring_file;
280
281 /* if used, fixed mapped user buffers */
282 unsigned nr_user_bufs;
283 struct io_mapped_ubuf *user_bufs;
284
285 struct user_struct *user;
286
287 const struct cred *creds;
288
289 struct completion ref_comp;
290 struct completion sq_thread_comp;
291
292 /* if all else fails... */
293 struct io_kiocb *fallback_req;
294
295 #if defined(CONFIG_UNIX)
296 struct socket *ring_sock;
297 #endif
298
299 struct idr io_buffer_idr;
300
301 struct idr personality_idr;
302
303 struct {
304 unsigned cached_cq_tail;
305 unsigned cq_entries;
306 unsigned cq_mask;
307 atomic_t cq_timeouts;
308 unsigned long cq_check_overflow;
309 struct wait_queue_head cq_wait;
310 struct fasync_struct *cq_fasync;
311 struct eventfd_ctx *cq_ev_fd;
312 } ____cacheline_aligned_in_smp;
313
314 struct {
315 struct mutex uring_lock;
316 wait_queue_head_t wait;
317 } ____cacheline_aligned_in_smp;
318
319 struct {
320 spinlock_t completion_lock;
321
322 /*
323 * ->poll_list is protected by the ctx->uring_lock for
324 * io_uring instances that don't use IORING_SETUP_SQPOLL.
325 * For SQPOLL, only the single threaded io_sq_thread() will
326 * manipulate the list, hence no extra locking is needed there.
327 */
328 struct list_head poll_list;
329 struct hlist_head *cancel_hash;
330 unsigned cancel_hash_bits;
331 bool poll_multi_file;
332
333 spinlock_t inflight_lock;
334 struct list_head inflight_list;
335 } ____cacheline_aligned_in_smp;
336
337 struct delayed_work file_put_work;
338 struct llist_head file_put_llist;
339
340 struct work_struct exit_work;
341 };
342
343 /*
344 * First field must be the file pointer in all the
345 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
346 */
347 struct io_poll_iocb {
348 struct file *file;
349 union {
350 struct wait_queue_head *head;
351 u64 addr;
352 };
353 __poll_t events;
354 bool done;
355 bool canceled;
356 struct wait_queue_entry wait;
357 };
358
359 struct io_close {
360 struct file *file;
361 struct file *put_file;
362 int fd;
363 };
364
365 struct io_timeout_data {
366 struct io_kiocb *req;
367 struct hrtimer timer;
368 struct timespec64 ts;
369 enum hrtimer_mode mode;
370 };
371
372 struct io_accept {
373 struct file *file;
374 struct sockaddr __user *addr;
375 int __user *addr_len;
376 int flags;
377 unsigned long nofile;
378 };
379
380 struct io_sync {
381 struct file *file;
382 loff_t len;
383 loff_t off;
384 int flags;
385 int mode;
386 };
387
388 struct io_cancel {
389 struct file *file;
390 u64 addr;
391 };
392
393 struct io_timeout {
394 struct file *file;
395 u64 addr;
396 int flags;
397 u32 off;
398 u32 target_seq;
399 };
400
401 struct io_rw {
402 /* NOTE: kiocb has the file as the first member, so don't do it here */
403 struct kiocb kiocb;
404 u64 addr;
405 u64 len;
406 };
407
408 struct io_connect {
409 struct file *file;
410 struct sockaddr __user *addr;
411 int addr_len;
412 };
413
414 struct io_sr_msg {
415 struct file *file;
416 union {
417 struct user_msghdr __user *msg;
418 void __user *buf;
419 };
420 int msg_flags;
421 int bgid;
422 size_t len;
423 struct io_buffer *kbuf;
424 };
425
426 struct io_open {
427 struct file *file;
428 int dfd;
429 struct filename *filename;
430 struct open_how how;
431 unsigned long nofile;
432 };
433
434 struct io_files_update {
435 struct file *file;
436 u64 arg;
437 u32 nr_args;
438 u32 offset;
439 };
440
441 struct io_fadvise {
442 struct file *file;
443 u64 offset;
444 u32 len;
445 u32 advice;
446 };
447
448 struct io_madvise {
449 struct file *file;
450 u64 addr;
451 u32 len;
452 u32 advice;
453 };
454
455 struct io_epoll {
456 struct file *file;
457 int epfd;
458 int op;
459 int fd;
460 struct epoll_event event;
461 };
462
463 struct io_splice {
464 struct file *file_out;
465 struct file *file_in;
466 loff_t off_out;
467 loff_t off_in;
468 u64 len;
469 unsigned int flags;
470 };
471
472 struct io_provide_buf {
473 struct file *file;
474 __u64 addr;
475 __s32 len;
476 __u32 bgid;
477 __u16 nbufs;
478 __u16 bid;
479 };
480
481 struct io_statx {
482 struct file *file;
483 int dfd;
484 unsigned int mask;
485 unsigned int flags;
486 const char __user *filename;
487 struct statx __user *buffer;
488 };
489
490 struct io_async_connect {
491 struct sockaddr_storage address;
492 };
493
494 struct io_async_msghdr {
495 struct iovec fast_iov[UIO_FASTIOV];
496 struct iovec *iov;
497 struct sockaddr __user *uaddr;
498 struct msghdr msg;
499 struct sockaddr_storage addr;
500 };
501
502 struct io_async_rw {
503 struct iovec fast_iov[UIO_FASTIOV];
504 struct iovec *iov;
505 ssize_t nr_segs;
506 ssize_t size;
507 struct wait_page_queue wpq;
508 struct callback_head task_work;
509 };
510
511 struct io_async_ctx {
512 union {
513 struct io_async_rw rw;
514 struct io_async_msghdr msg;
515 struct io_async_connect connect;
516 struct io_timeout_data timeout;
517 };
518 };
519
520 enum {
521 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
522 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
523 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
524 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
525 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
526 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
527
528 REQ_F_LINK_HEAD_BIT,
529 REQ_F_LINK_NEXT_BIT,
530 REQ_F_FAIL_LINK_BIT,
531 REQ_F_INFLIGHT_BIT,
532 REQ_F_CUR_POS_BIT,
533 REQ_F_NOWAIT_BIT,
534 REQ_F_LINK_TIMEOUT_BIT,
535 REQ_F_TIMEOUT_BIT,
536 REQ_F_ISREG_BIT,
537 REQ_F_TIMEOUT_NOSEQ_BIT,
538 REQ_F_COMP_LOCKED_BIT,
539 REQ_F_NEED_CLEANUP_BIT,
540 REQ_F_OVERFLOW_BIT,
541 REQ_F_POLLED_BIT,
542 REQ_F_BUFFER_SELECTED_BIT,
543 REQ_F_NO_FILE_TABLE_BIT,
544 REQ_F_QUEUE_TIMEOUT_BIT,
545 REQ_F_WORK_INITIALIZED_BIT,
546 REQ_F_TASK_PINNED_BIT,
547
548 /* not a real bit, just to check we're not overflowing the space */
549 __REQ_F_LAST_BIT,
550 };
551
552 enum {
553 /* ctx owns file */
554 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
555 /* drain existing IO first */
556 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
557 /* linked sqes */
558 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
559 /* doesn't sever on completion < 0 */
560 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
561 /* IOSQE_ASYNC */
562 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
563 /* IOSQE_BUFFER_SELECT */
564 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
565
566 /* head of a link */
567 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
568 /* already grabbed next link */
569 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
570 /* fail rest of links */
571 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
572 /* on inflight list */
573 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
574 /* read/write uses file position */
575 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
576 /* must not punt to workers */
577 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
578 /* has linked timeout */
579 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
580 /* timeout request */
581 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
582 /* regular file */
583 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
584 /* no timeout sequence */
585 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
586 /* completion under lock */
587 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
588 /* needs cleanup */
589 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
590 /* in overflow list */
591 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
592 /* already went through poll handler */
593 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
594 /* buffer already selected */
595 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
596 /* doesn't need file table for this request */
597 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
598 /* needs to queue linked timeout */
599 REQ_F_QUEUE_TIMEOUT = BIT(REQ_F_QUEUE_TIMEOUT_BIT),
600 /* io_wq_work is initialized */
601 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
602 /* req->task is refcounted */
603 REQ_F_TASK_PINNED = BIT(REQ_F_TASK_PINNED_BIT),
604 };
605
606 struct async_poll {
607 struct io_poll_iocb poll;
608 struct io_wq_work work;
609 };
610
611 /*
612 * NOTE! Each of the iocb union members has the file pointer
613 * as the first entry in their struct definition. So you can
614 * access the file pointer through any of the sub-structs,
615 * or directly as just 'ki_filp' in this struct.
616 */
617 struct io_kiocb {
618 union {
619 struct file *file;
620 struct io_rw rw;
621 struct io_poll_iocb poll;
622 struct io_accept accept;
623 struct io_sync sync;
624 struct io_cancel cancel;
625 struct io_timeout timeout;
626 struct io_connect connect;
627 struct io_sr_msg sr_msg;
628 struct io_open open;
629 struct io_close close;
630 struct io_files_update files_update;
631 struct io_fadvise fadvise;
632 struct io_madvise madvise;
633 struct io_epoll epoll;
634 struct io_splice splice;
635 struct io_provide_buf pbuf;
636 struct io_statx statx;
637 };
638
639 struct io_async_ctx *io;
640 int cflags;
641 u8 opcode;
642 /* polled IO has completed */
643 u8 iopoll_completed;
644
645 u16 buf_index;
646
647 struct io_ring_ctx *ctx;
648 struct list_head list;
649 unsigned int flags;
650 refcount_t refs;
651 struct task_struct *task;
652 unsigned long fsize;
653 u64 user_data;
654 u32 result;
655 u32 sequence;
656
657 struct list_head link_list;
658
659 struct list_head inflight_entry;
660
661 struct percpu_ref *fixed_file_refs;
662
663 union {
664 /*
665 * Only commands that never go async can use the below fields,
666 * obviously. Right now only IORING_OP_POLL_ADD uses them, and
667 * async armed poll handlers for regular commands. The latter
668 * restore the work, if needed.
669 */
670 struct {
671 struct callback_head task_work;
672 struct hlist_node hash_node;
673 struct async_poll *apoll;
674 };
675 struct io_wq_work work;
676 };
677 };
678
679 #define IO_IOPOLL_BATCH 8
680
681 struct io_submit_state {
682 struct blk_plug plug;
683
684 /*
685 * io_kiocb alloc cache
686 */
687 void *reqs[IO_IOPOLL_BATCH];
688 unsigned int free_reqs;
689
690 /*
691 * File reference cache
692 */
693 struct file *file;
694 unsigned int fd;
695 unsigned int has_refs;
696 unsigned int used_refs;
697 unsigned int ios_left;
698 };
699
700 struct io_op_def {
701 /* needs req->io allocated for deferral/async */
702 unsigned async_ctx : 1;
703 /* needs current->mm setup, does mm access */
704 unsigned needs_mm : 1;
705 /* needs req->file assigned */
706 unsigned needs_file : 1;
707 /* don't fail if file grab fails */
708 unsigned needs_file_no_error : 1;
709 /* hash wq insertion if file is a regular file */
710 unsigned hash_reg_file : 1;
711 /* unbound wq insertion if file is a non-regular file */
712 unsigned unbound_nonreg_file : 1;
713 /* opcode is not supported by this kernel */
714 unsigned not_supported : 1;
715 /* needs file table */
716 unsigned file_table : 1;
717 /* needs ->fs */
718 unsigned needs_fs : 1;
719 /* set if opcode supports polled "wait" */
720 unsigned pollin : 1;
721 unsigned pollout : 1;
722 /* op supports buffer selection */
723 unsigned buffer_select : 1;
724 };
725
726 static const struct io_op_def io_op_defs[] = {
727 [IORING_OP_NOP] = {},
728 [IORING_OP_READV] = {
729 .async_ctx = 1,
730 .needs_mm = 1,
731 .needs_file = 1,
732 .unbound_nonreg_file = 1,
733 .pollin = 1,
734 .buffer_select = 1,
735 },
736 [IORING_OP_WRITEV] = {
737 .async_ctx = 1,
738 .needs_mm = 1,
739 .needs_file = 1,
740 .hash_reg_file = 1,
741 .unbound_nonreg_file = 1,
742 .pollout = 1,
743 },
744 [IORING_OP_FSYNC] = {
745 .needs_file = 1,
746 },
747 [IORING_OP_READ_FIXED] = {
748 .needs_file = 1,
749 .unbound_nonreg_file = 1,
750 .pollin = 1,
751 },
752 [IORING_OP_WRITE_FIXED] = {
753 .needs_file = 1,
754 .hash_reg_file = 1,
755 .unbound_nonreg_file = 1,
756 .pollout = 1,
757 },
758 [IORING_OP_POLL_ADD] = {
759 .needs_file = 1,
760 .unbound_nonreg_file = 1,
761 },
762 [IORING_OP_POLL_REMOVE] = {},
763 [IORING_OP_SYNC_FILE_RANGE] = {
764 .needs_file = 1,
765 },
766 [IORING_OP_SENDMSG] = {
767 .async_ctx = 1,
768 .needs_mm = 1,
769 .needs_file = 1,
770 .unbound_nonreg_file = 1,
771 .needs_fs = 1,
772 .pollout = 1,
773 },
774 [IORING_OP_RECVMSG] = {
775 .async_ctx = 1,
776 .needs_mm = 1,
777 .needs_file = 1,
778 .unbound_nonreg_file = 1,
779 .needs_fs = 1,
780 .pollin = 1,
781 .buffer_select = 1,
782 },
783 [IORING_OP_TIMEOUT] = {
784 .async_ctx = 1,
785 .needs_mm = 1,
786 },
787 [IORING_OP_TIMEOUT_REMOVE] = {},
788 [IORING_OP_ACCEPT] = {
789 .needs_mm = 1,
790 .needs_file = 1,
791 .unbound_nonreg_file = 1,
792 .file_table = 1,
793 .pollin = 1,
794 },
795 [IORING_OP_ASYNC_CANCEL] = {},
796 [IORING_OP_LINK_TIMEOUT] = {
797 .async_ctx = 1,
798 .needs_mm = 1,
799 },
800 [IORING_OP_CONNECT] = {
801 .async_ctx = 1,
802 .needs_mm = 1,
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollout = 1,
806 },
807 [IORING_OP_FALLOCATE] = {
808 .needs_file = 1,
809 },
810 [IORING_OP_OPENAT] = {
811 .file_table = 1,
812 .needs_fs = 1,
813 },
814 [IORING_OP_CLOSE] = {
815 .needs_file = 1,
816 .needs_file_no_error = 1,
817 .file_table = 1,
818 },
819 [IORING_OP_FILES_UPDATE] = {
820 .needs_mm = 1,
821 .file_table = 1,
822 },
823 [IORING_OP_STATX] = {
824 .needs_mm = 1,
825 .needs_fs = 1,
826 .file_table = 1,
827 },
828 [IORING_OP_READ] = {
829 .needs_mm = 1,
830 .needs_file = 1,
831 .unbound_nonreg_file = 1,
832 .pollin = 1,
833 .buffer_select = 1,
834 },
835 [IORING_OP_WRITE] = {
836 .needs_mm = 1,
837 .needs_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 },
841 [IORING_OP_FADVISE] = {
842 .needs_file = 1,
843 },
844 [IORING_OP_MADVISE] = {
845 .needs_mm = 1,
846 },
847 [IORING_OP_SEND] = {
848 .needs_mm = 1,
849 .needs_file = 1,
850 .unbound_nonreg_file = 1,
851 .pollout = 1,
852 },
853 [IORING_OP_RECV] = {
854 .needs_mm = 1,
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollin = 1,
858 .buffer_select = 1,
859 },
860 [IORING_OP_OPENAT2] = {
861 .file_table = 1,
862 .needs_fs = 1,
863 },
864 [IORING_OP_EPOLL_CTL] = {
865 .unbound_nonreg_file = 1,
866 .file_table = 1,
867 },
868 [IORING_OP_SPLICE] = {
869 .needs_file = 1,
870 .hash_reg_file = 1,
871 .unbound_nonreg_file = 1,
872 },
873 [IORING_OP_PROVIDE_BUFFERS] = {},
874 [IORING_OP_REMOVE_BUFFERS] = {},
875 [IORING_OP_TEE] = {
876 .needs_file = 1,
877 .hash_reg_file = 1,
878 .unbound_nonreg_file = 1,
879 },
880 };
881
882 enum io_mem_account {
883 ACCT_LOCKED,
884 ACCT_PINNED,
885 };
886
887 static void io_wq_submit_work(struct io_wq_work **workptr);
888 static void io_cqring_fill_event(struct io_kiocb *req, long res);
889 static void io_put_req(struct io_kiocb *req);
890 static void __io_double_put_req(struct io_kiocb *req);
891 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
892 static void io_queue_linked_timeout(struct io_kiocb *req);
893 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
894 struct io_uring_files_update *ip,
895 unsigned nr_args);
896 static int io_grab_files(struct io_kiocb *req);
897 static void io_cleanup_req(struct io_kiocb *req);
898 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
899 int fd, struct file **out_file, bool fixed);
900 static void __io_queue_sqe(struct io_kiocb *req,
901 const struct io_uring_sqe *sqe);
902
903 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
904 struct iovec **iovec, struct iov_iter *iter,
905 bool needs_lock);
906 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
907 struct iovec *iovec, struct iovec *fast_iov,
908 struct iov_iter *iter);
909
910 static struct kmem_cache *req_cachep;
911
912 static const struct file_operations io_uring_fops;
913
914 struct sock *io_uring_get_socket(struct file *file)
915 {
916 #if defined(CONFIG_UNIX)
917 if (file->f_op == &io_uring_fops) {
918 struct io_ring_ctx *ctx = file->private_data;
919
920 return ctx->ring_sock->sk;
921 }
922 #endif
923 return NULL;
924 }
925 EXPORT_SYMBOL(io_uring_get_socket);
926
927 static void io_get_req_task(struct io_kiocb *req)
928 {
929 if (req->flags & REQ_F_TASK_PINNED)
930 return;
931 get_task_struct(req->task);
932 req->flags |= REQ_F_TASK_PINNED;
933 }
934
935 /* not idempotent -- it doesn't clear REQ_F_TASK_PINNED */
936 static void __io_put_req_task(struct io_kiocb *req)
937 {
938 if (req->flags & REQ_F_TASK_PINNED)
939 put_task_struct(req->task);
940 }
941
942 static void io_file_put_work(struct work_struct *work);
943
944 /*
945 * Note: must call io_req_init_async() for the first time you
946 * touch any members of io_wq_work.
947 */
948 static inline void io_req_init_async(struct io_kiocb *req)
949 {
950 if (req->flags & REQ_F_WORK_INITIALIZED)
951 return;
952
953 memset(&req->work, 0, sizeof(req->work));
954 req->flags |= REQ_F_WORK_INITIALIZED;
955 }
956
957 static inline bool io_async_submit(struct io_ring_ctx *ctx)
958 {
959 return ctx->flags & IORING_SETUP_SQPOLL;
960 }
961
962 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
963 {
964 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
965
966 complete(&ctx->ref_comp);
967 }
968
969 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
970 {
971 struct io_ring_ctx *ctx;
972 int hash_bits;
973
974 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
975 if (!ctx)
976 return NULL;
977
978 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
979 if (!ctx->fallback_req)
980 goto err;
981
982 /*
983 * Use 5 bits less than the max cq entries, that should give us around
984 * 32 entries per hash list if totally full and uniformly spread.
985 */
986 hash_bits = ilog2(p->cq_entries);
987 hash_bits -= 5;
988 if (hash_bits <= 0)
989 hash_bits = 1;
990 ctx->cancel_hash_bits = hash_bits;
991 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
992 GFP_KERNEL);
993 if (!ctx->cancel_hash)
994 goto err;
995 __hash_init(ctx->cancel_hash, 1U << hash_bits);
996
997 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
998 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
999 goto err;
1000
1001 ctx->flags = p->flags;
1002 init_waitqueue_head(&ctx->sqo_wait);
1003 init_waitqueue_head(&ctx->cq_wait);
1004 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1005 init_completion(&ctx->ref_comp);
1006 init_completion(&ctx->sq_thread_comp);
1007 idr_init(&ctx->io_buffer_idr);
1008 idr_init(&ctx->personality_idr);
1009 mutex_init(&ctx->uring_lock);
1010 init_waitqueue_head(&ctx->wait);
1011 spin_lock_init(&ctx->completion_lock);
1012 INIT_LIST_HEAD(&ctx->poll_list);
1013 INIT_LIST_HEAD(&ctx->defer_list);
1014 INIT_LIST_HEAD(&ctx->timeout_list);
1015 init_waitqueue_head(&ctx->inflight_wait);
1016 spin_lock_init(&ctx->inflight_lock);
1017 INIT_LIST_HEAD(&ctx->inflight_list);
1018 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1019 init_llist_head(&ctx->file_put_llist);
1020 return ctx;
1021 err:
1022 if (ctx->fallback_req)
1023 kmem_cache_free(req_cachep, ctx->fallback_req);
1024 kfree(ctx->cancel_hash);
1025 kfree(ctx);
1026 return NULL;
1027 }
1028
1029 static inline bool __req_need_defer(struct io_kiocb *req)
1030 {
1031 struct io_ring_ctx *ctx = req->ctx;
1032
1033 return req->sequence != ctx->cached_cq_tail
1034 + atomic_read(&ctx->cached_cq_overflow);
1035 }
1036
1037 static inline bool req_need_defer(struct io_kiocb *req)
1038 {
1039 if (unlikely(req->flags & REQ_F_IO_DRAIN))
1040 return __req_need_defer(req);
1041
1042 return false;
1043 }
1044
1045 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1046 {
1047 struct io_rings *rings = ctx->rings;
1048
1049 /* order cqe stores with ring update */
1050 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1051
1052 if (wq_has_sleeper(&ctx->cq_wait)) {
1053 wake_up_interruptible(&ctx->cq_wait);
1054 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1055 }
1056 }
1057
1058 static inline void io_req_work_grab_env(struct io_kiocb *req,
1059 const struct io_op_def *def)
1060 {
1061 if (!req->work.mm && def->needs_mm) {
1062 mmgrab(current->mm);
1063 req->work.mm = current->mm;
1064 }
1065 if (!req->work.creds)
1066 req->work.creds = get_current_cred();
1067 if (!req->work.fs && def->needs_fs) {
1068 spin_lock(&current->fs->lock);
1069 if (!current->fs->in_exec) {
1070 req->work.fs = current->fs;
1071 req->work.fs->users++;
1072 } else {
1073 req->work.flags |= IO_WQ_WORK_CANCEL;
1074 }
1075 spin_unlock(&current->fs->lock);
1076 }
1077 }
1078
1079 static inline void io_req_work_drop_env(struct io_kiocb *req)
1080 {
1081 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1082 return;
1083
1084 if (req->work.mm) {
1085 mmdrop(req->work.mm);
1086 req->work.mm = NULL;
1087 }
1088 if (req->work.creds) {
1089 put_cred(req->work.creds);
1090 req->work.creds = NULL;
1091 }
1092 if (req->work.fs) {
1093 struct fs_struct *fs = req->work.fs;
1094
1095 spin_lock(&req->work.fs->lock);
1096 if (--fs->users)
1097 fs = NULL;
1098 spin_unlock(&req->work.fs->lock);
1099 if (fs)
1100 free_fs_struct(fs);
1101 }
1102 }
1103
1104 static inline void io_prep_async_work(struct io_kiocb *req,
1105 struct io_kiocb **link)
1106 {
1107 const struct io_op_def *def = &io_op_defs[req->opcode];
1108
1109 if (req->flags & REQ_F_ISREG) {
1110 if (def->hash_reg_file)
1111 io_wq_hash_work(&req->work, file_inode(req->file));
1112 } else {
1113 if (def->unbound_nonreg_file)
1114 req->work.flags |= IO_WQ_WORK_UNBOUND;
1115 }
1116
1117 io_req_init_async(req);
1118 io_req_work_grab_env(req, def);
1119
1120 *link = io_prep_linked_timeout(req);
1121 }
1122
1123 static inline void io_queue_async_work(struct io_kiocb *req)
1124 {
1125 struct io_ring_ctx *ctx = req->ctx;
1126 struct io_kiocb *link;
1127
1128 io_prep_async_work(req, &link);
1129
1130 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1131 &req->work, req->flags);
1132 io_wq_enqueue(ctx->io_wq, &req->work);
1133
1134 if (link)
1135 io_queue_linked_timeout(link);
1136 }
1137
1138 static void io_kill_timeout(struct io_kiocb *req)
1139 {
1140 int ret;
1141
1142 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1143 if (ret != -1) {
1144 atomic_inc(&req->ctx->cq_timeouts);
1145 list_del_init(&req->list);
1146 req->flags |= REQ_F_COMP_LOCKED;
1147 io_cqring_fill_event(req, 0);
1148 io_put_req(req);
1149 }
1150 }
1151
1152 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1153 {
1154 struct io_kiocb *req, *tmp;
1155
1156 spin_lock_irq(&ctx->completion_lock);
1157 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1158 io_kill_timeout(req);
1159 spin_unlock_irq(&ctx->completion_lock);
1160 }
1161
1162 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1163 {
1164 do {
1165 struct io_kiocb *req = list_first_entry(&ctx->defer_list,
1166 struct io_kiocb, list);
1167
1168 if (req_need_defer(req))
1169 break;
1170 list_del_init(&req->list);
1171 io_queue_async_work(req);
1172 } while (!list_empty(&ctx->defer_list));
1173 }
1174
1175 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1176 {
1177 while (!list_empty(&ctx->timeout_list)) {
1178 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1179 struct io_kiocb, list);
1180
1181 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
1182 break;
1183 if (req->timeout.target_seq != ctx->cached_cq_tail
1184 - atomic_read(&ctx->cq_timeouts))
1185 break;
1186
1187 list_del_init(&req->list);
1188 io_kill_timeout(req);
1189 }
1190 }
1191
1192 static void io_commit_cqring(struct io_ring_ctx *ctx)
1193 {
1194 io_flush_timeouts(ctx);
1195 __io_commit_cqring(ctx);
1196
1197 if (unlikely(!list_empty(&ctx->defer_list)))
1198 __io_queue_deferred(ctx);
1199 }
1200
1201 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1202 {
1203 struct io_rings *rings = ctx->rings;
1204 unsigned tail;
1205
1206 tail = ctx->cached_cq_tail;
1207 /*
1208 * writes to the cq entry need to come after reading head; the
1209 * control dependency is enough as we're using WRITE_ONCE to
1210 * fill the cq entry
1211 */
1212 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1213 return NULL;
1214
1215 ctx->cached_cq_tail++;
1216 return &rings->cqes[tail & ctx->cq_mask];
1217 }
1218
1219 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1220 {
1221 if (!ctx->cq_ev_fd)
1222 return false;
1223 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1224 return false;
1225 if (!ctx->eventfd_async)
1226 return true;
1227 return io_wq_current_is_worker();
1228 }
1229
1230 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1231 {
1232 if (waitqueue_active(&ctx->wait))
1233 wake_up(&ctx->wait);
1234 if (waitqueue_active(&ctx->sqo_wait))
1235 wake_up(&ctx->sqo_wait);
1236 if (io_should_trigger_evfd(ctx))
1237 eventfd_signal(ctx->cq_ev_fd, 1);
1238 }
1239
1240 /* Returns true if there are no backlogged entries after the flush */
1241 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1242 {
1243 struct io_rings *rings = ctx->rings;
1244 struct io_uring_cqe *cqe;
1245 struct io_kiocb *req;
1246 unsigned long flags;
1247 LIST_HEAD(list);
1248
1249 if (!force) {
1250 if (list_empty_careful(&ctx->cq_overflow_list))
1251 return true;
1252 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1253 rings->cq_ring_entries))
1254 return false;
1255 }
1256
1257 spin_lock_irqsave(&ctx->completion_lock, flags);
1258
1259 /* if force is set, the ring is going away. always drop after that */
1260 if (force)
1261 ctx->cq_overflow_flushed = 1;
1262
1263 cqe = NULL;
1264 while (!list_empty(&ctx->cq_overflow_list)) {
1265 cqe = io_get_cqring(ctx);
1266 if (!cqe && !force)
1267 break;
1268
1269 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1270 list);
1271 list_move(&req->list, &list);
1272 req->flags &= ~REQ_F_OVERFLOW;
1273 if (cqe) {
1274 WRITE_ONCE(cqe->user_data, req->user_data);
1275 WRITE_ONCE(cqe->res, req->result);
1276 WRITE_ONCE(cqe->flags, req->cflags);
1277 } else {
1278 WRITE_ONCE(ctx->rings->cq_overflow,
1279 atomic_inc_return(&ctx->cached_cq_overflow));
1280 }
1281 }
1282
1283 io_commit_cqring(ctx);
1284 if (cqe) {
1285 clear_bit(0, &ctx->sq_check_overflow);
1286 clear_bit(0, &ctx->cq_check_overflow);
1287 }
1288 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1289 io_cqring_ev_posted(ctx);
1290
1291 while (!list_empty(&list)) {
1292 req = list_first_entry(&list, struct io_kiocb, list);
1293 list_del(&req->list);
1294 io_put_req(req);
1295 }
1296
1297 return cqe != NULL;
1298 }
1299
1300 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1301 {
1302 struct io_ring_ctx *ctx = req->ctx;
1303 struct io_uring_cqe *cqe;
1304
1305 trace_io_uring_complete(ctx, req->user_data, res);
1306
1307 /*
1308 * If we can't get a cq entry, userspace overflowed the
1309 * submission (by quite a lot). Increment the overflow count in
1310 * the ring.
