]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: correct fill events helpers types
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 loff_t off_out;
627 loff_t off_in;
628 u64 len;
629 int splice_fd_in;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 s32 res, u32 cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455 }
1456
1457 static void io_prep_async_link(struct io_kiocb *req)
1458 {
1459 struct io_kiocb *cur;
1460
1461 if (req->flags & REQ_F_LINK_TIMEOUT) {
1462 struct io_ring_ctx *ctx = req->ctx;
1463
1464 spin_lock_irq(&ctx->timeout_lock);
1465 io_for_each_link(cur, req)
1466 io_prep_async_work(cur);
1467 spin_unlock_irq(&ctx->timeout_lock);
1468 } else {
1469 io_for_each_link(cur, req)
1470 io_prep_async_work(cur);
1471 }
1472 }
1473
1474 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1475 {
1476 struct io_ring_ctx *ctx = req->ctx;
1477 struct io_kiocb *link = io_prep_linked_timeout(req);
1478 struct io_uring_task *tctx = req->task->io_uring;
1479
1480 /* must not take the lock, NULL it as a precaution */
1481 locked = NULL;
1482
1483 BUG_ON(!tctx);
1484 BUG_ON(!tctx->io_wq);
1485
1486 /* init ->work of the whole link before punting */
1487 io_prep_async_link(req);
1488
1489 /*
1490 * Not expected to happen, but if we do have a bug where this _can_
1491 * happen, catch it here and ensure the request is marked as
1492 * canceled. That will make io-wq go through the usual work cancel
1493 * procedure rather than attempt to run this request (or create a new
1494 * worker for it).
1495 */
1496 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1497 req->work.flags |= IO_WQ_WORK_CANCEL;
1498
1499 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1500 &req->work, req->flags);
1501 io_wq_enqueue(tctx->io_wq, &req->work);
1502 if (link)
1503 io_queue_linked_timeout(link);
1504 }
1505
1506 static void io_kill_timeout(struct io_kiocb *req, int status)
1507 __must_hold(&req->ctx->completion_lock)
1508 __must_hold(&req->ctx->timeout_lock)
1509 {
1510 struct io_timeout_data *io = req->async_data;
1511
1512 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1513 if (status)
1514 req_set_fail(req);
1515 atomic_set(&req->ctx->cq_timeouts,
1516 atomic_read(&req->ctx->cq_timeouts) + 1);
1517 list_del_init(&req->timeout.list);
1518 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1519 io_put_req_deferred(req);
1520 }
1521 }
1522
1523 static void io_queue_deferred(struct io_ring_ctx *ctx)
1524 {
1525 while (!list_empty(&ctx->defer_list)) {
1526 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1527 struct io_defer_entry, list);
1528
1529 if (req_need_defer(de->req, de->seq))
1530 break;
1531 list_del_init(&de->list);
1532 io_req_task_queue(de->req);
1533 kfree(de);
1534 }
1535 }
1536
1537 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1538 __must_hold(&ctx->completion_lock)
1539 {
1540 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1541 struct io_kiocb *req, *tmp;
1542
1543 spin_lock_irq(&ctx->timeout_lock);
1544 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1545 u32 events_needed, events_got;
1546
1547 if (io_is_timeout_noseq(req))
1548 break;
1549
1550 /*
1551 * Since seq can easily wrap around over time, subtract
1552 * the last seq at which timeouts were flushed before comparing.
1553 * Assuming not more than 2^31-1 events have happened since,
1554 * these subtractions won't have wrapped, so we can check if
1555 * target is in [last_seq, current_seq] by comparing the two.
1556 */
1557 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1558 events_got = seq - ctx->cq_last_tm_flush;
1559 if (events_got < events_needed)
1560 break;
1561
1562 io_kill_timeout(req, 0);
1563 }
1564 ctx->cq_last_tm_flush = seq;
1565 spin_unlock_irq(&ctx->timeout_lock);
1566 }
1567
1568 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1569 {
1570 if (ctx->off_timeout_used)
1571 io_flush_timeouts(ctx);
1572 if (ctx->drain_active)
1573 io_queue_deferred(ctx);
1574 }
1575
1576 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1577 {
1578 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1579 __io_commit_cqring_flush(ctx);
1580 /* order cqe stores with ring update */
1581 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1582 }
1583
1584 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1585 {
1586 struct io_rings *r = ctx->rings;
1587
1588 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1589 }
1590
1591 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1592 {
1593 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1594 }
1595
1596 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1597 {
1598 struct io_rings *rings = ctx->rings;
1599 unsigned tail, mask = ctx->cq_entries - 1;
1600
1601 /*
1602 * writes to the cq entry need to come after reading head; the
1603 * control dependency is enough as we're using WRITE_ONCE to
1604 * fill the cq entry
1605 */
1606 if (__io_cqring_events(ctx) == ctx->cq_entries)
1607 return NULL;
1608
1609 tail = ctx->cached_cq_tail++;
1610 return &rings->cqes[tail & mask];
1611 }
1612
1613 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1614 {
1615 if (likely(!ctx->cq_ev_fd))
1616 return false;
1617 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1618 return false;
1619 return !ctx->eventfd_async || io_wq_current_is_worker();
1620 }
1621
1622 /*
1623 * This should only get called when at least one event has been posted.
1624 * Some applications rely on the eventfd notification count only changing
1625 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1626 * 1:1 relationship between how many times this function is called (and
1627 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1628 */
1629 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1630 {
1631 /*
1632 * wake_up_all() may seem excessive, but io_wake_function() and
1633 * io_should_wake() handle the termination of the loop and only
1634 * wake as many waiters as we need to.
1635 */
1636 if (wq_has_sleeper(&ctx->cq_wait))
1637 wake_up_all(&ctx->cq_wait);
1638 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1639 wake_up(&ctx->sq_data->wait);
1640 if (io_should_trigger_evfd(ctx))
1641 eventfd_signal(ctx->cq_ev_fd, 1);
1642 if (waitqueue_active(&ctx->poll_wait))
1643 wake_up_interruptible(&ctx->poll_wait);
1644 }
1645
1646 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1647 {
1648 /* see waitqueue_active() comment */
1649 smp_mb();
1650
1651 if (ctx->flags & IORING_SETUP_SQPOLL) {
1652 if (waitqueue_active(&ctx->cq_wait))
1653 wake_up_all(&ctx->cq_wait);
1654 }
1655 if (io_should_trigger_evfd(ctx))
1656 eventfd_signal(ctx->cq_ev_fd, 1);
1657 if (waitqueue_active(&ctx->poll_wait))
1658 wake_up_interruptible(&ctx->poll_wait);
1659 }
1660
1661 /* Returns true if there are no backlogged entries after the flush */
1662 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1663 {
1664 bool all_flushed, posted;
1665
1666 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1667 return false;
1668
1669 posted = false;
1670 spin_lock(&ctx->completion_lock);
1671 while (!list_empty(&ctx->cq_overflow_list)) {
1672 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1673 struct io_overflow_cqe *ocqe;
1674
1675 if (!cqe && !force)
1676 break;
1677 ocqe = list_first_entry(&ctx->cq_overflow_list,
1678 struct io_overflow_cqe, list);
1679 if (cqe)
1680 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1681 else
1682 io_account_cq_overflow(ctx);
1683
1684 posted = true;
1685 list_del(&ocqe->list);
1686 kfree(ocqe);
1687 }
1688
1689 all_flushed = list_empty(&ctx->cq_overflow_list);
1690 if (all_flushed) {
1691 clear_bit(0, &ctx->check_cq_overflow);
1692 WRITE_ONCE(ctx->rings->sq_flags,
1693 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1694 }
1695
1696 if (posted)
1697 io_commit_cqring(ctx);
1698 spin_unlock(&ctx->completion_lock);
1699 if (posted)
1700 io_cqring_ev_posted(ctx);
1701 return all_flushed;
1702 }
1703
1704 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1705 {
1706 bool ret = true;
1707
1708 if (test_bit(0, &ctx->check_cq_overflow)) {
1709 /* iopoll syncs against uring_lock, not completion_lock */
1710 if (ctx->flags & IORING_SETUP_IOPOLL)
1711 mutex_lock(&ctx->uring_lock);
1712 ret = __io_cqring_overflow_flush(ctx, false);
1713 if (ctx->flags & IORING_SETUP_IOPOLL)
1714 mutex_unlock(&ctx->uring_lock);
1715 }
1716
1717 return ret;
1718 }
1719
1720 /* must to be called somewhat shortly after putting a request */
1721 static inline void io_put_task(struct task_struct *task, int nr)
1722 {
1723 struct io_uring_task *tctx = task->io_uring;
1724
1725 if (likely(task == current)) {
1726 tctx->cached_refs += nr;
1727 } else {
1728 percpu_counter_sub(&tctx->inflight, nr);
1729 if (unlikely(atomic_read(&tctx->in_idle)))
1730 wake_up(&tctx->wait);
1731 put_task_struct_many(task, nr);
1732 }
1733 }
1734
1735 static void io_task_refs_refill(struct io_uring_task *tctx)
1736 {
1737 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1738
1739 percpu_counter_add(&tctx->inflight, refill);
1740 refcount_add(refill, &current->usage);
1741 tctx->cached_refs += refill;
1742 }
1743
1744 static inline void io_get_task_refs(int nr)
1745 {
1746 struct io_uring_task *tctx = current->io_uring;
1747
1748 tctx->cached_refs -= nr;
1749 if (unlikely(tctx->cached_refs < 0))
1750 io_task_refs_refill(tctx);
1751 }
1752
1753 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1754 {
1755 struct io_uring_task *tctx = task->io_uring;
1756 unsigned int refs = tctx->cached_refs;
1757
1758 if (refs) {
1759 tctx->cached_refs = 0;
1760 percpu_counter_sub(&tctx->inflight, refs);
1761 put_task_struct_many(task, refs);
1762 }
1763 }
1764
1765 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1766 s32 res, u32 cflags)
1767 {
1768 struct io_overflow_cqe *ocqe;
1769
1770 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1771 if (!ocqe) {
1772 /*
1773 * If we're in ring overflow flush mode, or in task cancel mode,
1774 * or cannot allocate an overflow entry, then we need to drop it
1775 * on the floor.
1776 */
1777 io_account_cq_overflow(ctx);
1778 return false;
1779 }
1780 if (list_empty(&ctx->cq_overflow_list)) {
1781 set_bit(0, &ctx->check_cq_overflow);
1782 WRITE_ONCE(ctx->rings->sq_flags,
1783 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1784
1785 }
1786 ocqe->cqe.user_data = user_data;
1787 ocqe->cqe.res = res;
1788 ocqe->cqe.flags = cflags;
1789 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1790 return true;
1791 }
1792
1793 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1794 s32 res, u32 cflags)
1795 {
1796 struct io_uring_cqe *cqe;
1797
1798 trace_io_uring_complete(ctx, user_data, res, cflags);
1799
1800 /*
1801 * If we can't get a cq entry, userspace overflowed the
1802 * submission (by quite a lot). Increment the overflow count in
1803 * the ring.
1804 */
1805 cqe = io_get_cqe(ctx);
1806 if (likely(cqe)) {
1807 WRITE_ONCE(cqe->user_data, user_data);
1808 WRITE_ONCE(cqe->res, res);
1809 WRITE_ONCE(cqe->flags, cflags);
1810 return true;
1811 }
1812 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1813 }
1814
1815 /* not as hot to bloat with inlining */
1816 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1817 s32 res, u32 cflags)
1818 {
1819 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1820 }
1821
1822 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1823 u32 cflags)
1824 {
1825 struct io_ring_ctx *ctx = req->ctx;
1826
1827 spin_lock(&ctx->completion_lock);
1828 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1829 /*
1830 * If we're the last reference to this request, add to our locked
1831 * free_list cache.
1832 */
1833 if (req_ref_put_and_test(req)) {
1834 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1835 if (req->flags & IO_DISARM_MASK)
1836 io_disarm_next(req);
1837 if (req->link) {
1838 io_req_task_queue(req->link);
1839 req->link = NULL;
1840 }
1841 }
1842 io_dismantle_req(req);
1843 io_put_task(req->task, 1);
1844 list_add(&req->inflight_entry, &ctx->locked_free_list);
1845 ctx->locked_free_nr++;
1846 } else {
1847 if (!percpu_ref_tryget(&ctx->refs))
1848 req = NULL;
1849 }
1850 io_commit_cqring(ctx);
1851 spin_unlock(&ctx->completion_lock);
1852
1853 if (req) {
1854 io_cqring_ev_posted(ctx);
1855 percpu_ref_put(&ctx->refs);
1856 }
1857 }
1858
1859 static inline bool io_req_needs_clean(struct io_kiocb *req)
1860 {
1861 return req->flags & IO_REQ_CLEAN_FLAGS;
1862 }
1863
1864 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1865 u32 cflags)
1866 {
1867 if (io_req_needs_clean(req))
1868 io_clean_op(req);
1869 req->result = res;
1870 req->compl.cflags = cflags;
1871 req->flags |= REQ_F_COMPLETE_INLINE;
1872 }
1873
1874 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1875 s32 res, u32 cflags)
1876 {
1877 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1878 io_req_complete_state(req, res, cflags);
1879 else
1880 io_req_complete_post(req, res, cflags);
1881 }
1882
1883 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1884 {
1885 __io_req_complete(req, 0, res, 0);
1886 }
1887
1888 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1889 {
1890 req_set_fail(req);
1891 io_req_complete_post(req, res, 0);
1892 }
1893
1894 static void io_req_complete_fail_submit(struct io_kiocb *req)
1895 {
1896 /*
1897 * We don't submit, fail them all, for that replace hardlinks with
1898 * normal links. Extra REQ_F_LINK is tolerated.
1899 */
1900 req->flags &= ~REQ_F_HARDLINK;
1901 req->flags |= REQ_F_LINK;
1902 io_req_complete_failed(req, req->result);
1903 }
1904
1905 /*
1906 * Don't initialise the fields below on every allocation, but do that in
1907 * advance and keep them valid across allocations.
1908 */
1909 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1910 {
1911 req->ctx = ctx;
1912 req->link = NULL;
1913 req->async_data = NULL;
1914 /* not necessary, but safer to zero */
1915 req->result = 0;
1916 }
1917
1918 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1919 struct io_submit_state *state)
1920 {
1921 spin_lock(&ctx->completion_lock);
1922 list_splice_init(&ctx->locked_free_list, &state->free_list);
1923 ctx->locked_free_nr = 0;
1924 spin_unlock(&ctx->completion_lock);
1925 }
1926
1927 /* Returns true IFF there are requests in the cache */
1928 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1929 {
1930 struct io_submit_state *state = &ctx->submit_state;
1931 int nr;
1932
1933 /*
1934 * If we have more than a batch's worth of requests in our IRQ side
1935 * locked cache, grab the lock and move them over to our submission
1936 * side cache.
1937 */
1938 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1939 io_flush_cached_locked_reqs(ctx, state);
1940
1941 nr = state->free_reqs;
1942 while (!list_empty(&state->free_list)) {
1943 struct io_kiocb *req = list_first_entry(&state->free_list,
1944 struct io_kiocb, inflight_entry);
1945
1946 list_del(&req->inflight_entry);
1947 state->reqs[nr++] = req;
1948 if (nr == ARRAY_SIZE(state->reqs))
1949 break;
1950 }
1951
1952 state->free_reqs = nr;
1953 return nr != 0;
1954 }
1955
1956 /*
1957 * A request might get retired back into the request caches even before opcode
1958 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1959 * Because of that, io_alloc_req() should be called only under ->uring_lock
1960 * and with extra caution to not get a request that is still worked on.
1961 */
1962 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1963 __must_hold(&ctx->uring_lock)
1964 {
1965 struct io_submit_state *state = &ctx->submit_state;
1966 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1967 int ret, i;
1968
1969 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1970
1971 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1972 goto got_req;
1973
1974 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1975 state->reqs);
1976
1977 /*
1978 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1979 * retry single alloc to be on the safe side.
1980 */
1981 if (unlikely(ret <= 0)) {
1982 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1983 if (!state->reqs[0])
1984 return NULL;
1985 ret = 1;
1986 }
1987
1988 for (i = 0; i < ret; i++)
1989 io_preinit_req(state->reqs[i], ctx);
1990 state->free_reqs = ret;
1991 got_req:
1992 state->free_reqs--;
1993 return state->reqs[state->free_reqs];
1994 }
1995
1996 static inline void io_put_file(struct file *file)
1997 {
1998 if (file)
1999 fput(file);
2000 }
2001
2002 static void io_dismantle_req(struct io_kiocb *req)
2003 {
2004 unsigned int flags = req->flags;
2005
2006 if (io_req_needs_clean(req))
2007 io_clean_op(req);
2008 if (!(flags & REQ_F_FIXED_FILE))
2009 io_put_file(req->file);
2010 if (req->fixed_rsrc_refs)
2011 percpu_ref_put(req->fixed_rsrc_refs);
2012 if (req->async_data) {
2013 kfree(req->async_data);
2014 req->async_data = NULL;
2015 }
2016 }
2017
2018 static void __io_free_req(struct io_kiocb *req)
2019 {
2020 struct io_ring_ctx *ctx = req->ctx;
2021
2022 io_dismantle_req(req);
2023 io_put_task(req->task, 1);
2024
2025 spin_lock(&ctx->completion_lock);
2026 list_add(&req->inflight_entry, &ctx->locked_free_list);
2027 ctx->locked_free_nr++;
2028 spin_unlock(&ctx->completion_lock);
2029
2030 percpu_ref_put(&ctx->refs);
2031 }
2032
2033 static inline void io_remove_next_linked(struct io_kiocb *req)
2034 {
2035 struct io_kiocb *nxt = req->link;
2036
2037 req->link = nxt->link;
2038 nxt->link = NULL;
2039 }
2040
2041 static bool io_kill_linked_timeout(struct io_kiocb *req)
2042 __must_hold(&req->ctx->completion_lock)
2043 __must_hold(&req->ctx->timeout_lock)
2044 {
2045 struct io_kiocb *link = req->link;
2046
2047 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2048 struct io_timeout_data *io = link->async_data;
2049
2050 io_remove_next_linked(req);
2051 link->timeout.head = NULL;
2052 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2053 list_del(&link->timeout.list);
2054 io_cqring_fill_event(link->ctx, link->user_data,
2055 -ECANCELED, 0);
2056 io_put_req_deferred(link);
2057 return true;
2058 }
2059 }
2060 return false;
2061 }
2062
2063 static void io_fail_links(struct io_kiocb *req)
2064 __must_hold(&req->ctx->completion_lock)
2065 {
2066 struct io_kiocb *nxt, *link = req->link;
2067
2068 req->link = NULL;
2069 while (link) {
2070 long res = -ECANCELED;
2071
2072 if (link->flags & REQ_F_FAIL)
2073 res = link->result;
2074
2075 nxt = link->link;
2076 link->link = NULL;
2077
2078 trace_io_uring_fail_link(req, link);
2079 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2080 io_put_req_deferred(link);
2081 link = nxt;
2082 }
2083 }
2084
2085 static bool io_disarm_next(struct io_kiocb *req)
2086 __must_hold(&req->ctx->completion_lock)
2087 {
2088 bool posted = false;
2089
2090 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2091 struct io_kiocb *link = req->link;
2092
2093 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2094 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2095 io_remove_next_linked(req);
2096 io_cqring_fill_event(link->ctx, link->user_data,
2097 -ECANCELED, 0);
2098 io_put_req_deferred(link);
2099 posted = true;
2100 }
2101 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2102 struct io_ring_ctx *ctx = req->ctx;
2103
2104 spin_lock_irq(&ctx->timeout_lock);
2105 posted = io_kill_linked_timeout(req);
2106 spin_unlock_irq(&ctx->timeout_lock);
2107 }
2108 if (unlikely((req->flags & REQ_F_FAIL) &&
2109 !(req->flags & REQ_F_HARDLINK))) {
2110 posted |= (req->link != NULL);
2111 io_fail_links(req);
2112 }
2113 return posted;
2114 }
2115
2116 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2117 {
2118 struct io_kiocb *nxt;
2119
2120 /*
2121 * If LINK is set, we have dependent requests in this chain. If we
2122 * didn't fail this request, queue the first one up, moving any other
2123 * dependencies to the next request. In case of failure, fail the rest
2124 * of the chain.
2125 */
2126 if (req->flags & IO_DISARM_MASK) {
2127 struct io_ring_ctx *ctx = req->ctx;
2128 bool posted;
2129
2130 spin_lock(&ctx->completion_lock);
2131 posted = io_disarm_next(req);
2132 if (posted)
2133 io_commit_cqring(req->ctx);
2134 spin_unlock(&ctx->completion_lock);
2135 if (posted)
2136 io_cqring_ev_posted(ctx);
2137 }
2138 nxt = req->link;
2139 req->link = NULL;
2140 return nxt;
2141 }
2142
2143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2144 {
2145 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2146 return NULL;
2147 return __io_req_find_next(req);
2148 }
2149
2150 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2151 {
2152 if (!ctx)
2153 return;
2154 if (*locked) {
2155 if (ctx->submit_state.compl_nr)
2156 io_submit_flush_completions(ctx);
2157 mutex_unlock(&ctx->uring_lock);
2158 *locked = false;
2159 }
2160 percpu_ref_put(&ctx->refs);
2161 }
2162
2163 static void tctx_task_work(struct callback_head *cb)
2164 {
2165 bool locked = false;
2166 struct io_ring_ctx *ctx = NULL;
2167 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2168 task_work);
2169
2170 while (1) {
2171 struct io_wq_work_node *node;
2172
2173 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2174 io_submit_flush_completions(ctx);
2175
2176 spin_lock_irq(&tctx->task_lock);
2177 node = tctx->task_list.first;
2178 INIT_WQ_LIST(&tctx->task_list);
2179 if (!node)
2180 tctx->task_running = false;
2181 spin_unlock_irq(&tctx->task_lock);
2182 if (!node)
2183 break;
2184
2185 do {
2186 struct io_wq_work_node *next = node->next;
2187 struct io_kiocb *req = container_of(node, struct io_kiocb,
2188 io_task_work.node);
2189
2190 if (req->ctx != ctx) {
2191 ctx_flush_and_put(ctx, &locked);
2192 ctx = req->ctx;
2193 /* if not contended, grab and improve batching */
2194 locked = mutex_trylock(&ctx->uring_lock);
2195 percpu_ref_get(&ctx->refs);
2196 }
2197 req->io_task_work.func(req, &locked);
2198 node = next;
2199 } while (node);
2200
2201 cond_resched();
2202 }
2203
2204 ctx_flush_and_put(ctx, &locked);
2205
2206 /* relaxed read is enough as only the task itself sets ->in_idle */
2207 if (unlikely(atomic_read(&tctx->in_idle)))
2208 io_uring_drop_tctx_refs(current);
2209 }
2210
2211 static void io_req_task_work_add(struct io_kiocb *req)
2212 {
2213 struct task_struct *tsk = req->task;
2214 struct io_uring_task *tctx = tsk->io_uring;
2215 enum task_work_notify_mode notify;
2216 struct io_wq_work_node *node;
2217 unsigned long flags;
2218 bool running;
2219
2220 WARN_ON_ONCE(!tctx);
2221
2222 spin_lock_irqsave(&tctx->task_lock, flags);
2223 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2224 running = tctx->task_running;
2225 if (!running)
2226 tctx->task_running = true;
2227 spin_unlock_irqrestore(&tctx->task_lock, flags);
2228
2229 /* task_work already pending, we're done */
2230 if (running)
2231 return;
2232
2233 /*
2234 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2235 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2236 * processing task_work. There's no reliable way to tell if TWA_RESUME
2237 * will do the job.
2238 */
2239 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2240 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2241 wake_up_process(tsk);
2242 return;
2243 }
2244
2245 spin_lock_irqsave(&tctx->task_lock, flags);
2246 tctx->task_running = false;
2247 node = tctx->task_list.first;
2248 INIT_WQ_LIST(&tctx->task_list);
2249 spin_unlock_irqrestore(&tctx->task_lock, flags);
2250
2251 while (node) {
2252 req = container_of(node, struct io_kiocb, io_task_work.node);
2253 node = node->next;
2254 if (llist_add(&req->io_task_work.fallback_node,
2255 &req->ctx->fallback_llist))
2256 schedule_delayed_work(&req->ctx->fallback_work, 1);
2257 }
2258 }
2259
2260 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2261 {
2262 struct io_ring_ctx *ctx = req->ctx;
2263
2264 /* not needed for normal modes, but SQPOLL depends on it */
2265 io_tw_lock(ctx, locked);
2266 io_req_complete_failed(req, req->result);
2267 }
2268
2269 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2270 {
2271 struct io_ring_ctx *ctx = req->ctx;
2272
2273 io_tw_lock(ctx, locked);
2274 /* req->task == current here, checking PF_EXITING is safe */
2275 if (likely(!(req->task->flags & PF_EXITING)))
2276 __io_queue_sqe(req);
2277 else
2278 io_req_complete_failed(req, -EFAULT);
2279 }
2280
2281 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2282 {
2283 req->result = ret;
2284 req->io_task_work.func = io_req_task_cancel;
2285 io_req_task_work_add(req);
2286 }
2287
2288 static void io_req_task_queue(struct io_kiocb *req)
2289 {
2290 req->io_task_work.func = io_req_task_submit;
2291 io_req_task_work_add(req);
2292 }
2293
2294 static void io_req_task_queue_reissue(struct io_kiocb *req)
2295 {
2296 req->io_task_work.func = io_queue_async_work;
2297 io_req_task_work_add(req);
2298 }
2299
2300 static inline void io_queue_next(struct io_kiocb *req)
2301 {
2302 struct io_kiocb *nxt = io_req_find_next(req);
2303
2304 if (nxt)
2305 io_req_task_queue(nxt);
2306 }
2307
2308 static void io_free_req(struct io_kiocb *req)
2309 {
2310 io_queue_next(req);
2311 __io_free_req(req);
2312 }
2313
2314 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2315 {
2316 io_free_req(req);
2317 }
2318
2319 struct req_batch {
2320 struct task_struct *task;
2321 int task_refs;
2322 int ctx_refs;
2323 };
2324
2325 static inline void io_init_req_batch(struct req_batch *rb)
2326 {
2327 rb->task_refs = 0;
2328 rb->ctx_refs = 0;
2329 rb->task = NULL;
2330 }
2331
2332 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2333 struct req_batch *rb)
2334 {
2335 if (rb->ctx_refs)
2336 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2337 if (rb->task)
2338 io_put_task(rb->task, rb->task_refs);
2339 }
2340
2341 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2342 struct io_submit_state *state)
2343 {
2344 io_queue_next(req);
2345 io_dismantle_req(req);
2346
2347 if (req->task != rb->task) {
2348 if (rb->task)
2349 io_put_task(rb->task, rb->task_refs);
2350 rb->task = req->task;
2351 rb->task_refs = 0;
2352 }
2353 rb->task_refs++;
2354 rb->ctx_refs++;
2355
2356 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2357 state->reqs[state->free_reqs++] = req;
2358 else
2359 list_add(&req->inflight_entry, &state->free_list);
2360 }
2361
2362 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2363 __must_hold(&ctx->uring_lock)
2364 {
2365 struct io_submit_state *state = &ctx->submit_state;
2366 int i, nr = state->compl_nr;
2367 struct req_batch rb;
2368
2369 spin_lock(&ctx->completion_lock);
2370 for (i = 0; i < nr; i++) {
2371 struct io_kiocb *req = state->compl_reqs[i];
2372
2373 __io_cqring_fill_event(ctx, req->user_data, req->result,
2374 req->compl.cflags);
2375 }
2376 io_commit_cqring(ctx);
2377 spin_unlock(&ctx->completion_lock);
2378 io_cqring_ev_posted(ctx);
2379
2380 io_init_req_batch(&rb);
2381 for (i = 0; i < nr; i++) {
2382 struct io_kiocb *req = state->compl_reqs[i];
2383
2384 if (req_ref_put_and_test(req))
2385 io_req_free_batch(&rb, req, &ctx->submit_state);
2386 }
2387
2388 io_req_free_batch_finish(ctx, &rb);
2389 state->compl_nr = 0;
2390 }
2391
2392 /*
2393 * Drop reference to request, return next in chain (if there is one) if this
2394 * was the last reference to this request.
2395 */
2396 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2397 {
2398 struct io_kiocb *nxt = NULL;
2399
2400 if (req_ref_put_and_test(req)) {
2401 nxt = io_req_find_next(req);
2402 __io_free_req(req);
2403 }
2404 return nxt;
2405 }
2406
2407 static inline void io_put_req(struct io_kiocb *req)
2408 {
2409 if (req_ref_put_and_test(req))
2410 io_free_req(req);
2411 }
2412
2413 static inline void io_put_req_deferred(struct io_kiocb *req)
2414 {
2415 if (req_ref_put_and_test(req)) {
2416 req->io_task_work.func = io_free_req_work;
2417 io_req_task_work_add(req);
2418 }
2419 }
2420
2421 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2422 {
2423 /* See comment at the top of this file */
2424 smp_rmb();
2425 return __io_cqring_events(ctx);
2426 }
2427
2428 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2429 {
2430 struct io_rings *rings = ctx->rings;
2431
2432 /* make sure SQ entry isn't read before tail */
2433 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2434 }
2435
2436 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2437 {
2438 unsigned int cflags;
2439
2440 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2441 cflags |= IORING_CQE_F_BUFFER;
2442 req->flags &= ~REQ_F_BUFFER_SELECTED;
2443 kfree(kbuf);
2444 return cflags;
2445 }
2446
2447 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2448 {
2449 struct io_buffer *kbuf;
2450
2451 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2452 return 0;
2453 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2454 return io_put_kbuf(req, kbuf);
2455 }
2456
2457 static inline bool io_run_task_work(void)
2458 {
2459 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2460 __set_current_state(TASK_RUNNING);
2461 tracehook_notify_signal();
2462 return true;
2463 }
2464
2465 return false;
2466 }
2467
2468 /*
2469 * Find and free completed poll iocbs
2470 */
2471 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2472 struct list_head *done)
2473 {
2474 struct req_batch rb;
2475 struct io_kiocb *req;
2476
2477 /* order with ->result store in io_complete_rw_iopoll() */
2478 smp_rmb();
2479
2480 io_init_req_batch(&rb);
2481 while (!list_empty(done)) {
2482 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2483 list_del(&req->inflight_entry);
2484
2485 __io_cqring_fill_event(ctx, req->user_data, req->result,
2486 io_put_rw_kbuf(req));
2487 (*nr_events)++;
2488
2489 if (req_ref_put_and_test(req))
2490 io_req_free_batch(&rb, req, &ctx->submit_state);
2491 }
2492
2493 io_commit_cqring(ctx);
2494 io_cqring_ev_posted_iopoll(ctx);
2495 io_req_free_batch_finish(ctx, &rb);
2496 }
2497
2498 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2499 long min)
2500 {
2501 struct io_kiocb *req, *tmp;
2502 LIST_HEAD(done);
2503 bool spin;
2504
2505 /*
2506 * Only spin for completions if we don't have multiple devices hanging
2507 * off our complete list, and we're under the requested amount.
2508 */
2509 spin = !ctx->poll_multi_queue && *nr_events < min;
2510
2511 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2512 struct kiocb *kiocb = &req->rw.kiocb;
2513 int ret;
2514
2515 /*
2516 * Move completed and retryable entries to our local lists.
2517 * If we find a request that requires polling, break out
2518 * and complete those lists first, if we have entries there.
2519 */
2520 if (READ_ONCE(req->iopoll_completed)) {
2521 list_move_tail(&req->inflight_entry, &done);
2522 continue;
2523 }
2524 if (!list_empty(&done))
2525 break;
2526
2527 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2528 if (unlikely(ret < 0))
2529 return ret;
2530 else if (ret)
2531 spin = false;
2532
2533 /* iopoll may have completed current req */
2534 if (READ_ONCE(req->iopoll_completed))
2535 list_move_tail(&req->inflight_entry, &done);
2536 }
2537
2538 if (!list_empty(&done))
2539 io_iopoll_complete(ctx, nr_events, &done);
2540
2541 return 0;
2542 }
2543
2544 /*
2545 * We can't just wait for polled events to come to us, we have to actively
2546 * find and complete them.
2547 */
2548 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2549 {
2550 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2551 return;
2552
2553 mutex_lock(&ctx->uring_lock);
2554 while (!list_empty(&ctx->iopoll_list)) {
2555 unsigned int nr_events = 0;
2556
2557 io_do_iopoll(ctx, &nr_events, 0);
2558
2559 /* let it sleep and repeat later if can't complete a request */
2560 if (nr_events == 0)
2561 break;
2562 /*
2563 * Ensure we allow local-to-the-cpu processing to take place,
2564 * in this case we need to ensure that we reap all events.
2565 * Also let task_work, etc. to progress by releasing the mutex
2566 */
2567 if (need_resched()) {
2568 mutex_unlock(&ctx->uring_lock);
2569 cond_resched();
2570 mutex_lock(&ctx->uring_lock);
2571 }
2572 }
2573 mutex_unlock(&ctx->uring_lock);
2574 }
2575
2576 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2577 {
2578 unsigned int nr_events = 0;
2579 int ret = 0;
2580
2581 /*
2582 * We disallow the app entering submit/complete with polling, but we
2583 * still need to lock the ring to prevent racing with polled issue
2584 * that got punted to a workqueue.
2585 */
2586 mutex_lock(&ctx->uring_lock);
2587 /*
2588 * Don't enter poll loop if we already have events pending.
2589 * If we do, we can potentially be spinning for commands that
2590 * already triggered a CQE (eg in error).
2591 */
2592 if (test_bit(0, &ctx->check_cq_overflow))
2593 __io_cqring_overflow_flush(ctx, false);
2594 if (io_cqring_events(ctx))
2595 goto out;
2596 do {
2597 /*
2598 * If a submit got punted to a workqueue, we can have the
2599 * application entering polling for a command before it gets
2600 * issued. That app will hold the uring_lock for the duration
2601 * of the poll right here, so we need to take a breather every
2602 * now and then to ensure that the issue has a chance to add
2603 * the poll to the issued list. Otherwise we can spin here
2604 * forever, while the workqueue is stuck trying to acquire the
2605 * very same mutex.
2606 */
2607 if (list_empty(&ctx->iopoll_list)) {
2608 u32 tail = ctx->cached_cq_tail;
2609
2610 mutex_unlock(&ctx->uring_lock);
2611 io_run_task_work();
2612 mutex_lock(&ctx->uring_lock);
2613
2614 /* some requests don't go through iopoll_list */
2615 if (tail != ctx->cached_cq_tail ||
2616 list_empty(&ctx->iopoll_list))
2617 break;
2618 }
2619 ret = io_do_iopoll(ctx, &nr_events, min);
2620 } while (!ret && nr_events < min && !need_resched());
2621 out:
2622 mutex_unlock(&ctx->uring_lock);
2623 return ret;
2624 }
2625
2626 static void kiocb_end_write(struct io_kiocb *req)
2627 {
2628 /*
2629 * Tell lockdep we inherited freeze protection from submission
2630 * thread.
