]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
io_uring: don't reuse linked_timeout
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 };
209
210 struct fixed_file_data {
211 struct fixed_file_table *table;
212 struct io_ring_ctx *ctx;
213
214 struct fixed_file_ref_node *node;
215 struct percpu_ref refs;
216 struct completion done;
217 struct list_head ref_list;
218 spinlock_t lock;
219 };
220
221 struct io_buffer {
222 struct list_head list;
223 __u64 addr;
224 __s32 len;
225 __u16 bid;
226 };
227
228 struct io_restriction {
229 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
230 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
231 u8 sqe_flags_allowed;
232 u8 sqe_flags_required;
233 bool registered;
234 };
235
236 struct io_sq_data {
237 refcount_t refs;
238 struct mutex lock;
239
240 /* ctx's that are using this sqd */
241 struct list_head ctx_list;
242 struct list_head ctx_new_list;
243 struct mutex ctx_lock;
244
245 struct task_struct *thread;
246 struct wait_queue_head wait;
247 };
248
249 struct io_ring_ctx {
250 struct {
251 struct percpu_ref refs;
252 } ____cacheline_aligned_in_smp;
253
254 struct {
255 unsigned int flags;
256 unsigned int compat: 1;
257 unsigned int limit_mem: 1;
258 unsigned int cq_overflow_flushed: 1;
259 unsigned int drain_next: 1;
260 unsigned int eventfd_async: 1;
261 unsigned int restricted: 1;
262
263 /*
264 * Ring buffer of indices into array of io_uring_sqe, which is
265 * mmapped by the application using the IORING_OFF_SQES offset.
266 *
267 * This indirection could e.g. be used to assign fixed
268 * io_uring_sqe entries to operations and only submit them to
269 * the queue when needed.
270 *
271 * The kernel modifies neither the indices array nor the entries
272 * array.
273 */
274 u32 *sq_array;
275 unsigned cached_sq_head;
276 unsigned sq_entries;
277 unsigned sq_mask;
278 unsigned sq_thread_idle;
279 unsigned cached_sq_dropped;
280 unsigned cached_cq_overflow;
281 unsigned long sq_check_overflow;
282
283 struct list_head defer_list;
284 struct list_head timeout_list;
285 struct list_head cq_overflow_list;
286
287 wait_queue_head_t inflight_wait;
288 struct io_uring_sqe *sq_sqes;
289 } ____cacheline_aligned_in_smp;
290
291 struct io_rings *rings;
292
293 /* IO offload */
294 struct io_wq *io_wq;
295
296 /*
297 * For SQPOLL usage - we hold a reference to the parent task, so we
298 * have access to the ->files
299 */
300 struct task_struct *sqo_task;
301
302 /* Only used for accounting purposes */
303 struct mm_struct *mm_account;
304
305 #ifdef CONFIG_BLK_CGROUP
306 struct cgroup_subsys_state *sqo_blkcg_css;
307 #endif
308
309 struct io_sq_data *sq_data; /* if using sq thread polling */
310
311 struct wait_queue_head sqo_sq_wait;
312 struct wait_queue_entry sqo_wait_entry;
313 struct list_head sqd_list;
314
315 /*
316 * If used, fixed file set. Writers must ensure that ->refs is dead,
317 * readers must ensure that ->refs is alive as long as the file* is
318 * used. Only updated through io_uring_register(2).
319 */
320 struct fixed_file_data *file_data;
321 unsigned nr_user_files;
322
323 /* if used, fixed mapped user buffers */
324 unsigned nr_user_bufs;
325 struct io_mapped_ubuf *user_bufs;
326
327 struct user_struct *user;
328
329 const struct cred *creds;
330
331 #ifdef CONFIG_AUDIT
332 kuid_t loginuid;
333 unsigned int sessionid;
334 #endif
335
336 struct completion ref_comp;
337 struct completion sq_thread_comp;
338
339 /* if all else fails... */
340 struct io_kiocb *fallback_req;
341
342 #if defined(CONFIG_UNIX)
343 struct socket *ring_sock;
344 #endif
345
346 struct idr io_buffer_idr;
347
348 struct idr personality_idr;
349
350 struct {
351 unsigned cached_cq_tail;
352 unsigned cq_entries;
353 unsigned cq_mask;
354 atomic_t cq_timeouts;
355 unsigned long cq_check_overflow;
356 struct wait_queue_head cq_wait;
357 struct fasync_struct *cq_fasync;
358 struct eventfd_ctx *cq_ev_fd;
359 } ____cacheline_aligned_in_smp;
360
361 struct {
362 struct mutex uring_lock;
363 wait_queue_head_t wait;
364 } ____cacheline_aligned_in_smp;
365
366 struct {
367 spinlock_t completion_lock;
368
369 /*
370 * ->iopoll_list is protected by the ctx->uring_lock for
371 * io_uring instances that don't use IORING_SETUP_SQPOLL.
372 * For SQPOLL, only the single threaded io_sq_thread() will
373 * manipulate the list, hence no extra locking is needed there.
374 */
375 struct list_head iopoll_list;
376 struct hlist_head *cancel_hash;
377 unsigned cancel_hash_bits;
378 bool poll_multi_file;
379
380 spinlock_t inflight_lock;
381 struct list_head inflight_list;
382 } ____cacheline_aligned_in_smp;
383
384 struct delayed_work file_put_work;
385 struct llist_head file_put_llist;
386
387 struct work_struct exit_work;
388 struct io_restriction restrictions;
389 };
390
391 /*
392 * First field must be the file pointer in all the
393 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
394 */
395 struct io_poll_iocb {
396 struct file *file;
397 union {
398 struct wait_queue_head *head;
399 u64 addr;
400 };
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_close {
408 struct file *file;
409 struct file *put_file;
410 int fd;
411 };
412
413 struct io_timeout_data {
414 struct io_kiocb *req;
415 struct hrtimer timer;
416 struct timespec64 ts;
417 enum hrtimer_mode mode;
418 };
419
420 struct io_accept {
421 struct file *file;
422 struct sockaddr __user *addr;
423 int __user *addr_len;
424 int flags;
425 unsigned long nofile;
426 };
427
428 struct io_sync {
429 struct file *file;
430 loff_t len;
431 loff_t off;
432 int flags;
433 int mode;
434 };
435
436 struct io_cancel {
437 struct file *file;
438 u64 addr;
439 };
440
441 struct io_timeout {
442 struct file *file;
443 u32 off;
444 u32 target_seq;
445 struct list_head list;
446 };
447
448 struct io_timeout_rem {
449 struct file *file;
450 u64 addr;
451 };
452
453 struct io_rw {
454 /* NOTE: kiocb has the file as the first member, so don't do it here */
455 struct kiocb kiocb;
456 u64 addr;
457 u64 len;
458 };
459
460 struct io_connect {
461 struct file *file;
462 struct sockaddr __user *addr;
463 int addr_len;
464 };
465
466 struct io_sr_msg {
467 struct file *file;
468 union {
469 struct user_msghdr __user *umsg;
470 void __user *buf;
471 };
472 int msg_flags;
473 int bgid;
474 size_t len;
475 struct io_buffer *kbuf;
476 };
477
478 struct io_open {
479 struct file *file;
480 int dfd;
481 struct filename *filename;
482 struct open_how how;
483 unsigned long nofile;
484 };
485
486 struct io_files_update {
487 struct file *file;
488 u64 arg;
489 u32 nr_args;
490 u32 offset;
491 };
492
493 struct io_fadvise {
494 struct file *file;
495 u64 offset;
496 u32 len;
497 u32 advice;
498 };
499
500 struct io_madvise {
501 struct file *file;
502 u64 addr;
503 u32 len;
504 u32 advice;
505 };
506
507 struct io_epoll {
508 struct file *file;
509 int epfd;
510 int op;
511 int fd;
512 struct epoll_event event;
513 };
514
515 struct io_splice {
516 struct file *file_out;
517 struct file *file_in;
518 loff_t off_out;
519 loff_t off_in;
520 u64 len;
521 unsigned int flags;
522 };
523
524 struct io_provide_buf {
525 struct file *file;
526 __u64 addr;
527 __s32 len;
528 __u32 bgid;
529 __u16 nbufs;
530 __u16 bid;
531 };
532
533 struct io_statx {
534 struct file *file;
535 int dfd;
536 unsigned int mask;
537 unsigned int flags;
538 const char __user *filename;
539 struct statx __user *buffer;
540 };
541
542 struct io_completion {
543 struct file *file;
544 struct list_head list;
545 int cflags;
546 };
547
548 struct io_async_connect {
549 struct sockaddr_storage address;
550 };
551
552 struct io_async_msghdr {
553 struct iovec fast_iov[UIO_FASTIOV];
554 struct iovec *iov;
555 struct sockaddr __user *uaddr;
556 struct msghdr msg;
557 struct sockaddr_storage addr;
558 };
559
560 struct io_async_rw {
561 struct iovec fast_iov[UIO_FASTIOV];
562 const struct iovec *free_iovec;
563 struct iov_iter iter;
564 size_t bytes_done;
565 struct wait_page_queue wpq;
566 };
567
568 enum {
569 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
570 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
571 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
572 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
573 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
574 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
575
576 REQ_F_LINK_HEAD_BIT,
577 REQ_F_FAIL_LINK_BIT,
578 REQ_F_INFLIGHT_BIT,
579 REQ_F_CUR_POS_BIT,
580 REQ_F_NOWAIT_BIT,
581 REQ_F_LINK_TIMEOUT_BIT,
582 REQ_F_ISREG_BIT,
583 REQ_F_NEED_CLEANUP_BIT,
584 REQ_F_POLLED_BIT,
585 REQ_F_BUFFER_SELECTED_BIT,
586 REQ_F_NO_FILE_TABLE_BIT,
587 REQ_F_WORK_INITIALIZED_BIT,
588 REQ_F_LTIMEOUT_ACTIVE_BIT,
589
590 /* not a real bit, just to check we're not overflowing the space */
591 __REQ_F_LAST_BIT,
592 };
593
594 enum {
595 /* ctx owns file */
596 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
597 /* drain existing IO first */
598 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
599 /* linked sqes */
600 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
601 /* doesn't sever on completion < 0 */
602 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
603 /* IOSQE_ASYNC */
604 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
605 /* IOSQE_BUFFER_SELECT */
606 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
607
608 /* head of a link */
609 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
610 /* fail rest of links */
611 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
612 /* on inflight list */
613 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
614 /* read/write uses file position */
615 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
616 /* must not punt to workers */
617 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
618 /* has or had linked timeout */
619 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
620 /* regular file */
621 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
622 /* needs cleanup */
623 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
624 /* already went through poll handler */
625 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
626 /* buffer already selected */
627 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
628 /* doesn't need file table for this request */
629 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
630 /* io_wq_work is initialized */
631 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
632 /* linked timeout is active, i.e. prepared by link's head */
633 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
634 };
635
636 struct async_poll {
637 struct io_poll_iocb poll;
638 struct io_poll_iocb *double_poll;
639 };
640
641 /*
642 * NOTE! Each of the iocb union members has the file pointer
643 * as the first entry in their struct definition. So you can
644 * access the file pointer through any of the sub-structs,
645 * or directly as just 'ki_filp' in this struct.
646 */
647 struct io_kiocb {
648 union {
649 struct file *file;
650 struct io_rw rw;
651 struct io_poll_iocb poll;
652 struct io_accept accept;
653 struct io_sync sync;
654 struct io_cancel cancel;
655 struct io_timeout timeout;
656 struct io_timeout_rem timeout_rem;
657 struct io_connect connect;
658 struct io_sr_msg sr_msg;
659 struct io_open open;
660 struct io_close close;
661 struct io_files_update files_update;
662 struct io_fadvise fadvise;
663 struct io_madvise madvise;
664 struct io_epoll epoll;
665 struct io_splice splice;
666 struct io_provide_buf pbuf;
667 struct io_statx statx;
668 /* use only after cleaning per-op data, see io_clean_op() */
669 struct io_completion compl;
670 };
671
672 /* opcode allocated if it needs to store data for async defer */
673 void *async_data;
674 u8 opcode;
675 /* polled IO has completed */
676 u8 iopoll_completed;
677
678 u16 buf_index;
679 u32 result;
680
681 struct io_ring_ctx *ctx;
682 unsigned int flags;
683 refcount_t refs;
684 struct task_struct *task;
685 u64 user_data;
686
687 struct list_head link_list;
688
689 /*
690 * 1. used with ctx->iopoll_list with reads/writes
691 * 2. to track reqs with ->files (see io_op_def::file_table)
692 */
693 struct list_head inflight_entry;
694
695 struct percpu_ref *fixed_file_refs;
696 struct callback_head task_work;
697 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
698 struct hlist_node hash_node;
699 struct async_poll *apoll;
700 struct io_wq_work work;
701 };
702
703 struct io_defer_entry {
704 struct list_head list;
705 struct io_kiocb *req;
706 u32 seq;
707 };
708
709 #define IO_IOPOLL_BATCH 8
710
711 struct io_comp_state {
712 unsigned int nr;
713 struct list_head list;
714 struct io_ring_ctx *ctx;
715 };
716
717 struct io_submit_state {
718 struct blk_plug plug;
719
720 /*
721 * io_kiocb alloc cache
722 */
723 void *reqs[IO_IOPOLL_BATCH];
724 unsigned int free_reqs;
725
726 /*
727 * Batch completion logic
728 */
729 struct io_comp_state comp;
730
731 /*
732 * File reference cache
733 */
734 struct file *file;
735 unsigned int fd;
736 unsigned int has_refs;
737 unsigned int ios_left;
738 };
739
740 struct io_op_def {
741 /* needs req->file assigned */
742 unsigned needs_file : 1;
743 /* don't fail if file grab fails */
744 unsigned needs_file_no_error : 1;
745 /* hash wq insertion if file is a regular file */
746 unsigned hash_reg_file : 1;
747 /* unbound wq insertion if file is a non-regular file */
748 unsigned unbound_nonreg_file : 1;
749 /* opcode is not supported by this kernel */
750 unsigned not_supported : 1;
751 /* set if opcode supports polled "wait" */
752 unsigned pollin : 1;
753 unsigned pollout : 1;
754 /* op supports buffer selection */
755 unsigned buffer_select : 1;
756 /* must always have async data allocated */
757 unsigned needs_async_data : 1;
758 /* size of async data needed, if any */
759 unsigned short async_size;
760 unsigned work_flags;
761 };
762
763 static const struct io_op_def io_op_defs[] = {
764 [IORING_OP_NOP] = {},
765 [IORING_OP_READV] = {
766 .needs_file = 1,
767 .unbound_nonreg_file = 1,
768 .pollin = 1,
769 .buffer_select = 1,
770 .needs_async_data = 1,
771 .async_size = sizeof(struct io_async_rw),
772 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
773 },
774 [IORING_OP_WRITEV] = {
775 .needs_file = 1,
776 .hash_reg_file = 1,
777 .unbound_nonreg_file = 1,
778 .pollout = 1,
779 .needs_async_data = 1,
780 .async_size = sizeof(struct io_async_rw),
781 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
782 IO_WQ_WORK_FSIZE,
783 },
784 [IORING_OP_FSYNC] = {
785 .needs_file = 1,
786 .work_flags = IO_WQ_WORK_BLKCG,
787 },
788 [IORING_OP_READ_FIXED] = {
789 .needs_file = 1,
790 .unbound_nonreg_file = 1,
791 .pollin = 1,
792 .async_size = sizeof(struct io_async_rw),
793 .work_flags = IO_WQ_WORK_BLKCG,
794 },
795 [IORING_OP_WRITE_FIXED] = {
796 .needs_file = 1,
797 .hash_reg_file = 1,
798 .unbound_nonreg_file = 1,
799 .pollout = 1,
800 .async_size = sizeof(struct io_async_rw),
801 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
802 },
803 [IORING_OP_POLL_ADD] = {
804 .needs_file = 1,
805 .unbound_nonreg_file = 1,
806 },
807 [IORING_OP_POLL_REMOVE] = {},
808 [IORING_OP_SYNC_FILE_RANGE] = {
809 .needs_file = 1,
810 .work_flags = IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_SENDMSG] = {
813 .needs_file = 1,
814 .unbound_nonreg_file = 1,
815 .pollout = 1,
816 .needs_async_data = 1,
817 .async_size = sizeof(struct io_async_msghdr),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
819 IO_WQ_WORK_FS,
820 },
821 [IORING_OP_RECVMSG] = {
822 .needs_file = 1,
823 .unbound_nonreg_file = 1,
824 .pollin = 1,
825 .buffer_select = 1,
826 .needs_async_data = 1,
827 .async_size = sizeof(struct io_async_msghdr),
828 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
829 IO_WQ_WORK_FS,
830 },
831 [IORING_OP_TIMEOUT] = {
832 .needs_async_data = 1,
833 .async_size = sizeof(struct io_timeout_data),
834 .work_flags = IO_WQ_WORK_MM,
835 },
836 [IORING_OP_TIMEOUT_REMOVE] = {},
837 [IORING_OP_ACCEPT] = {
838 .needs_file = 1,
839 .unbound_nonreg_file = 1,
840 .pollin = 1,
841 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
842 },
843 [IORING_OP_ASYNC_CANCEL] = {},
844 [IORING_OP_LINK_TIMEOUT] = {
845 .needs_async_data = 1,
846 .async_size = sizeof(struct io_timeout_data),
847 .work_flags = IO_WQ_WORK_MM,
848 },
849 [IORING_OP_CONNECT] = {
850 .needs_file = 1,
851 .unbound_nonreg_file = 1,
852 .pollout = 1,
853 .needs_async_data = 1,
854 .async_size = sizeof(struct io_async_connect),
855 .work_flags = IO_WQ_WORK_MM,
856 },
857 [IORING_OP_FALLOCATE] = {
858 .needs_file = 1,
859 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
860 },
861 [IORING_OP_OPENAT] = {
862 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
863 IO_WQ_WORK_FS,
864 },
865 [IORING_OP_CLOSE] = {
866 .needs_file = 1,
867 .needs_file_no_error = 1,
868 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
869 },
870 [IORING_OP_FILES_UPDATE] = {
871 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
872 },
873 [IORING_OP_STATX] = {
874 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
875 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
876 },
877 [IORING_OP_READ] = {
878 .needs_file = 1,
879 .unbound_nonreg_file = 1,
880 .pollin = 1,
881 .buffer_select = 1,
882 .async_size = sizeof(struct io_async_rw),
883 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
884 },
885 [IORING_OP_WRITE] = {
886 .needs_file = 1,
887 .unbound_nonreg_file = 1,
888 .pollout = 1,
889 .async_size = sizeof(struct io_async_rw),
890 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
891 IO_WQ_WORK_FSIZE,
892 },
893 [IORING_OP_FADVISE] = {
894 .needs_file = 1,
895 .work_flags = IO_WQ_WORK_BLKCG,
896 },
897 [IORING_OP_MADVISE] = {
898 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
899 },
900 [IORING_OP_SEND] = {
901 .needs_file = 1,
902 .unbound_nonreg_file = 1,
903 .pollout = 1,
904 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
905 },
906 [IORING_OP_RECV] = {
907 .needs_file = 1,
908 .unbound_nonreg_file = 1,
909 .pollin = 1,
910 .buffer_select = 1,
911 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
912 },
913 [IORING_OP_OPENAT2] = {
914 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
915 IO_WQ_WORK_BLKCG,
916 },
917 [IORING_OP_EPOLL_CTL] = {
918 .unbound_nonreg_file = 1,
919 .work_flags = IO_WQ_WORK_FILES,
920 },
921 [IORING_OP_SPLICE] = {
922 .needs_file = 1,
923 .hash_reg_file = 1,
924 .unbound_nonreg_file = 1,
925 .work_flags = IO_WQ_WORK_BLKCG,
926 },
927 [IORING_OP_PROVIDE_BUFFERS] = {},
928 [IORING_OP_REMOVE_BUFFERS] = {},
929 [IORING_OP_TEE] = {
930 .needs_file = 1,
931 .hash_reg_file = 1,
932 .unbound_nonreg_file = 1,
933 },
934 };
935
936 enum io_mem_account {
937 ACCT_LOCKED,
938 ACCT_PINNED,
939 };
940
941 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
942 struct io_comp_state *cs);
943 static void io_cqring_fill_event(struct io_kiocb *req, long res);
944 static void io_put_req(struct io_kiocb *req);
945 static void io_put_req_deferred(struct io_kiocb *req, int nr);
946 static void io_double_put_req(struct io_kiocb *req);
947 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
948 static void __io_queue_linked_timeout(struct io_kiocb *req);
949 static void io_queue_linked_timeout(struct io_kiocb *req);
950 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
951 struct io_uring_files_update *ip,
952 unsigned nr_args);
953 static void __io_clean_op(struct io_kiocb *req);
954 static struct file *io_file_get(struct io_submit_state *state,
955 struct io_kiocb *req, int fd, bool fixed);
956 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
957 static void io_file_put_work(struct work_struct *work);
958
959 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
960 struct iovec **iovec, struct iov_iter *iter,
961 bool needs_lock);
962 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
963 const struct iovec *fast_iov,
964 struct iov_iter *iter, bool force);
965
966 static struct kmem_cache *req_cachep;
967
968 static const struct file_operations io_uring_fops;
969
970 struct sock *io_uring_get_socket(struct file *file)
971 {
972 #if defined(CONFIG_UNIX)
973 if (file->f_op == &io_uring_fops) {
974 struct io_ring_ctx *ctx = file->private_data;
975
976 return ctx->ring_sock->sk;
977 }
978 #endif
979 return NULL;
980 }
981 EXPORT_SYMBOL(io_uring_get_socket);
982
983 static inline void io_clean_op(struct io_kiocb *req)
984 {
985 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
986 REQ_F_INFLIGHT))
987 __io_clean_op(req);
988 }
989
990 static void io_sq_thread_drop_mm(void)
991 {
992 struct mm_struct *mm = current->mm;
993
994 if (mm) {
995 kthread_unuse_mm(mm);
996 mmput(mm);
997 }
998 }
999
1000 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1001 {
1002 if (!current->mm) {
1003 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL) ||
1004 !ctx->sqo_task->mm ||
1005 !mmget_not_zero(ctx->sqo_task->mm)))
1006 return -EFAULT;
1007 kthread_use_mm(ctx->sqo_task->mm);
1008 }
1009
1010 return 0;
1011 }
1012
1013 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
1014 struct io_kiocb *req)
1015 {
1016 if (!(io_op_defs[req->opcode].work_flags & IO_WQ_WORK_MM))
1017 return 0;
1018 return __io_sq_thread_acquire_mm(ctx);
1019 }
1020
1021 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1022 struct cgroup_subsys_state **cur_css)
1023
1024 {
1025 #ifdef CONFIG_BLK_CGROUP
1026 /* puts the old one when swapping */
1027 if (*cur_css != ctx->sqo_blkcg_css) {
1028 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1029 *cur_css = ctx->sqo_blkcg_css;
1030 }
1031 #endif
1032 }
1033
1034 static void io_sq_thread_unassociate_blkcg(void)
1035 {
1036 #ifdef CONFIG_BLK_CGROUP
1037 kthread_associate_blkcg(NULL);
1038 #endif
1039 }
1040
1041 static inline void req_set_fail_links(struct io_kiocb *req)
1042 {
1043 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1044 req->flags |= REQ_F_FAIL_LINK;
1045 }
1046
1047 /*
1048 * None of these are dereferenced, they are simply used to check if any of
1049 * them have changed. If we're under current and check they are still the
1050 * same, we're fine to grab references to them for actual out-of-line use.
1051 */
1052 static void io_init_identity(struct io_identity *id)
1053 {
1054 id->files = current->files;
1055 id->mm = current->mm;
1056 #ifdef CONFIG_BLK_CGROUP
1057 rcu_read_lock();
1058 id->blkcg_css = blkcg_css();
1059 rcu_read_unlock();
1060 #endif
1061 id->creds = current_cred();
1062 id->nsproxy = current->nsproxy;
1063 id->fs = current->fs;
1064 id->fsize = rlimit(RLIMIT_FSIZE);
1065 #ifdef CONFIG_AUDIT
1066 id->loginuid = current->loginuid;
1067 id->sessionid = current->sessionid;
1068 #endif
1069 refcount_set(&id->count, 1);
1070 }
1071
1072 static inline void __io_req_init_async(struct io_kiocb *req)
1073 {
1074 memset(&req->work, 0, sizeof(req->work));
1075 req->flags |= REQ_F_WORK_INITIALIZED;
1076 }
1077
1078 /*
1079 * Note: must call io_req_init_async() for the first time you
1080 * touch any members of io_wq_work.
1081 */
1082 static inline void io_req_init_async(struct io_kiocb *req)
1083 {
1084 struct io_uring_task *tctx = current->io_uring;
1085
1086 if (req->flags & REQ_F_WORK_INITIALIZED)
1087 return;
1088
1089 __io_req_init_async(req);
1090
1091 /* Grab a ref if this isn't our static identity */
1092 req->work.identity = tctx->identity;
1093 if (tctx->identity != &tctx->__identity)
1094 refcount_inc(&req->work.identity->count);
1095 }
1096
1097 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1098 {
1099 return ctx->flags & IORING_SETUP_SQPOLL;
1100 }
1101
1102 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1103 {
1104 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1105
1106 complete(&ctx->ref_comp);
1107 }
1108
1109 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1110 {
1111 return !req->timeout.off;
1112 }
1113
1114 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1115 {
1116 struct io_ring_ctx *ctx;
1117 int hash_bits;
1118
1119 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1120 if (!ctx)
1121 return NULL;
1122
1123 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1124 if (!ctx->fallback_req)
1125 goto err;
1126
1127 /*
1128 * Use 5 bits less than the max cq entries, that should give us around
1129 * 32 entries per hash list if totally full and uniformly spread.
1130 */
1131 hash_bits = ilog2(p->cq_entries);
1132 hash_bits -= 5;
1133 if (hash_bits <= 0)
1134 hash_bits = 1;
1135 ctx->cancel_hash_bits = hash_bits;
1136 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1137 GFP_KERNEL);
1138 if (!ctx->cancel_hash)
1139 goto err;
1140 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1141
1142 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1143 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1144 goto err;
1145
1146 ctx->flags = p->flags;
1147 init_waitqueue_head(&ctx->sqo_sq_wait);
1148 INIT_LIST_HEAD(&ctx->sqd_list);
1149 init_waitqueue_head(&ctx->cq_wait);
1150 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1151 init_completion(&ctx->ref_comp);
1152 init_completion(&ctx->sq_thread_comp);
1153 idr_init(&ctx->io_buffer_idr);
1154 idr_init(&ctx->personality_idr);
1155 mutex_init(&ctx->uring_lock);
1156 init_waitqueue_head(&ctx->wait);
1157 spin_lock_init(&ctx->completion_lock);
1158 INIT_LIST_HEAD(&ctx->iopoll_list);
1159 INIT_LIST_HEAD(&ctx->defer_list);
1160 INIT_LIST_HEAD(&ctx->timeout_list);
1161 init_waitqueue_head(&ctx->inflight_wait);
1162 spin_lock_init(&ctx->inflight_lock);
1163 INIT_LIST_HEAD(&ctx->inflight_list);
1164 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1165 init_llist_head(&ctx->file_put_llist);
1166 return ctx;
1167 err:
1168 if (ctx->fallback_req)
1169 kmem_cache_free(req_cachep, ctx->fallback_req);
1170 kfree(ctx->cancel_hash);
1171 kfree(ctx);
1172 return NULL;
1173 }
1174
1175 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1176 {
1177 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1178 struct io_ring_ctx *ctx = req->ctx;
1179
1180 return seq != ctx->cached_cq_tail
1181 + READ_ONCE(ctx->cached_cq_overflow);
1182 }
1183
1184 return false;
1185 }
1186
1187 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1188 {
1189 struct io_rings *rings = ctx->rings;
1190
1191 /* order cqe stores with ring update */
1192 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1193
1194 if (wq_has_sleeper(&ctx->cq_wait)) {
1195 wake_up_interruptible(&ctx->cq_wait);
1196 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1197 }
1198 }
1199
1200 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1201 {
1202 if (req->work.identity == &tctx->__identity)
1203 return;
1204 if (refcount_dec_and_test(&req->work.identity->count))
1205 kfree(req->work.identity);
1206 }
1207
1208 static void io_req_clean_work(struct io_kiocb *req)
1209 {
1210 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1211 return;
1212
1213 req->flags &= ~REQ_F_WORK_INITIALIZED;
1214
1215 if (req->work.flags & IO_WQ_WORK_MM) {
1216 mmdrop(req->work.identity->mm);
1217 req->work.flags &= ~IO_WQ_WORK_MM;
1218 }
1219 #ifdef CONFIG_BLK_CGROUP
1220 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1221 css_put(req->work.identity->blkcg_css);
1222 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1223 }
1224 #endif
1225 if (req->work.flags & IO_WQ_WORK_CREDS) {
1226 put_cred(req->work.identity->creds);
1227 req->work.flags &= ~IO_WQ_WORK_CREDS;
1228 }
1229 if (req->work.flags & IO_WQ_WORK_FS) {
1230 struct fs_struct *fs = req->work.identity->fs;
1231
1232 spin_lock(&req->work.identity->fs->lock);
1233 if (--fs->users)
1234 fs = NULL;
1235 spin_unlock(&req->work.identity->fs->lock);
1236 if (fs)
1237 free_fs_struct(fs);
1238 req->work.flags &= ~IO_WQ_WORK_FS;
1239 }
1240
1241 io_put_identity(req->task->io_uring, req);
1242 }
1243
1244 /*
1245 * Create a private copy of io_identity, since some fields don't match
1246 * the current context.
1247 */
1248 static bool io_identity_cow(struct io_kiocb *req)
1249 {
1250 struct io_uring_task *tctx = current->io_uring;
1251 const struct cred *creds = NULL;
1252 struct io_identity *id;
1253
1254 if (req->work.flags & IO_WQ_WORK_CREDS)
1255 creds = req->work.identity->creds;
1256
1257 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1258 if (unlikely(!id)) {
1259 req->work.flags |= IO_WQ_WORK_CANCEL;
1260 return false;
1261 }
1262
1263 /*
1264 * We can safely just re-init the creds we copied Either the field
1265 * matches the current one, or we haven't grabbed it yet. The only
1266 * exception is ->creds, through registered personalities, so handle
1267 * that one separately.
1268 */
1269 io_init_identity(id);
1270 if (creds)
1271 req->work.identity->creds = creds;
1272
1273 /* add one for this request */
1274 refcount_inc(&id->count);
1275
1276 /* drop old identity, assign new one. one ref for req, one for tctx */
1277 if (req->work.identity != tctx->identity &&
1278 refcount_sub_and_test(2, &req->work.identity->count))
1279 kfree(req->work.identity);
1280
1281 req->work.identity = id;
1282 tctx->identity = id;
1283 return true;
1284 }
1285
1286 static bool io_grab_identity(struct io_kiocb *req)
1287 {
1288 const struct io_op_def *def = &io_op_defs[req->opcode];
1289 struct io_identity *id = req->work.identity;
1290 struct io_ring_ctx *ctx = req->ctx;
1291
1292 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1293 if (id->fsize != rlimit(RLIMIT_FSIZE))
1294 return false;
1295 req->work.flags |= IO_WQ_WORK_FSIZE;
1296 }
1297
1298 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1299 (def->work_flags & IO_WQ_WORK_FILES) &&
1300 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1301 if (id->files != current->files ||
1302 id->nsproxy != current->nsproxy)
1303 return false;
1304 atomic_inc(&id->files->count);
1305 get_nsproxy(id->nsproxy);
1306 req->flags |= REQ_F_INFLIGHT;
1307
1308 spin_lock_irq(&ctx->inflight_lock);
1309 list_add(&req->inflight_entry, &ctx->inflight_list);
1310 spin_unlock_irq(&ctx->inflight_lock);
1311 req->work.flags |= IO_WQ_WORK_FILES;
1312 }
1313 #ifdef CONFIG_BLK_CGROUP
1314 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1315 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1316 rcu_read_lock();
1317 if (id->blkcg_css != blkcg_css()) {
1318 rcu_read_unlock();
1319 return false;
1320 }
1321 /*
1322 * This should be rare, either the cgroup is dying or the task
1323 * is moving cgroups. Just punt to root for the handful of ios.