1311 */
1312 cqe = io_get_cqring(ctx);
1313 if (likely(cqe)) {
1314 WRITE_ONCE(cqe->user_data, req->user_data);
1315 WRITE_ONCE(cqe->res, res);
1316 WRITE_ONCE(cqe->flags, cflags);
1317 } else if (ctx->cq_overflow_flushed) {
1318 WRITE_ONCE(ctx->rings->cq_overflow,
1319 atomic_inc_return(&ctx->cached_cq_overflow));
1320 } else {
1321 if (list_empty(&ctx->cq_overflow_list)) {
1322 set_bit(0, &ctx->sq_check_overflow);
1323 set_bit(0, &ctx->cq_check_overflow);
1324 }
1325 req->flags |= REQ_F_OVERFLOW;
1326 refcount_inc(&req->refs);
1327 req->result = res;
1328 req->cflags = cflags;
1329 list_add_tail(&req->list, &ctx->cq_overflow_list);
1330 }
1331 }
1332
1333 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1334 {
1335 __io_cqring_fill_event(req, res, 0);
1336 }
1337
1338 static void __io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1339 {
1340 struct io_ring_ctx *ctx = req->ctx;
1341 unsigned long flags;
1342
1343 spin_lock_irqsave(&ctx->completion_lock, flags);
1344 __io_cqring_fill_event(req, res, cflags);
1345 io_commit_cqring(ctx);
1346 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1347
1348 io_cqring_ev_posted(ctx);
1349 }
1350
1351 static void io_cqring_add_event(struct io_kiocb *req, long res)
1352 {
1353 __io_cqring_add_event(req, res, 0);
1354 }
1355
1356 static inline bool io_is_fallback_req(struct io_kiocb *req)
1357 {
1358 return req == (struct io_kiocb *)
1359 ((unsigned long) req->ctx->fallback_req & ~1UL);
1360 }
1361
1362 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1363 {
1364 struct io_kiocb *req;
1365
1366 req = ctx->fallback_req;
1367 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1368 return req;
1369
1370 return NULL;
1371 }
1372
1373 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1374 struct io_submit_state *state)
1375 {
1376 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1377 struct io_kiocb *req;
1378
1379 if (!state->free_reqs) {
1380 size_t sz;
1381 int ret;
1382
1383 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1384 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1385
1386 /*
1387 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1388 * retry single alloc to be on the safe side.
1389 */
1390 if (unlikely(ret <= 0)) {
1391 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1392 if (!state->reqs[0])
1393 goto fallback;
1394 ret = 1;
1395 }
1396 state->free_reqs = ret - 1;
1397 req = state->reqs[ret - 1];
1398 } else {
1399 state->free_reqs--;
1400 req = state->reqs[state->free_reqs];
1401 }
1402
1403 return req;
1404 fallback:
1405 return io_get_fallback_req(ctx);
1406 }
1407
1408 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1409 bool fixed)
1410 {
1411 if (fixed)
1412 percpu_ref_put(req->fixed_file_refs);
1413 else
1414 fput(file);
1415 }
1416
1417 static void __io_req_aux_free(struct io_kiocb *req)
1418 {
1419 if (req->flags & REQ_F_NEED_CLEANUP)
1420 io_cleanup_req(req);
1421
1422 kfree(req->io);
1423 if (req->file)
1424 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1425 __io_put_req_task(req);
1426 io_req_work_drop_env(req);
1427 }
1428
1429 static void __io_free_req(struct io_kiocb *req)
1430 {
1431 __io_req_aux_free(req);
1432
1433 if (req->flags & REQ_F_INFLIGHT) {
1434 struct io_ring_ctx *ctx = req->ctx;
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(&ctx->inflight_lock, flags);
1438 list_del(&req->inflight_entry);
1439 if (waitqueue_active(&ctx->inflight_wait))
1440 wake_up(&ctx->inflight_wait);
1441 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1442 }
1443
1444 percpu_ref_put(&req->ctx->refs);
1445 if (likely(!io_is_fallback_req(req)))
1446 kmem_cache_free(req_cachep, req);
1447 else
1448 clear_bit_unlock(0, (unsigned long *) &req->ctx->fallback_req);
1449 }
1450
1451 struct req_batch {
1452 void *reqs[IO_IOPOLL_BATCH];
1453 int to_free;
1454 int need_iter;
1455 };
1456
1457 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1458 {
1459 if (!rb->to_free)
1460 return;
1461 if (rb->need_iter) {
1462 int i, inflight = 0;
1463 unsigned long flags;
1464
1465 for (i = 0; i < rb->to_free; i++) {
1466 struct io_kiocb *req = rb->reqs[i];
1467
1468 if (req->flags & REQ_F_INFLIGHT)
1469 inflight++;
1470 __io_req_aux_free(req);
1471 }
1472 if (!inflight)
1473 goto do_free;
1474
1475 spin_lock_irqsave(&ctx->inflight_lock, flags);
1476 for (i = 0; i < rb->to_free; i++) {
1477 struct io_kiocb *req = rb->reqs[i];
1478
1479 if (req->flags & REQ_F_INFLIGHT) {
1480 list_del(&req->inflight_entry);
1481 if (!--inflight)
1482 break;
1483 }
1484 }
1485 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1486
1487 if (waitqueue_active(&ctx->inflight_wait))
1488 wake_up(&ctx->inflight_wait);
1489 }
1490 do_free:
1491 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1492 percpu_ref_put_many(&ctx->refs, rb->to_free);
1493 rb->to_free = rb->need_iter = 0;
1494 }
1495
1496 static bool io_link_cancel_timeout(struct io_kiocb *req)
1497 {
1498 struct io_ring_ctx *ctx = req->ctx;
1499 int ret;
1500
1501 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1502 if (ret != -1) {
1503 io_cqring_fill_event(req, -ECANCELED);
1504 io_commit_cqring(ctx);
1505 req->flags &= ~REQ_F_LINK_HEAD;
1506 io_put_req(req);
1507 return true;
1508 }
1509
1510 return false;
1511 }
1512
1513 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1514 {
1515 struct io_ring_ctx *ctx = req->ctx;
1516 bool wake_ev = false;
1517
1518 /* Already got next link */
1519 if (req->flags & REQ_F_LINK_NEXT)
1520 return;
1521
1522 /*
1523 * The list should never be empty when we are called here. But could
1524 * potentially happen if the chain is messed up, check to be on the
1525 * safe side.
1526 */
1527 while (!list_empty(&req->link_list)) {
1528 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1529 struct io_kiocb, link_list);
1530
1531 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1532 (nxt->flags & REQ_F_TIMEOUT))) {
1533 list_del_init(&nxt->link_list);
1534 wake_ev |= io_link_cancel_timeout(nxt);
1535 req->flags &= ~REQ_F_LINK_TIMEOUT;
1536 continue;
1537 }
1538
1539 list_del_init(&req->link_list);
1540 if (!list_empty(&nxt->link_list))
1541 nxt->flags |= REQ_F_LINK_HEAD;
1542 *nxtptr = nxt;
1543 break;
1544 }
1545
1546 req->flags |= REQ_F_LINK_NEXT;
1547 if (wake_ev)
1548 io_cqring_ev_posted(ctx);
1549 }
1550
1551 /*
1552 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1553 */
1554 static void io_fail_links(struct io_kiocb *req)
1555 {
1556 struct io_ring_ctx *ctx = req->ctx;
1557 unsigned long flags;
1558
1559 spin_lock_irqsave(&ctx->completion_lock, flags);
1560
1561 while (!list_empty(&req->link_list)) {
1562 struct io_kiocb *link = list_first_entry(&req->link_list,
1563 struct io_kiocb, link_list);
1564
1565 list_del_init(&link->link_list);
1566 trace_io_uring_fail_link(req, link);
1567
1568 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1569 link->opcode == IORING_OP_LINK_TIMEOUT) {
1570 io_link_cancel_timeout(link);
1571 } else {
1572 io_cqring_fill_event(link, -ECANCELED);
1573 __io_double_put_req(link);
1574 }
1575 req->flags &= ~REQ_F_LINK_TIMEOUT;
1576 }
1577
1578 io_commit_cqring(ctx);
1579 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1580 io_cqring_ev_posted(ctx);
1581 }
1582
1583 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1584 {
1585 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1586 return;
1587
1588 /*
1589 * If LINK is set, we have dependent requests in this chain. If we
1590 * didn't fail this request, queue the first one up, moving any other
1591 * dependencies to the next request. In case of failure, fail the rest
1592 * of the chain.
1593 */
1594 if (req->flags & REQ_F_FAIL_LINK) {
1595 io_fail_links(req);
1596 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1597 REQ_F_LINK_TIMEOUT) {
1598 struct io_ring_ctx *ctx = req->ctx;
1599 unsigned long flags;
1600
1601 /*
1602 * If this is a timeout link, we could be racing with the
1603 * timeout timer. Grab the completion lock for this case to
1604 * protect against that.
1605 */
1606 spin_lock_irqsave(&ctx->completion_lock, flags);
1607 io_req_link_next(req, nxt);
1608 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1609 } else {
1610 io_req_link_next(req, nxt);
1611 }
1612 }
1613
1614 static void io_free_req(struct io_kiocb *req)
1615 {
1616 struct io_kiocb *nxt = NULL;
1617
1618 io_req_find_next(req, &nxt);
1619 __io_free_req(req);
1620
1621 if (nxt)
1622 io_queue_async_work(nxt);
1623 }
1624
1625 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
1626 {
1627 struct io_kiocb *link;
1628 const struct io_op_def *def = &io_op_defs[nxt->opcode];
1629
1630 if ((nxt->flags & REQ_F_ISREG) && def->hash_reg_file)
1631 io_wq_hash_work(&nxt->work, file_inode(nxt->file));
1632
1633 *workptr = &nxt->work;
1634 link = io_prep_linked_timeout(nxt);
1635 if (link)
1636 nxt->flags |= REQ_F_QUEUE_TIMEOUT;
1637 }
1638
1639 /*
1640 * Drop reference to request, return next in chain (if there is one) if this
1641 * was the last reference to this request.
1642 */
1643 __attribute__((nonnull))
1644 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1645 {
1646 if (refcount_dec_and_test(&req->refs)) {
1647 io_req_find_next(req, nxtptr);
1648 __io_free_req(req);
1649 }
1650 }
1651
1652 static void io_put_req(struct io_kiocb *req)
1653 {
1654 if (refcount_dec_and_test(&req->refs))
1655 io_free_req(req);
1656 }
1657
1658 static void io_steal_work(struct io_kiocb *req,
1659 struct io_wq_work **workptr)
1660 {
1661 /*
1662 * It's in an io-wq worker, so there always should be at least
1663 * one reference, which will be dropped in io_put_work() just
1664 * after the current handler returns.
1665 *
1666 * It also means, that if the counter dropped to 1, then there is
1667 * no asynchronous users left, so it's safe to steal the next work.
1668 */
1669 if (refcount_read(&req->refs) == 1) {
1670 struct io_kiocb *nxt = NULL;
1671
1672 io_req_find_next(req, &nxt);
1673 if (nxt)
1674 io_wq_assign_next(workptr, nxt);
1675 }
1676 }
1677
1678 /*
1679 * Must only be used if we don't need to care about links, usually from
1680 * within the completion handling itself.
1681 */
1682 static void __io_double_put_req(struct io_kiocb *req)
1683 {
1684 /* drop both submit and complete references */
1685 if (refcount_sub_and_test(2, &req->refs))
1686 __io_free_req(req);
1687 }
1688
1689 static void io_double_put_req(struct io_kiocb *req)
1690 {
1691 /* drop both submit and complete references */
1692 if (refcount_sub_and_test(2, &req->refs))
1693 io_free_req(req);
1694 }
1695
1696 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1697 {
1698 struct io_rings *rings = ctx->rings;
1699
1700 if (test_bit(0, &ctx->cq_check_overflow)) {
1701 /*
1702 * noflush == true is from the waitqueue handler, just ensure
1703 * we wake up the task, and the next invocation will flush the
1704 * entries. We cannot safely to it from here.
1705 */
1706 if (noflush && !list_empty(&ctx->cq_overflow_list))
1707 return -1U;
1708
1709 io_cqring_overflow_flush(ctx, false);
1710 }
1711
1712 /* See comment at the top of this file */
1713 smp_rmb();
1714 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1715 }
1716
1717 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1718 {
1719 struct io_rings *rings = ctx->rings;
1720
1721 /* make sure SQ entry isn't read before tail */
1722 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1723 }
1724
1725 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1726 {
1727 if ((req->flags & REQ_F_LINK_HEAD) || io_is_fallback_req(req))
1728 return false;
1729
1730 if (req->file || req->io)
1731 rb->need_iter++;
1732
1733 rb->reqs[rb->to_free++] = req;
1734 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1735 io_free_req_many(req->ctx, rb);
1736 return true;
1737 }
1738
1739 static int io_put_kbuf(struct io_kiocb *req)
1740 {
1741 struct io_buffer *kbuf;
1742 int cflags;
1743
1744 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
1745 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
1746 cflags |= IORING_CQE_F_BUFFER;
1747 req->rw.addr = 0;
1748 kfree(kbuf);
1749 return cflags;
1750 }
1751
1752 static void io_iopoll_queue(struct list_head *again)
1753 {
1754 struct io_kiocb *req;
1755
1756 do {
1757 req = list_first_entry(again, struct io_kiocb, list);
1758 list_del(&req->list);
1759 refcount_inc(&req->refs);
1760 io_queue_async_work(req);
1761 } while (!list_empty(again));
1762 }
1763
1764 /*
1765 * Find and free completed poll iocbs
1766 */
1767 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1768 struct list_head *done)
1769 {
1770 struct req_batch rb;
1771 struct io_kiocb *req;
1772 LIST_HEAD(again);
1773
1774 /* order with ->result store in io_complete_rw_iopoll() */
1775 smp_rmb();
1776
1777 rb.to_free = rb.need_iter = 0;
1778 while (!list_empty(done)) {
1779 int cflags = 0;
1780
1781 req = list_first_entry(done, struct io_kiocb, list);
1782 if (READ_ONCE(req->result) == -EAGAIN) {
1783 req->iopoll_completed = 0;
1784 list_move_tail(&req->list, &again);
1785 continue;
1786 }
1787 list_del(&req->list);
1788
1789 if (req->flags & REQ_F_BUFFER_SELECTED)
1790 cflags = io_put_kbuf(req);
1791
1792 __io_cqring_fill_event(req, req->result, cflags);
1793 (*nr_events)++;
1794
1795 if (refcount_dec_and_test(&req->refs) &&
1796 !io_req_multi_free(&rb, req))
1797 io_free_req(req);
1798 }
1799
1800 io_commit_cqring(ctx);
1801 if (ctx->flags & IORING_SETUP_SQPOLL)
1802 io_cqring_ev_posted(ctx);
1803 io_free_req_many(ctx, &rb);
1804
1805 if (!list_empty(&again))
1806 io_iopoll_queue(&again);
1807 }
1808
1809 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1810 long min)
1811 {
1812 struct io_kiocb *req, *tmp;
1813 LIST_HEAD(done);
1814 bool spin;
1815 int ret;
1816
1817 /*
1818 * Only spin for completions if we don't have multiple devices hanging
1819 * off our complete list, and we're under the requested amount.
1820 */
1821 spin = !ctx->poll_multi_file && *nr_events < min;
1822
1823 ret = 0;
1824 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1825 struct kiocb *kiocb = &req->rw.kiocb;
1826
1827 /*
1828 * Move completed and retryable entries to our local lists.
1829 * If we find a request that requires polling, break out
1830 * and complete those lists first, if we have entries there.
1831 */
1832 if (READ_ONCE(req->iopoll_completed)) {
1833 list_move_tail(&req->list, &done);
1834 continue;
1835 }
1836 if (!list_empty(&done))
1837 break;
1838
1839 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1840 if (ret < 0)
1841 break;
1842
1843 if (ret && spin)
1844 spin = false;
1845 ret = 0;
1846 }
1847
1848 if (!list_empty(&done))
1849 io_iopoll_complete(ctx, nr_events, &done);
1850
1851 return ret;
1852 }
1853
1854 /*
1855 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1856 * non-spinning poll check - we'll still enter the driver poll loop, but only
1857 * as a non-spinning completion check.
1858 */
1859 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1860 long min)
1861 {
1862 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1863 int ret;
1864
1865 ret = io_do_iopoll(ctx, nr_events, min);
1866 if (ret < 0)
1867 return ret;
1868 if (!min || *nr_events >= min)
1869 return 0;
1870 }
1871
1872 return 1;
1873 }
1874
1875 /*
1876 * We can't just wait for polled events to come to us, we have to actively
1877 * find and complete them.
1878 */
1879 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1880 {
1881 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1882 return;
1883
1884 mutex_lock(&ctx->uring_lock);
1885 while (!list_empty(&ctx->poll_list)) {
1886 unsigned int nr_events = 0;
1887
1888 io_iopoll_getevents(ctx, &nr_events, 1);
1889
1890 /*
1891 * Ensure we allow local-to-the-cpu processing to take place,
1892 * in this case we need to ensure that we reap all events.
1893 */
1894 cond_resched();
1895 }
1896 mutex_unlock(&ctx->uring_lock);
1897 }
1898
1899 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1900 long min)
1901 {
1902 int iters = 0, ret = 0;
1903
1904 /*
1905 * We disallow the app entering submit/complete with polling, but we
1906 * still need to lock the ring to prevent racing with polled issue
1907 * that got punted to a workqueue.
1908 */
1909 mutex_lock(&ctx->uring_lock);
1910 do {
1911 int tmin = 0;
1912
1913 /*
1914 * Don't enter poll loop if we already have events pending.
1915 * If we do, we can potentially be spinning for commands that
1916 * already triggered a CQE (eg in error).
1917 */
1918 if (io_cqring_events(ctx, false))
1919 break;
1920
1921 /*
1922 * If a submit got punted to a workqueue, we can have the
1923 * application entering polling for a command before it gets
1924 * issued. That app will hold the uring_lock for the duration
1925 * of the poll right here, so we need to take a breather every
1926 * now and then to ensure that the issue has a chance to add
1927 * the poll to the issued list. Otherwise we can spin here
1928 * forever, while the workqueue is stuck trying to acquire the
1929 * very same mutex.
1930 */
1931 if (!(++iters & 7)) {
1932 mutex_unlock(&ctx->uring_lock);
1933 mutex_lock(&ctx->uring_lock);
1934 }
1935
1936 if (*nr_events < min)
1937 tmin = min - *nr_events;
1938
1939 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1940 if (ret <= 0)
1941 break;
1942 ret = 0;
1943 } while (min && !*nr_events && !need_resched());
1944
1945 mutex_unlock(&ctx->uring_lock);
1946 return ret;
1947 }
1948
1949 static void kiocb_end_write(struct io_kiocb *req)
1950 {
1951 /*
1952 * Tell lockdep we inherited freeze protection from submission
1953 * thread.
1954 */
1955 if (req->flags & REQ_F_ISREG) {
1956 struct inode *inode = file_inode(req->file);
1957
1958 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1959 }
1960 file_end_write(req->file);
1961 }
1962
1963 static inline void req_set_fail_links(struct io_kiocb *req)
1964 {
1965 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1966 req->flags |= REQ_F_FAIL_LINK;
1967 }
1968
1969 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1970 {
1971 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1972 int cflags = 0;
1973
1974 if (kiocb->ki_flags & IOCB_WRITE)
1975 kiocb_end_write(req);
1976
1977 if (res != req->result)
1978 req_set_fail_links(req);
1979 if (req->flags & REQ_F_BUFFER_SELECTED)
1980 cflags = io_put_kbuf(req);
1981 __io_cqring_add_event(req, res, cflags);
1982 }
1983
1984 static void io_sq_thread_drop_mm(struct io_ring_ctx *ctx)
1985 {
1986 struct mm_struct *mm = current->mm;
1987
1988 if (mm) {
1989 kthread_unuse_mm(mm);
1990 mmput(mm);
1991 }
1992 }
1993
1994 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1995 {
1996 if (!current->mm) {
1997 if (unlikely(!mmget_not_zero(ctx->sqo_mm)))
1998 return -EFAULT;
1999 kthread_use_mm(ctx->sqo_mm);
2000 }
2001
2002 return 0;
2003 }
2004
2005 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
2006 struct io_kiocb *req)
2007 {
2008 if (!io_op_defs[req->opcode].needs_mm)
2009 return 0;
2010 return __io_sq_thread_acquire_mm(ctx);
2011 }
2012
2013 #ifdef CONFIG_BLOCK
2014 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2015 {
2016 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2017 ssize_t ret = -ECANCELED;
2018 struct iov_iter iter;
2019 int rw;
2020
2021 if (error) {
2022 ret = error;
2023 goto end_req;
2024 }
2025
2026 switch (req->opcode) {
2027 case IORING_OP_READV:
2028 case IORING_OP_READ_FIXED:
2029 case IORING_OP_READ:
2030 rw = READ;
2031 break;
2032 case IORING_OP_WRITEV:
2033 case IORING_OP_WRITE_FIXED:
2034 case IORING_OP_WRITE:
2035 rw = WRITE;
2036 break;
2037 default:
2038 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2039 req->opcode);
2040 goto end_req;
2041 }
2042
2043 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2044 if (ret < 0)
2045 goto end_req;
2046 ret = io_setup_async_rw(req, ret, iovec, inline_vecs, &iter);
2047 if (!ret)
2048 return true;
2049 kfree(iovec);
2050 end_req:
2051 io_cqring_add_event(req, ret);
2052 req_set_fail_links(req);
2053 io_put_req(req);
2054 return false;
2055 }
2056
2057 static void io_rw_resubmit(struct callback_head *cb)
2058 {
2059 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2060 struct io_ring_ctx *ctx = req->ctx;
2061 int err;
2062
2063 __set_current_state(TASK_RUNNING);
2064
2065 err = io_sq_thread_acquire_mm(ctx, req);
2066
2067 if (io_resubmit_prep(req, err)) {
2068 refcount_inc(&req->refs);
2069 io_queue_async_work(req);
2070 }
2071 }
2072 #endif
2073
2074 static bool io_rw_reissue(struct io_kiocb *req, long res)
2075 {
2076 #ifdef CONFIG_BLOCK
2077 struct task_struct *tsk;
2078 int ret;
2079
2080 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2081 return false;
2082
2083 tsk = req->task;
2084 init_task_work(&req->task_work, io_rw_resubmit);
2085 ret = task_work_add(tsk, &req->task_work, true);
2086 if (!ret)
2087 return true;
2088 #endif
2089 return false;
2090 }
2091
2092 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2093 {
2094 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2095
2096 if (!io_rw_reissue(req, res)) {
2097 io_complete_rw_common(kiocb, res);
2098 io_put_req(req);
2099 }
2100 }
2101
2102 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2103 {
2104 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2105
2106 if (kiocb->ki_flags & IOCB_WRITE)
2107 kiocb_end_write(req);
2108
2109 if (res != -EAGAIN && res != req->result)
2110 req_set_fail_links(req);
2111
2112 WRITE_ONCE(req->result, res);
2113 /* order with io_poll_complete() checking ->result */
2114 if (res != -EAGAIN) {
2115 smp_wmb();
2116 WRITE_ONCE(req->iopoll_completed, 1);
2117 }
2118 }
2119
2120 /*
2121 * After the iocb has been issued, it's safe to be found on the poll list.
2122 * Adding the kiocb to the list AFTER submission ensures that we don't
2123 * find it from a io_iopoll_getevents() thread before the issuer is done
2124 * accessing the kiocb cookie.
2125 */
2126 static void io_iopoll_req_issued(struct io_kiocb *req)
2127 {
2128 struct io_ring_ctx *ctx = req->ctx;
2129
2130 /*
2131 * Track whether we have multiple files in our lists. This will impact
2132 * how we do polling eventually, not spinning if we're on potentially
2133 * different devices.
2134 */
2135 if (list_empty(&ctx->poll_list)) {
2136 ctx->poll_multi_file = false;
2137 } else if (!ctx->poll_multi_file) {
2138 struct io_kiocb *list_req;
2139
2140 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
2141 list);
2142 if (list_req->file != req->file)
2143 ctx->poll_multi_file = true;
2144 }
2145
2146 /*
2147 * For fast devices, IO may have already completed. If it has, add
2148 * it to the front so we find it first.
2149 */
2150 if (READ_ONCE(req->iopoll_completed))
2151 list_add(&req->list, &ctx->poll_list);
2152 else
2153 list_add_tail(&req->list, &ctx->poll_list);
2154
2155 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2156 wq_has_sleeper(&ctx->sqo_wait))
2157 wake_up(&ctx->sqo_wait);
2158 }
2159
2160 static void __io_state_file_put(struct io_submit_state *state)
2161 {
2162 int diff = state->has_refs - state->used_refs;
2163
2164 if (diff)
2165 fput_many(state->file, diff);
2166 state->file = NULL;
2167 }
2168
2169 static inline void io_state_file_put(struct io_submit_state *state)
2170 {
2171 if (state->file)
2172 __io_state_file_put(state);
2173 }
2174
2175 /*
2176 * Get as many references to a file as we have IOs left in this submission,
2177 * assuming most submissions are for one file, or at least that each file
2178 * has more than one submission.
2179 */
2180 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2181 {
2182 if (!state)
2183 return fget(fd);
2184
2185 if (state->file) {
2186 if (state->fd == fd) {
2187 state->used_refs++;
2188 state->ios_left--;
2189 return state->file;
2190 }
2191 __io_state_file_put(state);
2192 }
2193 state->file = fget_many(fd, state->ios_left);
2194 if (!state->file)
2195 return NULL;
2196
2197 state->fd = fd;
2198 state->has_refs = state->ios_left;
2199 state->used_refs = 1;
2200 state->ios_left--;
2201 return state->file;
2202 }
2203
2204 static bool io_bdev_nowait(struct block_device *bdev)
2205 {
2206 #ifdef CONFIG_BLOCK
2207 return !bdev || queue_is_mq(bdev_get_queue(bdev));
2208 #else
2209 return true;
2210 #endif
2211 }
2212
2213 /*
2214 * If we tracked the file through the SCM inflight mechanism, we could support
2215 * any file. For now, just ensure that anything potentially problematic is done
2216 * inline.
2217 */
2218 static bool io_file_supports_async(struct file *file, int rw)
2219 {
2220 umode_t mode = file_inode(file)->i_mode;
2221
2222 if (S_ISBLK(mode)) {
2223 if (io_bdev_nowait(file->f_inode->i_bdev))
2224 return true;
2225 return false;
2226 }
2227 if (S_ISCHR(mode) || S_ISSOCK(mode))
2228 return true;
2229 if (S_ISREG(mode)) {
2230 if (io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2231 file->f_op != &io_uring_fops)
2232 return true;
2233 return false;
2234 }
2235
2236 /* any ->read/write should understand O_NONBLOCK */
2237 if (file->f_flags & O_NONBLOCK)
2238 return true;
2239
2240 if (!(file->f_mode & FMODE_NOWAIT))
2241 return false;
2242
2243 if (rw == READ)
2244 return file->f_op->read_iter != NULL;
2245
2246 return file->f_op->write_iter != NULL;
2247 }
2248
2249 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2250 bool force_nonblock)
2251 {
2252 struct io_ring_ctx *ctx = req->ctx;
2253 struct kiocb *kiocb = &req->rw.kiocb;
2254 unsigned ioprio;
2255 int ret;
2256
2257 if (S_ISREG(file_inode(req->file)->i_mode))
2258 req->flags |= REQ_F_ISREG;
2259
2260 kiocb->ki_pos = READ_ONCE(sqe->off);
2261 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2262 req->flags |= REQ_F_CUR_POS;
2263 kiocb->ki_pos = req->file->f_pos;
2264 }
2265 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2266 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2267 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2268 if (unlikely(ret))
2269 return ret;
2270
2271 ioprio = READ_ONCE(sqe->ioprio);
2272 if (ioprio) {
2273 ret = ioprio_check_cap(ioprio);
2274 if (ret)
2275 return ret;
2276
2277 kiocb->ki_ioprio = ioprio;
2278 } else
2279 kiocb->ki_ioprio = get_current_ioprio();
2280
2281 /* don't allow async punt if RWF_NOWAIT was requested */
2282 if (kiocb->ki_flags & IOCB_NOWAIT)
2283 req->flags |= REQ_F_NOWAIT;
2284
2285 if (kiocb->ki_flags & IOCB_DIRECT)
2286 io_get_req_task(req);
2287
2288 if (force_nonblock)
2289 kiocb->ki_flags |= IOCB_NOWAIT;
2290
2291 if (ctx->flags & IORING_SETUP_IOPOLL) {
2292 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2293 !kiocb->ki_filp->f_op->iopoll)
2294 return -EOPNOTSUPP;
2295
2296 kiocb->ki_flags |= IOCB_HIPRI;
2297 kiocb->ki_complete = io_complete_rw_iopoll;
2298 req->result = 0;
2299 req->iopoll_completed = 0;
2300 } else {
2301 if (kiocb->ki_flags & IOCB_HIPRI)
2302 return -EINVAL;
2303 kiocb->ki_complete = io_complete_rw;
2304 }
2305
2306 req->rw.addr = READ_ONCE(sqe->addr);
2307 req->rw.len = READ_ONCE(sqe->len);
2308 req->buf_index = READ_ONCE(sqe->buf_index);
2309 return 0;
2310 }
2311
2312 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2313 {
2314 switch (ret) {
2315 case -EIOCBQUEUED:
2316 break;
2317 case -ERESTARTSYS:
2318 case -ERESTARTNOINTR:
2319 case -ERESTARTNOHAND:
2320 case -ERESTART_RESTARTBLOCK:
2321 /*
2322 * We can't just restart the syscall, since previously
2323 * submitted sqes may already be in progress. Just fail this
2324 * IO with EINTR.
2325 */
2326 ret = -EINTR;
2327 /* fall through */
2328 default:
2329 kiocb->ki_complete(kiocb, ret, 0);
2330 }
2331 }
2332
2333 static void kiocb_done(struct kiocb *kiocb, ssize_t ret)
2334 {
2335 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2336
2337 if (req->flags & REQ_F_CUR_POS)
2338 req->file->f_pos = kiocb->ki_pos;
2339 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2340 io_complete_rw(kiocb, ret, 0);
2341 else
2342 io_rw_done(kiocb, ret);
2343 }
2344
2345 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2346 struct iov_iter *iter)
2347 {
2348 struct io_ring_ctx *ctx = req->ctx;
2349 size_t len = req->rw.len;
2350 struct io_mapped_ubuf *imu;
2351 u16 index, buf_index;
2352 size_t offset;
2353 u64 buf_addr;
2354
2355 /* attempt to use fixed buffers without having provided iovecs */
2356 if (unlikely(!ctx->user_bufs))
2357 return -EFAULT;
2358
2359 buf_index = req->buf_index;
2360 if (unlikely(buf_index >= ctx->nr_user_bufs))
2361 return -EFAULT;
2362
2363 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2364 imu = &ctx->user_bufs[index];
2365 buf_addr = req->rw.addr;
2366
2367 /* overflow */
2368 if (buf_addr + len < buf_addr)
2369 return -EFAULT;
2370 /* not inside the mapped region */
2371 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2372 return -EFAULT;
2373
2374 /*
2375 * May not be a start of buffer, set size appropriately
2376 * and advance us to the beginning.
2377 */
2378 offset = buf_addr - imu->ubuf;
2379 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2380
2381 if (offset) {
2382 /*
2383 * Don't use iov_iter_advance() here, as it's really slow for
2384 * using the latter parts of a big fixed buffer - it iterates
2385 * over each segment manually. We can cheat a bit here, because
2386 * we know that:
2387 *
2388 * 1) it's a BVEC iter, we set it up
2389 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2390 * first and last bvec
2391 *
2392 * So just find our index, and adjust the iterator afterwards.