2631 */
2632 if (req->flags & REQ_F_ISREG) {
2633 struct super_block *sb = file_inode(req->file)->i_sb;
2634
2635 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2636 sb_end_write(sb);
2637 }
2638 }
2639
2640 #ifdef CONFIG_BLOCK
2641 static bool io_resubmit_prep(struct io_kiocb *req)
2642 {
2643 struct io_async_rw *rw = req->async_data;
2644
2645 if (!rw)
2646 return !io_req_prep_async(req);
2647 iov_iter_restore(&rw->iter, &rw->iter_state);
2648 return true;
2649 }
2650
2651 static bool io_rw_should_reissue(struct io_kiocb *req)
2652 {
2653 umode_t mode = file_inode(req->file)->i_mode;
2654 struct io_ring_ctx *ctx = req->ctx;
2655
2656 if (!S_ISBLK(mode) && !S_ISREG(mode))
2657 return false;
2658 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2659 !(ctx->flags & IORING_SETUP_IOPOLL)))
2660 return false;
2661 /*
2662 * If ref is dying, we might be running poll reap from the exit work.
2663 * Don't attempt to reissue from that path, just let it fail with
2664 * -EAGAIN.
2665 */
2666 if (percpu_ref_is_dying(&ctx->refs))
2667 return false;
2668 /*
2669 * Play it safe and assume not safe to re-import and reissue if we're
2670 * not in the original thread group (or in task context).
2671 */
2672 if (!same_thread_group(req->task, current) || !in_task())
2673 return false;
2674 return true;
2675 }
2676 #else
2677 static bool io_resubmit_prep(struct io_kiocb *req)
2678 {
2679 return false;
2680 }
2681 static bool io_rw_should_reissue(struct io_kiocb *req)
2682 {
2683 return false;
2684 }
2685 #endif
2686
2687 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2688 {
2689 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2690 kiocb_end_write(req);
2691 fsnotify_modify(req->file);
2692 } else {
2693 fsnotify_access(req->file);
2694 }
2695 if (res != req->result) {
2696 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2697 io_rw_should_reissue(req)) {
2698 req->flags |= REQ_F_REISSUE;
2699 return true;
2700 }
2701 req_set_fail(req);
2702 req->result = res;
2703 }
2704 return false;
2705 }
2706
2707 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2708 {
2709 unsigned int cflags = io_put_rw_kbuf(req);
2710 int res = req->result;
2711
2712 if (*locked) {
2713 struct io_ring_ctx *ctx = req->ctx;
2714 struct io_submit_state *state = &ctx->submit_state;
2715
2716 io_req_complete_state(req, res, cflags);
2717 state->compl_reqs[state->compl_nr++] = req;
2718 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2719 io_submit_flush_completions(ctx);
2720 } else {
2721 io_req_complete_post(req, res, cflags);
2722 }
2723 }
2724
2725 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2726 unsigned int issue_flags)
2727 {
2728 if (__io_complete_rw_common(req, res))
2729 return;
2730 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2731 }
2732
2733 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2734 {
2735 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2736
2737 if (__io_complete_rw_common(req, res))
2738 return;
2739 req->result = res;
2740 req->io_task_work.func = io_req_task_complete;
2741 io_req_task_work_add(req);
2742 }
2743
2744 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2745 {
2746 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2747
2748 if (kiocb->ki_flags & IOCB_WRITE)
2749 kiocb_end_write(req);
2750 if (unlikely(res != req->result)) {
2751 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2752 req->flags |= REQ_F_REISSUE;
2753 return;
2754 }
2755 }
2756
2757 WRITE_ONCE(req->result, res);
2758 /* order with io_iopoll_complete() checking ->result */
2759 smp_wmb();
2760 WRITE_ONCE(req->iopoll_completed, 1);
2761 }
2762
2763 /*
2764 * After the iocb has been issued, it's safe to be found on the poll list.
2765 * Adding the kiocb to the list AFTER submission ensures that we don't
2766 * find it from a io_do_iopoll() thread before the issuer is done
2767 * accessing the kiocb cookie.
2768 */
2769 static void io_iopoll_req_issued(struct io_kiocb *req)
2770 {
2771 struct io_ring_ctx *ctx = req->ctx;
2772 const bool in_async = io_wq_current_is_worker();
2773
2774 /* workqueue context doesn't hold uring_lock, grab it now */
2775 if (unlikely(in_async))
2776 mutex_lock(&ctx->uring_lock);
2777
2778 /*
2779 * Track whether we have multiple files in our lists. This will impact
2780 * how we do polling eventually, not spinning if we're on potentially
2781 * different devices.
2782 */
2783 if (list_empty(&ctx->iopoll_list)) {
2784 ctx->poll_multi_queue = false;
2785 } else if (!ctx->poll_multi_queue) {
2786 struct io_kiocb *list_req;
2787 unsigned int queue_num0, queue_num1;
2788
2789 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2790 inflight_entry);
2791
2792 if (list_req->file != req->file) {
2793 ctx->poll_multi_queue = true;
2794 } else {
2795 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2796 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2797 if (queue_num0 != queue_num1)
2798 ctx->poll_multi_queue = true;
2799 }
2800 }
2801
2802 /*
2803 * For fast devices, IO may have already completed. If it has, add
2804 * it to the front so we find it first.
2805 */
2806 if (READ_ONCE(req->iopoll_completed))
2807 list_add(&req->inflight_entry, &ctx->iopoll_list);
2808 else
2809 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2810
2811 if (unlikely(in_async)) {
2812 /*
2813 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2814 * in sq thread task context or in io worker task context. If
2815 * current task context is sq thread, we don't need to check
2816 * whether should wake up sq thread.
2817 */
2818 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2819 wq_has_sleeper(&ctx->sq_data->wait))
2820 wake_up(&ctx->sq_data->wait);
2821
2822 mutex_unlock(&ctx->uring_lock);
2823 }
2824 }
2825
2826 static bool io_bdev_nowait(struct block_device *bdev)
2827 {
2828 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2829 }
2830
2831 /*
2832 * If we tracked the file through the SCM inflight mechanism, we could support
2833 * any file. For now, just ensure that anything potentially problematic is done
2834 * inline.
2835 */
2836 static bool __io_file_supports_nowait(struct file *file, int rw)
2837 {
2838 umode_t mode = file_inode(file)->i_mode;
2839
2840 if (S_ISBLK(mode)) {
2841 if (IS_ENABLED(CONFIG_BLOCK) &&
2842 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2843 return true;
2844 return false;
2845 }
2846 if (S_ISSOCK(mode))
2847 return true;
2848 if (S_ISREG(mode)) {
2849 if (IS_ENABLED(CONFIG_BLOCK) &&
2850 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2851 file->f_op != &io_uring_fops)
2852 return true;
2853 return false;
2854 }
2855
2856 /* any ->read/write should understand O_NONBLOCK */
2857 if (file->f_flags & O_NONBLOCK)
2858 return true;
2859
2860 if (!(file->f_mode & FMODE_NOWAIT))
2861 return false;
2862
2863 if (rw == READ)
2864 return file->f_op->read_iter != NULL;
2865
2866 return file->f_op->write_iter != NULL;
2867 }
2868
2869 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2870 {
2871 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2872 return true;
2873 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2874 return true;
2875
2876 return __io_file_supports_nowait(req->file, rw);
2877 }
2878
2879 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2880 int rw)
2881 {
2882 struct io_ring_ctx *ctx = req->ctx;
2883 struct kiocb *kiocb = &req->rw.kiocb;
2884 struct file *file = req->file;
2885 unsigned ioprio;
2886 int ret;
2887
2888 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2889 req->flags |= REQ_F_ISREG;
2890
2891 kiocb->ki_pos = READ_ONCE(sqe->off);
2892 if (kiocb->ki_pos == -1) {
2893 if (!(file->f_mode & FMODE_STREAM)) {
2894 req->flags |= REQ_F_CUR_POS;
2895 kiocb->ki_pos = file->f_pos;
2896 } else {
2897 kiocb->ki_pos = 0;
2898 }
2899 }
2900 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2901 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2902 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2903 if (unlikely(ret))
2904 return ret;
2905
2906 /*
2907 * If the file is marked O_NONBLOCK, still allow retry for it if it
2908 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2909 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2910 */
2911 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2912 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2913 req->flags |= REQ_F_NOWAIT;
2914
2915 ioprio = READ_ONCE(sqe->ioprio);
2916 if (ioprio) {
2917 ret = ioprio_check_cap(ioprio);
2918 if (ret)
2919 return ret;
2920
2921 kiocb->ki_ioprio = ioprio;
2922 } else
2923 kiocb->ki_ioprio = get_current_ioprio();
2924
2925 if (ctx->flags & IORING_SETUP_IOPOLL) {
2926 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2927 !kiocb->ki_filp->f_op->iopoll)
2928 return -EOPNOTSUPP;
2929
2930 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2931 kiocb->ki_complete = io_complete_rw_iopoll;
2932 req->iopoll_completed = 0;
2933 } else {
2934 if (kiocb->ki_flags & IOCB_HIPRI)
2935 return -EINVAL;
2936 kiocb->ki_complete = io_complete_rw;
2937 }
2938
2939 /* used for fixed read/write too - just read unconditionally */
2940 req->buf_index = READ_ONCE(sqe->buf_index);
2941 req->imu = NULL;
2942
2943 if (req->opcode == IORING_OP_READ_FIXED ||
2944 req->opcode == IORING_OP_WRITE_FIXED) {
2945 struct io_ring_ctx *ctx = req->ctx;
2946 u16 index;
2947
2948 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2949 return -EFAULT;
2950 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2951 req->imu = ctx->user_bufs[index];
2952 io_req_set_rsrc_node(req);
2953 }
2954
2955 req->rw.addr = READ_ONCE(sqe->addr);
2956 req->rw.len = READ_ONCE(sqe->len);
2957 return 0;
2958 }
2959
2960 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2961 {
2962 switch (ret) {
2963 case -EIOCBQUEUED:
2964 break;
2965 case -ERESTARTSYS:
2966 case -ERESTARTNOINTR:
2967 case -ERESTARTNOHAND:
2968 case -ERESTART_RESTARTBLOCK:
2969 /*
2970 * We can't just restart the syscall, since previously
2971 * submitted sqes may already be in progress. Just fail this
2972 * IO with EINTR.
2973 */
2974 ret = -EINTR;
2975 fallthrough;
2976 default:
2977 kiocb->ki_complete(kiocb, ret, 0);
2978 }
2979 }
2980
2981 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2982 unsigned int issue_flags)
2983 {
2984 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2985 struct io_async_rw *io = req->async_data;
2986
2987 /* add previously done IO, if any */
2988 if (io && io->bytes_done > 0) {
2989 if (ret < 0)
2990 ret = io->bytes_done;
2991 else
2992 ret += io->bytes_done;
2993 }
2994
2995 if (req->flags & REQ_F_CUR_POS)
2996 req->file->f_pos = kiocb->ki_pos;
2997 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2998 __io_complete_rw(req, ret, 0, issue_flags);
2999 else
3000 io_rw_done(kiocb, ret);
3001
3002 if (req->flags & REQ_F_REISSUE) {
3003 req->flags &= ~REQ_F_REISSUE;
3004 if (io_resubmit_prep(req)) {
3005 io_req_task_queue_reissue(req);
3006 } else {
3007 unsigned int cflags = io_put_rw_kbuf(req);
3008 struct io_ring_ctx *ctx = req->ctx;
3009
3010 req_set_fail(req);
3011 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3012 mutex_lock(&ctx->uring_lock);
3013 __io_req_complete(req, issue_flags, ret, cflags);
3014 mutex_unlock(&ctx->uring_lock);
3015 } else {
3016 __io_req_complete(req, issue_flags, ret, cflags);
3017 }
3018 }
3019 }
3020 }
3021
3022 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3023 struct io_mapped_ubuf *imu)
3024 {
3025 size_t len = req->rw.len;
3026 u64 buf_end, buf_addr = req->rw.addr;
3027 size_t offset;
3028
3029 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3030 return -EFAULT;
3031 /* not inside the mapped region */
3032 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3033 return -EFAULT;
3034
3035 /*
3036 * May not be a start of buffer, set size appropriately
3037 * and advance us to the beginning.
3038 */
3039 offset = buf_addr - imu->ubuf;
3040 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3041
3042 if (offset) {
3043 /*
3044 * Don't use iov_iter_advance() here, as it's really slow for
3045 * using the latter parts of a big fixed buffer - it iterates
3046 * over each segment manually. We can cheat a bit here, because
3047 * we know that:
3048 *
3049 * 1) it's a BVEC iter, we set it up
3050 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3051 * first and last bvec
3052 *
3053 * So just find our index, and adjust the iterator afterwards.
3054 * If the offset is within the first bvec (or the whole first
3055 * bvec, just use iov_iter_advance(). This makes it easier
3056 * since we can just skip the first segment, which may not
3057 * be PAGE_SIZE aligned.
3058 */
3059 const struct bio_vec *bvec = imu->bvec;
3060
3061 if (offset <= bvec->bv_len) {
3062 iov_iter_advance(iter, offset);
3063 } else {
3064 unsigned long seg_skip;
3065
3066 /* skip first vec */
3067 offset -= bvec->bv_len;
3068 seg_skip = 1 + (offset >> PAGE_SHIFT);
3069
3070 iter->bvec = bvec + seg_skip;
3071 iter->nr_segs -= seg_skip;
3072 iter->count -= bvec->bv_len + offset;
3073 iter->iov_offset = offset & ~PAGE_MASK;
3074 }
3075 }
3076
3077 return 0;
3078 }
3079
3080 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3081 {
3082 if (WARN_ON_ONCE(!req->imu))
3083 return -EFAULT;
3084 return __io_import_fixed(req, rw, iter, req->imu);
3085 }
3086
3087 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3088 {
3089 if (needs_lock)
3090 mutex_unlock(&ctx->uring_lock);
3091 }
3092
3093 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3094 {
3095 /*
3096 * "Normal" inline submissions always hold the uring_lock, since we
3097 * grab it from the system call. Same is true for the SQPOLL offload.
3098 * The only exception is when we've detached the request and issue it
3099 * from an async worker thread, grab the lock for that case.
3100 */
3101 if (needs_lock)
3102 mutex_lock(&ctx->uring_lock);
3103 }
3104
3105 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3106 int bgid, struct io_buffer *kbuf,
3107 bool needs_lock)
3108 {
3109 struct io_buffer *head;
3110
3111 if (req->flags & REQ_F_BUFFER_SELECTED)
3112 return kbuf;
3113
3114 io_ring_submit_lock(req->ctx, needs_lock);
3115
3116 lockdep_assert_held(&req->ctx->uring_lock);
3117
3118 head = xa_load(&req->ctx->io_buffers, bgid);
3119 if (head) {
3120 if (!list_empty(&head->list)) {
3121 kbuf = list_last_entry(&head->list, struct io_buffer,
3122 list);
3123 list_del(&kbuf->list);
3124 } else {
3125 kbuf = head;
3126 xa_erase(&req->ctx->io_buffers, bgid);
3127 }
3128 if (*len > kbuf->len)
3129 *len = kbuf->len;
3130 } else {
3131 kbuf = ERR_PTR(-ENOBUFS);
3132 }
3133
3134 io_ring_submit_unlock(req->ctx, needs_lock);
3135
3136 return kbuf;
3137 }
3138
3139 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3140 bool needs_lock)
3141 {
3142 struct io_buffer *kbuf;
3143 u16 bgid;
3144
3145 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3146 bgid = req->buf_index;
3147 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3148 if (IS_ERR(kbuf))
3149 return kbuf;
3150 req->rw.addr = (u64) (unsigned long) kbuf;
3151 req->flags |= REQ_F_BUFFER_SELECTED;
3152 return u64_to_user_ptr(kbuf->addr);
3153 }
3154
3155 #ifdef CONFIG_COMPAT
3156 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3157 bool needs_lock)
3158 {
3159 struct compat_iovec __user *uiov;
3160 compat_ssize_t clen;
3161 void __user *buf;
3162 ssize_t len;
3163
3164 uiov = u64_to_user_ptr(req->rw.addr);
3165 if (!access_ok(uiov, sizeof(*uiov)))
3166 return -EFAULT;
3167 if (__get_user(clen, &uiov->iov_len))
3168 return -EFAULT;
3169 if (clen < 0)
3170 return -EINVAL;
3171
3172 len = clen;
3173 buf = io_rw_buffer_select(req, &len, needs_lock);
3174 if (IS_ERR(buf))
3175 return PTR_ERR(buf);
3176 iov[0].iov_base = buf;
3177 iov[0].iov_len = (compat_size_t) len;
3178 return 0;
3179 }
3180 #endif
3181
3182 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3183 bool needs_lock)
3184 {
3185 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3186 void __user *buf;
3187 ssize_t len;
3188
3189 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3190 return -EFAULT;
3191
3192 len = iov[0].iov_len;
3193 if (len < 0)
3194 return -EINVAL;
3195 buf = io_rw_buffer_select(req, &len, needs_lock);
3196 if (IS_ERR(buf))
3197 return PTR_ERR(buf);
3198 iov[0].iov_base = buf;
3199 iov[0].iov_len = len;
3200 return 0;
3201 }
3202
3203 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3204 bool needs_lock)
3205 {
3206 if (req->flags & REQ_F_BUFFER_SELECTED) {
3207 struct io_buffer *kbuf;
3208
3209 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3210 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3211 iov[0].iov_len = kbuf->len;
3212 return 0;
3213 }
3214 if (req->rw.len != 1)
3215 return -EINVAL;
3216
3217 #ifdef CONFIG_COMPAT
3218 if (req->ctx->compat)
3219 return io_compat_import(req, iov, needs_lock);
3220 #endif
3221
3222 return __io_iov_buffer_select(req, iov, needs_lock);
3223 }
3224
3225 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3226 struct iov_iter *iter, bool needs_lock)
3227 {
3228 void __user *buf = u64_to_user_ptr(req->rw.addr);
3229 size_t sqe_len = req->rw.len;
3230 u8 opcode = req->opcode;
3231 ssize_t ret;
3232
3233 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3234 *iovec = NULL;
3235 return io_import_fixed(req, rw, iter);
3236 }
3237
3238 /* buffer index only valid with fixed read/write, or buffer select */
3239 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3240 return -EINVAL;
3241
3242 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3243 if (req->flags & REQ_F_BUFFER_SELECT) {
3244 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3245 if (IS_ERR(buf))
3246 return PTR_ERR(buf);
3247 req->rw.len = sqe_len;
3248 }
3249
3250 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3251 *iovec = NULL;
3252 return ret;
3253 }
3254
3255 if (req->flags & REQ_F_BUFFER_SELECT) {
3256 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3257 if (!ret)
3258 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3259 *iovec = NULL;
3260 return ret;
3261 }
3262
3263 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3264 req->ctx->compat);
3265 }
3266
3267 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3268 {
3269 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3270 }
3271
3272 /*
3273 * For files that don't have ->read_iter() and ->write_iter(), handle them
3274 * by looping over ->read() or ->write() manually.
3275 */
3276 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3277 {
3278 struct kiocb *kiocb = &req->rw.kiocb;
3279 struct file *file = req->file;
3280 ssize_t ret = 0;
3281
3282 /*
3283 * Don't support polled IO through this interface, and we can't
3284 * support non-blocking either. For the latter, this just causes
3285 * the kiocb to be handled from an async context.
3286 */
3287 if (kiocb->ki_flags & IOCB_HIPRI)
3288 return -EOPNOTSUPP;
3289 if (kiocb->ki_flags & IOCB_NOWAIT)
3290 return -EAGAIN;
3291
3292 while (iov_iter_count(iter)) {
3293 struct iovec iovec;
3294 ssize_t nr;
3295
3296 if (!iov_iter_is_bvec(iter)) {
3297 iovec = iov_iter_iovec(iter);
3298 } else {
3299 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3300 iovec.iov_len = req->rw.len;
3301 }
3302
3303 if (rw == READ) {
3304 nr = file->f_op->read(file, iovec.iov_base,
3305 iovec.iov_len, io_kiocb_ppos(kiocb));
3306 } else {
3307 nr = file->f_op->write(file, iovec.iov_base,
3308 iovec.iov_len, io_kiocb_ppos(kiocb));
3309 }
3310
3311 if (nr < 0) {
3312 if (!ret)
3313 ret = nr;
3314 break;
3315 }
3316 ret += nr;
3317 if (!iov_iter_is_bvec(iter)) {
3318 iov_iter_advance(iter, nr);
3319 } else {
3320 req->rw.addr += nr;
3321 req->rw.len -= nr;
3322 if (!req->rw.len)
3323 break;
3324 }
3325 if (nr != iovec.iov_len)
3326 break;
3327 }
3328
3329 return ret;
3330 }
3331
3332 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3333 const struct iovec *fast_iov, struct iov_iter *iter)
3334 {
3335 struct io_async_rw *rw = req->async_data;
3336
3337 memcpy(&rw->iter, iter, sizeof(*iter));
3338 rw->free_iovec = iovec;
3339 rw->bytes_done = 0;
3340 /* can only be fixed buffers, no need to do anything */
3341 if (iov_iter_is_bvec(iter))
3342 return;
3343 if (!iovec) {
3344 unsigned iov_off = 0;
3345
3346 rw->iter.iov = rw->fast_iov;
3347 if (iter->iov != fast_iov) {
3348 iov_off = iter->iov - fast_iov;
3349 rw->iter.iov += iov_off;
3350 }
3351 if (rw->fast_iov != fast_iov)
3352 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3353 sizeof(struct iovec) * iter->nr_segs);
3354 } else {
3355 req->flags |= REQ_F_NEED_CLEANUP;
3356 }
3357 }
3358
3359 static inline int io_alloc_async_data(struct io_kiocb *req)
3360 {
3361 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3362 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3363 return req->async_data == NULL;
3364 }
3365
3366 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3367 const struct iovec *fast_iov,
3368 struct iov_iter *iter, bool force)
3369 {
3370 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3371 return 0;
3372 if (!req->async_data) {
3373 struct io_async_rw *iorw;
3374
3375 if (io_alloc_async_data(req)) {
3376 kfree(iovec);
3377 return -ENOMEM;
3378 }
3379
3380 io_req_map_rw(req, iovec, fast_iov, iter);
3381 iorw = req->async_data;
3382 /* we've copied and mapped the iter, ensure state is saved */
3383 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3384 }
3385 return 0;
3386 }
3387
3388 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3389 {
3390 struct io_async_rw *iorw = req->async_data;
3391 struct iovec *iov = iorw->fast_iov;
3392 int ret;
3393
3394 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3395 if (unlikely(ret < 0))
3396 return ret;
3397
3398 iorw->bytes_done = 0;
3399 iorw->free_iovec = iov;
3400 if (iov)
3401 req->flags |= REQ_F_NEED_CLEANUP;
3402 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3403 return 0;
3404 }
3405
3406 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3407 {
3408 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3409 return -EBADF;
3410 return io_prep_rw(req, sqe, READ);
3411 }
3412
3413 /*
3414 * This is our waitqueue callback handler, registered through lock_page_async()
3415 * when we initially tried to do the IO with the iocb armed our waitqueue.
3416 * This gets called when the page is unlocked, and we generally expect that to
3417 * happen when the page IO is completed and the page is now uptodate. This will
3418 * queue a task_work based retry of the operation, attempting to copy the data
3419 * again. If the latter fails because the page was NOT uptodate, then we will
3420 * do a thread based blocking retry of the operation. That's the unexpected
3421 * slow path.
3422 */
3423 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3424 int sync, void *arg)
3425 {
3426 struct wait_page_queue *wpq;
3427 struct io_kiocb *req = wait->private;
3428 struct wait_page_key *key = arg;
3429
3430 wpq = container_of(wait, struct wait_page_queue, wait);
3431
3432 if (!wake_page_match(wpq, key))
3433 return 0;
3434
3435 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3436 list_del_init(&wait->entry);
3437 io_req_task_queue(req);
3438 return 1;
3439 }
3440
3441 /*
3442 * This controls whether a given IO request should be armed for async page
3443 * based retry. If we return false here, the request is handed to the async
3444 * worker threads for retry. If we're doing buffered reads on a regular file,
3445 * we prepare a private wait_page_queue entry and retry the operation. This
3446 * will either succeed because the page is now uptodate and unlocked, or it
3447 * will register a callback when the page is unlocked at IO completion. Through
3448 * that callback, io_uring uses task_work to setup a retry of the operation.
3449 * That retry will attempt the buffered read again. The retry will generally
3450 * succeed, or in rare cases where it fails, we then fall back to using the
3451 * async worker threads for a blocking retry.
3452 */
3453 static bool io_rw_should_retry(struct io_kiocb *req)
3454 {
3455 struct io_async_rw *rw = req->async_data;
3456 struct wait_page_queue *wait = &rw->wpq;
3457 struct kiocb *kiocb = &req->rw.kiocb;
3458
3459 /* never retry for NOWAIT, we just complete with -EAGAIN */
3460 if (req->flags & REQ_F_NOWAIT)
3461 return false;
3462
3463 /* Only for buffered IO */
3464 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3465 return false;
3466
3467 /*
3468 * just use poll if we can, and don't attempt if the fs doesn't
3469 * support callback based unlocks
3470 */
3471 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3472 return false;
3473
3474 wait->wait.func = io_async_buf_func;
3475 wait->wait.private = req;
3476 wait->wait.flags = 0;
3477 INIT_LIST_HEAD(&wait->wait.entry);
3478 kiocb->ki_flags |= IOCB_WAITQ;
3479 kiocb->ki_flags &= ~IOCB_NOWAIT;
3480 kiocb->ki_waitq = wait;
3481 return true;
3482 }
3483
3484 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3485 {
3486 if (req->file->f_op->read_iter)
3487 return call_read_iter(req->file, &req->rw.kiocb, iter);
3488 else if (req->file->f_op->read)
3489 return loop_rw_iter(READ, req, iter);
3490 else
3491 return -EINVAL;
3492 }
3493
3494 static bool need_read_all(struct io_kiocb *req)
3495 {
3496 return req->flags & REQ_F_ISREG ||
3497 S_ISBLK(file_inode(req->file)->i_mode);
3498 }
3499
3500 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3501 {
3502 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3503 struct kiocb *kiocb = &req->rw.kiocb;
3504 struct iov_iter __iter, *iter = &__iter;
3505 struct io_async_rw *rw = req->async_data;
3506 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3507 struct iov_iter_state __state, *state;
3508 ssize_t ret, ret2;
3509
3510 if (rw) {
3511 iter = &rw->iter;
3512 state = &rw->iter_state;
3513 /*
3514 * We come here from an earlier attempt, restore our state to
3515 * match in case it doesn't. It's cheap enough that we don't
3516 * need to make this conditional.
3517 */
3518 iov_iter_restore(iter, state);
3519 iovec = NULL;
3520 } else {
3521 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3522 if (ret < 0)
3523 return ret;
3524 state = &__state;
3525 iov_iter_save_state(iter, state);
3526 }
3527 req->result = iov_iter_count(iter);
3528
3529 /* Ensure we clear previously set non-block flag */
3530 if (!force_nonblock)
3531 kiocb->ki_flags &= ~IOCB_NOWAIT;
3532 else
3533 kiocb->ki_flags |= IOCB_NOWAIT;
3534
3535 /* If the file doesn't support async, just async punt */
3536 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3537 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3538 return ret ?: -EAGAIN;
3539 }
3540
3541 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3542 if (unlikely(ret)) {
3543 kfree(iovec);
3544 return ret;
3545 }
3546
3547 ret = io_iter_do_read(req, iter);
3548
3549 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3550 req->flags &= ~REQ_F_REISSUE;
3551 /* IOPOLL retry should happen for io-wq threads */
3552 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3553 goto done;
3554 /* no retry on NONBLOCK nor RWF_NOWAIT */
3555 if (req->flags & REQ_F_NOWAIT)
3556 goto done;
3557 ret = 0;
3558 } else if (ret == -EIOCBQUEUED) {
3559 goto out_free;
3560 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3561 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3562 /* read all, failed, already did sync or don't want to retry */
3563 goto done;
3564 }
3565
3566 /*
3567 * Don't depend on the iter state matching what was consumed, or being
3568 * untouched in case of error. Restore it and we'll advance it
3569 * manually if we need to.
3570 */
3571 iov_iter_restore(iter, state);
3572
3573 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3574 if (ret2)
3575 return ret2;
3576
3577 iovec = NULL;
3578 rw = req->async_data;
3579 /*
3580 * Now use our persistent iterator and state, if we aren't already.
3581 * We've restored and mapped the iter to match.
3582 */
3583 if (iter != &rw->iter) {
3584 iter = &rw->iter;
3585 state = &rw->iter_state;
3586 }
3587
3588 do {
3589 /*
3590 * We end up here because of a partial read, either from
3591 * above or inside this loop. Advance the iter by the bytes
3592 * that were consumed.
3593 */
3594 iov_iter_advance(iter, ret);
3595 if (!iov_iter_count(iter))
3596 break;
3597 rw->bytes_done += ret;
3598 iov_iter_save_state(iter, state);
3599
3600 /* if we can retry, do so with the callbacks armed */
3601 if (!io_rw_should_retry(req)) {
3602 kiocb->ki_flags &= ~IOCB_WAITQ;
3603 return -EAGAIN;
3604 }
3605
3606 /*
3607 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3608 * we get -EIOCBQUEUED, then we'll get a notification when the
3609 * desired page gets unlocked. We can also get a partial read
3610 * here, and if we do, then just retry at the new offset.
3611 */
3612 ret = io_iter_do_read(req, iter);
3613 if (ret == -EIOCBQUEUED)
3614 return 0;
3615 /* we got some bytes, but not all. retry. */
3616 kiocb->ki_flags &= ~IOCB_WAITQ;
3617 iov_iter_restore(iter, state);
3618 } while (ret > 0);
3619 done:
3620 kiocb_done(kiocb, ret, issue_flags);
3621 out_free:
3622 /* it's faster to check here then delegate to kfree */
3623 if (iovec)
3624 kfree(iovec);
3625 return 0;
3626 }
3627
3628 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3629 {
3630 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3631 return -EBADF;
3632 return io_prep_rw(req, sqe, WRITE);
3633 }
3634
3635 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3636 {
3637 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3638 struct kiocb *kiocb = &req->rw.kiocb;
3639 struct iov_iter __iter, *iter = &__iter;
3640 struct io_async_rw *rw = req->async_data;
3641 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3642 struct iov_iter_state __state, *state;
3643 ssize_t ret, ret2;
3644
3645 if (rw) {
3646 iter = &rw->iter;
3647 state = &rw->iter_state;
3648 iov_iter_restore(iter, state);
3649 iovec = NULL;
3650 } else {
3651 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3652 if (ret < 0)
3653 return ret;
3654 state = &__state;
3655 iov_iter_save_state(iter, state);
3656 }
3657 req->result = iov_iter_count(iter);
3658
3659 /* Ensure we clear previously set non-block flag */
3660 if (!force_nonblock)
3661 kiocb->ki_flags &= ~IOCB_NOWAIT;
3662 else
3663 kiocb->ki_flags |= IOCB_NOWAIT;
3664
3665 /* If the file doesn't support async, just async punt */
3666 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3667 goto copy_iov;
3668
3669 /* file path doesn't support NOWAIT for non-direct_IO */
3670 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3671 (req->flags & REQ_F_ISREG))
3672 goto copy_iov;
3673
3674 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3675 if (unlikely(ret))
3676 goto out_free;
3677
3678 /*
3679 * Open-code file_start_write here to grab freeze protection,
3680 * which will be released by another thread in
3681 * io_complete_rw(). Fool lockdep by telling it the lock got
3682 * released so that it doesn't complain about the held lock when
3683 * we return to userspace.
3684 */
3685 if (req->flags & REQ_F_ISREG) {
3686 sb_start_write(file_inode(req->file)->i_sb);
3687 __sb_writers_release(file_inode(req->file)->i_sb,
3688 SB_FREEZE_WRITE);
3689 }
3690 kiocb->ki_flags |= IOCB_WRITE;
3691
3692 if (req->file->f_op->write_iter)
3693 ret2 = call_write_iter(req->file, kiocb, iter);
3694 else if (req->file->f_op->write)
3695 ret2 = loop_rw_iter(WRITE, req, iter);
3696 else
3697 ret2 = -EINVAL;
3698
3699 if (req->flags & REQ_F_REISSUE) {
3700 req->flags &= ~REQ_F_REISSUE;
3701 ret2 = -EAGAIN;
3702 }
3703
3704 /*
3705 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3706 * retry them without IOCB_NOWAIT.