1324 */
1325 if (css_tryget_online(id->blkcg_css))
1326 req->work.flags |= IO_WQ_WORK_BLKCG;
1327 rcu_read_unlock();
1328 }
1329 #endif
1330 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1331 if (id->creds != current_cred())
1332 return false;
1333 get_cred(id->creds);
1334 req->work.flags |= IO_WQ_WORK_CREDS;
1335 }
1336 #ifdef CONFIG_AUDIT
1337 if (!uid_eq(current->loginuid, id->loginuid) ||
1338 current->sessionid != id->sessionid)
1339 return false;
1340 #endif
1341 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1342 (def->work_flags & IO_WQ_WORK_FS)) {
1343 if (current->fs != id->fs)
1344 return false;
1345 spin_lock(&id->fs->lock);
1346 if (!id->fs->in_exec) {
1347 id->fs->users++;
1348 req->work.flags |= IO_WQ_WORK_FS;
1349 } else {
1350 req->work.flags |= IO_WQ_WORK_CANCEL;
1351 }
1352 spin_unlock(&current->fs->lock);
1353 }
1354
1355 return true;
1356 }
1357
1358 static void io_prep_async_work(struct io_kiocb *req)
1359 {
1360 const struct io_op_def *def = &io_op_defs[req->opcode];
1361 struct io_ring_ctx *ctx = req->ctx;
1362 struct io_identity *id;
1363
1364 io_req_init_async(req);
1365 id = req->work.identity;
1366
1367 if (req->flags & REQ_F_ISREG) {
1368 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1369 io_wq_hash_work(&req->work, file_inode(req->file));
1370 } else {
1371 if (def->unbound_nonreg_file)
1372 req->work.flags |= IO_WQ_WORK_UNBOUND;
1373 }
1374
1375 /* ->mm can never change on us */
1376 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1377 (def->work_flags & IO_WQ_WORK_MM)) {
1378 mmgrab(id->mm);
1379 req->work.flags |= IO_WQ_WORK_MM;
1380 }
1381
1382 /* if we fail grabbing identity, we must COW, regrab, and retry */
1383 if (io_grab_identity(req))
1384 return;
1385
1386 if (!io_identity_cow(req))
1387 return;
1388
1389 /* can't fail at this point */
1390 if (!io_grab_identity(req))
1391 WARN_ON(1);
1392 }
1393
1394 static void io_prep_async_link(struct io_kiocb *req)
1395 {
1396 struct io_kiocb *cur;
1397
1398 io_prep_async_work(req);
1399 if (req->flags & REQ_F_LINK_HEAD)
1400 list_for_each_entry(cur, &req->link_list, link_list)
1401 io_prep_async_work(cur);
1402 }
1403
1404 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1405 {
1406 struct io_ring_ctx *ctx = req->ctx;
1407 struct io_kiocb *link = io_prep_linked_timeout(req);
1408
1409 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1410 &req->work, req->flags);
1411 io_wq_enqueue(ctx->io_wq, &req->work);
1412 return link;
1413 }
1414
1415 static void io_queue_async_work(struct io_kiocb *req)
1416 {
1417 struct io_kiocb *link;
1418
1419 /* init ->work of the whole link before punting */
1420 io_prep_async_link(req);
1421 link = __io_queue_async_work(req);
1422
1423 if (link)
1424 io_queue_linked_timeout(link);
1425 }
1426
1427 static void io_kill_timeout(struct io_kiocb *req)
1428 {
1429 struct io_timeout_data *io = req->async_data;
1430 int ret;
1431
1432 ret = hrtimer_try_to_cancel(&io->timer);
1433 if (ret != -1) {
1434 atomic_set(&req->ctx->cq_timeouts,
1435 atomic_read(&req->ctx->cq_timeouts) + 1);
1436 list_del_init(&req->timeout.list);
1437 io_cqring_fill_event(req, 0);
1438 io_put_req_deferred(req, 1);
1439 }
1440 }
1441
1442 static bool io_task_match(struct io_kiocb *req, struct task_struct *tsk)
1443 {
1444 struct io_ring_ctx *ctx = req->ctx;
1445
1446 if (!tsk || req->task == tsk)
1447 return true;
1448 if (ctx->flags & IORING_SETUP_SQPOLL) {
1449 if (ctx->sq_data && req->task == ctx->sq_data->thread)
1450 return true;
1451 }
1452 return false;
1453 }
1454
1455 /*
1456 * Returns true if we found and killed one or more timeouts
1457 */
1458 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk)
1459 {
1460 struct io_kiocb *req, *tmp;
1461 int canceled = 0;
1462
1463 spin_lock_irq(&ctx->completion_lock);
1464 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1465 if (io_task_match(req, tsk)) {
1466 io_kill_timeout(req);
1467 canceled++;
1468 }
1469 }
1470 spin_unlock_irq(&ctx->completion_lock);
1471 return canceled != 0;
1472 }
1473
1474 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1475 {
1476 do {
1477 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1478 struct io_defer_entry, list);
1479 struct io_kiocb *link;
1480
1481 if (req_need_defer(de->req, de->seq))
1482 break;
1483 list_del_init(&de->list);
1484 /* punt-init is done before queueing for defer */
1485 link = __io_queue_async_work(de->req);
1486 if (link) {
1487 __io_queue_linked_timeout(link);
1488 /* drop submission reference */
1489 io_put_req_deferred(link, 1);
1490 }
1491 kfree(de);
1492 } while (!list_empty(&ctx->defer_list));
1493 }
1494
1495 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1496 {
1497 while (!list_empty(&ctx->timeout_list)) {
1498 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1499 struct io_kiocb, timeout.list);
1500
1501 if (io_is_timeout_noseq(req))
1502 break;
1503 if (req->timeout.target_seq != ctx->cached_cq_tail
1504 - atomic_read(&ctx->cq_timeouts))
1505 break;
1506
1507 list_del_init(&req->timeout.list);
1508 io_kill_timeout(req);
1509 }
1510 }
1511
1512 static void io_commit_cqring(struct io_ring_ctx *ctx)
1513 {
1514 io_flush_timeouts(ctx);
1515 __io_commit_cqring(ctx);
1516
1517 if (unlikely(!list_empty(&ctx->defer_list)))
1518 __io_queue_deferred(ctx);
1519 }
1520
1521 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1522 {
1523 struct io_rings *r = ctx->rings;
1524
1525 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1526 }
1527
1528 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1529 {
1530 struct io_rings *rings = ctx->rings;
1531 unsigned tail;
1532
1533 tail = ctx->cached_cq_tail;
1534 /*
1535 * writes to the cq entry need to come after reading head; the
1536 * control dependency is enough as we're using WRITE_ONCE to
1537 * fill the cq entry
1538 */
1539 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1540 return NULL;
1541
1542 ctx->cached_cq_tail++;
1543 return &rings->cqes[tail & ctx->cq_mask];
1544 }
1545
1546 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1547 {
1548 if (!ctx->cq_ev_fd)
1549 return false;
1550 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1551 return false;
1552 if (!ctx->eventfd_async)
1553 return true;
1554 return io_wq_current_is_worker();
1555 }
1556
1557 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1558 {
1559 if (waitqueue_active(&ctx->wait))
1560 wake_up(&ctx->wait);
1561 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1562 wake_up(&ctx->sq_data->wait);
1563 if (io_should_trigger_evfd(ctx))
1564 eventfd_signal(ctx->cq_ev_fd, 1);
1565 }
1566
1567 static void io_cqring_mark_overflow(struct io_ring_ctx *ctx)
1568 {
1569 if (list_empty(&ctx->cq_overflow_list)) {
1570 clear_bit(0, &ctx->sq_check_overflow);
1571 clear_bit(0, &ctx->cq_check_overflow);
1572 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1573 }
1574 }
1575
1576 static inline bool io_match_files(struct io_kiocb *req,
1577 struct files_struct *files)
1578 {
1579 if (!files)
1580 return true;
1581 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1582 (req->work.flags & IO_WQ_WORK_FILES))
1583 return req->work.identity->files == files;
1584 return false;
1585 }
1586
1587 /* Returns true if there are no backlogged entries after the flush */
1588 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1589 struct task_struct *tsk,
1590 struct files_struct *files)
1591 {
1592 struct io_rings *rings = ctx->rings;
1593 struct io_kiocb *req, *tmp;
1594 struct io_uring_cqe *cqe;
1595 unsigned long flags;
1596 LIST_HEAD(list);
1597
1598 if (!force) {
1599 if (list_empty_careful(&ctx->cq_overflow_list))
1600 return true;
1601 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1602 rings->cq_ring_entries))
1603 return false;
1604 }
1605
1606 spin_lock_irqsave(&ctx->completion_lock, flags);
1607
1608 /* if force is set, the ring is going away. always drop after that */
1609 if (force)
1610 ctx->cq_overflow_flushed = 1;
1611
1612 cqe = NULL;
1613 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1614 if (tsk && req->task != tsk)
1615 continue;
1616 if (!io_match_files(req, files))
1617 continue;
1618
1619 cqe = io_get_cqring(ctx);
1620 if (!cqe && !force)
1621 break;
1622
1623 list_move(&req->compl.list, &list);
1624 if (cqe) {
1625 WRITE_ONCE(cqe->user_data, req->user_data);
1626 WRITE_ONCE(cqe->res, req->result);
1627 WRITE_ONCE(cqe->flags, req->compl.cflags);
1628 } else {
1629 ctx->cached_cq_overflow++;
1630 WRITE_ONCE(ctx->rings->cq_overflow,
1631 ctx->cached_cq_overflow);
1632 }
1633 }
1634
1635 io_commit_cqring(ctx);
1636 io_cqring_mark_overflow(ctx);
1637
1638 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1639 io_cqring_ev_posted(ctx);
1640
1641 while (!list_empty(&list)) {
1642 req = list_first_entry(&list, struct io_kiocb, compl.list);
1643 list_del(&req->compl.list);
1644 io_put_req(req);
1645 }
1646
1647 return cqe != NULL;
1648 }
1649
1650 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1651 {
1652 struct io_ring_ctx *ctx = req->ctx;
1653 struct io_uring_cqe *cqe;
1654
1655 trace_io_uring_complete(ctx, req->user_data, res);
1656
1657 /*
1658 * If we can't get a cq entry, userspace overflowed the
1659 * submission (by quite a lot). Increment the overflow count in
1660 * the ring.
1661 */
1662 cqe = io_get_cqring(ctx);
1663 if (likely(cqe)) {
1664 WRITE_ONCE(cqe->user_data, req->user_data);
1665 WRITE_ONCE(cqe->res, res);
1666 WRITE_ONCE(cqe->flags, cflags);
1667 } else if (ctx->cq_overflow_flushed || req->task->io_uring->in_idle) {
1668 /*
1669 * If we're in ring overflow flush mode, or in task cancel mode,
1670 * then we cannot store the request for later flushing, we need
1671 * to drop it on the floor.
1672 */
1673 ctx->cached_cq_overflow++;
1674 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1675 } else {
1676 if (list_empty(&ctx->cq_overflow_list)) {
1677 set_bit(0, &ctx->sq_check_overflow);
1678 set_bit(0, &ctx->cq_check_overflow);
1679 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1680 }
1681 io_clean_op(req);
1682 req->result = res;
1683 req->compl.cflags = cflags;
1684 refcount_inc(&req->refs);
1685 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1686 }
1687 }
1688
1689 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1690 {
1691 __io_cqring_fill_event(req, res, 0);
1692 }
1693
1694 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1695 {
1696 struct io_ring_ctx *ctx = req->ctx;
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(&ctx->completion_lock, flags);
1700 __io_cqring_fill_event(req, res, cflags);
1701 io_commit_cqring(ctx);
1702 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1703
1704 io_cqring_ev_posted(ctx);
1705 }
1706
1707 static void io_submit_flush_completions(struct io_comp_state *cs)
1708 {
1709 struct io_ring_ctx *ctx = cs->ctx;
1710
1711 spin_lock_irq(&ctx->completion_lock);
1712 while (!list_empty(&cs->list)) {
1713 struct io_kiocb *req;
1714
1715 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1716 list_del(&req->compl.list);
1717 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1718
1719 /*
1720 * io_free_req() doesn't care about completion_lock unless one
1721 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1722 * because of a potential deadlock with req->work.fs->lock
1723 */
1724 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1725 |REQ_F_WORK_INITIALIZED)) {
1726 spin_unlock_irq(&ctx->completion_lock);
1727 io_put_req(req);
1728 spin_lock_irq(&ctx->completion_lock);
1729 } else {
1730 io_put_req(req);
1731 }
1732 }
1733 io_commit_cqring(ctx);
1734 spin_unlock_irq(&ctx->completion_lock);
1735
1736 io_cqring_ev_posted(ctx);
1737 cs->nr = 0;
1738 }
1739
1740 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1741 struct io_comp_state *cs)
1742 {
1743 if (!cs) {
1744 io_cqring_add_event(req, res, cflags);
1745 io_put_req(req);
1746 } else {
1747 io_clean_op(req);
1748 req->result = res;
1749 req->compl.cflags = cflags;
1750 list_add_tail(&req->compl.list, &cs->list);
1751 if (++cs->nr >= 32)
1752 io_submit_flush_completions(cs);
1753 }
1754 }
1755
1756 static void io_req_complete(struct io_kiocb *req, long res)
1757 {
1758 __io_req_complete(req, res, 0, NULL);
1759 }
1760
1761 static inline bool io_is_fallback_req(struct io_kiocb *req)
1762 {
1763 return req == (struct io_kiocb *)
1764 ((unsigned long) req->ctx->fallback_req & ~1UL);
1765 }
1766
1767 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1768 {
1769 struct io_kiocb *req;
1770
1771 req = ctx->fallback_req;
1772 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1773 return req;
1774
1775 return NULL;
1776 }
1777
1778 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1779 struct io_submit_state *state)
1780 {
1781 if (!state->free_reqs) {
1782 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1783 size_t sz;
1784 int ret;
1785
1786 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1787 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1788
1789 /*
1790 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1791 * retry single alloc to be on the safe side.
1792 */
1793 if (unlikely(ret <= 0)) {
1794 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1795 if (!state->reqs[0])
1796 goto fallback;
1797 ret = 1;
1798 }
1799 state->free_reqs = ret;
1800 }
1801
1802 state->free_reqs--;
1803 return state->reqs[state->free_reqs];
1804 fallback:
1805 return io_get_fallback_req(ctx);
1806 }
1807
1808 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1809 bool fixed)
1810 {
1811 if (fixed)
1812 percpu_ref_put(req->fixed_file_refs);
1813 else
1814 fput(file);
1815 }
1816
1817 static void io_dismantle_req(struct io_kiocb *req)
1818 {
1819 io_clean_op(req);
1820
1821 if (req->async_data)
1822 kfree(req->async_data);
1823 if (req->file)
1824 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1825
1826 io_req_clean_work(req);
1827 }
1828
1829 static void __io_free_req(struct io_kiocb *req)
1830 {
1831 struct io_uring_task *tctx = req->task->io_uring;
1832 struct io_ring_ctx *ctx = req->ctx;
1833
1834 io_dismantle_req(req);
1835
1836 percpu_counter_dec(&tctx->inflight);
1837 if (tctx->in_idle)
1838 wake_up(&tctx->wait);
1839 put_task_struct(req->task);
1840
1841 if (likely(!io_is_fallback_req(req)))
1842 kmem_cache_free(req_cachep, req);
1843 else
1844 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1845 percpu_ref_put(&ctx->refs);
1846 }
1847
1848 static bool io_link_cancel_timeout(struct io_kiocb *req)
1849 {
1850 struct io_timeout_data *io = req->async_data;
1851 struct io_ring_ctx *ctx = req->ctx;
1852 int ret;
1853
1854 ret = hrtimer_try_to_cancel(&io->timer);
1855 if (ret != -1) {
1856 io_cqring_fill_event(req, -ECANCELED);
1857 io_commit_cqring(ctx);
1858 req->flags &= ~REQ_F_LINK_HEAD;
1859 io_put_req_deferred(req, 1);
1860 return true;
1861 }
1862
1863 return false;
1864 }
1865
1866 static bool __io_kill_linked_timeout(struct io_kiocb *req)
1867 {
1868 struct io_kiocb *link;
1869 bool wake_ev;
1870
1871 if (list_empty(&req->link_list))
1872 return false;
1873 link = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1874 if (link->opcode != IORING_OP_LINK_TIMEOUT)
1875 return false;
1876 /*
1877 * Can happen if a linked timeout fired and link had been like
1878 * req -> link t-out -> link t-out [-> ...]
1879 */
1880 if (!(link->flags & REQ_F_LTIMEOUT_ACTIVE))
1881 return false;
1882
1883 list_del_init(&link->link_list);
1884 wake_ev = io_link_cancel_timeout(link);
1885 req->flags &= ~REQ_F_LINK_TIMEOUT;
1886 return wake_ev;
1887 }
1888
1889 static void io_kill_linked_timeout(struct io_kiocb *req)
1890 {
1891 struct io_ring_ctx *ctx = req->ctx;
1892 unsigned long flags;
1893 bool wake_ev;
1894
1895 spin_lock_irqsave(&ctx->completion_lock, flags);
1896 wake_ev = __io_kill_linked_timeout(req);
1897 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1898
1899 if (wake_ev)
1900 io_cqring_ev_posted(ctx);
1901 }
1902
1903 static struct io_kiocb *io_req_link_next(struct io_kiocb *req)
1904 {
1905 struct io_kiocb *nxt;
1906
1907 /*
1908 * The list should never be empty when we are called here. But could
1909 * potentially happen if the chain is messed up, check to be on the
1910 * safe side.
1911 */
1912 if (unlikely(list_empty(&req->link_list)))
1913 return NULL;
1914
1915 nxt = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1916 list_del_init(&req->link_list);
1917 if (!list_empty(&nxt->link_list))
1918 nxt->flags |= REQ_F_LINK_HEAD;
1919 return nxt;
1920 }
1921
1922 /*
1923 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1924 */
1925 static void io_fail_links(struct io_kiocb *req)
1926 {
1927 struct io_ring_ctx *ctx = req->ctx;
1928 unsigned long flags;
1929
1930 spin_lock_irqsave(&ctx->completion_lock, flags);
1931 while (!list_empty(&req->link_list)) {
1932 struct io_kiocb *link = list_first_entry(&req->link_list,
1933 struct io_kiocb, link_list);
1934
1935 list_del_init(&link->link_list);
1936 trace_io_uring_fail_link(req, link);
1937
1938 io_cqring_fill_event(link, -ECANCELED);
1939
1940 /*
1941 * It's ok to free under spinlock as they're not linked anymore,
1942 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
1943 * work.fs->lock.
1944 */
1945 if (link->flags & REQ_F_WORK_INITIALIZED)
1946 io_put_req_deferred(link, 2);
1947 else
1948 io_double_put_req(link);
1949 }
1950
1951 io_commit_cqring(ctx);
1952 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1953
1954 io_cqring_ev_posted(ctx);
1955 }
1956
1957 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1958 {
1959 req->flags &= ~REQ_F_LINK_HEAD;
1960 if (req->flags & REQ_F_LINK_TIMEOUT)
1961 io_kill_linked_timeout(req);
1962
1963 /*
1964 * If LINK is set, we have dependent requests in this chain. If we
1965 * didn't fail this request, queue the first one up, moving any other
1966 * dependencies to the next request. In case of failure, fail the rest
1967 * of the chain.
1968 */
1969 if (likely(!(req->flags & REQ_F_FAIL_LINK)))
1970 return io_req_link_next(req);
1971 io_fail_links(req);
1972 return NULL;
1973 }
1974
1975 static struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1976 {
1977 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1978 return NULL;
1979 return __io_req_find_next(req);
1980 }
1981
1982 static int io_req_task_work_add(struct io_kiocb *req, bool twa_signal_ok)
1983 {
1984 struct task_struct *tsk = req->task;
1985 struct io_ring_ctx *ctx = req->ctx;
1986 int ret, notify;
1987
1988 if (tsk->flags & PF_EXITING)
1989 return -ESRCH;
1990
1991 /*
1992 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1993 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1994 * processing task_work. There's no reliable way to tell if TWA_RESUME
1995 * will do the job.
1996 */
1997 notify = 0;
1998 if (!(ctx->flags & IORING_SETUP_SQPOLL) && twa_signal_ok)
1999 notify = TWA_SIGNAL;
2000
2001 ret = task_work_add(tsk, &req->task_work, notify);
2002 if (!ret)
2003 wake_up_process(tsk);
2004
2005 return ret;
2006 }
2007
2008 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2009 {
2010 struct io_ring_ctx *ctx = req->ctx;
2011
2012 spin_lock_irq(&ctx->completion_lock);
2013 io_cqring_fill_event(req, error);
2014 io_commit_cqring(ctx);
2015 spin_unlock_irq(&ctx->completion_lock);
2016
2017 io_cqring_ev_posted(ctx);
2018 req_set_fail_links(req);
2019 io_double_put_req(req);
2020 }
2021
2022 static void io_req_task_cancel(struct callback_head *cb)
2023 {
2024 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2025 struct io_ring_ctx *ctx = req->ctx;
2026
2027 __io_req_task_cancel(req, -ECANCELED);
2028 percpu_ref_put(&ctx->refs);
2029 }
2030
2031 static void __io_req_task_submit(struct io_kiocb *req)
2032 {
2033 struct io_ring_ctx *ctx = req->ctx;
2034
2035 if (!__io_sq_thread_acquire_mm(ctx)) {
2036 mutex_lock(&ctx->uring_lock);
2037 __io_queue_sqe(req, NULL);
2038 mutex_unlock(&ctx->uring_lock);
2039 } else {
2040 __io_req_task_cancel(req, -EFAULT);
2041 }
2042 }
2043
2044 static void io_req_task_submit(struct callback_head *cb)
2045 {
2046 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2047 struct io_ring_ctx *ctx = req->ctx;
2048
2049 __io_req_task_submit(req);
2050 percpu_ref_put(&ctx->refs);
2051 }
2052
2053 static void io_req_task_queue(struct io_kiocb *req)
2054 {
2055 int ret;
2056
2057 init_task_work(&req->task_work, io_req_task_submit);
2058 percpu_ref_get(&req->ctx->refs);
2059
2060 ret = io_req_task_work_add(req, true);
2061 if (unlikely(ret)) {
2062 struct task_struct *tsk;
2063
2064 init_task_work(&req->task_work, io_req_task_cancel);
2065 tsk = io_wq_get_task(req->ctx->io_wq);
2066 task_work_add(tsk, &req->task_work, 0);
2067 wake_up_process(tsk);
2068 }
2069 }
2070
2071 static void io_queue_next(struct io_kiocb *req)
2072 {
2073 struct io_kiocb *nxt = io_req_find_next(req);
2074
2075 if (nxt)
2076 io_req_task_queue(nxt);
2077 }
2078
2079 static void io_free_req(struct io_kiocb *req)
2080 {
2081 io_queue_next(req);
2082 __io_free_req(req);
2083 }
2084
2085 struct req_batch {
2086 void *reqs[IO_IOPOLL_BATCH];
2087 int to_free;
2088
2089 struct task_struct *task;
2090 int task_refs;
2091 };
2092
2093 static inline void io_init_req_batch(struct req_batch *rb)
2094 {
2095 rb->to_free = 0;
2096 rb->task_refs = 0;
2097 rb->task = NULL;
2098 }
2099
2100 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2101 struct req_batch *rb)
2102 {
2103 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2104 percpu_ref_put_many(&ctx->refs, rb->to_free);
2105 rb->to_free = 0;
2106 }
2107
2108 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2109 struct req_batch *rb)
2110 {
2111 if (rb->to_free)
2112 __io_req_free_batch_flush(ctx, rb);
2113 if (rb->task) {
2114 struct io_uring_task *tctx = rb->task->io_uring;
2115
2116 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2117 put_task_struct_many(rb->task, rb->task_refs);
2118 rb->task = NULL;
2119 }
2120 }
2121
2122 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2123 {
2124 if (unlikely(io_is_fallback_req(req))) {
2125 io_free_req(req);
2126 return;
2127 }
2128 if (req->flags & REQ_F_LINK_HEAD)
2129 io_queue_next(req);
2130
2131 if (req->task != rb->task) {
2132 if (rb->task) {
2133 struct io_uring_task *tctx = rb->task->io_uring;
2134
2135 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2136 put_task_struct_many(rb->task, rb->task_refs);
2137 }
2138 rb->task = req->task;
2139 rb->task_refs = 0;
2140 }
2141 rb->task_refs++;
2142
2143 io_dismantle_req(req);
2144 rb->reqs[rb->to_free++] = req;
2145 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2146 __io_req_free_batch_flush(req->ctx, rb);
2147 }
2148
2149 /*
2150 * Drop reference to request, return next in chain (if there is one) if this
2151 * was the last reference to this request.
2152 */
2153 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2154 {
2155 struct io_kiocb *nxt = NULL;
2156
2157 if (refcount_dec_and_test(&req->refs)) {
2158 nxt = io_req_find_next(req);
2159 __io_free_req(req);
2160 }
2161 return nxt;
2162 }
2163
2164 static void io_put_req(struct io_kiocb *req)
2165 {
2166 if (refcount_dec_and_test(&req->refs))
2167 io_free_req(req);
2168 }
2169
2170 static void io_put_req_deferred_cb(struct callback_head *cb)
2171 {
2172 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2173
2174 io_free_req(req);
2175 }
2176
2177 static void io_free_req_deferred(struct io_kiocb *req)
2178 {
2179 int ret;
2180
2181 init_task_work(&req->task_work, io_put_req_deferred_cb);
2182 ret = io_req_task_work_add(req, true);
2183 if (unlikely(ret)) {
2184 struct task_struct *tsk;
2185
2186 tsk = io_wq_get_task(req->ctx->io_wq);
2187 task_work_add(tsk, &req->task_work, 0);
2188 wake_up_process(tsk);
2189 }
2190 }
2191
2192 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2193 {
2194 if (refcount_sub_and_test(refs, &req->refs))
2195 io_free_req_deferred(req);
2196 }
2197
2198 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2199 {
2200 struct io_kiocb *nxt;
2201
2202 /*
2203 * A ref is owned by io-wq in which context we're. So, if that's the
2204 * last one, it's safe to steal next work. False negatives are Ok,
2205 * it just will be re-punted async in io_put_work()
2206 */
2207 if (refcount_read(&req->refs) != 1)
2208 return NULL;
2209
2210 nxt = io_req_find_next(req);
2211 return nxt ? &nxt->work : NULL;
2212 }
2213
2214 static void io_double_put_req(struct io_kiocb *req)
2215 {
2216 /* drop both submit and complete references */
2217 if (refcount_sub_and_test(2, &req->refs))
2218 io_free_req(req);
2219 }
2220
2221 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2222 {
2223 struct io_rings *rings = ctx->rings;
2224
2225 if (test_bit(0, &ctx->cq_check_overflow)) {
2226 /*
2227 * noflush == true is from the waitqueue handler, just ensure
2228 * we wake up the task, and the next invocation will flush the
2229 * entries. We cannot safely to it from here.
2230 */
2231 if (noflush && !list_empty(&ctx->cq_overflow_list))
2232 return -1U;
2233
2234 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2235 }
2236
2237 /* See comment at the top of this file */
2238 smp_rmb();
2239 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
2240 }
2241
2242 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2243 {
2244 struct io_rings *rings = ctx->rings;
2245
2246 /* make sure SQ entry isn't read before tail */
2247 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2248 }
2249
2250 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2251 {
2252 unsigned int cflags;
2253
2254 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2255 cflags |= IORING_CQE_F_BUFFER;
2256 req->flags &= ~REQ_F_BUFFER_SELECTED;
2257 kfree(kbuf);
2258 return cflags;
2259 }
2260
2261 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2262 {
2263 struct io_buffer *kbuf;
2264
2265 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2266 return io_put_kbuf(req, kbuf);
2267 }
2268
2269 static inline bool io_run_task_work(void)
2270 {
2271 /*
2272 * Not safe to run on exiting task, and the task_work handling will
2273 * not add work to such a task.
2274 */
2275 if (unlikely(current->flags & PF_EXITING))
2276 return false;
2277 if (current->task_works) {
2278 __set_current_state(TASK_RUNNING);
2279 task_work_run();
2280 return true;
2281 }
2282
2283 return false;
2284 }
2285
2286 static void io_iopoll_queue(struct list_head *again)
2287 {
2288 struct io_kiocb *req;
2289
2290 do {
2291 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2292 list_del(&req->inflight_entry);
2293 __io_complete_rw(req, -EAGAIN, 0, NULL);
2294 } while (!list_empty(again));
2295 }
2296
2297 /*
2298 * Find and free completed poll iocbs
2299 */
2300 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2301 struct list_head *done)
2302 {
2303 struct req_batch rb;
2304 struct io_kiocb *req;
2305 LIST_HEAD(again);
2306
2307 /* order with ->result store in io_complete_rw_iopoll() */
2308 smp_rmb();
2309
2310 io_init_req_batch(&rb);
2311 while (!list_empty(done)) {
2312 int cflags = 0;
2313
2314 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2315 if (READ_ONCE(req->result) == -EAGAIN) {
2316 req->result = 0;
2317 req->iopoll_completed = 0;
2318 list_move_tail(&req->inflight_entry, &again);
2319 continue;
2320 }
2321 list_del(&req->inflight_entry);
2322
2323 if (req->flags & REQ_F_BUFFER_SELECTED)
2324 cflags = io_put_rw_kbuf(req);
2325
2326 __io_cqring_fill_event(req, req->result, cflags);
2327 (*nr_events)++;
2328
2329 if (refcount_dec_and_test(&req->refs))
2330 io_req_free_batch(&rb, req);
2331 }
2332
2333 io_commit_cqring(ctx);
2334 if (ctx->flags & IORING_SETUP_SQPOLL)
2335 io_cqring_ev_posted(ctx);
2336 io_req_free_batch_finish(ctx, &rb);
2337
2338 if (!list_empty(&again))
2339 io_iopoll_queue(&again);
2340 }
2341
2342 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2343 long min)
2344 {
2345 struct io_kiocb *req, *tmp;
2346 LIST_HEAD(done);
2347 bool spin;
2348 int ret;
2349
2350 /*
2351 * Only spin for completions if we don't have multiple devices hanging
2352 * off our complete list, and we're under the requested amount.
2353 */
2354 spin = !ctx->poll_multi_file && *nr_events < min;
2355
2356 ret = 0;
2357 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2358 struct kiocb *kiocb = &req->rw.kiocb;
2359
2360 /*
2361 * Move completed and retryable entries to our local lists.
2362 * If we find a request that requires polling, break out
2363 * and complete those lists first, if we have entries there.
2364 */
2365 if (READ_ONCE(req->iopoll_completed)) {
2366 list_move_tail(&req->inflight_entry, &done);
2367 continue;
2368 }
2369 if (!list_empty(&done))
2370 break;
2371
2372 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2373 if (ret < 0)
2374 break;
2375
2376 /* iopoll may have completed current req */
2377 if (READ_ONCE(req->iopoll_completed))
2378 list_move_tail(&req->inflight_entry, &done);
2379
2380 if (ret && spin)
2381 spin = false;
2382 ret = 0;
2383 }
2384
2385 if (!list_empty(&done))
2386 io_iopoll_complete(ctx, nr_events, &done);
2387
2388 return ret;
2389 }
2390
2391 /*
2392 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2393 * non-spinning poll check - we'll still enter the driver poll loop, but only
2394 * as a non-spinning completion check.
2395 */
2396 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2397 long min)
2398 {
2399 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2400 int ret;
2401
2402 ret = io_do_iopoll(ctx, nr_events, min);
2403 if (ret < 0)
2404 return ret;
2405 if (*nr_events >= min)
2406 return 0;
2407 }
2408
2409 return 1;
2410 }
2411
2412 /*
2413 * We can't just wait for polled events to come to us, we have to actively
2414 * find and complete them.
2415 */
2416 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2417 {
2418 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2419 return;
2420
2421 mutex_lock(&ctx->uring_lock);
2422 while (!list_empty(&ctx->iopoll_list)) {
2423 unsigned int nr_events = 0;
2424
2425 io_do_iopoll(ctx, &nr_events, 0);
2426
2427 /* let it sleep and repeat later if can't complete a request */
2428 if (nr_events == 0)
2429 break;
2430 /*
2431 * Ensure we allow local-to-the-cpu processing to take place,
2432 * in this case we need to ensure that we reap all events.
2433 * Also let task_work, etc. to progress by releasing the mutex
2434 */
2435 if (need_resched()) {
2436 mutex_unlock(&ctx->uring_lock);
2437 cond_resched();
2438 mutex_lock(&ctx->uring_lock);
2439 }
2440 }
2441 mutex_unlock(&ctx->uring_lock);
2442 }
2443
2444 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2445 {
2446 unsigned int nr_events = 0;
2447 int iters = 0, ret = 0;
2448
2449 /*
2450 * We disallow the app entering submit/complete with polling, but we
2451 * still need to lock the ring to prevent racing with polled issue
2452 * that got punted to a workqueue.
2453 */
2454 mutex_lock(&ctx->uring_lock);
2455 do {
2456 /*
2457 * Don't enter poll loop if we already have events pending.
2458 * If we do, we can potentially be spinning for commands that
2459 * already triggered a CQE (eg in error).
2460 */
2461 if (io_cqring_events(ctx, false))
2462 break;
2463
2464 /*
2465 * If a submit got punted to a workqueue, we can have the
2466 * application entering polling for a command before it gets
2467 * issued. That app will hold the uring_lock for the duration
2468 * of the poll right here, so we need to take a breather every
2469 * now and then to ensure that the issue has a chance to add
2470 * the poll to the issued list. Otherwise we can spin here
2471 * forever, while the workqueue is stuck trying to acquire the
2472 * very same mutex.
2473 */
2474 if (!(++iters & 7)) {
2475 mutex_unlock(&ctx->uring_lock);
2476 io_run_task_work();
2477 mutex_lock(&ctx->uring_lock);
2478 }
2479
2480 ret = io_iopoll_getevents(ctx, &nr_events, min);
2481 if (ret <= 0)
2482 break;
2483 ret = 0;
2484 } while (min && !nr_events && !need_resched());
2485
2486 mutex_unlock(&ctx->uring_lock);
2487 return ret;
2488 }
2489
2490 static void kiocb_end_write(struct io_kiocb *req)
2491 {
2492 /*
2493 * Tell lockdep we inherited freeze protection from submission
2494 * thread.
2495 */
2496 if (req->flags & REQ_F_ISREG) {
2497 struct inode *inode = file_inode(req->file);
2498
2499 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2500 }
2501 file_end_write(req->file);
2502 }
2503
2504 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2505 struct io_comp_state *cs)
2506 {
2507 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2508 int cflags = 0;
2509
2510 if (kiocb->ki_flags & IOCB_WRITE)
2511 kiocb_end_write(req);
2512
2513 if (res != req->result)
2514 req_set_fail_links(req);
2515 if (req->flags & REQ_F_BUFFER_SELECTED)
2516 cflags = io_put_rw_kbuf(req);
2517 __io_req_complete(req, res, cflags, cs);
2518 }
2519
2520 #ifdef CONFIG_BLOCK
2521 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2522 {
2523 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2524 ssize_t ret = -ECANCELED;
2525 struct iov_iter iter;
2526 int rw;
2527
2528 if (error) {
2529 ret = error;
2530 goto end_req;
2531 }
2532
2533 switch (req->opcode) {
2534 case IORING_OP_READV:
2535 case IORING_OP_READ_FIXED:
2536 case IORING_OP_READ:
2537 rw = READ;
2538 break;
2539 case IORING_OP_WRITEV:
2540 case IORING_OP_WRITE_FIXED:
2541 case IORING_OP_WRITE:
2542 rw = WRITE;
2543 break;
2544 default:
2545 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2546 req->opcode);
2547 goto end_req;
2548 }
2549
2550 if (!req->async_data) {
2551 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2552 if (ret < 0)
2553 goto end_req;
2554 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2555 if (!ret)
2556 return true;
2557 kfree(iovec);
2558 } else {
2559 return true;
2560 }
2561 end_req:
2562 req_set_fail_links(req);
2563 io_req_complete(req, ret);
2564 return false;
2565 }
2566 #endif
2567
2568 static bool io_rw_reissue(struct io_kiocb *req, long res)
2569 {
2570 #ifdef CONFIG_BLOCK
2571 umode_t mode = file_inode(req->file)->i_mode;
2572 int ret;
2573
2574 if (!S_ISBLK(mode) && !S_ISREG(mode))
2575 return false;
2576 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2577 return false;
2578
2579 ret = io_sq_thread_acquire_mm(req->ctx, req);
2580
2581 if (io_resubmit_prep(req, ret)) {
2582 refcount_inc(&req->refs);
2583 io_queue_async_work(req);
2584 return true;
2585 }
2586
2587 #endif
2588 return false;
2589 }
2590
2591 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2592 struct io_comp_state *cs)
2593 {
2594 if (!io_rw_reissue(req, res))
2595 io_complete_rw_common(&req->rw.kiocb, res, cs);
2596 }
2597
2598 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2599 {
2600 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2601
2602 __io_complete_rw(req, res, res2, NULL);
2603 }
2604
2605 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2606 {
2607 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2608
2609 if (kiocb->ki_flags & IOCB_WRITE)
2610 kiocb_end_write(req);
2611
2612 if (res != -EAGAIN && res != req->result)
2613 req_set_fail_links(req);
2614
2615 WRITE_ONCE(req->result, res);
2616 /* order with io_poll_complete() checking ->result */
2617 smp_wmb();
2618 WRITE_ONCE(req->iopoll_completed, 1);
2619 }
2620
2621 /*
2622 * After the iocb has been issued, it's safe to be found on the poll list.
2623 * Adding the kiocb to the list AFTER submission ensures that we don't
2624 * find it from a io_iopoll_getevents() thread before the issuer is done
2625 * accessing the kiocb cookie.