2393 * If the offset is within the first bvec (or the whole first
2394 * bvec, just use iov_iter_advance(). This makes it easier
2395 * since we can just skip the first segment, which may not
2396 * be PAGE_SIZE aligned.
2397 */
2398 const struct bio_vec *bvec = imu->bvec;
2399
2400 if (offset <= bvec->bv_len) {
2401 iov_iter_advance(iter, offset);
2402 } else {
2403 unsigned long seg_skip;
2404
2405 /* skip first vec */
2406 offset -= bvec->bv_len;
2407 seg_skip = 1 + (offset >> PAGE_SHIFT);
2408
2409 iter->bvec = bvec + seg_skip;
2410 iter->nr_segs -= seg_skip;
2411 iter->count -= bvec->bv_len + offset;
2412 iter->iov_offset = offset & ~PAGE_MASK;
2413 }
2414 }
2415
2416 return len;
2417 }
2418
2419 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2420 {
2421 if (needs_lock)
2422 mutex_unlock(&ctx->uring_lock);
2423 }
2424
2425 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2426 {
2427 /*
2428 * "Normal" inline submissions always hold the uring_lock, since we
2429 * grab it from the system call. Same is true for the SQPOLL offload.
2430 * The only exception is when we've detached the request and issue it
2431 * from an async worker thread, grab the lock for that case.
2432 */
2433 if (needs_lock)
2434 mutex_lock(&ctx->uring_lock);
2435 }
2436
2437 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2438 int bgid, struct io_buffer *kbuf,
2439 bool needs_lock)
2440 {
2441 struct io_buffer *head;
2442
2443 if (req->flags & REQ_F_BUFFER_SELECTED)
2444 return kbuf;
2445
2446 io_ring_submit_lock(req->ctx, needs_lock);
2447
2448 lockdep_assert_held(&req->ctx->uring_lock);
2449
2450 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2451 if (head) {
2452 if (!list_empty(&head->list)) {
2453 kbuf = list_last_entry(&head->list, struct io_buffer,
2454 list);
2455 list_del(&kbuf->list);
2456 } else {
2457 kbuf = head;
2458 idr_remove(&req->ctx->io_buffer_idr, bgid);
2459 }
2460 if (*len > kbuf->len)
2461 *len = kbuf->len;
2462 } else {
2463 kbuf = ERR_PTR(-ENOBUFS);
2464 }
2465
2466 io_ring_submit_unlock(req->ctx, needs_lock);
2467
2468 return kbuf;
2469 }
2470
2471 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2472 bool needs_lock)
2473 {
2474 struct io_buffer *kbuf;
2475 u16 bgid;
2476
2477 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2478 bgid = req->buf_index;
2479 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2480 if (IS_ERR(kbuf))
2481 return kbuf;
2482 req->rw.addr = (u64) (unsigned long) kbuf;
2483 req->flags |= REQ_F_BUFFER_SELECTED;
2484 return u64_to_user_ptr(kbuf->addr);
2485 }
2486
2487 #ifdef CONFIG_COMPAT
2488 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2489 bool needs_lock)
2490 {
2491 struct compat_iovec __user *uiov;
2492 compat_ssize_t clen;
2493 void __user *buf;
2494 ssize_t len;
2495
2496 uiov = u64_to_user_ptr(req->rw.addr);
2497 if (!access_ok(uiov, sizeof(*uiov)))
2498 return -EFAULT;
2499 if (__get_user(clen, &uiov->iov_len))
2500 return -EFAULT;
2501 if (clen < 0)
2502 return -EINVAL;
2503
2504 len = clen;
2505 buf = io_rw_buffer_select(req, &len, needs_lock);
2506 if (IS_ERR(buf))
2507 return PTR_ERR(buf);
2508 iov[0].iov_base = buf;
2509 iov[0].iov_len = (compat_size_t) len;
2510 return 0;
2511 }
2512 #endif
2513
2514 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2515 bool needs_lock)
2516 {
2517 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2518 void __user *buf;
2519 ssize_t len;
2520
2521 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2522 return -EFAULT;
2523
2524 len = iov[0].iov_len;
2525 if (len < 0)
2526 return -EINVAL;
2527 buf = io_rw_buffer_select(req, &len, needs_lock);
2528 if (IS_ERR(buf))
2529 return PTR_ERR(buf);
2530 iov[0].iov_base = buf;
2531 iov[0].iov_len = len;
2532 return 0;
2533 }
2534
2535 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2536 bool needs_lock)
2537 {
2538 if (req->flags & REQ_F_BUFFER_SELECTED) {
2539 struct io_buffer *kbuf;
2540
2541 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2542 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2543 iov[0].iov_len = kbuf->len;
2544 return 0;
2545 }
2546 if (!req->rw.len)
2547 return 0;
2548 else if (req->rw.len > 1)
2549 return -EINVAL;
2550
2551 #ifdef CONFIG_COMPAT
2552 if (req->ctx->compat)
2553 return io_compat_import(req, iov, needs_lock);
2554 #endif
2555
2556 return __io_iov_buffer_select(req, iov, needs_lock);
2557 }
2558
2559 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2560 struct iovec **iovec, struct iov_iter *iter,
2561 bool needs_lock)
2562 {
2563 void __user *buf = u64_to_user_ptr(req->rw.addr);
2564 size_t sqe_len = req->rw.len;
2565 ssize_t ret;
2566 u8 opcode;
2567
2568 opcode = req->opcode;
2569 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2570 *iovec = NULL;
2571 return io_import_fixed(req, rw, iter);
2572 }
2573
2574 /* buffer index only valid with fixed read/write, or buffer select */
2575 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2576 return -EINVAL;
2577
2578 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2579 if (req->flags & REQ_F_BUFFER_SELECT) {
2580 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2581 if (IS_ERR(buf)) {
2582 *iovec = NULL;
2583 return PTR_ERR(buf);
2584 }
2585 req->rw.len = sqe_len;
2586 }
2587
2588 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2589 *iovec = NULL;
2590 return ret < 0 ? ret : sqe_len;
2591 }
2592
2593 if (req->io) {
2594 struct io_async_rw *iorw = &req->io->rw;
2595
2596 *iovec = iorw->iov;
2597 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2598 if (iorw->iov == iorw->fast_iov)
2599 *iovec = NULL;
2600 return iorw->size;
2601 }
2602
2603 if (req->flags & REQ_F_BUFFER_SELECT) {
2604 ret = io_iov_buffer_select(req, *iovec, needs_lock);
2605 if (!ret) {
2606 ret = (*iovec)->iov_len;
2607 iov_iter_init(iter, rw, *iovec, 1, ret);
2608 }
2609 *iovec = NULL;
2610 return ret;
2611 }
2612
2613 #ifdef CONFIG_COMPAT
2614 if (req->ctx->compat)
2615 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2616 iovec, iter);
2617 #endif
2618
2619 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2620 }
2621
2622 /*
2623 * For files that don't have ->read_iter() and ->write_iter(), handle them
2624 * by looping over ->read() or ->write() manually.
2625 */
2626 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2627 struct iov_iter *iter)
2628 {
2629 ssize_t ret = 0;
2630
2631 /*
2632 * Don't support polled IO through this interface, and we can't
2633 * support non-blocking either. For the latter, this just causes
2634 * the kiocb to be handled from an async context.
2635 */
2636 if (kiocb->ki_flags & IOCB_HIPRI)
2637 return -EOPNOTSUPP;
2638 if (kiocb->ki_flags & IOCB_NOWAIT)
2639 return -EAGAIN;
2640
2641 while (iov_iter_count(iter)) {
2642 struct iovec iovec;
2643 ssize_t nr;
2644
2645 if (!iov_iter_is_bvec(iter)) {
2646 iovec = iov_iter_iovec(iter);
2647 } else {
2648 /* fixed buffers import bvec */
2649 iovec.iov_base = kmap(iter->bvec->bv_page)
2650 + iter->iov_offset;
2651 iovec.iov_len = min(iter->count,
2652 iter->bvec->bv_len - iter->iov_offset);
2653 }
2654
2655 if (rw == READ) {
2656 nr = file->f_op->read(file, iovec.iov_base,
2657 iovec.iov_len, &kiocb->ki_pos);
2658 } else {
2659 nr = file->f_op->write(file, iovec.iov_base,
2660 iovec.iov_len, &kiocb->ki_pos);
2661 }
2662
2663 if (iov_iter_is_bvec(iter))
2664 kunmap(iter->bvec->bv_page);
2665
2666 if (nr < 0) {
2667 if (!ret)
2668 ret = nr;
2669 break;
2670 }
2671 ret += nr;
2672 if (nr != iovec.iov_len)
2673 break;
2674 iov_iter_advance(iter, nr);
2675 }
2676
2677 return ret;
2678 }
2679
2680 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2681 struct iovec *iovec, struct iovec *fast_iov,
2682 struct iov_iter *iter)
2683 {
2684 req->io->rw.nr_segs = iter->nr_segs;
2685 req->io->rw.size = io_size;
2686 req->io->rw.iov = iovec;
2687 if (!req->io->rw.iov) {
2688 req->io->rw.iov = req->io->rw.fast_iov;
2689 if (req->io->rw.iov != fast_iov)
2690 memcpy(req->io->rw.iov, fast_iov,
2691 sizeof(struct iovec) * iter->nr_segs);
2692 } else {
2693 req->flags |= REQ_F_NEED_CLEANUP;
2694 }
2695 }
2696
2697 static inline int __io_alloc_async_ctx(struct io_kiocb *req)
2698 {
2699 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2700 return req->io == NULL;
2701 }
2702
2703 static int io_alloc_async_ctx(struct io_kiocb *req)
2704 {
2705 if (!io_op_defs[req->opcode].async_ctx)
2706 return 0;
2707
2708 return __io_alloc_async_ctx(req);
2709 }
2710
2711 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2712 struct iovec *iovec, struct iovec *fast_iov,
2713 struct iov_iter *iter)
2714 {
2715 if (!io_op_defs[req->opcode].async_ctx)
2716 return 0;
2717 if (!req->io) {
2718 if (__io_alloc_async_ctx(req))
2719 return -ENOMEM;
2720
2721 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2722 }
2723 return 0;
2724 }
2725
2726 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2727 bool force_nonblock)
2728 {
2729 struct io_async_ctx *io;
2730 struct iov_iter iter;
2731 ssize_t ret;
2732
2733 ret = io_prep_rw(req, sqe, force_nonblock);
2734 if (ret)
2735 return ret;
2736
2737 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2738 return -EBADF;
2739
2740 /* either don't need iovec imported or already have it */
2741 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2742 return 0;
2743
2744 io = req->io;
2745 io->rw.iov = io->rw.fast_iov;
2746 req->io = NULL;
2747 ret = io_import_iovec(READ, req, &io->rw.iov, &iter, !force_nonblock);
2748 req->io = io;
2749 if (ret < 0)
2750 return ret;
2751
2752 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2753 return 0;
2754 }
2755
2756 static void __io_async_buf_error(struct io_kiocb *req, int error)
2757 {
2758 struct io_ring_ctx *ctx = req->ctx;
2759
2760 spin_lock_irq(&ctx->completion_lock);
2761 io_cqring_fill_event(req, error);
2762 io_commit_cqring(ctx);
2763 spin_unlock_irq(&ctx->completion_lock);
2764
2765 io_cqring_ev_posted(ctx);
2766 req_set_fail_links(req);
2767 io_double_put_req(req);
2768 }
2769
2770 static void io_async_buf_cancel(struct callback_head *cb)
2771 {
2772 struct io_async_rw *rw;
2773 struct io_kiocb *req;
2774
2775 rw = container_of(cb, struct io_async_rw, task_work);
2776 req = rw->wpq.wait.private;
2777 __io_async_buf_error(req, -ECANCELED);
2778 }
2779
2780 static void io_async_buf_retry(struct callback_head *cb)
2781 {
2782 struct io_async_rw *rw;
2783 struct io_ring_ctx *ctx;
2784 struct io_kiocb *req;
2785
2786 rw = container_of(cb, struct io_async_rw, task_work);
2787 req = rw->wpq.wait.private;
2788 ctx = req->ctx;
2789
2790 __set_current_state(TASK_RUNNING);
2791 if (!__io_sq_thread_acquire_mm(ctx)) {
2792 mutex_lock(&ctx->uring_lock);
2793 __io_queue_sqe(req, NULL);
2794 mutex_unlock(&ctx->uring_lock);
2795 } else {
2796 __io_async_buf_error(req, -EFAULT);
2797 }
2798 }
2799
2800 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
2801 int sync, void *arg)
2802 {
2803 struct wait_page_queue *wpq;
2804 struct io_kiocb *req = wait->private;
2805 struct io_async_rw *rw = &req->io->rw;
2806 struct wait_page_key *key = arg;
2807 struct task_struct *tsk;
2808 int ret;
2809
2810 wpq = container_of(wait, struct wait_page_queue, wait);
2811
2812 ret = wake_page_match(wpq, key);
2813 if (ret != 1)
2814 return ret;
2815
2816 list_del_init(&wait->entry);
2817
2818 init_task_work(&rw->task_work, io_async_buf_retry);
2819 /* submit ref gets dropped, acquire a new one */
2820 refcount_inc(&req->refs);
2821 tsk = req->task;
2822 ret = task_work_add(tsk, &rw->task_work, true);
2823 if (unlikely(ret)) {
2824 /* queue just for cancelation */
2825 init_task_work(&rw->task_work, io_async_buf_cancel);
2826 tsk = io_wq_get_task(req->ctx->io_wq);
2827 task_work_add(tsk, &rw->task_work, true);
2828 }
2829 wake_up_process(tsk);
2830 return 1;
2831 }
2832
2833 static bool io_rw_should_retry(struct io_kiocb *req)
2834 {
2835 struct kiocb *kiocb = &req->rw.kiocb;
2836 int ret;
2837
2838 /* never retry for NOWAIT, we just complete with -EAGAIN */
2839 if (req->flags & REQ_F_NOWAIT)
2840 return false;
2841
2842 /* already tried, or we're doing O_DIRECT */
2843 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_WAITQ))
2844 return false;
2845 /*
2846 * just use poll if we can, and don't attempt if the fs doesn't
2847 * support callback based unlocks
2848 */
2849 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
2850 return false;
2851
2852 /*
2853 * If request type doesn't require req->io to defer in general,
2854 * we need to allocate it here
2855 */
2856 if (!req->io && __io_alloc_async_ctx(req))
2857 return false;
2858
2859 ret = kiocb_wait_page_queue_init(kiocb, &req->io->rw.wpq,
2860 io_async_buf_func, req);
2861 if (!ret) {
2862 io_get_req_task(req);
2863 return true;
2864 }
2865
2866 return false;
2867 }
2868
2869 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
2870 {
2871 if (req->file->f_op->read_iter)
2872 return call_read_iter(req->file, &req->rw.kiocb, iter);
2873 return loop_rw_iter(READ, req->file, &req->rw.kiocb, iter);
2874 }
2875
2876 static int io_read(struct io_kiocb *req, bool force_nonblock)
2877 {
2878 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2879 struct kiocb *kiocb = &req->rw.kiocb;
2880 struct iov_iter iter;
2881 size_t iov_count;
2882 ssize_t io_size, ret;
2883
2884 ret = io_import_iovec(READ, req, &iovec, &iter, !force_nonblock);
2885 if (ret < 0)
2886 return ret;
2887
2888 /* Ensure we clear previously set non-block flag */
2889 if (!force_nonblock)
2890 kiocb->ki_flags &= ~IOCB_NOWAIT;
2891
2892 req->result = 0;
2893 io_size = ret;
2894 if (req->flags & REQ_F_LINK_HEAD)
2895 req->result = io_size;
2896
2897 /* If the file doesn't support async, just async punt */
2898 if (force_nonblock && !io_file_supports_async(req->file, READ))
2899 goto copy_iov;
2900
2901 iov_count = iov_iter_count(&iter);
2902 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2903 if (!ret) {
2904 unsigned long nr_segs = iter.nr_segs;
2905 ssize_t ret2 = 0;
2906
2907 ret2 = io_iter_do_read(req, &iter);
2908
2909 /* Catch -EAGAIN return for forced non-blocking submission */
2910 if (!force_nonblock || (ret2 != -EAGAIN && ret2 != -EIO)) {
2911 kiocb_done(kiocb, ret2);
2912 } else {
2913 iter.count = iov_count;
2914 iter.nr_segs = nr_segs;
2915 copy_iov:
2916 ret = io_setup_async_rw(req, io_size, iovec,
2917 inline_vecs, &iter);
2918 if (ret)
2919 goto out_free;
2920 /* if we can retry, do so with the callbacks armed */
2921 if (io_rw_should_retry(req)) {
2922 ret2 = io_iter_do_read(req, &iter);
2923 if (ret2 == -EIOCBQUEUED) {
2924 goto out_free;
2925 } else if (ret2 != -EAGAIN) {
2926 kiocb_done(kiocb, ret2);
2927 goto out_free;
2928 }
2929 }
2930 kiocb->ki_flags &= ~IOCB_WAITQ;
2931 return -EAGAIN;
2932 }
2933 }
2934 out_free:
2935 if (!(req->flags & REQ_F_NEED_CLEANUP))
2936 kfree(iovec);
2937 return ret;
2938 }
2939
2940 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2941 bool force_nonblock)
2942 {
2943 struct io_async_ctx *io;
2944 struct iov_iter iter;
2945 ssize_t ret;
2946
2947 ret = io_prep_rw(req, sqe, force_nonblock);
2948 if (ret)
2949 return ret;
2950
2951 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2952 return -EBADF;
2953
2954 req->fsize = rlimit(RLIMIT_FSIZE);
2955
2956 /* either don't need iovec imported or already have it */
2957 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2958 return 0;
2959
2960 io = req->io;
2961 io->rw.iov = io->rw.fast_iov;
2962 req->io = NULL;
2963 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter, !force_nonblock);
2964 req->io = io;
2965 if (ret < 0)
2966 return ret;
2967
2968 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2969 return 0;
2970 }
2971
2972 static int io_write(struct io_kiocb *req, bool force_nonblock)
2973 {
2974 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2975 struct kiocb *kiocb = &req->rw.kiocb;
2976 struct iov_iter iter;
2977 size_t iov_count;
2978 ssize_t ret, io_size;
2979
2980 ret = io_import_iovec(WRITE, req, &iovec, &iter, !force_nonblock);
2981 if (ret < 0)
2982 return ret;
2983
2984 /* Ensure we clear previously set non-block flag */
2985 if (!force_nonblock)
2986 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2987
2988 req->result = 0;
2989 io_size = ret;
2990 if (req->flags & REQ_F_LINK_HEAD)
2991 req->result = io_size;
2992
2993 /* If the file doesn't support async, just async punt */
2994 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
2995 goto copy_iov;
2996
2997 /* file path doesn't support NOWAIT for non-direct_IO */
2998 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2999 (req->flags & REQ_F_ISREG))
3000 goto copy_iov;
3001
3002 iov_count = iov_iter_count(&iter);
3003 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
3004 if (!ret) {
3005 unsigned long nr_segs = iter.nr_segs;
3006 ssize_t ret2;
3007
3008 /*
3009 * Open-code file_start_write here to grab freeze protection,
3010 * which will be released by another thread in
3011 * io_complete_rw(). Fool lockdep by telling it the lock got
3012 * released so that it doesn't complain about the held lock when
3013 * we return to userspace.
3014 */
3015 if (req->flags & REQ_F_ISREG) {
3016 __sb_start_write(file_inode(req->file)->i_sb,
3017 SB_FREEZE_WRITE, true);
3018 __sb_writers_release(file_inode(req->file)->i_sb,
3019 SB_FREEZE_WRITE);
3020 }
3021 kiocb->ki_flags |= IOCB_WRITE;
3022
3023 if (!force_nonblock)
3024 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
3025
3026 if (req->file->f_op->write_iter)
3027 ret2 = call_write_iter(req->file, kiocb, &iter);
3028 else
3029 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
3030
3031 if (!force_nonblock)
3032 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
3033
3034 /*
3035 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3036 * retry them without IOCB_NOWAIT.
3037 */
3038 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3039 ret2 = -EAGAIN;
3040 if (!force_nonblock || ret2 != -EAGAIN) {
3041 kiocb_done(kiocb, ret2);
3042 } else {
3043 iter.count = iov_count;
3044 iter.nr_segs = nr_segs;
3045 copy_iov:
3046 ret = io_setup_async_rw(req, io_size, iovec,
3047 inline_vecs, &iter);
3048 if (ret)
3049 goto out_free;
3050 return -EAGAIN;
3051 }
3052 }
3053 out_free:
3054 if (!(req->flags & REQ_F_NEED_CLEANUP))
3055 kfree(iovec);
3056 return ret;
3057 }
3058
3059 static int __io_splice_prep(struct io_kiocb *req,
3060 const struct io_uring_sqe *sqe)
3061 {
3062 struct io_splice* sp = &req->splice;
3063 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3064 int ret;
3065
3066 if (req->flags & REQ_F_NEED_CLEANUP)
3067 return 0;
3068 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3069 return -EINVAL;
3070
3071 sp->file_in = NULL;
3072 sp->len = READ_ONCE(sqe->len);
3073 sp->flags = READ_ONCE(sqe->splice_flags);
3074
3075 if (unlikely(sp->flags & ~valid_flags))
3076 return -EINVAL;
3077
3078 ret = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in), &sp->file_in,
3079 (sp->flags & SPLICE_F_FD_IN_FIXED));
3080 if (ret)
3081 return ret;
3082 req->flags |= REQ_F_NEED_CLEANUP;
3083
3084 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3085 /*
3086 * Splice operation will be punted aync, and here need to
3087 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3088 */
3089 io_req_init_async(req);
3090 req->work.flags |= IO_WQ_WORK_UNBOUND;
3091 }
3092
3093 return 0;
3094 }
3095
3096 static int io_tee_prep(struct io_kiocb *req,
3097 const struct io_uring_sqe *sqe)
3098 {
3099 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3100 return -EINVAL;
3101 return __io_splice_prep(req, sqe);
3102 }
3103
3104 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3105 {
3106 struct io_splice *sp = &req->splice;
3107 struct file *in = sp->file_in;
3108 struct file *out = sp->file_out;
3109 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3110 long ret = 0;
3111
3112 if (force_nonblock)
3113 return -EAGAIN;
3114 if (sp->len)
3115 ret = do_tee(in, out, sp->len, flags);
3116
3117 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3118 req->flags &= ~REQ_F_NEED_CLEANUP;
3119
3120 io_cqring_add_event(req, ret);
3121 if (ret != sp->len)
3122 req_set_fail_links(req);
3123 io_put_req(req);
3124 return 0;
3125 }
3126
3127 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3128 {
3129 struct io_splice* sp = &req->splice;
3130
3131 sp->off_in = READ_ONCE(sqe->splice_off_in);
3132 sp->off_out = READ_ONCE(sqe->off);
3133 return __io_splice_prep(req, sqe);
3134 }
3135
3136 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3137 {
3138 struct io_splice *sp = &req->splice;
3139 struct file *in = sp->file_in;
3140 struct file *out = sp->file_out;
3141 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3142 loff_t *poff_in, *poff_out;
3143 long ret = 0;
3144
3145 if (force_nonblock)
3146 return -EAGAIN;
3147
3148 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3149 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3150
3151 if (sp->len)
3152 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3153
3154 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3155 req->flags &= ~REQ_F_NEED_CLEANUP;
3156
3157 io_cqring_add_event(req, ret);
3158 if (ret != sp->len)
3159 req_set_fail_links(req);
3160 io_put_req(req);
3161 return 0;
3162 }
3163
3164 /*
3165 * IORING_OP_NOP just posts a completion event, nothing else.
3166 */
3167 static int io_nop(struct io_kiocb *req)
3168 {
3169 struct io_ring_ctx *ctx = req->ctx;
3170
3171 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3172 return -EINVAL;
3173
3174 io_cqring_add_event(req, 0);
3175 io_put_req(req);
3176 return 0;
3177 }
3178
3179 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3180 {
3181 struct io_ring_ctx *ctx = req->ctx;
3182
3183 if (!req->file)
3184 return -EBADF;
3185
3186 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3187 return -EINVAL;
3188 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3189 return -EINVAL;
3190
3191 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3192 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3193 return -EINVAL;
3194
3195 req->sync.off = READ_ONCE(sqe->off);
3196 req->sync.len = READ_ONCE(sqe->len);
3197 return 0;
3198 }
3199
3200 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3201 {
3202 loff_t end = req->sync.off + req->sync.len;
3203 int ret;
3204
3205 /* fsync always requires a blocking context */
3206 if (force_nonblock)
3207 return -EAGAIN;
3208
3209 ret = vfs_fsync_range(req->file, req->sync.off,
3210 end > 0 ? end : LLONG_MAX,
3211 req->sync.flags & IORING_FSYNC_DATASYNC);
3212 if (ret < 0)
3213 req_set_fail_links(req);
3214 io_cqring_add_event(req, ret);
3215 io_put_req(req);
3216 return 0;
3217 }
3218
3219 static int io_fallocate_prep(struct io_kiocb *req,
3220 const struct io_uring_sqe *sqe)
3221 {
3222 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3223 return -EINVAL;
3224 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3225 return -EINVAL;
3226
3227 req->sync.off = READ_ONCE(sqe->off);
3228 req->sync.len = READ_ONCE(sqe->addr);
3229 req->sync.mode = READ_ONCE(sqe->len);
3230 req->fsize = rlimit(RLIMIT_FSIZE);
3231 return 0;
3232 }
3233
3234 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3235 {
3236 int ret;
3237
3238 /* fallocate always requiring blocking context */
3239 if (force_nonblock)
3240 return -EAGAIN;
3241
3242 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = req->fsize;
3243 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3244 req->sync.len);
3245 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY;
3246 if (ret < 0)
3247 req_set_fail_links(req);
3248 io_cqring_add_event(req, ret);
3249 io_put_req(req);
3250 return 0;
3251 }
3252
3253 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3254 {
3255 const char __user *fname;
3256 int ret;
3257
3258 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3259 return -EINVAL;
3260 if (unlikely(sqe->ioprio || sqe->buf_index))
3261 return -EINVAL;
3262 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3263 return -EBADF;
3264
3265 /* open.how should be already initialised */
3266 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3267 req->open.how.flags |= O_LARGEFILE;
3268
3269 req->open.dfd = READ_ONCE(sqe->fd);
3270 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3271 req->open.filename = getname(fname);
3272 if (IS_ERR(req->open.filename)) {
3273 ret = PTR_ERR(req->open.filename);
3274 req->open.filename = NULL;
3275 return ret;
3276 }
3277 req->open.nofile = rlimit(RLIMIT_NOFILE);
3278 req->flags |= REQ_F_NEED_CLEANUP;
3279 return 0;
3280 }
3281
3282 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3283 {
3284 u64 flags, mode;
3285
3286 if (req->flags & REQ_F_NEED_CLEANUP)
3287 return 0;
3288 mode = READ_ONCE(sqe->len);
3289 flags = READ_ONCE(sqe->open_flags);
3290 req->open.how = build_open_how(flags, mode);
3291 return __io_openat_prep(req, sqe);
3292 }
3293
3294 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3295 {
3296 struct open_how __user *how;
3297 size_t len;
3298 int ret;
3299
3300 if (req->flags & REQ_F_NEED_CLEANUP)
3301 return 0;
3302 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3303 len = READ_ONCE(sqe->len);
3304 if (len < OPEN_HOW_SIZE_VER0)
3305 return -EINVAL;
3306
3307 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3308 len);
3309 if (ret)
3310 return ret;
3311
3312 return __io_openat_prep(req, sqe);
3313 }
3314
3315 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3316 {
3317 struct open_flags op;
3318 struct file *file;
3319 int ret;
3320
3321 if (force_nonblock)
3322 return -EAGAIN;
3323
3324 ret = build_open_flags(&req->open.how, &op);
3325 if (ret)
3326 goto err;
3327
3328 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3329 if (ret < 0)
3330 goto err;
3331
3332 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3333 if (IS_ERR(file)) {
3334 put_unused_fd(ret);
3335 ret = PTR_ERR(file);
3336 } else {
3337 fsnotify_open(file);
3338 fd_install(ret, file);
3339 }
3340 err:
3341 putname(req->open.filename);
3342 req->flags &= ~REQ_F_NEED_CLEANUP;
3343 if (ret < 0)
3344 req_set_fail_links(req);
3345 io_cqring_add_event(req, ret);
3346 io_put_req(req);
3347 return 0;
3348 }
3349
3350 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3351 {
3352 return io_openat2(req, force_nonblock);
3353 }
3354
3355 static int io_remove_buffers_prep(struct io_kiocb *req,
3356 const struct io_uring_sqe *sqe)
3357 {
3358 struct io_provide_buf *p = &req->pbuf;
3359 u64 tmp;
3360
3361 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3362 return -EINVAL;
3363
3364 tmp = READ_ONCE(sqe->fd);
3365 if (!tmp || tmp > USHRT_MAX)
3366 return -EINVAL;
3367
3368 memset(p, 0, sizeof(*p));
3369 p->nbufs = tmp;
3370 p->bgid = READ_ONCE(sqe->buf_group);
3371 return 0;
3372 }
3373
3374 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3375 int bgid, unsigned nbufs)
3376 {
3377 unsigned i = 0;
3378
3379 /* shouldn't happen */
3380 if (!nbufs)
3381 return 0;
3382
3383 /* the head kbuf is the list itself */
3384 while (!list_empty(&buf->list)) {
3385 struct io_buffer *nxt;
3386
3387 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3388 list_del(&nxt->list);
3389 kfree(nxt);
3390 if (++i == nbufs)
3391 return i;
3392 }
3393 i++;
3394 kfree(buf);
3395 idr_remove(&ctx->io_buffer_idr, bgid);
3396
3397 return i;
3398 }
3399
3400 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock)
3401 {
3402 struct io_provide_buf *p = &req->pbuf;
3403 struct io_ring_ctx *ctx = req->ctx;
3404 struct io_buffer *head;
3405 int ret = 0;
3406
3407 io_ring_submit_lock(ctx, !force_nonblock);
3408
3409 lockdep_assert_held(&ctx->uring_lock);
3410
3411 ret = -ENOENT;
3412 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3413 if (head)
3414 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3415
3416 io_ring_submit_lock(ctx, !force_nonblock);
3417 if (ret < 0)
3418 req_set_fail_links(req);
3419 io_cqring_add_event(req, ret);
3420 io_put_req(req);
3421 return 0;
3422 }
3423
3424 static int io_provide_buffers_prep(struct io_kiocb *req,
3425 const struct io_uring_sqe *sqe)
3426 {
3427 struct io_provide_buf *p = &req->pbuf;
3428 u64 tmp;
3429
3430 if (sqe->ioprio || sqe->rw_flags)
3431 return -EINVAL;
3432
3433 tmp = READ_ONCE(sqe->fd);
3434 if (!tmp || tmp > USHRT_MAX)
3435 return -E2BIG;
3436 p->nbufs = tmp;
3437 p->addr = READ_ONCE(sqe->addr);
3438 p->len = READ_ONCE(sqe->len);
3439
3440 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3441 return -EFAULT;
3442
3443 p->bgid = READ_ONCE(sqe->buf_group);
3444 tmp = READ_ONCE(sqe->off);
3445 if (tmp > USHRT_MAX)
3446 return -E2BIG;
3447 p->bid = tmp;
3448 return 0;
3449 }
3450
3451 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3452 {
3453 struct io_buffer *buf;
3454 u64 addr = pbuf->addr;
3455 int i, bid = pbuf->bid;
3456
3457 for (i = 0; i < pbuf->nbufs; i++) {
3458 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3459 if (!buf)
3460 break;
3461
3462 buf->addr = addr;
3463 buf->len = pbuf->len;
3464 buf->bid = bid;
3465 addr += pbuf->len;
3466 bid++;
3467 if (!*head) {
3468 INIT_LIST_HEAD(&buf->list);
3469 *head = buf;
3470 } else {
3471 list_add_tail(&buf->list, &(*head)->list);
3472 }
3473 }
3474
3475 return i ? i : -ENOMEM;
3476 }
3477
3478 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock)
3479 {
3480 struct io_provide_buf *p = &req->pbuf;
3481 struct io_ring_ctx *ctx = req->ctx;
3482 struct io_buffer *head, *list;
3483 int ret = 0;
3484
3485 io_ring_submit_lock(ctx, !force_nonblock);
3486
3487 lockdep_assert_held(&ctx->uring_lock);
3488
3489 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3490
3491 ret = io_add_buffers(p, &head);
3492 if (ret < 0)
3493 goto out;
3494
3495 if (!list) {
3496 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3497 GFP_KERNEL);
3498 if (ret < 0) {
3499 __io_remove_buffers(ctx, head, p->bgid, -1U);
3500 goto out;
3501 }
3502 }
3503 out:
3504 io_ring_submit_unlock(ctx, !force_nonblock);
3505 if (ret < 0)
3506 req_set_fail_links(req);
3507 io_cqring_add_event(req, ret);
3508 io_put_req(req);
3509 return 0;
3510 }
3511
3512 static int io_epoll_ctl_prep(struct io_kiocb *req,
3513 const struct io_uring_sqe *sqe)
3514 {
3515 #if defined(CONFIG_EPOLL)
3516 if (sqe->ioprio || sqe->buf_index)
3517 return -EINVAL;
3518 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3519 return -EINVAL;
3520
3521 req->epoll.epfd = READ_ONCE(sqe->fd);
3522 req->epoll.op = READ_ONCE(sqe->len);
3523 req->epoll.fd = READ_ONCE(sqe->off);
3524
3525 if (ep_op_has_event(req->epoll.op)) {
3526 struct epoll_event __user *ev;
3527
3528 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
3529 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
3530 return -EFAULT;
3531 }
3532
3533 return 0;
3534 #else
3535 return -EOPNOTSUPP;
3536 #endif
3537 }
3538
3539 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock)
3540 {
3541 #if defined(CONFIG_EPOLL)
3542 struct io_epoll *ie = &req->epoll;
3543 int ret;
3544
3545 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
3546 if (force_nonblock && ret == -EAGAIN)
3547 return -EAGAIN;
3548
3549 if (ret < 0)
3550 req_set_fail_links(req);
3551 io_cqring_add_event(req, ret);
3552 io_put_req(req);
3553 return 0;
3554 #else
3555 return -EOPNOTSUPP;
3556 #endif
3557 }
3558
3559 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3560 {
3561 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3562 if (sqe->ioprio || sqe->buf_index || sqe->off)
3563 return -EINVAL;
3564 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3565 return -EINVAL;
3566
3567 req->madvise.addr = READ_ONCE(sqe->addr);
3568 req->madvise.len = READ_ONCE(sqe->len);
3569 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
3570 return 0;
3571 #else
3572 return -EOPNOTSUPP;
3573 #endif
3574 }
3575
3576 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
3577 {
3578 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
3579 struct io_madvise *ma = &req->madvise;
3580 int ret;
3581
3582 if (force_nonblock)
3583 return -EAGAIN;
3584
3585 ret = do_madvise(ma->addr, ma->len, ma->advice);
3586 if (ret < 0)
3587 req_set_fail_links(req);
3588 io_cqring_add_event(req, ret);
3589 io_put_req(req);
3590 return 0;
3591 #else
3592 return -EOPNOTSUPP;
3593 #endif
3594 }
3595
3596 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3597 {
3598 if (sqe->ioprio || sqe->buf_index || sqe->addr)
3599 return -EINVAL;
3600 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3601 return -EINVAL;
3602
3603 req->fadvise.offset = READ_ONCE(sqe->off);
3604 req->fadvise.len = READ_ONCE(sqe->len);
3605 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
3606 return 0;
3607 }
3608
3609 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
3610 {
3611 struct io_fadvise *fa = &req->fadvise;
3612 int ret;
3613
3614 if (force_nonblock) {
3615 switch (fa->advice) {
3616 case POSIX_FADV_NORMAL:
3617 case POSIX_FADV_RANDOM:
3618 case POSIX_FADV_SEQUENTIAL:
3619 break;
3620 default:
3621 return -EAGAIN;
3622 }
3623 }
3624
3625 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
3626 if (ret < 0)
3627 req_set_fail_links(req);
3628 io_cqring_add_event(req, ret);
3629 io_put_req(req);
3630 return 0;
3631 }
3632
3633 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3634 {
3635 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3636 return -EINVAL;
3637 if (sqe->ioprio || sqe->buf_index)
3638 return -EINVAL;
3639 if (req->flags & REQ_F_FIXED_FILE)
3640 return -EBADF;
3641
3642 req->statx.dfd = READ_ONCE(sqe->fd);
3643 req->statx.mask = READ_ONCE(sqe->len);
3644 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
3645 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3646 req->statx.flags = READ_ONCE(sqe->statx_flags);
3647
3648 return 0;
3649 }
3650
3651 static int io_statx(struct io_kiocb *req, bool force_nonblock)
3652 {
3653 struct io_statx *ctx = &req->statx;
3654 int ret;
3655
3656 if (force_nonblock) {
3657 /* only need file table for an actual valid fd */
3658 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
3659 req->flags |= REQ_F_NO_FILE_TABLE;
3660 return -EAGAIN;
3661 }
3662
3663 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
3664 ctx->buffer);
3665
3666 if (ret < 0)
3667 req_set_fail_links(req);
3668 io_cqring_add_event(req, ret);
3669 io_put_req(req);
3670 return 0;
3671 }
3672
3673 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3674 {
3675 /*
3676 * If we queue this for async, it must not be cancellable. That would
3677 * leave the 'file' in an undeterminate state, and here need to modify
3678 * io_wq_work.flags, so initialize io_wq_work firstly.