3707 */
3708 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3709 ret2 = -EAGAIN;
3710 /* no retry on NONBLOCK nor RWF_NOWAIT */
3711 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3712 goto done;
3713 if (!force_nonblock || ret2 != -EAGAIN) {
3714 /* IOPOLL retry should happen for io-wq threads */
3715 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3716 goto copy_iov;
3717 done:
3718 kiocb_done(kiocb, ret2, issue_flags);
3719 } else {
3720 copy_iov:
3721 iov_iter_restore(iter, state);
3722 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3723 return ret ?: -EAGAIN;
3724 }
3725 out_free:
3726 /* it's reportedly faster than delegating the null check to kfree() */
3727 if (iovec)
3728 kfree(iovec);
3729 return ret;
3730 }
3731
3732 static int io_renameat_prep(struct io_kiocb *req,
3733 const struct io_uring_sqe *sqe)
3734 {
3735 struct io_rename *ren = &req->rename;
3736 const char __user *oldf, *newf;
3737
3738 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3739 return -EINVAL;
3740 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3741 return -EINVAL;
3742 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3743 return -EBADF;
3744
3745 ren->old_dfd = READ_ONCE(sqe->fd);
3746 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3747 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3748 ren->new_dfd = READ_ONCE(sqe->len);
3749 ren->flags = READ_ONCE(sqe->rename_flags);
3750
3751 ren->oldpath = getname(oldf);
3752 if (IS_ERR(ren->oldpath))
3753 return PTR_ERR(ren->oldpath);
3754
3755 ren->newpath = getname(newf);
3756 if (IS_ERR(ren->newpath)) {
3757 putname(ren->oldpath);
3758 return PTR_ERR(ren->newpath);
3759 }
3760
3761 req->flags |= REQ_F_NEED_CLEANUP;
3762 return 0;
3763 }
3764
3765 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3766 {
3767 struct io_rename *ren = &req->rename;
3768 int ret;
3769
3770 if (issue_flags & IO_URING_F_NONBLOCK)
3771 return -EAGAIN;
3772
3773 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3774 ren->newpath, ren->flags);
3775
3776 req->flags &= ~REQ_F_NEED_CLEANUP;
3777 if (ret < 0)
3778 req_set_fail(req);
3779 io_req_complete(req, ret);
3780 return 0;
3781 }
3782
3783 static int io_unlinkat_prep(struct io_kiocb *req,
3784 const struct io_uring_sqe *sqe)
3785 {
3786 struct io_unlink *un = &req->unlink;
3787 const char __user *fname;
3788
3789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3790 return -EINVAL;
3791 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3792 sqe->splice_fd_in)
3793 return -EINVAL;
3794 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3795 return -EBADF;
3796
3797 un->dfd = READ_ONCE(sqe->fd);
3798
3799 un->flags = READ_ONCE(sqe->unlink_flags);
3800 if (un->flags & ~AT_REMOVEDIR)
3801 return -EINVAL;
3802
3803 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3804 un->filename = getname(fname);
3805 if (IS_ERR(un->filename))
3806 return PTR_ERR(un->filename);
3807
3808 req->flags |= REQ_F_NEED_CLEANUP;
3809 return 0;
3810 }
3811
3812 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3813 {
3814 struct io_unlink *un = &req->unlink;
3815 int ret;
3816
3817 if (issue_flags & IO_URING_F_NONBLOCK)
3818 return -EAGAIN;
3819
3820 if (un->flags & AT_REMOVEDIR)
3821 ret = do_rmdir(un->dfd, un->filename);
3822 else
3823 ret = do_unlinkat(un->dfd, un->filename);
3824
3825 req->flags &= ~REQ_F_NEED_CLEANUP;
3826 if (ret < 0)
3827 req_set_fail(req);
3828 io_req_complete(req, ret);
3829 return 0;
3830 }
3831
3832 static int io_mkdirat_prep(struct io_kiocb *req,
3833 const struct io_uring_sqe *sqe)
3834 {
3835 struct io_mkdir *mkd = &req->mkdir;
3836 const char __user *fname;
3837
3838 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3839 return -EINVAL;
3840 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3841 sqe->splice_fd_in)
3842 return -EINVAL;
3843 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3844 return -EBADF;
3845
3846 mkd->dfd = READ_ONCE(sqe->fd);
3847 mkd->mode = READ_ONCE(sqe->len);
3848
3849 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3850 mkd->filename = getname(fname);
3851 if (IS_ERR(mkd->filename))
3852 return PTR_ERR(mkd->filename);
3853
3854 req->flags |= REQ_F_NEED_CLEANUP;
3855 return 0;
3856 }
3857
3858 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3859 {
3860 struct io_mkdir *mkd = &req->mkdir;
3861 int ret;
3862
3863 if (issue_flags & IO_URING_F_NONBLOCK)
3864 return -EAGAIN;
3865
3866 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3867
3868 req->flags &= ~REQ_F_NEED_CLEANUP;
3869 if (ret < 0)
3870 req_set_fail(req);
3871 io_req_complete(req, ret);
3872 return 0;
3873 }
3874
3875 static int io_symlinkat_prep(struct io_kiocb *req,
3876 const struct io_uring_sqe *sqe)
3877 {
3878 struct io_symlink *sl = &req->symlink;
3879 const char __user *oldpath, *newpath;
3880
3881 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3882 return -EINVAL;
3883 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3884 sqe->splice_fd_in)
3885 return -EINVAL;
3886 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3887 return -EBADF;
3888
3889 sl->new_dfd = READ_ONCE(sqe->fd);
3890 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3891 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3892
3893 sl->oldpath = getname(oldpath);
3894 if (IS_ERR(sl->oldpath))
3895 return PTR_ERR(sl->oldpath);
3896
3897 sl->newpath = getname(newpath);
3898 if (IS_ERR(sl->newpath)) {
3899 putname(sl->oldpath);
3900 return PTR_ERR(sl->newpath);
3901 }
3902
3903 req->flags |= REQ_F_NEED_CLEANUP;
3904 return 0;
3905 }
3906
3907 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3908 {
3909 struct io_symlink *sl = &req->symlink;
3910 int ret;
3911
3912 if (issue_flags & IO_URING_F_NONBLOCK)
3913 return -EAGAIN;
3914
3915 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3916
3917 req->flags &= ~REQ_F_NEED_CLEANUP;
3918 if (ret < 0)
3919 req_set_fail(req);
3920 io_req_complete(req, ret);
3921 return 0;
3922 }
3923
3924 static int io_linkat_prep(struct io_kiocb *req,
3925 const struct io_uring_sqe *sqe)
3926 {
3927 struct io_hardlink *lnk = &req->hardlink;
3928 const char __user *oldf, *newf;
3929
3930 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3931 return -EINVAL;
3932 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3933 return -EINVAL;
3934 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3935 return -EBADF;
3936
3937 lnk->old_dfd = READ_ONCE(sqe->fd);
3938 lnk->new_dfd = READ_ONCE(sqe->len);
3939 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3940 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3941 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3942
3943 lnk->oldpath = getname(oldf);
3944 if (IS_ERR(lnk->oldpath))
3945 return PTR_ERR(lnk->oldpath);
3946
3947 lnk->newpath = getname(newf);
3948 if (IS_ERR(lnk->newpath)) {
3949 putname(lnk->oldpath);
3950 return PTR_ERR(lnk->newpath);
3951 }
3952
3953 req->flags |= REQ_F_NEED_CLEANUP;
3954 return 0;
3955 }
3956
3957 static int io_linkat(struct io_kiocb *req, int issue_flags)
3958 {
3959 struct io_hardlink *lnk = &req->hardlink;
3960 int ret;
3961
3962 if (issue_flags & IO_URING_F_NONBLOCK)
3963 return -EAGAIN;
3964
3965 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3966 lnk->newpath, lnk->flags);
3967
3968 req->flags &= ~REQ_F_NEED_CLEANUP;
3969 if (ret < 0)
3970 req_set_fail(req);
3971 io_req_complete(req, ret);
3972 return 0;
3973 }
3974
3975 static int io_shutdown_prep(struct io_kiocb *req,
3976 const struct io_uring_sqe *sqe)
3977 {
3978 #if defined(CONFIG_NET)
3979 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3980 return -EINVAL;
3981 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3982 sqe->buf_index || sqe->splice_fd_in))
3983 return -EINVAL;
3984
3985 req->shutdown.how = READ_ONCE(sqe->len);
3986 return 0;
3987 #else
3988 return -EOPNOTSUPP;
3989 #endif
3990 }
3991
3992 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3993 {
3994 #if defined(CONFIG_NET)
3995 struct socket *sock;
3996 int ret;
3997
3998 if (issue_flags & IO_URING_F_NONBLOCK)
3999 return -EAGAIN;
4000
4001 sock = sock_from_file(req->file);
4002 if (unlikely(!sock))
4003 return -ENOTSOCK;
4004
4005 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4006 if (ret < 0)
4007 req_set_fail(req);
4008 io_req_complete(req, ret);
4009 return 0;
4010 #else
4011 return -EOPNOTSUPP;
4012 #endif
4013 }
4014
4015 static int __io_splice_prep(struct io_kiocb *req,
4016 const struct io_uring_sqe *sqe)
4017 {
4018 struct io_splice *sp = &req->splice;
4019 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4020
4021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4022 return -EINVAL;
4023
4024 sp->len = READ_ONCE(sqe->len);
4025 sp->flags = READ_ONCE(sqe->splice_flags);
4026 if (unlikely(sp->flags & ~valid_flags))
4027 return -EINVAL;
4028 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4029 return 0;
4030 }
4031
4032 static int io_tee_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4034 {
4035 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4036 return -EINVAL;
4037 return __io_splice_prep(req, sqe);
4038 }
4039
4040 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4041 {
4042 struct io_splice *sp = &req->splice;
4043 struct file *out = sp->file_out;
4044 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4045 struct file *in;
4046 long ret = 0;
4047
4048 if (issue_flags & IO_URING_F_NONBLOCK)
4049 return -EAGAIN;
4050
4051 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4052 (sp->flags & SPLICE_F_FD_IN_FIXED));
4053 if (!in) {
4054 ret = -EBADF;
4055 goto done;
4056 }
4057
4058 if (sp->len)
4059 ret = do_tee(in, out, sp->len, flags);
4060
4061 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4062 io_put_file(in);
4063 done:
4064 if (ret != sp->len)
4065 req_set_fail(req);
4066 io_req_complete(req, ret);
4067 return 0;
4068 }
4069
4070 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4071 {
4072 struct io_splice *sp = &req->splice;
4073
4074 sp->off_in = READ_ONCE(sqe->splice_off_in);
4075 sp->off_out = READ_ONCE(sqe->off);
4076 return __io_splice_prep(req, sqe);
4077 }
4078
4079 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4080 {
4081 struct io_splice *sp = &req->splice;
4082 struct file *out = sp->file_out;
4083 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4084 loff_t *poff_in, *poff_out;
4085 struct file *in;
4086 long ret = 0;
4087
4088 if (issue_flags & IO_URING_F_NONBLOCK)
4089 return -EAGAIN;
4090
4091 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4092 (sp->flags & SPLICE_F_FD_IN_FIXED));
4093 if (!in) {
4094 ret = -EBADF;
4095 goto done;
4096 }
4097
4098 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4099 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4100
4101 if (sp->len)
4102 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4103
4104 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4105 io_put_file(in);
4106 done:
4107 if (ret != sp->len)
4108 req_set_fail(req);
4109 io_req_complete(req, ret);
4110 return 0;
4111 }
4112
4113 /*
4114 * IORING_OP_NOP just posts a completion event, nothing else.
4115 */
4116 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4117 {
4118 struct io_ring_ctx *ctx = req->ctx;
4119
4120 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4121 return -EINVAL;
4122
4123 __io_req_complete(req, issue_flags, 0, 0);
4124 return 0;
4125 }
4126
4127 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4128 {
4129 struct io_ring_ctx *ctx = req->ctx;
4130
4131 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4132 return -EINVAL;
4133 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4134 sqe->splice_fd_in))
4135 return -EINVAL;
4136
4137 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4138 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4139 return -EINVAL;
4140
4141 req->sync.off = READ_ONCE(sqe->off);
4142 req->sync.len = READ_ONCE(sqe->len);
4143 return 0;
4144 }
4145
4146 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4147 {
4148 loff_t end = req->sync.off + req->sync.len;
4149 int ret;
4150
4151 /* fsync always requires a blocking context */
4152 if (issue_flags & IO_URING_F_NONBLOCK)
4153 return -EAGAIN;
4154
4155 ret = vfs_fsync_range(req->file, req->sync.off,
4156 end > 0 ? end : LLONG_MAX,
4157 req->sync.flags & IORING_FSYNC_DATASYNC);
4158 if (ret < 0)
4159 req_set_fail(req);
4160 io_req_complete(req, ret);
4161 return 0;
4162 }
4163
4164 static int io_fallocate_prep(struct io_kiocb *req,
4165 const struct io_uring_sqe *sqe)
4166 {
4167 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4168 sqe->splice_fd_in)
4169 return -EINVAL;
4170 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4171 return -EINVAL;
4172
4173 req->sync.off = READ_ONCE(sqe->off);
4174 req->sync.len = READ_ONCE(sqe->addr);
4175 req->sync.mode = READ_ONCE(sqe->len);
4176 return 0;
4177 }
4178
4179 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4180 {
4181 int ret;
4182
4183 /* fallocate always requiring blocking context */
4184 if (issue_flags & IO_URING_F_NONBLOCK)
4185 return -EAGAIN;
4186 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4187 req->sync.len);
4188 if (ret < 0)
4189 req_set_fail(req);
4190 else
4191 fsnotify_modify(req->file);
4192 io_req_complete(req, ret);
4193 return 0;
4194 }
4195
4196 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4197 {
4198 const char __user *fname;
4199 int ret;
4200
4201 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4202 return -EINVAL;
4203 if (unlikely(sqe->ioprio || sqe->buf_index))
4204 return -EINVAL;
4205 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4206 return -EBADF;
4207
4208 /* open.how should be already initialised */
4209 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4210 req->open.how.flags |= O_LARGEFILE;
4211
4212 req->open.dfd = READ_ONCE(sqe->fd);
4213 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4214 req->open.filename = getname(fname);
4215 if (IS_ERR(req->open.filename)) {
4216 ret = PTR_ERR(req->open.filename);
4217 req->open.filename = NULL;
4218 return ret;
4219 }
4220
4221 req->open.file_slot = READ_ONCE(sqe->file_index);
4222 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4223 return -EINVAL;
4224
4225 req->open.nofile = rlimit(RLIMIT_NOFILE);
4226 req->flags |= REQ_F_NEED_CLEANUP;
4227 return 0;
4228 }
4229
4230 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4231 {
4232 u64 mode = READ_ONCE(sqe->len);
4233 u64 flags = READ_ONCE(sqe->open_flags);
4234
4235 req->open.how = build_open_how(flags, mode);
4236 return __io_openat_prep(req, sqe);
4237 }
4238
4239 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4240 {
4241 struct open_how __user *how;
4242 size_t len;
4243 int ret;
4244
4245 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4246 len = READ_ONCE(sqe->len);
4247 if (len < OPEN_HOW_SIZE_VER0)
4248 return -EINVAL;
4249
4250 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4251 len);
4252 if (ret)
4253 return ret;
4254
4255 return __io_openat_prep(req, sqe);
4256 }
4257
4258 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4259 {
4260 struct open_flags op;
4261 struct file *file;
4262 bool resolve_nonblock, nonblock_set;
4263 bool fixed = !!req->open.file_slot;
4264 int ret;
4265
4266 ret = build_open_flags(&req->open.how, &op);
4267 if (ret)
4268 goto err;
4269 nonblock_set = op.open_flag & O_NONBLOCK;
4270 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4271 if (issue_flags & IO_URING_F_NONBLOCK) {
4272 /*
4273 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4274 * it'll always -EAGAIN
4275 */
4276 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4277 return -EAGAIN;
4278 op.lookup_flags |= LOOKUP_CACHED;
4279 op.open_flag |= O_NONBLOCK;
4280 }
4281
4282 if (!fixed) {
4283 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4284 if (ret < 0)
4285 goto err;
4286 }
4287
4288 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4289 if (IS_ERR(file)) {
4290 /*
4291 * We could hang on to this 'fd' on retrying, but seems like
4292 * marginal gain for something that is now known to be a slower
4293 * path. So just put it, and we'll get a new one when we retry.
4294 */
4295 if (!fixed)
4296 put_unused_fd(ret);
4297
4298 ret = PTR_ERR(file);
4299 /* only retry if RESOLVE_CACHED wasn't already set by application */
4300 if (ret == -EAGAIN &&
4301 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4302 return -EAGAIN;
4303 goto err;
4304 }
4305
4306 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4307 file->f_flags &= ~O_NONBLOCK;
4308 fsnotify_open(file);
4309
4310 if (!fixed)
4311 fd_install(ret, file);
4312 else
4313 ret = io_install_fixed_file(req, file, issue_flags,
4314 req->open.file_slot - 1);
4315 err:
4316 putname(req->open.filename);
4317 req->flags &= ~REQ_F_NEED_CLEANUP;
4318 if (ret < 0)
4319 req_set_fail(req);
4320 __io_req_complete(req, issue_flags, ret, 0);
4321 return 0;
4322 }
4323
4324 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4325 {
4326 return io_openat2(req, issue_flags);
4327 }
4328
4329 static int io_remove_buffers_prep(struct io_kiocb *req,
4330 const struct io_uring_sqe *sqe)
4331 {
4332 struct io_provide_buf *p = &req->pbuf;
4333 u64 tmp;
4334
4335 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4336 sqe->splice_fd_in)
4337 return -EINVAL;
4338
4339 tmp = READ_ONCE(sqe->fd);
4340 if (!tmp || tmp > USHRT_MAX)
4341 return -EINVAL;
4342
4343 memset(p, 0, sizeof(*p));
4344 p->nbufs = tmp;
4345 p->bgid = READ_ONCE(sqe->buf_group);
4346 return 0;
4347 }
4348
4349 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4350 int bgid, unsigned nbufs)
4351 {
4352 unsigned i = 0;
4353
4354 /* shouldn't happen */
4355 if (!nbufs)
4356 return 0;
4357
4358 /* the head kbuf is the list itself */
4359 while (!list_empty(&buf->list)) {
4360 struct io_buffer *nxt;
4361
4362 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4363 list_del(&nxt->list);
4364 kfree(nxt);
4365 if (++i == nbufs)
4366 return i;
4367 cond_resched();
4368 }
4369 i++;
4370 kfree(buf);
4371 xa_erase(&ctx->io_buffers, bgid);
4372
4373 return i;
4374 }
4375
4376 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4377 {
4378 struct io_provide_buf *p = &req->pbuf;
4379 struct io_ring_ctx *ctx = req->ctx;
4380 struct io_buffer *head;
4381 int ret = 0;
4382 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4383
4384 io_ring_submit_lock(ctx, !force_nonblock);
4385
4386 lockdep_assert_held(&ctx->uring_lock);
4387
4388 ret = -ENOENT;
4389 head = xa_load(&ctx->io_buffers, p->bgid);
4390 if (head)
4391 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4392 if (ret < 0)
4393 req_set_fail(req);
4394
4395 /* complete before unlock, IOPOLL may need the lock */
4396 __io_req_complete(req, issue_flags, ret, 0);
4397 io_ring_submit_unlock(ctx, !force_nonblock);
4398 return 0;
4399 }
4400
4401 static int io_provide_buffers_prep(struct io_kiocb *req,
4402 const struct io_uring_sqe *sqe)
4403 {
4404 unsigned long size, tmp_check;
4405 struct io_provide_buf *p = &req->pbuf;
4406 u64 tmp;
4407
4408 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4409 return -EINVAL;
4410
4411 tmp = READ_ONCE(sqe->fd);
4412 if (!tmp || tmp > USHRT_MAX)
4413 return -E2BIG;
4414 p->nbufs = tmp;
4415 p->addr = READ_ONCE(sqe->addr);
4416 p->len = READ_ONCE(sqe->len);
4417
4418 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4419 &size))
4420 return -EOVERFLOW;
4421 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4422 return -EOVERFLOW;
4423
4424 size = (unsigned long)p->len * p->nbufs;
4425 if (!access_ok(u64_to_user_ptr(p->addr), size))
4426 return -EFAULT;
4427
4428 p->bgid = READ_ONCE(sqe->buf_group);
4429 tmp = READ_ONCE(sqe->off);
4430 if (tmp > USHRT_MAX)
4431 return -E2BIG;
4432 p->bid = tmp;
4433 return 0;
4434 }
4435
4436 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4437 {
4438 struct io_buffer *buf;
4439 u64 addr = pbuf->addr;
4440 int i, bid = pbuf->bid;
4441
4442 for (i = 0; i < pbuf->nbufs; i++) {
4443 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4444 if (!buf)
4445 break;
4446
4447 buf->addr = addr;
4448 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4449 buf->bid = bid;
4450 addr += pbuf->len;
4451 bid++;
4452 if (!*head) {
4453 INIT_LIST_HEAD(&buf->list);
4454 *head = buf;
4455 } else {
4456 list_add_tail(&buf->list, &(*head)->list);
4457 }
4458 cond_resched();
4459 }
4460
4461 return i ? i : -ENOMEM;
4462 }
4463
4464 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4465 {
4466 struct io_provide_buf *p = &req->pbuf;
4467 struct io_ring_ctx *ctx = req->ctx;
4468 struct io_buffer *head, *list;
4469 int ret = 0;
4470 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4471
4472 io_ring_submit_lock(ctx, !force_nonblock);
4473
4474 lockdep_assert_held(&ctx->uring_lock);
4475
4476 list = head = xa_load(&ctx->io_buffers, p->bgid);
4477
4478 ret = io_add_buffers(p, &head);
4479 if (ret >= 0 && !list) {
4480 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4481 if (ret < 0)
4482 __io_remove_buffers(ctx, head, p->bgid, -1U);
4483 }
4484 if (ret < 0)
4485 req_set_fail(req);
4486 /* complete before unlock, IOPOLL may need the lock */
4487 __io_req_complete(req, issue_flags, ret, 0);
4488 io_ring_submit_unlock(ctx, !force_nonblock);
4489 return 0;
4490 }
4491
4492 static int io_epoll_ctl_prep(struct io_kiocb *req,
4493 const struct io_uring_sqe *sqe)
4494 {
4495 #if defined(CONFIG_EPOLL)
4496 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4497 return -EINVAL;
4498 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4499 return -EINVAL;
4500
4501 req->epoll.epfd = READ_ONCE(sqe->fd);
4502 req->epoll.op = READ_ONCE(sqe->len);
4503 req->epoll.fd = READ_ONCE(sqe->off);
4504
4505 if (ep_op_has_event(req->epoll.op)) {
4506 struct epoll_event __user *ev;
4507
4508 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4509 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4510 return -EFAULT;
4511 }
4512
4513 return 0;
4514 #else
4515 return -EOPNOTSUPP;
4516 #endif
4517 }
4518
4519 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4520 {
4521 #if defined(CONFIG_EPOLL)
4522 struct io_epoll *ie = &req->epoll;
4523 int ret;
4524 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4525
4526 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4527 if (force_nonblock && ret == -EAGAIN)
4528 return -EAGAIN;
4529
4530 if (ret < 0)
4531 req_set_fail(req);
4532 __io_req_complete(req, issue_flags, ret, 0);
4533 return 0;
4534 #else
4535 return -EOPNOTSUPP;
4536 #endif
4537 }
4538
4539 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4540 {
4541 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4542 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4543 return -EINVAL;
4544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4545 return -EINVAL;
4546
4547 req->madvise.addr = READ_ONCE(sqe->addr);
4548 req->madvise.len = READ_ONCE(sqe->len);
4549 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4550 return 0;
4551 #else
4552 return -EOPNOTSUPP;
4553 #endif
4554 }
4555
4556 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4557 {
4558 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4559 struct io_madvise *ma = &req->madvise;
4560 int ret;
4561
4562 if (issue_flags & IO_URING_F_NONBLOCK)
4563 return -EAGAIN;
4564
4565 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4566 if (ret < 0)
4567 req_set_fail(req);
4568 io_req_complete(req, ret);
4569 return 0;
4570 #else
4571 return -EOPNOTSUPP;
4572 #endif
4573 }
4574
4575 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4576 {
4577 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4578 return -EINVAL;
4579 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4580 return -EINVAL;
4581
4582 req->fadvise.offset = READ_ONCE(sqe->off);
4583 req->fadvise.len = READ_ONCE(sqe->len);
4584 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4585 return 0;
4586 }
4587
4588 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4589 {
4590 struct io_fadvise *fa = &req->fadvise;
4591 int ret;
4592
4593 if (issue_flags & IO_URING_F_NONBLOCK) {
4594 switch (fa->advice) {
4595 case POSIX_FADV_NORMAL:
4596 case POSIX_FADV_RANDOM:
4597 case POSIX_FADV_SEQUENTIAL:
4598 break;
4599 default:
4600 return -EAGAIN;
4601 }
4602 }
4603
4604 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4605 if (ret < 0)
4606 req_set_fail(req);
4607 __io_req_complete(req, issue_flags, ret, 0);
4608 return 0;
4609 }
4610
4611 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4612 {
4613 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4614 return -EINVAL;
4615 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4616 return -EINVAL;
4617 if (req->flags & REQ_F_FIXED_FILE)
4618 return -EBADF;
4619
4620 req->statx.dfd = READ_ONCE(sqe->fd);
4621 req->statx.mask = READ_ONCE(sqe->len);
4622 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4623 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4624 req->statx.flags = READ_ONCE(sqe->statx_flags);
4625
4626 return 0;
4627 }
4628
4629 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4630 {
4631 struct io_statx *ctx = &req->statx;
4632 int ret;
4633
4634 if (issue_flags & IO_URING_F_NONBLOCK)
4635 return -EAGAIN;
4636
4637 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4638 ctx->buffer);
4639
4640 if (ret < 0)
4641 req_set_fail(req);
4642 io_req_complete(req, ret);
4643 return 0;
4644 }
4645
4646 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4647 {
4648 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4649 return -EINVAL;
4650 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4651 sqe->rw_flags || sqe->buf_index)
4652 return -EINVAL;
4653 if (req->flags & REQ_F_FIXED_FILE)
4654 return -EBADF;
4655
4656 req->close.fd = READ_ONCE(sqe->fd);
4657 req->close.file_slot = READ_ONCE(sqe->file_index);
4658 if (req->close.file_slot && req->close.fd)
4659 return -EINVAL;
4660
4661 return 0;
4662 }
4663
4664 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4665 {
4666 struct files_struct *files = current->files;
4667 struct io_close *close = &req->close;
4668 struct fdtable *fdt;
4669 struct file *file = NULL;
4670 int ret = -EBADF;
4671
4672 if (req->close.file_slot) {
4673 ret = io_close_fixed(req, issue_flags);
4674 goto err;
4675 }
4676
4677 spin_lock(&files->file_lock);
4678 fdt = files_fdtable(files);
4679 if (close->fd >= fdt->max_fds) {
4680 spin_unlock(&files->file_lock);
4681 goto err;
4682 }
4683 file = fdt->fd[close->fd];
4684 if (!file || file->f_op == &io_uring_fops) {
4685 spin_unlock(&files->file_lock);
4686 file = NULL;
4687 goto err;
4688 }
4689
4690 /* if the file has a flush method, be safe and punt to async */
4691 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4692 spin_unlock(&files->file_lock);
4693 return -EAGAIN;
4694 }
4695
4696 ret = __close_fd_get_file(close->fd, &file);
4697 spin_unlock(&files->file_lock);
4698 if (ret < 0) {
4699 if (ret == -ENOENT)
4700 ret = -EBADF;
4701 goto err;
4702 }
4703
4704 /* No ->flush() or already async, safely close from here */
4705 ret = filp_close(file, current->files);
4706 err:
4707 if (ret < 0)
4708 req_set_fail(req);
4709 if (file)
4710 fput(file);
4711 __io_req_complete(req, issue_flags, ret, 0);
4712 return 0;
4713 }
4714
4715 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4716 {
4717 struct io_ring_ctx *ctx = req->ctx;
4718
4719 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4720 return -EINVAL;
4721 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4722 sqe->splice_fd_in))
4723 return -EINVAL;
4724
4725 req->sync.off = READ_ONCE(sqe->off);
4726 req->sync.len = READ_ONCE(sqe->len);
4727 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4728 return 0;
4729 }
4730
4731 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4732 {
4733 int ret;
4734
4735 /* sync_file_range always requires a blocking context */
4736 if (issue_flags & IO_URING_F_NONBLOCK)
4737 return -EAGAIN;
4738
4739 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4740 req->sync.flags);
4741 if (ret < 0)
4742 req_set_fail(req);
4743 io_req_complete(req, ret);
4744 return 0;
4745 }
4746
4747 #if defined(CONFIG_NET)
4748 static int io_setup_async_msg(struct io_kiocb *req,
4749 struct io_async_msghdr *kmsg)
4750 {
4751 struct io_async_msghdr *async_msg = req->async_data;
4752
4753 if (async_msg)
4754 return -EAGAIN;
4755 if (io_alloc_async_data(req)) {
4756 kfree(kmsg->free_iov);
4757 return -ENOMEM;
4758 }
4759 async_msg = req->async_data;
4760 req->flags |= REQ_F_NEED_CLEANUP;
4761 memcpy(async_msg, kmsg, sizeof(*kmsg));
4762 async_msg->msg.msg_name = &async_msg->addr;
4763 /* if were using fast_iov, set it to the new one */
4764 if (!async_msg->free_iov)
4765 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4766
4767 return -EAGAIN;
4768 }
4769
4770 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4771 struct io_async_msghdr *iomsg)
4772 {
4773 iomsg->msg.msg_name = &iomsg->addr;
4774 iomsg->free_iov = iomsg->fast_iov;
4775 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4776 req->sr_msg.msg_flags, &iomsg->free_iov);
4777 }
4778
4779 static int io_sendmsg_prep_async(struct io_kiocb *req)
4780 {
4781 int ret;
4782
4783 ret = io_sendmsg_copy_hdr(req, req->async_data);
4784 if (!ret)
4785 req->flags |= REQ_F_NEED_CLEANUP;
4786 return ret;
4787 }
4788
4789 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4790 {
4791 struct io_sr_msg *sr = &req->sr_msg;
4792
4793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4794 return -EINVAL;
4795 if (unlikely(sqe->addr2 || sqe->file_index))
4796 return -EINVAL;
4797 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4798 return -EINVAL;
4799
4800 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4801 sr->len = READ_ONCE(sqe->len);
4802 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4803 if (sr->msg_flags & MSG_DONTWAIT)
4804 req->flags |= REQ_F_NOWAIT;
4805
4806 #ifdef CONFIG_COMPAT
4807 if (req->ctx->compat)
4808 sr->msg_flags |= MSG_CMSG_COMPAT;
4809 #endif
4810 return 0;
4811 }
4812
4813 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4814 {
4815 struct io_async_msghdr iomsg, *kmsg;
4816 struct socket *sock;
4817 unsigned flags;
4818 int min_ret = 0;
4819 int ret;
4820
4821 sock = sock_from_file(req->file);
4822 if (unlikely(!sock))
4823 return -ENOTSOCK;
4824
4825 kmsg = req->async_data;
4826 if (!kmsg) {
4827 ret = io_sendmsg_copy_hdr(req, &iomsg);
4828 if (ret)
4829 return ret;
4830 kmsg = &iomsg;
4831 }
4832
4833 flags = req->sr_msg.msg_flags;
4834 if (issue_flags & IO_URING_F_NONBLOCK)
4835 flags |= MSG_DONTWAIT;
4836 if (flags & MSG_WAITALL)
4837 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4838
4839 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4840 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4841 return io_setup_async_msg(req, kmsg);
4842 if (ret == -ERESTARTSYS)
4843 ret = -EINTR;
4844
4845 /* fast path, check for non-NULL to avoid function call */
4846 if (kmsg->free_iov)
4847 kfree(kmsg->free_iov);
4848 req->flags &= ~REQ_F_NEED_CLEANUP;
4849 if (ret < min_ret)
4850 req_set_fail(req);
4851 __io_req_complete(req, issue_flags, ret, 0);
4852 return 0;
4853 }
4854
4855 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4856 {
4857 struct io_sr_msg *sr = &req->sr_msg;
4858 struct msghdr msg;
4859 struct iovec iov;
4860 struct socket *sock;
4861 unsigned flags;
4862 int min_ret = 0;
4863 int ret;
4864
4865 sock = sock_from_file(req->file);
4866 if (unlikely(!sock))
4867 return -ENOTSOCK;
4868
4869 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4870 if (unlikely(ret))
4871 return ret;
4872
4873 msg.msg_name = NULL;
4874 msg.msg_control = NULL;
4875 msg.msg_controllen = 0;
4876 msg.msg_namelen = 0;
4877
4878 flags = req->sr_msg.msg_flags;
4879 if (issue_flags & IO_URING_F_NONBLOCK)
4880 flags |= MSG_DONTWAIT;
4881 if (flags & MSG_WAITALL)
4882 min_ret = iov_iter_count(&msg.msg_iter);
4883
4884 msg.msg_flags = flags;
4885 ret = sock_sendmsg(sock, &msg);
4886 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4887 return -EAGAIN;
4888 if (ret == -ERESTARTSYS)
4889 ret = -EINTR;
4890
4891 if (ret < min_ret)
4892 req_set_fail(req);
4893 __io_req_complete(req, issue_flags, ret, 0);
4894 return 0;
4895 }
4896
4897 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4898 struct io_async_msghdr *iomsg)
4899 {
4900 struct io_sr_msg *sr = &req->sr_msg;
4901 struct iovec __user *uiov;
4902 size_t iov_len;
4903 int ret;
4904
4905 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4906 &iomsg->uaddr, &uiov, &iov_len);
4907 if (ret)
4908 return ret;
4909
4910 if (req->flags & REQ_F_BUFFER_SELECT) {
4911 if (iov_len > 1)
4912 return -EINVAL;
4913 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4914 return -EFAULT;
4915 sr->len = iomsg->fast_iov[0].iov_len;
4916 iomsg->free_iov = NULL;
4917 } else {
4918 iomsg->free_iov = iomsg->fast_iov;
4919 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4920 &iomsg->free_iov, &iomsg->msg.msg_iter,
4921 false);
4922 if (ret > 0)
4923 ret = 0;
4924 }
4925
4926 return ret;
4927 }
4928
4929 #ifdef CONFIG_COMPAT
4930 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4931 struct io_async_msghdr *iomsg)
4932 {
4933 struct io_sr_msg *sr = &req->sr_msg;
4934 struct compat_iovec __user *uiov;
4935 compat_uptr_t ptr;
4936 compat_size_t len;
4937 int ret;
4938
4939 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4940 &ptr, &len);
4941 if (ret)
4942 return ret;
4943
4944 uiov = compat_ptr(ptr);
4945 if (req->flags & REQ_F_BUFFER_SELECT) {
4946 compat_ssize_t clen;
4947
4948 if (len > 1)
4949 return -EINVAL;
4950 if (!access_ok(uiov, sizeof(*uiov)))
4951 return -EFAULT;
4952 if (__get_user(clen, &uiov->iov_len))
4953 return -EFAULT;
4954 if (clen < 0)
4955 return -EINVAL;
4956 sr->len = clen;
4957 iomsg->free_iov = NULL;
4958 } else {
4959 iomsg->free_iov = iomsg->fast_iov;
4960 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4961 UIO_FASTIOV, &iomsg->free_iov,
4962 &iomsg->msg.msg_iter, true);
4963 if (ret < 0)
4964 return ret;
4965 }
4966
4967 return 0;
4968 }
4969 #endif
4970
4971 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4972 struct io_async_msghdr *iomsg)
4973 {
4974 iomsg->msg.msg_name = &iomsg->addr;
4975
4976 #ifdef CONFIG_COMPAT
4977 if (req->ctx->compat)
4978 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4979 #endif
4980
4981 return __io_recvmsg_copy_hdr(req, iomsg);
4982 }
4983
4984 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4985 bool needs_lock)
4986 {
4987 struct io_sr_msg *sr = &req->sr_msg;
4988 struct io_buffer *kbuf;
4989
4990 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4991 if (IS_ERR(kbuf))
4992 return kbuf;
4993
4994 sr->kbuf = kbuf;
4995 req->flags |= REQ_F_BUFFER_SELECTED;
4996 return kbuf;
4997 }
4998
4999 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5000 {
5001 return io_put_kbuf(req, req->sr_msg.kbuf);
5002 }
5003
5004 static int io_recvmsg_prep_async(struct io_kiocb *req)
5005 {
5006 int ret;
5007
5008 ret = io_recvmsg_copy_hdr(req, req->async_data);
5009 if (!ret)
5010 req->flags |= REQ_F_NEED_CLEANUP;
5011 return ret;
5012 }
5013
5014 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5015 {
5016 struct io_sr_msg *sr = &req->sr_msg;
5017
5018 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5019 return -EINVAL;
5020 if (unlikely(sqe->addr2 || sqe->file_index))
5021 return -EINVAL;
5022 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5023 return -EINVAL;
5024
5025 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5026 sr->len = READ_ONCE(sqe->len);
5027 sr->bgid = READ_ONCE(sqe->buf_group);
5028 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5029 if (sr->msg_flags & MSG_DONTWAIT)
5030 req->flags |= REQ_F_NOWAIT;
5031
5032 #ifdef CONFIG_COMPAT
5033 if (req->ctx->compat)
5034 sr->msg_flags |= MSG_CMSG_COMPAT;
5035 #endif
5036 return 0;
5037 }
5038
5039 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5040 {
5041 struct io_async_msghdr iomsg, *kmsg;
5042 struct socket *sock;
5043 struct io_buffer *kbuf;
5044 unsigned flags;
5045 int min_ret = 0;
5046 int ret, cflags = 0;
5047 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5048
5049 sock = sock_from_file(req->file);
5050 if (unlikely(!sock))
5051 return -ENOTSOCK;
5052
5053 kmsg = req->async_data;
5054 if (!kmsg) {
5055 ret = io_recvmsg_copy_hdr(req, &iomsg);
5056 if (ret)
5057 return ret;
5058 kmsg = &iomsg;
5059 }
5060
5061 if (req->flags & REQ_F_BUFFER_SELECT) {
5062 kbuf = io_recv_buffer_select(req, !force_nonblock);
5063 if (IS_ERR(kbuf))
5064 return PTR_ERR(kbuf);
5065 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5066 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5067 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5068 1, req->sr_msg.len);
5069 }
5070
5071 flags = req->sr_msg.msg_flags;
5072 if (force_nonblock)
5073 flags |= MSG_DONTWAIT;
5074 if (flags & MSG_WAITALL)
5075 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5076
5077 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5078 kmsg->uaddr, flags);
5079 if (force_nonblock && ret == -EAGAIN)
5080 return io_setup_async_msg(req, kmsg);
5081 if (ret == -ERESTARTSYS)
5082 ret = -EINTR;
5083
5084 if (req->flags & REQ_F_BUFFER_SELECTED)
5085 cflags = io_put_recv_kbuf(req);
5086 /* fast path, check for non-NULL to avoid function call */
5087 if (kmsg->free_iov)
5088 kfree(kmsg->free_iov);
5089 req->flags &= ~REQ_F_NEED_CLEANUP;
5090 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5091 req_set_fail(req);
5092 __io_req_complete(req, issue_flags, ret, cflags);
5093 return 0;
5094 }
5095
5096 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5097 {
5098 struct io_buffer *kbuf;
5099 struct io_sr_msg *sr = &req->sr_msg;
5100 struct msghdr msg;
5101 void __user *buf = sr->buf;
5102 struct socket *sock;
5103 struct iovec iov;
5104 unsigned flags;
5105 int min_ret = 0;
5106 int ret, cflags = 0;
5107 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5108
5109 sock = sock_from_file(req->file);
5110 if (unlikely(!sock))
5111 return -ENOTSOCK;
5112
5113 if (req->flags & REQ_F_BUFFER_SELECT) {
5114 kbuf = io_recv_buffer_select(req, !force_nonblock);
5115 if (IS_ERR(kbuf))
5116 return PTR_ERR(kbuf);
5117 buf = u64_to_user_ptr(kbuf->addr);
5118 }
5119
5120 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5121 if (unlikely(ret))
5122 goto out_free;
5123
5124 msg.msg_name = NULL;
5125 msg.msg_control = NULL;
5126 msg.msg_controllen = 0;
5127 msg.msg_namelen = 0;
5128 msg.msg_iocb = NULL;
5129 msg.msg_flags = 0;
5130
5131 flags = req->sr_msg.msg_flags;
5132 if (force_nonblock)
5133 flags |= MSG_DONTWAIT;
5134 if (flags & MSG_WAITALL)
5135 min_ret = iov_iter_count(&msg.msg_iter);
5136
5137 ret = sock_recvmsg(sock, &msg, flags);
5138 if (force_nonblock && ret == -EAGAIN)
5139 return -EAGAIN;
5140 if (ret == -ERESTARTSYS)
5141 ret = -EINTR;
5142 out_free:
5143 if (req->flags & REQ_F_BUFFER_SELECTED)
5144 cflags = io_put_recv_kbuf(req);
5145 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5146 req_set_fail(req);
5147 __io_req_complete(req, issue_flags, ret, cflags);
5148 return 0;
5149 }
5150
5151 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5152 {
5153 struct io_accept *accept = &req->accept;
5154
5155 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5156 return -EINVAL;
5157 if (sqe->ioprio || sqe->len || sqe->buf_index)
5158 return -EINVAL;
5159
5160 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5161 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5162 accept->flags = READ_ONCE(sqe->accept_flags);
5163 accept->nofile = rlimit(RLIMIT_NOFILE);
5164
5165 accept->file_slot = READ_ONCE(sqe->file_index);
5166 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5167 return -EINVAL;
5168 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5169 return -EINVAL;
5170 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5171 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5172 return 0;
5173 }
5174
5175 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5176 {
5177 struct io_accept *accept = &req->accept;
5178 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5179 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5180 bool fixed = !!accept->file_slot;
5181 struct file *file;
5182 int ret, fd;
5183
5184 if (req->file->f_flags & O_NONBLOCK)
5185 req->flags |= REQ_F_NOWAIT;
5186
5187 if (!fixed) {
5188 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5189 if (unlikely(fd < 0))
5190 return fd;
5191 }
5192 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5193 accept->flags);
5194 if (IS_ERR(file)) {
5195 if (!fixed)
5196 put_unused_fd(fd);
5197 ret = PTR_ERR(file);
5198 if (ret == -EAGAIN && force_nonblock)
5199 return -EAGAIN;
5200 if (ret == -ERESTARTSYS)
5201 ret = -EINTR;
5202 req_set_fail(req);
5203 } else if (!fixed) {
5204 fd_install(fd, file);
5205 ret = fd;
5206 } else {
5207 ret = io_install_fixed_file(req, file, issue_flags,
5208 accept->file_slot - 1);
5209 }
5210 __io_req_complete(req, issue_flags, ret, 0);
5211 return 0;
5212 }
5213
5214 static int io_connect_prep_async(struct io_kiocb *req)
5215 {
5216 struct io_async_connect *io = req->async_data;
5217 struct io_connect *conn = &req->connect;
5218
5219 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5220 }
5221
5222 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5223 {
5224 struct io_connect *conn = &req->connect;
5225
5226 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5227 return -EINVAL;
5228 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5229 sqe->splice_fd_in)
5230 return -EINVAL;
5231
5232 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5233 conn->addr_len = READ_ONCE(sqe->addr2);
5234 return 0;
5235 }
5236
5237 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5238 {
5239 struct io_async_connect __io, *io;
5240 unsigned file_flags;
5241 int ret;
5242 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5243
5244 if (req->async_data) {
5245 io = req->async_data;
5246 } else {
5247 ret = move_addr_to_kernel(req->connect.addr,
5248 req->connect.addr_len,
5249 &__io.address);
5250 if (ret)
5251 goto out;
5252 io = &__io;
5253 }
5254
5255 file_flags = force_nonblock ? O_NONBLOCK : 0;
5256
5257 ret = __sys_connect_file(req->file, &io->address,
5258 req->connect.addr_len, file_flags);
5259 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5260 if (req->async_data)
5261 return -EAGAIN;
5262 if (io_alloc_async_data(req)) {
5263 ret = -ENOMEM;
5264 goto out;
5265 }
5266 memcpy(req->async_data, &__io, sizeof(__io));
5267 return -EAGAIN;
5268 }
5269 if (ret == -ERESTARTSYS)
5270 ret = -EINTR;
5271 out:
5272 if (ret < 0)
5273 req_set_fail(req);
5274 __io_req_complete(req, issue_flags, ret, 0);
5275 return 0;
5276 }
5277 #else /* !CONFIG_NET */
5278 #define IO_NETOP_FN(op) \
5279 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5280 { \
5281 return -EOPNOTSUPP; \
5282 }
5283
5284 #define IO_NETOP_PREP(op) \
5285 IO_NETOP_FN(op) \
5286 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5287 { \
5288 return -EOPNOTSUPP; \
5289 } \
5290
5291 #define IO_NETOP_PREP_ASYNC(op) \
5292 IO_NETOP_PREP(op) \
5293 static int io_##op##_prep_async(struct io_kiocb *req) \
5294 { \
5295 return -EOPNOTSUPP; \
5296 }
5297
5298 IO_NETOP_PREP_ASYNC(sendmsg);
5299 IO_NETOP_PREP_ASYNC(recvmsg);
5300 IO_NETOP_PREP_ASYNC(connect);
5301 IO_NETOP_PREP(accept);
5302 IO_NETOP_FN(send);
5303 IO_NETOP_FN(recv);
5304 #endif /* CONFIG_NET */
5305
5306 struct io_poll_table {
5307 struct poll_table_struct pt;
5308 struct io_kiocb *req;
5309 int nr_entries;
5310 int error;
5311 };
5312
5313 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5314 {
5315 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5316 if (req->opcode == IORING_OP_POLL_ADD)
5317 return req->async_data;
5318 return req->apoll->double_poll;
5319 }
5320
5321 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5322 {
5323 if (req->opcode == IORING_OP_POLL_ADD)
5324 return &req->poll;
5325 return &req->apoll->poll;
5326 }
5327
5328 static void io_poll_req_insert(struct io_kiocb *req)
5329 {
5330 struct io_ring_ctx *ctx = req->ctx;
5331 struct hlist_head *list;
5332
5333 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5334 hlist_add_head(&req->hash_node, list);
5335 }
5336
5337 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5338 wait_queue_func_t wake_func)
5339 {
5340 poll->head = NULL;
5341 poll->done = false;
5342 poll->canceled = false;
5343 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5344 /* mask in events that we always want/need */
5345 poll->events = events | IO_POLL_UNMASK;
5346 INIT_LIST_HEAD(&poll->wait.entry);
5347 init_waitqueue_func_entry(&poll->wait, wake_func);
5348 }
5349
5350 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5351 __poll_t mask, io_req_tw_func_t func)
5352 {
5353 /* for instances that support it check for an event match first: */
5354 if (mask && !(mask & poll->events))
5355 return 0;
5356
5357 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5358
5359 list_del_init(&poll->wait.entry);
5360
5361 req->result = mask;
5362 req->io_task_work.func = func;
5363
5364 /*
5365 * If this fails, then the task is exiting. When a task exits, the
5366 * work gets canceled, so just cancel this request as well instead
5367 * of executing it. We can't safely execute it anyway, as we may not
5368 * have the needed state needed for it anyway.