2626 */
2627 static void io_iopoll_req_issued(struct io_kiocb *req)
2628 {
2629 struct io_ring_ctx *ctx = req->ctx;
2630
2631 /*
2632 * Track whether we have multiple files in our lists. This will impact
2633 * how we do polling eventually, not spinning if we're on potentially
2634 * different devices.
2635 */
2636 if (list_empty(&ctx->iopoll_list)) {
2637 ctx->poll_multi_file = false;
2638 } else if (!ctx->poll_multi_file) {
2639 struct io_kiocb *list_req;
2640
2641 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2642 inflight_entry);
2643 if (list_req->file != req->file)
2644 ctx->poll_multi_file = true;
2645 }
2646
2647 /*
2648 * For fast devices, IO may have already completed. If it has, add
2649 * it to the front so we find it first.
2650 */
2651 if (READ_ONCE(req->iopoll_completed))
2652 list_add(&req->inflight_entry, &ctx->iopoll_list);
2653 else
2654 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2655
2656 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2657 wq_has_sleeper(&ctx->sq_data->wait))
2658 wake_up(&ctx->sq_data->wait);
2659 }
2660
2661 static void __io_state_file_put(struct io_submit_state *state)
2662 {
2663 if (state->has_refs)
2664 fput_many(state->file, state->has_refs);
2665 state->file = NULL;
2666 }
2667
2668 static inline void io_state_file_put(struct io_submit_state *state)
2669 {
2670 if (state->file)
2671 __io_state_file_put(state);
2672 }
2673
2674 /*
2675 * Get as many references to a file as we have IOs left in this submission,
2676 * assuming most submissions are for one file, or at least that each file
2677 * has more than one submission.
2678 */
2679 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2680 {
2681 if (!state)
2682 return fget(fd);
2683
2684 if (state->file) {
2685 if (state->fd == fd) {
2686 state->has_refs--;
2687 return state->file;
2688 }
2689 __io_state_file_put(state);
2690 }
2691 state->file = fget_many(fd, state->ios_left);
2692 if (!state->file)
2693 return NULL;
2694
2695 state->fd = fd;
2696 state->has_refs = state->ios_left - 1;
2697 return state->file;
2698 }
2699
2700 static bool io_bdev_nowait(struct block_device *bdev)
2701 {
2702 #ifdef CONFIG_BLOCK
2703 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2704 #else
2705 return true;
2706 #endif
2707 }
2708
2709 /*
2710 * If we tracked the file through the SCM inflight mechanism, we could support
2711 * any file. For now, just ensure that anything potentially problematic is done
2712 * inline.
2713 */
2714 static bool io_file_supports_async(struct file *file, int rw)
2715 {
2716 umode_t mode = file_inode(file)->i_mode;
2717
2718 if (S_ISBLK(mode)) {
2719 if (io_bdev_nowait(file->f_inode->i_bdev))
2720 return true;
2721 return false;
2722 }
2723 if (S_ISCHR(mode) || S_ISSOCK(mode))
2724 return true;
2725 if (S_ISREG(mode)) {
2726 if (io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2727 file->f_op != &io_uring_fops)
2728 return true;
2729 return false;
2730 }
2731
2732 /* any ->read/write should understand O_NONBLOCK */
2733 if (file->f_flags & O_NONBLOCK)
2734 return true;
2735
2736 if (!(file->f_mode & FMODE_NOWAIT))
2737 return false;
2738
2739 if (rw == READ)
2740 return file->f_op->read_iter != NULL;
2741
2742 return file->f_op->write_iter != NULL;
2743 }
2744
2745 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2746 {
2747 struct io_ring_ctx *ctx = req->ctx;
2748 struct kiocb *kiocb = &req->rw.kiocb;
2749 unsigned ioprio;
2750 int ret;
2751
2752 if (S_ISREG(file_inode(req->file)->i_mode))
2753 req->flags |= REQ_F_ISREG;
2754
2755 kiocb->ki_pos = READ_ONCE(sqe->off);
2756 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2757 req->flags |= REQ_F_CUR_POS;
2758 kiocb->ki_pos = req->file->f_pos;
2759 }
2760 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2761 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2762 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2763 if (unlikely(ret))
2764 return ret;
2765
2766 ioprio = READ_ONCE(sqe->ioprio);
2767 if (ioprio) {
2768 ret = ioprio_check_cap(ioprio);
2769 if (ret)
2770 return ret;
2771
2772 kiocb->ki_ioprio = ioprio;
2773 } else
2774 kiocb->ki_ioprio = get_current_ioprio();
2775
2776 /* don't allow async punt if RWF_NOWAIT was requested */
2777 if (kiocb->ki_flags & IOCB_NOWAIT)
2778 req->flags |= REQ_F_NOWAIT;
2779
2780 if (ctx->flags & IORING_SETUP_IOPOLL) {
2781 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2782 !kiocb->ki_filp->f_op->iopoll)
2783 return -EOPNOTSUPP;
2784
2785 kiocb->ki_flags |= IOCB_HIPRI;
2786 kiocb->ki_complete = io_complete_rw_iopoll;
2787 req->iopoll_completed = 0;
2788 } else {
2789 if (kiocb->ki_flags & IOCB_HIPRI)
2790 return -EINVAL;
2791 kiocb->ki_complete = io_complete_rw;
2792 }
2793
2794 req->rw.addr = READ_ONCE(sqe->addr);
2795 req->rw.len = READ_ONCE(sqe->len);
2796 req->buf_index = READ_ONCE(sqe->buf_index);
2797 return 0;
2798 }
2799
2800 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2801 {
2802 switch (ret) {
2803 case -EIOCBQUEUED:
2804 break;
2805 case -ERESTARTSYS:
2806 case -ERESTARTNOINTR:
2807 case -ERESTARTNOHAND:
2808 case -ERESTART_RESTARTBLOCK:
2809 /*
2810 * We can't just restart the syscall, since previously
2811 * submitted sqes may already be in progress. Just fail this
2812 * IO with EINTR.
2813 */
2814 ret = -EINTR;
2815 fallthrough;
2816 default:
2817 kiocb->ki_complete(kiocb, ret, 0);
2818 }
2819 }
2820
2821 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2822 struct io_comp_state *cs)
2823 {
2824 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2825 struct io_async_rw *io = req->async_data;
2826
2827 /* add previously done IO, if any */
2828 if (io && io->bytes_done > 0) {
2829 if (ret < 0)
2830 ret = io->bytes_done;
2831 else
2832 ret += io->bytes_done;
2833 }
2834
2835 if (req->flags & REQ_F_CUR_POS)
2836 req->file->f_pos = kiocb->ki_pos;
2837 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2838 __io_complete_rw(req, ret, 0, cs);
2839 else
2840 io_rw_done(kiocb, ret);
2841 }
2842
2843 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2844 struct iov_iter *iter)
2845 {
2846 struct io_ring_ctx *ctx = req->ctx;
2847 size_t len = req->rw.len;
2848 struct io_mapped_ubuf *imu;
2849 u16 index, buf_index = req->buf_index;
2850 size_t offset;
2851 u64 buf_addr;
2852
2853 if (unlikely(buf_index >= ctx->nr_user_bufs))
2854 return -EFAULT;
2855 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2856 imu = &ctx->user_bufs[index];
2857 buf_addr = req->rw.addr;
2858
2859 /* overflow */
2860 if (buf_addr + len < buf_addr)
2861 return -EFAULT;
2862 /* not inside the mapped region */
2863 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2864 return -EFAULT;
2865
2866 /*
2867 * May not be a start of buffer, set size appropriately
2868 * and advance us to the beginning.
2869 */
2870 offset = buf_addr - imu->ubuf;
2871 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2872
2873 if (offset) {
2874 /*
2875 * Don't use iov_iter_advance() here, as it's really slow for
2876 * using the latter parts of a big fixed buffer - it iterates
2877 * over each segment manually. We can cheat a bit here, because
2878 * we know that:
2879 *
2880 * 1) it's a BVEC iter, we set it up
2881 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2882 * first and last bvec
2883 *
2884 * So just find our index, and adjust the iterator afterwards.
2885 * If the offset is within the first bvec (or the whole first
2886 * bvec, just use iov_iter_advance(). This makes it easier
2887 * since we can just skip the first segment, which may not
2888 * be PAGE_SIZE aligned.
2889 */
2890 const struct bio_vec *bvec = imu->bvec;
2891
2892 if (offset <= bvec->bv_len) {
2893 iov_iter_advance(iter, offset);
2894 } else {
2895 unsigned long seg_skip;
2896
2897 /* skip first vec */
2898 offset -= bvec->bv_len;
2899 seg_skip = 1 + (offset >> PAGE_SHIFT);
2900
2901 iter->bvec = bvec + seg_skip;
2902 iter->nr_segs -= seg_skip;
2903 iter->count -= bvec->bv_len + offset;
2904 iter->iov_offset = offset & ~PAGE_MASK;
2905 }
2906 }
2907
2908 return len;
2909 }
2910
2911 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2912 {
2913 if (needs_lock)
2914 mutex_unlock(&ctx->uring_lock);
2915 }
2916
2917 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2918 {
2919 /*
2920 * "Normal" inline submissions always hold the uring_lock, since we
2921 * grab it from the system call. Same is true for the SQPOLL offload.
2922 * The only exception is when we've detached the request and issue it
2923 * from an async worker thread, grab the lock for that case.
2924 */
2925 if (needs_lock)
2926 mutex_lock(&ctx->uring_lock);
2927 }
2928
2929 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2930 int bgid, struct io_buffer *kbuf,
2931 bool needs_lock)
2932 {
2933 struct io_buffer *head;
2934
2935 if (req->flags & REQ_F_BUFFER_SELECTED)
2936 return kbuf;
2937
2938 io_ring_submit_lock(req->ctx, needs_lock);
2939
2940 lockdep_assert_held(&req->ctx->uring_lock);
2941
2942 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2943 if (head) {
2944 if (!list_empty(&head->list)) {
2945 kbuf = list_last_entry(&head->list, struct io_buffer,
2946 list);
2947 list_del(&kbuf->list);
2948 } else {
2949 kbuf = head;
2950 idr_remove(&req->ctx->io_buffer_idr, bgid);
2951 }
2952 if (*len > kbuf->len)
2953 *len = kbuf->len;
2954 } else {
2955 kbuf = ERR_PTR(-ENOBUFS);
2956 }
2957
2958 io_ring_submit_unlock(req->ctx, needs_lock);
2959
2960 return kbuf;
2961 }
2962
2963 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2964 bool needs_lock)
2965 {
2966 struct io_buffer *kbuf;
2967 u16 bgid;
2968
2969 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2970 bgid = req->buf_index;
2971 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2972 if (IS_ERR(kbuf))
2973 return kbuf;
2974 req->rw.addr = (u64) (unsigned long) kbuf;
2975 req->flags |= REQ_F_BUFFER_SELECTED;
2976 return u64_to_user_ptr(kbuf->addr);
2977 }
2978
2979 #ifdef CONFIG_COMPAT
2980 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2981 bool needs_lock)
2982 {
2983 struct compat_iovec __user *uiov;
2984 compat_ssize_t clen;
2985 void __user *buf;
2986 ssize_t len;
2987
2988 uiov = u64_to_user_ptr(req->rw.addr);
2989 if (!access_ok(uiov, sizeof(*uiov)))
2990 return -EFAULT;
2991 if (__get_user(clen, &uiov->iov_len))
2992 return -EFAULT;
2993 if (clen < 0)
2994 return -EINVAL;
2995
2996 len = clen;
2997 buf = io_rw_buffer_select(req, &len, needs_lock);
2998 if (IS_ERR(buf))
2999 return PTR_ERR(buf);
3000 iov[0].iov_base = buf;
3001 iov[0].iov_len = (compat_size_t) len;
3002 return 0;
3003 }
3004 #endif
3005
3006 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3007 bool needs_lock)
3008 {
3009 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3010 void __user *buf;
3011 ssize_t len;
3012
3013 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3014 return -EFAULT;
3015
3016 len = iov[0].iov_len;
3017 if (len < 0)
3018 return -EINVAL;
3019 buf = io_rw_buffer_select(req, &len, needs_lock);
3020 if (IS_ERR(buf))
3021 return PTR_ERR(buf);
3022 iov[0].iov_base = buf;
3023 iov[0].iov_len = len;
3024 return 0;
3025 }
3026
3027 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3028 bool needs_lock)
3029 {
3030 if (req->flags & REQ_F_BUFFER_SELECTED) {
3031 struct io_buffer *kbuf;
3032
3033 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3034 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3035 iov[0].iov_len = kbuf->len;
3036 return 0;
3037 }
3038 if (!req->rw.len)
3039 return 0;
3040 else if (req->rw.len > 1)
3041 return -EINVAL;
3042
3043 #ifdef CONFIG_COMPAT
3044 if (req->ctx->compat)
3045 return io_compat_import(req, iov, needs_lock);
3046 #endif
3047
3048 return __io_iov_buffer_select(req, iov, needs_lock);
3049 }
3050
3051 static ssize_t __io_import_iovec(int rw, struct io_kiocb *req,
3052 struct iovec **iovec, struct iov_iter *iter,
3053 bool needs_lock)
3054 {
3055 void __user *buf = u64_to_user_ptr(req->rw.addr);
3056 size_t sqe_len = req->rw.len;
3057 ssize_t ret;
3058 u8 opcode;
3059
3060 opcode = req->opcode;
3061 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3062 *iovec = NULL;
3063 return io_import_fixed(req, rw, iter);
3064 }
3065
3066 /* buffer index only valid with fixed read/write, or buffer select */
3067 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3068 return -EINVAL;
3069
3070 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3071 if (req->flags & REQ_F_BUFFER_SELECT) {
3072 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3073 if (IS_ERR(buf))
3074 return PTR_ERR(buf);
3075 req->rw.len = sqe_len;
3076 }
3077
3078 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3079 *iovec = NULL;
3080 return ret < 0 ? ret : sqe_len;
3081 }
3082
3083 if (req->flags & REQ_F_BUFFER_SELECT) {
3084 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3085 if (!ret) {
3086 ret = (*iovec)->iov_len;
3087 iov_iter_init(iter, rw, *iovec, 1, ret);
3088 }
3089 *iovec = NULL;
3090 return ret;
3091 }
3092
3093 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3094 req->ctx->compat);
3095 }
3096
3097 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3098 struct iovec **iovec, struct iov_iter *iter,
3099 bool needs_lock)
3100 {
3101 struct io_async_rw *iorw = req->async_data;
3102
3103 if (!iorw)
3104 return __io_import_iovec(rw, req, iovec, iter, needs_lock);
3105 *iovec = NULL;
3106 return iov_iter_count(&iorw->iter);
3107 }
3108
3109 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3110 {
3111 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3112 }
3113
3114 /*
3115 * For files that don't have ->read_iter() and ->write_iter(), handle them
3116 * by looping over ->read() or ->write() manually.
3117 */
3118 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
3119 struct iov_iter *iter)
3120 {
3121 ssize_t ret = 0;
3122
3123 /*
3124 * Don't support polled IO through this interface, and we can't
3125 * support non-blocking either. For the latter, this just causes
3126 * the kiocb to be handled from an async context.
3127 */
3128 if (kiocb->ki_flags & IOCB_HIPRI)
3129 return -EOPNOTSUPP;
3130 if (kiocb->ki_flags & IOCB_NOWAIT)
3131 return -EAGAIN;
3132
3133 while (iov_iter_count(iter)) {
3134 struct iovec iovec;
3135 ssize_t nr;
3136
3137 if (!iov_iter_is_bvec(iter)) {
3138 iovec = iov_iter_iovec(iter);
3139 } else {
3140 /* fixed buffers import bvec */
3141 iovec.iov_base = kmap(iter->bvec->bv_page)
3142 + iter->iov_offset;
3143 iovec.iov_len = min(iter->count,
3144 iter->bvec->bv_len - iter->iov_offset);
3145 }
3146
3147 if (rw == READ) {
3148 nr = file->f_op->read(file, iovec.iov_base,
3149 iovec.iov_len, io_kiocb_ppos(kiocb));
3150 } else {
3151 nr = file->f_op->write(file, iovec.iov_base,
3152 iovec.iov_len, io_kiocb_ppos(kiocb));
3153 }
3154
3155 if (iov_iter_is_bvec(iter))
3156 kunmap(iter->bvec->bv_page);
3157
3158 if (nr < 0) {
3159 if (!ret)
3160 ret = nr;
3161 break;
3162 }
3163 ret += nr;
3164 if (nr != iovec.iov_len)
3165 break;
3166 iov_iter_advance(iter, nr);
3167 }
3168
3169 return ret;
3170 }
3171
3172 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3173 const struct iovec *fast_iov, struct iov_iter *iter)
3174 {
3175 struct io_async_rw *rw = req->async_data;
3176
3177 memcpy(&rw->iter, iter, sizeof(*iter));
3178 rw->free_iovec = iovec;
3179 rw->bytes_done = 0;
3180 /* can only be fixed buffers, no need to do anything */
3181 if (iter->type == ITER_BVEC)
3182 return;
3183 if (!iovec) {
3184 unsigned iov_off = 0;
3185
3186 rw->iter.iov = rw->fast_iov;
3187 if (iter->iov != fast_iov) {
3188 iov_off = iter->iov - fast_iov;
3189 rw->iter.iov += iov_off;
3190 }
3191 if (rw->fast_iov != fast_iov)
3192 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3193 sizeof(struct iovec) * iter->nr_segs);
3194 } else {
3195 req->flags |= REQ_F_NEED_CLEANUP;
3196 }
3197 }
3198
3199 static inline int __io_alloc_async_data(struct io_kiocb *req)
3200 {
3201 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3202 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3203 return req->async_data == NULL;
3204 }
3205
3206 static int io_alloc_async_data(struct io_kiocb *req)
3207 {
3208 if (!io_op_defs[req->opcode].needs_async_data)
3209 return 0;
3210
3211 return __io_alloc_async_data(req);
3212 }
3213
3214 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3215 const struct iovec *fast_iov,
3216 struct iov_iter *iter, bool force)
3217 {
3218 if (!force && !io_op_defs[req->opcode].needs_async_data)
3219 return 0;
3220 if (!req->async_data) {
3221 if (__io_alloc_async_data(req))
3222 return -ENOMEM;
3223
3224 io_req_map_rw(req, iovec, fast_iov, iter);
3225 }
3226 return 0;
3227 }
3228
3229 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3230 {
3231 struct io_async_rw *iorw = req->async_data;
3232 struct iovec *iov = iorw->fast_iov;
3233 ssize_t ret;
3234
3235 ret = __io_import_iovec(rw, req, &iov, &iorw->iter, false);
3236 if (unlikely(ret < 0))
3237 return ret;
3238
3239 iorw->bytes_done = 0;
3240 iorw->free_iovec = iov;
3241 if (iov)
3242 req->flags |= REQ_F_NEED_CLEANUP;
3243 return 0;
3244 }
3245
3246 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3247 {
3248 ssize_t ret;
3249
3250 ret = io_prep_rw(req, sqe);
3251 if (ret)
3252 return ret;
3253
3254 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3255 return -EBADF;
3256
3257 /* either don't need iovec imported or already have it */
3258 if (!req->async_data)
3259 return 0;
3260 return io_rw_prep_async(req, READ);
3261 }
3262
3263 /*
3264 * This is our waitqueue callback handler, registered through lock_page_async()
3265 * when we initially tried to do the IO with the iocb armed our waitqueue.
3266 * This gets called when the page is unlocked, and we generally expect that to
3267 * happen when the page IO is completed and the page is now uptodate. This will
3268 * queue a task_work based retry of the operation, attempting to copy the data
3269 * again. If the latter fails because the page was NOT uptodate, then we will
3270 * do a thread based blocking retry of the operation. That's the unexpected
3271 * slow path.
3272 */
3273 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3274 int sync, void *arg)
3275 {
3276 struct wait_page_queue *wpq;
3277 struct io_kiocb *req = wait->private;
3278 struct wait_page_key *key = arg;
3279 int ret;
3280
3281 wpq = container_of(wait, struct wait_page_queue, wait);
3282
3283 if (!wake_page_match(wpq, key))
3284 return 0;
3285
3286 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3287 list_del_init(&wait->entry);
3288
3289 init_task_work(&req->task_work, io_req_task_submit);
3290 percpu_ref_get(&req->ctx->refs);
3291
3292 /* submit ref gets dropped, acquire a new one */
3293 refcount_inc(&req->refs);
3294 ret = io_req_task_work_add(req, true);
3295 if (unlikely(ret)) {
3296 struct task_struct *tsk;
3297
3298 /* queue just for cancelation */
3299 init_task_work(&req->task_work, io_req_task_cancel);
3300 tsk = io_wq_get_task(req->ctx->io_wq);
3301 task_work_add(tsk, &req->task_work, 0);
3302 wake_up_process(tsk);
3303 }
3304 return 1;
3305 }
3306
3307 /*
3308 * This controls whether a given IO request should be armed for async page
3309 * based retry. If we return false here, the request is handed to the async
3310 * worker threads for retry. If we're doing buffered reads on a regular file,
3311 * we prepare a private wait_page_queue entry and retry the operation. This
3312 * will either succeed because the page is now uptodate and unlocked, or it
3313 * will register a callback when the page is unlocked at IO completion. Through
3314 * that callback, io_uring uses task_work to setup a retry of the operation.
3315 * That retry will attempt the buffered read again. The retry will generally
3316 * succeed, or in rare cases where it fails, we then fall back to using the
3317 * async worker threads for a blocking retry.
3318 */
3319 static bool io_rw_should_retry(struct io_kiocb *req)
3320 {
3321 struct io_async_rw *rw = req->async_data;
3322 struct wait_page_queue *wait = &rw->wpq;
3323 struct kiocb *kiocb = &req->rw.kiocb;
3324
3325 /* never retry for NOWAIT, we just complete with -EAGAIN */
3326 if (req->flags & REQ_F_NOWAIT)
3327 return false;
3328
3329 /* Only for buffered IO */
3330 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3331 return false;
3332
3333 /*
3334 * just use poll if we can, and don't attempt if the fs doesn't
3335 * support callback based unlocks
3336 */
3337 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3338 return false;
3339
3340 wait->wait.func = io_async_buf_func;
3341 wait->wait.private = req;
3342 wait->wait.flags = 0;
3343 INIT_LIST_HEAD(&wait->wait.entry);
3344 kiocb->ki_flags |= IOCB_WAITQ;
3345 kiocb->ki_flags &= ~IOCB_NOWAIT;
3346 kiocb->ki_waitq = wait;
3347 return true;
3348 }
3349
3350 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3351 {
3352 if (req->file->f_op->read_iter)
3353 return call_read_iter(req->file, &req->rw.kiocb, iter);
3354 else if (req->file->f_op->read)
3355 return loop_rw_iter(READ, req->file, &req->rw.kiocb, iter);
3356 else
3357 return -EINVAL;
3358 }
3359
3360 static int io_read(struct io_kiocb *req, bool force_nonblock,
3361 struct io_comp_state *cs)
3362 {
3363 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3364 struct kiocb *kiocb = &req->rw.kiocb;
3365 struct iov_iter __iter, *iter = &__iter;
3366 struct io_async_rw *rw = req->async_data;
3367 ssize_t io_size, ret, ret2;
3368 size_t iov_count;
3369 bool no_async;
3370
3371 if (rw)
3372 iter = &rw->iter;
3373
3374 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3375 if (ret < 0)
3376 return ret;
3377 iov_count = iov_iter_count(iter);
3378 io_size = ret;
3379 req->result = io_size;
3380 ret = 0;
3381
3382 /* Ensure we clear previously set non-block flag */
3383 if (!force_nonblock)
3384 kiocb->ki_flags &= ~IOCB_NOWAIT;
3385 else
3386 kiocb->ki_flags |= IOCB_NOWAIT;
3387
3388
3389 /* If the file doesn't support async, just async punt */
3390 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3391 if (no_async)
3392 goto copy_iov;
3393
3394 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), iov_count);
3395 if (unlikely(ret))
3396 goto out_free;
3397
3398 ret = io_iter_do_read(req, iter);
3399
3400 if (!ret) {
3401 goto done;
3402 } else if (ret == -EIOCBQUEUED) {
3403 ret = 0;
3404 goto out_free;
3405 } else if (ret == -EAGAIN) {
3406 /* IOPOLL retry should happen for io-wq threads */
3407 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3408 goto done;
3409 /* no retry on NONBLOCK marked file */
3410 if (req->file->f_flags & O_NONBLOCK)
3411 goto done;
3412 /* some cases will consume bytes even on error returns */
3413 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3414 ret = 0;
3415 goto copy_iov;
3416 } else if (ret < 0) {
3417 /* make sure -ERESTARTSYS -> -EINTR is done */
3418 goto done;
3419 }
3420
3421 /* read it all, or we did blocking attempt. no retry. */
3422 if (!iov_iter_count(iter) || !force_nonblock ||
3423 (req->file->f_flags & O_NONBLOCK))
3424 goto done;
3425
3426 io_size -= ret;
3427 copy_iov:
3428 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3429 if (ret2) {
3430 ret = ret2;
3431 goto out_free;
3432 }
3433 if (no_async)
3434 return -EAGAIN;
3435 rw = req->async_data;
3436 /* it's copied and will be cleaned with ->io */
3437 iovec = NULL;
3438 /* now use our persistent iterator, if we aren't already */
3439 iter = &rw->iter;
3440 retry:
3441 rw->bytes_done += ret;
3442 /* if we can retry, do so with the callbacks armed */
3443 if (!io_rw_should_retry(req)) {
3444 kiocb->ki_flags &= ~IOCB_WAITQ;
3445 return -EAGAIN;
3446 }
3447
3448 /*
3449 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3450 * get -EIOCBQUEUED, then we'll get a notification when the desired
3451 * page gets unlocked. We can also get a partial read here, and if we
3452 * do, then just retry at the new offset.
3453 */
3454 ret = io_iter_do_read(req, iter);
3455 if (ret == -EIOCBQUEUED) {
3456 ret = 0;
3457 goto out_free;
3458 } else if (ret > 0 && ret < io_size) {
3459 /* we got some bytes, but not all. retry. */
3460 goto retry;
3461 }
3462 done:
3463 kiocb_done(kiocb, ret, cs);
3464 ret = 0;
3465 out_free:
3466 /* it's reportedly faster than delegating the null check to kfree() */
3467 if (iovec)
3468 kfree(iovec);
3469 return ret;
3470 }
3471
3472 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3473 {
3474 ssize_t ret;
3475
3476 ret = io_prep_rw(req, sqe);
3477 if (ret)
3478 return ret;
3479
3480 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3481 return -EBADF;
3482
3483 /* either don't need iovec imported or already have it */
3484 if (!req->async_data)
3485 return 0;
3486 return io_rw_prep_async(req, WRITE);
3487 }
3488
3489 static int io_write(struct io_kiocb *req, bool force_nonblock,
3490 struct io_comp_state *cs)
3491 {
3492 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3493 struct kiocb *kiocb = &req->rw.kiocb;
3494 struct iov_iter __iter, *iter = &__iter;
3495 struct io_async_rw *rw = req->async_data;
3496 size_t iov_count;
3497 ssize_t ret, ret2, io_size;
3498
3499 if (rw)
3500 iter = &rw->iter;
3501
3502 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3503 if (ret < 0)
3504 return ret;
3505 iov_count = iov_iter_count(iter);
3506 io_size = ret;
3507 req->result = io_size;
3508
3509 /* Ensure we clear previously set non-block flag */
3510 if (!force_nonblock)
3511 kiocb->ki_flags &= ~IOCB_NOWAIT;
3512 else
3513 kiocb->ki_flags |= IOCB_NOWAIT;
3514
3515 /* If the file doesn't support async, just async punt */
3516 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3517 goto copy_iov;
3518
3519 /* file path doesn't support NOWAIT for non-direct_IO */
3520 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3521 (req->flags & REQ_F_ISREG))
3522 goto copy_iov;
3523
3524 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), iov_count);
3525 if (unlikely(ret))
3526 goto out_free;
3527
3528 /*
3529 * Open-code file_start_write here to grab freeze protection,
3530 * which will be released by another thread in
3531 * io_complete_rw(). Fool lockdep by telling it the lock got
3532 * released so that it doesn't complain about the held lock when
3533 * we return to userspace.
3534 */
3535 if (req->flags & REQ_F_ISREG) {
3536 __sb_start_write(file_inode(req->file)->i_sb,
3537 SB_FREEZE_WRITE, true);
3538 __sb_writers_release(file_inode(req->file)->i_sb,
3539 SB_FREEZE_WRITE);
3540 }
3541 kiocb->ki_flags |= IOCB_WRITE;
3542
3543 if (req->file->f_op->write_iter)
3544 ret2 = call_write_iter(req->file, kiocb, iter);
3545 else if (req->file->f_op->write)
3546 ret2 = loop_rw_iter(WRITE, req->file, kiocb, iter);
3547 else
3548 ret2 = -EINVAL;
3549
3550 /*
3551 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3552 * retry them without IOCB_NOWAIT.
3553 */
3554 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3555 ret2 = -EAGAIN;
3556 /* no retry on NONBLOCK marked file */
3557 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3558 goto done;
3559 if (!force_nonblock || ret2 != -EAGAIN) {
3560 /* IOPOLL retry should happen for io-wq threads */
3561 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3562 goto copy_iov;
3563 done:
3564 kiocb_done(kiocb, ret2, cs);
3565 } else {
3566 copy_iov:
3567 /* some cases will consume bytes even on error returns */
3568 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3569 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3570 if (!ret)
3571 return -EAGAIN;
3572 }
3573 out_free:
3574 /* it's reportedly faster than delegating the null check to kfree() */
3575 if (iovec)
3576 kfree(iovec);
3577 return ret;
3578 }
3579
3580 static int __io_splice_prep(struct io_kiocb *req,
3581 const struct io_uring_sqe *sqe)
3582 {
3583 struct io_splice* sp = &req->splice;
3584 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3585
3586 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3587 return -EINVAL;
3588
3589 sp->file_in = NULL;
3590 sp->len = READ_ONCE(sqe->len);
3591 sp->flags = READ_ONCE(sqe->splice_flags);
3592
3593 if (unlikely(sp->flags & ~valid_flags))
3594 return -EINVAL;
3595
3596 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3597 (sp->flags & SPLICE_F_FD_IN_FIXED));
3598 if (!sp->file_in)
3599 return -EBADF;
3600 req->flags |= REQ_F_NEED_CLEANUP;
3601
3602 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3603 /*
3604 * Splice operation will be punted aync, and here need to
3605 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3606 */
3607 io_req_init_async(req);
3608 req->work.flags |= IO_WQ_WORK_UNBOUND;
3609 }
3610
3611 return 0;
3612 }
3613
3614 static int io_tee_prep(struct io_kiocb *req,
3615 const struct io_uring_sqe *sqe)
3616 {
3617 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3618 return -EINVAL;
3619 return __io_splice_prep(req, sqe);
3620 }
3621
3622 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3623 {
3624 struct io_splice *sp = &req->splice;
3625 struct file *in = sp->file_in;
3626 struct file *out = sp->file_out;
3627 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3628 long ret = 0;
3629
3630 if (force_nonblock)
3631 return -EAGAIN;
3632 if (sp->len)
3633 ret = do_tee(in, out, sp->len, flags);
3634
3635 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3636 req->flags &= ~REQ_F_NEED_CLEANUP;
3637
3638 if (ret != sp->len)
3639 req_set_fail_links(req);
3640 io_req_complete(req, ret);
3641 return 0;
3642 }
3643
3644 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3645 {
3646 struct io_splice* sp = &req->splice;
3647
3648 sp->off_in = READ_ONCE(sqe->splice_off_in);
3649 sp->off_out = READ_ONCE(sqe->off);
3650 return __io_splice_prep(req, sqe);
3651 }
3652
3653 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3654 {
3655 struct io_splice *sp = &req->splice;
3656 struct file *in = sp->file_in;
3657 struct file *out = sp->file_out;
3658 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3659 loff_t *poff_in, *poff_out;
3660 long ret = 0;
3661
3662 if (force_nonblock)
3663 return -EAGAIN;
3664
3665 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3666 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3667
3668 if (sp->len)
3669 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3670
3671 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3672 req->flags &= ~REQ_F_NEED_CLEANUP;
3673
3674 if (ret != sp->len)
3675 req_set_fail_links(req);
3676 io_req_complete(req, ret);
3677 return 0;
3678 }
3679
3680 /*
3681 * IORING_OP_NOP just posts a completion event, nothing else.