3679 */
3680 io_req_init_async(req);
3681 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
3682
3683 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3684 return -EINVAL;
3685 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
3686 sqe->rw_flags || sqe->buf_index)
3687 return -EINVAL;
3688 if (req->flags & REQ_F_FIXED_FILE)
3689 return -EBADF;
3690
3691 req->close.fd = READ_ONCE(sqe->fd);
3692 if ((req->file && req->file->f_op == &io_uring_fops) ||
3693 req->close.fd == req->ctx->ring_fd)
3694 return -EBADF;
3695
3696 req->close.put_file = NULL;
3697 return 0;
3698 }
3699
3700 static int io_close(struct io_kiocb *req, bool force_nonblock)
3701 {
3702 struct io_close *close = &req->close;
3703 int ret;
3704
3705 /* might be already done during nonblock submission */
3706 if (!close->put_file) {
3707 ret = __close_fd_get_file(close->fd, &close->put_file);
3708 if (ret < 0)
3709 return (ret == -ENOENT) ? -EBADF : ret;
3710 }
3711
3712 /* if the file has a flush method, be safe and punt to async */
3713 if (close->put_file->f_op->flush && force_nonblock) {
3714 /* was never set, but play safe */
3715 req->flags &= ~REQ_F_NOWAIT;
3716 /* avoid grabbing files - we don't need the files */
3717 req->flags |= REQ_F_NO_FILE_TABLE;
3718 return -EAGAIN;
3719 }
3720
3721 /* No ->flush() or already async, safely close from here */
3722 ret = filp_close(close->put_file, req->work.files);
3723 if (ret < 0)
3724 req_set_fail_links(req);
3725 io_cqring_add_event(req, ret);
3726 fput(close->put_file);
3727 close->put_file = NULL;
3728 io_put_req(req);
3729 return 0;
3730 }
3731
3732 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3733 {
3734 struct io_ring_ctx *ctx = req->ctx;
3735
3736 if (!req->file)
3737 return -EBADF;
3738
3739 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3740 return -EINVAL;
3741 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3742 return -EINVAL;
3743
3744 req->sync.off = READ_ONCE(sqe->off);
3745 req->sync.len = READ_ONCE(sqe->len);
3746 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
3747 return 0;
3748 }
3749
3750 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
3751 {
3752 int ret;
3753
3754 /* sync_file_range always requires a blocking context */
3755 if (force_nonblock)
3756 return -EAGAIN;
3757
3758 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
3759 req->sync.flags);
3760 if (ret < 0)
3761 req_set_fail_links(req);
3762 io_cqring_add_event(req, ret);
3763 io_put_req(req);
3764 return 0;
3765 }
3766
3767 #if defined(CONFIG_NET)
3768 static int io_setup_async_msg(struct io_kiocb *req,
3769 struct io_async_msghdr *kmsg)
3770 {
3771 if (req->io)
3772 return -EAGAIN;
3773 if (io_alloc_async_ctx(req)) {
3774 if (kmsg->iov != kmsg->fast_iov)
3775 kfree(kmsg->iov);
3776 return -ENOMEM;
3777 }
3778 req->flags |= REQ_F_NEED_CLEANUP;
3779 memcpy(&req->io->msg, kmsg, sizeof(*kmsg));
3780 return -EAGAIN;
3781 }
3782
3783 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3784 {
3785 struct io_sr_msg *sr = &req->sr_msg;
3786 struct io_async_ctx *io = req->io;
3787 int ret;
3788
3789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3790 return -EINVAL;
3791
3792 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3793 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3794 sr->len = READ_ONCE(sqe->len);
3795
3796 #ifdef CONFIG_COMPAT
3797 if (req->ctx->compat)
3798 sr->msg_flags |= MSG_CMSG_COMPAT;
3799 #endif
3800
3801 if (!io || req->opcode == IORING_OP_SEND)
3802 return 0;
3803 /* iovec is already imported */
3804 if (req->flags & REQ_F_NEED_CLEANUP)
3805 return 0;
3806
3807 io->msg.iov = io->msg.fast_iov;
3808 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3809 &io->msg.iov);
3810 if (!ret)
3811 req->flags |= REQ_F_NEED_CLEANUP;
3812 return ret;
3813 }
3814
3815 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
3816 {
3817 struct io_async_msghdr *kmsg = NULL;
3818 struct socket *sock;
3819 int ret;
3820
3821 sock = sock_from_file(req->file, &ret);
3822 if (sock) {
3823 struct io_async_ctx io;
3824 unsigned flags;
3825
3826 if (req->io) {
3827 kmsg = &req->io->msg;
3828 kmsg->msg.msg_name = &req->io->msg.addr;
3829 /* if iov is set, it's allocated already */
3830 if (!kmsg->iov)
3831 kmsg->iov = kmsg->fast_iov;
3832 kmsg->msg.msg_iter.iov = kmsg->iov;
3833 } else {
3834 struct io_sr_msg *sr = &req->sr_msg;
3835
3836 kmsg = &io.msg;
3837 kmsg->msg.msg_name = &io.msg.addr;
3838
3839 io.msg.iov = io.msg.fast_iov;
3840 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3841 sr->msg_flags, &io.msg.iov);
3842 if (ret)
3843 return ret;
3844 }
3845
3846 flags = req->sr_msg.msg_flags;
3847 if (flags & MSG_DONTWAIT)
3848 req->flags |= REQ_F_NOWAIT;
3849 else if (force_nonblock)
3850 flags |= MSG_DONTWAIT;
3851
3852 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3853 if (force_nonblock && ret == -EAGAIN)
3854 return io_setup_async_msg(req, kmsg);
3855 if (ret == -ERESTARTSYS)
3856 ret = -EINTR;
3857 }
3858
3859 if (kmsg && kmsg->iov != kmsg->fast_iov)
3860 kfree(kmsg->iov);
3861 req->flags &= ~REQ_F_NEED_CLEANUP;
3862 io_cqring_add_event(req, ret);
3863 if (ret < 0)
3864 req_set_fail_links(req);
3865 io_put_req(req);
3866 return 0;
3867 }
3868
3869 static int io_send(struct io_kiocb *req, bool force_nonblock)
3870 {
3871 struct socket *sock;
3872 int ret;
3873
3874 sock = sock_from_file(req->file, &ret);
3875 if (sock) {
3876 struct io_sr_msg *sr = &req->sr_msg;
3877 struct msghdr msg;
3878 struct iovec iov;
3879 unsigned flags;
3880
3881 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3882 &msg.msg_iter);
3883 if (ret)
3884 return ret;
3885
3886 msg.msg_name = NULL;
3887 msg.msg_control = NULL;
3888 msg.msg_controllen = 0;
3889 msg.msg_namelen = 0;
3890
3891 flags = req->sr_msg.msg_flags;
3892 if (flags & MSG_DONTWAIT)
3893 req->flags |= REQ_F_NOWAIT;
3894 else if (force_nonblock)
3895 flags |= MSG_DONTWAIT;
3896
3897 msg.msg_flags = flags;
3898 ret = sock_sendmsg(sock, &msg);
3899 if (force_nonblock && ret == -EAGAIN)
3900 return -EAGAIN;
3901 if (ret == -ERESTARTSYS)
3902 ret = -EINTR;
3903 }
3904
3905 io_cqring_add_event(req, ret);
3906 if (ret < 0)
3907 req_set_fail_links(req);
3908 io_put_req(req);
3909 return 0;
3910 }
3911
3912 static int __io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3913 {
3914 struct io_sr_msg *sr = &req->sr_msg;
3915 struct iovec __user *uiov;
3916 size_t iov_len;
3917 int ret;
3918
3919 ret = __copy_msghdr_from_user(&io->msg.msg, sr->msg, &io->msg.uaddr,
3920 &uiov, &iov_len);
3921 if (ret)
3922 return ret;
3923
3924 if (req->flags & REQ_F_BUFFER_SELECT) {
3925 if (iov_len > 1)
3926 return -EINVAL;
3927 if (copy_from_user(io->msg.iov, uiov, sizeof(*uiov)))
3928 return -EFAULT;
3929 sr->len = io->msg.iov[0].iov_len;
3930 iov_iter_init(&io->msg.msg.msg_iter, READ, io->msg.iov, 1,
3931 sr->len);
3932 io->msg.iov = NULL;
3933 } else {
3934 ret = import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
3935 &io->msg.iov, &io->msg.msg.msg_iter);
3936 if (ret > 0)
3937 ret = 0;
3938 }
3939
3940 return ret;
3941 }
3942
3943 #ifdef CONFIG_COMPAT
3944 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
3945 struct io_async_ctx *io)
3946 {
3947 struct compat_msghdr __user *msg_compat;
3948 struct io_sr_msg *sr = &req->sr_msg;
3949 struct compat_iovec __user *uiov;
3950 compat_uptr_t ptr;
3951 compat_size_t len;
3952 int ret;
3953
3954 msg_compat = (struct compat_msghdr __user *) sr->msg;
3955 ret = __get_compat_msghdr(&io->msg.msg, msg_compat, &io->msg.uaddr,
3956 &ptr, &len);
3957 if (ret)
3958 return ret;
3959
3960 uiov = compat_ptr(ptr);
3961 if (req->flags & REQ_F_BUFFER_SELECT) {
3962 compat_ssize_t clen;
3963
3964 if (len > 1)
3965 return -EINVAL;
3966 if (!access_ok(uiov, sizeof(*uiov)))
3967 return -EFAULT;
3968 if (__get_user(clen, &uiov->iov_len))
3969 return -EFAULT;
3970 if (clen < 0)
3971 return -EINVAL;
3972 sr->len = io->msg.iov[0].iov_len;
3973 io->msg.iov = NULL;
3974 } else {
3975 ret = compat_import_iovec(READ, uiov, len, UIO_FASTIOV,
3976 &io->msg.iov,
3977 &io->msg.msg.msg_iter);
3978 if (ret < 0)
3979 return ret;
3980 }
3981
3982 return 0;
3983 }
3984 #endif
3985
3986 static int io_recvmsg_copy_hdr(struct io_kiocb *req, struct io_async_ctx *io)
3987 {
3988 io->msg.iov = io->msg.fast_iov;
3989
3990 #ifdef CONFIG_COMPAT
3991 if (req->ctx->compat)
3992 return __io_compat_recvmsg_copy_hdr(req, io);
3993 #endif
3994
3995 return __io_recvmsg_copy_hdr(req, io);
3996 }
3997
3998 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
3999 int *cflags, bool needs_lock)
4000 {
4001 struct io_sr_msg *sr = &req->sr_msg;
4002 struct io_buffer *kbuf;
4003
4004 if (!(req->flags & REQ_F_BUFFER_SELECT))
4005 return NULL;
4006
4007 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4008 if (IS_ERR(kbuf))
4009 return kbuf;
4010
4011 sr->kbuf = kbuf;
4012 req->flags |= REQ_F_BUFFER_SELECTED;
4013
4014 *cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
4015 *cflags |= IORING_CQE_F_BUFFER;
4016 return kbuf;
4017 }
4018
4019 static int io_recvmsg_prep(struct io_kiocb *req,
4020 const struct io_uring_sqe *sqe)
4021 {
4022 struct io_sr_msg *sr = &req->sr_msg;
4023 struct io_async_ctx *io = req->io;
4024 int ret;
4025
4026 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4027 return -EINVAL;
4028
4029 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4030 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4031 sr->len = READ_ONCE(sqe->len);
4032 sr->bgid = READ_ONCE(sqe->buf_group);
4033
4034 #ifdef CONFIG_COMPAT
4035 if (req->ctx->compat)
4036 sr->msg_flags |= MSG_CMSG_COMPAT;
4037 #endif
4038
4039 if (!io || req->opcode == IORING_OP_RECV)
4040 return 0;
4041 /* iovec is already imported */
4042 if (req->flags & REQ_F_NEED_CLEANUP)
4043 return 0;
4044
4045 ret = io_recvmsg_copy_hdr(req, io);
4046 if (!ret)
4047 req->flags |= REQ_F_NEED_CLEANUP;
4048 return ret;
4049 }
4050
4051 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4052 {
4053 struct io_async_msghdr *kmsg = NULL;
4054 struct socket *sock;
4055 int ret, cflags = 0;
4056
4057 sock = sock_from_file(req->file, &ret);
4058 if (sock) {
4059 struct io_buffer *kbuf;
4060 struct io_async_ctx io;
4061 unsigned flags;
4062
4063 if (req->io) {
4064 kmsg = &req->io->msg;
4065 kmsg->msg.msg_name = &req->io->msg.addr;
4066 /* if iov is set, it's allocated already */
4067 if (!kmsg->iov)
4068 kmsg->iov = kmsg->fast_iov;
4069 kmsg->msg.msg_iter.iov = kmsg->iov;
4070 } else {
4071 kmsg = &io.msg;
4072 kmsg->msg.msg_name = &io.msg.addr;
4073
4074 ret = io_recvmsg_copy_hdr(req, &io);
4075 if (ret)
4076 return ret;
4077 }
4078
4079 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
4080 if (IS_ERR(kbuf)) {
4081 return PTR_ERR(kbuf);
4082 } else if (kbuf) {
4083 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4084 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4085 1, req->sr_msg.len);
4086 }
4087
4088 flags = req->sr_msg.msg_flags;
4089 if (flags & MSG_DONTWAIT)
4090 req->flags |= REQ_F_NOWAIT;
4091 else if (force_nonblock)
4092 flags |= MSG_DONTWAIT;
4093
4094 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
4095 kmsg->uaddr, flags);
4096 if (force_nonblock && ret == -EAGAIN)
4097 return io_setup_async_msg(req, kmsg);
4098 if (ret == -ERESTARTSYS)
4099 ret = -EINTR;
4100 }
4101
4102 if (kmsg && kmsg->iov != kmsg->fast_iov)
4103 kfree(kmsg->iov);
4104 req->flags &= ~REQ_F_NEED_CLEANUP;
4105 __io_cqring_add_event(req, ret, cflags);
4106 if (ret < 0)
4107 req_set_fail_links(req);
4108 io_put_req(req);
4109 return 0;
4110 }
4111
4112 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4113 {
4114 struct io_buffer *kbuf = NULL;
4115 struct socket *sock;
4116 int ret, cflags = 0;
4117
4118 sock = sock_from_file(req->file, &ret);
4119 if (sock) {
4120 struct io_sr_msg *sr = &req->sr_msg;
4121 void __user *buf = sr->buf;
4122 struct msghdr msg;
4123 struct iovec iov;
4124 unsigned flags;
4125
4126 kbuf = io_recv_buffer_select(req, &cflags, !force_nonblock);
4127 if (IS_ERR(kbuf))
4128 return PTR_ERR(kbuf);
4129 else if (kbuf)
4130 buf = u64_to_user_ptr(kbuf->addr);
4131
4132 ret = import_single_range(READ, buf, sr->len, &iov,
4133 &msg.msg_iter);
4134 if (ret) {
4135 kfree(kbuf);
4136 return ret;
4137 }
4138
4139 req->flags |= REQ_F_NEED_CLEANUP;
4140 msg.msg_name = NULL;
4141 msg.msg_control = NULL;
4142 msg.msg_controllen = 0;
4143 msg.msg_namelen = 0;
4144 msg.msg_iocb = NULL;
4145 msg.msg_flags = 0;
4146
4147 flags = req->sr_msg.msg_flags;
4148 if (flags & MSG_DONTWAIT)
4149 req->flags |= REQ_F_NOWAIT;
4150 else if (force_nonblock)
4151 flags |= MSG_DONTWAIT;
4152
4153 ret = sock_recvmsg(sock, &msg, flags);
4154 if (force_nonblock && ret == -EAGAIN)
4155 return -EAGAIN;
4156 if (ret == -ERESTARTSYS)
4157 ret = -EINTR;
4158 }
4159
4160 kfree(kbuf);
4161 req->flags &= ~REQ_F_NEED_CLEANUP;
4162 __io_cqring_add_event(req, ret, cflags);
4163 if (ret < 0)
4164 req_set_fail_links(req);
4165 io_put_req(req);
4166 return 0;
4167 }
4168
4169 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4170 {
4171 struct io_accept *accept = &req->accept;
4172
4173 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4174 return -EINVAL;
4175 if (sqe->ioprio || sqe->len || sqe->buf_index)
4176 return -EINVAL;
4177
4178 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4179 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4180 accept->flags = READ_ONCE(sqe->accept_flags);
4181 accept->nofile = rlimit(RLIMIT_NOFILE);
4182 return 0;
4183 }
4184
4185 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4186 {
4187 struct io_accept *accept = &req->accept;
4188 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4189 int ret;
4190
4191 if (req->file->f_flags & O_NONBLOCK)
4192 req->flags |= REQ_F_NOWAIT;
4193
4194 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4195 accept->addr_len, accept->flags,
4196 accept->nofile);
4197 if (ret == -EAGAIN && force_nonblock)
4198 return -EAGAIN;
4199 if (ret < 0) {
4200 if (ret == -ERESTARTSYS)
4201 ret = -EINTR;
4202 req_set_fail_links(req);
4203 }
4204 io_cqring_add_event(req, ret);
4205 io_put_req(req);
4206 return 0;
4207 }
4208
4209 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4210 {
4211 struct io_connect *conn = &req->connect;
4212 struct io_async_ctx *io = req->io;
4213
4214 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4215 return -EINVAL;
4216 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4217 return -EINVAL;
4218
4219 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4220 conn->addr_len = READ_ONCE(sqe->addr2);
4221
4222 if (!io)
4223 return 0;
4224
4225 return move_addr_to_kernel(conn->addr, conn->addr_len,
4226 &io->connect.address);
4227 }
4228
4229 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4230 {
4231 struct io_async_ctx __io, *io;
4232 unsigned file_flags;
4233 int ret;
4234
4235 if (req->io) {
4236 io = req->io;
4237 } else {
4238 ret = move_addr_to_kernel(req->connect.addr,
4239 req->connect.addr_len,
4240 &__io.connect.address);
4241 if (ret)
4242 goto out;
4243 io = &__io;
4244 }
4245
4246 file_flags = force_nonblock ? O_NONBLOCK : 0;
4247
4248 ret = __sys_connect_file(req->file, &io->connect.address,
4249 req->connect.addr_len, file_flags);
4250 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4251 if (req->io)
4252 return -EAGAIN;
4253 if (io_alloc_async_ctx(req)) {
4254 ret = -ENOMEM;
4255 goto out;
4256 }
4257 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
4258 return -EAGAIN;
4259 }
4260 if (ret == -ERESTARTSYS)
4261 ret = -EINTR;
4262 out:
4263 if (ret < 0)
4264 req_set_fail_links(req);
4265 io_cqring_add_event(req, ret);
4266 io_put_req(req);
4267 return 0;
4268 }
4269 #else /* !CONFIG_NET */
4270 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4271 {
4272 return -EOPNOTSUPP;
4273 }
4274
4275 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock)
4276 {
4277 return -EOPNOTSUPP;
4278 }
4279
4280 static int io_send(struct io_kiocb *req, bool force_nonblock)
4281 {
4282 return -EOPNOTSUPP;
4283 }
4284
4285 static int io_recvmsg_prep(struct io_kiocb *req,
4286 const struct io_uring_sqe *sqe)
4287 {
4288 return -EOPNOTSUPP;
4289 }
4290
4291 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock)
4292 {
4293 return -EOPNOTSUPP;
4294 }
4295
4296 static int io_recv(struct io_kiocb *req, bool force_nonblock)
4297 {
4298 return -EOPNOTSUPP;
4299 }
4300
4301 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4302 {
4303 return -EOPNOTSUPP;
4304 }
4305
4306 static int io_accept(struct io_kiocb *req, bool force_nonblock)
4307 {
4308 return -EOPNOTSUPP;
4309 }
4310
4311 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4312 {
4313 return -EOPNOTSUPP;
4314 }
4315
4316 static int io_connect(struct io_kiocb *req, bool force_nonblock)
4317 {
4318 return -EOPNOTSUPP;
4319 }
4320 #endif /* CONFIG_NET */
4321
4322 struct io_poll_table {
4323 struct poll_table_struct pt;
4324 struct io_kiocb *req;
4325 int error;
4326 };
4327
4328 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4329 __poll_t mask, task_work_func_t func)
4330 {
4331 struct task_struct *tsk;
4332 int ret;
4333
4334 /* for instances that support it check for an event match first: */
4335 if (mask && !(mask & poll->events))
4336 return 0;
4337
4338 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4339
4340 list_del_init(&poll->wait.entry);
4341
4342 tsk = req->task;
4343 req->result = mask;
4344 init_task_work(&req->task_work, func);
4345 /*
4346 * If this fails, then the task is exiting. When a task exits, the
4347 * work gets canceled, so just cancel this request as well instead
4348 * of executing it. We can't safely execute it anyway, as we may not
4349 * have the needed state needed for it anyway.
4350 */
4351 ret = task_work_add(tsk, &req->task_work, true);
4352 if (unlikely(ret)) {
4353 WRITE_ONCE(poll->canceled, true);
4354 tsk = io_wq_get_task(req->ctx->io_wq);
4355 task_work_add(tsk, &req->task_work, true);
4356 }
4357 wake_up_process(tsk);
4358 return 1;
4359 }
4360
4361 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4362 __acquires(&req->ctx->completion_lock)
4363 {
4364 struct io_ring_ctx *ctx = req->ctx;
4365
4366 if (!req->result && !READ_ONCE(poll->canceled)) {
4367 struct poll_table_struct pt = { ._key = poll->events };
4368
4369 req->result = vfs_poll(req->file, &pt) & poll->events;
4370 }
4371
4372 spin_lock_irq(&ctx->completion_lock);
4373 if (!req->result && !READ_ONCE(poll->canceled)) {
4374 add_wait_queue(poll->head, &poll->wait);
4375 return true;
4376 }
4377
4378 return false;
4379 }
4380
4381 static void io_poll_remove_double(struct io_kiocb *req)
4382 {
4383 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4384
4385 lockdep_assert_held(&req->ctx->completion_lock);
4386
4387 if (poll && poll->head) {
4388 struct wait_queue_head *head = poll->head;
4389
4390 spin_lock(&head->lock);
4391 list_del_init(&poll->wait.entry);
4392 if (poll->wait.private)
4393 refcount_dec(&req->refs);
4394 poll->head = NULL;
4395 spin_unlock(&head->lock);
4396 }
4397 }
4398
4399 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4400 {
4401 struct io_ring_ctx *ctx = req->ctx;
4402
4403 io_poll_remove_double(req);
4404 req->poll.done = true;
4405 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4406 io_commit_cqring(ctx);
4407 }
4408
4409 static void io_poll_task_handler(struct io_kiocb *req, struct io_kiocb **nxt)
4410 {
4411 struct io_ring_ctx *ctx = req->ctx;
4412
4413 if (io_poll_rewait(req, &req->poll)) {
4414 spin_unlock_irq(&ctx->completion_lock);
4415 return;
4416 }
4417
4418 hash_del(&req->hash_node);
4419 io_poll_complete(req, req->result, 0);
4420 req->flags |= REQ_F_COMP_LOCKED;
4421 io_put_req_find_next(req, nxt);
4422 spin_unlock_irq(&ctx->completion_lock);
4423
4424 io_cqring_ev_posted(ctx);
4425 }
4426
4427 static void io_poll_task_func(struct callback_head *cb)
4428 {
4429 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4430 struct io_kiocb *nxt = NULL;
4431
4432 io_poll_task_handler(req, &nxt);
4433 if (nxt) {
4434 struct io_ring_ctx *ctx = nxt->ctx;
4435
4436 mutex_lock(&ctx->uring_lock);
4437 __io_queue_sqe(nxt, NULL);
4438 mutex_unlock(&ctx->uring_lock);
4439 }
4440 }
4441
4442 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4443 int sync, void *key)
4444 {
4445 struct io_kiocb *req = wait->private;
4446 struct io_poll_iocb *poll = (struct io_poll_iocb *) req->io;
4447 __poll_t mask = key_to_poll(key);
4448
4449 /* for instances that support it check for an event match first: */
4450 if (mask && !(mask & poll->events))
4451 return 0;
4452
4453 if (req->poll.head) {
4454 bool done;
4455
4456 spin_lock(&req->poll.head->lock);
4457 done = list_empty(&req->poll.wait.entry);
4458 if (!done)
4459 list_del_init(&req->poll.wait.entry);
4460 spin_unlock(&req->poll.head->lock);
4461 if (!done)
4462 __io_async_wake(req, poll, mask, io_poll_task_func);
4463 }
4464 refcount_dec(&req->refs);
4465 return 1;
4466 }
4467
4468 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4469 wait_queue_func_t wake_func)
4470 {
4471 poll->head = NULL;
4472 poll->done = false;
4473 poll->canceled = false;
4474 poll->events = events;
4475 INIT_LIST_HEAD(&poll->wait.entry);
4476 init_waitqueue_func_entry(&poll->wait, wake_func);
4477 }
4478
4479 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4480 struct wait_queue_head *head)
4481 {
4482 struct io_kiocb *req = pt->req;
4483
4484 /*
4485 * If poll->head is already set, it's because the file being polled
4486 * uses multiple waitqueues for poll handling (eg one for read, one
4487 * for write). Setup a separate io_poll_iocb if this happens.