5369 */
5370 io_req_task_work_add(req);
5371 return 1;
5372 }
5373
5374 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5375 __acquires(&req->ctx->completion_lock)
5376 {
5377 struct io_ring_ctx *ctx = req->ctx;
5378
5379 /* req->task == current here, checking PF_EXITING is safe */
5380 if (unlikely(req->task->flags & PF_EXITING))
5381 WRITE_ONCE(poll->canceled, true);
5382
5383 if (!req->result && !READ_ONCE(poll->canceled)) {
5384 struct poll_table_struct pt = { ._key = poll->events };
5385
5386 req->result = vfs_poll(req->file, &pt) & poll->events;
5387 }
5388
5389 spin_lock(&ctx->completion_lock);
5390 if (!req->result && !READ_ONCE(poll->canceled)) {
5391 add_wait_queue(poll->head, &poll->wait);
5392 return true;
5393 }
5394
5395 return false;
5396 }
5397
5398 static void io_poll_remove_double(struct io_kiocb *req)
5399 __must_hold(&req->ctx->completion_lock)
5400 {
5401 struct io_poll_iocb *poll = io_poll_get_double(req);
5402
5403 lockdep_assert_held(&req->ctx->completion_lock);
5404
5405 if (poll && poll->head) {
5406 struct wait_queue_head *head = poll->head;
5407
5408 spin_lock_irq(&head->lock);
5409 list_del_init(&poll->wait.entry);
5410 if (poll->wait.private)
5411 req_ref_put(req);
5412 poll->head = NULL;
5413 spin_unlock_irq(&head->lock);
5414 }
5415 }
5416
5417 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5418 __must_hold(&req->ctx->completion_lock)
5419 {
5420 struct io_ring_ctx *ctx = req->ctx;
5421 unsigned flags = IORING_CQE_F_MORE;
5422 int error;
5423
5424 if (READ_ONCE(req->poll.canceled)) {
5425 error = -ECANCELED;
5426 req->poll.events |= EPOLLONESHOT;
5427 } else {
5428 error = mangle_poll(mask);
5429 }
5430 if (req->poll.events & EPOLLONESHOT)
5431 flags = 0;
5432 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5433 req->poll.events |= EPOLLONESHOT;
5434 flags = 0;
5435 }
5436 if (flags & IORING_CQE_F_MORE)
5437 ctx->cq_extra++;
5438
5439 return !(flags & IORING_CQE_F_MORE);
5440 }
5441
5442 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5443 {
5444 struct io_ring_ctx *ctx = req->ctx;
5445
5446 if (io_poll_rewait(req, &req->poll)) {
5447 spin_unlock(&ctx->completion_lock);
5448 } else {
5449 bool done;
5450
5451 if (req->poll.done) {
5452 spin_unlock(&ctx->completion_lock);
5453 return;
5454 }
5455 done = __io_poll_complete(req, req->result);
5456 if (done) {
5457 io_poll_remove_double(req);
5458 hash_del(&req->hash_node);
5459 req->poll.done = true;
5460 } else {
5461 req->result = 0;
5462 add_wait_queue(req->poll.head, &req->poll.wait);
5463 }
5464 io_commit_cqring(ctx);
5465 spin_unlock(&ctx->completion_lock);
5466 io_cqring_ev_posted(ctx);
5467
5468 if (done)
5469 io_put_req(req);
5470 }
5471 }
5472
5473 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5474 int sync, void *key)
5475 {
5476 struct io_kiocb *req = wait->private;
5477 struct io_poll_iocb *poll = io_poll_get_single(req);
5478 __poll_t mask = key_to_poll(key);
5479 unsigned long flags;
5480
5481 /* for instances that support it check for an event match first: */
5482 if (mask && !(mask & poll->events))
5483 return 0;
5484 if (!(poll->events & EPOLLONESHOT))
5485 return poll->wait.func(&poll->wait, mode, sync, key);
5486
5487 list_del_init(&wait->entry);
5488
5489 if (poll->head) {
5490 bool done;
5491
5492 spin_lock_irqsave(&poll->head->lock, flags);
5493 done = list_empty(&poll->wait.entry);
5494 if (!done)
5495 list_del_init(&poll->wait.entry);
5496 /* make sure double remove sees this as being gone */
5497 wait->private = NULL;
5498 spin_unlock_irqrestore(&poll->head->lock, flags);
5499 if (!done) {
5500 /* use wait func handler, so it matches the rq type */
5501 poll->wait.func(&poll->wait, mode, sync, key);
5502 }
5503 }
5504 req_ref_put(req);
5505 return 1;
5506 }
5507
5508 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5509 struct wait_queue_head *head,
5510 struct io_poll_iocb **poll_ptr)
5511 {
5512 struct io_kiocb *req = pt->req;
5513
5514 /*
5515 * The file being polled uses multiple waitqueues for poll handling
5516 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5517 * if this happens.
5518 */
5519 if (unlikely(pt->nr_entries)) {
5520 struct io_poll_iocb *poll_one = poll;
5521
5522 /* double add on the same waitqueue head, ignore */
5523 if (poll_one->head == head)
5524 return;
5525 /* already have a 2nd entry, fail a third attempt */
5526 if (*poll_ptr) {
5527 if ((*poll_ptr)->head == head)
5528 return;
5529 pt->error = -EINVAL;
5530 return;
5531 }
5532 /*
5533 * Can't handle multishot for double wait for now, turn it
5534 * into one-shot mode.
5535 */
5536 if (!(poll_one->events & EPOLLONESHOT))
5537 poll_one->events |= EPOLLONESHOT;
5538 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5539 if (!poll) {
5540 pt->error = -ENOMEM;
5541 return;
5542 }
5543 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5544 req_ref_get(req);
5545 poll->wait.private = req;
5546 *poll_ptr = poll;
5547 }
5548
5549 pt->nr_entries++;
5550 poll->head = head;
5551
5552 if (poll->events & EPOLLEXCLUSIVE)
5553 add_wait_queue_exclusive(head, &poll->wait);
5554 else
5555 add_wait_queue(head, &poll->wait);
5556 }
5557
5558 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5559 struct poll_table_struct *p)
5560 {
5561 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5562 struct async_poll *apoll = pt->req->apoll;
5563
5564 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5565 }
5566
5567 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5568 {
5569 struct async_poll *apoll = req->apoll;
5570 struct io_ring_ctx *ctx = req->ctx;
5571
5572 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5573
5574 if (io_poll_rewait(req, &apoll->poll)) {
5575 spin_unlock(&ctx->completion_lock);
5576 return;
5577 }
5578
5579 hash_del(&req->hash_node);
5580 io_poll_remove_double(req);
5581 apoll->poll.done = true;
5582 spin_unlock(&ctx->completion_lock);
5583
5584 if (!READ_ONCE(apoll->poll.canceled))
5585 io_req_task_submit(req, locked);
5586 else
5587 io_req_complete_failed(req, -ECANCELED);
5588 }
5589
5590 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5591 void *key)
5592 {
5593 struct io_kiocb *req = wait->private;
5594 struct io_poll_iocb *poll = &req->apoll->poll;
5595
5596 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5597 key_to_poll(key));
5598
5599 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5600 }
5601
5602 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5603 struct io_poll_iocb *poll,
5604 struct io_poll_table *ipt, __poll_t mask,
5605 wait_queue_func_t wake_func)
5606 __acquires(&ctx->completion_lock)
5607 {
5608 struct io_ring_ctx *ctx = req->ctx;
5609 bool cancel = false;
5610
5611 INIT_HLIST_NODE(&req->hash_node);
5612 io_init_poll_iocb(poll, mask, wake_func);
5613 poll->file = req->file;
5614 poll->wait.private = req;
5615
5616 ipt->pt._key = mask;
5617 ipt->req = req;
5618 ipt->error = 0;
5619 ipt->nr_entries = 0;
5620
5621 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5622 if (unlikely(!ipt->nr_entries) && !ipt->error)
5623 ipt->error = -EINVAL;
5624
5625 spin_lock(&ctx->completion_lock);
5626 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5627 io_poll_remove_double(req);
5628 if (likely(poll->head)) {
5629 spin_lock_irq(&poll->head->lock);
5630 if (unlikely(list_empty(&poll->wait.entry))) {
5631 if (ipt->error)
5632 cancel = true;
5633 ipt->error = 0;
5634 mask = 0;
5635 }
5636 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5637 list_del_init(&poll->wait.entry);
5638 else if (cancel)
5639 WRITE_ONCE(poll->canceled, true);
5640 else if (!poll->done) /* actually waiting for an event */
5641 io_poll_req_insert(req);
5642 spin_unlock_irq(&poll->head->lock);
5643 }
5644
5645 return mask;
5646 }
5647
5648 enum {
5649 IO_APOLL_OK,
5650 IO_APOLL_ABORTED,
5651 IO_APOLL_READY
5652 };
5653
5654 static int io_arm_poll_handler(struct io_kiocb *req)
5655 {
5656 const struct io_op_def *def = &io_op_defs[req->opcode];
5657 struct io_ring_ctx *ctx = req->ctx;
5658 struct async_poll *apoll;
5659 struct io_poll_table ipt;
5660 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5661
5662 if (!req->file || !file_can_poll(req->file))
5663 return IO_APOLL_ABORTED;
5664 if (req->flags & REQ_F_POLLED)
5665 return IO_APOLL_ABORTED;
5666 if (!def->pollin && !def->pollout)
5667 return IO_APOLL_ABORTED;
5668
5669 if (def->pollin) {
5670 mask |= POLLIN | POLLRDNORM;
5671
5672 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5673 if ((req->opcode == IORING_OP_RECVMSG) &&
5674 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5675 mask &= ~POLLIN;
5676 } else {
5677 mask |= POLLOUT | POLLWRNORM;
5678 }
5679
5680 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5681 if (unlikely(!apoll))
5682 return IO_APOLL_ABORTED;
5683 apoll->double_poll = NULL;
5684 req->apoll = apoll;
5685 req->flags |= REQ_F_POLLED;
5686 ipt.pt._qproc = io_async_queue_proc;
5687 io_req_set_refcount(req);
5688
5689 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5690 io_async_wake);
5691 spin_unlock(&ctx->completion_lock);
5692 if (ret || ipt.error)
5693 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5694
5695 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5696 mask, apoll->poll.events);
5697 return IO_APOLL_OK;
5698 }
5699
5700 static bool __io_poll_remove_one(struct io_kiocb *req,
5701 struct io_poll_iocb *poll, bool do_cancel)
5702 __must_hold(&req->ctx->completion_lock)
5703 {
5704 bool do_complete = false;
5705
5706 if (!poll->head)
5707 return false;
5708 spin_lock_irq(&poll->head->lock);
5709 if (do_cancel)
5710 WRITE_ONCE(poll->canceled, true);
5711 if (!list_empty(&poll->wait.entry)) {
5712 list_del_init(&poll->wait.entry);
5713 do_complete = true;
5714 }
5715 spin_unlock_irq(&poll->head->lock);
5716 hash_del(&req->hash_node);
5717 return do_complete;
5718 }
5719
5720 static bool io_poll_remove_one(struct io_kiocb *req)
5721 __must_hold(&req->ctx->completion_lock)
5722 {
5723 bool do_complete;
5724
5725 io_poll_remove_double(req);
5726 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5727
5728 if (do_complete) {
5729 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5730 io_commit_cqring(req->ctx);
5731 req_set_fail(req);
5732 io_put_req_deferred(req);
5733 }
5734 return do_complete;
5735 }
5736
5737 /*
5738 * Returns true if we found and killed one or more poll requests
5739 */
5740 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5741 bool cancel_all)
5742 {
5743 struct hlist_node *tmp;
5744 struct io_kiocb *req;
5745 int posted = 0, i;
5746
5747 spin_lock(&ctx->completion_lock);
5748 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5749 struct hlist_head *list;
5750
5751 list = &ctx->cancel_hash[i];
5752 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5753 if (io_match_task_safe(req, tsk, cancel_all))
5754 posted += io_poll_remove_one(req);
5755 }
5756 }
5757 spin_unlock(&ctx->completion_lock);
5758
5759 if (posted)
5760 io_cqring_ev_posted(ctx);
5761
5762 return posted != 0;
5763 }
5764
5765 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5766 bool poll_only)
5767 __must_hold(&ctx->completion_lock)
5768 {
5769 struct hlist_head *list;
5770 struct io_kiocb *req;
5771
5772 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5773 hlist_for_each_entry(req, list, hash_node) {
5774 if (sqe_addr != req->user_data)
5775 continue;
5776 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5777 continue;
5778 return req;
5779 }
5780 return NULL;
5781 }
5782
5783 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5784 bool poll_only)
5785 __must_hold(&ctx->completion_lock)
5786 {
5787 struct io_kiocb *req;
5788
5789 req = io_poll_find(ctx, sqe_addr, poll_only);
5790 if (!req)
5791 return -ENOENT;
5792 if (io_poll_remove_one(req))
5793 return 0;
5794
5795 return -EALREADY;
5796 }
5797
5798 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5799 unsigned int flags)
5800 {
5801 u32 events;
5802
5803 events = READ_ONCE(sqe->poll32_events);
5804 #ifdef __BIG_ENDIAN
5805 events = swahw32(events);
5806 #endif
5807 if (!(flags & IORING_POLL_ADD_MULTI))
5808 events |= EPOLLONESHOT;
5809 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5810 }
5811
5812 static int io_poll_update_prep(struct io_kiocb *req,
5813 const struct io_uring_sqe *sqe)
5814 {
5815 struct io_poll_update *upd = &req->poll_update;
5816 u32 flags;
5817
5818 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5819 return -EINVAL;
5820 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5821 return -EINVAL;
5822 flags = READ_ONCE(sqe->len);
5823 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5824 IORING_POLL_ADD_MULTI))
5825 return -EINVAL;
5826 /* meaningless without update */
5827 if (flags == IORING_POLL_ADD_MULTI)
5828 return -EINVAL;
5829
5830 upd->old_user_data = READ_ONCE(sqe->addr);
5831 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5832 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5833
5834 upd->new_user_data = READ_ONCE(sqe->off);
5835 if (!upd->update_user_data && upd->new_user_data)
5836 return -EINVAL;
5837 if (upd->update_events)
5838 upd->events = io_poll_parse_events(sqe, flags);
5839 else if (sqe->poll32_events)
5840 return -EINVAL;
5841
5842 return 0;
5843 }
5844
5845 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5846 void *key)
5847 {
5848 struct io_kiocb *req = wait->private;
5849 struct io_poll_iocb *poll = &req->poll;
5850
5851 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5852 }
5853
5854 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5855 struct poll_table_struct *p)
5856 {
5857 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5858
5859 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5860 }
5861
5862 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5863 {
5864 struct io_poll_iocb *poll = &req->poll;
5865 u32 flags;
5866
5867 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5868 return -EINVAL;
5869 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5870 return -EINVAL;
5871 flags = READ_ONCE(sqe->len);
5872 if (flags & ~IORING_POLL_ADD_MULTI)
5873 return -EINVAL;
5874
5875 io_req_set_refcount(req);
5876 poll->events = io_poll_parse_events(sqe, flags);
5877 return 0;
5878 }
5879
5880 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5881 {
5882 struct io_poll_iocb *poll = &req->poll;
5883 struct io_ring_ctx *ctx = req->ctx;
5884 struct io_poll_table ipt;
5885 __poll_t mask;
5886 bool done;
5887
5888 ipt.pt._qproc = io_poll_queue_proc;
5889
5890 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5891 io_poll_wake);
5892
5893 if (mask) { /* no async, we'd stolen it */
5894 ipt.error = 0;
5895 done = __io_poll_complete(req, mask);
5896 io_commit_cqring(req->ctx);
5897 }
5898 spin_unlock(&ctx->completion_lock);
5899
5900 if (mask) {
5901 io_cqring_ev_posted(ctx);
5902 if (done)
5903 io_put_req(req);
5904 }
5905 return ipt.error;
5906 }
5907
5908 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5909 {
5910 struct io_ring_ctx *ctx = req->ctx;
5911 struct io_kiocb *preq;
5912 bool completing;
5913 int ret2, ret = 0;
5914
5915 spin_lock(&ctx->completion_lock);
5916 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5917 if (!preq) {
5918 ret = -ENOENT;
5919 fail:
5920 spin_unlock(&ctx->completion_lock);
5921 goto out;
5922 }
5923 io_poll_remove_double(preq);
5924 /*
5925 * Don't allow racy completion with singleshot, as we cannot safely
5926 * update those. For multishot, if we're racing with completion, just
5927 * let completion re-add it.
5928 */
5929 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5930 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5931 ret = -EALREADY;
5932 goto fail;
5933 }
5934 spin_unlock(&ctx->completion_lock);
5935
5936 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5937 /* only mask one event flags, keep behavior flags */
5938 if (req->poll_update.update_events) {
5939 preq->poll.events &= ~0xffff;
5940 preq->poll.events |= req->poll_update.events & 0xffff;
5941 preq->poll.events |= IO_POLL_UNMASK;
5942 }
5943 if (req->poll_update.update_user_data)
5944 preq->user_data = req->poll_update.new_user_data;
5945
5946 ret2 = io_poll_add(preq, issue_flags);
5947 /* successfully updated, don't complete poll request */
5948 if (!ret2)
5949 goto out;
5950 }
5951 req_set_fail(preq);
5952 io_req_complete(preq, -ECANCELED);
5953 out:
5954 if (ret < 0)
5955 req_set_fail(req);
5956 /* complete update request, we're done with it */
5957 io_req_complete(req, ret);
5958 return 0;
5959 }
5960
5961 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5962 {
5963 req_set_fail(req);
5964 io_req_complete_post(req, -ETIME, 0);
5965 }
5966
5967 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5968 {
5969 struct io_timeout_data *data = container_of(timer,
5970 struct io_timeout_data, timer);
5971 struct io_kiocb *req = data->req;
5972 struct io_ring_ctx *ctx = req->ctx;
5973 unsigned long flags;
5974
5975 spin_lock_irqsave(&ctx->timeout_lock, flags);
5976 list_del_init(&req->timeout.list);
5977 atomic_set(&req->ctx->cq_timeouts,
5978 atomic_read(&req->ctx->cq_timeouts) + 1);
5979 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5980
5981 req->io_task_work.func = io_req_task_timeout;
5982 io_req_task_work_add(req);
5983 return HRTIMER_NORESTART;
5984 }
5985
5986 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5987 __u64 user_data)
5988 __must_hold(&ctx->timeout_lock)
5989 {
5990 struct io_timeout_data *io;
5991 struct io_kiocb *req;
5992 bool found = false;
5993
5994 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5995 found = user_data == req->user_data;
5996 if (found)
5997 break;
5998 }
5999 if (!found)
6000 return ERR_PTR(-ENOENT);
6001
6002 io = req->async_data;
6003 if (hrtimer_try_to_cancel(&io->timer) == -1)
6004 return ERR_PTR(-EALREADY);
6005 list_del_init(&req->timeout.list);
6006 return req;
6007 }
6008
6009 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6010 __must_hold(&ctx->completion_lock)
6011 __must_hold(&ctx->timeout_lock)
6012 {
6013 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6014
6015 if (IS_ERR(req))
6016 return PTR_ERR(req);
6017
6018 req_set_fail(req);
6019 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6020 io_put_req_deferred(req);
6021 return 0;
6022 }
6023
6024 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6025 {
6026 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6027 case IORING_TIMEOUT_BOOTTIME:
6028 return CLOCK_BOOTTIME;
6029 case IORING_TIMEOUT_REALTIME:
6030 return CLOCK_REALTIME;
6031 default:
6032 /* can't happen, vetted at prep time */
6033 WARN_ON_ONCE(1);
6034 fallthrough;
6035 case 0:
6036 return CLOCK_MONOTONIC;
6037 }
6038 }
6039
6040 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6041 struct timespec64 *ts, enum hrtimer_mode mode)
6042 __must_hold(&ctx->timeout_lock)
6043 {
6044 struct io_timeout_data *io;
6045 struct io_kiocb *req;
6046 bool found = false;
6047
6048 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6049 found = user_data == req->user_data;
6050 if (found)
6051 break;
6052 }
6053 if (!found)
6054 return -ENOENT;
6055
6056 io = req->async_data;
6057 if (hrtimer_try_to_cancel(&io->timer) == -1)
6058 return -EALREADY;
6059 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6060 io->timer.function = io_link_timeout_fn;
6061 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6062 return 0;
6063 }
6064
6065 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6066 struct timespec64 *ts, enum hrtimer_mode mode)
6067 __must_hold(&ctx->timeout_lock)
6068 {
6069 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6070 struct io_timeout_data *data;
6071
6072 if (IS_ERR(req))
6073 return PTR_ERR(req);
6074
6075 req->timeout.off = 0; /* noseq */
6076 data = req->async_data;
6077 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6078 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6079 data->timer.function = io_timeout_fn;
6080 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6081 return 0;
6082 }
6083
6084 static int io_timeout_remove_prep(struct io_kiocb *req,
6085 const struct io_uring_sqe *sqe)
6086 {
6087 struct io_timeout_rem *tr = &req->timeout_rem;
6088
6089 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6090 return -EINVAL;
6091 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6092 return -EINVAL;
6093 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6094 return -EINVAL;
6095
6096 tr->ltimeout = false;
6097 tr->addr = READ_ONCE(sqe->addr);
6098 tr->flags = READ_ONCE(sqe->timeout_flags);
6099 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6100 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6101 return -EINVAL;
6102 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6103 tr->ltimeout = true;
6104 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6105 return -EINVAL;
6106 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6107 return -EFAULT;
6108 } else if (tr->flags) {
6109 /* timeout removal doesn't support flags */
6110 return -EINVAL;
6111 }
6112
6113 return 0;
6114 }
6115
6116 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6117 {
6118 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6119 : HRTIMER_MODE_REL;
6120 }
6121
6122 /*
6123 * Remove or update an existing timeout command
6124 */
6125 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6126 {
6127 struct io_timeout_rem *tr = &req->timeout_rem;
6128 struct io_ring_ctx *ctx = req->ctx;
6129 int ret;
6130
6131 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6132 spin_lock(&ctx->completion_lock);
6133 spin_lock_irq(&ctx->timeout_lock);
6134 ret = io_timeout_cancel(ctx, tr->addr);
6135 spin_unlock_irq(&ctx->timeout_lock);
6136 spin_unlock(&ctx->completion_lock);
6137 } else {
6138 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6139
6140 spin_lock_irq(&ctx->timeout_lock);
6141 if (tr->ltimeout)
6142 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6143 else
6144 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6145 spin_unlock_irq(&ctx->timeout_lock);
6146 }
6147
6148 if (ret < 0)
6149 req_set_fail(req);
6150 io_req_complete_post(req, ret, 0);
6151 return 0;
6152 }
6153
6154 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6155 bool is_timeout_link)
6156 {
6157 struct io_timeout_data *data;
6158 unsigned flags;
6159 u32 off = READ_ONCE(sqe->off);
6160
6161 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6162 return -EINVAL;
6163 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6164 sqe->splice_fd_in)
6165 return -EINVAL;
6166 if (off && is_timeout_link)
6167 return -EINVAL;
6168 flags = READ_ONCE(sqe->timeout_flags);
6169 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6170 return -EINVAL;
6171 /* more than one clock specified is invalid, obviously */
6172 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6173 return -EINVAL;
6174
6175 INIT_LIST_HEAD(&req->timeout.list);
6176 req->timeout.off = off;
6177 if (unlikely(off && !req->ctx->off_timeout_used))
6178 req->ctx->off_timeout_used = true;
6179
6180 if (!req->async_data && io_alloc_async_data(req))
6181 return -ENOMEM;
6182
6183 data = req->async_data;
6184 data->req = req;
6185 data->flags = flags;
6186
6187 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6188 return -EFAULT;
6189
6190 INIT_LIST_HEAD(&req->timeout.list);
6191 data->mode = io_translate_timeout_mode(flags);
6192 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6193
6194 if (is_timeout_link) {
6195 struct io_submit_link *link = &req->ctx->submit_state.link;
6196
6197 if (!link->head)
6198 return -EINVAL;
6199 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6200 return -EINVAL;
6201 req->timeout.head = link->last;
6202 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6203 }
6204 return 0;
6205 }
6206
6207 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6208 {
6209 struct io_ring_ctx *ctx = req->ctx;
6210 struct io_timeout_data *data = req->async_data;
6211 struct list_head *entry;
6212 u32 tail, off = req->timeout.off;
6213
6214 spin_lock_irq(&ctx->timeout_lock);
6215
6216 /*
6217 * sqe->off holds how many events that need to occur for this
6218 * timeout event to be satisfied. If it isn't set, then this is
6219 * a pure timeout request, sequence isn't used.
6220 */
6221 if (io_is_timeout_noseq(req)) {
6222 entry = ctx->timeout_list.prev;
6223 goto add;
6224 }
6225
6226 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6227 req->timeout.target_seq = tail + off;
6228
6229 /* Update the last seq here in case io_flush_timeouts() hasn't.
6230 * This is safe because ->completion_lock is held, and submissions
6231 * and completions are never mixed in the same ->completion_lock section.
6232 */
6233 ctx->cq_last_tm_flush = tail;
6234
6235 /*
6236 * Insertion sort, ensuring the first entry in the list is always
6237 * the one we need first.