3682 */
3683 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3684 {
3685 struct io_ring_ctx *ctx = req->ctx;
3686
3687 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3688 return -EINVAL;
3689
3690 __io_req_complete(req, 0, 0, cs);
3691 return 0;
3692 }
3693
3694 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3695 {
3696 struct io_ring_ctx *ctx = req->ctx;
3697
3698 if (!req->file)
3699 return -EBADF;
3700
3701 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3702 return -EINVAL;
3703 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3704 return -EINVAL;
3705
3706 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3707 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3708 return -EINVAL;
3709
3710 req->sync.off = READ_ONCE(sqe->off);
3711 req->sync.len = READ_ONCE(sqe->len);
3712 return 0;
3713 }
3714
3715 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3716 {
3717 loff_t end = req->sync.off + req->sync.len;
3718 int ret;
3719
3720 /* fsync always requires a blocking context */
3721 if (force_nonblock)
3722 return -EAGAIN;
3723
3724 ret = vfs_fsync_range(req->file, req->sync.off,
3725 end > 0 ? end : LLONG_MAX,
3726 req->sync.flags & IORING_FSYNC_DATASYNC);
3727 if (ret < 0)
3728 req_set_fail_links(req);
3729 io_req_complete(req, ret);
3730 return 0;
3731 }
3732
3733 static int io_fallocate_prep(struct io_kiocb *req,
3734 const struct io_uring_sqe *sqe)
3735 {
3736 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3737 return -EINVAL;
3738 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3739 return -EINVAL;
3740
3741 req->sync.off = READ_ONCE(sqe->off);
3742 req->sync.len = READ_ONCE(sqe->addr);
3743 req->sync.mode = READ_ONCE(sqe->len);
3744 return 0;
3745 }
3746
3747 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3748 {
3749 int ret;
3750
3751 /* fallocate always requiring blocking context */
3752 if (force_nonblock)
3753 return -EAGAIN;
3754 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3755 req->sync.len);
3756 if (ret < 0)
3757 req_set_fail_links(req);
3758 io_req_complete(req, ret);
3759 return 0;
3760 }
3761
3762 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3763 {
3764 const char __user *fname;
3765 int ret;
3766
3767 if (unlikely(sqe->ioprio || sqe->buf_index))
3768 return -EINVAL;
3769 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3770 return -EBADF;
3771
3772 /* open.how should be already initialised */
3773 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3774 req->open.how.flags |= O_LARGEFILE;
3775
3776 req->open.dfd = READ_ONCE(sqe->fd);
3777 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3778 req->open.filename = getname(fname);
3779 if (IS_ERR(req->open.filename)) {
3780 ret = PTR_ERR(req->open.filename);
3781 req->open.filename = NULL;
3782 return ret;
3783 }
3784 req->open.nofile = rlimit(RLIMIT_NOFILE);
3785 req->flags |= REQ_F_NEED_CLEANUP;
3786 return 0;
3787 }
3788
3789 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3790 {
3791 u64 flags, mode;
3792
3793 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3794 return -EINVAL;
3795 mode = READ_ONCE(sqe->len);
3796 flags = READ_ONCE(sqe->open_flags);
3797 req->open.how = build_open_how(flags, mode);
3798 return __io_openat_prep(req, sqe);
3799 }
3800
3801 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3802 {
3803 struct open_how __user *how;
3804 size_t len;
3805 int ret;
3806
3807 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3808 return -EINVAL;
3809 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3810 len = READ_ONCE(sqe->len);
3811 if (len < OPEN_HOW_SIZE_VER0)
3812 return -EINVAL;
3813
3814 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3815 len);
3816 if (ret)
3817 return ret;
3818
3819 return __io_openat_prep(req, sqe);
3820 }
3821
3822 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3823 {
3824 struct open_flags op;
3825 struct file *file;
3826 int ret;
3827
3828 if (force_nonblock)
3829 return -EAGAIN;
3830
3831 ret = build_open_flags(&req->open.how, &op);
3832 if (ret)
3833 goto err;
3834
3835 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3836 if (ret < 0)
3837 goto err;
3838
3839 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3840 if (IS_ERR(file)) {
3841 put_unused_fd(ret);
3842 ret = PTR_ERR(file);
3843 } else {
3844 fsnotify_open(file);
3845 fd_install(ret, file);
3846 }
3847 err:
3848 putname(req->open.filename);
3849 req->flags &= ~REQ_F_NEED_CLEANUP;
3850 if (ret < 0)
3851 req_set_fail_links(req);
3852 io_req_complete(req, ret);
3853 return 0;
3854 }
3855
3856 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3857 {
3858 return io_openat2(req, force_nonblock);
3859 }
3860
3861 static int io_remove_buffers_prep(struct io_kiocb *req,
3862 const struct io_uring_sqe *sqe)
3863 {
3864 struct io_provide_buf *p = &req->pbuf;
3865 u64 tmp;
3866
3867 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3868 return -EINVAL;
3869
3870 tmp = READ_ONCE(sqe->fd);
3871 if (!tmp || tmp > USHRT_MAX)
3872 return -EINVAL;
3873
3874 memset(p, 0, sizeof(*p));
3875 p->nbufs = tmp;
3876 p->bgid = READ_ONCE(sqe->buf_group);
3877 return 0;
3878 }
3879
3880 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3881 int bgid, unsigned nbufs)
3882 {
3883 unsigned i = 0;
3884
3885 /* shouldn't happen */
3886 if (!nbufs)
3887 return 0;
3888
3889 /* the head kbuf is the list itself */
3890 while (!list_empty(&buf->list)) {
3891 struct io_buffer *nxt;
3892
3893 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3894 list_del(&nxt->list);
3895 kfree(nxt);
3896 if (++i == nbufs)
3897 return i;
3898 }
3899 i++;
3900 kfree(buf);
3901 idr_remove(&ctx->io_buffer_idr, bgid);
3902
3903 return i;
3904 }
3905
3906 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
3907 struct io_comp_state *cs)
3908 {
3909 struct io_provide_buf *p = &req->pbuf;
3910 struct io_ring_ctx *ctx = req->ctx;
3911 struct io_buffer *head;
3912 int ret = 0;
3913
3914 io_ring_submit_lock(ctx, !force_nonblock);
3915
3916 lockdep_assert_held(&ctx->uring_lock);
3917
3918 ret = -ENOENT;
3919 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3920 if (head)
3921 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3922
3923 io_ring_submit_lock(ctx, !force_nonblock);
3924 if (ret < 0)
3925 req_set_fail_links(req);
3926 __io_req_complete(req, ret, 0, cs);
3927 return 0;
3928 }
3929
3930 static int io_provide_buffers_prep(struct io_kiocb *req,
3931 const struct io_uring_sqe *sqe)
3932 {
3933 struct io_provide_buf *p = &req->pbuf;
3934 u64 tmp;
3935
3936 if (sqe->ioprio || sqe->rw_flags)
3937 return -EINVAL;
3938
3939 tmp = READ_ONCE(sqe->fd);
3940 if (!tmp || tmp > USHRT_MAX)
3941 return -E2BIG;
3942 p->nbufs = tmp;
3943 p->addr = READ_ONCE(sqe->addr);
3944 p->len = READ_ONCE(sqe->len);
3945
3946 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3947 return -EFAULT;
3948
3949 p->bgid = READ_ONCE(sqe->buf_group);
3950 tmp = READ_ONCE(sqe->off);
3951 if (tmp > USHRT_MAX)
3952 return -E2BIG;
3953 p->bid = tmp;
3954 return 0;
3955 }
3956
3957 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3958 {
3959 struct io_buffer *buf;
3960 u64 addr = pbuf->addr;
3961 int i, bid = pbuf->bid;
3962
3963 for (i = 0; i < pbuf->nbufs; i++) {
3964 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3965 if (!buf)
3966 break;
3967
3968 buf->addr = addr;
3969 buf->len = pbuf->len;
3970 buf->bid = bid;
3971 addr += pbuf->len;
3972 bid++;
3973 if (!*head) {
3974 INIT_LIST_HEAD(&buf->list);
3975 *head = buf;
3976 } else {
3977 list_add_tail(&buf->list, &(*head)->list);
3978 }
3979 }
3980
3981 return i ? i : -ENOMEM;
3982 }
3983
3984 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
3985 struct io_comp_state *cs)
3986 {
3987 struct io_provide_buf *p = &req->pbuf;
3988 struct io_ring_ctx *ctx = req->ctx;
3989 struct io_buffer *head, *list;
3990 int ret = 0;
3991
3992 io_ring_submit_lock(ctx, !force_nonblock);
3993
3994 lockdep_assert_held(&ctx->uring_lock);
3995
3996 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3997
3998 ret = io_add_buffers(p, &head);
3999 if (ret < 0)
4000 goto out;
4001
4002 if (!list) {
4003 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4004 GFP_KERNEL);
4005 if (ret < 0) {
4006 __io_remove_buffers(ctx, head, p->bgid, -1U);
4007 goto out;
4008 }
4009 }
4010 out:
4011 io_ring_submit_unlock(ctx, !force_nonblock);
4012 if (ret < 0)
4013 req_set_fail_links(req);
4014 __io_req_complete(req, ret, 0, cs);
4015 return 0;
4016 }
4017
4018 static int io_epoll_ctl_prep(struct io_kiocb *req,
4019 const struct io_uring_sqe *sqe)
4020 {
4021 #if defined(CONFIG_EPOLL)
4022 if (sqe->ioprio || sqe->buf_index)
4023 return -EINVAL;
4024 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4025 return -EINVAL;
4026
4027 req->epoll.epfd = READ_ONCE(sqe->fd);
4028 req->epoll.op = READ_ONCE(sqe->len);
4029 req->epoll.fd = READ_ONCE(sqe->off);
4030
4031 if (ep_op_has_event(req->epoll.op)) {
4032 struct epoll_event __user *ev;
4033
4034 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4035 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4036 return -EFAULT;
4037 }
4038
4039 return 0;
4040 #else
4041 return -EOPNOTSUPP;
4042 #endif
4043 }
4044
4045 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4046 struct io_comp_state *cs)
4047 {
4048 #if defined(CONFIG_EPOLL)
4049 struct io_epoll *ie = &req->epoll;
4050 int ret;
4051
4052 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4053 if (force_nonblock && ret == -EAGAIN)
4054 return -EAGAIN;
4055
4056 if (ret < 0)
4057 req_set_fail_links(req);
4058 __io_req_complete(req, ret, 0, cs);
4059 return 0;
4060 #else
4061 return -EOPNOTSUPP;
4062 #endif
4063 }
4064
4065 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4066 {
4067 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4068 if (sqe->ioprio || sqe->buf_index || sqe->off)
4069 return -EINVAL;
4070 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4071 return -EINVAL;
4072
4073 req->madvise.addr = READ_ONCE(sqe->addr);
4074 req->madvise.len = READ_ONCE(sqe->len);
4075 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4076 return 0;
4077 #else
4078 return -EOPNOTSUPP;
4079 #endif
4080 }
4081
4082 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4083 {
4084 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4085 struct io_madvise *ma = &req->madvise;
4086 int ret;
4087
4088 if (force_nonblock)
4089 return -EAGAIN;
4090
4091 ret = do_madvise(ma->addr, ma->len, ma->advice);
4092 if (ret < 0)
4093 req_set_fail_links(req);
4094 io_req_complete(req, ret);
4095 return 0;
4096 #else
4097 return -EOPNOTSUPP;
4098 #endif
4099 }
4100
4101 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4102 {
4103 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4104 return -EINVAL;
4105 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4106 return -EINVAL;
4107
4108 req->fadvise.offset = READ_ONCE(sqe->off);
4109 req->fadvise.len = READ_ONCE(sqe->len);
4110 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4111 return 0;
4112 }
4113
4114 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4115 {
4116 struct io_fadvise *fa = &req->fadvise;
4117 int ret;
4118
4119 if (force_nonblock) {
4120 switch (fa->advice) {
4121 case POSIX_FADV_NORMAL:
4122 case POSIX_FADV_RANDOM:
4123 case POSIX_FADV_SEQUENTIAL:
4124 break;
4125 default:
4126 return -EAGAIN;
4127 }
4128 }
4129
4130 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4131 if (ret < 0)
4132 req_set_fail_links(req);
4133 io_req_complete(req, ret);
4134 return 0;
4135 }
4136
4137 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4138 {
4139 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4140 return -EINVAL;
4141 if (sqe->ioprio || sqe->buf_index)
4142 return -EINVAL;
4143 if (req->flags & REQ_F_FIXED_FILE)
4144 return -EBADF;
4145
4146 req->statx.dfd = READ_ONCE(sqe->fd);
4147 req->statx.mask = READ_ONCE(sqe->len);
4148 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4149 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4150 req->statx.flags = READ_ONCE(sqe->statx_flags);
4151
4152 return 0;
4153 }
4154
4155 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4156 {
4157 struct io_statx *ctx = &req->statx;
4158 int ret;
4159
4160 if (force_nonblock) {
4161 /* only need file table for an actual valid fd */
4162 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4163 req->flags |= REQ_F_NO_FILE_TABLE;
4164 return -EAGAIN;
4165 }
4166
4167 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4168 ctx->buffer);
4169
4170 if (ret < 0)
4171 req_set_fail_links(req);
4172 io_req_complete(req, ret);
4173 return 0;
4174 }
4175
4176 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4177 {
4178 /*
4179 * If we queue this for async, it must not be cancellable. That would
4180 * leave the 'file' in an undeterminate state, and here need to modify
4181 * io_wq_work.flags, so initialize io_wq_work firstly.
4182 */
4183 io_req_init_async(req);
4184 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4185
4186 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4187 return -EINVAL;
4188 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4189 sqe->rw_flags || sqe->buf_index)
4190 return -EINVAL;
4191 if (req->flags & REQ_F_FIXED_FILE)
4192 return -EBADF;
4193
4194 req->close.fd = READ_ONCE(sqe->fd);
4195 if ((req->file && req->file->f_op == &io_uring_fops))
4196 return -EBADF;
4197
4198 req->close.put_file = NULL;
4199 return 0;
4200 }
4201
4202 static int io_close(struct io_kiocb *req, bool force_nonblock,
4203 struct io_comp_state *cs)
4204 {
4205 struct io_close *close = &req->close;
4206 int ret;
4207
4208 /* might be already done during nonblock submission */
4209 if (!close->put_file) {
4210 ret = __close_fd_get_file(close->fd, &close->put_file);
4211 if (ret < 0)
4212 return (ret == -ENOENT) ? -EBADF : ret;
4213 }
4214
4215 /* if the file has a flush method, be safe and punt to async */
4216 if (close->put_file->f_op->flush && force_nonblock) {
4217 /* was never set, but play safe */
4218 req->flags &= ~REQ_F_NOWAIT;
4219 /* avoid grabbing files - we don't need the files */
4220 req->flags |= REQ_F_NO_FILE_TABLE;
4221 return -EAGAIN;
4222 }
4223
4224 /* No ->flush() or already async, safely close from here */
4225 ret = filp_close(close->put_file, req->work.identity->files);
4226 if (ret < 0)
4227 req_set_fail_links(req);
4228 fput(close->put_file);
4229 close->put_file = NULL;
4230 __io_req_complete(req, ret, 0, cs);
4231 return 0;
4232 }
4233
4234 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4235 {
4236 struct io_ring_ctx *ctx = req->ctx;
4237
4238 if (!req->file)
4239 return -EBADF;
4240
4241 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4242 return -EINVAL;
4243 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4244 return -EINVAL;
4245
4246 req->sync.off = READ_ONCE(sqe->off);
4247 req->sync.len = READ_ONCE(sqe->len);
4248 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4249 return 0;
4250 }
4251
4252 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4253 {
4254 int ret;
4255
4256 /* sync_file_range always requires a blocking context */
4257 if (force_nonblock)
4258 return -EAGAIN;
4259
4260 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4261 req->sync.flags);
4262 if (ret < 0)
4263 req_set_fail_links(req);
4264 io_req_complete(req, ret);
4265 return 0;
4266 }
4267
4268 #if defined(CONFIG_NET)
4269 static int io_setup_async_msg(struct io_kiocb *req,
4270 struct io_async_msghdr *kmsg)
4271 {
4272 struct io_async_msghdr *async_msg = req->async_data;
4273
4274 if (async_msg)
4275 return -EAGAIN;
4276 if (io_alloc_async_data(req)) {
4277 if (kmsg->iov != kmsg->fast_iov)
4278 kfree(kmsg->iov);
4279 return -ENOMEM;
4280 }
4281 async_msg = req->async_data;
4282 req->flags |= REQ_F_NEED_CLEANUP;
4283 memcpy(async_msg, kmsg, sizeof(*kmsg));
4284 return -EAGAIN;
4285 }
4286
4287 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4288 struct io_async_msghdr *iomsg)
4289 {
4290 iomsg->iov = iomsg->fast_iov;
4291 iomsg->msg.msg_name = &iomsg->addr;
4292 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4293 req->sr_msg.msg_flags, &iomsg->iov);
4294 }
4295
4296 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4297 {
4298 struct io_async_msghdr *async_msg = req->async_data;
4299 struct io_sr_msg *sr = &req->sr_msg;
4300 int ret;
4301
4302 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4303 return -EINVAL;
4304
4305 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4306 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4307 sr->len = READ_ONCE(sqe->len);
4308
4309 #ifdef CONFIG_COMPAT
4310 if (req->ctx->compat)
4311 sr->msg_flags |= MSG_CMSG_COMPAT;
4312 #endif
4313
4314 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4315 return 0;
4316 ret = io_sendmsg_copy_hdr(req, async_msg);
4317 if (!ret)
4318 req->flags |= REQ_F_NEED_CLEANUP;
4319 return ret;
4320 }
4321
4322 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4323 struct io_comp_state *cs)
4324 {
4325 struct io_async_msghdr iomsg, *kmsg;
4326 struct socket *sock;
4327 unsigned flags;
4328 int ret;
4329
4330 sock = sock_from_file(req->file, &ret);
4331 if (unlikely(!sock))
4332 return ret;
4333
4334 if (req->async_data) {
4335 kmsg = req->async_data;
4336 kmsg->msg.msg_name = &kmsg->addr;
4337 /* if iov is set, it's allocated already */
4338 if (!kmsg->iov)
4339 kmsg->iov = kmsg->fast_iov;
4340 kmsg->msg.msg_iter.iov = kmsg->iov;
4341 } else {
4342 ret = io_sendmsg_copy_hdr(req, &iomsg);
4343 if (ret)
4344 return ret;
4345 kmsg = &iomsg;
4346 }
4347
4348 flags = req->sr_msg.msg_flags;
4349 if (flags & MSG_DONTWAIT)
4350 req->flags |= REQ_F_NOWAIT;
4351 else if (force_nonblock)
4352 flags |= MSG_DONTWAIT;
4353
4354 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4355 if (force_nonblock && ret == -EAGAIN)
4356 return io_setup_async_msg(req, kmsg);
4357 if (ret == -ERESTARTSYS)
4358 ret = -EINTR;
4359
4360 if (kmsg->iov != kmsg->fast_iov)
4361 kfree(kmsg->iov);
4362 req->flags &= ~REQ_F_NEED_CLEANUP;
4363 if (ret < 0)
4364 req_set_fail_links(req);
4365 __io_req_complete(req, ret, 0, cs);
4366 return 0;
4367 }
4368
4369 static int io_send(struct io_kiocb *req, bool force_nonblock,
4370 struct io_comp_state *cs)
4371 {
4372 struct io_sr_msg *sr = &req->sr_msg;
4373 struct msghdr msg;
4374 struct iovec iov;
4375 struct socket *sock;
4376 unsigned flags;
4377 int ret;
4378
4379 sock = sock_from_file(req->file, &ret);
4380 if (unlikely(!sock))
4381 return ret;
4382
4383 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4384 if (unlikely(ret))
4385 return ret;
4386
4387 msg.msg_name = NULL;
4388 msg.msg_control = NULL;
4389 msg.msg_controllen = 0;
4390 msg.msg_namelen = 0;
4391
4392 flags = req->sr_msg.msg_flags;
4393 if (flags & MSG_DONTWAIT)
4394 req->flags |= REQ_F_NOWAIT;
4395 else if (force_nonblock)
4396 flags |= MSG_DONTWAIT;
4397
4398 msg.msg_flags = flags;
4399 ret = sock_sendmsg(sock, &msg);
4400 if (force_nonblock && ret == -EAGAIN)
4401 return -EAGAIN;
4402 if (ret == -ERESTARTSYS)
4403 ret = -EINTR;
4404
4405 if (ret < 0)
4406 req_set_fail_links(req);
4407 __io_req_complete(req, ret, 0, cs);
4408 return 0;
4409 }
4410
4411 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4412 struct io_async_msghdr *iomsg)
4413 {
4414 struct io_sr_msg *sr = &req->sr_msg;
4415 struct iovec __user *uiov;
4416 size_t iov_len;
4417 int ret;
4418
4419 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4420 &iomsg->uaddr, &uiov, &iov_len);
4421 if (ret)
4422 return ret;
4423
4424 if (req->flags & REQ_F_BUFFER_SELECT) {
4425 if (iov_len > 1)
4426 return -EINVAL;
4427 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4428 return -EFAULT;
4429 sr->len = iomsg->iov[0].iov_len;
4430 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4431 sr->len);
4432 iomsg->iov = NULL;
4433 } else {
4434 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4435 &iomsg->iov, &iomsg->msg.msg_iter,
4436 false);
4437 if (ret > 0)
4438 ret = 0;
4439 }
4440
4441 return ret;
4442 }
4443
4444 #ifdef CONFIG_COMPAT
4445 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4446 struct io_async_msghdr *iomsg)
4447 {
4448 struct compat_msghdr __user *msg_compat;
4449 struct io_sr_msg *sr = &req->sr_msg;
4450 struct compat_iovec __user *uiov;
4451 compat_uptr_t ptr;
4452 compat_size_t len;
4453 int ret;
4454
4455 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4456 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4457 &ptr, &len);
4458 if (ret)
4459 return ret;
4460
4461 uiov = compat_ptr(ptr);
4462 if (req->flags & REQ_F_BUFFER_SELECT) {
4463 compat_ssize_t clen;
4464
4465 if (len > 1)
4466 return -EINVAL;
4467 if (!access_ok(uiov, sizeof(*uiov)))
4468 return -EFAULT;
4469 if (__get_user(clen, &uiov->iov_len))
4470 return -EFAULT;
4471 if (clen < 0)
4472 return -EINVAL;
4473 sr->len = iomsg->iov[0].iov_len;
4474 iomsg->iov = NULL;
4475 } else {
4476 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4477 UIO_FASTIOV, &iomsg->iov,
4478 &iomsg->msg.msg_iter, true);
4479 if (ret < 0)
4480 return ret;
4481 }
4482
4483 return 0;
4484 }
4485 #endif
4486
4487 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4488 struct io_async_msghdr *iomsg)
4489 {
4490 iomsg->msg.msg_name = &iomsg->addr;
4491 iomsg->iov = iomsg->fast_iov;
4492
4493 #ifdef CONFIG_COMPAT
4494 if (req->ctx->compat)
4495 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4496 #endif
4497
4498 return __io_recvmsg_copy_hdr(req, iomsg);
4499 }
4500
4501 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4502 bool needs_lock)
4503 {
4504 struct io_sr_msg *sr = &req->sr_msg;
4505 struct io_buffer *kbuf;
4506
4507 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4508 if (IS_ERR(kbuf))
4509 return kbuf;
4510
4511 sr->kbuf = kbuf;
4512 req->flags |= REQ_F_BUFFER_SELECTED;
4513 return kbuf;
4514 }
4515
4516 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4517 {
4518 return io_put_kbuf(req, req->sr_msg.kbuf);
4519 }
4520
4521 static int io_recvmsg_prep(struct io_kiocb *req,
4522 const struct io_uring_sqe *sqe)
4523 {
4524 struct io_async_msghdr *async_msg = req->async_data;
4525 struct io_sr_msg *sr = &req->sr_msg;
4526 int ret;
4527
4528 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4529 return -EINVAL;
4530
4531 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4532 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4533 sr->len = READ_ONCE(sqe->len);
4534 sr->bgid = READ_ONCE(sqe->buf_group);
4535
4536 #ifdef CONFIG_COMPAT
4537 if (req->ctx->compat)
4538 sr->msg_flags |= MSG_CMSG_COMPAT;
4539 #endif
4540
4541 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4542 return 0;
4543 ret = io_recvmsg_copy_hdr(req, async_msg);
4544 if (!ret)
4545 req->flags |= REQ_F_NEED_CLEANUP;
4546 return ret;
4547 }
4548
4549 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4550 struct io_comp_state *cs)
4551 {
4552 struct io_async_msghdr iomsg, *kmsg;
4553 struct socket *sock;
4554 struct io_buffer *kbuf;
4555 unsigned flags;
4556 int ret, cflags = 0;
4557
4558 sock = sock_from_file(req->file, &ret);
4559 if (unlikely(!sock))
4560 return ret;
4561
4562 if (req->async_data) {
4563 kmsg = req->async_data;
4564 kmsg->msg.msg_name = &kmsg->addr;
4565 /* if iov is set, it's allocated already */
4566 if (!kmsg->iov)
4567 kmsg->iov = kmsg->fast_iov;
4568 kmsg->msg.msg_iter.iov = kmsg->iov;
4569 } else {
4570 ret = io_recvmsg_copy_hdr(req, &iomsg);
4571 if (ret)
4572 return ret;
4573 kmsg = &iomsg;
4574 }
4575
4576 if (req->flags & REQ_F_BUFFER_SELECT) {
4577 kbuf = io_recv_buffer_select(req, !force_nonblock);
4578 if (IS_ERR(kbuf))
4579 return PTR_ERR(kbuf);
4580 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4581 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4582 1, req->sr_msg.len);
4583 }
4584
4585 flags = req->sr_msg.msg_flags;
4586 if (flags & MSG_DONTWAIT)
4587 req->flags |= REQ_F_NOWAIT;
4588 else if (force_nonblock)
4589 flags |= MSG_DONTWAIT;
4590
4591 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4592 kmsg->uaddr, flags);
4593 if (force_nonblock && ret == -EAGAIN)
4594 return io_setup_async_msg(req, kmsg);
4595 if (ret == -ERESTARTSYS)
4596 ret = -EINTR;
4597
4598 if (req->flags & REQ_F_BUFFER_SELECTED)
4599 cflags = io_put_recv_kbuf(req);
4600 if (kmsg->iov != kmsg->fast_iov)
4601 kfree(kmsg->iov);
4602 req->flags &= ~REQ_F_NEED_CLEANUP;
4603 if (ret < 0)
4604 req_set_fail_links(req);
4605 __io_req_complete(req, ret, cflags, cs);
4606 return 0;
4607 }
4608
4609 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4610 struct io_comp_state *cs)
4611 {
4612 struct io_buffer *kbuf;
4613 struct io_sr_msg *sr = &req->sr_msg;
4614 struct msghdr msg;
4615 void __user *buf = sr->buf;
4616 struct socket *sock;
4617 struct iovec iov;
4618 unsigned flags;
4619 int ret, cflags = 0;
4620
4621 sock = sock_from_file(req->file, &ret);
4622 if (unlikely(!sock))
4623 return ret;
4624
4625 if (req->flags & REQ_F_BUFFER_SELECT) {
4626 kbuf = io_recv_buffer_select(req, !force_nonblock);
4627 if (IS_ERR(kbuf))
4628 return PTR_ERR(kbuf);
4629 buf = u64_to_user_ptr(kbuf->addr);
4630 }
4631
4632 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4633 if (unlikely(ret))
4634 goto out_free;
4635
4636 msg.msg_name = NULL;
4637 msg.msg_control = NULL;
4638 msg.msg_controllen = 0;
4639 msg.msg_namelen = 0;
4640 msg.msg_iocb = NULL;
4641 msg.msg_flags = 0;
4642
4643 flags = req->sr_msg.msg_flags;
4644 if (flags & MSG_DONTWAIT)
4645 req->flags |= REQ_F_NOWAIT;
4646 else if (force_nonblock)
4647 flags |= MSG_DONTWAIT;
4648
4649 ret = sock_recvmsg(sock, &msg, flags);
4650 if (force_nonblock && ret == -EAGAIN)
4651 return -EAGAIN;
4652 if (ret == -ERESTARTSYS)
4653 ret = -EINTR;
4654 out_free:
4655 if (req->flags & REQ_F_BUFFER_SELECTED)
4656 cflags = io_put_recv_kbuf(req);
4657 if (ret < 0)
4658 req_set_fail_links(req);
4659 __io_req_complete(req, ret, cflags, cs);
4660 return 0;
4661 }
4662
4663 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4664 {
4665 struct io_accept *accept = &req->accept;
4666
4667 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4668 return -EINVAL;
4669 if (sqe->ioprio || sqe->len || sqe->buf_index)
4670 return -EINVAL;
4671
4672 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4673 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4674 accept->flags = READ_ONCE(sqe->accept_flags);
4675 accept->nofile = rlimit(RLIMIT_NOFILE);
4676 return 0;
4677 }
4678
4679 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4680 struct io_comp_state *cs)
4681 {
4682 struct io_accept *accept = &req->accept;
4683 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4684 int ret;
4685
4686 if (req->file->f_flags & O_NONBLOCK)
4687 req->flags |= REQ_F_NOWAIT;
4688
4689 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4690 accept->addr_len, accept->flags,
4691 accept->nofile);
4692 if (ret == -EAGAIN && force_nonblock)
4693 return -EAGAIN;
4694 if (ret < 0) {
4695 if (ret == -ERESTARTSYS)
4696 ret = -EINTR;
4697 req_set_fail_links(req);
4698 }
4699 __io_req_complete(req, ret, 0, cs);
4700 return 0;
4701 }
4702
4703 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4704 {
4705 struct io_connect *conn = &req->connect;
4706 struct io_async_connect *io = req->async_data;
4707
4708 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4709 return -EINVAL;
4710 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4711 return -EINVAL;
4712
4713 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4714 conn->addr_len = READ_ONCE(sqe->addr2);
4715
4716 if (!io)
4717 return 0;
4718
4719 return move_addr_to_kernel(conn->addr, conn->addr_len,
4720 &io->address);
4721 }
4722
4723 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4724 struct io_comp_state *cs)
4725 {
4726 struct io_async_connect __io, *io;
4727 unsigned file_flags;
4728 int ret;
4729
4730 if (req->async_data) {
4731 io = req->async_data;
4732 } else {
4733 ret = move_addr_to_kernel(req->connect.addr,
4734 req->connect.addr_len,
4735 &__io.address);
4736 if (ret)
4737 goto out;
4738 io = &__io;
4739 }
4740
4741 file_flags = force_nonblock ? O_NONBLOCK : 0;
4742
4743 ret = __sys_connect_file(req->file, &io->address,
4744 req->connect.addr_len, file_flags);
4745 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4746 if (req->async_data)
4747 return -EAGAIN;
4748 if (io_alloc_async_data(req)) {
4749 ret = -ENOMEM;
4750 goto out;
4751 }
4752 io = req->async_data;
4753 memcpy(req->async_data, &__io, sizeof(__io));
4754 return -EAGAIN;
4755 }
4756 if (ret == -ERESTARTSYS)
4757 ret = -EINTR;
4758 out:
4759 if (ret < 0)
4760 req_set_fail_links(req);
4761 __io_req_complete(req, ret, 0, cs);
4762 return 0;
4763 }
4764 #else /* !CONFIG_NET */
4765 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4766 {
4767 return -EOPNOTSUPP;
4768 }
4769
4770 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4771 struct io_comp_state *cs)
4772 {
4773 return -EOPNOTSUPP;
4774 }
4775
4776 static int io_send(struct io_kiocb *req, bool force_nonblock,
4777 struct io_comp_state *cs)
4778 {
4779 return -EOPNOTSUPP;
4780 }
4781
4782 static int io_recvmsg_prep(struct io_kiocb *req,
4783 const struct io_uring_sqe *sqe)
4784 {
4785 return -EOPNOTSUPP;
4786 }
4787
4788 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4789 struct io_comp_state *cs)
4790 {
4791 return -EOPNOTSUPP;
4792 }
4793
4794 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4795 struct io_comp_state *cs)
4796 {
4797 return -EOPNOTSUPP;
4798 }
4799
4800 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4801 {
4802 return -EOPNOTSUPP;
4803 }
4804
4805 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4806 struct io_comp_state *cs)
4807 {
4808 return -EOPNOTSUPP;
4809 }
4810
4811 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4812 {
4813 return -EOPNOTSUPP;
4814 }
4815
4816 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4817 struct io_comp_state *cs)
4818 {
4819 return -EOPNOTSUPP;
4820 }
4821 #endif /* CONFIG_NET */
4822
4823 struct io_poll_table {
4824 struct poll_table_struct pt;
4825 struct io_kiocb *req;
4826 int error;
4827 };
4828
4829 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4830 __poll_t mask, task_work_func_t func)
4831 {
4832 bool twa_signal_ok;
4833 int ret;
4834
4835 /* for instances that support it check for an event match first: */
4836 if (mask && !(mask & poll->events))
4837 return 0;
4838
4839 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4840
4841 list_del_init(&poll->wait.entry);
4842
4843 req->result = mask;
4844 init_task_work(&req->task_work, func);
4845 percpu_ref_get(&req->ctx->refs);
4846
4847 /*
4848 * If we using the signalfd wait_queue_head for this wakeup, then
4849 * it's not safe to use TWA_SIGNAL as we could be recursing on the
4850 * tsk->sighand->siglock on doing the wakeup. Should not be needed
4851 * either, as the normal wakeup will suffice.
4852 */
4853 twa_signal_ok = (poll->head != &req->task->sighand->signalfd_wqh);
4854
4855 /*
4856 * If this fails, then the task is exiting. When a task exits, the
4857 * work gets canceled, so just cancel this request as well instead
4858 * of executing it. We can't safely execute it anyway, as we may not
4859 * have the needed state needed for it anyway.
4860 */
4861 ret = io_req_task_work_add(req, twa_signal_ok);
4862 if (unlikely(ret)) {
4863 struct task_struct *tsk;
4864
4865 WRITE_ONCE(poll->canceled, true);
4866 tsk = io_wq_get_task(req->ctx->io_wq);
4867 task_work_add(tsk, &req->task_work, 0);
4868 wake_up_process(tsk);
4869 }
4870 return 1;
4871 }
4872
4873 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4874 __acquires(&req->ctx->completion_lock)
4875 {
4876 struct io_ring_ctx *ctx = req->ctx;
4877
4878 if (!req->result && !READ_ONCE(poll->canceled)) {
4879 struct poll_table_struct pt = { ._key = poll->events };
4880
4881 req->result = vfs_poll(req->file, &pt) & poll->events;
4882 }
4883
4884 spin_lock_irq(&ctx->completion_lock);
4885 if (!req->result && !READ_ONCE(poll->canceled)) {
4886 add_wait_queue(poll->head, &poll->wait);
4887 return true;
4888 }
4889
4890 return false;
4891 }
4892
4893 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4894 {
4895 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4896 if (req->opcode == IORING_OP_POLL_ADD)
4897 return req->async_data;
4898 return req->apoll->double_poll;
4899 }
4900
4901 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4902 {
4903 if (req->opcode == IORING_OP_POLL_ADD)
4904 return &req->poll;
4905 return &req->apoll->poll;
4906 }
4907
4908 static void io_poll_remove_double(struct io_kiocb *req)
4909 {
4910 struct io_poll_iocb *poll = io_poll_get_double(req);
4911
4912 lockdep_assert_held(&req->ctx->completion_lock);
4913
4914 if (poll && poll->head) {
4915 struct wait_queue_head *head = poll->head;
4916
4917 spin_lock(&head->lock);
4918 list_del_init(&poll->wait.entry);
4919 if (poll->wait.private)
4920 refcount_dec(&req->refs);
4921 poll->head = NULL;
4922 spin_unlock(&head->lock);
4923 }
4924 }
4925
4926 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4927 {
4928 struct io_ring_ctx *ctx = req->ctx;
4929
4930 io_poll_remove_double(req);
4931 req->poll.done = true;
4932 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4933 io_commit_cqring(ctx);
4934 }
4935
4936 static void io_poll_task_func(struct callback_head *cb)
4937 {
4938 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4939 struct io_ring_ctx *ctx = req->ctx;
4940 struct io_kiocb *nxt;
4941
4942 if (io_poll_rewait(req, &req->poll)) {
4943 spin_unlock_irq(&ctx->completion_lock);
4944 } else {
4945 hash_del(&req->hash_node);
4946 io_poll_complete(req, req->result, 0);
4947 spin_unlock_irq(&ctx->completion_lock);
4948
4949 nxt = io_put_req_find_next(req);
4950 io_cqring_ev_posted(ctx);
4951 if (nxt)
4952 __io_req_task_submit(nxt);
4953 }
4954
4955 percpu_ref_put(&ctx->refs);
4956 }
4957
4958 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4959 int sync, void *key)
4960 {
4961 struct io_kiocb *req = wait->private;
4962 struct io_poll_iocb *poll = io_poll_get_single(req);
4963 __poll_t mask = key_to_poll(key);
4964
4965 /* for instances that support it check for an event match first: */
4966 if (mask && !(mask & poll->events))
4967 return 0;
4968
4969 list_del_init(&wait->entry);
4970
4971 if (poll && poll->head) {
4972 bool done;
4973
4974 spin_lock(&poll->head->lock);
4975 done = list_empty(&poll->wait.entry);
4976 if (!done)
4977 list_del_init(&poll->wait.entry);
4978 /* make sure double remove sees this as being gone */
4979 wait->private = NULL;
4980 spin_unlock(&poll->head->lock);
4981 if (!done)
4982 __io_async_wake(req, poll, mask, io_poll_task_func);
4983 }
4984 refcount_dec(&req->refs);
4985 return 1;
4986 }
4987
4988 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4989 wait_queue_func_t wake_func)
4990 {
4991 poll->head = NULL;
4992 poll->done = false;
4993 poll->canceled = false;
4994 poll->events = events;
4995 INIT_LIST_HEAD(&poll->wait.entry);
4996 init_waitqueue_func_entry(&poll->wait, wake_func);
4997 }
4998
4999 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5000 struct wait_queue_head *head,
5001 struct io_poll_iocb **poll_ptr)
5002 {
5003 struct io_kiocb *req = pt->req;
5004
5005 /*
5006 * If poll->head is already set, it's because the file being polled
5007 * uses multiple waitqueues for poll handling (eg one for read, one
5008 * for write). Setup a separate io_poll_iocb if this happens.