4488 */
4489 if (unlikely(poll->head)) {
4490 /* already have a 2nd entry, fail a third attempt */
4491 if (req->io) {
4492 pt->error = -EINVAL;
4493 return;
4494 }
4495 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
4496 if (!poll) {
4497 pt->error = -ENOMEM;
4498 return;
4499 }
4500 io_init_poll_iocb(poll, req->poll.events, io_poll_double_wake);
4501 refcount_inc(&req->refs);
4502 poll->wait.private = req;
4503 req->io = (void *) poll;
4504 }
4505
4506 pt->error = 0;
4507 poll->head = head;
4508
4509 if (poll->events & EPOLLEXCLUSIVE)
4510 add_wait_queue_exclusive(head, &poll->wait);
4511 else
4512 add_wait_queue(head, &poll->wait);
4513 }
4514
4515 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
4516 struct poll_table_struct *p)
4517 {
4518 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4519
4520 __io_queue_proc(&pt->req->apoll->poll, pt, head);
4521 }
4522
4523 static void io_async_task_func(struct callback_head *cb)
4524 {
4525 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4526 struct async_poll *apoll = req->apoll;
4527 struct io_ring_ctx *ctx = req->ctx;
4528 bool canceled = false;
4529
4530 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
4531
4532 if (io_poll_rewait(req, &apoll->poll)) {
4533 spin_unlock_irq(&ctx->completion_lock);
4534 return;
4535 }
4536
4537 /* If req is still hashed, it cannot have been canceled. Don't check. */
4538 if (hash_hashed(&req->hash_node)) {
4539 hash_del(&req->hash_node);
4540 } else {
4541 canceled = READ_ONCE(apoll->poll.canceled);
4542 if (canceled) {
4543 io_cqring_fill_event(req, -ECANCELED);
4544 io_commit_cqring(ctx);
4545 }
4546 }
4547
4548 spin_unlock_irq(&ctx->completion_lock);
4549
4550 /* restore ->work in case we need to retry again */
4551 if (req->flags & REQ_F_WORK_INITIALIZED)
4552 memcpy(&req->work, &apoll->work, sizeof(req->work));
4553 kfree(apoll);
4554
4555 if (!canceled) {
4556 __set_current_state(TASK_RUNNING);
4557 if (io_sq_thread_acquire_mm(ctx, req)) {
4558 io_cqring_add_event(req, -EFAULT);
4559 goto end_req;
4560 }
4561 mutex_lock(&ctx->uring_lock);
4562 __io_queue_sqe(req, NULL);
4563 mutex_unlock(&ctx->uring_lock);
4564 } else {
4565 io_cqring_ev_posted(ctx);
4566 end_req:
4567 req_set_fail_links(req);
4568 io_double_put_req(req);
4569 }
4570 }
4571
4572 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4573 void *key)
4574 {
4575 struct io_kiocb *req = wait->private;
4576 struct io_poll_iocb *poll = &req->apoll->poll;
4577
4578 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
4579 key_to_poll(key));
4580
4581 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
4582 }
4583
4584 static void io_poll_req_insert(struct io_kiocb *req)
4585 {
4586 struct io_ring_ctx *ctx = req->ctx;
4587 struct hlist_head *list;
4588
4589 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
4590 hlist_add_head(&req->hash_node, list);
4591 }
4592
4593 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
4594 struct io_poll_iocb *poll,
4595 struct io_poll_table *ipt, __poll_t mask,
4596 wait_queue_func_t wake_func)
4597 __acquires(&ctx->completion_lock)
4598 {
4599 struct io_ring_ctx *ctx = req->ctx;
4600 bool cancel = false;
4601
4602 io_init_poll_iocb(poll, mask, wake_func);
4603 poll->file = req->file;
4604 poll->wait.private = req;
4605
4606 ipt->pt._key = mask;
4607 ipt->req = req;
4608 ipt->error = -EINVAL;
4609
4610 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
4611
4612 spin_lock_irq(&ctx->completion_lock);
4613 if (likely(poll->head)) {
4614 spin_lock(&poll->head->lock);
4615 if (unlikely(list_empty(&poll->wait.entry))) {
4616 if (ipt->error)
4617 cancel = true;
4618 ipt->error = 0;
4619 mask = 0;
4620 }
4621 if (mask || ipt->error)
4622 list_del_init(&poll->wait.entry);
4623 else if (cancel)
4624 WRITE_ONCE(poll->canceled, true);
4625 else if (!poll->done) /* actually waiting for an event */
4626 io_poll_req_insert(req);
4627 spin_unlock(&poll->head->lock);
4628 }
4629
4630 return mask;
4631 }
4632
4633 static bool io_arm_poll_handler(struct io_kiocb *req)
4634 {
4635 const struct io_op_def *def = &io_op_defs[req->opcode];
4636 struct io_ring_ctx *ctx = req->ctx;
4637 struct async_poll *apoll;
4638 struct io_poll_table ipt;
4639 __poll_t mask, ret;
4640 bool had_io;
4641
4642 if (!req->file || !file_can_poll(req->file))
4643 return false;
4644 if (req->flags & REQ_F_POLLED)
4645 return false;
4646 if (!def->pollin && !def->pollout)
4647 return false;
4648
4649 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
4650 if (unlikely(!apoll))
4651 return false;
4652
4653 req->flags |= REQ_F_POLLED;
4654 if (req->flags & REQ_F_WORK_INITIALIZED)
4655 memcpy(&apoll->work, &req->work, sizeof(req->work));
4656 had_io = req->io != NULL;
4657
4658 io_get_req_task(req);
4659 req->apoll = apoll;
4660 INIT_HLIST_NODE(&req->hash_node);
4661
4662 mask = 0;
4663 if (def->pollin)
4664 mask |= POLLIN | POLLRDNORM;
4665 if (def->pollout)
4666 mask |= POLLOUT | POLLWRNORM;
4667 mask |= POLLERR | POLLPRI;
4668
4669 ipt.pt._qproc = io_async_queue_proc;
4670
4671 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
4672 io_async_wake);
4673 if (ret) {
4674 ipt.error = 0;
4675 /* only remove double add if we did it here */
4676 if (!had_io)
4677 io_poll_remove_double(req);
4678 spin_unlock_irq(&ctx->completion_lock);
4679 if (req->flags & REQ_F_WORK_INITIALIZED)
4680 memcpy(&req->work, &apoll->work, sizeof(req->work));
4681 kfree(apoll);
4682 return false;
4683 }
4684 spin_unlock_irq(&ctx->completion_lock);
4685 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
4686 apoll->poll.events);
4687 return true;
4688 }
4689
4690 static bool __io_poll_remove_one(struct io_kiocb *req,
4691 struct io_poll_iocb *poll)
4692 {
4693 bool do_complete = false;
4694
4695 spin_lock(&poll->head->lock);
4696 WRITE_ONCE(poll->canceled, true);
4697 if (!list_empty(&poll->wait.entry)) {
4698 list_del_init(&poll->wait.entry);
4699 do_complete = true;
4700 }
4701 spin_unlock(&poll->head->lock);
4702 hash_del(&req->hash_node);
4703 return do_complete;
4704 }
4705
4706 static bool io_poll_remove_one(struct io_kiocb *req)
4707 {
4708 bool do_complete;
4709
4710 if (req->opcode == IORING_OP_POLL_ADD) {
4711 io_poll_remove_double(req);
4712 do_complete = __io_poll_remove_one(req, &req->poll);
4713 } else {
4714 struct async_poll *apoll = req->apoll;
4715
4716 /* non-poll requests have submit ref still */
4717 do_complete = __io_poll_remove_one(req, &apoll->poll);
4718 if (do_complete) {
4719 io_put_req(req);
4720 /*
4721 * restore ->work because we will call
4722 * io_req_work_drop_env below when dropping the
4723 * final reference.
4724 */
4725 if (req->flags & REQ_F_WORK_INITIALIZED)
4726 memcpy(&req->work, &apoll->work,
4727 sizeof(req->work));
4728 kfree(apoll);
4729 }
4730 }
4731
4732 if (do_complete) {
4733 io_cqring_fill_event(req, -ECANCELED);
4734 io_commit_cqring(req->ctx);
4735 req->flags |= REQ_F_COMP_LOCKED;
4736 io_put_req(req);
4737 }
4738
4739 return do_complete;
4740 }
4741
4742 static void io_poll_remove_all(struct io_ring_ctx *ctx)
4743 {
4744 struct hlist_node *tmp;
4745 struct io_kiocb *req;
4746 int posted = 0, i;
4747
4748 spin_lock_irq(&ctx->completion_lock);
4749 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
4750 struct hlist_head *list;
4751
4752 list = &ctx->cancel_hash[i];
4753 hlist_for_each_entry_safe(req, tmp, list, hash_node)
4754 posted += io_poll_remove_one(req);
4755 }
4756 spin_unlock_irq(&ctx->completion_lock);
4757
4758 if (posted)
4759 io_cqring_ev_posted(ctx);
4760 }
4761
4762 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
4763 {
4764 struct hlist_head *list;
4765 struct io_kiocb *req;
4766
4767 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
4768 hlist_for_each_entry(req, list, hash_node) {
4769 if (sqe_addr != req->user_data)
4770 continue;
4771 if (io_poll_remove_one(req))
4772 return 0;
4773 return -EALREADY;
4774 }
4775
4776 return -ENOENT;
4777 }
4778
4779 static int io_poll_remove_prep(struct io_kiocb *req,
4780 const struct io_uring_sqe *sqe)
4781 {
4782 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4783 return -EINVAL;
4784 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
4785 sqe->poll_events)
4786 return -EINVAL;
4787
4788 req->poll.addr = READ_ONCE(sqe->addr);
4789 return 0;
4790 }
4791
4792 /*
4793 * Find a running poll command that matches one specified in sqe->addr,
4794 * and remove it if found.
4795 */
4796 static int io_poll_remove(struct io_kiocb *req)
4797 {
4798 struct io_ring_ctx *ctx = req->ctx;
4799 u64 addr;
4800 int ret;
4801
4802 addr = req->poll.addr;
4803 spin_lock_irq(&ctx->completion_lock);
4804 ret = io_poll_cancel(ctx, addr);
4805 spin_unlock_irq(&ctx->completion_lock);
4806
4807 io_cqring_add_event(req, ret);
4808 if (ret < 0)
4809 req_set_fail_links(req);
4810 io_put_req(req);
4811 return 0;
4812 }
4813
4814 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
4815 void *key)
4816 {
4817 struct io_kiocb *req = wait->private;
4818 struct io_poll_iocb *poll = &req->poll;
4819
4820 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
4821 }
4822
4823 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
4824 struct poll_table_struct *p)
4825 {
4826 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
4827
4828 __io_queue_proc(&pt->req->poll, pt, head);
4829 }
4830
4831 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4832 {
4833 struct io_poll_iocb *poll = &req->poll;
4834 u32 events;
4835
4836 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4837 return -EINVAL;
4838 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
4839 return -EINVAL;
4840 if (!poll->file)
4841 return -EBADF;
4842
4843 events = READ_ONCE(sqe->poll32_events);
4844 #ifdef __BIG_ENDIAN
4845 events = swahw32(events);
4846 #endif
4847 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
4848 (events & EPOLLEXCLUSIVE);
4849
4850 io_get_req_task(req);
4851 return 0;
4852 }
4853
4854 static int io_poll_add(struct io_kiocb *req)
4855 {
4856 struct io_poll_iocb *poll = &req->poll;
4857 struct io_ring_ctx *ctx = req->ctx;
4858 struct io_poll_table ipt;
4859 __poll_t mask;
4860
4861 INIT_HLIST_NODE(&req->hash_node);
4862 INIT_LIST_HEAD(&req->list);
4863 ipt.pt._qproc = io_poll_queue_proc;
4864
4865 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
4866 io_poll_wake);
4867
4868 if (mask) { /* no async, we'd stolen it */
4869 ipt.error = 0;
4870 io_poll_complete(req, mask, 0);
4871 }
4872 spin_unlock_irq(&ctx->completion_lock);
4873
4874 if (mask) {
4875 io_cqring_ev_posted(ctx);
4876 io_put_req(req);
4877 }
4878 return ipt.error;
4879 }
4880
4881 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
4882 {
4883 struct io_timeout_data *data = container_of(timer,
4884 struct io_timeout_data, timer);
4885 struct io_kiocb *req = data->req;
4886 struct io_ring_ctx *ctx = req->ctx;
4887 unsigned long flags;
4888
4889 atomic_inc(&ctx->cq_timeouts);
4890
4891 spin_lock_irqsave(&ctx->completion_lock, flags);
4892 /*
4893 * We could be racing with timeout deletion. If the list is empty,
4894 * then timeout lookup already found it and will be handling it.
4895 */
4896 if (!list_empty(&req->list))
4897 list_del_init(&req->list);
4898
4899 io_cqring_fill_event(req, -ETIME);
4900 io_commit_cqring(ctx);
4901 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4902
4903 io_cqring_ev_posted(ctx);
4904 req_set_fail_links(req);
4905 io_put_req(req);
4906 return HRTIMER_NORESTART;
4907 }
4908
4909 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
4910 {
4911 struct io_kiocb *req;
4912 int ret = -ENOENT;
4913
4914 list_for_each_entry(req, &ctx->timeout_list, list) {
4915 if (user_data == req->user_data) {
4916 list_del_init(&req->list);
4917 ret = 0;
4918 break;
4919 }
4920 }
4921
4922 if (ret == -ENOENT)
4923 return ret;
4924
4925 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
4926 if (ret == -1)
4927 return -EALREADY;
4928
4929 req_set_fail_links(req);
4930 io_cqring_fill_event(req, -ECANCELED);
4931 io_put_req(req);
4932 return 0;
4933 }
4934
4935 static int io_timeout_remove_prep(struct io_kiocb *req,
4936 const struct io_uring_sqe *sqe)
4937 {
4938 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4939 return -EINVAL;
4940 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
4941 return -EINVAL;
4942
4943 req->timeout.addr = READ_ONCE(sqe->addr);
4944 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
4945 if (req->timeout.flags)
4946 return -EINVAL;
4947
4948 return 0;
4949 }
4950
4951 /*
4952 * Remove or update an existing timeout command
4953 */
4954 static int io_timeout_remove(struct io_kiocb *req)
4955 {
4956 struct io_ring_ctx *ctx = req->ctx;
4957 int ret;
4958
4959 spin_lock_irq(&ctx->completion_lock);
4960 ret = io_timeout_cancel(ctx, req->timeout.addr);
4961
4962 io_cqring_fill_event(req, ret);
4963 io_commit_cqring(ctx);
4964 spin_unlock_irq(&ctx->completion_lock);
4965 io_cqring_ev_posted(ctx);
4966 if (ret < 0)
4967 req_set_fail_links(req);
4968 io_put_req(req);
4969 return 0;
4970 }
4971
4972 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4973 bool is_timeout_link)
4974 {
4975 struct io_timeout_data *data;
4976 unsigned flags;
4977 u32 off = READ_ONCE(sqe->off);
4978
4979 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4980 return -EINVAL;
4981 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
4982 return -EINVAL;
4983 if (off && is_timeout_link)
4984 return -EINVAL;
4985 flags = READ_ONCE(sqe->timeout_flags);
4986 if (flags & ~IORING_TIMEOUT_ABS)
4987 return -EINVAL;
4988
4989 req->timeout.off = off;
4990
4991 if (!req->io && io_alloc_async_ctx(req))
4992 return -ENOMEM;
4993
4994 data = &req->io->timeout;
4995 data->req = req;
4996 req->flags |= REQ_F_TIMEOUT;
4997
4998 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
4999 return -EFAULT;
5000
5001 if (flags & IORING_TIMEOUT_ABS)
5002 data->mode = HRTIMER_MODE_ABS;
5003 else
5004 data->mode = HRTIMER_MODE_REL;
5005
5006 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5007 return 0;
5008 }
5009
5010 static int io_timeout(struct io_kiocb *req)
5011 {
5012 struct io_ring_ctx *ctx = req->ctx;
5013 struct io_timeout_data *data = &req->io->timeout;
5014 struct list_head *entry;
5015 u32 tail, off = req->timeout.off;
5016
5017 spin_lock_irq(&ctx->completion_lock);
5018
5019 /*
5020 * sqe->off holds how many events that need to occur for this
5021 * timeout event to be satisfied. If it isn't set, then this is
5022 * a pure timeout request, sequence isn't used.
5023 */
5024 if (!off) {
5025 req->flags |= REQ_F_TIMEOUT_NOSEQ;
5026 entry = ctx->timeout_list.prev;
5027 goto add;
5028 }
5029
5030 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5031 req->timeout.target_seq = tail + off;
5032
5033 /*
5034 * Insertion sort, ensuring the first entry in the list is always
5035 * the one we need first.
5036 */
5037 list_for_each_prev(entry, &ctx->timeout_list) {
5038 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
5039
5040 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
5041 continue;
5042 /* nxt.seq is behind @tail, otherwise would've been completed */
5043 if (off >= nxt->timeout.target_seq - tail)
5044 break;
5045 }
5046 add:
5047 list_add(&req->list, entry);
5048 data->timer.function = io_timeout_fn;
5049 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5050 spin_unlock_irq(&ctx->completion_lock);
5051 return 0;
5052 }
5053
5054 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5055 {
5056 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5057
5058 return req->user_data == (unsigned long) data;
5059 }
5060
5061 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5062 {
5063 enum io_wq_cancel cancel_ret;
5064 int ret = 0;
5065
5066 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5067 switch (cancel_ret) {
5068 case IO_WQ_CANCEL_OK:
5069 ret = 0;
5070 break;
5071 case IO_WQ_CANCEL_RUNNING:
5072 ret = -EALREADY;
5073 break;
5074 case IO_WQ_CANCEL_NOTFOUND:
5075 ret = -ENOENT;
5076 break;
5077 }
5078
5079 return ret;
5080 }
5081
5082 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5083 struct io_kiocb *req, __u64 sqe_addr,
5084 int success_ret)
5085 {
5086 unsigned long flags;
5087 int ret;
5088
5089 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5090 if (ret != -ENOENT) {
5091 spin_lock_irqsave(&ctx->completion_lock, flags);
5092 goto done;
5093 }
5094
5095 spin_lock_irqsave(&ctx->completion_lock, flags);
5096 ret = io_timeout_cancel(ctx, sqe_addr);
5097 if (ret != -ENOENT)
5098 goto done;
5099 ret = io_poll_cancel(ctx, sqe_addr);
5100 done:
5101 if (!ret)
5102 ret = success_ret;
5103 io_cqring_fill_event(req, ret);
5104 io_commit_cqring(ctx);
5105 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5106 io_cqring_ev_posted(ctx);
5107
5108 if (ret < 0)
5109 req_set_fail_links(req);
5110 io_put_req(req);
5111 }
5112
5113 static int io_async_cancel_prep(struct io_kiocb *req,
5114 const struct io_uring_sqe *sqe)
5115 {
5116 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5117 return -EINVAL;
5118 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
5119 sqe->cancel_flags)
5120 return -EINVAL;
5121
5122 req->cancel.addr = READ_ONCE(sqe->addr);
5123 return 0;
5124 }
5125
5126 static int io_async_cancel(struct io_kiocb *req)
5127 {
5128 struct io_ring_ctx *ctx = req->ctx;
5129
5130 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5131 return 0;
5132 }
5133
5134 static int io_files_update_prep(struct io_kiocb *req,
5135 const struct io_uring_sqe *sqe)
5136 {
5137 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
5138 return -EINVAL;
5139
5140 req->files_update.offset = READ_ONCE(sqe->off);
5141 req->files_update.nr_args = READ_ONCE(sqe->len);
5142 if (!req->files_update.nr_args)
5143 return -EINVAL;
5144 req->files_update.arg = READ_ONCE(sqe->addr);
5145 return 0;
5146 }
5147
5148 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
5149 {
5150 struct io_ring_ctx *ctx = req->ctx;
5151 struct io_uring_files_update up;
5152 int ret;
5153
5154 if (force_nonblock)
5155 return -EAGAIN;
5156
5157 up.offset = req->files_update.offset;
5158 up.fds = req->files_update.arg;
5159
5160 mutex_lock(&ctx->uring_lock);
5161 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5162 mutex_unlock(&ctx->uring_lock);
5163
5164 if (ret < 0)
5165 req_set_fail_links(req);
5166 io_cqring_add_event(req, ret);
5167 io_put_req(req);
5168 return 0;
5169 }
5170
5171 static int io_req_defer_prep(struct io_kiocb *req,
5172 const struct io_uring_sqe *sqe)
5173 {
5174 ssize_t ret = 0;
5175
5176 if (!sqe)
5177 return 0;
5178
5179 io_req_init_async(req);
5180
5181 if (io_op_defs[req->opcode].file_table) {
5182 ret = io_grab_files(req);
5183 if (unlikely(ret))
5184 return ret;
5185 }
5186
5187 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
5188
5189 switch (req->opcode) {
5190 case IORING_OP_NOP:
5191 break;
5192 case IORING_OP_READV:
5193 case IORING_OP_READ_FIXED:
5194 case IORING_OP_READ:
5195 ret = io_read_prep(req, sqe, true);
5196 break;
5197 case IORING_OP_WRITEV:
5198 case IORING_OP_WRITE_FIXED:
5199 case IORING_OP_WRITE:
5200 ret = io_write_prep(req, sqe, true);
5201 break;
5202 case IORING_OP_POLL_ADD:
5203 ret = io_poll_add_prep(req, sqe);
5204 break;
5205 case IORING_OP_POLL_REMOVE:
5206 ret = io_poll_remove_prep(req, sqe);
5207 break;
5208 case IORING_OP_FSYNC:
5209 ret = io_prep_fsync(req, sqe);
5210 break;
5211 case IORING_OP_SYNC_FILE_RANGE:
5212 ret = io_prep_sfr(req, sqe);
5213 break;
5214 case IORING_OP_SENDMSG:
5215 case IORING_OP_SEND:
5216 ret = io_sendmsg_prep(req, sqe);
5217 break;
5218 case IORING_OP_RECVMSG:
5219 case IORING_OP_RECV:
5220 ret = io_recvmsg_prep(req, sqe);
5221 break;
5222 case IORING_OP_CONNECT:
5223 ret = io_connect_prep(req, sqe);
5224 break;
5225 case IORING_OP_TIMEOUT:
5226 ret = io_timeout_prep(req, sqe, false);
5227 break;
5228 case IORING_OP_TIMEOUT_REMOVE:
5229 ret = io_timeout_remove_prep(req, sqe);
5230 break;
5231 case IORING_OP_ASYNC_CANCEL:
5232 ret = io_async_cancel_prep(req, sqe);
5233 break;
5234 case IORING_OP_LINK_TIMEOUT:
5235 ret = io_timeout_prep(req, sqe, true);
5236 break;
5237 case IORING_OP_ACCEPT:
5238 ret = io_accept_prep(req, sqe);
5239 break;
5240 case IORING_OP_FALLOCATE:
5241 ret = io_fallocate_prep(req, sqe);
5242 break;
5243 case IORING_OP_OPENAT:
5244 ret = io_openat_prep(req, sqe);
5245 break;
5246 case IORING_OP_CLOSE:
5247 ret = io_close_prep(req, sqe);
5248 break;
5249 case IORING_OP_FILES_UPDATE:
5250 ret = io_files_update_prep(req, sqe);
5251 break;
5252 case IORING_OP_STATX:
5253 ret = io_statx_prep(req, sqe);
5254 break;
5255 case IORING_OP_FADVISE:
5256 ret = io_fadvise_prep(req, sqe);
5257 break;
5258 case IORING_OP_MADVISE:
5259 ret = io_madvise_prep(req, sqe);
5260 break;
5261 case IORING_OP_OPENAT2:
5262 ret = io_openat2_prep(req, sqe);
5263 break;
5264 case IORING_OP_EPOLL_CTL:
5265 ret = io_epoll_ctl_prep(req, sqe);
5266 break;
5267 case IORING_OP_SPLICE:
5268 ret = io_splice_prep(req, sqe);
5269 break;
5270 case IORING_OP_PROVIDE_BUFFERS:
5271 ret = io_provide_buffers_prep(req, sqe);
5272 break;
5273 case IORING_OP_REMOVE_BUFFERS:
5274 ret = io_remove_buffers_prep(req, sqe);
5275 break;
5276 case IORING_OP_TEE:
5277 ret = io_tee_prep(req, sqe);
5278 break;
5279 default:
5280 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5281 req->opcode);
5282 ret = -EINVAL;
5283 break;
5284 }
5285
5286 return ret;
5287 }
5288
5289 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5290 {
5291 struct io_ring_ctx *ctx = req->ctx;
5292 int ret;
5293
5294 /* Still need defer if there is pending req in defer list. */
5295 if (!req_need_defer(req) && list_empty_careful(&ctx->defer_list))
5296 return 0;
5297
5298 if (!req->io) {
5299 if (io_alloc_async_ctx(req))
5300 return -EAGAIN;
5301 ret = io_req_defer_prep(req, sqe);
5302 if (ret < 0)
5303 return ret;
5304 }
5305
5306 spin_lock_irq(&ctx->completion_lock);
5307 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
5308 spin_unlock_irq(&ctx->completion_lock);
5309 return 0;
5310 }
5311
5312 trace_io_uring_defer(ctx, req, req->user_data);
5313 list_add_tail(&req->list, &ctx->defer_list);
5314 spin_unlock_irq(&ctx->completion_lock);
5315 return -EIOCBQUEUED;
5316 }
5317
5318 static void io_cleanup_req(struct io_kiocb *req)
5319 {
5320 struct io_async_ctx *io = req->io;
5321
5322 switch (req->opcode) {
5323 case IORING_OP_READV:
5324 case IORING_OP_READ_FIXED:
5325 case IORING_OP_READ:
5326 if (req->flags & REQ_F_BUFFER_SELECTED)
5327 kfree((void *)(unsigned long)req->rw.addr);
5328 /* fallthrough */
5329 case IORING_OP_WRITEV:
5330 case IORING_OP_WRITE_FIXED:
5331 case IORING_OP_WRITE:
5332 if (io->rw.iov != io->rw.fast_iov)
5333 kfree(io->rw.iov);
5334 break;
5335 case IORING_OP_RECVMSG:
5336 if (req->flags & REQ_F_BUFFER_SELECTED)
5337 kfree(req->sr_msg.kbuf);
5338 /* fallthrough */
5339 case IORING_OP_SENDMSG:
5340 if (io->msg.iov != io->msg.fast_iov)
5341 kfree(io->msg.iov);
5342 break;
5343 case IORING_OP_RECV:
5344 if (req->flags & REQ_F_BUFFER_SELECTED)
5345 kfree(req->sr_msg.kbuf);
5346 break;
5347 case IORING_OP_OPENAT:
5348 case IORING_OP_OPENAT2:
5349 break;
5350 case IORING_OP_SPLICE:
5351 case IORING_OP_TEE:
5352 io_put_file(req, req->splice.file_in,
5353 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5354 break;
5355 }
5356
5357 req->flags &= ~REQ_F_NEED_CLEANUP;
5358 }
5359
5360 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5361 bool force_nonblock)
5362 {
5363 struct io_ring_ctx *ctx = req->ctx;
5364 int ret;
5365
5366 switch (req->opcode) {
5367 case IORING_OP_NOP:
5368 ret = io_nop(req);
5369 break;
5370 case IORING_OP_READV:
5371 case IORING_OP_READ_FIXED:
5372 case IORING_OP_READ:
5373 if (sqe) {
5374 ret = io_read_prep(req, sqe, force_nonblock);
5375 if (ret < 0)
5376 break;
5377 }
5378 ret = io_read(req, force_nonblock);
5379 break;
5380 case IORING_OP_WRITEV:
5381 case IORING_OP_WRITE_FIXED:
5382 case IORING_OP_WRITE:
5383 if (sqe) {
5384 ret = io_write_prep(req, sqe, force_nonblock);
5385 if (ret < 0)
5386 break;
5387 }
5388 ret = io_write(req, force_nonblock);
5389 break;
5390 case IORING_OP_FSYNC:
5391 if (sqe) {
5392 ret = io_prep_fsync(req, sqe);
5393 if (ret < 0)
5394 break;
5395 }
5396 ret = io_fsync(req, force_nonblock);
5397 break;
5398 case IORING_OP_POLL_ADD:
5399 if (sqe) {
5400 ret = io_poll_add_prep(req, sqe);
5401 if (ret)
5402 break;
5403 }
5404 ret = io_poll_add(req);
5405 break;
5406 case IORING_OP_POLL_REMOVE:
5407 if (sqe) {
5408 ret = io_poll_remove_prep(req, sqe);
5409 if (ret < 0)
5410 break;
5411 }
5412 ret = io_poll_remove(req);
5413 break;
5414 case IORING_OP_SYNC_FILE_RANGE:
5415 if (sqe) {
5416 ret = io_prep_sfr(req, sqe);
5417 if (ret < 0)
5418 break;
5419 }
5420 ret = io_sync_file_range(req, force_nonblock);
5421 break;
5422 case IORING_OP_SENDMSG:
5423 case IORING_OP_SEND:
5424 if (sqe) {
5425 ret = io_sendmsg_prep(req, sqe);
5426 if (ret < 0)
5427 break;
5428 }
5429 if (req->opcode == IORING_OP_SENDMSG)
5430 ret = io_sendmsg(req, force_nonblock);
5431 else
5432 ret = io_send(req, force_nonblock);
5433 break;
5434 case IORING_OP_RECVMSG:
5435 case IORING_OP_RECV:
5436 if (sqe) {
5437 ret = io_recvmsg_prep(req, sqe);
5438 if (ret)
5439 break;
5440 }
5441 if (req->opcode == IORING_OP_RECVMSG)
5442 ret = io_recvmsg(req, force_nonblock);
5443 else
5444 ret = io_recv(req, force_nonblock);
5445 break;
5446 case IORING_OP_TIMEOUT:
5447 if (sqe) {
5448 ret = io_timeout_prep(req, sqe, false);
5449 if (ret)
5450 break;
5451 }
5452 ret = io_timeout(req);
5453 break;
5454 case IORING_OP_TIMEOUT_REMOVE:
5455 if (sqe) {
5456 ret = io_timeout_remove_prep(req, sqe);
5457 if (ret)
5458 break;
5459 }
5460 ret = io_timeout_remove(req);
5461 break;
5462 case IORING_OP_ACCEPT:
5463 if (sqe) {
5464 ret = io_accept_prep(req, sqe);
5465 if (ret)
5466 break;
5467 }
5468 ret = io_accept(req, force_nonblock);
5469 break;
5470 case IORING_OP_CONNECT:
5471 if (sqe) {
5472 ret = io_connect_prep(req, sqe);
5473 if (ret)
5474 break;
5475 }
5476 ret = io_connect(req, force_nonblock);
5477 break;
5478 case IORING_OP_ASYNC_CANCEL:
5479 if (sqe) {
5480 ret = io_async_cancel_prep(req, sqe);
5481 if (ret)
5482 break;
5483 }
5484 ret = io_async_cancel(req);
5485 break;
5486 case IORING_OP_FALLOCATE:
5487 if (sqe) {
5488 ret = io_fallocate_prep(req, sqe);
5489 if (ret)
5490 break;
5491 }
5492 ret = io_fallocate(req, force_nonblock);
5493 break;
5494 case IORING_OP_OPENAT:
5495 if (sqe) {
5496 ret = io_openat_prep(req, sqe);
5497 if (ret)
5498 break;
5499 }
5500 ret = io_openat(req, force_nonblock);
5501 break;
5502 case IORING_OP_CLOSE:
5503 if (sqe) {
5504 ret = io_close_prep(req, sqe);
5505 if (ret)
5506 break;
5507 }
5508 ret = io_close(req, force_nonblock);
5509 break;
5510 case IORING_OP_FILES_UPDATE:
5511 if (sqe) {
5512 ret = io_files_update_prep(req, sqe);
5513 if (ret)
5514 break;
5515 }
5516 ret = io_files_update(req, force_nonblock);
5517 break;
5518 case IORING_OP_STATX:
5519 if (sqe) {
5520 ret = io_statx_prep(req, sqe);
5521 if (ret)
5522 break;
5523 }
5524 ret = io_statx(req, force_nonblock);
5525 break;
5526 case IORING_OP_FADVISE:
5527 if (sqe) {
5528 ret = io_fadvise_prep(req, sqe);
5529 if (ret)
5530 break;
5531 }
5532 ret = io_fadvise(req, force_nonblock);
5533 break;
5534 case IORING_OP_MADVISE:
5535 if (sqe) {
5536 ret = io_madvise_prep(req, sqe);
5537 if (ret)
5538 break;
5539 }
5540 ret = io_madvise(req, force_nonblock);
5541 break;
5542 case IORING_OP_OPENAT2:
5543 if (sqe) {
5544 ret = io_openat2_prep(req, sqe);
5545 if (ret)
5546 break;
5547 }
5548 ret = io_openat2(req, force_nonblock);
5549 break;
5550 case IORING_OP_EPOLL_CTL:
5551 if (sqe) {
5552 ret = io_epoll_ctl_prep(req, sqe);
5553 if (ret)
5554 break;
5555 }
5556 ret = io_epoll_ctl(req, force_nonblock);
5557 break;
5558 case IORING_OP_SPLICE:
5559 if (sqe) {
5560 ret = io_splice_prep(req, sqe);
5561 if (ret < 0)
5562 break;
5563 }
5564 ret = io_splice(req, force_nonblock);
5565 break;
5566 case IORING_OP_PROVIDE_BUFFERS:
5567 if (sqe) {
5568 ret = io_provide_buffers_prep(req, sqe);
5569 if (ret)
5570 break;
5571 }
5572 ret = io_provide_buffers(req, force_nonblock);
5573 break;
5574 case IORING_OP_REMOVE_BUFFERS:
5575 if (sqe) {
5576 ret = io_remove_buffers_prep(req, sqe);
5577 if (ret)
5578 break;
5579 }
5580 ret = io_remove_buffers(req, force_nonblock);
5581 break;
5582 case IORING_OP_TEE:
5583 if (sqe) {
5584 ret = io_tee_prep(req, sqe);
5585 if (ret < 0)
5586 break;
5587 }
5588 ret = io_tee(req, force_nonblock);
5589 break;
5590 default:
5591 ret = -EINVAL;
5592 break;
5593 }
5594
5595 if (ret)
5596 return ret;
5597
5598 /* If the op doesn't have a file, we're not polling for it */
5599 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5600 const bool in_async = io_wq_current_is_worker();
5601
5602 if (req->result == -EAGAIN)
5603 return -EAGAIN;
5604
5605 /* workqueue context doesn't hold uring_lock, grab it now */
5606 if (in_async)
5607 mutex_lock(&ctx->uring_lock);
5608
5609 io_iopoll_req_issued(req);
5610
5611 if (in_async)
5612 mutex_unlock(&ctx->uring_lock);
5613 }
5614
5615 return 0;
5616 }
5617
5618 static void io_arm_async_linked_timeout(struct io_kiocb *req)
5619 {
5620 struct io_kiocb *link;
5621
5622 /* link head's timeout is queued in io_queue_async_work() */
5623 if (!(req->flags & REQ_F_QUEUE_TIMEOUT))
5624 return;
5625
5626 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
5627 io_queue_linked_timeout(link);
5628 }
5629
5630 static void io_wq_submit_work(struct io_wq_work **workptr)
5631 {
5632 struct io_wq_work *work = *workptr;
5633 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5634 int ret = 0;
5635
5636 io_arm_async_linked_timeout(req);
5637
5638 /* if NO_CANCEL is set, we must still run the work */
5639 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
5640 IO_WQ_WORK_CANCEL) {
5641 ret = -ECANCELED;
5642 }
5643
5644 if (!ret) {
5645 do {
5646 ret = io_issue_sqe(req, NULL, false);
5647 /*
5648 * We can get EAGAIN for polled IO even though we're
5649 * forcing a sync submission from here, since we can't
5650 * wait for request slots on the block side.