6238 */
6239 list_for_each_prev(entry, &ctx->timeout_list) {
6240 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6241 timeout.list);
6242
6243 if (io_is_timeout_noseq(nxt))
6244 continue;
6245 /* nxt.seq is behind @tail, otherwise would've been completed */
6246 if (off >= nxt->timeout.target_seq - tail)
6247 break;
6248 }
6249 add:
6250 list_add(&req->timeout.list, entry);
6251 data->timer.function = io_timeout_fn;
6252 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6253 spin_unlock_irq(&ctx->timeout_lock);
6254 return 0;
6255 }
6256
6257 struct io_cancel_data {
6258 struct io_ring_ctx *ctx;
6259 u64 user_data;
6260 };
6261
6262 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6263 {
6264 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6265 struct io_cancel_data *cd = data;
6266
6267 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6268 }
6269
6270 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6271 struct io_ring_ctx *ctx)
6272 {
6273 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6274 enum io_wq_cancel cancel_ret;
6275 int ret = 0;
6276
6277 if (!tctx || !tctx->io_wq)
6278 return -ENOENT;
6279
6280 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6281 switch (cancel_ret) {
6282 case IO_WQ_CANCEL_OK:
6283 ret = 0;
6284 break;
6285 case IO_WQ_CANCEL_RUNNING:
6286 ret = -EALREADY;
6287 break;
6288 case IO_WQ_CANCEL_NOTFOUND:
6289 ret = -ENOENT;
6290 break;
6291 }
6292
6293 return ret;
6294 }
6295
6296 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6297 {
6298 struct io_ring_ctx *ctx = req->ctx;
6299 int ret;
6300
6301 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6302
6303 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6304 if (ret != -ENOENT)
6305 return ret;
6306
6307 spin_lock(&ctx->completion_lock);
6308 spin_lock_irq(&ctx->timeout_lock);
6309 ret = io_timeout_cancel(ctx, sqe_addr);
6310 spin_unlock_irq(&ctx->timeout_lock);
6311 if (ret != -ENOENT)
6312 goto out;
6313 ret = io_poll_cancel(ctx, sqe_addr, false);
6314 out:
6315 spin_unlock(&ctx->completion_lock);
6316 return ret;
6317 }
6318
6319 static int io_async_cancel_prep(struct io_kiocb *req,
6320 const struct io_uring_sqe *sqe)
6321 {
6322 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6323 return -EINVAL;
6324 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6325 return -EINVAL;
6326 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6327 sqe->splice_fd_in)
6328 return -EINVAL;
6329
6330 req->cancel.addr = READ_ONCE(sqe->addr);
6331 return 0;
6332 }
6333
6334 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6335 {
6336 struct io_ring_ctx *ctx = req->ctx;
6337 u64 sqe_addr = req->cancel.addr;
6338 struct io_tctx_node *node;
6339 int ret;
6340
6341 ret = io_try_cancel_userdata(req, sqe_addr);
6342 if (ret != -ENOENT)
6343 goto done;
6344
6345 /* slow path, try all io-wq's */
6346 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6347 ret = -ENOENT;
6348 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6349 struct io_uring_task *tctx = node->task->io_uring;
6350
6351 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6352 if (ret != -ENOENT)
6353 break;
6354 }
6355 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6356 done:
6357 if (ret < 0)
6358 req_set_fail(req);
6359 io_req_complete_post(req, ret, 0);
6360 return 0;
6361 }
6362
6363 static int io_rsrc_update_prep(struct io_kiocb *req,
6364 const struct io_uring_sqe *sqe)
6365 {
6366 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6367 return -EINVAL;
6368 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6369 return -EINVAL;
6370
6371 req->rsrc_update.offset = READ_ONCE(sqe->off);
6372 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6373 if (!req->rsrc_update.nr_args)
6374 return -EINVAL;
6375 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6376 return 0;
6377 }
6378
6379 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6380 {
6381 struct io_ring_ctx *ctx = req->ctx;
6382 struct io_uring_rsrc_update2 up;
6383 int ret;
6384
6385 up.offset = req->rsrc_update.offset;
6386 up.data = req->rsrc_update.arg;
6387 up.nr = 0;
6388 up.tags = 0;
6389 up.resv = 0;
6390 up.resv2 = 0;
6391
6392 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6393 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6394 &up, req->rsrc_update.nr_args);
6395 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6396
6397 if (ret < 0)
6398 req_set_fail(req);
6399 __io_req_complete(req, issue_flags, ret, 0);
6400 return 0;
6401 }
6402
6403 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6404 {
6405 switch (req->opcode) {
6406 case IORING_OP_NOP:
6407 return 0;
6408 case IORING_OP_READV:
6409 case IORING_OP_READ_FIXED:
6410 case IORING_OP_READ:
6411 return io_read_prep(req, sqe);
6412 case IORING_OP_WRITEV:
6413 case IORING_OP_WRITE_FIXED:
6414 case IORING_OP_WRITE:
6415 return io_write_prep(req, sqe);
6416 case IORING_OP_POLL_ADD:
6417 return io_poll_add_prep(req, sqe);
6418 case IORING_OP_POLL_REMOVE:
6419 return io_poll_update_prep(req, sqe);
6420 case IORING_OP_FSYNC:
6421 return io_fsync_prep(req, sqe);
6422 case IORING_OP_SYNC_FILE_RANGE:
6423 return io_sfr_prep(req, sqe);
6424 case IORING_OP_SENDMSG:
6425 case IORING_OP_SEND:
6426 return io_sendmsg_prep(req, sqe);
6427 case IORING_OP_RECVMSG:
6428 case IORING_OP_RECV:
6429 return io_recvmsg_prep(req, sqe);
6430 case IORING_OP_CONNECT:
6431 return io_connect_prep(req, sqe);
6432 case IORING_OP_TIMEOUT:
6433 return io_timeout_prep(req, sqe, false);
6434 case IORING_OP_TIMEOUT_REMOVE:
6435 return io_timeout_remove_prep(req, sqe);
6436 case IORING_OP_ASYNC_CANCEL:
6437 return io_async_cancel_prep(req, sqe);
6438 case IORING_OP_LINK_TIMEOUT:
6439 return io_timeout_prep(req, sqe, true);
6440 case IORING_OP_ACCEPT:
6441 return io_accept_prep(req, sqe);
6442 case IORING_OP_FALLOCATE:
6443 return io_fallocate_prep(req, sqe);
6444 case IORING_OP_OPENAT:
6445 return io_openat_prep(req, sqe);
6446 case IORING_OP_CLOSE:
6447 return io_close_prep(req, sqe);
6448 case IORING_OP_FILES_UPDATE:
6449 return io_rsrc_update_prep(req, sqe);
6450 case IORING_OP_STATX:
6451 return io_statx_prep(req, sqe);
6452 case IORING_OP_FADVISE:
6453 return io_fadvise_prep(req, sqe);
6454 case IORING_OP_MADVISE:
6455 return io_madvise_prep(req, sqe);
6456 case IORING_OP_OPENAT2:
6457 return io_openat2_prep(req, sqe);
6458 case IORING_OP_EPOLL_CTL:
6459 return io_epoll_ctl_prep(req, sqe);
6460 case IORING_OP_SPLICE:
6461 return io_splice_prep(req, sqe);
6462 case IORING_OP_PROVIDE_BUFFERS:
6463 return io_provide_buffers_prep(req, sqe);
6464 case IORING_OP_REMOVE_BUFFERS:
6465 return io_remove_buffers_prep(req, sqe);
6466 case IORING_OP_TEE:
6467 return io_tee_prep(req, sqe);
6468 case IORING_OP_SHUTDOWN:
6469 return io_shutdown_prep(req, sqe);
6470 case IORING_OP_RENAMEAT:
6471 return io_renameat_prep(req, sqe);
6472 case IORING_OP_UNLINKAT:
6473 return io_unlinkat_prep(req, sqe);
6474 case IORING_OP_MKDIRAT:
6475 return io_mkdirat_prep(req, sqe);
6476 case IORING_OP_SYMLINKAT:
6477 return io_symlinkat_prep(req, sqe);
6478 case IORING_OP_LINKAT:
6479 return io_linkat_prep(req, sqe);
6480 }
6481
6482 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6483 req->opcode);
6484 return -EINVAL;
6485 }
6486
6487 static int io_req_prep_async(struct io_kiocb *req)
6488 {
6489 if (!io_op_defs[req->opcode].needs_async_setup)
6490 return 0;
6491 if (WARN_ON_ONCE(req->async_data))
6492 return -EFAULT;
6493 if (io_alloc_async_data(req))
6494 return -EAGAIN;
6495
6496 switch (req->opcode) {
6497 case IORING_OP_READV:
6498 return io_rw_prep_async(req, READ);
6499 case IORING_OP_WRITEV:
6500 return io_rw_prep_async(req, WRITE);
6501 case IORING_OP_SENDMSG:
6502 return io_sendmsg_prep_async(req);
6503 case IORING_OP_RECVMSG:
6504 return io_recvmsg_prep_async(req);
6505 case IORING_OP_CONNECT:
6506 return io_connect_prep_async(req);
6507 }
6508 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6509 req->opcode);
6510 return -EFAULT;
6511 }
6512
6513 static u32 io_get_sequence(struct io_kiocb *req)
6514 {
6515 u32 seq = req->ctx->cached_sq_head;
6516
6517 /* need original cached_sq_head, but it was increased for each req */
6518 io_for_each_link(req, req)
6519 seq--;
6520 return seq;
6521 }
6522
6523 static bool io_drain_req(struct io_kiocb *req)
6524 {
6525 struct io_kiocb *pos;
6526 struct io_ring_ctx *ctx = req->ctx;
6527 struct io_defer_entry *de;
6528 int ret;
6529 u32 seq;
6530
6531 if (req->flags & REQ_F_FAIL) {
6532 io_req_complete_fail_submit(req);
6533 return true;
6534 }
6535
6536 /*
6537 * If we need to drain a request in the middle of a link, drain the
6538 * head request and the next request/link after the current link.
6539 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6540 * maintained for every request of our link.
6541 */
6542 if (ctx->drain_next) {
6543 req->flags |= REQ_F_IO_DRAIN;
6544 ctx->drain_next = false;
6545 }
6546 /* not interested in head, start from the first linked */
6547 io_for_each_link(pos, req->link) {
6548 if (pos->flags & REQ_F_IO_DRAIN) {
6549 ctx->drain_next = true;
6550 req->flags |= REQ_F_IO_DRAIN;
6551 break;
6552 }
6553 }
6554
6555 /* Still need defer if there is pending req in defer list. */
6556 spin_lock(&ctx->completion_lock);
6557 if (likely(list_empty_careful(&ctx->defer_list) &&
6558 !(req->flags & REQ_F_IO_DRAIN))) {
6559 spin_unlock(&ctx->completion_lock);
6560 ctx->drain_active = false;
6561 return false;
6562 }
6563 spin_unlock(&ctx->completion_lock);
6564
6565 seq = io_get_sequence(req);
6566 /* Still a chance to pass the sequence check */
6567 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6568 return false;
6569
6570 ret = io_req_prep_async(req);
6571 if (ret)
6572 goto fail;
6573 io_prep_async_link(req);
6574 de = kmalloc(sizeof(*de), GFP_KERNEL);
6575 if (!de) {
6576 ret = -ENOMEM;
6577 fail:
6578 io_req_complete_failed(req, ret);
6579 return true;
6580 }
6581
6582 spin_lock(&ctx->completion_lock);
6583 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6584 spin_unlock(&ctx->completion_lock);
6585 kfree(de);
6586 io_queue_async_work(req, NULL);
6587 return true;
6588 }
6589
6590 trace_io_uring_defer(ctx, req, req->user_data);
6591 de->req = req;
6592 de->seq = seq;
6593 list_add_tail(&de->list, &ctx->defer_list);
6594 spin_unlock(&ctx->completion_lock);
6595 return true;
6596 }
6597
6598 static void io_clean_op(struct io_kiocb *req)
6599 {
6600 if (req->flags & REQ_F_BUFFER_SELECTED) {
6601 switch (req->opcode) {
6602 case IORING_OP_READV:
6603 case IORING_OP_READ_FIXED:
6604 case IORING_OP_READ:
6605 kfree((void *)(unsigned long)req->rw.addr);
6606 break;
6607 case IORING_OP_RECVMSG:
6608 case IORING_OP_RECV:
6609 kfree(req->sr_msg.kbuf);
6610 break;
6611 }
6612 }
6613
6614 if (req->flags & REQ_F_NEED_CLEANUP) {
6615 switch (req->opcode) {
6616 case IORING_OP_READV:
6617 case IORING_OP_READ_FIXED:
6618 case IORING_OP_READ:
6619 case IORING_OP_WRITEV:
6620 case IORING_OP_WRITE_FIXED:
6621 case IORING_OP_WRITE: {
6622 struct io_async_rw *io = req->async_data;
6623
6624 kfree(io->free_iovec);
6625 break;
6626 }
6627 case IORING_OP_RECVMSG:
6628 case IORING_OP_SENDMSG: {
6629 struct io_async_msghdr *io = req->async_data;
6630
6631 kfree(io->free_iov);
6632 break;
6633 }
6634 case IORING_OP_OPENAT:
6635 case IORING_OP_OPENAT2:
6636 if (req->open.filename)
6637 putname(req->open.filename);
6638 break;
6639 case IORING_OP_RENAMEAT:
6640 putname(req->rename.oldpath);
6641 putname(req->rename.newpath);
6642 break;
6643 case IORING_OP_UNLINKAT:
6644 putname(req->unlink.filename);
6645 break;
6646 case IORING_OP_MKDIRAT:
6647 putname(req->mkdir.filename);
6648 break;
6649 case IORING_OP_SYMLINKAT:
6650 putname(req->symlink.oldpath);
6651 putname(req->symlink.newpath);
6652 break;
6653 case IORING_OP_LINKAT:
6654 putname(req->hardlink.oldpath);
6655 putname(req->hardlink.newpath);
6656 break;
6657 }
6658 }
6659 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6660 kfree(req->apoll->double_poll);
6661 kfree(req->apoll);
6662 req->apoll = NULL;
6663 }
6664 if (req->flags & REQ_F_INFLIGHT) {
6665 struct io_uring_task *tctx = req->task->io_uring;
6666
6667 atomic_dec(&tctx->inflight_tracked);
6668 }
6669 if (req->flags & REQ_F_CREDS)
6670 put_cred(req->creds);
6671
6672 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6673 }
6674
6675 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6676 {
6677 struct io_ring_ctx *ctx = req->ctx;
6678 const struct cred *creds = NULL;
6679 int ret;
6680
6681 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6682 creds = override_creds(req->creds);
6683
6684 switch (req->opcode) {
6685 case IORING_OP_NOP:
6686 ret = io_nop(req, issue_flags);
6687 break;
6688 case IORING_OP_READV:
6689 case IORING_OP_READ_FIXED:
6690 case IORING_OP_READ:
6691 ret = io_read(req, issue_flags);
6692 break;
6693 case IORING_OP_WRITEV:
6694 case IORING_OP_WRITE_FIXED:
6695 case IORING_OP_WRITE:
6696 ret = io_write(req, issue_flags);
6697 break;
6698 case IORING_OP_FSYNC:
6699 ret = io_fsync(req, issue_flags);
6700 break;
6701 case IORING_OP_POLL_ADD:
6702 ret = io_poll_add(req, issue_flags);
6703 break;
6704 case IORING_OP_POLL_REMOVE:
6705 ret = io_poll_update(req, issue_flags);
6706 break;
6707 case IORING_OP_SYNC_FILE_RANGE:
6708 ret = io_sync_file_range(req, issue_flags);
6709 break;
6710 case IORING_OP_SENDMSG:
6711 ret = io_sendmsg(req, issue_flags);
6712 break;
6713 case IORING_OP_SEND:
6714 ret = io_send(req, issue_flags);
6715 break;
6716 case IORING_OP_RECVMSG:
6717 ret = io_recvmsg(req, issue_flags);
6718 break;
6719 case IORING_OP_RECV:
6720 ret = io_recv(req, issue_flags);
6721 break;
6722 case IORING_OP_TIMEOUT:
6723 ret = io_timeout(req, issue_flags);
6724 break;
6725 case IORING_OP_TIMEOUT_REMOVE:
6726 ret = io_timeout_remove(req, issue_flags);
6727 break;
6728 case IORING_OP_ACCEPT:
6729 ret = io_accept(req, issue_flags);
6730 break;
6731 case IORING_OP_CONNECT:
6732 ret = io_connect(req, issue_flags);
6733 break;
6734 case IORING_OP_ASYNC_CANCEL:
6735 ret = io_async_cancel(req, issue_flags);
6736 break;
6737 case IORING_OP_FALLOCATE:
6738 ret = io_fallocate(req, issue_flags);
6739 break;
6740 case IORING_OP_OPENAT:
6741 ret = io_openat(req, issue_flags);
6742 break;
6743 case IORING_OP_CLOSE:
6744 ret = io_close(req, issue_flags);
6745 break;
6746 case IORING_OP_FILES_UPDATE:
6747 ret = io_files_update(req, issue_flags);
6748 break;
6749 case IORING_OP_STATX:
6750 ret = io_statx(req, issue_flags);
6751 break;
6752 case IORING_OP_FADVISE:
6753 ret = io_fadvise(req, issue_flags);
6754 break;
6755 case IORING_OP_MADVISE:
6756 ret = io_madvise(req, issue_flags);
6757 break;
6758 case IORING_OP_OPENAT2:
6759 ret = io_openat2(req, issue_flags);
6760 break;
6761 case IORING_OP_EPOLL_CTL:
6762 ret = io_epoll_ctl(req, issue_flags);
6763 break;
6764 case IORING_OP_SPLICE:
6765 ret = io_splice(req, issue_flags);
6766 break;
6767 case IORING_OP_PROVIDE_BUFFERS:
6768 ret = io_provide_buffers(req, issue_flags);
6769 break;
6770 case IORING_OP_REMOVE_BUFFERS:
6771 ret = io_remove_buffers(req, issue_flags);
6772 break;
6773 case IORING_OP_TEE:
6774 ret = io_tee(req, issue_flags);
6775 break;
6776 case IORING_OP_SHUTDOWN:
6777 ret = io_shutdown(req, issue_flags);
6778 break;
6779 case IORING_OP_RENAMEAT:
6780 ret = io_renameat(req, issue_flags);
6781 break;
6782 case IORING_OP_UNLINKAT:
6783 ret = io_unlinkat(req, issue_flags);
6784 break;
6785 case IORING_OP_MKDIRAT:
6786 ret = io_mkdirat(req, issue_flags);
6787 break;
6788 case IORING_OP_SYMLINKAT:
6789 ret = io_symlinkat(req, issue_flags);
6790 break;
6791 case IORING_OP_LINKAT:
6792 ret = io_linkat(req, issue_flags);
6793 break;
6794 default:
6795 ret = -EINVAL;
6796 break;
6797 }
6798
6799 if (creds)
6800 revert_creds(creds);
6801 if (ret)
6802 return ret;
6803 /* If the op doesn't have a file, we're not polling for it */
6804 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6805 io_iopoll_req_issued(req);
6806
6807 return 0;
6808 }
6809
6810 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6811 {
6812 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6813
6814 req = io_put_req_find_next(req);
6815 return req ? &req->work : NULL;
6816 }
6817
6818 static void io_wq_submit_work(struct io_wq_work *work)
6819 {
6820 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6821 struct io_kiocb *timeout;
6822 int ret = 0;
6823
6824 /* one will be dropped by ->io_free_work() after returning to io-wq */
6825 if (!(req->flags & REQ_F_REFCOUNT))
6826 __io_req_set_refcount(req, 2);
6827 else
6828 req_ref_get(req);
6829
6830 timeout = io_prep_linked_timeout(req);
6831 if (timeout)
6832 io_queue_linked_timeout(timeout);
6833
6834 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6835 if (work->flags & IO_WQ_WORK_CANCEL)
6836 ret = -ECANCELED;
6837
6838 if (!ret) {
6839 do {
6840 ret = io_issue_sqe(req, 0);
6841 /*
6842 * We can get EAGAIN for polled IO even though we're
6843 * forcing a sync submission from here, since we can't
6844 * wait for request slots on the block side.
6845 */
6846 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6847 break;
6848 cond_resched();
6849 } while (1);
6850 }
6851
6852 /* avoid locking problems by failing it from a clean context */
6853 if (ret)
6854 io_req_task_queue_fail(req, ret);
6855 }
6856
6857 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6858 unsigned i)
6859 {
6860 return &table->files[i];
6861 }
6862
6863 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6864 int index)
6865 {
6866 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6867
6868 return (struct file *) (slot->file_ptr & FFS_MASK);
6869 }
6870
6871 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6872 {
6873 unsigned long file_ptr = (unsigned long) file;
6874
6875 if (__io_file_supports_nowait(file, READ))
6876 file_ptr |= FFS_ASYNC_READ;
6877 if (__io_file_supports_nowait(file, WRITE))
6878 file_ptr |= FFS_ASYNC_WRITE;
6879 if (S_ISREG(file_inode(file)->i_mode))
6880 file_ptr |= FFS_ISREG;
6881 file_slot->file_ptr = file_ptr;
6882 }
6883
6884 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6885 struct io_kiocb *req, int fd)
6886 {
6887 struct file *file;
6888 unsigned long file_ptr;
6889
6890 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6891 return NULL;
6892 fd = array_index_nospec(fd, ctx->nr_user_files);
6893 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6894 file = (struct file *) (file_ptr & FFS_MASK);
6895 file_ptr &= ~FFS_MASK;
6896 /* mask in overlapping REQ_F and FFS bits */
6897 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6898 io_req_set_rsrc_node(req);
6899 return file;
6900 }
6901
6902 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6903 struct io_kiocb *req, int fd)
6904 {
6905 struct file *file = fget(fd);
6906
6907 trace_io_uring_file_get(ctx, fd);
6908
6909 /* we don't allow fixed io_uring files */
6910 if (file && unlikely(file->f_op == &io_uring_fops))
6911 io_req_track_inflight(req);
6912 return file;
6913 }
6914
6915 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6916 struct io_kiocb *req, int fd, bool fixed)
6917 {
6918 if (fixed)
6919 return io_file_get_fixed(ctx, req, fd);
6920 else
6921 return io_file_get_normal(ctx, req, fd);
6922 }
6923
6924 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6925 {
6926 struct io_kiocb *prev = req->timeout.prev;
6927 int ret = -ENOENT;
6928
6929 if (prev) {
6930 if (!(req->task->flags & PF_EXITING))
6931 ret = io_try_cancel_userdata(req, prev->user_data);
6932 io_req_complete_post(req, ret ?: -ETIME, 0);
6933 io_put_req(prev);
6934 } else {
6935 io_req_complete_post(req, -ETIME, 0);
6936 }
6937 }
6938
6939 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6940 {
6941 struct io_timeout_data *data = container_of(timer,
6942 struct io_timeout_data, timer);
6943 struct io_kiocb *prev, *req = data->req;
6944 struct io_ring_ctx *ctx = req->ctx;
6945 unsigned long flags;
6946
6947 spin_lock_irqsave(&ctx->timeout_lock, flags);
6948 prev = req->timeout.head;
6949 req->timeout.head = NULL;
6950
6951 /*
6952 * We don't expect the list to be empty, that will only happen if we
6953 * race with the completion of the linked work.
6954 */
6955 if (prev) {
6956 io_remove_next_linked(prev);
6957 if (!req_ref_inc_not_zero(prev))
6958 prev = NULL;
6959 }
6960 list_del(&req->timeout.list);
6961 req->timeout.prev = prev;
6962 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6963
6964 req->io_task_work.func = io_req_task_link_timeout;
6965 io_req_task_work_add(req);
6966 return HRTIMER_NORESTART;
6967 }
6968
6969 static void io_queue_linked_timeout(struct io_kiocb *req)
6970 {
6971 struct io_ring_ctx *ctx = req->ctx;
6972
6973 spin_lock_irq(&ctx->timeout_lock);
6974 /*
6975 * If the back reference is NULL, then our linked request finished
6976 * before we got a chance to setup the timer
6977 */
6978 if (req->timeout.head) {
6979 struct io_timeout_data *data = req->async_data;
6980
6981 data->timer.function = io_link_timeout_fn;
6982 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6983 data->mode);
6984 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6985 }
6986 spin_unlock_irq(&ctx->timeout_lock);
6987 /* drop submission reference */
6988 io_put_req(req);
6989 }
6990
6991 static void __io_queue_sqe(struct io_kiocb *req)
6992 __must_hold(&req->ctx->uring_lock)
6993 {
6994 struct io_kiocb *linked_timeout;
6995 int ret;
6996
6997 issue_sqe:
6998 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6999
7000 /*
7001 * We async punt it if the file wasn't marked NOWAIT, or if the file
7002 * doesn't support non-blocking read/write attempts
7003 */
7004 if (likely(!ret)) {
7005 if (req->flags & REQ_F_COMPLETE_INLINE) {
7006 struct io_ring_ctx *ctx = req->ctx;
7007 struct io_submit_state *state = &ctx->submit_state;
7008
7009 state->compl_reqs[state->compl_nr++] = req;
7010 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7011 io_submit_flush_completions(ctx);
7012 return;
7013 }
7014
7015 linked_timeout = io_prep_linked_timeout(req);
7016 if (linked_timeout)
7017 io_queue_linked_timeout(linked_timeout);
7018 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7019 linked_timeout = io_prep_linked_timeout(req);
7020
7021 switch (io_arm_poll_handler(req)) {
7022 case IO_APOLL_READY:
7023 if (linked_timeout)
7024 io_queue_linked_timeout(linked_timeout);
7025 goto issue_sqe;
7026 case IO_APOLL_ABORTED:
7027 /*
7028 * Queued up for async execution, worker will release
7029 * submit reference when the iocb is actually submitted.
7030 */
7031 io_queue_async_work(req, NULL);
7032 break;
7033 }
7034
7035 if (linked_timeout)
7036 io_queue_linked_timeout(linked_timeout);
7037 } else {
7038 io_req_complete_failed(req, ret);
7039 }
7040 }
7041
7042 static inline void io_queue_sqe(struct io_kiocb *req)
7043 __must_hold(&req->ctx->uring_lock)
7044 {
7045 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7046 return;
7047
7048 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7049 __io_queue_sqe(req);
7050 } else if (req->flags & REQ_F_FAIL) {
7051 io_req_complete_fail_submit(req);
7052 } else {
7053 int ret = io_req_prep_async(req);
7054
7055 if (unlikely(ret))
7056 io_req_complete_failed(req, ret);
7057 else
7058 io_queue_async_work(req, NULL);
7059 }
7060 }
7061
7062 /*
7063 * Check SQE restrictions (opcode and flags).
7064 *
7065 * Returns 'true' if SQE is allowed, 'false' otherwise.
7066 */
7067 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7068 struct io_kiocb *req,
7069 unsigned int sqe_flags)
7070 {
7071 if (likely(!ctx->restricted))
7072 return true;
7073
7074 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7075 return false;
7076
7077 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7078 ctx->restrictions.sqe_flags_required)
7079 return false;
7080
7081 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7082 ctx->restrictions.sqe_flags_required))
7083 return false;
7084
7085 return true;
7086 }
7087
7088 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7089 const struct io_uring_sqe *sqe)
7090 __must_hold(&ctx->uring_lock)
7091 {
7092 struct io_submit_state *state;
7093 unsigned int sqe_flags;
7094 int personality, ret = 0;
7095
7096 /* req is partially pre-initialised, see io_preinit_req() */
7097 req->opcode = READ_ONCE(sqe->opcode);
7098 /* same numerical values with corresponding REQ_F_*, safe to copy */
7099 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7100 req->user_data = READ_ONCE(sqe->user_data);
7101 req->file = NULL;
7102 req->fixed_rsrc_refs = NULL;
7103 req->task = current;
7104
7105 /* enforce forwards compatibility on users */
7106 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7107 return -EINVAL;
7108 if (unlikely(req->opcode >= IORING_OP_LAST))
7109 return -EINVAL;
7110 if (!io_check_restriction(ctx, req, sqe_flags))
7111 return -EACCES;
7112
7113 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7114 !io_op_defs[req->opcode].buffer_select)
7115 return -EOPNOTSUPP;
7116 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7117 ctx->drain_active = true;
7118
7119 personality = READ_ONCE(sqe->personality);
7120 if (personality) {
7121 req->creds = xa_load(&ctx->personalities, personality);
7122 if (!req->creds)
7123 return -EINVAL;
7124 get_cred(req->creds);
7125 req->flags |= REQ_F_CREDS;
7126 }
7127 state = &ctx->submit_state;
7128
7129 /*
7130 * Plug now if we have more than 1 IO left after this, and the target
7131 * is potentially a read/write to block based storage.
7132 */
7133 if (!state->plug_started && state->ios_left > 1 &&
7134 io_op_defs[req->opcode].plug) {
7135 blk_start_plug(&state->plug);
7136 state->plug_started = true;
7137 }
7138
7139 if (io_op_defs[req->opcode].needs_file) {
7140 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7141 (sqe_flags & IOSQE_FIXED_FILE));
7142 if (unlikely(!req->file))
7143 ret = -EBADF;
7144 }
7145
7146 state->ios_left--;
7147 return ret;
7148 }
7149
7150 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7151 const struct io_uring_sqe *sqe)
7152 __must_hold(&ctx->uring_lock)
7153 {
7154 struct io_submit_link *link = &ctx->submit_state.link;
7155 int ret;
7156
7157 ret = io_init_req(ctx, req, sqe);
7158 if (unlikely(ret)) {
7159 fail_req:
7160 /* fail even hard links since we don't submit */
7161 if (link->head) {
7162 /*
7163 * we can judge a link req is failed or cancelled by if
7164 * REQ_F_FAIL is set, but the head is an exception since
7165 * it may be set REQ_F_FAIL because of other req's failure
7166 * so let's leverage req->result to distinguish if a head
7167 * is set REQ_F_FAIL because of its failure or other req's
7168 * failure so that we can set the correct ret code for it.
7169 * init result here to avoid affecting the normal path.
7170 */
7171 if (!(link->head->flags & REQ_F_FAIL))
7172 req_fail_link_node(link->head, -ECANCELED);
7173 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7174 /*
7175 * the current req is a normal req, we should return
7176 * error and thus break the submittion loop.
7177 */
7178 io_req_complete_failed(req, ret);
7179 return ret;
7180 }
7181 req_fail_link_node(req, ret);
7182 } else {
7183 ret = io_req_prep(req, sqe);
7184 if (unlikely(ret))
7185 goto fail_req;
7186 }
7187
7188 /* don't need @sqe from now on */
7189 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7190 req->flags, true,
7191 ctx->flags & IORING_SETUP_SQPOLL);
7192
7193 /*
7194 * If we already have a head request, queue this one for async
7195 * submittal once the head completes. If we don't have a head but
7196 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7197 * submitted sync once the chain is complete. If none of those
7198 * conditions are true (normal request), then just queue it.
7199 */
7200 if (link->head) {
7201 struct io_kiocb *head = link->head;
7202
7203 if (!(req->flags & REQ_F_FAIL)) {
7204 ret = io_req_prep_async(req);
7205 if (unlikely(ret)) {
7206 req_fail_link_node(req, ret);
7207 if (!(head->flags & REQ_F_FAIL))
7208 req_fail_link_node(head, -ECANCELED);
7209 }
7210 }
7211 trace_io_uring_link(ctx, req, head);
7212 link->last->link = req;
7213 link->last = req;
7214
7215 /* last request of a link, enqueue the link */
7216 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7217 link->head = NULL;
7218 io_queue_sqe(head);
7219 }
7220 } else {
7221 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7222 link->head = req;
7223 link->last = req;
7224 } else {
7225 io_queue_sqe(req);
7226 }
7227 }
7228
7229 return 0;
7230 }
7231
7232 /*
7233 * Batched submission is done, ensure local IO is flushed out.
7234 */
7235 static void io_submit_state_end(struct io_submit_state *state,
7236 struct io_ring_ctx *ctx)
7237 {
7238 if (state->link.head)
7239 io_queue_sqe(state->link.head);
7240 if (state->compl_nr)
7241 io_submit_flush_completions(ctx);
7242 if (state->plug_started)
7243 blk_finish_plug(&state->plug);
7244 }
7245
7246 /*
7247 * Start submission side cache.
7248 */
7249 static void io_submit_state_start(struct io_submit_state *state,
7250 unsigned int max_ios)
7251 {
7252 state->plug_started = false;
7253 state->ios_left = max_ios;
7254 /* set only head, no need to init link_last in advance */
7255 state->link.head = NULL;
7256 }
7257
7258 static void io_commit_sqring(struct io_ring_ctx *ctx)
7259 {
7260 struct io_rings *rings = ctx->rings;
7261
7262 /*
7263 * Ensure any loads from the SQEs are done at this point,
7264 * since once we write the new head, the application could
7265 * write new data to them.
7266 */
7267 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7268 }
7269
7270 /*
7271 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7272 * that is mapped by userspace. This means that care needs to be taken to
7273 * ensure that reads are stable, as we cannot rely on userspace always
7274 * being a good citizen. If members of the sqe are validated and then later
7275 * used, it's important that those reads are done through READ_ONCE() to
7276 * prevent a re-load down the line.
7277 */
7278 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7279 {
7280 unsigned head, mask = ctx->sq_entries - 1;
7281 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7282
7283 /*
7284 * The cached sq head (or cq tail) serves two purposes:
7285 *
7286 * 1) allows us to batch the cost of updating the user visible
7287 * head updates.
7288 * 2) allows the kernel side to track the head on its own, even
7289 * though the application is the one updating it.