5009 */
5010 if (unlikely(poll->head)) {
5011 struct io_poll_iocb *poll_one = poll;
5012
5013 /* already have a 2nd entry, fail a third attempt */
5014 if (*poll_ptr) {
5015 pt->error = -EINVAL;
5016 return;
5017 }
5018 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5019 if (!poll) {
5020 pt->error = -ENOMEM;
5021 return;
5022 }
5023 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5024 refcount_inc(&req->refs);
5025 poll->wait.private = req;
5026 *poll_ptr = poll;
5027 }
5028
5029 pt->error = 0;
5030 poll->head = head;
5031
5032 if (poll->events & EPOLLEXCLUSIVE)
5033 add_wait_queue_exclusive(head, &poll->wait);
5034 else
5035 add_wait_queue(head, &poll->wait);
5036 }
5037
5038 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5039 struct poll_table_struct *p)
5040 {
5041 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5042 struct async_poll *apoll = pt->req->apoll;
5043
5044 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5045 }
5046
5047 static void io_async_task_func(struct callback_head *cb)
5048 {
5049 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5050 struct async_poll *apoll = req->apoll;
5051 struct io_ring_ctx *ctx = req->ctx;
5052
5053 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5054
5055 if (io_poll_rewait(req, &apoll->poll)) {
5056 spin_unlock_irq(&ctx->completion_lock);
5057 percpu_ref_put(&ctx->refs);
5058 return;
5059 }
5060
5061 /* If req is still hashed, it cannot have been canceled. Don't check. */
5062 if (hash_hashed(&req->hash_node))
5063 hash_del(&req->hash_node);
5064
5065 io_poll_remove_double(req);
5066 spin_unlock_irq(&ctx->completion_lock);
5067
5068 if (!READ_ONCE(apoll->poll.canceled))
5069 __io_req_task_submit(req);
5070 else
5071 __io_req_task_cancel(req, -ECANCELED);
5072
5073 percpu_ref_put(&ctx->refs);
5074 kfree(apoll->double_poll);
5075 kfree(apoll);
5076 }
5077
5078 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5079 void *key)
5080 {
5081 struct io_kiocb *req = wait->private;
5082 struct io_poll_iocb *poll = &req->apoll->poll;
5083
5084 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5085 key_to_poll(key));
5086
5087 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5088 }
5089
5090 static void io_poll_req_insert(struct io_kiocb *req)
5091 {
5092 struct io_ring_ctx *ctx = req->ctx;
5093 struct hlist_head *list;
5094
5095 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5096 hlist_add_head(&req->hash_node, list);
5097 }
5098
5099 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5100 struct io_poll_iocb *poll,
5101 struct io_poll_table *ipt, __poll_t mask,
5102 wait_queue_func_t wake_func)
5103 __acquires(&ctx->completion_lock)
5104 {
5105 struct io_ring_ctx *ctx = req->ctx;
5106 bool cancel = false;
5107
5108 INIT_HLIST_NODE(&req->hash_node);
5109 io_init_poll_iocb(poll, mask, wake_func);
5110 poll->file = req->file;
5111 poll->wait.private = req;
5112
5113 ipt->pt._key = mask;
5114 ipt->req = req;
5115 ipt->error = -EINVAL;
5116
5117 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5118
5119 spin_lock_irq(&ctx->completion_lock);
5120 if (likely(poll->head)) {
5121 spin_lock(&poll->head->lock);
5122 if (unlikely(list_empty(&poll->wait.entry))) {
5123 if (ipt->error)
5124 cancel = true;
5125 ipt->error = 0;
5126 mask = 0;
5127 }
5128 if (mask || ipt->error)
5129 list_del_init(&poll->wait.entry);
5130 else if (cancel)
5131 WRITE_ONCE(poll->canceled, true);
5132 else if (!poll->done) /* actually waiting for an event */
5133 io_poll_req_insert(req);
5134 spin_unlock(&poll->head->lock);
5135 }
5136
5137 return mask;
5138 }
5139
5140 static bool io_arm_poll_handler(struct io_kiocb *req)
5141 {
5142 const struct io_op_def *def = &io_op_defs[req->opcode];
5143 struct io_ring_ctx *ctx = req->ctx;
5144 struct async_poll *apoll;
5145 struct io_poll_table ipt;
5146 __poll_t mask, ret;
5147 int rw;
5148
5149 if (!req->file || !file_can_poll(req->file))
5150 return false;
5151 if (req->flags & REQ_F_POLLED)
5152 return false;
5153 if (def->pollin)
5154 rw = READ;
5155 else if (def->pollout)
5156 rw = WRITE;
5157 else
5158 return false;
5159 /* if we can't nonblock try, then no point in arming a poll handler */
5160 if (!io_file_supports_async(req->file, rw))
5161 return false;
5162
5163 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5164 if (unlikely(!apoll))
5165 return false;
5166 apoll->double_poll = NULL;
5167
5168 req->flags |= REQ_F_POLLED;
5169 req->apoll = apoll;
5170
5171 mask = 0;
5172 if (def->pollin)
5173 mask |= POLLIN | POLLRDNORM;
5174 if (def->pollout)
5175 mask |= POLLOUT | POLLWRNORM;
5176
5177 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5178 if ((req->opcode == IORING_OP_RECVMSG) &&
5179 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5180 mask &= ~POLLIN;
5181
5182 mask |= POLLERR | POLLPRI;
5183
5184 ipt.pt._qproc = io_async_queue_proc;
5185
5186 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5187 io_async_wake);
5188 if (ret || ipt.error) {
5189 io_poll_remove_double(req);
5190 spin_unlock_irq(&ctx->completion_lock);
5191 kfree(apoll->double_poll);
5192 kfree(apoll);
5193 return false;
5194 }
5195 spin_unlock_irq(&ctx->completion_lock);
5196 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5197 apoll->poll.events);
5198 return true;
5199 }
5200
5201 static bool __io_poll_remove_one(struct io_kiocb *req,
5202 struct io_poll_iocb *poll)
5203 {
5204 bool do_complete = false;
5205
5206 spin_lock(&poll->head->lock);
5207 WRITE_ONCE(poll->canceled, true);
5208 if (!list_empty(&poll->wait.entry)) {
5209 list_del_init(&poll->wait.entry);
5210 do_complete = true;
5211 }
5212 spin_unlock(&poll->head->lock);
5213 hash_del(&req->hash_node);
5214 return do_complete;
5215 }
5216
5217 static bool io_poll_remove_one(struct io_kiocb *req)
5218 {
5219 bool do_complete;
5220
5221 io_poll_remove_double(req);
5222
5223 if (req->opcode == IORING_OP_POLL_ADD) {
5224 do_complete = __io_poll_remove_one(req, &req->poll);
5225 } else {
5226 struct async_poll *apoll = req->apoll;
5227
5228 /* non-poll requests have submit ref still */
5229 do_complete = __io_poll_remove_one(req, &apoll->poll);
5230 if (do_complete) {
5231 io_put_req(req);
5232 kfree(apoll->double_poll);
5233 kfree(apoll);
5234 }
5235 }
5236
5237 if (do_complete) {
5238 io_cqring_fill_event(req, -ECANCELED);
5239 io_commit_cqring(req->ctx);
5240 req_set_fail_links(req);
5241 io_put_req_deferred(req, 1);
5242 }
5243
5244 return do_complete;
5245 }
5246
5247 /*
5248 * Returns true if we found and killed one or more poll requests
5249 */
5250 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk)
5251 {
5252 struct hlist_node *tmp;
5253 struct io_kiocb *req;
5254 int posted = 0, i;
5255
5256 spin_lock_irq(&ctx->completion_lock);
5257 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5258 struct hlist_head *list;
5259
5260 list = &ctx->cancel_hash[i];
5261 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5262 if (io_task_match(req, tsk))
5263 posted += io_poll_remove_one(req);
5264 }
5265 }
5266 spin_unlock_irq(&ctx->completion_lock);
5267
5268 if (posted)
5269 io_cqring_ev_posted(ctx);
5270
5271 return posted != 0;
5272 }
5273
5274 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5275 {
5276 struct hlist_head *list;
5277 struct io_kiocb *req;
5278
5279 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5280 hlist_for_each_entry(req, list, hash_node) {
5281 if (sqe_addr != req->user_data)
5282 continue;
5283 if (io_poll_remove_one(req))
5284 return 0;
5285 return -EALREADY;
5286 }
5287
5288 return -ENOENT;
5289 }
5290
5291 static int io_poll_remove_prep(struct io_kiocb *req,
5292 const struct io_uring_sqe *sqe)
5293 {
5294 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5295 return -EINVAL;
5296 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5297 sqe->poll_events)
5298 return -EINVAL;
5299
5300 req->poll.addr = READ_ONCE(sqe->addr);
5301 return 0;
5302 }
5303
5304 /*
5305 * Find a running poll command that matches one specified in sqe->addr,
5306 * and remove it if found.
5307 */
5308 static int io_poll_remove(struct io_kiocb *req)
5309 {
5310 struct io_ring_ctx *ctx = req->ctx;
5311 u64 addr;
5312 int ret;
5313
5314 addr = req->poll.addr;
5315 spin_lock_irq(&ctx->completion_lock);
5316 ret = io_poll_cancel(ctx, addr);
5317 spin_unlock_irq(&ctx->completion_lock);
5318
5319 if (ret < 0)
5320 req_set_fail_links(req);
5321 io_req_complete(req, ret);
5322 return 0;
5323 }
5324
5325 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5326 void *key)
5327 {
5328 struct io_kiocb *req = wait->private;
5329 struct io_poll_iocb *poll = &req->poll;
5330
5331 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5332 }
5333
5334 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5335 struct poll_table_struct *p)
5336 {
5337 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5338
5339 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5340 }
5341
5342 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5343 {
5344 struct io_poll_iocb *poll = &req->poll;
5345 u32 events;
5346
5347 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5348 return -EINVAL;
5349 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5350 return -EINVAL;
5351
5352 events = READ_ONCE(sqe->poll32_events);
5353 #ifdef __BIG_ENDIAN
5354 events = swahw32(events);
5355 #endif
5356 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5357 (events & EPOLLEXCLUSIVE);
5358 return 0;
5359 }
5360
5361 static int io_poll_add(struct io_kiocb *req)
5362 {
5363 struct io_poll_iocb *poll = &req->poll;
5364 struct io_ring_ctx *ctx = req->ctx;
5365 struct io_poll_table ipt;
5366 __poll_t mask;
5367
5368 ipt.pt._qproc = io_poll_queue_proc;
5369
5370 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5371 io_poll_wake);
5372
5373 if (mask) { /* no async, we'd stolen it */
5374 ipt.error = 0;
5375 io_poll_complete(req, mask, 0);
5376 }
5377 spin_unlock_irq(&ctx->completion_lock);
5378
5379 if (mask) {
5380 io_cqring_ev_posted(ctx);
5381 io_put_req(req);
5382 }
5383 return ipt.error;
5384 }
5385
5386 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5387 {
5388 struct io_timeout_data *data = container_of(timer,
5389 struct io_timeout_data, timer);
5390 struct io_kiocb *req = data->req;
5391 struct io_ring_ctx *ctx = req->ctx;
5392 unsigned long flags;
5393
5394 spin_lock_irqsave(&ctx->completion_lock, flags);
5395 list_del_init(&req->timeout.list);
5396 atomic_set(&req->ctx->cq_timeouts,
5397 atomic_read(&req->ctx->cq_timeouts) + 1);
5398
5399 io_cqring_fill_event(req, -ETIME);
5400 io_commit_cqring(ctx);
5401 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5402
5403 io_cqring_ev_posted(ctx);
5404 req_set_fail_links(req);
5405 io_put_req(req);
5406 return HRTIMER_NORESTART;
5407 }
5408
5409 static int __io_timeout_cancel(struct io_kiocb *req)
5410 {
5411 struct io_timeout_data *io = req->async_data;
5412 int ret;
5413
5414 ret = hrtimer_try_to_cancel(&io->timer);
5415 if (ret == -1)
5416 return -EALREADY;
5417 list_del_init(&req->timeout.list);
5418
5419 req_set_fail_links(req);
5420 io_cqring_fill_event(req, -ECANCELED);
5421 io_put_req_deferred(req, 1);
5422 return 0;
5423 }
5424
5425 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5426 {
5427 struct io_kiocb *req;
5428 int ret = -ENOENT;
5429
5430 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5431 if (user_data == req->user_data) {
5432 ret = 0;
5433 break;
5434 }
5435 }
5436
5437 if (ret == -ENOENT)
5438 return ret;
5439
5440 return __io_timeout_cancel(req);
5441 }
5442
5443 static int io_timeout_remove_prep(struct io_kiocb *req,
5444 const struct io_uring_sqe *sqe)
5445 {
5446 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5447 return -EINVAL;
5448 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5449 return -EINVAL;
5450 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->timeout_flags)
5451 return -EINVAL;
5452
5453 req->timeout_rem.addr = READ_ONCE(sqe->addr);
5454 return 0;
5455 }
5456
5457 /*
5458 * Remove or update an existing timeout command
5459 */
5460 static int io_timeout_remove(struct io_kiocb *req)
5461 {
5462 struct io_ring_ctx *ctx = req->ctx;
5463 int ret;
5464
5465 spin_lock_irq(&ctx->completion_lock);
5466 ret = io_timeout_cancel(ctx, req->timeout_rem.addr);
5467
5468 io_cqring_fill_event(req, ret);
5469 io_commit_cqring(ctx);
5470 spin_unlock_irq(&ctx->completion_lock);
5471 io_cqring_ev_posted(ctx);
5472 if (ret < 0)
5473 req_set_fail_links(req);
5474 io_put_req(req);
5475 return 0;
5476 }
5477
5478 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5479 bool is_timeout_link)
5480 {
5481 struct io_timeout_data *data;
5482 unsigned flags;
5483 u32 off = READ_ONCE(sqe->off);
5484
5485 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5486 return -EINVAL;
5487 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5488 return -EINVAL;
5489 if (off && is_timeout_link)
5490 return -EINVAL;
5491 flags = READ_ONCE(sqe->timeout_flags);
5492 if (flags & ~IORING_TIMEOUT_ABS)
5493 return -EINVAL;
5494
5495 req->timeout.off = off;
5496
5497 if (!req->async_data && io_alloc_async_data(req))
5498 return -ENOMEM;
5499
5500 data = req->async_data;
5501 data->req = req;
5502
5503 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5504 return -EFAULT;
5505
5506 if (flags & IORING_TIMEOUT_ABS)
5507 data->mode = HRTIMER_MODE_ABS;
5508 else
5509 data->mode = HRTIMER_MODE_REL;
5510
5511 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5512 return 0;
5513 }
5514
5515 static int io_timeout(struct io_kiocb *req)
5516 {
5517 struct io_ring_ctx *ctx = req->ctx;
5518 struct io_timeout_data *data = req->async_data;
5519 struct list_head *entry;
5520 u32 tail, off = req->timeout.off;
5521
5522 spin_lock_irq(&ctx->completion_lock);
5523
5524 /*
5525 * sqe->off holds how many events that need to occur for this
5526 * timeout event to be satisfied. If it isn't set, then this is
5527 * a pure timeout request, sequence isn't used.
5528 */
5529 if (io_is_timeout_noseq(req)) {
5530 entry = ctx->timeout_list.prev;
5531 goto add;
5532 }
5533
5534 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5535 req->timeout.target_seq = tail + off;
5536
5537 /*
5538 * Insertion sort, ensuring the first entry in the list is always
5539 * the one we need first.
5540 */
5541 list_for_each_prev(entry, &ctx->timeout_list) {
5542 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5543 timeout.list);
5544
5545 if (io_is_timeout_noseq(nxt))
5546 continue;
5547 /* nxt.seq is behind @tail, otherwise would've been completed */
5548 if (off >= nxt->timeout.target_seq - tail)
5549 break;
5550 }
5551 add:
5552 list_add(&req->timeout.list, entry);
5553 data->timer.function = io_timeout_fn;
5554 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5555 spin_unlock_irq(&ctx->completion_lock);
5556 return 0;
5557 }
5558
5559 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5560 {
5561 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5562
5563 return req->user_data == (unsigned long) data;
5564 }
5565
5566 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5567 {
5568 enum io_wq_cancel cancel_ret;
5569 int ret = 0;
5570
5571 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5572 switch (cancel_ret) {
5573 case IO_WQ_CANCEL_OK:
5574 ret = 0;
5575 break;
5576 case IO_WQ_CANCEL_RUNNING:
5577 ret = -EALREADY;
5578 break;
5579 case IO_WQ_CANCEL_NOTFOUND:
5580 ret = -ENOENT;
5581 break;
5582 }
5583
5584 return ret;
5585 }
5586
5587 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5588 struct io_kiocb *req, __u64 sqe_addr,
5589 int success_ret)
5590 {
5591 unsigned long flags;
5592 int ret;
5593
5594 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5595 if (ret != -ENOENT) {
5596 spin_lock_irqsave(&ctx->completion_lock, flags);
5597 goto done;
5598 }
5599
5600 spin_lock_irqsave(&ctx->completion_lock, flags);
5601 ret = io_timeout_cancel(ctx, sqe_addr);
5602 if (ret != -ENOENT)
5603 goto done;
5604 ret = io_poll_cancel(ctx, sqe_addr);
5605 done:
5606 if (!ret)
5607 ret = success_ret;
5608 io_cqring_fill_event(req, ret);
5609 io_commit_cqring(ctx);
5610 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5611 io_cqring_ev_posted(ctx);
5612
5613 if (ret < 0)
5614 req_set_fail_links(req);
5615 io_put_req(req);
5616 }
5617
5618 static int io_async_cancel_prep(struct io_kiocb *req,
5619 const struct io_uring_sqe *sqe)
5620 {
5621 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5622 return -EINVAL;
5623 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5624 return -EINVAL;
5625 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5626 return -EINVAL;
5627
5628 req->cancel.addr = READ_ONCE(sqe->addr);
5629 return 0;
5630 }
5631
5632 static int io_async_cancel(struct io_kiocb *req)
5633 {
5634 struct io_ring_ctx *ctx = req->ctx;
5635
5636 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5637 return 0;
5638 }
5639
5640 static int io_files_update_prep(struct io_kiocb *req,
5641 const struct io_uring_sqe *sqe)
5642 {
5643 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5644 return -EINVAL;
5645 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5646 return -EINVAL;
5647 if (sqe->ioprio || sqe->rw_flags)
5648 return -EINVAL;
5649
5650 req->files_update.offset = READ_ONCE(sqe->off);
5651 req->files_update.nr_args = READ_ONCE(sqe->len);
5652 if (!req->files_update.nr_args)
5653 return -EINVAL;
5654 req->files_update.arg = READ_ONCE(sqe->addr);
5655 return 0;
5656 }
5657
5658 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5659 struct io_comp_state *cs)
5660 {
5661 struct io_ring_ctx *ctx = req->ctx;
5662 struct io_uring_files_update up;
5663 int ret;
5664
5665 if (force_nonblock)
5666 return -EAGAIN;
5667
5668 up.offset = req->files_update.offset;
5669 up.fds = req->files_update.arg;
5670
5671 mutex_lock(&ctx->uring_lock);
5672 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5673 mutex_unlock(&ctx->uring_lock);
5674
5675 if (ret < 0)
5676 req_set_fail_links(req);
5677 __io_req_complete(req, ret, 0, cs);
5678 return 0;
5679 }
5680
5681 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5682 {
5683 switch (req->opcode) {
5684 case IORING_OP_NOP:
5685 return 0;
5686 case IORING_OP_READV:
5687 case IORING_OP_READ_FIXED:
5688 case IORING_OP_READ:
5689 return io_read_prep(req, sqe);
5690 case IORING_OP_WRITEV:
5691 case IORING_OP_WRITE_FIXED:
5692 case IORING_OP_WRITE:
5693 return io_write_prep(req, sqe);
5694 case IORING_OP_POLL_ADD:
5695 return io_poll_add_prep(req, sqe);
5696 case IORING_OP_POLL_REMOVE:
5697 return io_poll_remove_prep(req, sqe);
5698 case IORING_OP_FSYNC:
5699 return io_prep_fsync(req, sqe);
5700 case IORING_OP_SYNC_FILE_RANGE:
5701 return io_prep_sfr(req, sqe);
5702 case IORING_OP_SENDMSG:
5703 case IORING_OP_SEND:
5704 return io_sendmsg_prep(req, sqe);
5705 case IORING_OP_RECVMSG:
5706 case IORING_OP_RECV:
5707 return io_recvmsg_prep(req, sqe);
5708 case IORING_OP_CONNECT:
5709 return io_connect_prep(req, sqe);
5710 case IORING_OP_TIMEOUT:
5711 return io_timeout_prep(req, sqe, false);
5712 case IORING_OP_TIMEOUT_REMOVE:
5713 return io_timeout_remove_prep(req, sqe);
5714 case IORING_OP_ASYNC_CANCEL:
5715 return io_async_cancel_prep(req, sqe);
5716 case IORING_OP_LINK_TIMEOUT:
5717 return io_timeout_prep(req, sqe, true);
5718 case IORING_OP_ACCEPT:
5719 return io_accept_prep(req, sqe);
5720 case IORING_OP_FALLOCATE:
5721 return io_fallocate_prep(req, sqe);
5722 case IORING_OP_OPENAT:
5723 return io_openat_prep(req, sqe);
5724 case IORING_OP_CLOSE:
5725 return io_close_prep(req, sqe);
5726 case IORING_OP_FILES_UPDATE:
5727 return io_files_update_prep(req, sqe);
5728 case IORING_OP_STATX:
5729 return io_statx_prep(req, sqe);
5730 case IORING_OP_FADVISE:
5731 return io_fadvise_prep(req, sqe);
5732 case IORING_OP_MADVISE:
5733 return io_madvise_prep(req, sqe);
5734 case IORING_OP_OPENAT2:
5735 return io_openat2_prep(req, sqe);
5736 case IORING_OP_EPOLL_CTL:
5737 return io_epoll_ctl_prep(req, sqe);
5738 case IORING_OP_SPLICE:
5739 return io_splice_prep(req, sqe);
5740 case IORING_OP_PROVIDE_BUFFERS:
5741 return io_provide_buffers_prep(req, sqe);
5742 case IORING_OP_REMOVE_BUFFERS:
5743 return io_remove_buffers_prep(req, sqe);
5744 case IORING_OP_TEE:
5745 return io_tee_prep(req, sqe);
5746 }
5747
5748 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5749 req->opcode);
5750 return-EINVAL;
5751 }
5752
5753 static int io_req_defer_prep(struct io_kiocb *req,
5754 const struct io_uring_sqe *sqe)
5755 {
5756 if (!sqe)
5757 return 0;
5758 if (io_alloc_async_data(req))
5759 return -EAGAIN;
5760 return io_req_prep(req, sqe);
5761 }
5762
5763 static u32 io_get_sequence(struct io_kiocb *req)
5764 {
5765 struct io_kiocb *pos;
5766 struct io_ring_ctx *ctx = req->ctx;
5767 u32 total_submitted, nr_reqs = 1;
5768
5769 if (req->flags & REQ_F_LINK_HEAD)
5770 list_for_each_entry(pos, &req->link_list, link_list)
5771 nr_reqs++;
5772
5773 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5774 return total_submitted - nr_reqs;
5775 }
5776
5777 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5778 {
5779 struct io_ring_ctx *ctx = req->ctx;
5780 struct io_defer_entry *de;
5781 int ret;
5782 u32 seq;
5783
5784 /* Still need defer if there is pending req in defer list. */
5785 if (likely(list_empty_careful(&ctx->defer_list) &&
5786 !(req->flags & REQ_F_IO_DRAIN)))
5787 return 0;
5788
5789 seq = io_get_sequence(req);
5790 /* Still a chance to pass the sequence check */
5791 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5792 return 0;
5793
5794 if (!req->async_data) {
5795 ret = io_req_defer_prep(req, sqe);
5796 if (ret)
5797 return ret;
5798 }
5799 io_prep_async_link(req);
5800 de = kmalloc(sizeof(*de), GFP_KERNEL);
5801 if (!de)
5802 return -ENOMEM;
5803
5804 spin_lock_irq(&ctx->completion_lock);
5805 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
5806 spin_unlock_irq(&ctx->completion_lock);
5807 kfree(de);
5808 io_queue_async_work(req);
5809 return -EIOCBQUEUED;
5810 }
5811
5812 trace_io_uring_defer(ctx, req, req->user_data);
5813 de->req = req;
5814 de->seq = seq;
5815 list_add_tail(&de->list, &ctx->defer_list);
5816 spin_unlock_irq(&ctx->completion_lock);
5817 return -EIOCBQUEUED;
5818 }
5819
5820 static void io_req_drop_files(struct io_kiocb *req)
5821 {
5822 struct io_ring_ctx *ctx = req->ctx;
5823 unsigned long flags;
5824
5825 spin_lock_irqsave(&ctx->inflight_lock, flags);
5826 list_del(&req->inflight_entry);
5827 if (waitqueue_active(&ctx->inflight_wait))
5828 wake_up(&ctx->inflight_wait);
5829 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
5830 req->flags &= ~REQ_F_INFLIGHT;
5831 put_files_struct(req->work.identity->files);
5832 put_nsproxy(req->work.identity->nsproxy);
5833 req->work.flags &= ~IO_WQ_WORK_FILES;
5834 }
5835
5836 static void __io_clean_op(struct io_kiocb *req)
5837 {
5838 if (req->flags & REQ_F_BUFFER_SELECTED) {
5839 switch (req->opcode) {
5840 case IORING_OP_READV:
5841 case IORING_OP_READ_FIXED:
5842 case IORING_OP_READ:
5843 kfree((void *)(unsigned long)req->rw.addr);
5844 break;
5845 case IORING_OP_RECVMSG:
5846 case IORING_OP_RECV:
5847 kfree(req->sr_msg.kbuf);
5848 break;
5849 }
5850 req->flags &= ~REQ_F_BUFFER_SELECTED;
5851 }
5852
5853 if (req->flags & REQ_F_NEED_CLEANUP) {
5854 switch (req->opcode) {
5855 case IORING_OP_READV:
5856 case IORING_OP_READ_FIXED:
5857 case IORING_OP_READ:
5858 case IORING_OP_WRITEV:
5859 case IORING_OP_WRITE_FIXED:
5860 case IORING_OP_WRITE: {
5861 struct io_async_rw *io = req->async_data;
5862 if (io->free_iovec)
5863 kfree(io->free_iovec);
5864 break;
5865 }
5866 case IORING_OP_RECVMSG:
5867 case IORING_OP_SENDMSG: {
5868 struct io_async_msghdr *io = req->async_data;
5869 if (io->iov != io->fast_iov)
5870 kfree(io->iov);
5871 break;
5872 }
5873 case IORING_OP_SPLICE:
5874 case IORING_OP_TEE:
5875 io_put_file(req, req->splice.file_in,
5876 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5877 break;
5878 case IORING_OP_OPENAT:
5879 case IORING_OP_OPENAT2:
5880 if (req->open.filename)
5881 putname(req->open.filename);
5882 break;
5883 }
5884 req->flags &= ~REQ_F_NEED_CLEANUP;
5885 }
5886
5887 if (req->flags & REQ_F_INFLIGHT)
5888 io_req_drop_files(req);
5889 }
5890
5891 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
5892 struct io_comp_state *cs)
5893 {
5894 struct io_ring_ctx *ctx = req->ctx;
5895 int ret;
5896
5897 switch (req->opcode) {
5898 case IORING_OP_NOP:
5899 ret = io_nop(req, cs);
5900 break;
5901 case IORING_OP_READV:
5902 case IORING_OP_READ_FIXED:
5903 case IORING_OP_READ:
5904 ret = io_read(req, force_nonblock, cs);
5905 break;
5906 case IORING_OP_WRITEV:
5907 case IORING_OP_WRITE_FIXED:
5908 case IORING_OP_WRITE:
5909 ret = io_write(req, force_nonblock, cs);
5910 break;
5911 case IORING_OP_FSYNC:
5912 ret = io_fsync(req, force_nonblock);
5913 break;
5914 case IORING_OP_POLL_ADD:
5915 ret = io_poll_add(req);
5916 break;
5917 case IORING_OP_POLL_REMOVE:
5918 ret = io_poll_remove(req);
5919 break;
5920 case IORING_OP_SYNC_FILE_RANGE:
5921 ret = io_sync_file_range(req, force_nonblock);
5922 break;
5923 case IORING_OP_SENDMSG:
5924 ret = io_sendmsg(req, force_nonblock, cs);
5925 break;
5926 case IORING_OP_SEND:
5927 ret = io_send(req, force_nonblock, cs);
5928 break;
5929 case IORING_OP_RECVMSG:
5930 ret = io_recvmsg(req, force_nonblock, cs);
5931 break;
5932 case IORING_OP_RECV:
5933 ret = io_recv(req, force_nonblock, cs);
5934 break;
5935 case IORING_OP_TIMEOUT:
5936 ret = io_timeout(req);
5937 break;
5938 case IORING_OP_TIMEOUT_REMOVE:
5939 ret = io_timeout_remove(req);
5940 break;
5941 case IORING_OP_ACCEPT:
5942 ret = io_accept(req, force_nonblock, cs);
5943 break;
5944 case IORING_OP_CONNECT:
5945 ret = io_connect(req, force_nonblock, cs);
5946 break;
5947 case IORING_OP_ASYNC_CANCEL:
5948 ret = io_async_cancel(req);
5949 break;
5950 case IORING_OP_FALLOCATE:
5951 ret = io_fallocate(req, force_nonblock);
5952 break;
5953 case IORING_OP_OPENAT:
5954 ret = io_openat(req, force_nonblock);
5955 break;
5956 case IORING_OP_CLOSE:
5957 ret = io_close(req, force_nonblock, cs);
5958 break;
5959 case IORING_OP_FILES_UPDATE:
5960 ret = io_files_update(req, force_nonblock, cs);
5961 break;
5962 case IORING_OP_STATX:
5963 ret = io_statx(req, force_nonblock);
5964 break;
5965 case IORING_OP_FADVISE:
5966 ret = io_fadvise(req, force_nonblock);
5967 break;
5968 case IORING_OP_MADVISE:
5969 ret = io_madvise(req, force_nonblock);
5970 break;
5971 case IORING_OP_OPENAT2:
5972 ret = io_openat2(req, force_nonblock);
5973 break;
5974 case IORING_OP_EPOLL_CTL:
5975 ret = io_epoll_ctl(req, force_nonblock, cs);
5976 break;
5977 case IORING_OP_SPLICE:
5978 ret = io_splice(req, force_nonblock);
5979 break;
5980 case IORING_OP_PROVIDE_BUFFERS:
5981 ret = io_provide_buffers(req, force_nonblock, cs);
5982 break;
5983 case IORING_OP_REMOVE_BUFFERS:
5984 ret = io_remove_buffers(req, force_nonblock, cs);
5985 break;
5986 case IORING_OP_TEE:
5987 ret = io_tee(req, force_nonblock);
5988 break;
5989 default:
5990 ret = -EINVAL;
5991 break;
5992 }
5993
5994 if (ret)
5995 return ret;
5996
5997 /* If the op doesn't have a file, we're not polling for it */
5998 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5999 const bool in_async = io_wq_current_is_worker();
6000
6001 /* workqueue context doesn't hold uring_lock, grab it now */
6002 if (in_async)
6003 mutex_lock(&ctx->uring_lock);
6004
6005 io_iopoll_req_issued(req);
6006
6007 if (in_async)
6008 mutex_unlock(&ctx->uring_lock);
6009 }
6010
6011 return 0;
6012 }
6013
6014 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6015 {
6016 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6017 struct io_kiocb *timeout;
6018 int ret = 0;
6019
6020 timeout = io_prep_linked_timeout(req);
6021 if (timeout)
6022 io_queue_linked_timeout(timeout);
6023
6024 /* if NO_CANCEL is set, we must still run the work */
6025 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6026 IO_WQ_WORK_CANCEL) {
6027 ret = -ECANCELED;
6028 }
6029
6030 if (!ret) {
6031 do {
6032 ret = io_issue_sqe(req, false, NULL);
6033 /*
6034 * We can get EAGAIN for polled IO even though we're
6035 * forcing a sync submission from here, since we can't
6036 * wait for request slots on the block side.
6037 */
6038 if (ret != -EAGAIN)
6039 break;
6040 cond_resched();
6041 } while (1);
6042 }
6043
6044 if (ret) {
6045 req_set_fail_links(req);
6046 io_req_complete(req, ret);
6047 }
6048
6049 return io_steal_work(req);
6050 }
6051
6052 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6053 int index)
6054 {
6055 struct fixed_file_table *table;
6056
6057 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6058 return table->files[index & IORING_FILE_TABLE_MASK];
6059 }
6060
6061 static struct file *io_file_get(struct io_submit_state *state,
6062 struct io_kiocb *req, int fd, bool fixed)
6063 {
6064 struct io_ring_ctx *ctx = req->ctx;
6065 struct file *file;
6066
6067 if (fixed) {
6068 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6069 return NULL;
6070 fd = array_index_nospec(fd, ctx->nr_user_files);
6071 file = io_file_from_index(ctx, fd);
6072 if (file) {
6073 req->fixed_file_refs = &ctx->file_data->node->refs;
6074 percpu_ref_get(req->fixed_file_refs);
6075 }
6076 } else {
6077 trace_io_uring_file_get(ctx, fd);
6078 file = __io_file_get(state, fd);
6079 }
6080
6081 return file;
6082 }
6083
6084 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
6085 int fd)
6086 {
6087 bool fixed;
6088
6089 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
6090 if (unlikely(!fixed && io_async_submit(req->ctx)))
6091 return -EBADF;
6092
6093 req->file = io_file_get(state, req, fd, fixed);
6094 if (req->file || io_op_defs[req->opcode].needs_file_no_error)
6095 return 0;
6096 return -EBADF;
6097 }
6098
6099 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6100 {
6101 struct io_timeout_data *data = container_of(timer,
6102 struct io_timeout_data, timer);
6103 struct io_kiocb *req = data->req;
6104 struct io_ring_ctx *ctx = req->ctx;
6105 struct io_kiocb *prev = NULL;
6106 unsigned long flags;
6107
6108 spin_lock_irqsave(&ctx->completion_lock, flags);
6109
6110 /*
6111 * We don't expect the list to be empty, that will only happen if we
6112 * race with the completion of the linked work.
