]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/iomap/buffered-io.c
fs: convert mpage_readpages to mpage_readahead
[mirror_ubuntu-kernels.git] / fs / iomap / buffered-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 /*
25 * Structure allocated for each page when block size < PAGE_SIZE to track
26 * sub-page uptodate status and I/O completions.
27 */
28 struct iomap_page {
29 atomic_t read_count;
30 atomic_t write_count;
31 spinlock_t uptodate_lock;
32 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
33 };
34
35 static inline struct iomap_page *to_iomap_page(struct page *page)
36 {
37 if (page_has_private(page))
38 return (struct iomap_page *)page_private(page);
39 return NULL;
40 }
41
42 static struct bio_set iomap_ioend_bioset;
43
44 static struct iomap_page *
45 iomap_page_create(struct inode *inode, struct page *page)
46 {
47 struct iomap_page *iop = to_iomap_page(page);
48
49 if (iop || i_blocksize(inode) == PAGE_SIZE)
50 return iop;
51
52 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
53 atomic_set(&iop->read_count, 0);
54 atomic_set(&iop->write_count, 0);
55 spin_lock_init(&iop->uptodate_lock);
56 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
57
58 /*
59 * migrate_page_move_mapping() assumes that pages with private data have
60 * their count elevated by 1.
61 */
62 get_page(page);
63 set_page_private(page, (unsigned long)iop);
64 SetPagePrivate(page);
65 return iop;
66 }
67
68 static void
69 iomap_page_release(struct page *page)
70 {
71 struct iomap_page *iop = to_iomap_page(page);
72
73 if (!iop)
74 return;
75 WARN_ON_ONCE(atomic_read(&iop->read_count));
76 WARN_ON_ONCE(atomic_read(&iop->write_count));
77 ClearPagePrivate(page);
78 set_page_private(page, 0);
79 put_page(page);
80 kfree(iop);
81 }
82
83 /*
84 * Calculate the range inside the page that we actually need to read.
85 */
86 static void
87 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
88 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
89 {
90 loff_t orig_pos = *pos;
91 loff_t isize = i_size_read(inode);
92 unsigned block_bits = inode->i_blkbits;
93 unsigned block_size = (1 << block_bits);
94 unsigned poff = offset_in_page(*pos);
95 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
96 unsigned first = poff >> block_bits;
97 unsigned last = (poff + plen - 1) >> block_bits;
98
99 /*
100 * If the block size is smaller than the page size we need to check the
101 * per-block uptodate status and adjust the offset and length if needed
102 * to avoid reading in already uptodate ranges.
103 */
104 if (iop) {
105 unsigned int i;
106
107 /* move forward for each leading block marked uptodate */
108 for (i = first; i <= last; i++) {
109 if (!test_bit(i, iop->uptodate))
110 break;
111 *pos += block_size;
112 poff += block_size;
113 plen -= block_size;
114 first++;
115 }
116
117 /* truncate len if we find any trailing uptodate block(s) */
118 for ( ; i <= last; i++) {
119 if (test_bit(i, iop->uptodate)) {
120 plen -= (last - i + 1) * block_size;
121 last = i - 1;
122 break;
123 }
124 }
125 }
126
127 /*
128 * If the extent spans the block that contains the i_size we need to
129 * handle both halves separately so that we properly zero data in the
130 * page cache for blocks that are entirely outside of i_size.
131 */
132 if (orig_pos <= isize && orig_pos + length > isize) {
133 unsigned end = offset_in_page(isize - 1) >> block_bits;
134
135 if (first <= end && last > end)
136 plen -= (last - end) * block_size;
137 }
138
139 *offp = poff;
140 *lenp = plen;
141 }
142
143 static void
144 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
145 {
146 struct iomap_page *iop = to_iomap_page(page);
147 struct inode *inode = page->mapping->host;
148 unsigned first = off >> inode->i_blkbits;
149 unsigned last = (off + len - 1) >> inode->i_blkbits;
150 bool uptodate = true;
151 unsigned long flags;
152 unsigned int i;
153
154 spin_lock_irqsave(&iop->uptodate_lock, flags);
155 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
156 if (i >= first && i <= last)
157 set_bit(i, iop->uptodate);
158 else if (!test_bit(i, iop->uptodate))
159 uptodate = false;
160 }
161
162 if (uptodate)
163 SetPageUptodate(page);
164 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
165 }
166
167 static void
168 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
169 {
170 if (PageError(page))
171 return;
172
173 if (page_has_private(page))
174 iomap_iop_set_range_uptodate(page, off, len);
175 else