7290 */
7291 head = READ_ONCE(ctx->sq_array[sq_idx]);
7292 if (likely(head < ctx->sq_entries))
7293 return &ctx->sq_sqes[head];
7294
7295 /* drop invalid entries */
7296 ctx->cq_extra--;
7297 WRITE_ONCE(ctx->rings->sq_dropped,
7298 READ_ONCE(ctx->rings->sq_dropped) + 1);
7299 return NULL;
7300 }
7301
7302 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7303 __must_hold(&ctx->uring_lock)
7304 {
7305 int submitted = 0;
7306
7307 /* make sure SQ entry isn't read before tail */
7308 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7309 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7310 return -EAGAIN;
7311 io_get_task_refs(nr);
7312
7313 io_submit_state_start(&ctx->submit_state, nr);
7314 while (submitted < nr) {
7315 const struct io_uring_sqe *sqe;
7316 struct io_kiocb *req;
7317
7318 req = io_alloc_req(ctx);
7319 if (unlikely(!req)) {
7320 if (!submitted)
7321 submitted = -EAGAIN;
7322 break;
7323 }
7324 sqe = io_get_sqe(ctx);
7325 if (unlikely(!sqe)) {
7326 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7327 break;
7328 }
7329 /* will complete beyond this point, count as submitted */
7330 submitted++;
7331 if (io_submit_sqe(ctx, req, sqe))
7332 break;
7333 }
7334
7335 if (unlikely(submitted != nr)) {
7336 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7337 int unused = nr - ref_used;
7338
7339 current->io_uring->cached_refs += unused;
7340 percpu_ref_put_many(&ctx->refs, unused);
7341 }
7342
7343 io_submit_state_end(&ctx->submit_state, ctx);
7344 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7345 io_commit_sqring(ctx);
7346
7347 return submitted;
7348 }
7349
7350 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7351 {
7352 return READ_ONCE(sqd->state);
7353 }
7354
7355 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7356 {
7357 /* Tell userspace we may need a wakeup call */
7358 spin_lock(&ctx->completion_lock);
7359 WRITE_ONCE(ctx->rings->sq_flags,
7360 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7361 spin_unlock(&ctx->completion_lock);
7362 }
7363
7364 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7365 {
7366 spin_lock(&ctx->completion_lock);
7367 WRITE_ONCE(ctx->rings->sq_flags,
7368 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7369 spin_unlock(&ctx->completion_lock);
7370 }
7371
7372 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7373 {
7374 unsigned int to_submit;
7375 int ret = 0;
7376
7377 to_submit = io_sqring_entries(ctx);
7378 /* if we're handling multiple rings, cap submit size for fairness */
7379 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7380 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7381
7382 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7383 unsigned nr_events = 0;
7384 const struct cred *creds = NULL;
7385
7386 if (ctx->sq_creds != current_cred())
7387 creds = override_creds(ctx->sq_creds);
7388
7389 mutex_lock(&ctx->uring_lock);
7390 if (!list_empty(&ctx->iopoll_list))
7391 io_do_iopoll(ctx, &nr_events, 0);
7392
7393 /*
7394 * Don't submit if refs are dying, good for io_uring_register(),
7395 * but also it is relied upon by io_ring_exit_work()
7396 */
7397 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7398 !(ctx->flags & IORING_SETUP_R_DISABLED))
7399 ret = io_submit_sqes(ctx, to_submit);
7400 mutex_unlock(&ctx->uring_lock);
7401
7402 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7403 wake_up(&ctx->sqo_sq_wait);
7404 if (creds)
7405 revert_creds(creds);
7406 }
7407
7408 return ret;
7409 }
7410
7411 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7412 {
7413 struct io_ring_ctx *ctx;
7414 unsigned sq_thread_idle = 0;
7415
7416 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7417 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7418 sqd->sq_thread_idle = sq_thread_idle;
7419 }
7420
7421 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7422 {
7423 bool did_sig = false;
7424 struct ksignal ksig;
7425
7426 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7427 signal_pending(current)) {
7428 mutex_unlock(&sqd->lock);
7429 if (signal_pending(current))
7430 did_sig = get_signal(&ksig);
7431 cond_resched();
7432 mutex_lock(&sqd->lock);
7433 }
7434 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7435 }
7436
7437 static int io_sq_thread(void *data)
7438 {
7439 struct io_sq_data *sqd = data;
7440 struct io_ring_ctx *ctx;
7441 unsigned long timeout = 0;
7442 char buf[TASK_COMM_LEN];
7443 DEFINE_WAIT(wait);
7444
7445 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7446 set_task_comm(current, buf);
7447
7448 if (sqd->sq_cpu != -1)
7449 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7450 else
7451 set_cpus_allowed_ptr(current, cpu_online_mask);
7452 current->flags |= PF_NO_SETAFFINITY;
7453
7454 mutex_lock(&sqd->lock);
7455 while (1) {
7456 bool cap_entries, sqt_spin = false;
7457
7458 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7459 if (io_sqd_handle_event(sqd))
7460 break;
7461 timeout = jiffies + sqd->sq_thread_idle;
7462 }
7463
7464 cap_entries = !list_is_singular(&sqd->ctx_list);
7465 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7466 int ret = __io_sq_thread(ctx, cap_entries);
7467
7468 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7469 sqt_spin = true;
7470 }
7471 if (io_run_task_work())
7472 sqt_spin = true;
7473
7474 if (sqt_spin || !time_after(jiffies, timeout)) {
7475 cond_resched();
7476 if (sqt_spin)
7477 timeout = jiffies + sqd->sq_thread_idle;
7478 continue;
7479 }
7480
7481 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7482 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7483 bool needs_sched = true;
7484
7485 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7486 io_ring_set_wakeup_flag(ctx);
7487
7488 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7489 !list_empty_careful(&ctx->iopoll_list)) {
7490 needs_sched = false;
7491 break;
7492 }
7493 if (io_sqring_entries(ctx)) {
7494 needs_sched = false;
7495 break;
7496 }
7497 }
7498
7499 if (needs_sched) {
7500 mutex_unlock(&sqd->lock);
7501 schedule();
7502 mutex_lock(&sqd->lock);
7503 }
7504 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7505 io_ring_clear_wakeup_flag(ctx);
7506 }
7507
7508 finish_wait(&sqd->wait, &wait);
7509 timeout = jiffies + sqd->sq_thread_idle;
7510 }
7511
7512 io_uring_cancel_generic(true, sqd);
7513 sqd->thread = NULL;
7514 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7515 io_ring_set_wakeup_flag(ctx);
7516 io_run_task_work();
7517 mutex_unlock(&sqd->lock);
7518
7519 complete(&sqd->exited);
7520 do_exit(0);
7521 }
7522
7523 struct io_wait_queue {
7524 struct wait_queue_entry wq;
7525 struct io_ring_ctx *ctx;
7526 unsigned cq_tail;
7527 unsigned nr_timeouts;
7528 };
7529
7530 static inline bool io_should_wake(struct io_wait_queue *iowq)
7531 {
7532 struct io_ring_ctx *ctx = iowq->ctx;
7533 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7534
7535 /*
7536 * Wake up if we have enough events, or if a timeout occurred since we
7537 * started waiting. For timeouts, we always want to return to userspace,
7538 * regardless of event count.
7539 */
7540 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7541 }
7542
7543 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7544 int wake_flags, void *key)
7545 {
7546 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7547 wq);
7548
7549 /*
7550 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7551 * the task, and the next invocation will do it.
7552 */
7553 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7554 return autoremove_wake_function(curr, mode, wake_flags, key);
7555 return -1;
7556 }
7557
7558 static int io_run_task_work_sig(void)
7559 {
7560 if (io_run_task_work())
7561 return 1;
7562 if (!signal_pending(current))
7563 return 0;
7564 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7565 return -ERESTARTSYS;
7566 return -EINTR;
7567 }
7568
7569 /* when returns >0, the caller should retry */
7570 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7571 struct io_wait_queue *iowq,
7572 ktime_t timeout)
7573 {
7574 int ret;
7575
7576 /* make sure we run task_work before checking for signals */
7577 ret = io_run_task_work_sig();
7578 if (ret || io_should_wake(iowq))
7579 return ret;
7580 /* let the caller flush overflows, retry */
7581 if (test_bit(0, &ctx->check_cq_overflow))
7582 return 1;
7583
7584 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7585 return -ETIME;
7586 return 1;
7587 }
7588
7589 /*
7590 * Wait until events become available, if we don't already have some. The
7591 * application must reap them itself, as they reside on the shared cq ring.
7592 */
7593 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7594 const sigset_t __user *sig, size_t sigsz,
7595 struct __kernel_timespec __user *uts)
7596 {
7597 struct io_wait_queue iowq;
7598 struct io_rings *rings = ctx->rings;
7599 ktime_t timeout = KTIME_MAX;
7600 int ret;
7601
7602 do {
7603 io_cqring_overflow_flush(ctx);
7604 if (io_cqring_events(ctx) >= min_events)
7605 return 0;
7606 if (!io_run_task_work())
7607 break;
7608 } while (1);
7609
7610 if (uts) {
7611 struct timespec64 ts;
7612
7613 if (get_timespec64(&ts, uts))
7614 return -EFAULT;
7615 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7616 }
7617
7618 if (sig) {
7619 #ifdef CONFIG_COMPAT
7620 if (in_compat_syscall())
7621 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7622 sigsz);
7623 else
7624 #endif
7625 ret = set_user_sigmask(sig, sigsz);
7626
7627 if (ret)
7628 return ret;
7629 }
7630
7631 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7632 iowq.wq.private = current;
7633 INIT_LIST_HEAD(&iowq.wq.entry);
7634 iowq.ctx = ctx;
7635 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7636 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7637
7638 trace_io_uring_cqring_wait(ctx, min_events);
7639 do {
7640 /* if we can't even flush overflow, don't wait for more */
7641 if (!io_cqring_overflow_flush(ctx)) {
7642 ret = -EBUSY;
7643 break;
7644 }
7645 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7646 TASK_INTERRUPTIBLE);
7647 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7648 finish_wait(&ctx->cq_wait, &iowq.wq);
7649 cond_resched();
7650 } while (ret > 0);
7651
7652 restore_saved_sigmask_unless(ret == -EINTR);
7653
7654 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7655 }
7656
7657 static void io_free_page_table(void **table, size_t size)
7658 {
7659 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7660
7661 for (i = 0; i < nr_tables; i++)
7662 kfree(table[i]);
7663 kfree(table);
7664 }
7665
7666 static void **io_alloc_page_table(size_t size)
7667 {
7668 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7669 size_t init_size = size;
7670 void **table;
7671
7672 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7673 if (!table)
7674 return NULL;
7675
7676 for (i = 0; i < nr_tables; i++) {
7677 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7678
7679 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7680 if (!table[i]) {
7681 io_free_page_table(table, init_size);
7682 return NULL;
7683 }
7684 size -= this_size;
7685 }
7686 return table;
7687 }
7688
7689 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7690 {
7691 percpu_ref_exit(&ref_node->refs);
7692 kfree(ref_node);
7693 }
7694
7695 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7696 {
7697 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7698 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7699 unsigned long flags;
7700 bool first_add = false;
7701 unsigned long delay = HZ;
7702
7703 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7704 node->done = true;
7705
7706 /* if we are mid-quiesce then do not delay */
7707 if (node->rsrc_data->quiesce)
7708 delay = 0;
7709
7710 while (!list_empty(&ctx->rsrc_ref_list)) {
7711 node = list_first_entry(&ctx->rsrc_ref_list,
7712 struct io_rsrc_node, node);
7713 /* recycle ref nodes in order */
7714 if (!node->done)
7715 break;
7716 list_del(&node->node);
7717 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7718 }
7719 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7720
7721 if (first_add)
7722 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7723 }
7724
7725 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7726 {
7727 struct io_rsrc_node *ref_node;
7728
7729 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7730 if (!ref_node)
7731 return NULL;
7732
7733 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7734 0, GFP_KERNEL)) {
7735 kfree(ref_node);
7736 return NULL;
7737 }
7738 INIT_LIST_HEAD(&ref_node->node);
7739 INIT_LIST_HEAD(&ref_node->rsrc_list);
7740 ref_node->done = false;
7741 return ref_node;
7742 }
7743
7744 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7745 struct io_rsrc_data *data_to_kill)
7746 {
7747 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7748 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7749
7750 if (data_to_kill) {
7751 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7752
7753 rsrc_node->rsrc_data = data_to_kill;
7754 spin_lock_irq(&ctx->rsrc_ref_lock);
7755 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7756 spin_unlock_irq(&ctx->rsrc_ref_lock);
7757
7758 atomic_inc(&data_to_kill->refs);
7759 percpu_ref_kill(&rsrc_node->refs);
7760 ctx->rsrc_node = NULL;
7761 }
7762
7763 if (!ctx->rsrc_node) {
7764 ctx->rsrc_node = ctx->rsrc_backup_node;
7765 ctx->rsrc_backup_node = NULL;
7766 }
7767 }
7768
7769 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7770 {
7771 if (ctx->rsrc_backup_node)
7772 return 0;
7773 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7774 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7775 }
7776
7777 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7778 {
7779 int ret;
7780
7781 /* As we may drop ->uring_lock, other task may have started quiesce */
7782 if (data->quiesce)
7783 return -ENXIO;
7784
7785 data->quiesce = true;
7786 do {
7787 ret = io_rsrc_node_switch_start(ctx);
7788 if (ret)
7789 break;
7790 io_rsrc_node_switch(ctx, data);
7791
7792 /* kill initial ref, already quiesced if zero */
7793 if (atomic_dec_and_test(&data->refs))
7794 break;
7795 mutex_unlock(&ctx->uring_lock);
7796 flush_delayed_work(&ctx->rsrc_put_work);
7797 ret = wait_for_completion_interruptible(&data->done);
7798 if (!ret) {
7799 mutex_lock(&ctx->uring_lock);
7800 if (atomic_read(&data->refs) > 0) {
7801 /*
7802 * it has been revived by another thread while
7803 * we were unlocked
7804 */
7805 mutex_unlock(&ctx->uring_lock);
7806 } else {
7807 break;
7808 }
7809 }
7810
7811 atomic_inc(&data->refs);
7812 /* wait for all works potentially completing data->done */
7813 flush_delayed_work(&ctx->rsrc_put_work);
7814 reinit_completion(&data->done);
7815
7816 ret = io_run_task_work_sig();
7817 mutex_lock(&ctx->uring_lock);
7818 } while (ret >= 0);
7819 data->quiesce = false;
7820
7821 return ret;
7822 }
7823
7824 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7825 {
7826 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7827 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7828
7829 return &data->tags[table_idx][off];
7830 }
7831
7832 static void io_rsrc_data_free(struct io_rsrc_data *data)
7833 {
7834 size_t size = data->nr * sizeof(data->tags[0][0]);
7835
7836 if (data->tags)
7837 io_free_page_table((void **)data->tags, size);
7838 kfree(data);
7839 }
7840
7841 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7842 u64 __user *utags, unsigned nr,
7843 struct io_rsrc_data **pdata)
7844 {
7845 struct io_rsrc_data *data;
7846 int ret = -ENOMEM;
7847 unsigned i;
7848
7849 data = kzalloc(sizeof(*data), GFP_KERNEL);
7850 if (!data)
7851 return -ENOMEM;
7852 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7853 if (!data->tags) {
7854 kfree(data);
7855 return -ENOMEM;
7856 }
7857
7858 data->nr = nr;
7859 data->ctx = ctx;
7860 data->do_put = do_put;
7861 if (utags) {
7862 ret = -EFAULT;
7863 for (i = 0; i < nr; i++) {
7864 u64 *tag_slot = io_get_tag_slot(data, i);
7865
7866 if (copy_from_user(tag_slot, &utags[i],
7867 sizeof(*tag_slot)))
7868 goto fail;
7869 }
7870 }
7871
7872 atomic_set(&data->refs, 1);
7873 init_completion(&data->done);
7874 *pdata = data;
7875 return 0;
7876 fail:
7877 io_rsrc_data_free(data);
7878 return ret;
7879 }
7880
7881 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7882 {
7883 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7884 GFP_KERNEL_ACCOUNT);
7885 return !!table->files;
7886 }
7887
7888 static void io_free_file_tables(struct io_file_table *table)
7889 {
7890 kvfree(table->files);
7891 table->files = NULL;
7892 }
7893
7894 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7895 {
7896 #if defined(CONFIG_UNIX)
7897 if (ctx->ring_sock) {
7898 struct sock *sock = ctx->ring_sock->sk;
7899 struct sk_buff *skb;
7900
7901 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7902 kfree_skb(skb);
7903 }
7904 #else
7905 int i;
7906
7907 for (i = 0; i < ctx->nr_user_files; i++) {
7908 struct file *file;
7909
7910 file = io_file_from_index(ctx, i);
7911 if (file)
7912 fput(file);
7913 }
7914 #endif
7915 io_free_file_tables(&ctx->file_table);
7916 io_rsrc_data_free(ctx->file_data);
7917 ctx->file_data = NULL;
7918 ctx->nr_user_files = 0;
7919 }
7920
7921 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7922 {
7923 unsigned nr = ctx->nr_user_files;
7924 int ret;
7925
7926 if (!ctx->file_data)
7927 return -ENXIO;
7928
7929 /*
7930 * Quiesce may unlock ->uring_lock, and while it's not held
7931 * prevent new requests using the table.
7932 */
7933 ctx->nr_user_files = 0;
7934 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7935 ctx->nr_user_files = nr;
7936 if (!ret)
7937 __io_sqe_files_unregister(ctx);
7938 return ret;
7939 }
7940
7941 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7942 __releases(&sqd->lock)
7943 {
7944 WARN_ON_ONCE(sqd->thread == current);
7945
7946 /*
7947 * Do the dance but not conditional clear_bit() because it'd race with
7948 * other threads incrementing park_pending and setting the bit.
7949 */
7950 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7951 if (atomic_dec_return(&sqd->park_pending))
7952 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7953 mutex_unlock(&sqd->lock);
7954 }
7955
7956 static void io_sq_thread_park(struct io_sq_data *sqd)
7957 __acquires(&sqd->lock)
7958 {
7959 WARN_ON_ONCE(sqd->thread == current);
7960
7961 atomic_inc(&sqd->park_pending);
7962 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7963 mutex_lock(&sqd->lock);
7964 if (sqd->thread)
7965 wake_up_process(sqd->thread);
7966 }
7967
7968 static void io_sq_thread_stop(struct io_sq_data *sqd)
7969 {
7970 WARN_ON_ONCE(sqd->thread == current);
7971 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7972
7973 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7974 mutex_lock(&sqd->lock);
7975 if (sqd->thread)
7976 wake_up_process(sqd->thread);
7977 mutex_unlock(&sqd->lock);
7978 wait_for_completion(&sqd->exited);
7979 }
7980
7981 static void io_put_sq_data(struct io_sq_data *sqd)
7982 {
7983 if (refcount_dec_and_test(&sqd->refs)) {
7984 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7985
7986 io_sq_thread_stop(sqd);
7987 kfree(sqd);
7988 }
7989 }
7990
7991 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7992 {
7993 struct io_sq_data *sqd = ctx->sq_data;
7994
7995 if (sqd) {
7996 io_sq_thread_park(sqd);
7997 list_del_init(&ctx->sqd_list);
7998 io_sqd_update_thread_idle(sqd);
7999 io_sq_thread_unpark(sqd);
8000
8001 io_put_sq_data(sqd);
8002 ctx->sq_data = NULL;
8003 }
8004 }
8005
8006 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8007 {
8008 struct io_ring_ctx *ctx_attach;
8009 struct io_sq_data *sqd;
8010 struct fd f;
8011
8012 f = fdget(p->wq_fd);
8013 if (!f.file)
8014 return ERR_PTR(-ENXIO);
8015 if (f.file->f_op != &io_uring_fops) {
8016 fdput(f);
8017 return ERR_PTR(-EINVAL);
8018 }
8019
8020 ctx_attach = f.file->private_data;
8021 sqd = ctx_attach->sq_data;
8022 if (!sqd) {
8023 fdput(f);
8024 return ERR_PTR(-EINVAL);
8025 }
8026 if (sqd->task_tgid != current->tgid) {
8027 fdput(f);
8028 return ERR_PTR(-EPERM);
8029 }
8030
8031 refcount_inc(&sqd->refs);
8032 fdput(f);
8033 return sqd;
8034 }
8035
8036 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8037 bool *attached)
8038 {
8039 struct io_sq_data *sqd;
8040
8041 *attached = false;
8042 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8043 sqd = io_attach_sq_data(p);
8044 if (!IS_ERR(sqd)) {
8045 *attached = true;
8046 return sqd;
8047 }
8048 /* fall through for EPERM case, setup new sqd/task */
8049 if (PTR_ERR(sqd) != -EPERM)
8050 return sqd;
8051 }
8052
8053 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8054 if (!sqd)
8055 return ERR_PTR(-ENOMEM);
8056
8057 atomic_set(&sqd->park_pending, 0);
8058 refcount_set(&sqd->refs, 1);
8059 INIT_LIST_HEAD(&sqd->ctx_list);
8060 mutex_init(&sqd->lock);
8061 init_waitqueue_head(&sqd->wait);
8062 init_completion(&sqd->exited);
8063 return sqd;
8064 }
8065
8066 #if defined(CONFIG_UNIX)
8067 /*
8068 * Ensure the UNIX gc is aware of our file set, so we are certain that
8069 * the io_uring can be safely unregistered on process exit, even if we have
8070 * loops in the file referencing.
8071 */
8072 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8073 {
8074 struct sock *sk = ctx->ring_sock->sk;
8075 struct scm_fp_list *fpl;
8076 struct sk_buff *skb;
8077 int i, nr_files;
8078
8079 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8080 if (!fpl)
8081 return -ENOMEM;
8082
8083 skb = alloc_skb(0, GFP_KERNEL);
8084 if (!skb) {
8085 kfree(fpl);
8086 return -ENOMEM;
8087 }
8088
8089 skb->sk = sk;
8090
8091 nr_files = 0;
8092 fpl->user = get_uid(current_user());
8093 for (i = 0; i < nr; i++) {
8094 struct file *file = io_file_from_index(ctx, i + offset);
8095
8096 if (!file)
8097 continue;
8098 fpl->fp[nr_files] = get_file(file);
8099 unix_inflight(fpl->user, fpl->fp[nr_files]);
8100 nr_files++;
8101 }
8102
8103 if (nr_files) {
8104 fpl->max = SCM_MAX_FD;
8105 fpl->count = nr_files;
8106 UNIXCB(skb).fp = fpl;
8107 skb->destructor = unix_destruct_scm;
8108 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8109 skb_queue_head(&sk->sk_receive_queue, skb);
8110
8111 for (i = 0; i < nr; i++) {
8112 struct file *file = io_file_from_index(ctx, i + offset);
8113
8114 if (file)
8115 fput(file);
8116 }
8117 } else {
8118 kfree_skb(skb);
8119 free_uid(fpl->user);
8120 kfree(fpl);
8121 }
8122
8123 return 0;
8124 }
8125
8126 /*
8127 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8128 * causes regular reference counting to break down. We rely on the UNIX
8129 * garbage collection to take care of this problem for us.
8130 */
8131 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8132 {
8133 unsigned left, total;
8134 int ret = 0;
8135
8136 total = 0;
8137 left = ctx->nr_user_files;
8138 while (left) {
8139 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8140
8141 ret = __io_sqe_files_scm(ctx, this_files, total);
8142 if (ret)
8143 break;
8144 left -= this_files;
8145 total += this_files;
8146 }
8147
8148 if (!ret)
8149 return 0;
8150
8151 while (total < ctx->nr_user_files) {
8152 struct file *file = io_file_from_index(ctx, total);
8153
8154 if (file)
8155 fput(file);
8156 total++;
8157 }
8158
8159 return ret;
8160 }
8161 #else
8162 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8163 {
8164 return 0;
8165 }
8166 #endif
8167
8168 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8169 {
8170 struct file *file = prsrc->file;
8171 #if defined(CONFIG_UNIX)
8172 struct sock *sock = ctx->ring_sock->sk;
8173 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8174 struct sk_buff *skb;
8175 int i;
8176
8177 __skb_queue_head_init(&list);
8178
8179 /*
8180 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8181 * remove this entry and rearrange the file array.
8182 */
8183 skb = skb_dequeue(head);
8184 while (skb) {
8185 struct scm_fp_list *fp;
8186
8187 fp = UNIXCB(skb).fp;
8188 for (i = 0; i < fp->count; i++) {
8189 int left;
8190
8191 if (fp->fp[i] != file)
8192 continue;
8193
8194 unix_notinflight(fp->user, fp->fp[i]);
8195 left = fp->count - 1 - i;
8196 if (left) {
8197 memmove(&fp->fp[i], &fp->fp[i + 1],
8198 left * sizeof(struct file *));
8199 }
8200 fp->count--;
8201 if (!fp->count) {
8202 kfree_skb(skb);
8203 skb = NULL;
8204 } else {
8205 __skb_queue_tail(&list, skb);
8206 }
8207 fput(file);
8208 file = NULL;
8209 break;
8210 }
8211
8212 if (!file)
8213 break;
8214
8215 __skb_queue_tail(&list, skb);
8216
8217 skb = skb_dequeue(head);
8218 }
8219
8220 if (skb_peek(&list)) {
8221 spin_lock_irq(&head->lock);
8222 while ((skb = __skb_dequeue(&list)) != NULL)
8223 __skb_queue_tail(head, skb);
8224 spin_unlock_irq(&head->lock);
8225 }
8226 #else
8227 fput(file);
8228 #endif
8229 }
8230
8231 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8232 {
8233 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8234 struct io_ring_ctx *ctx = rsrc_data->ctx;
8235 struct io_rsrc_put *prsrc, *tmp;
8236
8237 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8238 list_del(&prsrc->list);
8239
8240 if (prsrc->tag) {
8241 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8242
8243 io_ring_submit_lock(ctx, lock_ring);
8244 spin_lock(&ctx->completion_lock);
8245 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8246 ctx->cq_extra++;
8247 io_commit_cqring(ctx);
8248 spin_unlock(&ctx->completion_lock);
8249 io_cqring_ev_posted(ctx);
8250 io_ring_submit_unlock(ctx, lock_ring);
8251 }
8252
8253 rsrc_data->do_put(ctx, prsrc);
8254 kfree(prsrc);
8255 }
8256
8257 io_rsrc_node_destroy(ref_node);
8258 if (atomic_dec_and_test(&rsrc_data->refs))
8259 complete(&rsrc_data->done);
8260 }
8261
8262 static void io_rsrc_put_work(struct work_struct *work)
8263 {
8264 struct io_ring_ctx *ctx;
8265 struct llist_node *node;
8266
8267 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8268 node = llist_del_all(&ctx->rsrc_put_llist);
8269
8270 while (node) {
8271 struct io_rsrc_node *ref_node;
8272 struct llist_node *next = node->next;
8273
8274 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8275 __io_rsrc_put_work(ref_node);
8276 node = next;
8277 }
8278 }
8279
8280 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8281 unsigned nr_args, u64 __user *tags)
8282 {
8283 __s32 __user *fds = (__s32 __user *) arg;
8284 struct file *file;
8285 int fd, ret;
8286 unsigned i;
8287
8288 if (ctx->file_data)
8289 return -EBUSY;
8290 if (!nr_args)
8291 return -EINVAL;
8292 if (nr_args > IORING_MAX_FIXED_FILES)
8293 return -EMFILE;
8294 if (nr_args > rlimit(RLIMIT_NOFILE))
8295 return -EMFILE;
8296 ret = io_rsrc_node_switch_start(ctx);
8297 if (ret)
8298 return ret;
8299 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8300 &ctx->file_data);
8301 if (ret)
8302 return ret;
8303
8304 ret = -ENOMEM;
8305 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8306 goto out_free;
8307
8308 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8309 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8310 ret = -EFAULT;
8311 goto out_fput;
8312 }
8313 /* allow sparse sets */
8314 if (fd == -1) {
8315 ret = -EINVAL;
8316 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8317 goto out_fput;
8318 continue;
8319 }
8320
8321 file = fget(fd);
8322 ret = -EBADF;
8323 if (unlikely(!file))
8324 goto out_fput;
8325
8326 /*
8327 * Don't allow io_uring instances to be registered. If UNIX
8328 * isn't enabled, then this causes a reference cycle and this
8329 * instance can never get freed. If UNIX is enabled we'll
8330 * handle it just fine, but there's still no point in allowing
8331 * a ring fd as it doesn't support regular read/write anyway.
8332 */
8333 if (file->f_op == &io_uring_fops) {
8334 fput(file);
8335 goto out_fput;
8336 }
8337 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8338 }
8339
8340 ret = io_sqe_files_scm(ctx);
8341 if (ret) {
8342 __io_sqe_files_unregister(ctx);
8343 return ret;
8344 }
8345
8346 io_rsrc_node_switch(ctx, NULL);
8347 return ret;
8348 out_fput:
8349 for (i = 0; i < ctx->nr_user_files; i++) {
8350 file = io_file_from_index(ctx, i);
8351 if (file)
8352 fput(file);
8353 }
8354 io_free_file_tables(&ctx->file_table);
8355 ctx->nr_user_files = 0;
8356 out_free:
8357 io_rsrc_data_free(ctx->file_data);
8358 ctx->file_data = NULL;
8359 return ret;
8360 }
8361
8362 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8363 int index)
8364 {
8365 #if defined(CONFIG_UNIX)
8366 struct sock *sock = ctx->ring_sock->sk;
8367 struct sk_buff_head *head = &sock->sk_receive_queue;
8368 struct sk_buff *skb;
8369
8370 /*
8371 * See if we can merge this file into an existing skb SCM_RIGHTS
8372 * file set. If there's no room, fall back to allocating a new skb
8373 * and filling it in.
8374 */
8375 spin_lock_irq(&head->lock);
8376 skb = skb_peek(head);
8377 if (skb) {
8378 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8379
8380 if (fpl->count < SCM_MAX_FD) {
8381 __skb_unlink(skb, head);
8382 spin_unlock_irq(&head->lock);
8383 fpl->fp[fpl->count] = get_file(file);
8384 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8385 fpl->count++;
8386 spin_lock_irq(&head->lock);
8387 __skb_queue_head(head, skb);
8388 } else {
8389 skb = NULL;
8390 }
8391 }
8392 spin_unlock_irq(&head->lock);
8393
8394 if (skb) {
8395 fput(file);
8396 return 0;
8397 }
8398
8399 return __io_sqe_files_scm(ctx, 1, index);
8400 #else
8401 return 0;
8402 #endif
8403 }
8404
8405 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8406 struct io_rsrc_node *node, void *rsrc)
8407 {
8408 u64 *tag_slot = io_get_tag_slot(data, idx);
8409 struct io_rsrc_put *prsrc;
8410
8411 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8412 if (!prsrc)
8413 return -ENOMEM;
8414
8415 prsrc->tag = *tag_slot;
8416 *tag_slot = 0;
8417 prsrc->rsrc = rsrc;
8418 list_add(&prsrc->list, &node->rsrc_list);
8419 return 0;
8420 }
8421
8422 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8423 unsigned int issue_flags, u32 slot_index)
8424 {
8425 struct io_ring_ctx *ctx = req->ctx;
8426 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8427 bool needs_switch = false;
8428 struct io_fixed_file *file_slot;
8429 int ret = -EBADF;
8430
8431 io_ring_submit_lock(ctx, !force_nonblock);
8432 if (file->f_op == &io_uring_fops)
8433 goto err;
8434 ret = -ENXIO;
8435 if (!ctx->file_data)
8436 goto err;
8437 ret = -EINVAL;
8438 if (slot_index >= ctx->nr_user_files)
8439 goto err;
8440
8441 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8442 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8443
8444 if (file_slot->file_ptr) {
8445 struct file *old_file;
8446
8447 ret = io_rsrc_node_switch_start(ctx);
8448 if (ret)
8449 goto err;
8450
8451 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8452 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8453 ctx->rsrc_node, old_file);
8454 if (ret)
8455 goto err;
8456 file_slot->file_ptr = 0;
8457 needs_switch = true;
8458 }
8459
8460 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8461 io_fixed_file_set(file_slot, file);
8462 ret = io_sqe_file_register(ctx, file, slot_index);
8463 if (ret) {
8464 file_slot->file_ptr = 0;
8465 goto err;
8466 }
8467
8468 ret = 0;
8469 err:
8470 if (needs_switch)
8471 io_rsrc_node_switch(ctx, ctx->file_data);
8472 io_ring_submit_unlock(ctx, !force_nonblock);
8473 if (ret)
8474 fput(file);
8475 return ret;
8476 }
8477
8478 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8479 {
8480 unsigned int offset = req->close.file_slot - 1;
8481 struct io_ring_ctx *ctx = req->ctx;
8482 struct io_fixed_file *file_slot;
8483 struct file *file;
8484 int ret;
8485
8486 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8487 ret = -ENXIO;
8488 if (unlikely(!ctx->file_data))
8489 goto out;
8490 ret = -EINVAL;
8491 if (offset >= ctx->nr_user_files)
8492 goto out;
8493 ret = io_rsrc_node_switch_start(ctx);
8494 if (ret)
8495 goto out;
8496
8497 offset = array_index_nospec(offset, ctx->nr_user_files);
8498 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8499 ret = -EBADF;
8500 if (!file_slot->file_ptr)
8501 goto out;
8502
8503 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8504 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8505 if (ret)
8506 goto out;
8507
8508 file_slot->file_ptr = 0;
8509 io_rsrc_node_switch(ctx, ctx->file_data);
8510 ret = 0;
8511 out:
8512 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8513 return ret;
8514 }
8515
8516 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8517 struct io_uring_rsrc_update2 *up,
8518 unsigned nr_args)
8519 {
8520 u64 __user *tags = u64_to_user_ptr(up->tags);
8521 __s32 __user *fds = u64_to_user_ptr(up->data);
8522 struct io_rsrc_data *data = ctx->file_data;
8523 struct io_fixed_file *file_slot;
8524 struct file *file;
8525 int fd, i, err = 0;
8526 unsigned int done;
8527 bool needs_switch = false;
8528
8529 if (!ctx->file_data)
8530 return -ENXIO;
8531 if (up->offset + nr_args > ctx->nr_user_files)
8532 return -EINVAL;
8533
8534 for (done = 0; done < nr_args; done++) {
8535 u64 tag = 0;
8536
8537 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8538 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8539 err = -EFAULT;
8540 break;
8541 }
8542 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8543 err = -EINVAL;
8544 break;
8545 }
8546 if (fd == IORING_REGISTER_FILES_SKIP)
8547 continue;
8548
8549 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8550 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8551
8552 if (file_slot->file_ptr) {
8553 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8554 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8555 if (err)
8556 break;
8557 file_slot->file_ptr = 0;
8558 needs_switch = true;
8559 }
8560 if (fd != -1) {
8561 file = fget(fd);
8562 if (!file) {
8563 err = -EBADF;
8564 break;
8565 }
8566 /*
8567 * Don't allow io_uring instances to be registered. If
8568 * UNIX isn't enabled, then this causes a reference
8569 * cycle and this instance can never get freed. If UNIX
8570 * is enabled we'll handle it just fine, but there's
8571 * still no point in allowing a ring fd as it doesn't
8572 * support regular read/write anyway.