6113 */
6114 if (!list_empty(&req->link_list)) {
6115 prev = list_entry(req->link_list.prev, struct io_kiocb,
6116 link_list);
6117 if (refcount_inc_not_zero(&prev->refs))
6118 list_del_init(&req->link_list);
6119 else
6120 prev = NULL;
6121 }
6122
6123 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6124
6125 if (prev) {
6126 req_set_fail_links(prev);
6127 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6128 io_put_req(prev);
6129 } else {
6130 io_req_complete(req, -ETIME);
6131 }
6132 return HRTIMER_NORESTART;
6133 }
6134
6135 static void __io_queue_linked_timeout(struct io_kiocb *req)
6136 {
6137 /*
6138 * If the list is now empty, then our linked request finished before
6139 * we got a chance to setup the timer
6140 */
6141 if (!list_empty(&req->link_list)) {
6142 struct io_timeout_data *data = req->async_data;
6143
6144 data->timer.function = io_link_timeout_fn;
6145 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6146 data->mode);
6147 }
6148 }
6149
6150 static void io_queue_linked_timeout(struct io_kiocb *req)
6151 {
6152 struct io_ring_ctx *ctx = req->ctx;
6153
6154 spin_lock_irq(&ctx->completion_lock);
6155 __io_queue_linked_timeout(req);
6156 spin_unlock_irq(&ctx->completion_lock);
6157
6158 /* drop submission reference */
6159 io_put_req(req);
6160 }
6161
6162 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6163 {
6164 struct io_kiocb *nxt;
6165
6166 if (!(req->flags & REQ_F_LINK_HEAD))
6167 return NULL;
6168 if (req->flags & REQ_F_LINK_TIMEOUT)
6169 return NULL;
6170
6171 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
6172 link_list);
6173 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
6174 return NULL;
6175
6176 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6177 req->flags |= REQ_F_LINK_TIMEOUT;
6178 return nxt;
6179 }
6180
6181 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6182 {
6183 struct io_kiocb *linked_timeout;
6184 struct io_kiocb *nxt;
6185 const struct cred *old_creds = NULL;
6186 int ret;
6187
6188 again:
6189 linked_timeout = io_prep_linked_timeout(req);
6190
6191 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6192 (req->work.flags & IO_WQ_WORK_CREDS) &&
6193 req->work.identity->creds != current_cred()) {
6194 if (old_creds)
6195 revert_creds(old_creds);
6196 if (old_creds == req->work.identity->creds)
6197 old_creds = NULL; /* restored original creds */
6198 else
6199 old_creds = override_creds(req->work.identity->creds);
6200 }
6201
6202 ret = io_issue_sqe(req, true, cs);
6203
6204 /*
6205 * We async punt it if the file wasn't marked NOWAIT, or if the file
6206 * doesn't support non-blocking read/write attempts
6207 */
6208 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6209 if (!io_arm_poll_handler(req)) {
6210 punt:
6211 /*
6212 * Queued up for async execution, worker will release
6213 * submit reference when the iocb is actually submitted.
6214 */
6215 io_queue_async_work(req);
6216 }
6217
6218 if (linked_timeout)
6219 io_queue_linked_timeout(linked_timeout);
6220 goto exit;
6221 }
6222
6223 if (unlikely(ret)) {
6224 /* un-prep timeout, so it'll be killed as any other linked */
6225 req->flags &= ~REQ_F_LINK_TIMEOUT;
6226 req_set_fail_links(req);
6227 io_put_req(req);
6228 io_req_complete(req, ret);
6229 goto exit;
6230 }
6231
6232 /* drop submission reference */
6233 nxt = io_put_req_find_next(req);
6234 if (linked_timeout)
6235 io_queue_linked_timeout(linked_timeout);
6236
6237 if (nxt) {
6238 req = nxt;
6239
6240 if (req->flags & REQ_F_FORCE_ASYNC) {
6241 linked_timeout = NULL;
6242 goto punt;
6243 }
6244 goto again;
6245 }
6246 exit:
6247 if (old_creds)
6248 revert_creds(old_creds);
6249 }
6250
6251 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6252 struct io_comp_state *cs)
6253 {
6254 int ret;
6255
6256 ret = io_req_defer(req, sqe);
6257 if (ret) {
6258 if (ret != -EIOCBQUEUED) {
6259 fail_req:
6260 req_set_fail_links(req);
6261 io_put_req(req);
6262 io_req_complete(req, ret);
6263 }
6264 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6265 if (!req->async_data) {
6266 ret = io_req_defer_prep(req, sqe);
6267 if (unlikely(ret))
6268 goto fail_req;
6269 }
6270
6271 /*
6272 * Never try inline submit of IOSQE_ASYNC is set, go straight
6273 * to async execution.
6274 */
6275 io_req_init_async(req);
6276 req->work.flags |= IO_WQ_WORK_CONCURRENT;
6277 io_queue_async_work(req);
6278 } else {
6279 if (sqe) {
6280 ret = io_req_prep(req, sqe);
6281 if (unlikely(ret))
6282 goto fail_req;
6283 }
6284 __io_queue_sqe(req, cs);
6285 }
6286 }
6287
6288 static inline void io_queue_link_head(struct io_kiocb *req,
6289 struct io_comp_state *cs)
6290 {
6291 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6292 io_put_req(req);
6293 io_req_complete(req, -ECANCELED);
6294 } else
6295 io_queue_sqe(req, NULL, cs);
6296 }
6297
6298 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6299 struct io_kiocb **link, struct io_comp_state *cs)
6300 {
6301 struct io_ring_ctx *ctx = req->ctx;
6302 int ret;
6303
6304 /*
6305 * If we already have a head request, queue this one for async
6306 * submittal once the head completes. If we don't have a head but
6307 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6308 * submitted sync once the chain is complete. If none of those
6309 * conditions are true (normal request), then just queue it.
6310 */
6311 if (*link) {
6312 struct io_kiocb *head = *link;
6313
6314 /*
6315 * Taking sequential execution of a link, draining both sides
6316 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6317 * requests in the link. So, it drains the head and the
6318 * next after the link request. The last one is done via
6319 * drain_next flag to persist the effect across calls.
6320 */
6321 if (req->flags & REQ_F_IO_DRAIN) {
6322 head->flags |= REQ_F_IO_DRAIN;
6323 ctx->drain_next = 1;
6324 }
6325 ret = io_req_defer_prep(req, sqe);
6326 if (unlikely(ret)) {
6327 /* fail even hard links since we don't submit */
6328 head->flags |= REQ_F_FAIL_LINK;
6329 return ret;
6330 }
6331 trace_io_uring_link(ctx, req, head);
6332 list_add_tail(&req->link_list, &head->link_list);
6333
6334 /* last request of a link, enqueue the link */
6335 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6336 io_queue_link_head(head, cs);
6337 *link = NULL;
6338 }
6339 } else {
6340 if (unlikely(ctx->drain_next)) {
6341 req->flags |= REQ_F_IO_DRAIN;
6342 ctx->drain_next = 0;
6343 }
6344 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6345 req->flags |= REQ_F_LINK_HEAD;
6346 INIT_LIST_HEAD(&req->link_list);
6347
6348 ret = io_req_defer_prep(req, sqe);
6349 if (unlikely(ret))
6350 req->flags |= REQ_F_FAIL_LINK;
6351 *link = req;
6352 } else {
6353 io_queue_sqe(req, sqe, cs);
6354 }
6355 }
6356
6357 return 0;
6358 }
6359
6360 /*
6361 * Batched submission is done, ensure local IO is flushed out.
6362 */
6363 static void io_submit_state_end(struct io_submit_state *state)
6364 {
6365 if (!list_empty(&state->comp.list))
6366 io_submit_flush_completions(&state->comp);
6367 blk_finish_plug(&state->plug);
6368 io_state_file_put(state);
6369 if (state->free_reqs)
6370 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6371 }
6372
6373 /*
6374 * Start submission side cache.
6375 */
6376 static void io_submit_state_start(struct io_submit_state *state,
6377 struct io_ring_ctx *ctx, unsigned int max_ios)
6378 {
6379 blk_start_plug(&state->plug);
6380 state->comp.nr = 0;
6381 INIT_LIST_HEAD(&state->comp.list);
6382 state->comp.ctx = ctx;
6383 state->free_reqs = 0;
6384 state->file = NULL;
6385 state->ios_left = max_ios;
6386 }
6387
6388 static void io_commit_sqring(struct io_ring_ctx *ctx)
6389 {
6390 struct io_rings *rings = ctx->rings;
6391
6392 /*
6393 * Ensure any loads from the SQEs are done at this point,
6394 * since once we write the new head, the application could
6395 * write new data to them.
6396 */
6397 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6398 }
6399
6400 /*
6401 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6402 * that is mapped by userspace. This means that care needs to be taken to
6403 * ensure that reads are stable, as we cannot rely on userspace always
6404 * being a good citizen. If members of the sqe are validated and then later
6405 * used, it's important that those reads are done through READ_ONCE() to
6406 * prevent a re-load down the line.
6407 */
6408 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6409 {
6410 u32 *sq_array = ctx->sq_array;
6411 unsigned head;
6412
6413 /*
6414 * The cached sq head (or cq tail) serves two purposes:
6415 *
6416 * 1) allows us to batch the cost of updating the user visible
6417 * head updates.
6418 * 2) allows the kernel side to track the head on its own, even
6419 * though the application is the one updating it.
6420 */
6421 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6422 if (likely(head < ctx->sq_entries))
6423 return &ctx->sq_sqes[head];
6424
6425 /* drop invalid entries */
6426 ctx->cached_sq_dropped++;
6427 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6428 return NULL;
6429 }
6430
6431 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6432 {
6433 ctx->cached_sq_head++;
6434 }
6435
6436 /*
6437 * Check SQE restrictions (opcode and flags).
6438 *
6439 * Returns 'true' if SQE is allowed, 'false' otherwise.
6440 */
6441 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6442 struct io_kiocb *req,
6443 unsigned int sqe_flags)
6444 {
6445 if (!ctx->restricted)
6446 return true;
6447
6448 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6449 return false;
6450
6451 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6452 ctx->restrictions.sqe_flags_required)
6453 return false;
6454
6455 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6456 ctx->restrictions.sqe_flags_required))
6457 return false;
6458
6459 return true;
6460 }
6461
6462 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6463 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6464 IOSQE_BUFFER_SELECT)
6465
6466 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6467 const struct io_uring_sqe *sqe,
6468 struct io_submit_state *state)
6469 {
6470 unsigned int sqe_flags;
6471 int id, ret;
6472
6473 req->opcode = READ_ONCE(sqe->opcode);
6474 req->user_data = READ_ONCE(sqe->user_data);
6475 req->async_data = NULL;
6476 req->file = NULL;
6477 req->ctx = ctx;
6478 req->flags = 0;
6479 /* one is dropped after submission, the other at completion */
6480 refcount_set(&req->refs, 2);
6481 req->task = current;
6482 req->result = 0;
6483
6484 if (unlikely(req->opcode >= IORING_OP_LAST))
6485 return -EINVAL;
6486
6487 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
6488 return -EFAULT;
6489
6490 sqe_flags = READ_ONCE(sqe->flags);
6491 /* enforce forwards compatibility on users */
6492 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6493 return -EINVAL;
6494
6495 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6496 return -EACCES;
6497
6498 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6499 !io_op_defs[req->opcode].buffer_select)
6500 return -EOPNOTSUPP;
6501
6502 id = READ_ONCE(sqe->personality);
6503 if (id) {
6504 struct io_identity *iod;
6505
6506 iod = idr_find(&ctx->personality_idr, id);
6507 if (unlikely(!iod))
6508 return -EINVAL;
6509 refcount_inc(&iod->count);
6510
6511 __io_req_init_async(req);
6512 get_cred(iod->creds);
6513 req->work.identity = iod;
6514 req->work.flags |= IO_WQ_WORK_CREDS;
6515 }
6516
6517 /* same numerical values with corresponding REQ_F_*, safe to copy */
6518 req->flags |= sqe_flags;
6519
6520 if (!io_op_defs[req->opcode].needs_file)
6521 return 0;
6522
6523 ret = io_req_set_file(state, req, READ_ONCE(sqe->fd));
6524 state->ios_left--;
6525 return ret;
6526 }
6527
6528 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6529 {
6530 struct io_submit_state state;
6531 struct io_kiocb *link = NULL;
6532 int i, submitted = 0;
6533
6534 /* if we have a backlog and couldn't flush it all, return BUSY */
6535 if (test_bit(0, &ctx->sq_check_overflow)) {
6536 if (!list_empty(&ctx->cq_overflow_list) &&
6537 !io_cqring_overflow_flush(ctx, false, NULL, NULL))
6538 return -EBUSY;
6539 }
6540
6541 /* make sure SQ entry isn't read before tail */
6542 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6543
6544 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6545 return -EAGAIN;
6546
6547 percpu_counter_add(&current->io_uring->inflight, nr);
6548 refcount_add(nr, &current->usage);
6549
6550 io_submit_state_start(&state, ctx, nr);
6551
6552 for (i = 0; i < nr; i++) {
6553 const struct io_uring_sqe *sqe;
6554 struct io_kiocb *req;
6555 int err;
6556
6557 sqe = io_get_sqe(ctx);
6558 if (unlikely(!sqe)) {
6559 io_consume_sqe(ctx);
6560 break;
6561 }
6562 req = io_alloc_req(ctx, &state);
6563 if (unlikely(!req)) {
6564 if (!submitted)
6565 submitted = -EAGAIN;
6566 break;
6567 }
6568 io_consume_sqe(ctx);
6569 /* will complete beyond this point, count as submitted */
6570 submitted++;
6571
6572 err = io_init_req(ctx, req, sqe, &state);
6573 if (unlikely(err)) {
6574 fail_req:
6575 io_put_req(req);
6576 io_req_complete(req, err);
6577 break;
6578 }
6579
6580 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6581 true, io_async_submit(ctx));
6582 err = io_submit_sqe(req, sqe, &link, &state.comp);
6583 if (err)
6584 goto fail_req;
6585 }
6586
6587 if (unlikely(submitted != nr)) {
6588 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6589 struct io_uring_task *tctx = current->io_uring;
6590 int unused = nr - ref_used;
6591
6592 percpu_ref_put_many(&ctx->refs, unused);
6593 percpu_counter_sub(&tctx->inflight, unused);
6594 put_task_struct_many(current, unused);
6595 }
6596 if (link)
6597 io_queue_link_head(link, &state.comp);
6598 io_submit_state_end(&state);
6599
6600 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6601 io_commit_sqring(ctx);
6602
6603 return submitted;
6604 }
6605
6606 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6607 {
6608 /* Tell userspace we may need a wakeup call */
6609 spin_lock_irq(&ctx->completion_lock);
6610 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6611 spin_unlock_irq(&ctx->completion_lock);
6612 }
6613
6614 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6615 {
6616 spin_lock_irq(&ctx->completion_lock);
6617 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6618 spin_unlock_irq(&ctx->completion_lock);
6619 }
6620
6621 static int io_sq_wake_function(struct wait_queue_entry *wqe, unsigned mode,
6622 int sync, void *key)
6623 {
6624 struct io_ring_ctx *ctx = container_of(wqe, struct io_ring_ctx, sqo_wait_entry);
6625 int ret;
6626
6627 ret = autoremove_wake_function(wqe, mode, sync, key);
6628 if (ret) {
6629 unsigned long flags;
6630
6631 spin_lock_irqsave(&ctx->completion_lock, flags);
6632 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6633 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6634 }
6635 return ret;
6636 }
6637
6638 enum sq_ret {
6639 SQT_IDLE = 1,
6640 SQT_SPIN = 2,
6641 SQT_DID_WORK = 4,
6642 };
6643
6644 static enum sq_ret __io_sq_thread(struct io_ring_ctx *ctx,
6645 unsigned long start_jiffies, bool cap_entries)
6646 {
6647 unsigned long timeout = start_jiffies + ctx->sq_thread_idle;
6648 struct io_sq_data *sqd = ctx->sq_data;
6649 unsigned int to_submit;
6650 int ret = 0;
6651
6652 again:
6653 if (!list_empty(&ctx->iopoll_list)) {
6654 unsigned nr_events = 0;
6655
6656 mutex_lock(&ctx->uring_lock);
6657 if (!list_empty(&ctx->iopoll_list) && !need_resched())
6658 io_do_iopoll(ctx, &nr_events, 0);
6659 mutex_unlock(&ctx->uring_lock);
6660 }
6661
6662 to_submit = io_sqring_entries(ctx);
6663
6664 /*
6665 * If submit got -EBUSY, flag us as needing the application
6666 * to enter the kernel to reap and flush events.
6667 */
6668 if (!to_submit || ret == -EBUSY || need_resched()) {
6669 /*
6670 * Drop cur_mm before scheduling, we can't hold it for
6671 * long periods (or over schedule()). Do this before
6672 * adding ourselves to the waitqueue, as the unuse/drop
6673 * may sleep.
6674 */
6675 io_sq_thread_drop_mm();
6676
6677 /*
6678 * We're polling. If we're within the defined idle
6679 * period, then let us spin without work before going
6680 * to sleep. The exception is if we got EBUSY doing
6681 * more IO, we should wait for the application to
6682 * reap events and wake us up.
6683 */
6684 if (!list_empty(&ctx->iopoll_list) || need_resched() ||
6685 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6686 !percpu_ref_is_dying(&ctx->refs)))
6687 return SQT_SPIN;
6688
6689 prepare_to_wait(&sqd->wait, &ctx->sqo_wait_entry,
6690 TASK_INTERRUPTIBLE);
6691
6692 /*
6693 * While doing polled IO, before going to sleep, we need
6694 * to check if there are new reqs added to iopoll_list,
6695 * it is because reqs may have been punted to io worker
6696 * and will be added to iopoll_list later, hence check
6697 * the iopoll_list again.
6698 */
6699 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6700 !list_empty_careful(&ctx->iopoll_list)) {
6701 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6702 goto again;
6703 }
6704
6705 to_submit = io_sqring_entries(ctx);
6706 if (!to_submit || ret == -EBUSY)
6707 return SQT_IDLE;
6708 }
6709
6710 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6711 io_ring_clear_wakeup_flag(ctx);
6712
6713 /* if we're handling multiple rings, cap submit size for fairness */
6714 if (cap_entries && to_submit > 8)
6715 to_submit = 8;
6716
6717 mutex_lock(&ctx->uring_lock);
6718 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6719 ret = io_submit_sqes(ctx, to_submit);
6720 mutex_unlock(&ctx->uring_lock);
6721
6722 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6723 wake_up(&ctx->sqo_sq_wait);
6724
6725 return SQT_DID_WORK;
6726 }
6727
6728 static void io_sqd_init_new(struct io_sq_data *sqd)
6729 {
6730 struct io_ring_ctx *ctx;
6731
6732 while (!list_empty(&sqd->ctx_new_list)) {
6733 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6734 init_wait(&ctx->sqo_wait_entry);
6735 ctx->sqo_wait_entry.func = io_sq_wake_function;
6736 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6737 complete(&ctx->sq_thread_comp);
6738 }
6739 }
6740
6741 static int io_sq_thread(void *data)
6742 {
6743 struct cgroup_subsys_state *cur_css = NULL;
6744 const struct cred *old_cred = NULL;
6745 struct io_sq_data *sqd = data;
6746 struct io_ring_ctx *ctx;
6747 unsigned long start_jiffies;
6748
6749 start_jiffies = jiffies;
6750 while (!kthread_should_stop()) {
6751 enum sq_ret ret = 0;
6752 bool cap_entries;
6753
6754 /*
6755 * Any changes to the sqd lists are synchronized through the
6756 * kthread parking. This synchronizes the thread vs users,
6757 * the users are synchronized on the sqd->ctx_lock.
6758 */
6759 if (kthread_should_park())
6760 kthread_parkme();
6761
6762 if (unlikely(!list_empty(&sqd->ctx_new_list)))
6763 io_sqd_init_new(sqd);
6764
6765 cap_entries = !list_is_singular(&sqd->ctx_list);
6766
6767 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6768 if (current->cred != ctx->creds) {
6769 if (old_cred)
6770 revert_creds(old_cred);
6771 old_cred = override_creds(ctx->creds);
6772 }
6773 io_sq_thread_associate_blkcg(ctx, &cur_css);
6774 #ifdef CONFIG_AUDIT
6775 current->loginuid = ctx->loginuid;
6776 current->sessionid = ctx->sessionid;
6777 #endif
6778
6779 ret |= __io_sq_thread(ctx, start_jiffies, cap_entries);
6780
6781 io_sq_thread_drop_mm();
6782 }
6783
6784 if (ret & SQT_SPIN) {
6785 io_run_task_work();
6786 cond_resched();
6787 } else if (ret == SQT_IDLE) {
6788 if (kthread_should_park())
6789 continue;
6790 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6791 io_ring_set_wakeup_flag(ctx);
6792 schedule();
6793 start_jiffies = jiffies;
6794 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6795 io_ring_clear_wakeup_flag(ctx);
6796 }
6797 }
6798
6799 io_run_task_work();
6800
6801 if (cur_css)
6802 io_sq_thread_unassociate_blkcg();
6803 if (old_cred)
6804 revert_creds(old_cred);
6805
6806 kthread_parkme();
6807
6808 return 0;
6809 }
6810
6811 struct io_wait_queue {
6812 struct wait_queue_entry wq;
6813 struct io_ring_ctx *ctx;
6814 unsigned to_wait;
6815 unsigned nr_timeouts;
6816 };
6817
6818 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6819 {
6820 struct io_ring_ctx *ctx = iowq->ctx;
6821
6822 /*
6823 * Wake up if we have enough events, or if a timeout occurred since we
6824 * started waiting. For timeouts, we always want to return to userspace,
6825 * regardless of event count.
6826 */
6827 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6828 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6829 }
6830
6831 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6832 int wake_flags, void *key)
6833 {
6834 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6835 wq);
6836
6837 /* use noflush == true, as we can't safely rely on locking context */
6838 if (!io_should_wake(iowq, true))
6839 return -1;
6840
6841 return autoremove_wake_function(curr, mode, wake_flags, key);
6842 }
6843
6844 static int io_run_task_work_sig(void)
6845 {
6846 if (io_run_task_work())
6847 return 1;
6848 if (!signal_pending(current))
6849 return 0;
6850 if (current->jobctl & JOBCTL_TASK_WORK) {
6851 spin_lock_irq(&current->sighand->siglock);
6852 current->jobctl &= ~JOBCTL_TASK_WORK;
6853 recalc_sigpending();
6854 spin_unlock_irq(&current->sighand->siglock);
6855 return 1;
6856 }
6857 return -EINTR;
6858 }
6859
6860 /*
6861 * Wait until events become available, if we don't already have some. The
6862 * application must reap them itself, as they reside on the shared cq ring.
6863 */
6864 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6865 const sigset_t __user *sig, size_t sigsz)
6866 {
6867 struct io_wait_queue iowq = {
6868 .wq = {
6869 .private = current,
6870 .func = io_wake_function,
6871 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6872 },
6873 .ctx = ctx,
6874 .to_wait = min_events,
6875 };
6876 struct io_rings *rings = ctx->rings;
6877 int ret = 0;
6878
6879 do {
6880 if (io_cqring_events(ctx, false) >= min_events)
6881 return 0;
6882 if (!io_run_task_work())
6883 break;
6884 } while (1);
6885
6886 if (sig) {
6887 #ifdef CONFIG_COMPAT
6888 if (in_compat_syscall())
6889 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6890 sigsz);
6891 else
6892 #endif
6893 ret = set_user_sigmask(sig, sigsz);
6894
6895 if (ret)
6896 return ret;
6897 }
6898
6899 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6900 trace_io_uring_cqring_wait(ctx, min_events);
6901 do {
6902 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6903 TASK_INTERRUPTIBLE);
6904 /* make sure we run task_work before checking for signals */
6905 ret = io_run_task_work_sig();
6906 if (ret > 0)
6907 continue;
6908 else if (ret < 0)
6909 break;
6910 if (io_should_wake(&iowq, false))
6911 break;
6912 schedule();
6913 } while (1);
6914 finish_wait(&ctx->wait, &iowq.wq);
6915
6916 restore_saved_sigmask_unless(ret == -EINTR);
6917
6918 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6919 }
6920
6921 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6922 {
6923 #if defined(CONFIG_UNIX)
6924 if (ctx->ring_sock) {
6925 struct sock *sock = ctx->ring_sock->sk;
6926 struct sk_buff *skb;
6927
6928 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6929 kfree_skb(skb);
6930 }
6931 #else
6932 int i;
6933
6934 for (i = 0; i < ctx->nr_user_files; i++) {
6935 struct file *file;
6936
6937 file = io_file_from_index(ctx, i);
6938 if (file)
6939 fput(file);
6940 }
6941 #endif
6942 }
6943
6944 static void io_file_ref_kill(struct percpu_ref *ref)
6945 {
6946 struct fixed_file_data *data;
6947
6948 data = container_of(ref, struct fixed_file_data, refs);
6949 complete(&data->done);
6950 }
6951
6952 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6953 {
6954 struct fixed_file_data *data = ctx->file_data;
6955 struct fixed_file_ref_node *ref_node = NULL;
6956 unsigned nr_tables, i;
6957
6958 if (!data)
6959 return -ENXIO;
6960
6961 spin_lock(&data->lock);
6962 if (!list_empty(&data->ref_list))
6963 ref_node = list_first_entry(&data->ref_list,
6964 struct fixed_file_ref_node, node);
6965 spin_unlock(&data->lock);
6966 if (ref_node)
6967 percpu_ref_kill(&ref_node->refs);
6968
6969 percpu_ref_kill(&data->refs);
6970
6971 /* wait for all refs nodes to complete */
6972 flush_delayed_work(&ctx->file_put_work);
6973 wait_for_completion(&data->done);
6974
6975 __io_sqe_files_unregister(ctx);
6976 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6977 for (i = 0; i < nr_tables; i++)
6978 kfree(data->table[i].files);
6979 kfree(data->table);
6980 percpu_ref_exit(&data->refs);
6981 kfree(data);
6982 ctx->file_data = NULL;
6983 ctx->nr_user_files = 0;
6984 return 0;
6985 }
6986
6987 static void io_put_sq_data(struct io_sq_data *sqd)
6988 {
6989 if (refcount_dec_and_test(&sqd->refs)) {
6990 /*
6991 * The park is a bit of a work-around, without it we get
6992 * warning spews on shutdown with SQPOLL set and affinity
6993 * set to a single CPU.
6994 */
6995 if (sqd->thread) {
6996 kthread_park(sqd->thread);
6997 kthread_stop(sqd->thread);
6998 }
6999
7000 kfree(sqd);
7001 }
7002 }
7003
7004 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7005 {
7006 struct io_ring_ctx *ctx_attach;
7007 struct io_sq_data *sqd;
7008 struct fd f;
7009
7010 f = fdget(p->wq_fd);
7011 if (!f.file)
7012 return ERR_PTR(-ENXIO);
7013 if (f.file->f_op != &io_uring_fops) {
7014 fdput(f);
7015 return ERR_PTR(-EINVAL);
7016 }
7017
7018 ctx_attach = f.file->private_data;
7019 sqd = ctx_attach->sq_data;
7020 if (!sqd) {
7021 fdput(f);
7022 return ERR_PTR(-EINVAL);
7023 }
7024
7025 refcount_inc(&sqd->refs);
7026 fdput(f);
7027 return sqd;
7028 }
7029
7030 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7031 {
7032 struct io_sq_data *sqd;
7033
7034 if (p->flags & IORING_SETUP_ATTACH_WQ)
7035 return io_attach_sq_data(p);
7036
7037 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7038 if (!sqd)
7039 return ERR_PTR(-ENOMEM);
7040
7041 refcount_set(&sqd->refs, 1);
7042 INIT_LIST_HEAD(&sqd->ctx_list);
7043 INIT_LIST_HEAD(&sqd->ctx_new_list);
7044 mutex_init(&sqd->ctx_lock);
7045 mutex_init(&sqd->lock);
7046 init_waitqueue_head(&sqd->wait);
7047 return sqd;
7048 }
7049
7050 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7051 __releases(&sqd->lock)
7052 {
7053 if (!sqd->thread)
7054 return;
7055 kthread_unpark(sqd->thread);
7056 mutex_unlock(&sqd->lock);
7057 }
7058
7059 static void io_sq_thread_park(struct io_sq_data *sqd)
7060 __acquires(&sqd->lock)
7061 {
7062 if (!sqd->thread)
7063 return;
7064 mutex_lock(&sqd->lock);
7065 kthread_park(sqd->thread);
7066 }
7067
7068 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7069 {
7070 struct io_sq_data *sqd = ctx->sq_data;
7071
7072 if (sqd) {
7073 if (sqd->thread) {
7074 /*
7075 * We may arrive here from the error branch in
7076 * io_sq_offload_create() where the kthread is created
7077 * without being waked up, thus wake it up now to make
7078 * sure the wait will complete.
7079 */
7080 wake_up_process(sqd->thread);
7081 wait_for_completion(&ctx->sq_thread_comp);
7082
7083 io_sq_thread_park(sqd);
7084 }
7085
7086 mutex_lock(&sqd->ctx_lock);
7087 list_del(&ctx->sqd_list);
7088 mutex_unlock(&sqd->ctx_lock);
7089
7090 if (sqd->thread) {
7091 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
7092 io_sq_thread_unpark(sqd);
7093 }
7094
7095 io_put_sq_data(sqd);
7096 ctx->sq_data = NULL;
7097 }
7098 }
7099
7100 static void io_finish_async(struct io_ring_ctx *ctx)
7101 {
7102 io_sq_thread_stop(ctx);
7103
7104 if (ctx->io_wq) {
7105 io_wq_destroy(ctx->io_wq);
7106 ctx->io_wq = NULL;
7107 }
7108 }
7109
7110 #if defined(CONFIG_UNIX)
7111 /*
7112 * Ensure the UNIX gc is aware of our file set, so we are certain that
7113 * the io_uring can be safely unregistered on process exit, even if we have
7114 * loops in the file referencing.
7115 */
7116 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7117 {
7118 struct sock *sk = ctx->ring_sock->sk;
7119 struct scm_fp_list *fpl;
7120 struct sk_buff *skb;
7121 int i, nr_files;
7122
7123 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7124 if (!fpl)
7125 return -ENOMEM;
7126
7127 skb = alloc_skb(0, GFP_KERNEL);
7128 if (!skb) {
7129 kfree(fpl);
7130 return -ENOMEM;
7131 }
7132
7133 skb->sk = sk;
7134
7135 nr_files = 0;
7136 fpl->user = get_uid(ctx->user);
7137 for (i = 0; i < nr; i++) {
7138 struct file *file = io_file_from_index(ctx, i + offset);
7139
7140 if (!file)
7141 continue;
7142 fpl->fp[nr_files] = get_file(file);
7143 unix_inflight(fpl->user, fpl->fp[nr_files]);
7144 nr_files++;
7145 }
7146
7147 if (nr_files) {
7148 fpl->max = SCM_MAX_FD;
7149 fpl->count = nr_files;
7150 UNIXCB(skb).fp = fpl;
7151 skb->destructor = unix_destruct_scm;
7152 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7153 skb_queue_head(&sk->sk_receive_queue, skb);
7154
7155 for (i = 0; i < nr_files; i++)
7156 fput(fpl->fp[i]);
7157 } else {
7158 kfree_skb(skb);
7159 kfree(fpl);
7160 }
7161
7162 return 0;
7163 }
7164
7165 /*
7166 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7167 * causes regular reference counting to break down. We rely on the UNIX
7168 * garbage collection to take care of this problem for us.
7169 */
7170 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7171 {
7172 unsigned left, total;
7173 int ret = 0;
7174
7175 total = 0;
7176 left = ctx->nr_user_files;
7177 while (left) {
7178 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7179
7180 ret = __io_sqe_files_scm(ctx, this_files, total);
7181 if (ret)
7182 break;
7183 left -= this_files;
7184 total += this_files;
7185 }
7186
7187 if (!ret)
7188 return 0;
7189
7190 while (total < ctx->nr_user_files) {
7191 struct file *file = io_file_from_index(ctx, total);
7192
7193 if (file)
7194 fput(file);
7195 total++;
7196 }
7197
7198 return ret;
7199 }
7200 #else
7201 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7202 {
7203 return 0;
7204 }
7205 #endif
7206
7207 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7208 unsigned nr_tables, unsigned nr_files)
7209 {
7210 int i;
7211
7212 for (i = 0; i < nr_tables; i++) {
7213 struct fixed_file_table *table = &file_data->table[i];
7214 unsigned this_files;
7215
7216 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7217 table->files = kcalloc(this_files, sizeof(struct file *),
7218 GFP_KERNEL);
7219 if (!table->files)
7220 break;
7221 nr_files -= this_files;
7222 }
7223
7224 if (i == nr_tables)
7225 return 0;
7226
7227 for (i = 0; i < nr_tables; i++) {
7228 struct fixed_file_table *table = &file_data->table[i];
7229 kfree(table->files);
7230 }
7231 return 1;
7232 }
7233
7234 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7235 {
7236 #if defined(CONFIG_UNIX)
7237 struct sock *sock = ctx->ring_sock->sk;
7238 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7239 struct sk_buff *skb;
7240 int i;
7241
7242 __skb_queue_head_init(&list);
7243
7244 /*
7245 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7246 * remove this entry and rearrange the file array.