5651 */
5652 if (ret != -EAGAIN)
5653 break;
5654 cond_resched();
5655 } while (1);
5656 }
5657
5658 if (ret) {
5659 req_set_fail_links(req);
5660 io_cqring_add_event(req, ret);
5661 io_put_req(req);
5662 }
5663
5664 io_steal_work(req, workptr);
5665 }
5666
5667 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
5668 int index)
5669 {
5670 struct fixed_file_table *table;
5671
5672 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
5673 return table->files[index & IORING_FILE_TABLE_MASK];
5674 }
5675
5676 static int io_file_get(struct io_submit_state *state, struct io_kiocb *req,
5677 int fd, struct file **out_file, bool fixed)
5678 {
5679 struct io_ring_ctx *ctx = req->ctx;
5680 struct file *file;
5681
5682 if (fixed) {
5683 if (unlikely(!ctx->file_data ||
5684 (unsigned) fd >= ctx->nr_user_files))
5685 return -EBADF;
5686 fd = array_index_nospec(fd, ctx->nr_user_files);
5687 file = io_file_from_index(ctx, fd);
5688 if (file) {
5689 req->fixed_file_refs = ctx->file_data->cur_refs;
5690 percpu_ref_get(req->fixed_file_refs);
5691 }
5692 } else {
5693 trace_io_uring_file_get(ctx, fd);
5694 file = __io_file_get(state, fd);
5695 }
5696
5697 if (file || io_op_defs[req->opcode].needs_file_no_error) {
5698 *out_file = file;
5699 return 0;
5700 }
5701 return -EBADF;
5702 }
5703
5704 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
5705 int fd)
5706 {
5707 bool fixed;
5708
5709 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
5710 if (unlikely(!fixed && io_async_submit(req->ctx)))
5711 return -EBADF;
5712
5713 return io_file_get(state, req, fd, &req->file, fixed);
5714 }
5715
5716 static int io_grab_files(struct io_kiocb *req)
5717 {
5718 int ret = -EBADF;
5719 struct io_ring_ctx *ctx = req->ctx;
5720
5721 if (req->work.files || (req->flags & REQ_F_NO_FILE_TABLE))
5722 return 0;
5723 if (!ctx->ring_file)
5724 return -EBADF;
5725
5726 rcu_read_lock();
5727 spin_lock_irq(&ctx->inflight_lock);
5728 /*
5729 * We use the f_ops->flush() handler to ensure that we can flush
5730 * out work accessing these files if the fd is closed. Check if
5731 * the fd has changed since we started down this path, and disallow
5732 * this operation if it has.
5733 */
5734 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
5735 list_add(&req->inflight_entry, &ctx->inflight_list);
5736 req->flags |= REQ_F_INFLIGHT;
5737 req->work.files = current->files;
5738 ret = 0;
5739 }
5740 spin_unlock_irq(&ctx->inflight_lock);
5741 rcu_read_unlock();
5742
5743 return ret;
5744 }
5745
5746 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
5747 {
5748 struct io_timeout_data *data = container_of(timer,
5749 struct io_timeout_data, timer);
5750 struct io_kiocb *req = data->req;
5751 struct io_ring_ctx *ctx = req->ctx;
5752 struct io_kiocb *prev = NULL;
5753 unsigned long flags;
5754
5755 spin_lock_irqsave(&ctx->completion_lock, flags);
5756
5757 /*
5758 * We don't expect the list to be empty, that will only happen if we
5759 * race with the completion of the linked work.
5760 */
5761 if (!list_empty(&req->link_list)) {
5762 prev = list_entry(req->link_list.prev, struct io_kiocb,
5763 link_list);
5764 if (refcount_inc_not_zero(&prev->refs)) {
5765 list_del_init(&req->link_list);
5766 prev->flags &= ~REQ_F_LINK_TIMEOUT;
5767 } else
5768 prev = NULL;
5769 }
5770
5771 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5772
5773 if (prev) {
5774 req_set_fail_links(prev);
5775 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
5776 io_put_req(prev);
5777 } else {
5778 io_cqring_add_event(req, -ETIME);
5779 io_put_req(req);
5780 }
5781 return HRTIMER_NORESTART;
5782 }
5783
5784 static void io_queue_linked_timeout(struct io_kiocb *req)
5785 {
5786 struct io_ring_ctx *ctx = req->ctx;
5787
5788 /*
5789 * If the list is now empty, then our linked request finished before
5790 * we got a chance to setup the timer
5791 */
5792 spin_lock_irq(&ctx->completion_lock);
5793 if (!list_empty(&req->link_list)) {
5794 struct io_timeout_data *data = &req->io->timeout;
5795
5796 data->timer.function = io_link_timeout_fn;
5797 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
5798 data->mode);
5799 }
5800 spin_unlock_irq(&ctx->completion_lock);
5801
5802 /* drop submission reference */
5803 io_put_req(req);
5804 }
5805
5806 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
5807 {
5808 struct io_kiocb *nxt;
5809
5810 if (!(req->flags & REQ_F_LINK_HEAD))
5811 return NULL;
5812 /* for polled retry, if flag is set, we already went through here */
5813 if (req->flags & REQ_F_POLLED)
5814 return NULL;
5815
5816 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
5817 link_list);
5818 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
5819 return NULL;
5820
5821 req->flags |= REQ_F_LINK_TIMEOUT;
5822 return nxt;
5823 }
5824
5825 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5826 {
5827 struct io_kiocb *linked_timeout;
5828 struct io_kiocb *nxt;
5829 const struct cred *old_creds = NULL;
5830 int ret;
5831
5832 again:
5833 linked_timeout = io_prep_linked_timeout(req);
5834
5835 if ((req->flags & REQ_F_WORK_INITIALIZED) && req->work.creds &&
5836 req->work.creds != current_cred()) {
5837 if (old_creds)
5838 revert_creds(old_creds);
5839 if (old_creds == req->work.creds)
5840 old_creds = NULL; /* restored original creds */
5841 else
5842 old_creds = override_creds(req->work.creds);
5843 }
5844
5845 ret = io_issue_sqe(req, sqe, true);
5846
5847 /*
5848 * We async punt it if the file wasn't marked NOWAIT, or if the file
5849 * doesn't support non-blocking read/write attempts
5850 */
5851 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
5852 if (io_arm_poll_handler(req)) {
5853 if (linked_timeout)
5854 io_queue_linked_timeout(linked_timeout);
5855 goto exit;
5856 }
5857 punt:
5858 io_req_init_async(req);
5859
5860 if (io_op_defs[req->opcode].file_table) {
5861 ret = io_grab_files(req);
5862 if (ret)
5863 goto err;
5864 }
5865
5866 /*
5867 * Queued up for async execution, worker will release
5868 * submit reference when the iocb is actually submitted.
5869 */
5870 io_queue_async_work(req);
5871 goto exit;
5872 }
5873
5874 err:
5875 nxt = NULL;
5876 /* drop submission reference */
5877 io_put_req_find_next(req, &nxt);
5878
5879 if (linked_timeout) {
5880 if (!ret)
5881 io_queue_linked_timeout(linked_timeout);
5882 else
5883 io_put_req(linked_timeout);
5884 }
5885
5886 /* and drop final reference, if we failed */
5887 if (ret) {
5888 io_cqring_add_event(req, ret);
5889 req_set_fail_links(req);
5890 io_put_req(req);
5891 }
5892 if (nxt) {
5893 req = nxt;
5894
5895 if (req->flags & REQ_F_FORCE_ASYNC)
5896 goto punt;
5897 goto again;
5898 }
5899 exit:
5900 if (old_creds)
5901 revert_creds(old_creds);
5902 }
5903
5904 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5905 {
5906 int ret;
5907
5908 ret = io_req_defer(req, sqe);
5909 if (ret) {
5910 if (ret != -EIOCBQUEUED) {
5911 fail_req:
5912 io_cqring_add_event(req, ret);
5913 req_set_fail_links(req);
5914 io_double_put_req(req);
5915 }
5916 } else if (req->flags & REQ_F_FORCE_ASYNC) {
5917 if (!req->io) {
5918 ret = -EAGAIN;
5919 if (io_alloc_async_ctx(req))
5920 goto fail_req;
5921 ret = io_req_defer_prep(req, sqe);
5922 if (unlikely(ret < 0))
5923 goto fail_req;
5924 }
5925
5926 /*
5927 * Never try inline submit of IOSQE_ASYNC is set, go straight
5928 * to async execution.
5929 */
5930 req->work.flags |= IO_WQ_WORK_CONCURRENT;
5931 io_queue_async_work(req);
5932 } else {
5933 __io_queue_sqe(req, sqe);
5934 }
5935 }
5936
5937 static inline void io_queue_link_head(struct io_kiocb *req)
5938 {
5939 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
5940 io_cqring_add_event(req, -ECANCELED);
5941 io_double_put_req(req);
5942 } else
5943 io_queue_sqe(req, NULL);
5944 }
5945
5946 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5947 struct io_kiocb **link)
5948 {
5949 struct io_ring_ctx *ctx = req->ctx;
5950 int ret;
5951
5952 /*
5953 * If we already have a head request, queue this one for async
5954 * submittal once the head completes. If we don't have a head but
5955 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
5956 * submitted sync once the chain is complete. If none of those
5957 * conditions are true (normal request), then just queue it.
5958 */
5959 if (*link) {
5960 struct io_kiocb *head = *link;
5961
5962 /*
5963 * Taking sequential execution of a link, draining both sides
5964 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
5965 * requests in the link. So, it drains the head and the
5966 * next after the link request. The last one is done via
5967 * drain_next flag to persist the effect across calls.
5968 */
5969 if (req->flags & REQ_F_IO_DRAIN) {
5970 head->flags |= REQ_F_IO_DRAIN;
5971 ctx->drain_next = 1;
5972 }
5973 if (io_alloc_async_ctx(req))
5974 return -EAGAIN;
5975
5976 ret = io_req_defer_prep(req, sqe);
5977 if (ret) {
5978 /* fail even hard links since we don't submit */
5979 head->flags |= REQ_F_FAIL_LINK;
5980 return ret;
5981 }
5982 trace_io_uring_link(ctx, req, head);
5983 list_add_tail(&req->link_list, &head->link_list);
5984
5985 /* last request of a link, enqueue the link */
5986 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
5987 io_queue_link_head(head);
5988 *link = NULL;
5989 }
5990 } else {
5991 if (unlikely(ctx->drain_next)) {
5992 req->flags |= REQ_F_IO_DRAIN;
5993 ctx->drain_next = 0;
5994 }
5995 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
5996 req->flags |= REQ_F_LINK_HEAD;
5997 INIT_LIST_HEAD(&req->link_list);
5998
5999 if (io_alloc_async_ctx(req))
6000 return -EAGAIN;
6001
6002 ret = io_req_defer_prep(req, sqe);
6003 if (ret)
6004 req->flags |= REQ_F_FAIL_LINK;
6005 *link = req;
6006 } else {
6007 io_queue_sqe(req, sqe);
6008 }
6009 }
6010
6011 return 0;
6012 }
6013
6014 /*
6015 * Batched submission is done, ensure local IO is flushed out.
6016 */
6017 static void io_submit_state_end(struct io_submit_state *state)
6018 {
6019 blk_finish_plug(&state->plug);
6020 io_state_file_put(state);
6021 if (state->free_reqs)
6022 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6023 }
6024
6025 /*
6026 * Start submission side cache.
6027 */
6028 static void io_submit_state_start(struct io_submit_state *state,
6029 unsigned int max_ios)
6030 {
6031 blk_start_plug(&state->plug);
6032 #ifdef CONFIG_BLOCK
6033 state->plug.nowait = true;
6034 #endif
6035 state->free_reqs = 0;
6036 state->file = NULL;
6037 state->ios_left = max_ios;
6038 }
6039
6040 static void io_commit_sqring(struct io_ring_ctx *ctx)
6041 {
6042 struct io_rings *rings = ctx->rings;
6043
6044 /*
6045 * Ensure any loads from the SQEs are done at this point,
6046 * since once we write the new head, the application could
6047 * write new data to them.
6048 */
6049 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6050 }
6051
6052 /*
6053 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6054 * that is mapped by userspace. This means that care needs to be taken to
6055 * ensure that reads are stable, as we cannot rely on userspace always
6056 * being a good citizen. If members of the sqe are validated and then later
6057 * used, it's important that those reads are done through READ_ONCE() to
6058 * prevent a re-load down the line.
6059 */
6060 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6061 {
6062 u32 *sq_array = ctx->sq_array;
6063 unsigned head;
6064
6065 /*
6066 * The cached sq head (or cq tail) serves two purposes:
6067 *
6068 * 1) allows us to batch the cost of updating the user visible
6069 * head updates.
6070 * 2) allows the kernel side to track the head on its own, even
6071 * though the application is the one updating it.
6072 */
6073 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6074 if (likely(head < ctx->sq_entries))
6075 return &ctx->sq_sqes[head];
6076
6077 /* drop invalid entries */
6078 ctx->cached_sq_dropped++;
6079 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6080 return NULL;
6081 }
6082
6083 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6084 {
6085 ctx->cached_sq_head++;
6086 }
6087
6088 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6089 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6090 IOSQE_BUFFER_SELECT)
6091
6092 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6093 const struct io_uring_sqe *sqe,
6094 struct io_submit_state *state)
6095 {
6096 unsigned int sqe_flags;
6097 int id;
6098
6099 /*
6100 * All io need record the previous position, if LINK vs DARIN,
6101 * it can be used to mark the position of the first IO in the
6102 * link list.
6103 */
6104 req->sequence = ctx->cached_sq_head - ctx->cached_sq_dropped;
6105 req->opcode = READ_ONCE(sqe->opcode);
6106 req->user_data = READ_ONCE(sqe->user_data);
6107 req->io = NULL;
6108 req->file = NULL;
6109 req->ctx = ctx;
6110 req->flags = 0;
6111 /* one is dropped after submission, the other at completion */
6112 refcount_set(&req->refs, 2);
6113 req->task = current;
6114 req->result = 0;
6115
6116 if (unlikely(req->opcode >= IORING_OP_LAST))
6117 return -EINVAL;
6118
6119 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
6120 return -EFAULT;
6121
6122 sqe_flags = READ_ONCE(sqe->flags);
6123 /* enforce forwards compatibility on users */
6124 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6125 return -EINVAL;
6126
6127 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6128 !io_op_defs[req->opcode].buffer_select)
6129 return -EOPNOTSUPP;
6130
6131 id = READ_ONCE(sqe->personality);
6132 if (id) {
6133 io_req_init_async(req);
6134 req->work.creds = idr_find(&ctx->personality_idr, id);
6135 if (unlikely(!req->work.creds))
6136 return -EINVAL;
6137 get_cred(req->work.creds);
6138 }
6139
6140 /* same numerical values with corresponding REQ_F_*, safe to copy */
6141 req->flags |= sqe_flags;
6142
6143 if (!io_op_defs[req->opcode].needs_file)
6144 return 0;
6145
6146 return io_req_set_file(state, req, READ_ONCE(sqe->fd));
6147 }
6148
6149 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
6150 struct file *ring_file, int ring_fd)
6151 {
6152 struct io_submit_state state;
6153 struct io_kiocb *link = NULL;
6154 int i, submitted = 0;
6155
6156 /* if we have a backlog and couldn't flush it all, return BUSY */
6157 if (test_bit(0, &ctx->sq_check_overflow)) {
6158 if (!list_empty(&ctx->cq_overflow_list) &&
6159 !io_cqring_overflow_flush(ctx, false))
6160 return -EBUSY;
6161 }
6162
6163 /* make sure SQ entry isn't read before tail */
6164 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6165
6166 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6167 return -EAGAIN;
6168
6169 io_submit_state_start(&state, nr);
6170
6171 ctx->ring_fd = ring_fd;
6172 ctx->ring_file = ring_file;
6173
6174 for (i = 0; i < nr; i++) {
6175 const struct io_uring_sqe *sqe;
6176 struct io_kiocb *req;
6177 int err;
6178
6179 sqe = io_get_sqe(ctx);
6180 if (unlikely(!sqe)) {
6181 io_consume_sqe(ctx);
6182 break;
6183 }
6184 req = io_alloc_req(ctx, &state);
6185 if (unlikely(!req)) {
6186 if (!submitted)
6187 submitted = -EAGAIN;
6188 break;
6189 }
6190
6191 err = io_init_req(ctx, req, sqe, &state);
6192 io_consume_sqe(ctx);
6193 /* will complete beyond this point, count as submitted */
6194 submitted++;
6195
6196 if (unlikely(err)) {
6197 fail_req:
6198 io_cqring_add_event(req, err);
6199 io_double_put_req(req);
6200 break;
6201 }
6202
6203 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6204 true, io_async_submit(ctx));
6205 err = io_submit_sqe(req, sqe, &link);
6206 if (err)
6207 goto fail_req;
6208 }
6209
6210 if (unlikely(submitted != nr)) {
6211 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6212
6213 percpu_ref_put_many(&ctx->refs, nr - ref_used);
6214 }
6215 if (link)
6216 io_queue_link_head(link);
6217 io_submit_state_end(&state);
6218
6219 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6220 io_commit_sqring(ctx);
6221
6222 return submitted;
6223 }
6224
6225 static int io_sq_thread(void *data)
6226 {
6227 struct io_ring_ctx *ctx = data;
6228 const struct cred *old_cred;
6229 DEFINE_WAIT(wait);
6230 unsigned long timeout;
6231 int ret = 0;
6232
6233 complete(&ctx->sq_thread_comp);
6234
6235 old_cred = override_creds(ctx->creds);
6236
6237 timeout = jiffies + ctx->sq_thread_idle;
6238 while (!kthread_should_park()) {
6239 unsigned int to_submit;
6240
6241 if (!list_empty(&ctx->poll_list)) {
6242 unsigned nr_events = 0;
6243
6244 mutex_lock(&ctx->uring_lock);
6245 if (!list_empty(&ctx->poll_list))
6246 io_iopoll_getevents(ctx, &nr_events, 0);
6247 else
6248 timeout = jiffies + ctx->sq_thread_idle;
6249 mutex_unlock(&ctx->uring_lock);
6250 }
6251
6252 to_submit = io_sqring_entries(ctx);
6253
6254 /*
6255 * If submit got -EBUSY, flag us as needing the application
6256 * to enter the kernel to reap and flush events.
6257 */
6258 if (!to_submit || ret == -EBUSY) {
6259 /*
6260 * Drop cur_mm before scheduling, we can't hold it for
6261 * long periods (or over schedule()). Do this before
6262 * adding ourselves to the waitqueue, as the unuse/drop
6263 * may sleep.
6264 */
6265 io_sq_thread_drop_mm(ctx);
6266
6267 /*
6268 * We're polling. If we're within the defined idle
6269 * period, then let us spin without work before going
6270 * to sleep. The exception is if we got EBUSY doing
6271 * more IO, we should wait for the application to
6272 * reap events and wake us up.
6273 */
6274 if (!list_empty(&ctx->poll_list) ||
6275 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6276 !percpu_ref_is_dying(&ctx->refs))) {
6277 if (current->task_works)
6278 task_work_run();
6279 cond_resched();
6280 continue;
6281 }
6282
6283 prepare_to_wait(&ctx->sqo_wait, &wait,
6284 TASK_INTERRUPTIBLE);
6285
6286 /*
6287 * While doing polled IO, before going to sleep, we need
6288 * to check if there are new reqs added to poll_list, it
6289 * is because reqs may have been punted to io worker and
6290 * will be added to poll_list later, hence check the
6291 * poll_list again.
6292 */
6293 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6294 !list_empty_careful(&ctx->poll_list)) {
6295 finish_wait(&ctx->sqo_wait, &wait);
6296 continue;
6297 }
6298
6299 /* Tell userspace we may need a wakeup call */
6300 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6301 /* make sure to read SQ tail after writing flags */
6302 smp_mb();
6303
6304 to_submit = io_sqring_entries(ctx);
6305 if (!to_submit || ret == -EBUSY) {
6306 if (kthread_should_park()) {
6307 finish_wait(&ctx->sqo_wait, &wait);
6308 break;
6309 }
6310 if (current->task_works) {
6311 task_work_run();
6312 finish_wait(&ctx->sqo_wait, &wait);
6313 continue;
6314 }
6315 if (signal_pending(current))
6316 flush_signals(current);
6317 schedule();
6318 finish_wait(&ctx->sqo_wait, &wait);
6319
6320 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6321 ret = 0;
6322 continue;
6323 }
6324 finish_wait(&ctx->sqo_wait, &wait);
6325
6326 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6327 }
6328
6329 mutex_lock(&ctx->uring_lock);
6330 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6331 ret = io_submit_sqes(ctx, to_submit, NULL, -1);
6332 mutex_unlock(&ctx->uring_lock);
6333 timeout = jiffies + ctx->sq_thread_idle;
6334 }
6335
6336 if (current->task_works)
6337 task_work_run();
6338
6339 io_sq_thread_drop_mm(ctx);
6340 revert_creds(old_cred);
6341
6342 kthread_parkme();
6343
6344 return 0;
6345 }
6346
6347 struct io_wait_queue {
6348 struct wait_queue_entry wq;
6349 struct io_ring_ctx *ctx;
6350 unsigned to_wait;
6351 unsigned nr_timeouts;
6352 };
6353
6354 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6355 {
6356 struct io_ring_ctx *ctx = iowq->ctx;
6357
6358 /*
6359 * Wake up if we have enough events, or if a timeout occurred since we
6360 * started waiting. For timeouts, we always want to return to userspace,
6361 * regardless of event count.
6362 */
6363 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6364 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6365 }
6366
6367 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6368 int wake_flags, void *key)
6369 {
6370 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6371 wq);
6372
6373 /* use noflush == true, as we can't safely rely on locking context */
6374 if (!io_should_wake(iowq, true))
6375 return -1;
6376
6377 return autoremove_wake_function(curr, mode, wake_flags, key);
6378 }
6379
6380 /*
6381 * Wait until events become available, if we don't already have some. The
6382 * application must reap them itself, as they reside on the shared cq ring.
6383 */
6384 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6385 const sigset_t __user *sig, size_t sigsz)
6386 {
6387 struct io_wait_queue iowq = {
6388 .wq = {
6389 .private = current,
6390 .func = io_wake_function,
6391 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6392 },
6393 .ctx = ctx,
6394 .to_wait = min_events,
6395 };
6396 struct io_rings *rings = ctx->rings;
6397 int ret = 0;
6398
6399 do {
6400 if (io_cqring_events(ctx, false) >= min_events)
6401 return 0;
6402 if (!current->task_works)
6403 break;
6404 task_work_run();
6405 } while (1);
6406
6407 if (sig) {
6408 #ifdef CONFIG_COMPAT
6409 if (in_compat_syscall())
6410 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6411 sigsz);
6412 else
6413 #endif
6414 ret = set_user_sigmask(sig, sigsz);
6415
6416 if (ret)
6417 return ret;
6418 }
6419
6420 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6421 trace_io_uring_cqring_wait(ctx, min_events);
6422 do {
6423 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6424 TASK_INTERRUPTIBLE);
6425 if (current->task_works)
6426 task_work_run();
6427 if (io_should_wake(&iowq, false))
6428 break;
6429 schedule();
6430 if (signal_pending(current)) {
6431 ret = -EINTR;
6432 break;
6433 }
6434 } while (1);
6435 finish_wait(&ctx->wait, &iowq.wq);
6436
6437 restore_saved_sigmask_unless(ret == -EINTR);
6438
6439 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6440 }
6441
6442 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6443 {
6444 #if defined(CONFIG_UNIX)
6445 if (ctx->ring_sock) {
6446 struct sock *sock = ctx->ring_sock->sk;
6447 struct sk_buff *skb;
6448
6449 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6450 kfree_skb(skb);
6451 }
6452 #else
6453 int i;
6454
6455 for (i = 0; i < ctx->nr_user_files; i++) {
6456 struct file *file;
6457
6458 file = io_file_from_index(ctx, i);
6459 if (file)
6460 fput(file);
6461 }
6462 #endif
6463 }
6464
6465 static void io_file_ref_kill(struct percpu_ref *ref)
6466 {
6467 struct fixed_file_data *data;
6468
6469 data = container_of(ref, struct fixed_file_data, refs);
6470 complete(&data->done);
6471 }
6472
6473 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6474 {
6475 struct fixed_file_data *data = ctx->file_data;
6476 struct fixed_file_ref_node *ref_node = NULL;
6477 unsigned nr_tables, i;
6478
6479 if (!data)
6480 return -ENXIO;
6481
6482 spin_lock(&data->lock);
6483 if (!list_empty(&data->ref_list))
6484 ref_node = list_first_entry(&data->ref_list,
6485 struct fixed_file_ref_node, node);
6486 spin_unlock(&data->lock);
6487 if (ref_node)
6488 percpu_ref_kill(&ref_node->refs);
6489
6490 percpu_ref_kill(&data->refs);
6491
6492 /* wait for all refs nodes to complete */
6493 flush_delayed_work(&ctx->file_put_work);
6494 wait_for_completion(&data->done);
6495
6496 __io_sqe_files_unregister(ctx);
6497 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6498 for (i = 0; i < nr_tables; i++)
6499 kfree(data->table[i].files);
6500 kfree(data->table);
6501 percpu_ref_exit(&data->refs);
6502 kfree(data);
6503 ctx->file_data = NULL;
6504 ctx->nr_user_files = 0;
6505 return 0;
6506 }
6507
6508 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
6509 {
6510 if (ctx->sqo_thread) {
6511 wait_for_completion(&ctx->sq_thread_comp);
6512 /*
6513 * The park is a bit of a work-around, without it we get
6514 * warning spews on shutdown with SQPOLL set and affinity
6515 * set to a single CPU.