176 SetPageUptodate(page);
177 }
178
179 static void
180 iomap_read_finish(struct iomap_page *iop, struct page *page)
181 {
182 if (!iop || atomic_dec_and_test(&iop->read_count))
183 unlock_page(page);
184 }
185
186 static void
187 iomap_read_page_end_io(struct bio_vec *bvec, int error)
188 {
189 struct page *page = bvec->bv_page;
190 struct iomap_page *iop = to_iomap_page(page);
191
192 if (unlikely(error)) {
193 ClearPageUptodate(page);
194 SetPageError(page);
195 } else {
196 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
197 }
198
199 iomap_read_finish(iop, page);
200 }
201
202 static void
203 iomap_read_end_io(struct bio *bio)
204 {
205 int error = blk_status_to_errno(bio->bi_status);
206 struct bio_vec *bvec;
207 struct bvec_iter_all iter_all;
208
209 bio_for_each_segment_all(bvec, bio, iter_all)
210 iomap_read_page_end_io(bvec, error);
211 bio_put(bio);
212 }
213
214 struct iomap_readpage_ctx {
215 struct page *cur_page;
216 bool cur_page_in_bio;
217 bool is_readahead;
218 struct bio *bio;
219 struct list_head *pages;
220 };
221
222 static void
223 iomap_read_inline_data(struct inode *inode, struct page *page,
224 struct iomap *iomap)
225 {
226 size_t size = i_size_read(inode);
227 void *addr;
228
229 if (PageUptodate(page))
230 return;
231
232 BUG_ON(page->index);
233 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
234
235 addr = kmap_atomic(page);
236 memcpy(addr, iomap->inline_data, size);
237 memset(addr + size, 0, PAGE_SIZE - size);
238 kunmap_atomic(addr);
239 SetPageUptodate(page);
240 }
241
242 static inline bool iomap_block_needs_zeroing(struct inode *inode,
243 struct iomap *iomap, loff_t pos)
244 {
245 return iomap->type != IOMAP_MAPPED ||
246 (iomap->flags & IOMAP_F_NEW) ||
247 pos >= i_size_read(inode);
248 }
249
250 static loff_t
251 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
252 struct iomap *iomap, struct iomap *srcmap)
253 {
254 struct iomap_readpage_ctx *ctx = data;
255 struct page *page = ctx->cur_page;
256 struct iomap_page *iop = iomap_page_create(inode, page);
257 bool same_page = false, is_contig = false;
258 loff_t orig_pos = pos;
259 unsigned poff, plen;
260 sector_t sector;
261
262 if (iomap->type == IOMAP_INLINE) {
263 WARN_ON_ONCE(pos);
264 iomap_read_inline_data(inode, page, iomap);
265 return PAGE_SIZE;
266 }
267
268 /* zero post-eof blocks as the page may be mapped */
269 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
270 if (plen == 0)
271 goto done;
272
273 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
274 zero_user(page, poff, plen);
275 iomap_set_range_uptodate(page, poff, plen);
276 goto done;
277 }
278
279 ctx->cur_page_in_bio = true;
280
281 /*
282 * Try to merge into a previous segment if we can.
283 */
284 sector = iomap_sector(iomap, pos);
285 if (ctx->bio && bio_end_sector(ctx->bio) == sector)
286 is_contig = true;
287
288 if (is_contig &&
289 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
290 if (!same_page && iop)
291 atomic_inc(&iop->read_count);
292 goto done;
293 }
294
295 /*
296 * If we start a new segment we need to increase the read count, and we
297 * need to do so before submitting any previous full bio to make sure
298 * that we don't prematurely unlock the page.
299 */
300 if (iop)
301 atomic_inc(&iop->read_count);
302
303 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
304 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
305 gfp_t orig_gfp = gfp;
306 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
307
308 if (ctx->bio)
309 submit_bio(ctx->bio);
310
311 if (ctx->is_readahead) /* same as readahead_gfp_mask */
312 gfp |= __GFP_NORETRY | __GFP_NOWARN;
313 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
314 /*
315 * If the bio_alloc fails, try it again for a single page to
316 * avoid having to deal with partial page reads. This emulates
317 * what do_mpage_readpage does.
318 */
319 if (!ctx->bio)
320 ctx->bio = bio_alloc(orig_gfp, 1);
321 ctx->bio->bi_opf = REQ_OP_READ;
322 if (ctx->is_readahead)
323 ctx->bio->bi_opf |= REQ_RAHEAD;
324 ctx->bio->bi_iter.bi_sector = sector;
325 bio_set_dev(ctx->bio, iomap->bdev);
326 ctx->bio->bi_end_io = iomap_read_end_io;
327 }
328
329 bio_add_page(ctx->bio, page, plen, poff);
330 done:
331 /*
332 * Move the caller beyond our range so that it keeps making progress.
333 * For that we have to include any leading non-uptodate ranges, but
334 * we can skip trailing ones as they will be handled in the next
335 * iteration.