8573 */
8574 if (file->f_op == &io_uring_fops) {
8575 fput(file);
8576 err = -EBADF;
8577 break;
8578 }
8579 *io_get_tag_slot(data, i) = tag;
8580 io_fixed_file_set(file_slot, file);
8581 err = io_sqe_file_register(ctx, file, i);
8582 if (err) {
8583 file_slot->file_ptr = 0;
8584 fput(file);
8585 break;
8586 }
8587 }
8588 }
8589
8590 if (needs_switch)
8591 io_rsrc_node_switch(ctx, data);
8592 return done ? done : err;
8593 }
8594
8595 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8596 struct task_struct *task)
8597 {
8598 struct io_wq_hash *hash;
8599 struct io_wq_data data;
8600 unsigned int concurrency;
8601
8602 mutex_lock(&ctx->uring_lock);
8603 hash = ctx->hash_map;
8604 if (!hash) {
8605 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8606 if (!hash) {
8607 mutex_unlock(&ctx->uring_lock);
8608 return ERR_PTR(-ENOMEM);
8609 }
8610 refcount_set(&hash->refs, 1);
8611 init_waitqueue_head(&hash->wait);
8612 ctx->hash_map = hash;
8613 }
8614 mutex_unlock(&ctx->uring_lock);
8615
8616 data.hash = hash;
8617 data.task = task;
8618 data.free_work = io_wq_free_work;
8619 data.do_work = io_wq_submit_work;
8620
8621 /* Do QD, or 4 * CPUS, whatever is smallest */
8622 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8623
8624 return io_wq_create(concurrency, &data);
8625 }
8626
8627 static int io_uring_alloc_task_context(struct task_struct *task,
8628 struct io_ring_ctx *ctx)
8629 {
8630 struct io_uring_task *tctx;
8631 int ret;
8632
8633 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8634 if (unlikely(!tctx))
8635 return -ENOMEM;
8636
8637 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8638 if (unlikely(ret)) {
8639 kfree(tctx);
8640 return ret;
8641 }
8642
8643 tctx->io_wq = io_init_wq_offload(ctx, task);
8644 if (IS_ERR(tctx->io_wq)) {
8645 ret = PTR_ERR(tctx->io_wq);
8646 percpu_counter_destroy(&tctx->inflight);
8647 kfree(tctx);
8648 return ret;
8649 }
8650
8651 xa_init(&tctx->xa);
8652 init_waitqueue_head(&tctx->wait);
8653 atomic_set(&tctx->in_idle, 0);
8654 atomic_set(&tctx->inflight_tracked, 0);
8655 task->io_uring = tctx;
8656 spin_lock_init(&tctx->task_lock);
8657 INIT_WQ_LIST(&tctx->task_list);
8658 init_task_work(&tctx->task_work, tctx_task_work);
8659 return 0;
8660 }
8661
8662 void __io_uring_free(struct task_struct *tsk)
8663 {
8664 struct io_uring_task *tctx = tsk->io_uring;
8665
8666 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8667 WARN_ON_ONCE(tctx->io_wq);
8668 WARN_ON_ONCE(tctx->cached_refs);
8669
8670 percpu_counter_destroy(&tctx->inflight);
8671 kfree(tctx);
8672 tsk->io_uring = NULL;
8673 }
8674
8675 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8676 struct io_uring_params *p)
8677 {
8678 int ret;
8679
8680 /* Retain compatibility with failing for an invalid attach attempt */
8681 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8682 IORING_SETUP_ATTACH_WQ) {
8683 struct fd f;
8684
8685 f = fdget(p->wq_fd);
8686 if (!f.file)
8687 return -ENXIO;
8688 if (f.file->f_op != &io_uring_fops) {
8689 fdput(f);
8690 return -EINVAL;
8691 }
8692 fdput(f);
8693 }
8694 if (ctx->flags & IORING_SETUP_SQPOLL) {
8695 struct task_struct *tsk;
8696 struct io_sq_data *sqd;
8697 bool attached;
8698
8699 sqd = io_get_sq_data(p, &attached);
8700 if (IS_ERR(sqd)) {
8701 ret = PTR_ERR(sqd);
8702 goto err;
8703 }
8704
8705 ctx->sq_creds = get_current_cred();
8706 ctx->sq_data = sqd;
8707 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8708 if (!ctx->sq_thread_idle)
8709 ctx->sq_thread_idle = HZ;
8710
8711 io_sq_thread_park(sqd);
8712 list_add(&ctx->sqd_list, &sqd->ctx_list);
8713 io_sqd_update_thread_idle(sqd);
8714 /* don't attach to a dying SQPOLL thread, would be racy */
8715 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8716 io_sq_thread_unpark(sqd);
8717
8718 if (ret < 0)
8719 goto err;
8720 if (attached)
8721 return 0;
8722
8723 if (p->flags & IORING_SETUP_SQ_AFF) {
8724 int cpu = p->sq_thread_cpu;
8725
8726 ret = -EINVAL;
8727 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8728 goto err_sqpoll;
8729 sqd->sq_cpu = cpu;
8730 } else {
8731 sqd->sq_cpu = -1;
8732 }
8733
8734 sqd->task_pid = current->pid;
8735 sqd->task_tgid = current->tgid;
8736 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8737 if (IS_ERR(tsk)) {
8738 ret = PTR_ERR(tsk);
8739 goto err_sqpoll;
8740 }
8741
8742 sqd->thread = tsk;
8743 ret = io_uring_alloc_task_context(tsk, ctx);
8744 wake_up_new_task(tsk);
8745 if (ret)
8746 goto err;
8747 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8748 /* Can't have SQ_AFF without SQPOLL */
8749 ret = -EINVAL;
8750 goto err;
8751 }
8752
8753 return 0;
8754 err_sqpoll:
8755 complete(&ctx->sq_data->exited);
8756 err:
8757 io_sq_thread_finish(ctx);
8758 return ret;
8759 }
8760
8761 static inline void __io_unaccount_mem(struct user_struct *user,
8762 unsigned long nr_pages)
8763 {
8764 atomic_long_sub(nr_pages, &user->locked_vm);
8765 }
8766
8767 static inline int __io_account_mem(struct user_struct *user,
8768 unsigned long nr_pages)
8769 {
8770 unsigned long page_limit, cur_pages, new_pages;
8771
8772 /* Don't allow more pages than we can safely lock */
8773 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8774
8775 do {
8776 cur_pages = atomic_long_read(&user->locked_vm);
8777 new_pages = cur_pages + nr_pages;
8778 if (new_pages > page_limit)
8779 return -ENOMEM;
8780 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8781 new_pages) != cur_pages);
8782
8783 return 0;
8784 }
8785
8786 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8787 {
8788 if (ctx->user)
8789 __io_unaccount_mem(ctx->user, nr_pages);
8790
8791 if (ctx->mm_account)
8792 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8793 }
8794
8795 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8796 {
8797 int ret;
8798
8799 if (ctx->user) {
8800 ret = __io_account_mem(ctx->user, nr_pages);
8801 if (ret)
8802 return ret;
8803 }
8804
8805 if (ctx->mm_account)
8806 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8807
8808 return 0;
8809 }
8810
8811 static void io_mem_free(void *ptr)
8812 {
8813 struct page *page;
8814
8815 if (!ptr)
8816 return;
8817
8818 page = virt_to_head_page(ptr);
8819 if (put_page_testzero(page))
8820 free_compound_page(page);
8821 }
8822
8823 static void *io_mem_alloc(size_t size)
8824 {
8825 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8826
8827 return (void *) __get_free_pages(gfp, get_order(size));
8828 }
8829
8830 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8831 size_t *sq_offset)
8832 {
8833 struct io_rings *rings;
8834 size_t off, sq_array_size;
8835
8836 off = struct_size(rings, cqes, cq_entries);
8837 if (off == SIZE_MAX)
8838 return SIZE_MAX;
8839
8840 #ifdef CONFIG_SMP
8841 off = ALIGN(off, SMP_CACHE_BYTES);
8842 if (off == 0)
8843 return SIZE_MAX;
8844 #endif
8845
8846 if (sq_offset)
8847 *sq_offset = off;
8848
8849 sq_array_size = array_size(sizeof(u32), sq_entries);
8850 if (sq_array_size == SIZE_MAX)
8851 return SIZE_MAX;
8852
8853 if (check_add_overflow(off, sq_array_size, &off))
8854 return SIZE_MAX;
8855
8856 return off;
8857 }
8858
8859 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8860 {
8861 struct io_mapped_ubuf *imu = *slot;
8862 unsigned int i;
8863
8864 if (imu != ctx->dummy_ubuf) {
8865 for (i = 0; i < imu->nr_bvecs; i++)
8866 unpin_user_page(imu->bvec[i].bv_page);
8867 if (imu->acct_pages)
8868 io_unaccount_mem(ctx, imu->acct_pages);
8869 kvfree(imu);
8870 }
8871 *slot = NULL;
8872 }
8873
8874 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8875 {
8876 io_buffer_unmap(ctx, &prsrc->buf);
8877 prsrc->buf = NULL;
8878 }
8879
8880 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8881 {
8882 unsigned int i;
8883
8884 for (i = 0; i < ctx->nr_user_bufs; i++)
8885 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8886 kfree(ctx->user_bufs);
8887 io_rsrc_data_free(ctx->buf_data);
8888 ctx->user_bufs = NULL;
8889 ctx->buf_data = NULL;
8890 ctx->nr_user_bufs = 0;
8891 }
8892
8893 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8894 {
8895 unsigned nr = ctx->nr_user_bufs;
8896 int ret;
8897
8898 if (!ctx->buf_data)
8899 return -ENXIO;
8900
8901 /*
8902 * Quiesce may unlock ->uring_lock, and while it's not held
8903 * prevent new requests using the table.
8904 */
8905 ctx->nr_user_bufs = 0;
8906 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8907 ctx->nr_user_bufs = nr;
8908 if (!ret)
8909 __io_sqe_buffers_unregister(ctx);
8910 return ret;
8911 }
8912
8913 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8914 void __user *arg, unsigned index)
8915 {
8916 struct iovec __user *src;
8917
8918 #ifdef CONFIG_COMPAT
8919 if (ctx->compat) {
8920 struct compat_iovec __user *ciovs;
8921 struct compat_iovec ciov;
8922
8923 ciovs = (struct compat_iovec __user *) arg;
8924 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8925 return -EFAULT;
8926
8927 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8928 dst->iov_len = ciov.iov_len;
8929 return 0;
8930 }
8931 #endif
8932 src = (struct iovec __user *) arg;
8933 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8934 return -EFAULT;
8935 return 0;
8936 }
8937
8938 /*
8939 * Not super efficient, but this is just a registration time. And we do cache
8940 * the last compound head, so generally we'll only do a full search if we don't
8941 * match that one.
8942 *
8943 * We check if the given compound head page has already been accounted, to
8944 * avoid double accounting it. This allows us to account the full size of the
8945 * page, not just the constituent pages of a huge page.
8946 */
8947 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8948 int nr_pages, struct page *hpage)
8949 {
8950 int i, j;
8951
8952 /* check current page array */
8953 for (i = 0; i < nr_pages; i++) {
8954 if (!PageCompound(pages[i]))
8955 continue;
8956 if (compound_head(pages[i]) == hpage)
8957 return true;
8958 }
8959
8960 /* check previously registered pages */
8961 for (i = 0; i < ctx->nr_user_bufs; i++) {
8962 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8963
8964 for (j = 0; j < imu->nr_bvecs; j++) {
8965 if (!PageCompound(imu->bvec[j].bv_page))
8966 continue;
8967 if (compound_head(imu->bvec[j].bv_page) == hpage)
8968 return true;
8969 }
8970 }
8971
8972 return false;
8973 }
8974
8975 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8976 int nr_pages, struct io_mapped_ubuf *imu,
8977 struct page **last_hpage)
8978 {
8979 int i, ret;
8980
8981 imu->acct_pages = 0;
8982 for (i = 0; i < nr_pages; i++) {
8983 if (!PageCompound(pages[i])) {
8984 imu->acct_pages++;
8985 } else {
8986 struct page *hpage;
8987
8988 hpage = compound_head(pages[i]);
8989 if (hpage == *last_hpage)
8990 continue;
8991 *last_hpage = hpage;
8992 if (headpage_already_acct(ctx, pages, i, hpage))
8993 continue;
8994 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8995 }
8996 }
8997
8998 if (!imu->acct_pages)
8999 return 0;
9000
9001 ret = io_account_mem(ctx, imu->acct_pages);
9002 if (ret)
9003 imu->acct_pages = 0;
9004 return ret;
9005 }
9006
9007 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9008 struct io_mapped_ubuf **pimu,
9009 struct page **last_hpage)
9010 {
9011 struct io_mapped_ubuf *imu = NULL;
9012 struct vm_area_struct **vmas = NULL;
9013 struct page **pages = NULL;
9014 unsigned long off, start, end, ubuf;
9015 size_t size;
9016 int ret, pret, nr_pages, i;
9017
9018 if (!iov->iov_base) {
9019 *pimu = ctx->dummy_ubuf;
9020 return 0;
9021 }
9022
9023 ubuf = (unsigned long) iov->iov_base;
9024 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9025 start = ubuf >> PAGE_SHIFT;
9026 nr_pages = end - start;
9027
9028 *pimu = NULL;
9029 ret = -ENOMEM;
9030
9031 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9032 if (!pages)
9033 goto done;
9034
9035 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9036 GFP_KERNEL);
9037 if (!vmas)
9038 goto done;
9039
9040 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9041 if (!imu)
9042 goto done;
9043
9044 ret = 0;
9045 mmap_read_lock(current->mm);
9046 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9047 pages, vmas);
9048 if (pret == nr_pages) {
9049 /* don't support file backed memory */
9050 for (i = 0; i < nr_pages; i++) {
9051 struct vm_area_struct *vma = vmas[i];
9052
9053 if (vma_is_shmem(vma))
9054 continue;
9055 if (vma->vm_file &&
9056 !is_file_hugepages(vma->vm_file)) {
9057 ret = -EOPNOTSUPP;
9058 break;
9059 }
9060 }
9061 } else {
9062 ret = pret < 0 ? pret : -EFAULT;
9063 }
9064 mmap_read_unlock(current->mm);
9065 if (ret) {
9066 /*
9067 * if we did partial map, or found file backed vmas,
9068 * release any pages we did get
9069 */
9070 if (pret > 0)
9071 unpin_user_pages(pages, pret);
9072 goto done;
9073 }
9074
9075 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9076 if (ret) {
9077 unpin_user_pages(pages, pret);
9078 goto done;
9079 }
9080
9081 off = ubuf & ~PAGE_MASK;
9082 size = iov->iov_len;
9083 for (i = 0; i < nr_pages; i++) {
9084 size_t vec_len;
9085
9086 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9087 imu->bvec[i].bv_page = pages[i];
9088 imu->bvec[i].bv_len = vec_len;
9089 imu->bvec[i].bv_offset = off;
9090 off = 0;
9091 size -= vec_len;
9092 }
9093 /* store original address for later verification */
9094 imu->ubuf = ubuf;
9095 imu->ubuf_end = ubuf + iov->iov_len;
9096 imu->nr_bvecs = nr_pages;
9097 *pimu = imu;
9098 ret = 0;
9099 done:
9100 if (ret)
9101 kvfree(imu);
9102 kvfree(pages);
9103 kvfree(vmas);
9104 return ret;
9105 }
9106
9107 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9108 {
9109 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9110 return ctx->user_bufs ? 0 : -ENOMEM;
9111 }
9112
9113 static int io_buffer_validate(struct iovec *iov)
9114 {
9115 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9116
9117 /*
9118 * Don't impose further limits on the size and buffer
9119 * constraints here, we'll -EINVAL later when IO is
9120 * submitted if they are wrong.
9121 */
9122 if (!iov->iov_base)
9123 return iov->iov_len ? -EFAULT : 0;
9124 if (!iov->iov_len)
9125 return -EFAULT;
9126
9127 /* arbitrary limit, but we need something */
9128 if (iov->iov_len > SZ_1G)
9129 return -EFAULT;
9130
9131 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9132 return -EOVERFLOW;
9133
9134 return 0;
9135 }
9136
9137 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9138 unsigned int nr_args, u64 __user *tags)
9139 {
9140 struct page *last_hpage = NULL;
9141 struct io_rsrc_data *data;
9142 int i, ret;
9143 struct iovec iov;
9144
9145 if (ctx->user_bufs)
9146 return -EBUSY;
9147 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9148 return -EINVAL;
9149 ret = io_rsrc_node_switch_start(ctx);
9150 if (ret)
9151 return ret;
9152 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9153 if (ret)
9154 return ret;
9155 ret = io_buffers_map_alloc(ctx, nr_args);
9156 if (ret) {
9157 io_rsrc_data_free(data);
9158 return ret;
9159 }
9160
9161 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9162 ret = io_copy_iov(ctx, &iov, arg, i);
9163 if (ret)
9164 break;
9165 ret = io_buffer_validate(&iov);
9166 if (ret)
9167 break;
9168 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9169 ret = -EINVAL;
9170 break;
9171 }
9172
9173 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9174 &last_hpage);
9175 if (ret)
9176 break;
9177 }
9178
9179 WARN_ON_ONCE(ctx->buf_data);
9180
9181 ctx->buf_data = data;
9182 if (ret)
9183 __io_sqe_buffers_unregister(ctx);
9184 else
9185 io_rsrc_node_switch(ctx, NULL);
9186 return ret;
9187 }
9188
9189 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9190 struct io_uring_rsrc_update2 *up,
9191 unsigned int nr_args)
9192 {
9193 u64 __user *tags = u64_to_user_ptr(up->tags);
9194 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9195 struct page *last_hpage = NULL;
9196 bool needs_switch = false;
9197 __u32 done;
9198 int i, err;
9199
9200 if (!ctx->buf_data)
9201 return -ENXIO;
9202 if (up->offset + nr_args > ctx->nr_user_bufs)
9203 return -EINVAL;
9204
9205 for (done = 0; done < nr_args; done++) {
9206 struct io_mapped_ubuf *imu;
9207 int offset = up->offset + done;
9208 u64 tag = 0;
9209
9210 err = io_copy_iov(ctx, &iov, iovs, done);
9211 if (err)
9212 break;
9213 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9214 err = -EFAULT;
9215 break;
9216 }
9217 err = io_buffer_validate(&iov);
9218 if (err)
9219 break;
9220 if (!iov.iov_base && tag) {
9221 err = -EINVAL;
9222 break;
9223 }
9224 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9225 if (err)
9226 break;
9227
9228 i = array_index_nospec(offset, ctx->nr_user_bufs);
9229 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9230 err = io_queue_rsrc_removal(ctx->buf_data, i,
9231 ctx->rsrc_node, ctx->user_bufs[i]);
9232 if (unlikely(err)) {
9233 io_buffer_unmap(ctx, &imu);
9234 break;
9235 }
9236 ctx->user_bufs[i] = NULL;
9237 needs_switch = true;
9238 }
9239
9240 ctx->user_bufs[i] = imu;
9241 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9242 }
9243
9244 if (needs_switch)
9245 io_rsrc_node_switch(ctx, ctx->buf_data);
9246 return done ? done : err;
9247 }
9248
9249 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9250 {
9251 __s32 __user *fds = arg;
9252 int fd;
9253
9254 if (ctx->cq_ev_fd)
9255 return -EBUSY;
9256
9257 if (copy_from_user(&fd, fds, sizeof(*fds)))
9258 return -EFAULT;
9259
9260 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9261 if (IS_ERR(ctx->cq_ev_fd)) {
9262 int ret = PTR_ERR(ctx->cq_ev_fd);
9263
9264 ctx->cq_ev_fd = NULL;
9265 return ret;
9266 }
9267
9268 return 0;
9269 }
9270
9271 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9272 {
9273 if (ctx->cq_ev_fd) {
9274 eventfd_ctx_put(ctx->cq_ev_fd);
9275 ctx->cq_ev_fd = NULL;
9276 return 0;
9277 }
9278
9279 return -ENXIO;
9280 }
9281
9282 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9283 {
9284 struct io_buffer *buf;
9285 unsigned long index;
9286
9287 xa_for_each(&ctx->io_buffers, index, buf)
9288 __io_remove_buffers(ctx, buf, index, -1U);
9289 }
9290
9291 static void io_req_cache_free(struct list_head *list)
9292 {
9293 struct io_kiocb *req, *nxt;
9294
9295 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9296 list_del(&req->inflight_entry);
9297 kmem_cache_free(req_cachep, req);
9298 }
9299 }
9300
9301 static void io_req_caches_free(struct io_ring_ctx *ctx)
9302 {
9303 struct io_submit_state *state = &ctx->submit_state;
9304
9305 mutex_lock(&ctx->uring_lock);
9306
9307 if (state->free_reqs) {
9308 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9309 state->free_reqs = 0;
9310 }
9311
9312 io_flush_cached_locked_reqs(ctx, state);
9313 io_req_cache_free(&state->free_list);
9314 mutex_unlock(&ctx->uring_lock);
9315 }
9316
9317 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9318 {
9319 if (data && !atomic_dec_and_test(&data->refs))
9320 wait_for_completion(&data->done);
9321 }
9322
9323 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9324 {
9325 io_sq_thread_finish(ctx);
9326
9327 if (ctx->mm_account) {
9328 mmdrop(ctx->mm_account);
9329 ctx->mm_account = NULL;
9330 }
9331
9332 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9333 io_wait_rsrc_data(ctx->buf_data);
9334 io_wait_rsrc_data(ctx->file_data);
9335
9336 mutex_lock(&ctx->uring_lock);
9337 if (ctx->buf_data)
9338 __io_sqe_buffers_unregister(ctx);
9339 if (ctx->file_data)
9340 __io_sqe_files_unregister(ctx);
9341 if (ctx->rings)
9342 __io_cqring_overflow_flush(ctx, true);
9343 mutex_unlock(&ctx->uring_lock);
9344 io_eventfd_unregister(ctx);
9345 io_destroy_buffers(ctx);
9346 if (ctx->sq_creds)
9347 put_cred(ctx->sq_creds);
9348
9349 /* there are no registered resources left, nobody uses it */
9350 if (ctx->rsrc_node)
9351 io_rsrc_node_destroy(ctx->rsrc_node);
9352 if (ctx->rsrc_backup_node)
9353 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9354 flush_delayed_work(&ctx->rsrc_put_work);
9355
9356 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9357 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9358
9359 #if defined(CONFIG_UNIX)
9360 if (ctx->ring_sock) {
9361 ctx->ring_sock->file = NULL; /* so that iput() is called */
9362 sock_release(ctx->ring_sock);
9363 }
9364 #endif
9365 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9366
9367 io_mem_free(ctx->rings);
9368 io_mem_free(ctx->sq_sqes);
9369
9370 percpu_ref_exit(&ctx->refs);
9371 free_uid(ctx->user);
9372 io_req_caches_free(ctx);
9373 if (ctx->hash_map)
9374 io_wq_put_hash(ctx->hash_map);
9375 kfree(ctx->cancel_hash);
9376 kfree(ctx->dummy_ubuf);
9377 kfree(ctx);
9378 }
9379
9380 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9381 {
9382 struct io_ring_ctx *ctx = file->private_data;
9383 __poll_t mask = 0;
9384
9385 poll_wait(file, &ctx->poll_wait, wait);
9386 /*
9387 * synchronizes with barrier from wq_has_sleeper call in
9388 * io_commit_cqring
9389 */
9390 smp_rmb();
9391 if (!io_sqring_full(ctx))
9392 mask |= EPOLLOUT | EPOLLWRNORM;
9393
9394 /*
9395 * Don't flush cqring overflow list here, just do a simple check.
9396 * Otherwise there could possible be ABBA deadlock:
9397 * CPU0 CPU1
9398 * ---- ----
9399 * lock(&ctx->uring_lock);
9400 * lock(&ep->mtx);
9401 * lock(&ctx->uring_lock);
9402 * lock(&ep->mtx);
9403 *
9404 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9405 * pushs them to do the flush.
9406 */
9407 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9408 mask |= EPOLLIN | EPOLLRDNORM;
9409
9410 return mask;
9411 }
9412
9413 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9414 {
9415 const struct cred *creds;
9416
9417 creds = xa_erase(&ctx->personalities, id);
9418 if (creds) {
9419 put_cred(creds);
9420 return 0;
9421 }
9422
9423 return -EINVAL;
9424 }
9425
9426 struct io_tctx_exit {
9427 struct callback_head task_work;
9428 struct completion completion;
9429 struct io_ring_ctx *ctx;
9430 };
9431
9432 static void io_tctx_exit_cb(struct callback_head *cb)
9433 {
9434 struct io_uring_task *tctx = current->io_uring;
9435 struct io_tctx_exit *work;
9436
9437 work = container_of(cb, struct io_tctx_exit, task_work);
9438 /*
9439 * When @in_idle, we're in cancellation and it's racy to remove the
9440 * node. It'll be removed by the end of cancellation, just ignore it.
9441 */
9442 if (!atomic_read(&tctx->in_idle))
9443 io_uring_del_tctx_node((unsigned long)work->ctx);
9444 complete(&work->completion);
9445 }
9446
9447 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9448 {
9449 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9450
9451 return req->ctx == data;
9452 }
9453
9454 static void io_ring_exit_work(struct work_struct *work)
9455 {
9456 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9457 unsigned long timeout = jiffies + HZ * 60 * 5;
9458 unsigned long interval = HZ / 20;
9459 struct io_tctx_exit exit;
9460 struct io_tctx_node *node;
9461 int ret;
9462
9463 /*
9464 * If we're doing polled IO and end up having requests being
9465 * submitted async (out-of-line), then completions can come in while
9466 * we're waiting for refs to drop. We need to reap these manually,
9467 * as nobody else will be looking for them.
9468 */
9469 do {
9470 io_uring_try_cancel_requests(ctx, NULL, true);
9471 if (ctx->sq_data) {
9472 struct io_sq_data *sqd = ctx->sq_data;
9473 struct task_struct *tsk;
9474
9475 io_sq_thread_park(sqd);
9476 tsk = sqd->thread;
9477 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9478 io_wq_cancel_cb(tsk->io_uring->io_wq,
9479 io_cancel_ctx_cb, ctx, true);
9480 io_sq_thread_unpark(sqd);
9481 }
9482
9483 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9484 /* there is little hope left, don't run it too often */
9485 interval = HZ * 60;
9486 }
9487 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9488
9489 init_completion(&exit.completion);
9490 init_task_work(&exit.task_work, io_tctx_exit_cb);
9491 exit.ctx = ctx;
9492 /*
9493 * Some may use context even when all refs and requests have been put,
9494 * and they are free to do so while still holding uring_lock or
9495 * completion_lock, see io_req_task_submit(). Apart from other work,
9496 * this lock/unlock section also waits them to finish.
9497 */
9498 mutex_lock(&ctx->uring_lock);
9499 while (!list_empty(&ctx->tctx_list)) {
9500 WARN_ON_ONCE(time_after(jiffies, timeout));
9501
9502 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9503 ctx_node);
9504 /* don't spin on a single task if cancellation failed */
9505 list_rotate_left(&ctx->tctx_list);
9506 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9507 if (WARN_ON_ONCE(ret))
9508 continue;
9509 wake_up_process(node->task);
9510
9511 mutex_unlock(&ctx->uring_lock);
9512 wait_for_completion(&exit.completion);
9513 mutex_lock(&ctx->uring_lock);
9514 }
9515 mutex_unlock(&ctx->uring_lock);
9516 spin_lock(&ctx->completion_lock);
9517 spin_unlock(&ctx->completion_lock);
9518
9519 io_ring_ctx_free(ctx);
9520 }
9521
9522 /* Returns true if we found and killed one or more timeouts */
9523 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9524 bool cancel_all)
9525 {
9526 struct io_kiocb *req, *tmp;
9527 int canceled = 0;
9528
9529 spin_lock(&ctx->completion_lock);
9530 spin_lock_irq(&ctx->timeout_lock);
9531 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9532 if (io_match_task(req, tsk, cancel_all)) {
9533 io_kill_timeout(req, -ECANCELED);
9534 canceled++;
9535 }
9536 }
9537 spin_unlock_irq(&ctx->timeout_lock);
9538 if (canceled != 0)
9539 io_commit_cqring(ctx);
9540 spin_unlock(&ctx->completion_lock);
9541 if (canceled != 0)
9542 io_cqring_ev_posted(ctx);
9543 return canceled != 0;
9544 }
9545
9546 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9547 {
9548 unsigned long index;
9549 struct creds *creds;
9550
9551 mutex_lock(&ctx->uring_lock);
9552 percpu_ref_kill(&ctx->refs);
9553 if (ctx->rings)
9554 __io_cqring_overflow_flush(ctx, true);
9555 xa_for_each(&ctx->personalities, index, creds)
9556 io_unregister_personality(ctx, index);
9557 mutex_unlock(&ctx->uring_lock);
9558
9559 io_kill_timeouts(ctx, NULL, true);
9560 io_poll_remove_all(ctx, NULL, true);
9561
9562 /* if we failed setting up the ctx, we might not have any rings */
9563 io_iopoll_try_reap_events(ctx);
9564
9565 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9566 /*
9567 * Use system_unbound_wq to avoid spawning tons of event kworkers
9568 * if we're exiting a ton of rings at the same time. It just adds
9569 * noise and overhead, there's no discernable change in runtime
9570 * over using system_wq.
9571 */
9572 queue_work(system_unbound_wq, &ctx->exit_work);
9573 }
9574
9575 static int io_uring_release(struct inode *inode, struct file *file)
9576 {
9577 struct io_ring_ctx *ctx = file->private_data;
9578
9579 file->private_data = NULL;
9580 io_ring_ctx_wait_and_kill(ctx);
9581 return 0;
9582 }
9583
9584 struct io_task_cancel {
9585 struct task_struct *task;
9586 bool all;
9587 };
9588
9589 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9590 {
9591 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9592 struct io_task_cancel *cancel = data;
9593
9594 return io_match_task_safe(req, cancel->task, cancel->all);
9595 }
9596
9597 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9598 struct task_struct *task, bool cancel_all)
9599 {
9600 struct io_defer_entry *de;
9601 LIST_HEAD(list);
9602
9603 spin_lock(&ctx->completion_lock);
9604 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9605 if (io_match_task_safe(de->req, task, cancel_all)) {
9606 list_cut_position(&list, &ctx->defer_list, &de->list);
9607 break;
9608 }
9609 }
9610 spin_unlock(&ctx->completion_lock);
9611 if (list_empty(&list))
9612 return false;
9613
9614 while (!list_empty(&list)) {
9615 de = list_first_entry(&list, struct io_defer_entry, list);
9616 list_del_init(&de->list);
9617 io_req_complete_failed(de->req, -ECANCELED);
9618 kfree(de);
9619 }
9620 return true;
9621 }
9622
9623 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9624 {
9625 struct io_tctx_node *node;
9626 enum io_wq_cancel cret;
9627 bool ret = false;
9628
9629 mutex_lock(&ctx->uring_lock);
9630 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9631 struct io_uring_task *tctx = node->task->io_uring;
9632
9633 /*
9634 * io_wq will stay alive while we hold uring_lock, because it's
9635 * killed after ctx nodes, which requires to take the lock.
9636 */
9637 if (!tctx || !tctx->io_wq)
9638 continue;
9639 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9640 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9641 }
9642 mutex_unlock(&ctx->uring_lock);
9643
9644 return ret;
9645 }
9646
9647 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9648 struct task_struct *task,
9649 bool cancel_all)
9650 {
9651 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9652 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9653
9654 while (1) {
9655 enum io_wq_cancel cret;
9656 bool ret = false;
9657
9658 if (!task) {
9659 ret |= io_uring_try_cancel_iowq(ctx);
9660 } else if (tctx && tctx->io_wq) {
9661 /*
9662 * Cancels requests of all rings, not only @ctx, but
9663 * it's fine as the task is in exit/exec.
9664 */
9665 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9666 &cancel, true);
9667 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9668 }
9669
9670 /* SQPOLL thread does its own polling */
9671 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9672 (ctx->sq_data && ctx->sq_data->thread == current)) {
9673 while (!list_empty_careful(&ctx->iopoll_list)) {
9674 io_iopoll_try_reap_events(ctx);
9675 ret = true;
9676 }
9677 }
9678
9679 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9680 ret |= io_poll_remove_all(ctx, task, cancel_all);
9681 ret |= io_kill_timeouts(ctx, task, cancel_all);
9682 if (task)
9683 ret |= io_run_task_work();
9684 if (!ret)
9685 break;
9686 cond_resched();
9687 }
9688 }
9689
9690 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9691 {
9692 struct io_uring_task *tctx = current->io_uring;
9693 struct io_tctx_node *node;
9694 int ret;
9695
9696 if (unlikely(!tctx)) {
9697 ret = io_uring_alloc_task_context(current, ctx);
9698 if (unlikely(ret))
9699 return ret;
9700
9701 tctx = current->io_uring;
9702 if (ctx->iowq_limits_set) {
9703 unsigned int limits[2] = { ctx->iowq_limits[0],
9704 ctx->iowq_limits[1], };
9705
9706 ret = io_wq_max_workers(tctx->io_wq, limits);
9707 if (ret)
9708 return ret;
9709 }
9710 }
9711 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9712 node = kmalloc(sizeof(*node), GFP_KERNEL);
9713 if (!node)
9714 return -ENOMEM;
9715 node->ctx = ctx;
9716 node->task = current;
9717
9718 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9719 node, GFP_KERNEL));
9720 if (ret) {
9721 kfree(node);
9722 return ret;
9723 }
9724
9725 mutex_lock(&ctx->uring_lock);
9726 list_add(&node->ctx_node, &ctx->tctx_list);
9727 mutex_unlock(&ctx->uring_lock);
9728 }
9729 tctx->last = ctx;
9730 return 0;
9731 }
9732
9733 /*
9734 * Note that this task has used io_uring. We use it for cancelation purposes.
9735 */
9736 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9737 {
9738 struct io_uring_task *tctx = current->io_uring;
9739
9740 if (likely(tctx && tctx->last == ctx))
9741 return 0;
9742 return __io_uring_add_tctx_node(ctx);
9743 }
9744
9745 /*
9746 * Remove this io_uring_file -> task mapping.
9747 */
9748 static void io_uring_del_tctx_node(unsigned long index)
9749 {
9750 struct io_uring_task *tctx = current->io_uring;
9751 struct io_tctx_node *node;
9752
9753 if (!tctx)
9754 return;
9755 node = xa_erase(&tctx->xa, index);
9756 if (!node)
9757 return;
9758
9759 WARN_ON_ONCE(current != node->task);
9760 WARN_ON_ONCE(list_empty(&node->ctx_node));
9761
9762 mutex_lock(&node->ctx->uring_lock);
9763 list_del(&node->ctx_node);
9764 mutex_unlock(&node->ctx->uring_lock);
9765
9766 if (tctx->last == node->ctx)
9767 tctx->last = NULL;
9768 kfree(node);
9769 }
9770
9771 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9772 {
9773 struct io_wq *wq = tctx->io_wq;
9774 struct io_tctx_node *node;
9775 unsigned long index;
9776
9777 xa_for_each(&tctx->xa, index, node) {
9778 io_uring_del_tctx_node(index);
9779 cond_resched();
9780 }
9781 if (wq) {
9782 /*
9783 * Must be after io_uring_del_task_file() (removes nodes under
9784 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9785 */
9786 io_wq_put_and_exit(wq);
9787 tctx->io_wq = NULL;
9788 }
9789 }
9790
9791 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9792 {
9793 if (tracked)
9794 return atomic_read(&tctx->inflight_tracked);
9795 return percpu_counter_sum(&tctx->inflight);
9796 }
9797
9798 /*
9799 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9800 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9801 */
9802 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9803 {
9804 struct io_uring_task *tctx = current->io_uring;
9805 struct io_ring_ctx *ctx;
9806 s64 inflight;
9807 DEFINE_WAIT(wait);
9808
9809 WARN_ON_ONCE(sqd && sqd->thread != current);
9810
9811 if (!current->io_uring)
9812 return;
9813 if (tctx->io_wq)
9814 io_wq_exit_start(tctx->io_wq);
9815
9816 atomic_inc(&tctx->in_idle);
9817 do {
9818 io_uring_drop_tctx_refs(current);
9819 /* read completions before cancelations */
9820 inflight = tctx_inflight(tctx, !cancel_all);
9821 if (!inflight)
9822 break;
9823
9824 if (!sqd) {
9825 struct io_tctx_node *node;
9826 unsigned long index;
9827
9828 xa_for_each(&tctx->xa, index, node) {
9829 /* sqpoll task will cancel all its requests */
9830 if (node->ctx->sq_data)
9831 continue;
9832 io_uring_try_cancel_requests(node->ctx, current,
9833 cancel_all);
9834 }
9835 } else {
9836 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9837 io_uring_try_cancel_requests(ctx, current,
9838 cancel_all);
9839 }
9840
9841 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9842 io_run_task_work();
9843 io_uring_drop_tctx_refs(current);
9844
9845 /*
9846 * If we've seen completions, retry without waiting. This
9847 * avoids a race where a completion comes in before we did
9848 * prepare_to_wait().