6516 */
6517 kthread_park(ctx->sqo_thread);
6518 kthread_stop(ctx->sqo_thread);
6519 ctx->sqo_thread = NULL;
6520 }
6521 }
6522
6523 static void io_finish_async(struct io_ring_ctx *ctx)
6524 {
6525 io_sq_thread_stop(ctx);
6526
6527 if (ctx->io_wq) {
6528 io_wq_destroy(ctx->io_wq);
6529 ctx->io_wq = NULL;
6530 }
6531 }
6532
6533 #if defined(CONFIG_UNIX)
6534 /*
6535 * Ensure the UNIX gc is aware of our file set, so we are certain that
6536 * the io_uring can be safely unregistered on process exit, even if we have
6537 * loops in the file referencing.
6538 */
6539 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
6540 {
6541 struct sock *sk = ctx->ring_sock->sk;
6542 struct scm_fp_list *fpl;
6543 struct sk_buff *skb;
6544 int i, nr_files;
6545
6546 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
6547 if (!fpl)
6548 return -ENOMEM;
6549
6550 skb = alloc_skb(0, GFP_KERNEL);
6551 if (!skb) {
6552 kfree(fpl);
6553 return -ENOMEM;
6554 }
6555
6556 skb->sk = sk;
6557
6558 nr_files = 0;
6559 fpl->user = get_uid(ctx->user);
6560 for (i = 0; i < nr; i++) {
6561 struct file *file = io_file_from_index(ctx, i + offset);
6562
6563 if (!file)
6564 continue;
6565 fpl->fp[nr_files] = get_file(file);
6566 unix_inflight(fpl->user, fpl->fp[nr_files]);
6567 nr_files++;
6568 }
6569
6570 if (nr_files) {
6571 fpl->max = SCM_MAX_FD;
6572 fpl->count = nr_files;
6573 UNIXCB(skb).fp = fpl;
6574 skb->destructor = unix_destruct_scm;
6575 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
6576 skb_queue_head(&sk->sk_receive_queue, skb);
6577
6578 for (i = 0; i < nr_files; i++)
6579 fput(fpl->fp[i]);
6580 } else {
6581 kfree_skb(skb);
6582 kfree(fpl);
6583 }
6584
6585 return 0;
6586 }
6587
6588 /*
6589 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
6590 * causes regular reference counting to break down. We rely on the UNIX
6591 * garbage collection to take care of this problem for us.
6592 */
6593 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6594 {
6595 unsigned left, total;
6596 int ret = 0;
6597
6598 total = 0;
6599 left = ctx->nr_user_files;
6600 while (left) {
6601 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
6602
6603 ret = __io_sqe_files_scm(ctx, this_files, total);
6604 if (ret)
6605 break;
6606 left -= this_files;
6607 total += this_files;
6608 }
6609
6610 if (!ret)
6611 return 0;
6612
6613 while (total < ctx->nr_user_files) {
6614 struct file *file = io_file_from_index(ctx, total);
6615
6616 if (file)
6617 fput(file);
6618 total++;
6619 }
6620
6621 return ret;
6622 }
6623 #else
6624 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
6625 {
6626 return 0;
6627 }
6628 #endif
6629
6630 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
6631 unsigned nr_files)
6632 {
6633 int i;
6634
6635 for (i = 0; i < nr_tables; i++) {
6636 struct fixed_file_table *table = &ctx->file_data->table[i];
6637 unsigned this_files;
6638
6639 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
6640 table->files = kcalloc(this_files, sizeof(struct file *),
6641 GFP_KERNEL);
6642 if (!table->files)
6643 break;
6644 nr_files -= this_files;
6645 }
6646
6647 if (i == nr_tables)
6648 return 0;
6649
6650 for (i = 0; i < nr_tables; i++) {
6651 struct fixed_file_table *table = &ctx->file_data->table[i];
6652 kfree(table->files);
6653 }
6654 return 1;
6655 }
6656
6657 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
6658 {
6659 #if defined(CONFIG_UNIX)
6660 struct sock *sock = ctx->ring_sock->sk;
6661 struct sk_buff_head list, *head = &sock->sk_receive_queue;
6662 struct sk_buff *skb;
6663 int i;
6664
6665 __skb_queue_head_init(&list);
6666
6667 /*
6668 * Find the skb that holds this file in its SCM_RIGHTS. When found,
6669 * remove this entry and rearrange the file array.
6670 */
6671 skb = skb_dequeue(head);
6672 while (skb) {
6673 struct scm_fp_list *fp;
6674
6675 fp = UNIXCB(skb).fp;
6676 for (i = 0; i < fp->count; i++) {
6677 int left;
6678
6679 if (fp->fp[i] != file)
6680 continue;
6681
6682 unix_notinflight(fp->user, fp->fp[i]);
6683 left = fp->count - 1 - i;
6684 if (left) {
6685 memmove(&fp->fp[i], &fp->fp[i + 1],
6686 left * sizeof(struct file *));
6687 }
6688 fp->count--;
6689 if (!fp->count) {
6690 kfree_skb(skb);
6691 skb = NULL;
6692 } else {
6693 __skb_queue_tail(&list, skb);
6694 }
6695 fput(file);
6696 file = NULL;
6697 break;
6698 }
6699
6700 if (!file)
6701 break;
6702
6703 __skb_queue_tail(&list, skb);
6704
6705 skb = skb_dequeue(head);
6706 }
6707
6708 if (skb_peek(&list)) {
6709 spin_lock_irq(&head->lock);
6710 while ((skb = __skb_dequeue(&list)) != NULL)
6711 __skb_queue_tail(head, skb);
6712 spin_unlock_irq(&head->lock);
6713 }
6714 #else
6715 fput(file);
6716 #endif
6717 }
6718
6719 struct io_file_put {
6720 struct list_head list;
6721 struct file *file;
6722 };
6723
6724 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
6725 {
6726 struct fixed_file_data *file_data = ref_node->file_data;
6727 struct io_ring_ctx *ctx = file_data->ctx;
6728 struct io_file_put *pfile, *tmp;
6729
6730 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
6731 list_del(&pfile->list);
6732 io_ring_file_put(ctx, pfile->file);
6733 kfree(pfile);
6734 }
6735
6736 spin_lock(&file_data->lock);
6737 list_del(&ref_node->node);
6738 spin_unlock(&file_data->lock);
6739
6740 percpu_ref_exit(&ref_node->refs);
6741 kfree(ref_node);
6742 percpu_ref_put(&file_data->refs);
6743 }
6744
6745 static void io_file_put_work(struct work_struct *work)
6746 {
6747 struct io_ring_ctx *ctx;
6748 struct llist_node *node;
6749
6750 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
6751 node = llist_del_all(&ctx->file_put_llist);
6752
6753 while (node) {
6754 struct fixed_file_ref_node *ref_node;
6755 struct llist_node *next = node->next;
6756
6757 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
6758 __io_file_put_work(ref_node);
6759 node = next;
6760 }
6761 }
6762
6763 static void io_file_data_ref_zero(struct percpu_ref *ref)
6764 {
6765 struct fixed_file_ref_node *ref_node;
6766 struct io_ring_ctx *ctx;
6767 bool first_add;
6768 int delay = HZ;
6769
6770 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
6771 ctx = ref_node->file_data->ctx;
6772
6773 if (percpu_ref_is_dying(&ctx->file_data->refs))
6774 delay = 0;
6775
6776 first_add = llist_add(&ref_node->llist, &ctx->file_put_llist);
6777 if (!delay)
6778 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
6779 else if (first_add)
6780 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
6781 }
6782
6783 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
6784 struct io_ring_ctx *ctx)
6785 {
6786 struct fixed_file_ref_node *ref_node;
6787
6788 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
6789 if (!ref_node)
6790 return ERR_PTR(-ENOMEM);
6791
6792 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
6793 0, GFP_KERNEL)) {
6794 kfree(ref_node);
6795 return ERR_PTR(-ENOMEM);
6796 }
6797 INIT_LIST_HEAD(&ref_node->node);
6798 INIT_LIST_HEAD(&ref_node->file_list);
6799 ref_node->file_data = ctx->file_data;
6800 return ref_node;
6801 }
6802
6803 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
6804 {
6805 percpu_ref_exit(&ref_node->refs);
6806 kfree(ref_node);
6807 }
6808
6809 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
6810 unsigned nr_args)
6811 {
6812 __s32 __user *fds = (__s32 __user *) arg;
6813 unsigned nr_tables;
6814 struct file *file;
6815 int fd, ret = 0;
6816 unsigned i;
6817 struct fixed_file_ref_node *ref_node;
6818
6819 if (ctx->file_data)
6820 return -EBUSY;
6821 if (!nr_args)
6822 return -EINVAL;
6823 if (nr_args > IORING_MAX_FIXED_FILES)
6824 return -EMFILE;
6825
6826 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
6827 if (!ctx->file_data)
6828 return -ENOMEM;
6829 ctx->file_data->ctx = ctx;
6830 init_completion(&ctx->file_data->done);
6831 INIT_LIST_HEAD(&ctx->file_data->ref_list);
6832 spin_lock_init(&ctx->file_data->lock);
6833
6834 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
6835 ctx->file_data->table = kcalloc(nr_tables,
6836 sizeof(struct fixed_file_table),
6837 GFP_KERNEL);
6838 if (!ctx->file_data->table) {
6839 kfree(ctx->file_data);
6840 ctx->file_data = NULL;
6841 return -ENOMEM;
6842 }
6843
6844 if (percpu_ref_init(&ctx->file_data->refs, io_file_ref_kill,
6845 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
6846 kfree(ctx->file_data->table);
6847 kfree(ctx->file_data);
6848 ctx->file_data = NULL;
6849 return -ENOMEM;
6850 }
6851
6852 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
6853 percpu_ref_exit(&ctx->file_data->refs);
6854 kfree(ctx->file_data->table);
6855 kfree(ctx->file_data);
6856 ctx->file_data = NULL;
6857 return -ENOMEM;
6858 }
6859
6860 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
6861 struct fixed_file_table *table;
6862 unsigned index;
6863
6864 ret = -EFAULT;
6865 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
6866 break;
6867 /* allow sparse sets */
6868 if (fd == -1) {
6869 ret = 0;
6870 continue;
6871 }
6872
6873 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6874 index = i & IORING_FILE_TABLE_MASK;
6875 file = fget(fd);
6876
6877 ret = -EBADF;
6878 if (!file)
6879 break;
6880
6881 /*
6882 * Don't allow io_uring instances to be registered. If UNIX
6883 * isn't enabled, then this causes a reference cycle and this
6884 * instance can never get freed. If UNIX is enabled we'll
6885 * handle it just fine, but there's still no point in allowing
6886 * a ring fd as it doesn't support regular read/write anyway.
6887 */
6888 if (file->f_op == &io_uring_fops) {
6889 fput(file);
6890 break;
6891 }
6892 ret = 0;
6893 table->files[index] = file;
6894 }
6895
6896 if (ret) {
6897 for (i = 0; i < ctx->nr_user_files; i++) {
6898 file = io_file_from_index(ctx, i);
6899 if (file)
6900 fput(file);
6901 }
6902 for (i = 0; i < nr_tables; i++)
6903 kfree(ctx->file_data->table[i].files);
6904
6905 kfree(ctx->file_data->table);
6906 kfree(ctx->file_data);
6907 ctx->file_data = NULL;
6908 ctx->nr_user_files = 0;
6909 return ret;
6910 }
6911
6912 ret = io_sqe_files_scm(ctx);
6913 if (ret) {
6914 io_sqe_files_unregister(ctx);
6915 return ret;
6916 }
6917
6918 ref_node = alloc_fixed_file_ref_node(ctx);
6919 if (IS_ERR(ref_node)) {
6920 io_sqe_files_unregister(ctx);
6921 return PTR_ERR(ref_node);
6922 }
6923
6924 ctx->file_data->cur_refs = &ref_node->refs;
6925 spin_lock(&ctx->file_data->lock);
6926 list_add(&ref_node->node, &ctx->file_data->ref_list);
6927 spin_unlock(&ctx->file_data->lock);
6928 percpu_ref_get(&ctx->file_data->refs);
6929 return ret;
6930 }
6931
6932 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
6933 int index)
6934 {
6935 #if defined(CONFIG_UNIX)
6936 struct sock *sock = ctx->ring_sock->sk;
6937 struct sk_buff_head *head = &sock->sk_receive_queue;
6938 struct sk_buff *skb;
6939
6940 /*
6941 * See if we can merge this file into an existing skb SCM_RIGHTS
6942 * file set. If there's no room, fall back to allocating a new skb
6943 * and filling it in.
6944 */
6945 spin_lock_irq(&head->lock);
6946 skb = skb_peek(head);
6947 if (skb) {
6948 struct scm_fp_list *fpl = UNIXCB(skb).fp;
6949
6950 if (fpl->count < SCM_MAX_FD) {
6951 __skb_unlink(skb, head);
6952 spin_unlock_irq(&head->lock);
6953 fpl->fp[fpl->count] = get_file(file);
6954 unix_inflight(fpl->user, fpl->fp[fpl->count]);
6955 fpl->count++;
6956 spin_lock_irq(&head->lock);
6957 __skb_queue_head(head, skb);
6958 } else {
6959 skb = NULL;
6960 }
6961 }
6962 spin_unlock_irq(&head->lock);
6963
6964 if (skb) {
6965 fput(file);
6966 return 0;
6967 }
6968
6969 return __io_sqe_files_scm(ctx, 1, index);
6970 #else
6971 return 0;
6972 #endif
6973 }
6974
6975 static int io_queue_file_removal(struct fixed_file_data *data,
6976 struct file *file)
6977 {
6978 struct io_file_put *pfile;
6979 struct percpu_ref *refs = data->cur_refs;
6980 struct fixed_file_ref_node *ref_node;
6981
6982 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
6983 if (!pfile)
6984 return -ENOMEM;
6985
6986 ref_node = container_of(refs, struct fixed_file_ref_node, refs);
6987 pfile->file = file;
6988 list_add(&pfile->list, &ref_node->file_list);
6989
6990 return 0;
6991 }
6992
6993 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
6994 struct io_uring_files_update *up,
6995 unsigned nr_args)
6996 {
6997 struct fixed_file_data *data = ctx->file_data;
6998 struct fixed_file_ref_node *ref_node;
6999 struct file *file;
7000 __s32 __user *fds;
7001 int fd, i, err;
7002 __u32 done;
7003 bool needs_switch = false;
7004
7005 if (check_add_overflow(up->offset, nr_args, &done))
7006 return -EOVERFLOW;
7007 if (done > ctx->nr_user_files)
7008 return -EINVAL;
7009
7010 ref_node = alloc_fixed_file_ref_node(ctx);
7011 if (IS_ERR(ref_node))
7012 return PTR_ERR(ref_node);
7013
7014 done = 0;
7015 fds = u64_to_user_ptr(up->fds);
7016 while (nr_args) {
7017 struct fixed_file_table *table;
7018 unsigned index;
7019
7020 err = 0;
7021 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7022 err = -EFAULT;
7023 break;
7024 }
7025 i = array_index_nospec(up->offset, ctx->nr_user_files);
7026 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7027 index = i & IORING_FILE_TABLE_MASK;
7028 if (table->files[index]) {
7029 file = io_file_from_index(ctx, index);
7030 err = io_queue_file_removal(data, file);
7031 if (err)
7032 break;
7033 table->files[index] = NULL;
7034 needs_switch = true;
7035 }
7036 if (fd != -1) {
7037 file = fget(fd);
7038 if (!file) {
7039 err = -EBADF;
7040 break;
7041 }
7042 /*
7043 * Don't allow io_uring instances to be registered. If
7044 * UNIX isn't enabled, then this causes a reference
7045 * cycle and this instance can never get freed. If UNIX
7046 * is enabled we'll handle it just fine, but there's
7047 * still no point in allowing a ring fd as it doesn't
7048 * support regular read/write anyway.
7049 */
7050 if (file->f_op == &io_uring_fops) {
7051 fput(file);
7052 err = -EBADF;
7053 break;
7054 }
7055 table->files[index] = file;
7056 err = io_sqe_file_register(ctx, file, i);
7057 if (err)
7058 break;
7059 }
7060 nr_args--;
7061 done++;
7062 up->offset++;
7063 }
7064
7065 if (needs_switch) {
7066 percpu_ref_kill(data->cur_refs);
7067 spin_lock(&data->lock);
7068 list_add(&ref_node->node, &data->ref_list);
7069 data->cur_refs = &ref_node->refs;
7070 spin_unlock(&data->lock);
7071 percpu_ref_get(&ctx->file_data->refs);
7072 } else
7073 destroy_fixed_file_ref_node(ref_node);
7074
7075 return done ? done : err;
7076 }
7077
7078 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7079 unsigned nr_args)
7080 {
7081 struct io_uring_files_update up;
7082
7083 if (!ctx->file_data)
7084 return -ENXIO;
7085 if (!nr_args)
7086 return -EINVAL;
7087 if (copy_from_user(&up, arg, sizeof(up)))
7088 return -EFAULT;
7089 if (up.resv)
7090 return -EINVAL;
7091
7092 return __io_sqe_files_update(ctx, &up, nr_args);
7093 }
7094
7095 static void io_free_work(struct io_wq_work *work)
7096 {
7097 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7098
7099 /* Consider that io_steal_work() relies on this ref */
7100 io_put_req(req);
7101 }
7102
7103 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7104 struct io_uring_params *p)
7105 {
7106 struct io_wq_data data;
7107 struct fd f;
7108 struct io_ring_ctx *ctx_attach;
7109 unsigned int concurrency;
7110 int ret = 0;
7111
7112 data.user = ctx->user;
7113 data.free_work = io_free_work;
7114 data.do_work = io_wq_submit_work;
7115
7116 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7117 /* Do QD, or 4 * CPUS, whatever is smallest */
7118 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7119
7120 ctx->io_wq = io_wq_create(concurrency, &data);
7121 if (IS_ERR(ctx->io_wq)) {
7122 ret = PTR_ERR(ctx->io_wq);
7123 ctx->io_wq = NULL;
7124 }
7125 return ret;
7126 }
7127
7128 f = fdget(p->wq_fd);
7129 if (!f.file)
7130 return -EBADF;
7131
7132 if (f.file->f_op != &io_uring_fops) {
7133 ret = -EINVAL;
7134 goto out_fput;
7135 }
7136
7137 ctx_attach = f.file->private_data;
7138 /* @io_wq is protected by holding the fd */
7139 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7140 ret = -EINVAL;
7141 goto out_fput;
7142 }
7143
7144 ctx->io_wq = ctx_attach->io_wq;
7145 out_fput:
7146 fdput(f);
7147 return ret;
7148 }
7149
7150 static int io_sq_offload_start(struct io_ring_ctx *ctx,
7151 struct io_uring_params *p)
7152 {
7153 int ret;
7154
7155 mmgrab(current->mm);
7156 ctx->sqo_mm = current->mm;
7157
7158 if (ctx->flags & IORING_SETUP_SQPOLL) {
7159 ret = -EPERM;
7160 if (!capable(CAP_SYS_ADMIN))
7161 goto err;
7162
7163 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7164 if (!ctx->sq_thread_idle)
7165 ctx->sq_thread_idle = HZ;
7166
7167 if (p->flags & IORING_SETUP_SQ_AFF) {
7168 int cpu = p->sq_thread_cpu;
7169
7170 ret = -EINVAL;
7171 if (cpu >= nr_cpu_ids)
7172 goto err;
7173 if (!cpu_online(cpu))
7174 goto err;
7175
7176 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
7177 ctx, cpu,
7178 "io_uring-sq");
7179 } else {
7180 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
7181 "io_uring-sq");
7182 }
7183 if (IS_ERR(ctx->sqo_thread)) {
7184 ret = PTR_ERR(ctx->sqo_thread);
7185 ctx->sqo_thread = NULL;
7186 goto err;
7187 }
7188 wake_up_process(ctx->sqo_thread);
7189 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7190 /* Can't have SQ_AFF without SQPOLL */
7191 ret = -EINVAL;
7192 goto err;
7193 }
7194
7195 ret = io_init_wq_offload(ctx, p);
7196 if (ret)
7197 goto err;
7198
7199 return 0;
7200 err:
7201 io_finish_async(ctx);
7202 mmdrop(ctx->sqo_mm);
7203 ctx->sqo_mm = NULL;
7204 return ret;
7205 }
7206
7207 static inline void __io_unaccount_mem(struct user_struct *user,
7208 unsigned long nr_pages)
7209 {
7210 atomic_long_sub(nr_pages, &user->locked_vm);
7211 }
7212
7213 static inline int __io_account_mem(struct user_struct *user,
7214 unsigned long nr_pages)
7215 {
7216 unsigned long page_limit, cur_pages, new_pages;
7217
7218 /* Don't allow more pages than we can safely lock */
7219 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
7220
7221 do {
7222 cur_pages = atomic_long_read(&user->locked_vm);
7223 new_pages = cur_pages + nr_pages;
7224 if (new_pages > page_limit)
7225 return -ENOMEM;
7226 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
7227 new_pages) != cur_pages);
7228
7229 return 0;
7230 }
7231
7232 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7233 enum io_mem_account acct)
7234 {
7235 if (ctx->limit_mem)
7236 __io_unaccount_mem(ctx->user, nr_pages);
7237
7238 if (ctx->sqo_mm) {
7239 if (acct == ACCT_LOCKED)
7240 ctx->sqo_mm->locked_vm -= nr_pages;
7241 else if (acct == ACCT_PINNED)
7242 atomic64_sub(nr_pages, &ctx->sqo_mm->pinned_vm);
7243 }
7244 }
7245
7246 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7247 enum io_mem_account acct)
7248 {
7249 int ret;
7250
7251 if (ctx->limit_mem) {
7252 ret = __io_account_mem(ctx->user, nr_pages);
7253 if (ret)
7254 return ret;
7255 }
7256
7257 if (ctx->sqo_mm) {
7258 if (acct == ACCT_LOCKED)
7259 ctx->sqo_mm->locked_vm += nr_pages;
7260 else if (acct == ACCT_PINNED)
7261 atomic64_add(nr_pages, &ctx->sqo_mm->pinned_vm);
7262 }
7263
7264 return 0;
7265 }
7266
7267 static void io_mem_free(void *ptr)
7268 {
7269 struct page *page;
7270
7271 if (!ptr)
7272 return;
7273
7274 page = virt_to_head_page(ptr);
7275 if (put_page_testzero(page))
7276 free_compound_page(page);
7277 }
7278
7279 static void *io_mem_alloc(size_t size)
7280 {
7281 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7282 __GFP_NORETRY;
7283
7284 return (void *) __get_free_pages(gfp_flags, get_order(size));
7285 }
7286
7287 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7288 size_t *sq_offset)
7289 {
7290 struct io_rings *rings;
7291 size_t off, sq_array_size;
7292
7293 off = struct_size(rings, cqes, cq_entries);
7294 if (off == SIZE_MAX)
7295 return SIZE_MAX;
7296
7297 #ifdef CONFIG_SMP
7298 off = ALIGN(off, SMP_CACHE_BYTES);
7299 if (off == 0)
7300 return SIZE_MAX;
7301 #endif
7302
7303 sq_array_size = array_size(sizeof(u32), sq_entries);
7304 if (sq_array_size == SIZE_MAX)
7305 return SIZE_MAX;
7306
7307 if (check_add_overflow(off, sq_array_size, &off))
7308 return SIZE_MAX;
7309
7310 if (sq_offset)
7311 *sq_offset = off;
7312
7313 return off;
7314 }
7315
7316 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7317 {
7318 size_t pages;
7319
7320 pages = (size_t)1 << get_order(
7321 rings_size(sq_entries, cq_entries, NULL));
7322 pages += (size_t)1 << get_order(
7323 array_size(sizeof(struct io_uring_sqe), sq_entries));
7324
7325 return pages;
7326 }
7327
7328 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7329 {
7330 int i, j;
7331
7332 if (!ctx->user_bufs)
7333 return -ENXIO;
7334
7335 for (i = 0; i < ctx->nr_user_bufs; i++) {
7336 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7337
7338 for (j = 0; j < imu->nr_bvecs; j++)
7339 unpin_user_page(imu->bvec[j].bv_page);
7340
7341 io_unaccount_mem(ctx, imu->nr_bvecs, ACCT_PINNED);
7342 kvfree(imu->bvec);
7343 imu->nr_bvecs = 0;
7344 }
7345
7346 kfree(ctx->user_bufs);
7347 ctx->user_bufs = NULL;
7348 ctx->nr_user_bufs = 0;
7349 return 0;
7350 }
7351
7352 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7353 void __user *arg, unsigned index)
7354 {
7355 struct iovec __user *src;
7356
7357 #ifdef CONFIG_COMPAT
7358 if (ctx->compat) {
7359 struct compat_iovec __user *ciovs;
7360 struct compat_iovec ciov;
7361
7362 ciovs = (struct compat_iovec __user *) arg;
7363 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7364 return -EFAULT;
7365
7366 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7367 dst->iov_len = ciov.iov_len;
7368 return 0;
7369 }
7370 #endif
7371 src = (struct iovec __user *) arg;
7372 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7373 return -EFAULT;
7374 return 0;
7375 }
7376
7377 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
7378 unsigned nr_args)
7379 {
7380 struct vm_area_struct **vmas = NULL;
7381 struct page **pages = NULL;
7382 int i, j, got_pages = 0;
7383 int ret = -EINVAL;
7384
7385 if (ctx->user_bufs)
7386 return -EBUSY;
7387 if (!nr_args || nr_args > UIO_MAXIOV)
7388 return -EINVAL;
7389
7390 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
7391 GFP_KERNEL);
7392 if (!ctx->user_bufs)
7393 return -ENOMEM;
7394
7395 for (i = 0; i < nr_args; i++) {
7396 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7397 unsigned long off, start, end, ubuf;
7398 int pret, nr_pages;
7399 struct iovec iov;
7400 size_t size;
7401
7402 ret = io_copy_iov(ctx, &iov, arg, i);
7403 if (ret)
7404 goto err;
7405
7406 /*
7407 * Don't impose further limits on the size and buffer
7408 * constraints here, we'll -EINVAL later when IO is
7409 * submitted if they are wrong.