7247 */
7248 skb = skb_dequeue(head);
7249 while (skb) {
7250 struct scm_fp_list *fp;
7251
7252 fp = UNIXCB(skb).fp;
7253 for (i = 0; i < fp->count; i++) {
7254 int left;
7255
7256 if (fp->fp[i] != file)
7257 continue;
7258
7259 unix_notinflight(fp->user, fp->fp[i]);
7260 left = fp->count - 1 - i;
7261 if (left) {
7262 memmove(&fp->fp[i], &fp->fp[i + 1],
7263 left * sizeof(struct file *));
7264 }
7265 fp->count--;
7266 if (!fp->count) {
7267 kfree_skb(skb);
7268 skb = NULL;
7269 } else {
7270 __skb_queue_tail(&list, skb);
7271 }
7272 fput(file);
7273 file = NULL;
7274 break;
7275 }
7276
7277 if (!file)
7278 break;
7279
7280 __skb_queue_tail(&list, skb);
7281
7282 skb = skb_dequeue(head);
7283 }
7284
7285 if (skb_peek(&list)) {
7286 spin_lock_irq(&head->lock);
7287 while ((skb = __skb_dequeue(&list)) != NULL)
7288 __skb_queue_tail(head, skb);
7289 spin_unlock_irq(&head->lock);
7290 }
7291 #else
7292 fput(file);
7293 #endif
7294 }
7295
7296 struct io_file_put {
7297 struct list_head list;
7298 struct file *file;
7299 };
7300
7301 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7302 {
7303 struct fixed_file_data *file_data = ref_node->file_data;
7304 struct io_ring_ctx *ctx = file_data->ctx;
7305 struct io_file_put *pfile, *tmp;
7306
7307 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7308 list_del(&pfile->list);
7309 io_ring_file_put(ctx, pfile->file);
7310 kfree(pfile);
7311 }
7312
7313 spin_lock(&file_data->lock);
7314 list_del(&ref_node->node);
7315 spin_unlock(&file_data->lock);
7316
7317 percpu_ref_exit(&ref_node->refs);
7318 kfree(ref_node);
7319 percpu_ref_put(&file_data->refs);
7320 }
7321
7322 static void io_file_put_work(struct work_struct *work)
7323 {
7324 struct io_ring_ctx *ctx;
7325 struct llist_node *node;
7326
7327 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7328 node = llist_del_all(&ctx->file_put_llist);
7329
7330 while (node) {
7331 struct fixed_file_ref_node *ref_node;
7332 struct llist_node *next = node->next;
7333
7334 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7335 __io_file_put_work(ref_node);
7336 node = next;
7337 }
7338 }
7339
7340 static void io_file_data_ref_zero(struct percpu_ref *ref)
7341 {
7342 struct fixed_file_ref_node *ref_node;
7343 struct io_ring_ctx *ctx;
7344 bool first_add;
7345 int delay = HZ;
7346
7347 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7348 ctx = ref_node->file_data->ctx;
7349
7350 if (percpu_ref_is_dying(&ctx->file_data->refs))
7351 delay = 0;
7352
7353 first_add = llist_add(&ref_node->llist, &ctx->file_put_llist);
7354 if (!delay)
7355 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7356 else if (first_add)
7357 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7358 }
7359
7360 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7361 struct io_ring_ctx *ctx)
7362 {
7363 struct fixed_file_ref_node *ref_node;
7364
7365 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7366 if (!ref_node)
7367 return ERR_PTR(-ENOMEM);
7368
7369 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7370 0, GFP_KERNEL)) {
7371 kfree(ref_node);
7372 return ERR_PTR(-ENOMEM);
7373 }
7374 INIT_LIST_HEAD(&ref_node->node);
7375 INIT_LIST_HEAD(&ref_node->file_list);
7376 ref_node->file_data = ctx->file_data;
7377 return ref_node;
7378 }
7379
7380 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7381 {
7382 percpu_ref_exit(&ref_node->refs);
7383 kfree(ref_node);
7384 }
7385
7386 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7387 unsigned nr_args)
7388 {
7389 __s32 __user *fds = (__s32 __user *) arg;
7390 unsigned nr_tables, i;
7391 struct file *file;
7392 int fd, ret = -ENOMEM;
7393 struct fixed_file_ref_node *ref_node;
7394 struct fixed_file_data *file_data;
7395
7396 if (ctx->file_data)
7397 return -EBUSY;
7398 if (!nr_args)
7399 return -EINVAL;
7400 if (nr_args > IORING_MAX_FIXED_FILES)
7401 return -EMFILE;
7402
7403 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7404 if (!file_data)
7405 return -ENOMEM;
7406 file_data->ctx = ctx;
7407 init_completion(&file_data->done);
7408 INIT_LIST_HEAD(&file_data->ref_list);
7409 spin_lock_init(&file_data->lock);
7410
7411 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7412 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7413 GFP_KERNEL);
7414 if (!file_data->table)
7415 goto out_free;
7416
7417 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7418 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7419 goto out_free;
7420
7421 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7422 goto out_ref;
7423 ctx->file_data = file_data;
7424
7425 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7426 struct fixed_file_table *table;
7427 unsigned index;
7428
7429 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7430 ret = -EFAULT;
7431 goto out_fput;
7432 }
7433 /* allow sparse sets */
7434 if (fd == -1)
7435 continue;
7436
7437 file = fget(fd);
7438 ret = -EBADF;
7439 if (!file)
7440 goto out_fput;
7441
7442 /*
7443 * Don't allow io_uring instances to be registered. If UNIX
7444 * isn't enabled, then this causes a reference cycle and this
7445 * instance can never get freed. If UNIX is enabled we'll
7446 * handle it just fine, but there's still no point in allowing
7447 * a ring fd as it doesn't support regular read/write anyway.
7448 */
7449 if (file->f_op == &io_uring_fops) {
7450 fput(file);
7451 goto out_fput;
7452 }
7453 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7454 index = i & IORING_FILE_TABLE_MASK;
7455 table->files[index] = file;
7456 }
7457
7458 ret = io_sqe_files_scm(ctx);
7459 if (ret) {
7460 io_sqe_files_unregister(ctx);
7461 return ret;
7462 }
7463
7464 ref_node = alloc_fixed_file_ref_node(ctx);
7465 if (IS_ERR(ref_node)) {
7466 io_sqe_files_unregister(ctx);
7467 return PTR_ERR(ref_node);
7468 }
7469
7470 file_data->node = ref_node;
7471 spin_lock(&file_data->lock);
7472 list_add(&ref_node->node, &file_data->ref_list);
7473 spin_unlock(&file_data->lock);
7474 percpu_ref_get(&file_data->refs);
7475 return ret;
7476 out_fput:
7477 for (i = 0; i < ctx->nr_user_files; i++) {
7478 file = io_file_from_index(ctx, i);
7479 if (file)
7480 fput(file);
7481 }
7482 for (i = 0; i < nr_tables; i++)
7483 kfree(file_data->table[i].files);
7484 ctx->nr_user_files = 0;
7485 out_ref:
7486 percpu_ref_exit(&file_data->refs);
7487 out_free:
7488 kfree(file_data->table);
7489 kfree(file_data);
7490 ctx->file_data = NULL;
7491 return ret;
7492 }
7493
7494 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7495 int index)
7496 {
7497 #if defined(CONFIG_UNIX)
7498 struct sock *sock = ctx->ring_sock->sk;
7499 struct sk_buff_head *head = &sock->sk_receive_queue;
7500 struct sk_buff *skb;
7501
7502 /*
7503 * See if we can merge this file into an existing skb SCM_RIGHTS
7504 * file set. If there's no room, fall back to allocating a new skb
7505 * and filling it in.
7506 */
7507 spin_lock_irq(&head->lock);
7508 skb = skb_peek(head);
7509 if (skb) {
7510 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7511
7512 if (fpl->count < SCM_MAX_FD) {
7513 __skb_unlink(skb, head);
7514 spin_unlock_irq(&head->lock);
7515 fpl->fp[fpl->count] = get_file(file);
7516 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7517 fpl->count++;
7518 spin_lock_irq(&head->lock);
7519 __skb_queue_head(head, skb);
7520 } else {
7521 skb = NULL;
7522 }
7523 }
7524 spin_unlock_irq(&head->lock);
7525
7526 if (skb) {
7527 fput(file);
7528 return 0;
7529 }
7530
7531 return __io_sqe_files_scm(ctx, 1, index);
7532 #else
7533 return 0;
7534 #endif
7535 }
7536
7537 static int io_queue_file_removal(struct fixed_file_data *data,
7538 struct file *file)
7539 {
7540 struct io_file_put *pfile;
7541 struct fixed_file_ref_node *ref_node = data->node;
7542
7543 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7544 if (!pfile)
7545 return -ENOMEM;
7546
7547 pfile->file = file;
7548 list_add(&pfile->list, &ref_node->file_list);
7549
7550 return 0;
7551 }
7552
7553 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7554 struct io_uring_files_update *up,
7555 unsigned nr_args)
7556 {
7557 struct fixed_file_data *data = ctx->file_data;
7558 struct fixed_file_ref_node *ref_node;
7559 struct file *file;
7560 __s32 __user *fds;
7561 int fd, i, err;
7562 __u32 done;
7563 bool needs_switch = false;
7564
7565 if (check_add_overflow(up->offset, nr_args, &done))
7566 return -EOVERFLOW;
7567 if (done > ctx->nr_user_files)
7568 return -EINVAL;
7569
7570 ref_node = alloc_fixed_file_ref_node(ctx);
7571 if (IS_ERR(ref_node))
7572 return PTR_ERR(ref_node);
7573
7574 done = 0;
7575 fds = u64_to_user_ptr(up->fds);
7576 while (nr_args) {
7577 struct fixed_file_table *table;
7578 unsigned index;
7579
7580 err = 0;
7581 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7582 err = -EFAULT;
7583 break;
7584 }
7585 i = array_index_nospec(up->offset, ctx->nr_user_files);
7586 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7587 index = i & IORING_FILE_TABLE_MASK;
7588 if (table->files[index]) {
7589 file = table->files[index];
7590 err = io_queue_file_removal(data, file);
7591 if (err)
7592 break;
7593 table->files[index] = NULL;
7594 needs_switch = true;
7595 }
7596 if (fd != -1) {
7597 file = fget(fd);
7598 if (!file) {
7599 err = -EBADF;
7600 break;
7601 }
7602 /*
7603 * Don't allow io_uring instances to be registered. If
7604 * UNIX isn't enabled, then this causes a reference
7605 * cycle and this instance can never get freed. If UNIX
7606 * is enabled we'll handle it just fine, but there's
7607 * still no point in allowing a ring fd as it doesn't
7608 * support regular read/write anyway.
7609 */
7610 if (file->f_op == &io_uring_fops) {
7611 fput(file);
7612 err = -EBADF;
7613 break;
7614 }
7615 table->files[index] = file;
7616 err = io_sqe_file_register(ctx, file, i);
7617 if (err) {
7618 table->files[index] = NULL;
7619 fput(file);
7620 break;
7621 }
7622 }
7623 nr_args--;
7624 done++;
7625 up->offset++;
7626 }
7627
7628 if (needs_switch) {
7629 percpu_ref_kill(&data->node->refs);
7630 spin_lock(&data->lock);
7631 list_add(&ref_node->node, &data->ref_list);
7632 data->node = ref_node;
7633 spin_unlock(&data->lock);
7634 percpu_ref_get(&ctx->file_data->refs);
7635 } else
7636 destroy_fixed_file_ref_node(ref_node);
7637
7638 return done ? done : err;
7639 }
7640
7641 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7642 unsigned nr_args)
7643 {
7644 struct io_uring_files_update up;
7645
7646 if (!ctx->file_data)
7647 return -ENXIO;
7648 if (!nr_args)
7649 return -EINVAL;
7650 if (copy_from_user(&up, arg, sizeof(up)))
7651 return -EFAULT;
7652 if (up.resv)
7653 return -EINVAL;
7654
7655 return __io_sqe_files_update(ctx, &up, nr_args);
7656 }
7657
7658 static void io_free_work(struct io_wq_work *work)
7659 {
7660 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7661
7662 /* Consider that io_steal_work() relies on this ref */
7663 io_put_req(req);
7664 }
7665
7666 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7667 struct io_uring_params *p)
7668 {
7669 struct io_wq_data data;
7670 struct fd f;
7671 struct io_ring_ctx *ctx_attach;
7672 unsigned int concurrency;
7673 int ret = 0;
7674
7675 data.user = ctx->user;
7676 data.free_work = io_free_work;
7677 data.do_work = io_wq_submit_work;
7678
7679 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7680 /* Do QD, or 4 * CPUS, whatever is smallest */
7681 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7682
7683 ctx->io_wq = io_wq_create(concurrency, &data);
7684 if (IS_ERR(ctx->io_wq)) {
7685 ret = PTR_ERR(ctx->io_wq);
7686 ctx->io_wq = NULL;
7687 }
7688 return ret;
7689 }
7690
7691 f = fdget(p->wq_fd);
7692 if (!f.file)
7693 return -EBADF;
7694
7695 if (f.file->f_op != &io_uring_fops) {
7696 ret = -EINVAL;
7697 goto out_fput;
7698 }
7699
7700 ctx_attach = f.file->private_data;
7701 /* @io_wq is protected by holding the fd */
7702 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7703 ret = -EINVAL;
7704 goto out_fput;
7705 }
7706
7707 ctx->io_wq = ctx_attach->io_wq;
7708 out_fput:
7709 fdput(f);
7710 return ret;
7711 }
7712
7713 static int io_uring_alloc_task_context(struct task_struct *task)
7714 {
7715 struct io_uring_task *tctx;
7716 int ret;
7717
7718 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7719 if (unlikely(!tctx))
7720 return -ENOMEM;
7721
7722 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7723 if (unlikely(ret)) {
7724 kfree(tctx);
7725 return ret;
7726 }
7727
7728 xa_init(&tctx->xa);
7729 init_waitqueue_head(&tctx->wait);
7730 tctx->last = NULL;
7731 tctx->in_idle = 0;
7732 io_init_identity(&tctx->__identity);
7733 tctx->identity = &tctx->__identity;
7734 task->io_uring = tctx;
7735 return 0;
7736 }
7737
7738 void __io_uring_free(struct task_struct *tsk)
7739 {
7740 struct io_uring_task *tctx = tsk->io_uring;
7741
7742 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7743 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
7744 if (tctx->identity != &tctx->__identity)
7745 kfree(tctx->identity);
7746 percpu_counter_destroy(&tctx->inflight);
7747 kfree(tctx);
7748 tsk->io_uring = NULL;
7749 }
7750
7751 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7752 struct io_uring_params *p)
7753 {
7754 int ret;
7755
7756 if (ctx->flags & IORING_SETUP_SQPOLL) {
7757 struct io_sq_data *sqd;
7758
7759 ret = -EPERM;
7760 if (!capable(CAP_SYS_ADMIN))
7761 goto err;
7762
7763 sqd = io_get_sq_data(p);
7764 if (IS_ERR(sqd)) {
7765 ret = PTR_ERR(sqd);
7766 goto err;
7767 }
7768
7769 ctx->sq_data = sqd;
7770 io_sq_thread_park(sqd);
7771 mutex_lock(&sqd->ctx_lock);
7772 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
7773 mutex_unlock(&sqd->ctx_lock);
7774 io_sq_thread_unpark(sqd);
7775
7776 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7777 if (!ctx->sq_thread_idle)
7778 ctx->sq_thread_idle = HZ;
7779
7780 if (sqd->thread)
7781 goto done;
7782
7783 if (p->flags & IORING_SETUP_SQ_AFF) {
7784 int cpu = p->sq_thread_cpu;
7785
7786 ret = -EINVAL;
7787 if (cpu >= nr_cpu_ids)
7788 goto err;
7789 if (!cpu_online(cpu))
7790 goto err;
7791
7792 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
7793 cpu, "io_uring-sq");
7794 } else {
7795 sqd->thread = kthread_create(io_sq_thread, sqd,
7796 "io_uring-sq");
7797 }
7798 if (IS_ERR(sqd->thread)) {
7799 ret = PTR_ERR(sqd->thread);
7800 sqd->thread = NULL;
7801 goto err;
7802 }
7803 ret = io_uring_alloc_task_context(sqd->thread);
7804 if (ret)
7805 goto err;
7806 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7807 /* Can't have SQ_AFF without SQPOLL */
7808 ret = -EINVAL;
7809 goto err;
7810 }
7811
7812 done:
7813 ret = io_init_wq_offload(ctx, p);
7814 if (ret)
7815 goto err;
7816
7817 return 0;
7818 err:
7819 io_finish_async(ctx);
7820 return ret;
7821 }
7822
7823 static void io_sq_offload_start(struct io_ring_ctx *ctx)
7824 {
7825 struct io_sq_data *sqd = ctx->sq_data;
7826
7827 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
7828 wake_up_process(sqd->thread);
7829 }
7830
7831 static inline void __io_unaccount_mem(struct user_struct *user,
7832 unsigned long nr_pages)
7833 {
7834 atomic_long_sub(nr_pages, &user->locked_vm);
7835 }
7836
7837 static inline int __io_account_mem(struct user_struct *user,
7838 unsigned long nr_pages)
7839 {
7840 unsigned long page_limit, cur_pages, new_pages;
7841
7842 /* Don't allow more pages than we can safely lock */
7843 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
7844
7845 do {
7846 cur_pages = atomic_long_read(&user->locked_vm);
7847 new_pages = cur_pages + nr_pages;
7848 if (new_pages > page_limit)
7849 return -ENOMEM;
7850 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
7851 new_pages) != cur_pages);
7852
7853 return 0;
7854 }
7855
7856 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7857 enum io_mem_account acct)
7858 {
7859 if (ctx->limit_mem)
7860 __io_unaccount_mem(ctx->user, nr_pages);
7861
7862 if (ctx->mm_account) {
7863 if (acct == ACCT_LOCKED)
7864 ctx->mm_account->locked_vm -= nr_pages;
7865 else if (acct == ACCT_PINNED)
7866 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
7867 }
7868 }
7869
7870 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7871 enum io_mem_account acct)
7872 {
7873 int ret;
7874
7875 if (ctx->limit_mem) {
7876 ret = __io_account_mem(ctx->user, nr_pages);
7877 if (ret)
7878 return ret;
7879 }
7880
7881 if (ctx->mm_account) {
7882 if (acct == ACCT_LOCKED)
7883 ctx->mm_account->locked_vm += nr_pages;
7884 else if (acct == ACCT_PINNED)
7885 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
7886 }
7887
7888 return 0;
7889 }
7890
7891 static void io_mem_free(void *ptr)
7892 {
7893 struct page *page;
7894
7895 if (!ptr)
7896 return;
7897
7898 page = virt_to_head_page(ptr);
7899 if (put_page_testzero(page))
7900 free_compound_page(page);
7901 }
7902
7903 static void *io_mem_alloc(size_t size)
7904 {
7905 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7906 __GFP_NORETRY;
7907
7908 return (void *) __get_free_pages(gfp_flags, get_order(size));
7909 }
7910
7911 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7912 size_t *sq_offset)
7913 {
7914 struct io_rings *rings;
7915 size_t off, sq_array_size;
7916
7917 off = struct_size(rings, cqes, cq_entries);
7918 if (off == SIZE_MAX)
7919 return SIZE_MAX;
7920
7921 #ifdef CONFIG_SMP
7922 off = ALIGN(off, SMP_CACHE_BYTES);
7923 if (off == 0)
7924 return SIZE_MAX;
7925 #endif
7926
7927 if (sq_offset)
7928 *sq_offset = off;
7929
7930 sq_array_size = array_size(sizeof(u32), sq_entries);
7931 if (sq_array_size == SIZE_MAX)
7932 return SIZE_MAX;
7933
7934 if (check_add_overflow(off, sq_array_size, &off))
7935 return SIZE_MAX;
7936
7937 return off;
7938 }
7939
7940 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7941 {
7942 size_t pages;
7943
7944 pages = (size_t)1 << get_order(
7945 rings_size(sq_entries, cq_entries, NULL));
7946 pages += (size_t)1 << get_order(
7947 array_size(sizeof(struct io_uring_sqe), sq_entries));
7948
7949 return pages;
7950 }
7951
7952 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7953 {
7954 int i, j;
7955
7956 if (!ctx->user_bufs)
7957 return -ENXIO;
7958
7959 for (i = 0; i < ctx->nr_user_bufs; i++) {
7960 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7961
7962 for (j = 0; j < imu->nr_bvecs; j++)
7963 unpin_user_page(imu->bvec[j].bv_page);
7964
7965 if (imu->acct_pages)
7966 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
7967 kvfree(imu->bvec);
7968 imu->nr_bvecs = 0;
7969 }
7970
7971 kfree(ctx->user_bufs);
7972 ctx->user_bufs = NULL;
7973 ctx->nr_user_bufs = 0;
7974 return 0;
7975 }
7976
7977 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7978 void __user *arg, unsigned index)
7979 {
7980 struct iovec __user *src;
7981
7982 #ifdef CONFIG_COMPAT
7983 if (ctx->compat) {
7984 struct compat_iovec __user *ciovs;
7985 struct compat_iovec ciov;
7986
7987 ciovs = (struct compat_iovec __user *) arg;
7988 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7989 return -EFAULT;
7990
7991 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7992 dst->iov_len = ciov.iov_len;
7993 return 0;
7994 }
7995 #endif
7996 src = (struct iovec __user *) arg;
7997 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7998 return -EFAULT;
7999 return 0;
8000 }
8001
8002 /*
8003 * Not super efficient, but this is just a registration time. And we do cache
8004 * the last compound head, so generally we'll only do a full search if we don't
8005 * match that one.
8006 *
8007 * We check if the given compound head page has already been accounted, to
8008 * avoid double accounting it. This allows us to account the full size of the
8009 * page, not just the constituent pages of a huge page.
8010 */
8011 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8012 int nr_pages, struct page *hpage)
8013 {
8014 int i, j;
8015
8016 /* check current page array */
8017 for (i = 0; i < nr_pages; i++) {
8018 if (!PageCompound(pages[i]))
8019 continue;
8020 if (compound_head(pages[i]) == hpage)
8021 return true;
8022 }
8023
8024 /* check previously registered pages */
8025 for (i = 0; i < ctx->nr_user_bufs; i++) {
8026 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8027
8028 for (j = 0; j < imu->nr_bvecs; j++) {
8029 if (!PageCompound(imu->bvec[j].bv_page))
8030 continue;
8031 if (compound_head(imu->bvec[j].bv_page) == hpage)
8032 return true;
8033 }
8034 }
8035
8036 return false;
8037 }
8038
8039 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8040 int nr_pages, struct io_mapped_ubuf *imu,
8041 struct page **last_hpage)
8042 {
8043 int i, ret;
8044
8045 for (i = 0; i < nr_pages; i++) {
8046 if (!PageCompound(pages[i])) {
8047 imu->acct_pages++;
8048 } else {
8049 struct page *hpage;
8050
8051 hpage = compound_head(pages[i]);
8052 if (hpage == *last_hpage)
8053 continue;
8054 *last_hpage = hpage;
8055 if (headpage_already_acct(ctx, pages, i, hpage))
8056 continue;
8057 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8058 }
8059 }
8060
8061 if (!imu->acct_pages)
8062 return 0;
8063
8064 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8065 if (ret)
8066 imu->acct_pages = 0;
8067 return ret;
8068 }
8069
8070 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8071 unsigned nr_args)
8072 {
8073 struct vm_area_struct **vmas = NULL;
8074 struct page **pages = NULL;
8075 struct page *last_hpage = NULL;
8076 int i, j, got_pages = 0;
8077 int ret = -EINVAL;
8078
8079 if (ctx->user_bufs)
8080 return -EBUSY;
8081 if (!nr_args || nr_args > UIO_MAXIOV)
8082 return -EINVAL;
8083
8084 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8085 GFP_KERNEL);
8086 if (!ctx->user_bufs)
8087 return -ENOMEM;
8088
8089 for (i = 0; i < nr_args; i++) {
8090 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8091 unsigned long off, start, end, ubuf;
8092 int pret, nr_pages;
8093 struct iovec iov;
8094 size_t size;
8095
8096 ret = io_copy_iov(ctx, &iov, arg, i);
8097 if (ret)
8098 goto err;
8099
8100 /*
8101 * Don't impose further limits on the size and buffer
8102 * constraints here, we'll -EINVAL later when IO is
8103 * submitted if they are wrong.
8104 */
8105 ret = -EFAULT;
8106 if (!iov.iov_base || !iov.iov_len)
8107 goto err;
8108
8109 /* arbitrary limit, but we need something */
8110 if (iov.iov_len > SZ_1G)
8111 goto err;
8112
8113 ubuf = (unsigned long) iov.iov_base;
8114 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8115 start = ubuf >> PAGE_SHIFT;
8116 nr_pages = end - start;
8117
8118 ret = 0;
8119 if (!pages || nr_pages > got_pages) {
8120 kvfree(vmas);
8121 kvfree(pages);
8122 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8123 GFP_KERNEL);
8124 vmas = kvmalloc_array(nr_pages,
8125 sizeof(struct vm_area_struct *),
8126 GFP_KERNEL);
8127 if (!pages || !vmas) {
8128 ret = -ENOMEM;
8129 goto err;
8130 }
8131 got_pages = nr_pages;
8132 }
8133
8134 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8135 GFP_KERNEL);
8136 ret = -ENOMEM;
8137 if (!imu->bvec)
8138 goto err;
8139
8140 ret = 0;
8141 mmap_read_lock(current->mm);
8142 pret = pin_user_pages(ubuf, nr_pages,
8143 FOLL_WRITE | FOLL_LONGTERM,
8144 pages, vmas);
8145 if (pret == nr_pages) {
8146 /* don't support file backed memory */
8147 for (j = 0; j < nr_pages; j++) {
8148 struct vm_area_struct *vma = vmas[j];
8149
8150 if (vma->vm_file &&
8151 !is_file_hugepages(vma->vm_file)) {
8152 ret = -EOPNOTSUPP;
8153 break;
8154 }
8155 }
8156 } else {
8157 ret = pret < 0 ? pret : -EFAULT;
8158 }
8159 mmap_read_unlock(current->mm);
8160 if (ret) {
8161 /*
8162 * if we did partial map, or found file backed vmas,
8163 * release any pages we did get
8164 */
8165 if (pret > 0)
8166 unpin_user_pages(pages, pret);
8167 kvfree(imu->bvec);
8168 goto err;
8169 }
8170
8171 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8172 if (ret) {
8173 unpin_user_pages(pages, pret);
8174 kvfree(imu->bvec);
8175 goto err;
8176 }
8177
8178 off = ubuf & ~PAGE_MASK;
8179 size = iov.iov_len;
8180 for (j = 0; j < nr_pages; j++) {
8181 size_t vec_len;
8182
8183 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8184 imu->bvec[j].bv_page = pages[j];
8185 imu->bvec[j].bv_len = vec_len;
8186 imu->bvec[j].bv_offset = off;
8187 off = 0;
8188 size -= vec_len;
8189 }
8190 /* store original address for later verification */
8191 imu->ubuf = ubuf;
8192 imu->len = iov.iov_len;
8193 imu->nr_bvecs = nr_pages;
8194
8195 ctx->nr_user_bufs++;
8196 }
8197 kvfree(pages);
8198 kvfree(vmas);
8199 return 0;
8200 err:
8201 kvfree(pages);
8202 kvfree(vmas);
8203 io_sqe_buffer_unregister(ctx);
8204 return ret;
8205 }
8206
8207 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8208 {
8209 __s32 __user *fds = arg;
8210 int fd;
8211
8212 if (ctx->cq_ev_fd)
8213 return -EBUSY;
8214
8215 if (copy_from_user(&fd, fds, sizeof(*fds)))
8216 return -EFAULT;
8217
8218 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8219 if (IS_ERR(ctx->cq_ev_fd)) {
8220 int ret = PTR_ERR(ctx->cq_ev_fd);
8221 ctx->cq_ev_fd = NULL;
8222 return ret;
8223 }
8224
8225 return 0;
8226 }
8227
8228 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8229 {
8230 if (ctx->cq_ev_fd) {
8231 eventfd_ctx_put(ctx->cq_ev_fd);
8232 ctx->cq_ev_fd = NULL;
8233 return 0;
8234 }
8235
8236 return -ENXIO;
8237 }
8238
8239 static int __io_destroy_buffers(int id, void *p, void *data)
8240 {
8241 struct io_ring_ctx *ctx = data;
8242 struct io_buffer *buf = p;
8243
8244 __io_remove_buffers(ctx, buf, id, -1U);
8245 return 0;
8246 }
8247
8248 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8249 {
8250 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8251 idr_destroy(&ctx->io_buffer_idr);
8252 }
8253
8254 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8255 {
8256 io_finish_async(ctx);
8257 io_sqe_buffer_unregister(ctx);
8258
8259 if (ctx->sqo_task) {
8260 put_task_struct(ctx->sqo_task);
8261 ctx->sqo_task = NULL;
8262 mmdrop(ctx->mm_account);
8263 ctx->mm_account = NULL;
8264 }
8265
8266 #ifdef CONFIG_BLK_CGROUP
8267 if (ctx->sqo_blkcg_css)
8268 css_put(ctx->sqo_blkcg_css);
8269 #endif
8270
8271 io_sqe_files_unregister(ctx);
8272 io_eventfd_unregister(ctx);
8273 io_destroy_buffers(ctx);
8274 idr_destroy(&ctx->personality_idr);
8275
8276 #if defined(CONFIG_UNIX)
8277 if (ctx->ring_sock) {
8278 ctx->ring_sock->file = NULL; /* so that iput() is called */
8279 sock_release(ctx->ring_sock);
8280 }
8281 #endif
8282
8283 io_mem_free(ctx->rings);
8284 io_mem_free(ctx->sq_sqes);
8285
8286 percpu_ref_exit(&ctx->refs);
8287 free_uid(ctx->user);
8288 put_cred(ctx->creds);
8289 kfree(ctx->cancel_hash);
8290 kmem_cache_free(req_cachep, ctx->fallback_req);
8291 kfree(ctx);
8292 }
8293
8294 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8295 {
8296 struct io_ring_ctx *ctx = file->private_data;
8297 __poll_t mask = 0;
8298
8299 poll_wait(file, &ctx->cq_wait, wait);
8300 /*
8301 * synchronizes with barrier from wq_has_sleeper call in
8302 * io_commit_cqring
8303 */
8304 smp_rmb();
8305 if (!io_sqring_full(ctx))
8306 mask |= EPOLLOUT | EPOLLWRNORM;
8307 if (io_cqring_events(ctx, false))
8308 mask |= EPOLLIN | EPOLLRDNORM;
8309
8310 return mask;
8311 }
8312
8313 static int io_uring_fasync(int fd, struct file *file, int on)
8314 {
8315 struct io_ring_ctx *ctx = file->private_data;
8316
8317 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8318 }
8319
8320 static int io_remove_personalities(int id, void *p, void *data)
8321 {
8322 struct io_ring_ctx *ctx = data;
8323 struct io_identity *iod;
8324
8325 iod = idr_remove(&ctx->personality_idr, id);
8326 if (iod) {
8327 put_cred(iod->creds);
8328 if (refcount_dec_and_test(&iod->count))
8329 kfree(iod);
8330 }
8331 return 0;
8332 }
8333
8334 static void io_ring_exit_work(struct work_struct *work)
8335 {
8336 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8337 exit_work);
8338
8339 /*
8340 * If we're doing polled IO and end up having requests being
8341 * submitted async (out-of-line), then completions can come in while
8342 * we're waiting for refs to drop. We need to reap these manually,
8343 * as nobody else will be looking for them.
8344 */
8345 do {
8346 if (ctx->rings)
8347 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8348 io_iopoll_try_reap_events(ctx);
8349 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8350 io_ring_ctx_free(ctx);
8351 }
8352
8353 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8354 {
8355 mutex_lock(&ctx->uring_lock);
8356 percpu_ref_kill(&ctx->refs);
8357 mutex_unlock(&ctx->uring_lock);
8358
8359 io_kill_timeouts(ctx, NULL);
8360 io_poll_remove_all(ctx, NULL);
8361
8362 if (ctx->io_wq)
8363 io_wq_cancel_all(ctx->io_wq);
8364
8365 /* if we failed setting up the ctx, we might not have any rings */
8366 if (ctx->rings)
8367 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8368 io_iopoll_try_reap_events(ctx);
8369 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8370
8371 /*
8372 * Do this upfront, so we won't have a grace period where the ring
8373 * is closed but resources aren't reaped yet. This can cause
8374 * spurious failure in setting up a new ring.
8375 */
8376 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8377 ACCT_LOCKED);
8378
8379 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8380 /*
8381 * Use system_unbound_wq to avoid spawning tons of event kworkers
8382 * if we're exiting a ton of rings at the same time. It just adds
8383 * noise and overhead, there's no discernable change in runtime
8384 * over using system_wq.
8385 */
8386 queue_work(system_unbound_wq, &ctx->exit_work);
8387 }
8388
8389 static int io_uring_release(struct inode *inode, struct file *file)
8390 {
8391 struct io_ring_ctx *ctx = file->private_data;
8392
8393 file->private_data = NULL;
8394 io_ring_ctx_wait_and_kill(ctx);
8395 return 0;
8396 }
8397
8398 static bool io_wq_files_match(struct io_wq_work *work, void *data)
8399 {
8400 struct files_struct *files = data;
8401
8402 return !files || ((work->flags & IO_WQ_WORK_FILES) &&
8403 work->identity->files == files);
8404 }
8405
8406 /*
8407 * Returns true if 'preq' is the link parent of 'req'
8408 */
8409 static bool io_match_link(struct io_kiocb *preq, struct io_kiocb *req)
8410 {
8411 struct io_kiocb *link;
8412
8413 if (!(preq->flags & REQ_F_LINK_HEAD))
8414 return false;
8415
8416 list_for_each_entry(link, &preq->link_list, link_list) {
8417 if (link == req)
8418 return true;
8419 }
8420
8421 return false;
8422 }
8423
8424 static bool io_match_link_files(struct io_kiocb *req,
8425 struct files_struct *files)
8426 {
8427 struct io_kiocb *link;
8428
8429 if (io_match_files(req, files))
8430 return true;
8431 if (req->flags & REQ_F_LINK_HEAD) {
8432 list_for_each_entry(link, &req->link_list, link_list) {
8433 if (io_match_files(link, files))
8434 return true;
8435 }
8436 }
8437 return false;
8438 }
8439
8440 /*
8441 * We're looking to cancel 'req' because it's holding on to our files, but
8442 * 'req' could be a link to another request. See if it is, and cancel that
8443 * parent request if so.