9849 */
9850 if (inflight == tctx_inflight(tctx, !cancel_all))
9851 schedule();
9852 finish_wait(&tctx->wait, &wait);
9853 } while (1);
9854
9855 io_uring_clean_tctx(tctx);
9856 if (cancel_all) {
9857 /*
9858 * We shouldn't run task_works after cancel, so just leave
9859 * ->in_idle set for normal exit.
9860 */
9861 atomic_dec(&tctx->in_idle);
9862 /* for exec all current's requests should be gone, kill tctx */
9863 __io_uring_free(current);
9864 }
9865 }
9866
9867 void __io_uring_cancel(bool cancel_all)
9868 {
9869 io_uring_cancel_generic(cancel_all, NULL);
9870 }
9871
9872 static void *io_uring_validate_mmap_request(struct file *file,
9873 loff_t pgoff, size_t sz)
9874 {
9875 struct io_ring_ctx *ctx = file->private_data;
9876 loff_t offset = pgoff << PAGE_SHIFT;
9877 struct page *page;
9878 void *ptr;
9879
9880 switch (offset) {
9881 case IORING_OFF_SQ_RING:
9882 case IORING_OFF_CQ_RING:
9883 ptr = ctx->rings;
9884 break;
9885 case IORING_OFF_SQES:
9886 ptr = ctx->sq_sqes;
9887 break;
9888 default:
9889 return ERR_PTR(-EINVAL);
9890 }
9891
9892 page = virt_to_head_page(ptr);
9893 if (sz > page_size(page))
9894 return ERR_PTR(-EINVAL);
9895
9896 return ptr;
9897 }
9898
9899 #ifdef CONFIG_MMU
9900
9901 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9902 {
9903 size_t sz = vma->vm_end - vma->vm_start;
9904 unsigned long pfn;
9905 void *ptr;
9906
9907 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9908 if (IS_ERR(ptr))
9909 return PTR_ERR(ptr);
9910
9911 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9912 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9913 }
9914
9915 #else /* !CONFIG_MMU */
9916
9917 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9918 {
9919 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9920 }
9921
9922 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9923 {
9924 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9925 }
9926
9927 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9928 unsigned long addr, unsigned long len,
9929 unsigned long pgoff, unsigned long flags)
9930 {
9931 void *ptr;
9932
9933 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9934 if (IS_ERR(ptr))
9935 return PTR_ERR(ptr);
9936
9937 return (unsigned long) ptr;
9938 }
9939
9940 #endif /* !CONFIG_MMU */
9941
9942 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9943 {
9944 DEFINE_WAIT(wait);
9945
9946 do {
9947 if (!io_sqring_full(ctx))
9948 break;
9949 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9950
9951 if (!io_sqring_full(ctx))
9952 break;
9953 schedule();
9954 } while (!signal_pending(current));
9955
9956 finish_wait(&ctx->sqo_sq_wait, &wait);
9957 return 0;
9958 }
9959
9960 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9961 struct __kernel_timespec __user **ts,
9962 const sigset_t __user **sig)
9963 {
9964 struct io_uring_getevents_arg arg;
9965
9966 /*
9967 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9968 * is just a pointer to the sigset_t.
9969 */
9970 if (!(flags & IORING_ENTER_EXT_ARG)) {
9971 *sig = (const sigset_t __user *) argp;
9972 *ts = NULL;
9973 return 0;
9974 }
9975
9976 /*
9977 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9978 * timespec and sigset_t pointers if good.
9979 */
9980 if (*argsz != sizeof(arg))
9981 return -EINVAL;
9982 if (copy_from_user(&arg, argp, sizeof(arg)))
9983 return -EFAULT;
9984 if (arg.pad)
9985 return -EINVAL;
9986 *sig = u64_to_user_ptr(arg.sigmask);
9987 *argsz = arg.sigmask_sz;
9988 *ts = u64_to_user_ptr(arg.ts);
9989 return 0;
9990 }
9991
9992 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9993 u32, min_complete, u32, flags, const void __user *, argp,
9994 size_t, argsz)
9995 {
9996 struct io_ring_ctx *ctx;
9997 int submitted = 0;
9998 struct fd f;
9999 long ret;
10000
10001 io_run_task_work();
10002
10003 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10004 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10005 return -EINVAL;
10006
10007 f = fdget(fd);
10008 if (unlikely(!f.file))
10009 return -EBADF;
10010
10011 ret = -EOPNOTSUPP;
10012 if (unlikely(f.file->f_op != &io_uring_fops))
10013 goto out_fput;
10014
10015 ret = -ENXIO;
10016 ctx = f.file->private_data;
10017 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10018 goto out_fput;
10019
10020 ret = -EBADFD;
10021 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10022 goto out;
10023
10024 /*
10025 * For SQ polling, the thread will do all submissions and completions.
10026 * Just return the requested submit count, and wake the thread if
10027 * we were asked to.
10028 */
10029 ret = 0;
10030 if (ctx->flags & IORING_SETUP_SQPOLL) {
10031 io_cqring_overflow_flush(ctx);
10032
10033 if (unlikely(ctx->sq_data->thread == NULL)) {
10034 ret = -EOWNERDEAD;
10035 goto out;
10036 }
10037 if (flags & IORING_ENTER_SQ_WAKEUP)
10038 wake_up(&ctx->sq_data->wait);
10039 if (flags & IORING_ENTER_SQ_WAIT) {
10040 ret = io_sqpoll_wait_sq(ctx);
10041 if (ret)
10042 goto out;
10043 }
10044 submitted = to_submit;
10045 } else if (to_submit) {
10046 ret = io_uring_add_tctx_node(ctx);
10047 if (unlikely(ret))
10048 goto out;
10049 mutex_lock(&ctx->uring_lock);
10050 submitted = io_submit_sqes(ctx, to_submit);
10051 mutex_unlock(&ctx->uring_lock);
10052
10053 if (submitted != to_submit)
10054 goto out;
10055 }
10056 if (flags & IORING_ENTER_GETEVENTS) {
10057 const sigset_t __user *sig;
10058 struct __kernel_timespec __user *ts;
10059
10060 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10061 if (unlikely(ret))
10062 goto out;
10063
10064 min_complete = min(min_complete, ctx->cq_entries);
10065
10066 /*
10067 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10068 * space applications don't need to do io completion events
10069 * polling again, they can rely on io_sq_thread to do polling
10070 * work, which can reduce cpu usage and uring_lock contention.
10071 */
10072 if (ctx->flags & IORING_SETUP_IOPOLL &&
10073 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10074 ret = io_iopoll_check(ctx, min_complete);
10075 } else {
10076 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10077 }
10078 }
10079
10080 out:
10081 percpu_ref_put(&ctx->refs);
10082 out_fput:
10083 fdput(f);
10084 return submitted ? submitted : ret;
10085 }
10086
10087 #ifdef CONFIG_PROC_FS
10088 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10089 const struct cred *cred)
10090 {
10091 struct user_namespace *uns = seq_user_ns(m);
10092 struct group_info *gi;
10093 kernel_cap_t cap;
10094 unsigned __capi;
10095 int g;
10096
10097 seq_printf(m, "%5d\n", id);
10098 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10099 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10100 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10101 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10102 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10103 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10104 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10105 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10106 seq_puts(m, "\n\tGroups:\t");
10107 gi = cred->group_info;
10108 for (g = 0; g < gi->ngroups; g++) {
10109 seq_put_decimal_ull(m, g ? " " : "",
10110 from_kgid_munged(uns, gi->gid[g]));
10111 }
10112 seq_puts(m, "\n\tCapEff:\t");
10113 cap = cred->cap_effective;
10114 CAP_FOR_EACH_U32(__capi)
10115 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10116 seq_putc(m, '\n');
10117 return 0;
10118 }
10119
10120 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10121 {
10122 struct io_sq_data *sq = NULL;
10123 bool has_lock;
10124 int i;
10125
10126 /*
10127 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10128 * since fdinfo case grabs it in the opposite direction of normal use
10129 * cases. If we fail to get the lock, we just don't iterate any
10130 * structures that could be going away outside the io_uring mutex.
10131 */
10132 has_lock = mutex_trylock(&ctx->uring_lock);
10133
10134 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10135 sq = ctx->sq_data;
10136 if (!sq->thread)
10137 sq = NULL;
10138 }
10139
10140 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10141 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10142 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10143 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10144 struct file *f = io_file_from_index(ctx, i);
10145
10146 if (f)
10147 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10148 else
10149 seq_printf(m, "%5u: <none>\n", i);
10150 }
10151 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10152 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10153 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10154 unsigned int len = buf->ubuf_end - buf->ubuf;
10155
10156 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10157 }
10158 if (has_lock && !xa_empty(&ctx->personalities)) {
10159 unsigned long index;
10160 const struct cred *cred;
10161
10162 seq_printf(m, "Personalities:\n");
10163 xa_for_each(&ctx->personalities, index, cred)
10164 io_uring_show_cred(m, index, cred);
10165 }
10166 seq_printf(m, "PollList:\n");
10167 spin_lock(&ctx->completion_lock);
10168 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10169 struct hlist_head *list = &ctx->cancel_hash[i];
10170 struct io_kiocb *req;
10171
10172 hlist_for_each_entry(req, list, hash_node)
10173 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10174 req->task->task_works != NULL);
10175 }
10176 spin_unlock(&ctx->completion_lock);
10177 if (has_lock)
10178 mutex_unlock(&ctx->uring_lock);
10179 }
10180
10181 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10182 {
10183 struct io_ring_ctx *ctx = f->private_data;
10184
10185 if (percpu_ref_tryget(&ctx->refs)) {
10186 __io_uring_show_fdinfo(ctx, m);
10187 percpu_ref_put(&ctx->refs);
10188 }
10189 }
10190 #endif
10191
10192 static const struct file_operations io_uring_fops = {
10193 .release = io_uring_release,
10194 .mmap = io_uring_mmap,
10195 #ifndef CONFIG_MMU
10196 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10197 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10198 #endif
10199 .poll = io_uring_poll,
10200 #ifdef CONFIG_PROC_FS
10201 .show_fdinfo = io_uring_show_fdinfo,
10202 #endif
10203 };
10204
10205 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10206 struct io_uring_params *p)
10207 {
10208 struct io_rings *rings;
10209 size_t size, sq_array_offset;
10210
10211 /* make sure these are sane, as we already accounted them */
10212 ctx->sq_entries = p->sq_entries;
10213 ctx->cq_entries = p->cq_entries;
10214
10215 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10216 if (size == SIZE_MAX)
10217 return -EOVERFLOW;
10218
10219 rings = io_mem_alloc(size);
10220 if (!rings)
10221 return -ENOMEM;
10222
10223 ctx->rings = rings;
10224 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10225 rings->sq_ring_mask = p->sq_entries - 1;
10226 rings->cq_ring_mask = p->cq_entries - 1;
10227 rings->sq_ring_entries = p->sq_entries;
10228 rings->cq_ring_entries = p->cq_entries;
10229
10230 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10231 if (size == SIZE_MAX) {
10232 io_mem_free(ctx->rings);
10233 ctx->rings = NULL;
10234 return -EOVERFLOW;
10235 }
10236
10237 ctx->sq_sqes = io_mem_alloc(size);
10238 if (!ctx->sq_sqes) {
10239 io_mem_free(ctx->rings);
10240 ctx->rings = NULL;
10241 return -ENOMEM;
10242 }
10243
10244 return 0;
10245 }
10246
10247 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10248 {
10249 int ret, fd;
10250
10251 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10252 if (fd < 0)
10253 return fd;
10254
10255 ret = io_uring_add_tctx_node(ctx);
10256 if (ret) {
10257 put_unused_fd(fd);
10258 return ret;
10259 }
10260 fd_install(fd, file);
10261 return fd;
10262 }
10263
10264 /*
10265 * Allocate an anonymous fd, this is what constitutes the application
10266 * visible backing of an io_uring instance. The application mmaps this
10267 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10268 * we have to tie this fd to a socket for file garbage collection purposes.
10269 */
10270 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10271 {
10272 struct file *file;
10273 #if defined(CONFIG_UNIX)
10274 int ret;
10275
10276 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10277 &ctx->ring_sock);
10278 if (ret)
10279 return ERR_PTR(ret);
10280 #endif
10281
10282 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10283 O_RDWR | O_CLOEXEC);
10284 #if defined(CONFIG_UNIX)
10285 if (IS_ERR(file)) {
10286 sock_release(ctx->ring_sock);
10287 ctx->ring_sock = NULL;
10288 } else {
10289 ctx->ring_sock->file = file;
10290 }
10291 #endif
10292 return file;
10293 }
10294
10295 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10296 struct io_uring_params __user *params)
10297 {
10298 struct io_ring_ctx *ctx;
10299 struct file *file;
10300 int ret;
10301
10302 if (!entries)
10303 return -EINVAL;
10304 if (entries > IORING_MAX_ENTRIES) {
10305 if (!(p->flags & IORING_SETUP_CLAMP))
10306 return -EINVAL;
10307 entries = IORING_MAX_ENTRIES;
10308 }
10309
10310 /*
10311 * Use twice as many entries for the CQ ring. It's possible for the
10312 * application to drive a higher depth than the size of the SQ ring,
10313 * since the sqes are only used at submission time. This allows for
10314 * some flexibility in overcommitting a bit. If the application has
10315 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10316 * of CQ ring entries manually.
10317 */
10318 p->sq_entries = roundup_pow_of_two(entries);
10319 if (p->flags & IORING_SETUP_CQSIZE) {
10320 /*
10321 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10322 * to a power-of-two, if it isn't already. We do NOT impose
10323 * any cq vs sq ring sizing.
10324 */
10325 if (!p->cq_entries)
10326 return -EINVAL;
10327 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10328 if (!(p->flags & IORING_SETUP_CLAMP))
10329 return -EINVAL;
10330 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10331 }
10332 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10333 if (p->cq_entries < p->sq_entries)
10334 return -EINVAL;
10335 } else {
10336 p->cq_entries = 2 * p->sq_entries;
10337 }
10338
10339 ctx = io_ring_ctx_alloc(p);
10340 if (!ctx)
10341 return -ENOMEM;
10342 ctx->compat = in_compat_syscall();
10343 if (!capable(CAP_IPC_LOCK))
10344 ctx->user = get_uid(current_user());
10345
10346 /*
10347 * This is just grabbed for accounting purposes. When a process exits,
10348 * the mm is exited and dropped before the files, hence we need to hang
10349 * on to this mm purely for the purposes of being able to unaccount
10350 * memory (locked/pinned vm). It's not used for anything else.
10351 */
10352 mmgrab(current->mm);
10353 ctx->mm_account = current->mm;
10354
10355 ret = io_allocate_scq_urings(ctx, p);
10356 if (ret)
10357 goto err;
10358
10359 ret = io_sq_offload_create(ctx, p);
10360 if (ret)
10361 goto err;
10362 /* always set a rsrc node */
10363 ret = io_rsrc_node_switch_start(ctx);
10364 if (ret)
10365 goto err;
10366 io_rsrc_node_switch(ctx, NULL);
10367
10368 memset(&p->sq_off, 0, sizeof(p->sq_off));
10369 p->sq_off.head = offsetof(struct io_rings, sq.head);
10370 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10371 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10372 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10373 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10374 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10375 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10376
10377 memset(&p->cq_off, 0, sizeof(p->cq_off));
10378 p->cq_off.head = offsetof(struct io_rings, cq.head);
10379 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10380 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10381 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10382 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10383 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10384 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10385
10386 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10387 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10388 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10389 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10390 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10391 IORING_FEAT_RSRC_TAGS;
10392
10393 if (copy_to_user(params, p, sizeof(*p))) {
10394 ret = -EFAULT;
10395 goto err;
10396 }
10397
10398 file = io_uring_get_file(ctx);
10399 if (IS_ERR(file)) {
10400 ret = PTR_ERR(file);
10401 goto err;
10402 }
10403
10404 /*
10405 * Install ring fd as the very last thing, so we don't risk someone
10406 * having closed it before we finish setup
10407 */
10408 ret = io_uring_install_fd(ctx, file);
10409 if (ret < 0) {
10410 /* fput will clean it up */
10411 fput(file);
10412 return ret;
10413 }
10414
10415 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10416 return ret;
10417 err:
10418 io_ring_ctx_wait_and_kill(ctx);
10419 return ret;
10420 }
10421
10422 /*
10423 * Sets up an aio uring context, and returns the fd. Applications asks for a
10424 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10425 * params structure passed in.
10426 */
10427 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10428 {
10429 struct io_uring_params p;
10430 int i;
10431
10432 if (copy_from_user(&p, params, sizeof(p)))
10433 return -EFAULT;
10434 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10435 if (p.resv[i])
10436 return -EINVAL;
10437 }
10438
10439 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10440 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10441 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10442 IORING_SETUP_R_DISABLED))
10443 return -EINVAL;
10444
10445 return io_uring_create(entries, &p, params);
10446 }
10447
10448 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10449 struct io_uring_params __user *, params)
10450 {
10451 return io_uring_setup(entries, params);
10452 }
10453
10454 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10455 {
10456 struct io_uring_probe *p;
10457 size_t size;
10458 int i, ret;
10459
10460 size = struct_size(p, ops, nr_args);
10461 if (size == SIZE_MAX)
10462 return -EOVERFLOW;
10463 p = kzalloc(size, GFP_KERNEL);
10464 if (!p)
10465 return -ENOMEM;
10466
10467 ret = -EFAULT;
10468 if (copy_from_user(p, arg, size))
10469 goto out;
10470 ret = -EINVAL;
10471 if (memchr_inv(p, 0, size))
10472 goto out;
10473
10474 p->last_op = IORING_OP_LAST - 1;
10475 if (nr_args > IORING_OP_LAST)
10476 nr_args = IORING_OP_LAST;
10477
10478 for (i = 0; i < nr_args; i++) {
10479 p->ops[i].op = i;
10480 if (!io_op_defs[i].not_supported)
10481 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10482 }
10483 p->ops_len = i;
10484
10485 ret = 0;
10486 if (copy_to_user(arg, p, size))
10487 ret = -EFAULT;
10488 out:
10489 kfree(p);
10490 return ret;
10491 }
10492
10493 static int io_register_personality(struct io_ring_ctx *ctx)
10494 {
10495 const struct cred *creds;
10496 u32 id;
10497 int ret;
10498
10499 creds = get_current_cred();
10500
10501 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10502 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10503 if (ret < 0) {
10504 put_cred(creds);
10505 return ret;
10506 }
10507 return id;
10508 }
10509
10510 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10511 unsigned int nr_args)
10512 {
10513 struct io_uring_restriction *res;
10514 size_t size;
10515 int i, ret;
10516
10517 /* Restrictions allowed only if rings started disabled */
10518 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10519 return -EBADFD;
10520
10521 /* We allow only a single restrictions registration */
10522 if (ctx->restrictions.registered)
10523 return -EBUSY;
10524
10525 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10526 return -EINVAL;
10527
10528 size = array_size(nr_args, sizeof(*res));
10529 if (size == SIZE_MAX)
10530 return -EOVERFLOW;
10531
10532 res = memdup_user(arg, size);
10533 if (IS_ERR(res))
10534 return PTR_ERR(res);
10535
10536 ret = 0;
10537
10538 for (i = 0; i < nr_args; i++) {
10539 switch (res[i].opcode) {
10540 case IORING_RESTRICTION_REGISTER_OP:
10541 if (res[i].register_op >= IORING_REGISTER_LAST) {
10542 ret = -EINVAL;
10543 goto out;
10544 }
10545
10546 __set_bit(res[i].register_op,
10547 ctx->restrictions.register_op);
10548 break;
10549 case IORING_RESTRICTION_SQE_OP:
10550 if (res[i].sqe_op >= IORING_OP_LAST) {
10551 ret = -EINVAL;
10552 goto out;
10553 }
10554
10555 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10556 break;
10557 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10558 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10559 break;
10560 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10561 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10562 break;
10563 default:
10564 ret = -EINVAL;
10565 goto out;
10566 }
10567 }
10568
10569 out:
10570 /* Reset all restrictions if an error happened */
10571 if (ret != 0)
10572 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10573 else
10574 ctx->restrictions.registered = true;
10575
10576 kfree(res);
10577 return ret;
10578 }
10579
10580 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10581 {
10582 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10583 return -EBADFD;
10584
10585 if (ctx->restrictions.registered)
10586 ctx->restricted = 1;
10587
10588 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10589 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10590 wake_up(&ctx->sq_data->wait);
10591 return 0;
10592 }
10593
10594 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10595 struct io_uring_rsrc_update2 *up,
10596 unsigned nr_args)
10597 {
10598 __u32 tmp;
10599 int err;
10600
10601 if (check_add_overflow(up->offset, nr_args, &tmp))
10602 return -EOVERFLOW;
10603 err = io_rsrc_node_switch_start(ctx);
10604 if (err)
10605 return err;
10606
10607 switch (type) {
10608 case IORING_RSRC_FILE:
10609 return __io_sqe_files_update(ctx, up, nr_args);
10610 case IORING_RSRC_BUFFER:
10611 return __io_sqe_buffers_update(ctx, up, nr_args);
10612 }
10613 return -EINVAL;
10614 }
10615
10616 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10617 unsigned nr_args)
10618 {
10619 struct io_uring_rsrc_update2 up;
10620
10621 if (!nr_args)
10622 return -EINVAL;
10623 memset(&up, 0, sizeof(up));
10624 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10625 return -EFAULT;
10626 if (up.resv || up.resv2)
10627 return -EINVAL;
10628 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10629 }
10630
10631 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10632 unsigned size, unsigned type)
10633 {
10634 struct io_uring_rsrc_update2 up;
10635
10636 if (size != sizeof(up))
10637 return -EINVAL;
10638 if (copy_from_user(&up, arg, sizeof(up)))
10639 return -EFAULT;
10640 if (!up.nr || up.resv || up.resv2)
10641 return -EINVAL;
10642 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10643 }
10644
10645 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10646 unsigned int size, unsigned int type)
10647 {
10648 struct io_uring_rsrc_register rr;
10649
10650 /* keep it extendible */
10651 if (size != sizeof(rr))
10652 return -EINVAL;
10653
10654 memset(&rr, 0, sizeof(rr));
10655 if (copy_from_user(&rr, arg, size))
10656 return -EFAULT;
10657 if (!rr.nr || rr.resv || rr.resv2)
10658 return -EINVAL;
10659
10660 switch (type) {
10661 case IORING_RSRC_FILE:
10662 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10663 rr.nr, u64_to_user_ptr(rr.tags));
10664 case IORING_RSRC_BUFFER:
10665 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10666 rr.nr, u64_to_user_ptr(rr.tags));
10667 }
10668 return -EINVAL;
10669 }
10670
10671 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10672 unsigned len)
10673 {
10674 struct io_uring_task *tctx = current->io_uring;
10675 cpumask_var_t new_mask;
10676 int ret;
10677
10678 if (!tctx || !tctx->io_wq)
10679 return -EINVAL;
10680
10681 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10682 return -ENOMEM;
10683
10684 cpumask_clear(new_mask);
10685 if (len > cpumask_size())
10686 len = cpumask_size();
10687
10688 if (in_compat_syscall()) {
10689 ret = compat_get_bitmap(cpumask_bits(new_mask),
10690 (const compat_ulong_t __user *)arg,
10691 len * 8 /* CHAR_BIT */);
10692 } else {
10693 ret = copy_from_user(new_mask, arg, len);
10694 }
10695
10696 if (ret) {
10697 free_cpumask_var(new_mask);
10698 return -EFAULT;
10699 }
10700
10701 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10702 free_cpumask_var(new_mask);
10703 return ret;
10704 }
10705
10706 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10707 {
10708 struct io_uring_task *tctx = current->io_uring;
10709
10710 if (!tctx || !tctx->io_wq)
10711 return -EINVAL;
10712
10713 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10714 }
10715
10716 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10717 void __user *arg)
10718 __must_hold(&ctx->uring_lock)
10719 {
10720 struct io_tctx_node *node;
10721 struct io_uring_task *tctx = NULL;
10722 struct io_sq_data *sqd = NULL;
10723 __u32 new_count[2];
10724 int i, ret;
10725
10726 if (copy_from_user(new_count, arg, sizeof(new_count)))
10727 return -EFAULT;
10728 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10729 if (new_count[i] > INT_MAX)
10730 return -EINVAL;
10731
10732 if (ctx->flags & IORING_SETUP_SQPOLL) {
10733 sqd = ctx->sq_data;
10734 if (sqd) {
10735 /*
10736 * Observe the correct sqd->lock -> ctx->uring_lock
10737 * ordering. Fine to drop uring_lock here, we hold
10738 * a ref to the ctx.
10739 */
10740 refcount_inc(&sqd->refs);
10741 mutex_unlock(&ctx->uring_lock);
10742 mutex_lock(&sqd->lock);
10743 mutex_lock(&ctx->uring_lock);
10744 if (sqd->thread)
10745 tctx = sqd->thread->io_uring;
10746 }
10747 } else {
10748 tctx = current->io_uring;
10749 }
10750
10751 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10752
10753 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10754 if (new_count[i])
10755 ctx->iowq_limits[i] = new_count[i];
10756 ctx->iowq_limits_set = true;
10757
10758 ret = -EINVAL;
10759 if (tctx && tctx->io_wq) {
10760 ret = io_wq_max_workers(tctx->io_wq, new_count);
10761 if (ret)
10762 goto err;
10763 } else {
10764 memset(new_count, 0, sizeof(new_count));
10765 }
10766
10767 if (sqd) {
10768 mutex_unlock(&sqd->lock);
10769 io_put_sq_data(sqd);
10770 }
10771
10772 if (copy_to_user(arg, new_count, sizeof(new_count)))
10773 return -EFAULT;
10774
10775 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10776 if (sqd)
10777 return 0;
10778
10779 /* now propagate the restriction to all registered users */
10780 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10781 struct io_uring_task *tctx = node->task->io_uring;
10782
10783 if (WARN_ON_ONCE(!tctx->io_wq))
10784 continue;
10785
10786 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10787 new_count[i] = ctx->iowq_limits[i];
10788 /* ignore errors, it always returns zero anyway */
10789 (void)io_wq_max_workers(tctx->io_wq, new_count);
10790 }
10791 return 0;
10792 err:
10793 if (sqd) {
10794 mutex_unlock(&sqd->lock);
10795 io_put_sq_data(sqd);
10796 }
10797 return ret;
10798 }
10799
10800 static bool io_register_op_must_quiesce(int op)
10801 {
10802 switch (op) {
10803 case IORING_REGISTER_BUFFERS:
10804 case IORING_UNREGISTER_BUFFERS:
10805 case IORING_REGISTER_FILES:
10806 case IORING_UNREGISTER_FILES:
10807 case IORING_REGISTER_FILES_UPDATE:
10808 case IORING_REGISTER_PROBE:
10809 case IORING_REGISTER_PERSONALITY:
10810 case IORING_UNREGISTER_PERSONALITY:
10811 case IORING_REGISTER_FILES2:
10812 case IORING_REGISTER_FILES_UPDATE2:
10813 case IORING_REGISTER_BUFFERS2:
10814 case IORING_REGISTER_BUFFERS_UPDATE:
10815 case IORING_REGISTER_IOWQ_AFF:
10816 case IORING_UNREGISTER_IOWQ_AFF:
10817 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10818 return false;
10819 default:
10820 return true;
10821 }
10822 }
10823
10824 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10825 {
10826 long ret;
10827
10828 percpu_ref_kill(&ctx->refs);
10829
10830 /*
10831 * Drop uring mutex before waiting for references to exit. If another
10832 * thread is currently inside io_uring_enter() it might need to grab the
10833 * uring_lock to make progress. If we hold it here across the drain
10834 * wait, then we can deadlock. It's safe to drop the mutex here, since
10835 * no new references will come in after we've killed the percpu ref.
10836 */
10837 mutex_unlock(&ctx->uring_lock);
10838 do {
10839 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10840 if (!ret)
10841 break;
10842 ret = io_run_task_work_sig();
10843 } while (ret >= 0);
10844 mutex_lock(&ctx->uring_lock);
10845
10846 if (ret)
10847 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10848 return ret;
10849 }
10850
10851 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10852 void __user *arg, unsigned nr_args)
10853 __releases(ctx->uring_lock)
10854 __acquires(ctx->uring_lock)
10855 {
10856 int ret;
10857
10858 /*
10859 * We're inside the ring mutex, if the ref is already dying, then
10860 * someone else killed the ctx or is already going through
10861 * io_uring_register().
10862 */
10863 if (percpu_ref_is_dying(&ctx->refs))
10864 return -ENXIO;
10865
10866 if (ctx->restricted) {
10867 if (opcode >= IORING_REGISTER_LAST)
10868 return -EINVAL;
10869 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10870 if (!test_bit(opcode, ctx->restrictions.register_op))
10871 return -EACCES;
10872 }
10873
10874 if (io_register_op_must_quiesce(opcode)) {
10875 ret = io_ctx_quiesce(ctx);
10876 if (ret)
10877 return ret;
10878 }
10879
10880 switch (opcode) {
10881 case IORING_REGISTER_BUFFERS:
10882 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10883 break;
10884 case IORING_UNREGISTER_BUFFERS:
10885 ret = -EINVAL;
10886 if (arg || nr_args)
10887 break;
10888 ret = io_sqe_buffers_unregister(ctx);
10889 break;
10890 case IORING_REGISTER_FILES:
10891 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10892 break;
10893 case IORING_UNREGISTER_FILES:
10894 ret = -EINVAL;
10895 if (arg || nr_args)
10896 break;
10897 ret = io_sqe_files_unregister(ctx);
10898 break;
10899 case IORING_REGISTER_FILES_UPDATE:
10900 ret = io_register_files_update(ctx, arg, nr_args);
10901 break;
10902 case IORING_REGISTER_EVENTFD:
10903 case IORING_REGISTER_EVENTFD_ASYNC:
10904 ret = -EINVAL;
10905 if (nr_args != 1)
10906 break;
10907 ret = io_eventfd_register(ctx, arg);
10908 if (ret)
10909 break;
10910 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10911 ctx->eventfd_async = 1;
10912 else
10913 ctx->eventfd_async = 0;
10914 break;
10915 case IORING_UNREGISTER_EVENTFD:
10916 ret = -EINVAL;
10917 if (arg || nr_args)
10918 break;
10919 ret = io_eventfd_unregister(ctx);
10920 break;
10921 case IORING_REGISTER_PROBE:
10922 ret = -EINVAL;
10923 if (!arg || nr_args > 256)
10924 break;
10925 ret = io_probe(ctx, arg, nr_args);
10926 break;
10927 case IORING_REGISTER_PERSONALITY:
10928 ret = -EINVAL;
10929 if (arg || nr_args)
10930 break;
10931 ret = io_register_personality(ctx);
10932 break;
10933 case IORING_UNREGISTER_PERSONALITY:
10934 ret = -EINVAL;
10935 if (arg)
10936 break;
10937 ret = io_unregister_personality(ctx, nr_args);
10938 break;
10939 case IORING_REGISTER_ENABLE_RINGS:
10940 ret = -EINVAL;
10941 if (arg || nr_args)
10942 break;
10943 ret = io_register_enable_rings(ctx);
10944 break;
10945 case IORING_REGISTER_RESTRICTIONS:
10946 ret = io_register_restrictions(ctx, arg, nr_args);
10947 break;
10948 case IORING_REGISTER_FILES2:
10949 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10950 break;
10951 case IORING_REGISTER_FILES_UPDATE2:
10952 ret = io_register_rsrc_update(ctx, arg, nr_args,
10953 IORING_RSRC_FILE);
10954 break;
10955 case IORING_REGISTER_BUFFERS2:
10956 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10957 break;
10958 case IORING_REGISTER_BUFFERS_UPDATE:
10959 ret = io_register_rsrc_update(ctx, arg, nr_args,
10960 IORING_RSRC_BUFFER);
10961 break;
10962 case IORING_REGISTER_IOWQ_AFF:
10963 ret = -EINVAL;
10964 if (!arg || !nr_args)
10965 break;
10966 ret = io_register_iowq_aff(ctx, arg, nr_args);
10967 break;
10968 case IORING_UNREGISTER_IOWQ_AFF:
10969 ret = -EINVAL;
10970 if (arg || nr_args)
10971 break;
10972 ret = io_unregister_iowq_aff(ctx);
10973 break;
10974 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10975 ret = -EINVAL;
10976 if (!arg || nr_args != 2)
10977 break;
10978 ret = io_register_iowq_max_workers(ctx, arg);
10979 break;
10980 default:
10981 ret = -EINVAL;
10982 break;
10983 }
10984
10985 if (io_register_op_must_quiesce(opcode)) {
10986 /* bring the ctx back to life */
10987 percpu_ref_reinit(&ctx->refs);
10988 reinit_completion(&ctx->ref_comp);
10989 }
10990 return ret;
10991 }
10992
10993 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10994 void __user *, arg, unsigned int, nr_args)
10995 {
10996 struct io_ring_ctx *ctx;
10997 long ret = -EBADF;
10998 struct fd f;
10999
11000 f = fdget(fd);
11001 if (!f.file)
11002 return -EBADF;
11003
11004 ret = -EOPNOTSUPP;
11005 if (f.file->f_op != &io_uring_fops)
11006 goto out_fput;
11007
11008 ctx = f.file->private_data;
11009
11010 io_run_task_work();
11011
11012 mutex_lock(&ctx->uring_lock);
11013 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11014 mutex_unlock(&ctx->uring_lock);
11015 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11016 ctx->cq_ev_fd != NULL, ret);
11017 out_fput:
11018 fdput(f);
11019 return ret;
11020 }
11021
11022 static int __init io_uring_init(void)
11023 {
11024 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11025 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11026 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11027 } while (0)
11028
11029 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11030 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11031 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11032 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11033 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11034 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11035 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11036 BUILD_BUG_SQE_ELEM(8, __u64, off);
11037 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11038 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11039 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11040 BUILD_BUG_SQE_ELEM(24, __u32, len);
11041 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11042 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11043 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11044 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11045 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11046 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11047 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11048 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11049 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11050 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11051 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11052 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11053 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11054 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11055 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11056 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11057 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11058 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11059 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11060 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11061 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11062
11063 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11064 sizeof(struct io_uring_rsrc_update));
11065 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11066 sizeof(struct io_uring_rsrc_update2));
11067
11068 /* ->buf_index is u16 */
11069 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11070
11071 /* should fit into one byte */
11072 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11073
11074 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11075 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11076
11077 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11078 SLAB_ACCOUNT);
11079 return 0;
11080 };
11081 __initcall(io_uring_init);