7410 */
7411 ret = -EFAULT;
7412 if (!iov.iov_base || !iov.iov_len)
7413 goto err;
7414
7415 /* arbitrary limit, but we need something */
7416 if (iov.iov_len > SZ_1G)
7417 goto err;
7418
7419 ubuf = (unsigned long) iov.iov_base;
7420 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
7421 start = ubuf >> PAGE_SHIFT;
7422 nr_pages = end - start;
7423
7424 ret = io_account_mem(ctx, nr_pages, ACCT_PINNED);
7425 if (ret)
7426 goto err;
7427
7428 ret = 0;
7429 if (!pages || nr_pages > got_pages) {
7430 kvfree(vmas);
7431 kvfree(pages);
7432 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
7433 GFP_KERNEL);
7434 vmas = kvmalloc_array(nr_pages,
7435 sizeof(struct vm_area_struct *),
7436 GFP_KERNEL);
7437 if (!pages || !vmas) {
7438 ret = -ENOMEM;
7439 io_unaccount_mem(ctx, nr_pages, ACCT_PINNED);
7440 goto err;
7441 }
7442 got_pages = nr_pages;
7443 }
7444
7445 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
7446 GFP_KERNEL);
7447 ret = -ENOMEM;
7448 if (!imu->bvec) {
7449 io_unaccount_mem(ctx, nr_pages, ACCT_PINNED);
7450 goto err;
7451 }
7452
7453 ret = 0;
7454 mmap_read_lock(current->mm);
7455 pret = pin_user_pages(ubuf, nr_pages,
7456 FOLL_WRITE | FOLL_LONGTERM,
7457 pages, vmas);
7458 if (pret == nr_pages) {
7459 /* don't support file backed memory */
7460 for (j = 0; j < nr_pages; j++) {
7461 struct vm_area_struct *vma = vmas[j];
7462
7463 if (vma->vm_file &&
7464 !is_file_hugepages(vma->vm_file)) {
7465 ret = -EOPNOTSUPP;
7466 break;
7467 }
7468 }
7469 } else {
7470 ret = pret < 0 ? pret : -EFAULT;
7471 }
7472 mmap_read_unlock(current->mm);
7473 if (ret) {
7474 /*
7475 * if we did partial map, or found file backed vmas,
7476 * release any pages we did get
7477 */
7478 if (pret > 0)
7479 unpin_user_pages(pages, pret);
7480 io_unaccount_mem(ctx, nr_pages, ACCT_PINNED);
7481 kvfree(imu->bvec);
7482 goto err;
7483 }
7484
7485 off = ubuf & ~PAGE_MASK;
7486 size = iov.iov_len;
7487 for (j = 0; j < nr_pages; j++) {
7488 size_t vec_len;
7489
7490 vec_len = min_t(size_t, size, PAGE_SIZE - off);
7491 imu->bvec[j].bv_page = pages[j];
7492 imu->bvec[j].bv_len = vec_len;
7493 imu->bvec[j].bv_offset = off;
7494 off = 0;
7495 size -= vec_len;
7496 }
7497 /* store original address for later verification */
7498 imu->ubuf = ubuf;
7499 imu->len = iov.iov_len;
7500 imu->nr_bvecs = nr_pages;
7501
7502 ctx->nr_user_bufs++;
7503 }
7504 kvfree(pages);
7505 kvfree(vmas);
7506 return 0;
7507 err:
7508 kvfree(pages);
7509 kvfree(vmas);
7510 io_sqe_buffer_unregister(ctx);
7511 return ret;
7512 }
7513
7514 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
7515 {
7516 __s32 __user *fds = arg;
7517 int fd;
7518
7519 if (ctx->cq_ev_fd)
7520 return -EBUSY;
7521
7522 if (copy_from_user(&fd, fds, sizeof(*fds)))
7523 return -EFAULT;
7524
7525 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
7526 if (IS_ERR(ctx->cq_ev_fd)) {
7527 int ret = PTR_ERR(ctx->cq_ev_fd);
7528 ctx->cq_ev_fd = NULL;
7529 return ret;
7530 }
7531
7532 return 0;
7533 }
7534
7535 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
7536 {
7537 if (ctx->cq_ev_fd) {
7538 eventfd_ctx_put(ctx->cq_ev_fd);
7539 ctx->cq_ev_fd = NULL;
7540 return 0;
7541 }
7542
7543 return -ENXIO;
7544 }
7545
7546 static int __io_destroy_buffers(int id, void *p, void *data)
7547 {
7548 struct io_ring_ctx *ctx = data;
7549 struct io_buffer *buf = p;
7550
7551 __io_remove_buffers(ctx, buf, id, -1U);
7552 return 0;
7553 }
7554
7555 static void io_destroy_buffers(struct io_ring_ctx *ctx)
7556 {
7557 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
7558 idr_destroy(&ctx->io_buffer_idr);
7559 }
7560
7561 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
7562 {
7563 io_finish_async(ctx);
7564 if (ctx->sqo_mm) {
7565 mmdrop(ctx->sqo_mm);
7566 ctx->sqo_mm = NULL;
7567 }
7568
7569 io_iopoll_reap_events(ctx);
7570 io_sqe_buffer_unregister(ctx);
7571 io_sqe_files_unregister(ctx);
7572 io_eventfd_unregister(ctx);
7573 io_destroy_buffers(ctx);
7574 idr_destroy(&ctx->personality_idr);
7575
7576 #if defined(CONFIG_UNIX)
7577 if (ctx->ring_sock) {
7578 ctx->ring_sock->file = NULL; /* so that iput() is called */
7579 sock_release(ctx->ring_sock);
7580 }
7581 #endif
7582
7583 io_mem_free(ctx->rings);
7584 io_mem_free(ctx->sq_sqes);
7585
7586 percpu_ref_exit(&ctx->refs);
7587 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
7588 ACCT_LOCKED);
7589 free_uid(ctx->user);
7590 put_cred(ctx->creds);
7591 kfree(ctx->cancel_hash);
7592 kmem_cache_free(req_cachep, ctx->fallback_req);
7593 kfree(ctx);
7594 }
7595
7596 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
7597 {
7598 struct io_ring_ctx *ctx = file->private_data;
7599 __poll_t mask = 0;
7600
7601 poll_wait(file, &ctx->cq_wait, wait);
7602 /*
7603 * synchronizes with barrier from wq_has_sleeper call in
7604 * io_commit_cqring
7605 */
7606 smp_rmb();
7607 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
7608 ctx->rings->sq_ring_entries)
7609 mask |= EPOLLOUT | EPOLLWRNORM;
7610 if (io_cqring_events(ctx, false))
7611 mask |= EPOLLIN | EPOLLRDNORM;
7612
7613 return mask;
7614 }
7615
7616 static int io_uring_fasync(int fd, struct file *file, int on)
7617 {
7618 struct io_ring_ctx *ctx = file->private_data;
7619
7620 return fasync_helper(fd, file, on, &ctx->cq_fasync);
7621 }
7622
7623 static int io_remove_personalities(int id, void *p, void *data)
7624 {
7625 struct io_ring_ctx *ctx = data;
7626 const struct cred *cred;
7627
7628 cred = idr_remove(&ctx->personality_idr, id);
7629 if (cred)
7630 put_cred(cred);
7631 return 0;
7632 }
7633
7634 static void io_ring_exit_work(struct work_struct *work)
7635 {
7636 struct io_ring_ctx *ctx;
7637
7638 ctx = container_of(work, struct io_ring_ctx, exit_work);
7639 if (ctx->rings)
7640 io_cqring_overflow_flush(ctx, true);
7641
7642 /*
7643 * If we're doing polled IO and end up having requests being
7644 * submitted async (out-of-line), then completions can come in while
7645 * we're waiting for refs to drop. We need to reap these manually,
7646 * as nobody else will be looking for them.
7647 */
7648 while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20)) {
7649 io_iopoll_reap_events(ctx);
7650 if (ctx->rings)
7651 io_cqring_overflow_flush(ctx, true);
7652 }
7653 io_ring_ctx_free(ctx);
7654 }
7655
7656 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
7657 {
7658 mutex_lock(&ctx->uring_lock);
7659 percpu_ref_kill(&ctx->refs);
7660 mutex_unlock(&ctx->uring_lock);
7661
7662 io_kill_timeouts(ctx);
7663 io_poll_remove_all(ctx);
7664
7665 if (ctx->io_wq)
7666 io_wq_cancel_all(ctx->io_wq);
7667
7668 io_iopoll_reap_events(ctx);
7669 /* if we failed setting up the ctx, we might not have any rings */
7670 if (ctx->rings)
7671 io_cqring_overflow_flush(ctx, true);
7672 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
7673 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
7674 queue_work(system_wq, &ctx->exit_work);
7675 }
7676
7677 static int io_uring_release(struct inode *inode, struct file *file)
7678 {
7679 struct io_ring_ctx *ctx = file->private_data;
7680
7681 file->private_data = NULL;
7682 io_ring_ctx_wait_and_kill(ctx);
7683 return 0;
7684 }
7685
7686 static bool io_wq_files_match(struct io_wq_work *work, void *data)
7687 {
7688 struct files_struct *files = data;
7689
7690 return work->files == files;
7691 }
7692
7693 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
7694 struct files_struct *files)
7695 {
7696 if (list_empty_careful(&ctx->inflight_list))
7697 return;
7698
7699 /* cancel all at once, should be faster than doing it one by one*/
7700 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
7701
7702 while (!list_empty_careful(&ctx->inflight_list)) {
7703 struct io_kiocb *cancel_req = NULL, *req;
7704 DEFINE_WAIT(wait);
7705
7706 spin_lock_irq(&ctx->inflight_lock);
7707 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
7708 if (req->work.files != files)
7709 continue;
7710 /* req is being completed, ignore */
7711 if (!refcount_inc_not_zero(&req->refs))
7712 continue;
7713 cancel_req = req;
7714 break;
7715 }
7716 if (cancel_req)
7717 prepare_to_wait(&ctx->inflight_wait, &wait,
7718 TASK_UNINTERRUPTIBLE);
7719 spin_unlock_irq(&ctx->inflight_lock);
7720
7721 /* We need to keep going until we don't find a matching req */
7722 if (!cancel_req)
7723 break;
7724
7725 if (cancel_req->flags & REQ_F_OVERFLOW) {
7726 spin_lock_irq(&ctx->completion_lock);
7727 list_del(&cancel_req->list);
7728 cancel_req->flags &= ~REQ_F_OVERFLOW;
7729 if (list_empty(&ctx->cq_overflow_list)) {
7730 clear_bit(0, &ctx->sq_check_overflow);
7731 clear_bit(0, &ctx->cq_check_overflow);
7732 }
7733 spin_unlock_irq(&ctx->completion_lock);
7734
7735 WRITE_ONCE(ctx->rings->cq_overflow,
7736 atomic_inc_return(&ctx->cached_cq_overflow));
7737
7738 /*
7739 * Put inflight ref and overflow ref. If that's
7740 * all we had, then we're done with this request.
7741 */
7742 if (refcount_sub_and_test(2, &cancel_req->refs)) {
7743 io_free_req(cancel_req);
7744 finish_wait(&ctx->inflight_wait, &wait);
7745 continue;
7746 }
7747 } else {
7748 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
7749 io_put_req(cancel_req);
7750 }
7751
7752 schedule();
7753 finish_wait(&ctx->inflight_wait, &wait);
7754 }
7755 }
7756
7757 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
7758 {
7759 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7760 struct task_struct *task = data;
7761
7762 return req->task == task;
7763 }
7764
7765 static int io_uring_flush(struct file *file, void *data)
7766 {
7767 struct io_ring_ctx *ctx = file->private_data;
7768
7769 io_uring_cancel_files(ctx, data);
7770
7771 /*
7772 * If the task is going away, cancel work it may have pending
7773 */
7774 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
7775 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, current, true);
7776
7777 return 0;
7778 }
7779
7780 static void *io_uring_validate_mmap_request(struct file *file,
7781 loff_t pgoff, size_t sz)
7782 {
7783 struct io_ring_ctx *ctx = file->private_data;
7784 loff_t offset = pgoff << PAGE_SHIFT;
7785 struct page *page;
7786 void *ptr;
7787
7788 switch (offset) {
7789 case IORING_OFF_SQ_RING:
7790 case IORING_OFF_CQ_RING:
7791 ptr = ctx->rings;
7792 break;
7793 case IORING_OFF_SQES:
7794 ptr = ctx->sq_sqes;
7795 break;
7796 default:
7797 return ERR_PTR(-EINVAL);
7798 }
7799
7800 page = virt_to_head_page(ptr);
7801 if (sz > page_size(page))
7802 return ERR_PTR(-EINVAL);
7803
7804 return ptr;
7805 }
7806
7807 #ifdef CONFIG_MMU
7808
7809 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7810 {
7811 size_t sz = vma->vm_end - vma->vm_start;
7812 unsigned long pfn;
7813 void *ptr;
7814
7815 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
7816 if (IS_ERR(ptr))
7817 return PTR_ERR(ptr);
7818
7819 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
7820 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
7821 }
7822
7823 #else /* !CONFIG_MMU */
7824
7825 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
7826 {
7827 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
7828 }
7829
7830 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
7831 {
7832 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
7833 }
7834
7835 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
7836 unsigned long addr, unsigned long len,
7837 unsigned long pgoff, unsigned long flags)
7838 {
7839 void *ptr;
7840
7841 ptr = io_uring_validate_mmap_request(file, pgoff, len);
7842 if (IS_ERR(ptr))
7843 return PTR_ERR(ptr);
7844
7845 return (unsigned long) ptr;
7846 }
7847
7848 #endif /* !CONFIG_MMU */
7849
7850 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
7851 u32, min_complete, u32, flags, const sigset_t __user *, sig,
7852 size_t, sigsz)
7853 {
7854 struct io_ring_ctx *ctx;
7855 long ret = -EBADF;
7856 int submitted = 0;
7857 struct fd f;
7858
7859 if (current->task_works)
7860 task_work_run();
7861
7862 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
7863 return -EINVAL;
7864
7865 f = fdget(fd);
7866 if (!f.file)
7867 return -EBADF;
7868
7869 ret = -EOPNOTSUPP;
7870 if (f.file->f_op != &io_uring_fops)
7871 goto out_fput;
7872
7873 ret = -ENXIO;
7874 ctx = f.file->private_data;
7875 if (!percpu_ref_tryget(&ctx->refs))
7876 goto out_fput;
7877
7878 /*
7879 * For SQ polling, the thread will do all submissions and completions.
7880 * Just return the requested submit count, and wake the thread if
7881 * we were asked to.
7882 */
7883 ret = 0;
7884 if (ctx->flags & IORING_SETUP_SQPOLL) {
7885 if (!list_empty_careful(&ctx->cq_overflow_list))
7886 io_cqring_overflow_flush(ctx, false);
7887 if (flags & IORING_ENTER_SQ_WAKEUP)
7888 wake_up(&ctx->sqo_wait);
7889 submitted = to_submit;
7890 } else if (to_submit) {
7891 mutex_lock(&ctx->uring_lock);
7892 submitted = io_submit_sqes(ctx, to_submit, f.file, fd);
7893 mutex_unlock(&ctx->uring_lock);
7894
7895 if (submitted != to_submit)
7896 goto out;
7897 }
7898 if (flags & IORING_ENTER_GETEVENTS) {
7899 unsigned nr_events = 0;
7900
7901 min_complete = min(min_complete, ctx->cq_entries);
7902
7903 /*
7904 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
7905 * space applications don't need to do io completion events
7906 * polling again, they can rely on io_sq_thread to do polling
7907 * work, which can reduce cpu usage and uring_lock contention.
7908 */
7909 if (ctx->flags & IORING_SETUP_IOPOLL &&
7910 !(ctx->flags & IORING_SETUP_SQPOLL)) {
7911 ret = io_iopoll_check(ctx, &nr_events, min_complete);
7912 } else {
7913 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
7914 }
7915 }
7916
7917 out:
7918 percpu_ref_put(&ctx->refs);
7919 out_fput:
7920 fdput(f);
7921 return submitted ? submitted : ret;
7922 }
7923
7924 #ifdef CONFIG_PROC_FS
7925 static int io_uring_show_cred(int id, void *p, void *data)
7926 {
7927 const struct cred *cred = p;
7928 struct seq_file *m = data;
7929 struct user_namespace *uns = seq_user_ns(m);
7930 struct group_info *gi;
7931 kernel_cap_t cap;
7932 unsigned __capi;
7933 int g;
7934
7935 seq_printf(m, "%5d\n", id);
7936 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
7937 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
7938 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
7939 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
7940 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
7941 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
7942 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
7943 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
7944 seq_puts(m, "\n\tGroups:\t");
7945 gi = cred->group_info;
7946 for (g = 0; g < gi->ngroups; g++) {
7947 seq_put_decimal_ull(m, g ? " " : "",
7948 from_kgid_munged(uns, gi->gid[g]));
7949 }
7950 seq_puts(m, "\n\tCapEff:\t");
7951 cap = cred->cap_effective;
7952 CAP_FOR_EACH_U32(__capi)
7953 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
7954 seq_putc(m, '\n');
7955 return 0;
7956 }
7957
7958 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
7959 {
7960 int i;
7961
7962 mutex_lock(&ctx->uring_lock);
7963 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
7964 for (i = 0; i < ctx->nr_user_files; i++) {
7965 struct fixed_file_table *table;
7966 struct file *f;
7967
7968 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7969 f = table->files[i & IORING_FILE_TABLE_MASK];
7970 if (f)
7971 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
7972 else
7973 seq_printf(m, "%5u: <none>\n", i);
7974 }
7975 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
7976 for (i = 0; i < ctx->nr_user_bufs; i++) {
7977 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
7978
7979 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
7980 (unsigned int) buf->len);
7981 }
7982 if (!idr_is_empty(&ctx->personality_idr)) {
7983 seq_printf(m, "Personalities:\n");
7984 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
7985 }
7986 seq_printf(m, "PollList:\n");
7987 spin_lock_irq(&ctx->completion_lock);
7988 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
7989 struct hlist_head *list = &ctx->cancel_hash[i];
7990 struct io_kiocb *req;
7991
7992 hlist_for_each_entry(req, list, hash_node)
7993 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
7994 req->task->task_works != NULL);
7995 }
7996 spin_unlock_irq(&ctx->completion_lock);
7997 mutex_unlock(&ctx->uring_lock);
7998 }
7999
8000 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
8001 {
8002 struct io_ring_ctx *ctx = f->private_data;
8003
8004 if (percpu_ref_tryget(&ctx->refs)) {
8005 __io_uring_show_fdinfo(ctx, m);
8006 percpu_ref_put(&ctx->refs);
8007 }
8008 }
8009 #endif
8010
8011 static const struct file_operations io_uring_fops = {
8012 .release = io_uring_release,
8013 .flush = io_uring_flush,
8014 .mmap = io_uring_mmap,
8015 #ifndef CONFIG_MMU
8016 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
8017 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
8018 #endif
8019 .poll = io_uring_poll,
8020 .fasync = io_uring_fasync,
8021 #ifdef CONFIG_PROC_FS
8022 .show_fdinfo = io_uring_show_fdinfo,
8023 #endif
8024 };
8025
8026 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
8027 struct io_uring_params *p)
8028 {
8029 struct io_rings *rings;
8030 size_t size, sq_array_offset;
8031
8032 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
8033 if (size == SIZE_MAX)
8034 return -EOVERFLOW;
8035
8036 rings = io_mem_alloc(size);
8037 if (!rings)
8038 return -ENOMEM;
8039
8040 ctx->rings = rings;
8041 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
8042 rings->sq_ring_mask = p->sq_entries - 1;
8043 rings->cq_ring_mask = p->cq_entries - 1;
8044 rings->sq_ring_entries = p->sq_entries;
8045 rings->cq_ring_entries = p->cq_entries;
8046 ctx->sq_mask = rings->sq_ring_mask;
8047 ctx->cq_mask = rings->cq_ring_mask;
8048 ctx->sq_entries = rings->sq_ring_entries;
8049 ctx->cq_entries = rings->cq_ring_entries;
8050
8051 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
8052 if (size == SIZE_MAX) {
8053 io_mem_free(ctx->rings);
8054 ctx->rings = NULL;
8055 return -EOVERFLOW;
8056 }
8057
8058 ctx->sq_sqes = io_mem_alloc(size);
8059 if (!ctx->sq_sqes) {
8060 io_mem_free(ctx->rings);
8061 ctx->rings = NULL;
8062 return -ENOMEM;
8063 }
8064
8065 return 0;
8066 }
8067
8068 /*
8069 * Allocate an anonymous fd, this is what constitutes the application
8070 * visible backing of an io_uring instance. The application mmaps this
8071 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
8072 * we have to tie this fd to a socket for file garbage collection purposes.
8073 */
8074 static int io_uring_get_fd(struct io_ring_ctx *ctx)
8075 {
8076 struct file *file;
8077 int ret;
8078
8079 #if defined(CONFIG_UNIX)
8080 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
8081 &ctx->ring_sock);
8082 if (ret)
8083 return ret;
8084 #endif
8085
8086 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
8087 if (ret < 0)
8088 goto err;
8089
8090 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
8091 O_RDWR | O_CLOEXEC);
8092 if (IS_ERR(file)) {
8093 put_unused_fd(ret);
8094 ret = PTR_ERR(file);
8095 goto err;
8096 }
8097
8098 #if defined(CONFIG_UNIX)
8099 ctx->ring_sock->file = file;
8100 #endif
8101 fd_install(ret, file);
8102 return ret;
8103 err:
8104 #if defined(CONFIG_UNIX)
8105 sock_release(ctx->ring_sock);
8106 ctx->ring_sock = NULL;
8107 #endif
8108 return ret;
8109 }
8110
8111 static int io_uring_create(unsigned entries, struct io_uring_params *p,
8112 struct io_uring_params __user *params)
8113 {
8114 struct user_struct *user = NULL;
8115 struct io_ring_ctx *ctx;
8116 bool limit_mem;
8117 int ret;
8118
8119 if (!entries)
8120 return -EINVAL;
8121 if (entries > IORING_MAX_ENTRIES) {
8122 if (!(p->flags & IORING_SETUP_CLAMP))
8123 return -EINVAL;
8124 entries = IORING_MAX_ENTRIES;
8125 }
8126
8127 /*
8128 * Use twice as many entries for the CQ ring. It's possible for the
8129 * application to drive a higher depth than the size of the SQ ring,
8130 * since the sqes are only used at submission time. This allows for
8131 * some flexibility in overcommitting a bit. If the application has
8132 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
8133 * of CQ ring entries manually.
8134 */
8135 p->sq_entries = roundup_pow_of_two(entries);
8136 if (p->flags & IORING_SETUP_CQSIZE) {
8137 /*
8138 * If IORING_SETUP_CQSIZE is set, we do the same roundup
8139 * to a power-of-two, if it isn't already. We do NOT impose
8140 * any cq vs sq ring sizing.
8141 */
8142 if (p->cq_entries < p->sq_entries)
8143 return -EINVAL;
8144 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
8145 if (!(p->flags & IORING_SETUP_CLAMP))
8146 return -EINVAL;
8147 p->cq_entries = IORING_MAX_CQ_ENTRIES;
8148 }
8149 p->cq_entries = roundup_pow_of_two(p->cq_entries);
8150 } else {
8151 p->cq_entries = 2 * p->sq_entries;
8152 }
8153
8154 user = get_uid(current_user());
8155 limit_mem = !capable(CAP_IPC_LOCK);
8156
8157 if (limit_mem) {
8158 ret = __io_account_mem(user,
8159 ring_pages(p->sq_entries, p->cq_entries));
8160 if (ret) {
8161 free_uid(user);
8162 return ret;
8163 }
8164 }
8165
8166 ctx = io_ring_ctx_alloc(p);
8167 if (!ctx) {
8168 if (limit_mem)
8169 __io_unaccount_mem(user, ring_pages(p->sq_entries,
8170 p->cq_entries));
8171 free_uid(user);
8172 return -ENOMEM;
8173 }
8174 ctx->compat = in_compat_syscall();
8175 ctx->user = user;
8176 ctx->creds = get_current_cred();
8177
8178 ret = io_allocate_scq_urings(ctx, p);
8179 if (ret)
8180 goto err;
8181
8182 ret = io_sq_offload_start(ctx, p);
8183 if (ret)
8184 goto err;
8185
8186 memset(&p->sq_off, 0, sizeof(p->sq_off));
8187 p->sq_off.head = offsetof(struct io_rings, sq.head);
8188 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
8189 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
8190 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
8191 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
8192 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
8193 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
8194
8195 memset(&p->cq_off, 0, sizeof(p->cq_off));
8196 p->cq_off.head = offsetof(struct io_rings, cq.head);
8197 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
8198 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
8199 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
8200 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
8201 p->cq_off.cqes = offsetof(struct io_rings, cqes);
8202 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
8203
8204 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
8205 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
8206 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
8207 IORING_FEAT_POLL_32BITS;
8208
8209 if (copy_to_user(params, p, sizeof(*p))) {
8210 ret = -EFAULT;
8211 goto err;
8212 }
8213 /*
8214 * Install ring fd as the very last thing, so we don't risk someone
8215 * having closed it before we finish setup
8216 */
8217 ret = io_uring_get_fd(ctx);
8218 if (ret < 0)
8219 goto err;
8220
8221 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
8222 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
8223 ACCT_LOCKED);
8224 ctx->limit_mem = limit_mem;
8225 return ret;
8226 err:
8227 io_ring_ctx_wait_and_kill(ctx);
8228 return ret;
8229 }
8230
8231 /*
8232 * Sets up an aio uring context, and returns the fd. Applications asks for a
8233 * ring size, we return the actual sq/cq ring sizes (among other things) in the
8234 * params structure passed in.
8235 */
8236 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
8237 {
8238 struct io_uring_params p;
8239 int i;
8240
8241 if (copy_from_user(&p, params, sizeof(p)))
8242 return -EFAULT;
8243 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
8244 if (p.resv[i])
8245 return -EINVAL;
8246 }
8247
8248 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
8249 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
8250 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
8251 return -EINVAL;
8252
8253 return io_uring_create(entries, &p, params);
8254 }
8255
8256 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
8257 struct io_uring_params __user *, params)
8258 {
8259 return io_uring_setup(entries, params);
8260 }
8261
8262 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
8263 {
8264 struct io_uring_probe *p;
8265 size_t size;
8266 int i, ret;
8267
8268 size = struct_size(p, ops, nr_args);
8269 if (size == SIZE_MAX)
8270 return -EOVERFLOW;
8271 p = kzalloc(size, GFP_KERNEL);
8272 if (!p)
8273 return -ENOMEM;
8274
8275 ret = -EFAULT;
8276 if (copy_from_user(p, arg, size))
8277 goto out;
8278 ret = -EINVAL;
8279 if (memchr_inv(p, 0, size))
8280 goto out;
8281
8282 p->last_op = IORING_OP_LAST - 1;
8283 if (nr_args > IORING_OP_LAST)
8284 nr_args = IORING_OP_LAST;
8285
8286 for (i = 0; i < nr_args; i++) {
8287 p->ops[i].op = i;
8288 if (!io_op_defs[i].not_supported)
8289 p->ops[i].flags = IO_URING_OP_SUPPORTED;
8290 }
8291 p->ops_len = i;
8292
8293 ret = 0;
8294 if (copy_to_user(arg, p, size))
8295 ret = -EFAULT;
8296 out:
8297 kfree(p);
8298 return ret;
8299 }
8300
8301 static int io_register_personality(struct io_ring_ctx *ctx)
8302 {
8303 const struct cred *creds = get_current_cred();
8304 int id;
8305
8306 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
8307 USHRT_MAX, GFP_KERNEL);
8308 if (id < 0)
8309 put_cred(creds);
8310 return id;
8311 }
8312
8313 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8314 {
8315 const struct cred *old_creds;
8316
8317 old_creds = idr_remove(&ctx->personality_idr, id);
8318 if (old_creds) {
8319 put_cred(old_creds);
8320 return 0;
8321 }
8322
8323 return -EINVAL;
8324 }
8325
8326 static bool io_register_op_must_quiesce(int op)
8327 {
8328 switch (op) {
8329 case IORING_UNREGISTER_FILES:
8330 case IORING_REGISTER_FILES_UPDATE:
8331 case IORING_REGISTER_PROBE:
8332 case IORING_REGISTER_PERSONALITY:
8333 case IORING_UNREGISTER_PERSONALITY:
8334 return false;
8335 default:
8336 return true;
8337 }
8338 }
8339
8340 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
8341 void __user *arg, unsigned nr_args)
8342 __releases(ctx->uring_lock)
8343 __acquires(ctx->uring_lock)
8344 {
8345 int ret;
8346
8347 /*
8348 * We're inside the ring mutex, if the ref is already dying, then
8349 * someone else killed the ctx or is already going through
8350 * io_uring_register().
8351 */
8352 if (percpu_ref_is_dying(&ctx->refs))
8353 return -ENXIO;
8354
8355 if (io_register_op_must_quiesce(opcode)) {
8356 percpu_ref_kill(&ctx->refs);
8357
8358 /*
8359 * Drop uring mutex before waiting for references to exit. If
8360 * another thread is currently inside io_uring_enter() it might
8361 * need to grab the uring_lock to make progress. If we hold it
8362 * here across the drain wait, then we can deadlock. It's safe
8363 * to drop the mutex here, since no new references will come in
8364 * after we've killed the percpu ref.
8365 */
8366 mutex_unlock(&ctx->uring_lock);
8367 ret = wait_for_completion_interruptible(&ctx->ref_comp);
8368 mutex_lock(&ctx->uring_lock);
8369 if (ret) {
8370 percpu_ref_resurrect(&ctx->refs);
8371 ret = -EINTR;
8372 goto out;
8373 }
8374 }
8375
8376 switch (opcode) {
8377 case IORING_REGISTER_BUFFERS:
8378 ret = io_sqe_buffer_register(ctx, arg, nr_args);
8379 break;
8380 case IORING_UNREGISTER_BUFFERS:
8381 ret = -EINVAL;
8382 if (arg || nr_args)
8383 break;
8384 ret = io_sqe_buffer_unregister(ctx);
8385 break;
8386 case IORING_REGISTER_FILES:
8387 ret = io_sqe_files_register(ctx, arg, nr_args);
8388 break;
8389 case IORING_UNREGISTER_FILES:
8390 ret = -EINVAL;
8391 if (arg || nr_args)
8392 break;
8393 ret = io_sqe_files_unregister(ctx);
8394 break;
8395 case IORING_REGISTER_FILES_UPDATE:
8396 ret = io_sqe_files_update(ctx, arg, nr_args);
8397 break;
8398 case IORING_REGISTER_EVENTFD:
8399 case IORING_REGISTER_EVENTFD_ASYNC:
8400 ret = -EINVAL;
8401 if (nr_args != 1)
8402 break;
8403 ret = io_eventfd_register(ctx, arg);
8404 if (ret)
8405 break;
8406 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
8407 ctx->eventfd_async = 1;
8408 else
8409 ctx->eventfd_async = 0;
8410 break;
8411 case IORING_UNREGISTER_EVENTFD:
8412 ret = -EINVAL;
8413 if (arg || nr_args)
8414 break;
8415 ret = io_eventfd_unregister(ctx);
8416 break;
8417 case IORING_REGISTER_PROBE:
8418 ret = -EINVAL;
8419 if (!arg || nr_args > 256)
8420 break;
8421 ret = io_probe(ctx, arg, nr_args);
8422 break;
8423 case IORING_REGISTER_PERSONALITY:
8424 ret = -EINVAL;
8425 if (arg || nr_args)
8426 break;
8427 ret = io_register_personality(ctx);
8428 break;
8429 case IORING_UNREGISTER_PERSONALITY:
8430 ret = -EINVAL;
8431 if (arg)
8432 break;
8433 ret = io_unregister_personality(ctx, nr_args);
8434 break;
8435 default:
8436 ret = -EINVAL;
8437 break;
8438 }
8439
8440 if (io_register_op_must_quiesce(opcode)) {
8441 /* bring the ctx back to life */
8442 percpu_ref_reinit(&ctx->refs);
8443 out:
8444 reinit_completion(&ctx->ref_comp);
8445 }
8446 return ret;
8447 }
8448
8449 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
8450 void __user *, arg, unsigned int, nr_args)
8451 {
8452 struct io_ring_ctx *ctx;
8453 long ret = -EBADF;
8454 struct fd f;
8455
8456 f = fdget(fd);
8457 if (!f.file)
8458 return -EBADF;
8459
8460 ret = -EOPNOTSUPP;
8461 if (f.file->f_op != &io_uring_fops)
8462 goto out_fput;
8463
8464 ctx = f.file->private_data;
8465
8466 mutex_lock(&ctx->uring_lock);
8467 ret = __io_uring_register(ctx, opcode, arg, nr_args);
8468 mutex_unlock(&ctx->uring_lock);
8469 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
8470 ctx->cq_ev_fd != NULL, ret);
8471 out_fput:
8472 fdput(f);
8473 return ret;
8474 }
8475
8476 static int __init io_uring_init(void)
8477 {
8478 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
8479 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
8480 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
8481 } while (0)
8482
8483 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
8484 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
8485 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
8486 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
8487 BUILD_BUG_SQE_ELEM(1, __u8, flags);
8488 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
8489 BUILD_BUG_SQE_ELEM(4, __s32, fd);
8490 BUILD_BUG_SQE_ELEM(8, __u64, off);
8491 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
8492 BUILD_BUG_SQE_ELEM(16, __u64, addr);
8493 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
8494 BUILD_BUG_SQE_ELEM(24, __u32, len);
8495 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
8496 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
8497 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
8498 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
8499 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
8500 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
8501 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
8502 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
8503 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
8504 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
8505 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
8506 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
8507 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
8508 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
8509 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
8510 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
8511 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
8512 BUILD_BUG_SQE_ELEM(42, __u16, personality);
8513 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
8514
8515 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
8516 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
8517 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
8518 return 0;
8519 };
8520 __initcall(io_uring_init);