8444 */
8445 static bool io_poll_remove_link(struct io_ring_ctx *ctx, struct io_kiocb *req)
8446 {
8447 struct hlist_node *tmp;
8448 struct io_kiocb *preq;
8449 bool found = false;
8450 int i;
8451
8452 spin_lock_irq(&ctx->completion_lock);
8453 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
8454 struct hlist_head *list;
8455
8456 list = &ctx->cancel_hash[i];
8457 hlist_for_each_entry_safe(preq, tmp, list, hash_node) {
8458 found = io_match_link(preq, req);
8459 if (found) {
8460 io_poll_remove_one(preq);
8461 break;
8462 }
8463 }
8464 }
8465 spin_unlock_irq(&ctx->completion_lock);
8466 return found;
8467 }
8468
8469 static bool io_timeout_remove_link(struct io_ring_ctx *ctx,
8470 struct io_kiocb *req)
8471 {
8472 struct io_kiocb *preq;
8473 bool found = false;
8474
8475 spin_lock_irq(&ctx->completion_lock);
8476 list_for_each_entry(preq, &ctx->timeout_list, timeout.list) {
8477 found = io_match_link(preq, req);
8478 if (found) {
8479 __io_timeout_cancel(preq);
8480 break;
8481 }
8482 }
8483 spin_unlock_irq(&ctx->completion_lock);
8484 return found;
8485 }
8486
8487 static bool io_cancel_link_cb(struct io_wq_work *work, void *data)
8488 {
8489 return io_match_link(container_of(work, struct io_kiocb, work), data);
8490 }
8491
8492 static void io_attempt_cancel(struct io_ring_ctx *ctx, struct io_kiocb *req)
8493 {
8494 enum io_wq_cancel cret;
8495
8496 /* cancel this particular work, if it's running */
8497 cret = io_wq_cancel_work(ctx->io_wq, &req->work);
8498 if (cret != IO_WQ_CANCEL_NOTFOUND)
8499 return;
8500
8501 /* find links that hold this pending, cancel those */
8502 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_link_cb, req, true);
8503 if (cret != IO_WQ_CANCEL_NOTFOUND)
8504 return;
8505
8506 /* if we have a poll link holding this pending, cancel that */
8507 if (io_poll_remove_link(ctx, req))
8508 return;
8509
8510 /* final option, timeout link is holding this req pending */
8511 io_timeout_remove_link(ctx, req);
8512 }
8513
8514 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8515 struct files_struct *files)
8516 {
8517 struct io_defer_entry *de = NULL;
8518 LIST_HEAD(list);
8519
8520 spin_lock_irq(&ctx->completion_lock);
8521 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8522 if (io_match_link_files(de->req, files)) {
8523 list_cut_position(&list, &ctx->defer_list, &de->list);
8524 break;
8525 }
8526 }
8527 spin_unlock_irq(&ctx->completion_lock);
8528
8529 while (!list_empty(&list)) {
8530 de = list_first_entry(&list, struct io_defer_entry, list);
8531 list_del_init(&de->list);
8532 req_set_fail_links(de->req);
8533 io_put_req(de->req);
8534 io_req_complete(de->req, -ECANCELED);
8535 kfree(de);
8536 }
8537 }
8538
8539 /*
8540 * Returns true if we found and killed one or more files pinning requests
8541 */
8542 static bool io_uring_cancel_files(struct io_ring_ctx *ctx,
8543 struct files_struct *files)
8544 {
8545 if (list_empty_careful(&ctx->inflight_list))
8546 return false;
8547
8548 io_cancel_defer_files(ctx, files);
8549 /* cancel all at once, should be faster than doing it one by one*/
8550 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
8551
8552 while (!list_empty_careful(&ctx->inflight_list)) {
8553 struct io_kiocb *cancel_req = NULL, *req;
8554 DEFINE_WAIT(wait);
8555
8556 spin_lock_irq(&ctx->inflight_lock);
8557 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8558 if (files && (req->work.flags & IO_WQ_WORK_FILES) &&
8559 req->work.identity->files != files)
8560 continue;
8561 /* req is being completed, ignore */
8562 if (!refcount_inc_not_zero(&req->refs))
8563 continue;
8564 cancel_req = req;
8565 break;
8566 }
8567 if (cancel_req)
8568 prepare_to_wait(&ctx->inflight_wait, &wait,
8569 TASK_UNINTERRUPTIBLE);
8570 spin_unlock_irq(&ctx->inflight_lock);
8571
8572 /* We need to keep going until we don't find a matching req */
8573 if (!cancel_req)
8574 break;
8575 /* cancel this request, or head link requests */
8576 io_attempt_cancel(ctx, cancel_req);
8577 io_put_req(cancel_req);
8578 /* cancellations _may_ trigger task work */
8579 io_run_task_work();
8580 schedule();
8581 finish_wait(&ctx->inflight_wait, &wait);
8582 }
8583
8584 return true;
8585 }
8586
8587 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8588 {
8589 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8590 struct task_struct *task = data;
8591
8592 return io_task_match(req, task);
8593 }
8594
8595 static bool __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8596 struct task_struct *task,
8597 struct files_struct *files)
8598 {
8599 bool ret;
8600
8601 ret = io_uring_cancel_files(ctx, files);
8602 if (!files) {
8603 enum io_wq_cancel cret;
8604
8605 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, task, true);
8606 if (cret != IO_WQ_CANCEL_NOTFOUND)
8607 ret = true;
8608
8609 /* SQPOLL thread does its own polling */
8610 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8611 while (!list_empty_careful(&ctx->iopoll_list)) {
8612 io_iopoll_try_reap_events(ctx);
8613 ret = true;
8614 }
8615 }
8616
8617 ret |= io_poll_remove_all(ctx, task);
8618 ret |= io_kill_timeouts(ctx, task);
8619 }
8620
8621 return ret;
8622 }
8623
8624 /*
8625 * We need to iteratively cancel requests, in case a request has dependent
8626 * hard links. These persist even for failure of cancelations, hence keep
8627 * looping until none are found.
8628 */
8629 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8630 struct files_struct *files)
8631 {
8632 struct task_struct *task = current;
8633
8634 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data)
8635 task = ctx->sq_data->thread;
8636
8637 io_cqring_overflow_flush(ctx, true, task, files);
8638
8639 while (__io_uring_cancel_task_requests(ctx, task, files)) {
8640 io_run_task_work();
8641 cond_resched();
8642 }
8643 }
8644
8645 /*
8646 * Note that this task has used io_uring. We use it for cancelation purposes.
8647 */
8648 static int io_uring_add_task_file(struct file *file)
8649 {
8650 struct io_uring_task *tctx = current->io_uring;
8651
8652 if (unlikely(!tctx)) {
8653 int ret;
8654
8655 ret = io_uring_alloc_task_context(current);
8656 if (unlikely(ret))
8657 return ret;
8658 tctx = current->io_uring;
8659 }
8660 if (tctx->last != file) {
8661 void *old = xa_load(&tctx->xa, (unsigned long)file);
8662
8663 if (!old) {
8664 get_file(file);
8665 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8666 }
8667 tctx->last = file;
8668 }
8669
8670 return 0;
8671 }
8672
8673 /*
8674 * Remove this io_uring_file -> task mapping.
8675 */
8676 static void io_uring_del_task_file(struct file *file)
8677 {
8678 struct io_uring_task *tctx = current->io_uring;
8679
8680 if (tctx->last == file)
8681 tctx->last = NULL;
8682 file = xa_erase(&tctx->xa, (unsigned long)file);
8683 if (file)
8684 fput(file);
8685 }
8686
8687 static void __io_uring_attempt_task_drop(struct file *file)
8688 {
8689 struct file *old = xa_load(&current->io_uring->xa, (unsigned long)file);
8690
8691 if (old == file)
8692 io_uring_del_task_file(file);
8693 }
8694
8695 /*
8696 * Drop task note for this file if we're the only ones that hold it after
8697 * pending fput()
8698 */
8699 static void io_uring_attempt_task_drop(struct file *file, bool exiting)
8700 {
8701 if (!current->io_uring)
8702 return;
8703 /*
8704 * fput() is pending, will be 2 if the only other ref is our potential
8705 * task file note. If the task is exiting, drop regardless of count.
8706 */
8707 if (!exiting && atomic_long_read(&file->f_count) != 2)
8708 return;
8709
8710 __io_uring_attempt_task_drop(file);
8711 }
8712
8713 void __io_uring_files_cancel(struct files_struct *files)
8714 {
8715 struct io_uring_task *tctx = current->io_uring;
8716 struct file *file;
8717 unsigned long index;
8718
8719 /* make sure overflow events are dropped */
8720 tctx->in_idle = true;
8721
8722 xa_for_each(&tctx->xa, index, file) {
8723 struct io_ring_ctx *ctx = file->private_data;
8724
8725 io_uring_cancel_task_requests(ctx, files);
8726 if (files)
8727 io_uring_del_task_file(file);
8728 }
8729 }
8730
8731 /*
8732 * Find any io_uring fd that this task has registered or done IO on, and cancel
8733 * requests.
8734 */
8735 void __io_uring_task_cancel(void)
8736 {
8737 struct io_uring_task *tctx = current->io_uring;
8738 DEFINE_WAIT(wait);
8739 s64 inflight;
8740
8741 /* make sure overflow events are dropped */
8742 tctx->in_idle = true;
8743
8744 do {
8745 /* read completions before cancelations */
8746 inflight = percpu_counter_sum(&tctx->inflight);
8747 if (!inflight)
8748 break;
8749 __io_uring_files_cancel(NULL);
8750
8751 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8752
8753 /*
8754 * If we've seen completions, retry. This avoids a race where
8755 * a completion comes in before we did prepare_to_wait().
8756 */
8757 if (inflight != percpu_counter_sum(&tctx->inflight))
8758 continue;
8759 schedule();
8760 } while (1);
8761
8762 finish_wait(&tctx->wait, &wait);
8763 tctx->in_idle = false;
8764 }
8765
8766 static int io_uring_flush(struct file *file, void *data)
8767 {
8768 struct io_ring_ctx *ctx = file->private_data;
8769
8770 /*
8771 * If the task is going away, cancel work it may have pending
8772 */
8773 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
8774 data = NULL;
8775
8776 io_uring_cancel_task_requests(ctx, data);
8777 io_uring_attempt_task_drop(file, !data);
8778 return 0;
8779 }
8780
8781 static void *io_uring_validate_mmap_request(struct file *file,
8782 loff_t pgoff, size_t sz)
8783 {
8784 struct io_ring_ctx *ctx = file->private_data;
8785 loff_t offset = pgoff << PAGE_SHIFT;
8786 struct page *page;
8787 void *ptr;
8788
8789 switch (offset) {
8790 case IORING_OFF_SQ_RING:
8791 case IORING_OFF_CQ_RING:
8792 ptr = ctx->rings;
8793 break;
8794 case IORING_OFF_SQES:
8795 ptr = ctx->sq_sqes;
8796 break;
8797 default:
8798 return ERR_PTR(-EINVAL);
8799 }
8800
8801 page = virt_to_head_page(ptr);
8802 if (sz > page_size(page))
8803 return ERR_PTR(-EINVAL);
8804
8805 return ptr;
8806 }
8807
8808 #ifdef CONFIG_MMU
8809
8810 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8811 {
8812 size_t sz = vma->vm_end - vma->vm_start;
8813 unsigned long pfn;
8814 void *ptr;
8815
8816 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
8817 if (IS_ERR(ptr))
8818 return PTR_ERR(ptr);
8819
8820 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
8821 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
8822 }
8823
8824 #else /* !CONFIG_MMU */
8825
8826 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8827 {
8828 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
8829 }
8830
8831 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
8832 {
8833 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
8834 }
8835
8836 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
8837 unsigned long addr, unsigned long len,
8838 unsigned long pgoff, unsigned long flags)
8839 {
8840 void *ptr;
8841
8842 ptr = io_uring_validate_mmap_request(file, pgoff, len);
8843 if (IS_ERR(ptr))
8844 return PTR_ERR(ptr);
8845
8846 return (unsigned long) ptr;
8847 }
8848
8849 #endif /* !CONFIG_MMU */
8850
8851 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
8852 {
8853 DEFINE_WAIT(wait);
8854
8855 do {
8856 if (!io_sqring_full(ctx))
8857 break;
8858
8859 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
8860
8861 if (!io_sqring_full(ctx))
8862 break;
8863
8864 schedule();
8865 } while (!signal_pending(current));
8866
8867 finish_wait(&ctx->sqo_sq_wait, &wait);
8868 }
8869
8870 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
8871 u32, min_complete, u32, flags, const sigset_t __user *, sig,
8872 size_t, sigsz)
8873 {
8874 struct io_ring_ctx *ctx;
8875 long ret = -EBADF;
8876 int submitted = 0;
8877 struct fd f;
8878
8879 io_run_task_work();
8880
8881 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
8882 IORING_ENTER_SQ_WAIT))
8883 return -EINVAL;
8884
8885 f = fdget(fd);
8886 if (!f.file)
8887 return -EBADF;
8888
8889 ret = -EOPNOTSUPP;
8890 if (f.file->f_op != &io_uring_fops)
8891 goto out_fput;
8892
8893 ret = -ENXIO;
8894 ctx = f.file->private_data;
8895 if (!percpu_ref_tryget(&ctx->refs))
8896 goto out_fput;
8897
8898 ret = -EBADFD;
8899 if (ctx->flags & IORING_SETUP_R_DISABLED)
8900 goto out;
8901
8902 /*
8903 * For SQ polling, the thread will do all submissions and completions.
8904 * Just return the requested submit count, and wake the thread if
8905 * we were asked to.
8906 */
8907 ret = 0;
8908 if (ctx->flags & IORING_SETUP_SQPOLL) {
8909 if (!list_empty_careful(&ctx->cq_overflow_list))
8910 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8911 if (flags & IORING_ENTER_SQ_WAKEUP)
8912 wake_up(&ctx->sq_data->wait);
8913 if (flags & IORING_ENTER_SQ_WAIT)
8914 io_sqpoll_wait_sq(ctx);
8915 submitted = to_submit;
8916 } else if (to_submit) {
8917 ret = io_uring_add_task_file(f.file);
8918 if (unlikely(ret))
8919 goto out;
8920 mutex_lock(&ctx->uring_lock);
8921 submitted = io_submit_sqes(ctx, to_submit);
8922 mutex_unlock(&ctx->uring_lock);
8923
8924 if (submitted != to_submit)
8925 goto out;
8926 }
8927 if (flags & IORING_ENTER_GETEVENTS) {
8928 min_complete = min(min_complete, ctx->cq_entries);
8929
8930 /*
8931 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
8932 * space applications don't need to do io completion events
8933 * polling again, they can rely on io_sq_thread to do polling
8934 * work, which can reduce cpu usage and uring_lock contention.
8935 */
8936 if (ctx->flags & IORING_SETUP_IOPOLL &&
8937 !(ctx->flags & IORING_SETUP_SQPOLL)) {
8938 ret = io_iopoll_check(ctx, min_complete);
8939 } else {
8940 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
8941 }
8942 }
8943
8944 out:
8945 percpu_ref_put(&ctx->refs);
8946 out_fput:
8947 fdput(f);
8948 return submitted ? submitted : ret;
8949 }
8950
8951 #ifdef CONFIG_PROC_FS
8952 static int io_uring_show_cred(int id, void *p, void *data)
8953 {
8954 const struct cred *cred = p;
8955 struct seq_file *m = data;
8956 struct user_namespace *uns = seq_user_ns(m);
8957 struct group_info *gi;
8958 kernel_cap_t cap;
8959 unsigned __capi;
8960 int g;
8961
8962 seq_printf(m, "%5d\n", id);
8963 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
8964 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
8965 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
8966 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
8967 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
8968 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
8969 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
8970 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
8971 seq_puts(m, "\n\tGroups:\t");
8972 gi = cred->group_info;
8973 for (g = 0; g < gi->ngroups; g++) {
8974 seq_put_decimal_ull(m, g ? " " : "",
8975 from_kgid_munged(uns, gi->gid[g]));
8976 }
8977 seq_puts(m, "\n\tCapEff:\t");
8978 cap = cred->cap_effective;
8979 CAP_FOR_EACH_U32(__capi)
8980 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
8981 seq_putc(m, '\n');
8982 return 0;
8983 }
8984
8985 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
8986 {
8987 struct io_sq_data *sq = NULL;
8988 bool has_lock;
8989 int i;
8990
8991 /*
8992 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
8993 * since fdinfo case grabs it in the opposite direction of normal use
8994 * cases. If we fail to get the lock, we just don't iterate any
8995 * structures that could be going away outside the io_uring mutex.
8996 */
8997 has_lock = mutex_trylock(&ctx->uring_lock);
8998
8999 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9000 sq = ctx->sq_data;
9001
9002 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9003 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9004 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9005 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9006 struct fixed_file_table *table;
9007 struct file *f;
9008
9009 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9010 f = table->files[i & IORING_FILE_TABLE_MASK];
9011 if (f)
9012 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9013 else
9014 seq_printf(m, "%5u: <none>\n", i);
9015 }
9016 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9017 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9018 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9019
9020 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9021 (unsigned int) buf->len);
9022 }
9023 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9024 seq_printf(m, "Personalities:\n");
9025 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9026 }
9027 seq_printf(m, "PollList:\n");
9028 spin_lock_irq(&ctx->completion_lock);
9029 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9030 struct hlist_head *list = &ctx->cancel_hash[i];
9031 struct io_kiocb *req;
9032
9033 hlist_for_each_entry(req, list, hash_node)
9034 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9035 req->task->task_works != NULL);
9036 }
9037 spin_unlock_irq(&ctx->completion_lock);
9038 if (has_lock)
9039 mutex_unlock(&ctx->uring_lock);
9040 }
9041
9042 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9043 {
9044 struct io_ring_ctx *ctx = f->private_data;
9045
9046 if (percpu_ref_tryget(&ctx->refs)) {
9047 __io_uring_show_fdinfo(ctx, m);
9048 percpu_ref_put(&ctx->refs);
9049 }
9050 }
9051 #endif
9052
9053 static const struct file_operations io_uring_fops = {
9054 .release = io_uring_release,
9055 .flush = io_uring_flush,
9056 .mmap = io_uring_mmap,
9057 #ifndef CONFIG_MMU
9058 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9059 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9060 #endif
9061 .poll = io_uring_poll,
9062 .fasync = io_uring_fasync,
9063 #ifdef CONFIG_PROC_FS
9064 .show_fdinfo = io_uring_show_fdinfo,
9065 #endif
9066 };
9067
9068 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9069 struct io_uring_params *p)
9070 {
9071 struct io_rings *rings;
9072 size_t size, sq_array_offset;
9073
9074 /* make sure these are sane, as we already accounted them */
9075 ctx->sq_entries = p->sq_entries;
9076 ctx->cq_entries = p->cq_entries;
9077
9078 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9079 if (size == SIZE_MAX)
9080 return -EOVERFLOW;
9081
9082 rings = io_mem_alloc(size);
9083 if (!rings)
9084 return -ENOMEM;
9085
9086 ctx->rings = rings;
9087 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9088 rings->sq_ring_mask = p->sq_entries - 1;
9089 rings->cq_ring_mask = p->cq_entries - 1;
9090 rings->sq_ring_entries = p->sq_entries;
9091 rings->cq_ring_entries = p->cq_entries;
9092 ctx->sq_mask = rings->sq_ring_mask;
9093 ctx->cq_mask = rings->cq_ring_mask;
9094
9095 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9096 if (size == SIZE_MAX) {
9097 io_mem_free(ctx->rings);
9098 ctx->rings = NULL;
9099 return -EOVERFLOW;
9100 }
9101
9102 ctx->sq_sqes = io_mem_alloc(size);
9103 if (!ctx->sq_sqes) {
9104 io_mem_free(ctx->rings);
9105 ctx->rings = NULL;
9106 return -ENOMEM;
9107 }
9108
9109 return 0;
9110 }
9111
9112 /*
9113 * Allocate an anonymous fd, this is what constitutes the application
9114 * visible backing of an io_uring instance. The application mmaps this
9115 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9116 * we have to tie this fd to a socket for file garbage collection purposes.
9117 */
9118 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9119 {
9120 struct file *file;
9121 int ret;
9122
9123 #if defined(CONFIG_UNIX)
9124 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9125 &ctx->ring_sock);
9126 if (ret)
9127 return ret;
9128 #endif
9129
9130 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9131 if (ret < 0)
9132 goto err;
9133
9134 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9135 O_RDWR | O_CLOEXEC);
9136 if (IS_ERR(file)) {
9137 err_fd:
9138 put_unused_fd(ret);
9139 ret = PTR_ERR(file);
9140 goto err;
9141 }
9142
9143 #if defined(CONFIG_UNIX)
9144 ctx->ring_sock->file = file;
9145 #endif
9146 if (unlikely(io_uring_add_task_file(file))) {
9147 file = ERR_PTR(-ENOMEM);
9148 goto err_fd;
9149 }
9150 fd_install(ret, file);
9151 return ret;
9152 err:
9153 #if defined(CONFIG_UNIX)
9154 sock_release(ctx->ring_sock);
9155 ctx->ring_sock = NULL;
9156 #endif
9157 return ret;
9158 }
9159
9160 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9161 struct io_uring_params __user *params)
9162 {
9163 struct user_struct *user = NULL;
9164 struct io_ring_ctx *ctx;
9165 bool limit_mem;
9166 int ret;
9167
9168 if (!entries)
9169 return -EINVAL;
9170 if (entries > IORING_MAX_ENTRIES) {
9171 if (!(p->flags & IORING_SETUP_CLAMP))
9172 return -EINVAL;
9173 entries = IORING_MAX_ENTRIES;
9174 }
9175
9176 /*
9177 * Use twice as many entries for the CQ ring. It's possible for the
9178 * application to drive a higher depth than the size of the SQ ring,
9179 * since the sqes are only used at submission time. This allows for
9180 * some flexibility in overcommitting a bit. If the application has
9181 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9182 * of CQ ring entries manually.
9183 */
9184 p->sq_entries = roundup_pow_of_two(entries);
9185 if (p->flags & IORING_SETUP_CQSIZE) {
9186 /*
9187 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9188 * to a power-of-two, if it isn't already. We do NOT impose
9189 * any cq vs sq ring sizing.
9190 */
9191 if (p->cq_entries < p->sq_entries)
9192 return -EINVAL;
9193 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9194 if (!(p->flags & IORING_SETUP_CLAMP))
9195 return -EINVAL;
9196 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9197 }
9198 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9199 } else {
9200 p->cq_entries = 2 * p->sq_entries;
9201 }
9202
9203 user = get_uid(current_user());
9204 limit_mem = !capable(CAP_IPC_LOCK);
9205
9206 if (limit_mem) {
9207 ret = __io_account_mem(user,
9208 ring_pages(p->sq_entries, p->cq_entries));
9209 if (ret) {
9210 free_uid(user);
9211 return ret;
9212 }
9213 }
9214
9215 ctx = io_ring_ctx_alloc(p);
9216 if (!ctx) {
9217 if (limit_mem)
9218 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9219 p->cq_entries));
9220 free_uid(user);
9221 return -ENOMEM;
9222 }
9223 ctx->compat = in_compat_syscall();
9224 ctx->user = user;
9225 ctx->creds = get_current_cred();
9226 #ifdef CONFIG_AUDIT
9227 ctx->loginuid = current->loginuid;
9228 ctx->sessionid = current->sessionid;
9229 #endif
9230 ctx->sqo_task = get_task_struct(current);
9231
9232 /*
9233 * This is just grabbed for accounting purposes. When a process exits,
9234 * the mm is exited and dropped before the files, hence we need to hang
9235 * on to this mm purely for the purposes of being able to unaccount
9236 * memory (locked/pinned vm). It's not used for anything else.
9237 */
9238 mmgrab(current->mm);
9239 ctx->mm_account = current->mm;
9240
9241 #ifdef CONFIG_BLK_CGROUP
9242 /*
9243 * The sq thread will belong to the original cgroup it was inited in.
9244 * If the cgroup goes offline (e.g. disabling the io controller), then
9245 * issued bios will be associated with the closest cgroup later in the
9246 * block layer.
9247 */
9248 rcu_read_lock();
9249 ctx->sqo_blkcg_css = blkcg_css();
9250 ret = css_tryget_online(ctx->sqo_blkcg_css);
9251 rcu_read_unlock();
9252 if (!ret) {
9253 /* don't init against a dying cgroup, have the user try again */
9254 ctx->sqo_blkcg_css = NULL;
9255 ret = -ENODEV;
9256 goto err;
9257 }
9258 #endif
9259
9260 /*
9261 * Account memory _before_ installing the file descriptor. Once
9262 * the descriptor is installed, it can get closed at any time. Also
9263 * do this before hitting the general error path, as ring freeing
9264 * will un-account as well.
9265 */
9266 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9267 ACCT_LOCKED);
9268 ctx->limit_mem = limit_mem;
9269
9270 ret = io_allocate_scq_urings(ctx, p);
9271 if (ret)
9272 goto err;
9273
9274 ret = io_sq_offload_create(ctx, p);
9275 if (ret)
9276 goto err;
9277
9278 if (!(p->flags & IORING_SETUP_R_DISABLED))
9279 io_sq_offload_start(ctx);
9280
9281 memset(&p->sq_off, 0, sizeof(p->sq_off));
9282 p->sq_off.head = offsetof(struct io_rings, sq.head);
9283 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9284 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9285 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9286 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9287 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9288 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9289
9290 memset(&p->cq_off, 0, sizeof(p->cq_off));
9291 p->cq_off.head = offsetof(struct io_rings, cq.head);
9292 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9293 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9294 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9295 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9296 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9297 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9298
9299 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9300 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9301 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9302 IORING_FEAT_POLL_32BITS;
9303
9304 if (copy_to_user(params, p, sizeof(*p))) {
9305 ret = -EFAULT;
9306 goto err;
9307 }
9308
9309 /*
9310 * Install ring fd as the very last thing, so we don't risk someone
9311 * having closed it before we finish setup
9312 */
9313 ret = io_uring_get_fd(ctx);
9314 if (ret < 0)
9315 goto err;
9316
9317 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9318 return ret;
9319 err:
9320 io_ring_ctx_wait_and_kill(ctx);
9321 return ret;
9322 }
9323
9324 /*
9325 * Sets up an aio uring context, and returns the fd. Applications asks for a
9326 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9327 * params structure passed in.
9328 */
9329 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9330 {
9331 struct io_uring_params p;
9332 int i;
9333
9334 if (copy_from_user(&p, params, sizeof(p)))
9335 return -EFAULT;
9336 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9337 if (p.resv[i])
9338 return -EINVAL;
9339 }
9340
9341 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9342 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9343 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9344 IORING_SETUP_R_DISABLED))
9345 return -EINVAL;
9346
9347 return io_uring_create(entries, &p, params);
9348 }
9349
9350 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9351 struct io_uring_params __user *, params)
9352 {
9353 return io_uring_setup(entries, params);
9354 }
9355
9356 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9357 {
9358 struct io_uring_probe *p;
9359 size_t size;
9360 int i, ret;
9361
9362 size = struct_size(p, ops, nr_args);
9363 if (size == SIZE_MAX)
9364 return -EOVERFLOW;
9365 p = kzalloc(size, GFP_KERNEL);
9366 if (!p)
9367 return -ENOMEM;
9368
9369 ret = -EFAULT;
9370 if (copy_from_user(p, arg, size))
9371 goto out;
9372 ret = -EINVAL;
9373 if (memchr_inv(p, 0, size))
9374 goto out;
9375
9376 p->last_op = IORING_OP_LAST - 1;
9377 if (nr_args > IORING_OP_LAST)
9378 nr_args = IORING_OP_LAST;
9379
9380 for (i = 0; i < nr_args; i++) {
9381 p->ops[i].op = i;
9382 if (!io_op_defs[i].not_supported)
9383 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9384 }
9385 p->ops_len = i;
9386
9387 ret = 0;
9388 if (copy_to_user(arg, p, size))
9389 ret = -EFAULT;
9390 out:
9391 kfree(p);
9392 return ret;
9393 }
9394
9395 static int io_register_personality(struct io_ring_ctx *ctx)
9396 {
9397 struct io_identity *id;
9398 int ret;
9399
9400 id = kmalloc(sizeof(*id), GFP_KERNEL);
9401 if (unlikely(!id))
9402 return -ENOMEM;
9403
9404 io_init_identity(id);
9405 id->creds = get_current_cred();
9406
9407 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9408 if (ret < 0) {
9409 put_cred(id->creds);
9410 kfree(id);
9411 }
9412 return ret;
9413 }
9414
9415 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9416 {
9417 struct io_identity *iod;
9418
9419 iod = idr_remove(&ctx->personality_idr, id);
9420 if (iod) {
9421 put_cred(iod->creds);
9422 if (refcount_dec_and_test(&iod->count))
9423 kfree(iod);
9424 return 0;
9425 }
9426
9427 return -EINVAL;
9428 }
9429
9430 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9431 unsigned int nr_args)
9432 {
9433 struct io_uring_restriction *res;
9434 size_t size;
9435 int i, ret;
9436
9437 /* Restrictions allowed only if rings started disabled */
9438 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9439 return -EBADFD;
9440
9441 /* We allow only a single restrictions registration */
9442 if (ctx->restrictions.registered)
9443 return -EBUSY;
9444
9445 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9446 return -EINVAL;
9447
9448 size = array_size(nr_args, sizeof(*res));
9449 if (size == SIZE_MAX)
9450 return -EOVERFLOW;
9451
9452 res = memdup_user(arg, size);
9453 if (IS_ERR(res))
9454 return PTR_ERR(res);
9455
9456 ret = 0;
9457
9458 for (i = 0; i < nr_args; i++) {
9459 switch (res[i].opcode) {
9460 case IORING_RESTRICTION_REGISTER_OP:
9461 if (res[i].register_op >= IORING_REGISTER_LAST) {
9462 ret = -EINVAL;
9463 goto out;
9464 }
9465
9466 __set_bit(res[i].register_op,
9467 ctx->restrictions.register_op);
9468 break;
9469 case IORING_RESTRICTION_SQE_OP:
9470 if (res[i].sqe_op >= IORING_OP_LAST) {
9471 ret = -EINVAL;
9472 goto out;
9473 }
9474
9475 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9476 break;
9477 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9478 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9479 break;
9480 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9481 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9482 break;
9483 default:
9484 ret = -EINVAL;
9485 goto out;
9486 }
9487 }
9488
9489 out:
9490 /* Reset all restrictions if an error happened */
9491 if (ret != 0)
9492 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9493 else
9494 ctx->restrictions.registered = true;
9495
9496 kfree(res);
9497 return ret;
9498 }
9499
9500 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9501 {
9502 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9503 return -EBADFD;
9504
9505 if (ctx->restrictions.registered)
9506 ctx->restricted = 1;
9507
9508 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9509
9510 io_sq_offload_start(ctx);
9511
9512 return 0;
9513 }
9514
9515 static bool io_register_op_must_quiesce(int op)
9516 {
9517 switch (op) {
9518 case IORING_UNREGISTER_FILES:
9519 case IORING_REGISTER_FILES_UPDATE:
9520 case IORING_REGISTER_PROBE:
9521 case IORING_REGISTER_PERSONALITY:
9522 case IORING_UNREGISTER_PERSONALITY:
9523 return false;
9524 default:
9525 return true;
9526 }
9527 }
9528
9529 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9530 void __user *arg, unsigned nr_args)
9531 __releases(ctx->uring_lock)
9532 __acquires(ctx->uring_lock)
9533 {
9534 int ret;
9535
9536 /*
9537 * We're inside the ring mutex, if the ref is already dying, then
9538 * someone else killed the ctx or is already going through
9539 * io_uring_register().
9540 */
9541 if (percpu_ref_is_dying(&ctx->refs))
9542 return -ENXIO;
9543
9544 if (io_register_op_must_quiesce(opcode)) {
9545 percpu_ref_kill(&ctx->refs);
9546
9547 /*
9548 * Drop uring mutex before waiting for references to exit. If
9549 * another thread is currently inside io_uring_enter() it might
9550 * need to grab the uring_lock to make progress. If we hold it
9551 * here across the drain wait, then we can deadlock. It's safe
9552 * to drop the mutex here, since no new references will come in
9553 * after we've killed the percpu ref.
9554 */
9555 mutex_unlock(&ctx->uring_lock);
9556 do {
9557 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9558 if (!ret)
9559 break;
9560 ret = io_run_task_work_sig();
9561 if (ret < 0)
9562 break;
9563 } while (1);
9564
9565 mutex_lock(&ctx->uring_lock);
9566
9567 if (ret) {
9568 percpu_ref_resurrect(&ctx->refs);
9569 goto out_quiesce;
9570 }
9571 }
9572
9573 if (ctx->restricted) {
9574 if (opcode >= IORING_REGISTER_LAST) {
9575 ret = -EINVAL;
9576 goto out;
9577 }
9578
9579 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9580 ret = -EACCES;
9581 goto out;
9582 }
9583 }
9584
9585 switch (opcode) {
9586 case IORING_REGISTER_BUFFERS:
9587 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9588 break;
9589 case IORING_UNREGISTER_BUFFERS:
9590 ret = -EINVAL;
9591 if (arg || nr_args)
9592 break;
9593 ret = io_sqe_buffer_unregister(ctx);
9594 break;
9595 case IORING_REGISTER_FILES:
9596 ret = io_sqe_files_register(ctx, arg, nr_args);
9597 break;
9598 case IORING_UNREGISTER_FILES:
9599 ret = -EINVAL;
9600 if (arg || nr_args)
9601 break;
9602 ret = io_sqe_files_unregister(ctx);
9603 break;
9604 case IORING_REGISTER_FILES_UPDATE:
9605 ret = io_sqe_files_update(ctx, arg, nr_args);
9606 break;
9607 case IORING_REGISTER_EVENTFD:
9608 case IORING_REGISTER_EVENTFD_ASYNC:
9609 ret = -EINVAL;
9610 if (nr_args != 1)
9611 break;
9612 ret = io_eventfd_register(ctx, arg);
9613 if (ret)
9614 break;
9615 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9616 ctx->eventfd_async = 1;
9617 else
9618 ctx->eventfd_async = 0;
9619 break;
9620 case IORING_UNREGISTER_EVENTFD:
9621 ret = -EINVAL;
9622 if (arg || nr_args)
9623 break;
9624 ret = io_eventfd_unregister(ctx);
9625 break;
9626 case IORING_REGISTER_PROBE:
9627 ret = -EINVAL;
9628 if (!arg || nr_args > 256)
9629 break;
9630 ret = io_probe(ctx, arg, nr_args);
9631 break;
9632 case IORING_REGISTER_PERSONALITY:
9633 ret = -EINVAL;
9634 if (arg || nr_args)
9635 break;
9636 ret = io_register_personality(ctx);
9637 break;
9638 case IORING_UNREGISTER_PERSONALITY:
9639 ret = -EINVAL;
9640 if (arg)
9641 break;
9642 ret = io_unregister_personality(ctx, nr_args);
9643 break;
9644 case IORING_REGISTER_ENABLE_RINGS:
9645 ret = -EINVAL;
9646 if (arg || nr_args)
9647 break;
9648 ret = io_register_enable_rings(ctx);
9649 break;
9650 case IORING_REGISTER_RESTRICTIONS:
9651 ret = io_register_restrictions(ctx, arg, nr_args);
9652 break;
9653 default:
9654 ret = -EINVAL;
9655 break;
9656 }
9657
9658 out:
9659 if (io_register_op_must_quiesce(opcode)) {
9660 /* bring the ctx back to life */
9661 percpu_ref_reinit(&ctx->refs);
9662 out_quiesce:
9663 reinit_completion(&ctx->ref_comp);
9664 }
9665 return ret;
9666 }
9667
9668 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9669 void __user *, arg, unsigned int, nr_args)
9670 {
9671 struct io_ring_ctx *ctx;
9672 long ret = -EBADF;
9673 struct fd f;
9674
9675 f = fdget(fd);
9676 if (!f.file)
9677 return -EBADF;
9678
9679 ret = -EOPNOTSUPP;
9680 if (f.file->f_op != &io_uring_fops)
9681 goto out_fput;
9682
9683 ctx = f.file->private_data;
9684
9685 mutex_lock(&ctx->uring_lock);
9686 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9687 mutex_unlock(&ctx->uring_lock);
9688 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9689 ctx->cq_ev_fd != NULL, ret);
9690 out_fput:
9691 fdput(f);
9692 return ret;
9693 }
9694
9695 static int __init io_uring_init(void)
9696 {
9697 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9698 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9699 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9700 } while (0)
9701
9702 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9703 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9704 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9705 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9706 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9707 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9708 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9709 BUILD_BUG_SQE_ELEM(8, __u64, off);
9710 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9711 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9712 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9713 BUILD_BUG_SQE_ELEM(24, __u32, len);
9714 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9715 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9716 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9717 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9718 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9719 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9720 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9721 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9722 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9723 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9724 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9725 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9726 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9727 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
9728 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
9729 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
9730 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
9731 BUILD_BUG_SQE_ELEM(42, __u16, personality);
9732 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
9733
9734 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
9735 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
9736 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
9737 return 0;
9738 };
9739 __initcall(io_uring_init);