336 */
337 return pos - orig_pos + plen;
338 }
339
340 int
341 iomap_readpage(struct page *page, const struct iomap_ops *ops)
342 {
343 struct iomap_readpage_ctx ctx = { .cur_page = page };
344 struct inode *inode = page->mapping->host;
345 unsigned poff;
346 loff_t ret;
347
348 trace_iomap_readpage(page->mapping->host, 1);
349
350 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
351 ret = iomap_apply(inode, page_offset(page) + poff,
352 PAGE_SIZE - poff, 0, ops, &ctx,
353 iomap_readpage_actor);
354 if (ret <= 0) {
355 WARN_ON_ONCE(ret == 0);
356 SetPageError(page);
357 break;
358 }
359 }
360
361 if (ctx.bio) {
362 submit_bio(ctx.bio);
363 WARN_ON_ONCE(!ctx.cur_page_in_bio);
364 } else {
365 WARN_ON_ONCE(ctx.cur_page_in_bio);
366 unlock_page(page);
367 }
368
369 /*
370 * Just like mpage_readahead and block_read_full_page we always
371 * return 0 and just mark the page as PageError on errors. This
372 * should be cleaned up all through the stack eventually.
373 */
374 return 0;
375 }
376 EXPORT_SYMBOL_GPL(iomap_readpage);
377
378 static struct page *
379 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
380 loff_t length, loff_t *done)
381 {
382 while (!list_empty(pages)) {
383 struct page *page = lru_to_page(pages);
384
385 if (page_offset(page) >= (u64)pos + length)
386 break;
387
388 list_del(&page->lru);
389 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
390 GFP_NOFS))
391 return page;
392
393 /*
394 * If we already have a page in the page cache at index we are
395 * done. Upper layers don't care if it is uptodate after the
396 * readpages call itself as every page gets checked again once
397 * actually needed.
398 */
399 *done += PAGE_SIZE;
400 put_page(page);
401 }
402
403 return NULL;
404 }
405
406 static loff_t
407 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
408 void *data, struct iomap *iomap, struct iomap *srcmap)
409 {
410 struct iomap_readpage_ctx *ctx = data;
411 loff_t done, ret;
412
413 for (done = 0; done < length; done += ret) {
414 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
415 if (!ctx->cur_page_in_bio)
416 unlock_page(ctx->cur_page);
417 put_page(ctx->cur_page);
418 ctx->cur_page = NULL;
419 }
420 if (!ctx->cur_page) {
421 ctx->cur_page = iomap_next_page(inode, ctx->pages,
422 pos, length, &done);
423 if (!ctx->cur_page)
424 break;
425 ctx->cur_page_in_bio = false;
426 }
427 ret = iomap_readpage_actor(inode, pos + done, length - done,
428 ctx, iomap, srcmap);
429 }
430
431 return done;
432 }
433
434 int
435 iomap_readpages(struct address_space *mapping, struct list_head *pages,
436 unsigned nr_pages, const struct iomap_ops *ops)
437 {
438 struct iomap_readpage_ctx ctx = {
439 .pages = pages,
440 .is_readahead = true,
441 };
442 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
443 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
444 loff_t length = last - pos + PAGE_SIZE, ret = 0;
445
446 trace_iomap_readpages(mapping->host, nr_pages);
447
448 while (length > 0) {
449 ret = iomap_apply(mapping->host, pos, length, 0, ops,
450 &ctx, iomap_readpages_actor);
451 if (ret <= 0) {
452 WARN_ON_ONCE(ret == 0);
453 goto done;
454 }
455 pos += ret;
456 length -= ret;
457 }
458 ret = 0;
459 done:
460 if (ctx.bio)
461 submit_bio(ctx.bio);
462 if (ctx.cur_page) {
463 if (!ctx.cur_page_in_bio)
464 unlock_page(ctx.cur_page);
465 put_page(ctx.cur_page);
466 }
467
468 /*
469 * Check that we didn't lose a page due to the arcance calling
470 * conventions..
471 */
472 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
473 return ret;
474 }
475 EXPORT_SYMBOL_GPL(iomap_readpages);
476
477 /*
478 * iomap_is_partially_uptodate checks whether blocks within a page are
479 * uptodate or not.
480 *
481 * Returns true if all blocks which correspond to a file portion
482 * we want to read within the page are uptodate.
483 */
484 int
485 iomap_is_partially_uptodate(struct page *page, unsigned long from,
486 unsigned long count)
487 {
488 struct iomap_page *iop = to_iomap_page(page);
489 struct inode *inode = page->mapping->host;
490 unsigned len, first, last;
491 unsigned i;
492
493 /* Limit range to one page */
494 len = min_t(unsigned, PAGE_SIZE - from, count);
495
496 /* First and last blocks in range within page */
497 first = from >> inode->i_blkbits;
498 last = (from + len - 1) >> inode->i_blkbits;
499
500 if (iop) {
501 for (i = first; i <= last; i++)
502 if (!test_bit(i, iop->uptodate))
503 return 0;
504 return 1;
505 }
506
507 return 0;
508 }
509 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
510
511 int
512 iomap_releasepage(struct page *page, gfp_t gfp_mask)
513 {
514 trace_iomap_releasepage(page->mapping->host, page_offset(page),
515 PAGE_SIZE);
516
517 /*
518 * mm accommodates an old ext3 case where clean pages might not have had
519 * the dirty bit cleared. Thus, it can send actual dirty pages to
520 * ->releasepage() via shrink_active_list(), skip those here.
521 */
522 if (PageDirty(page) || PageWriteback(page))
523 return 0;
524 iomap_page_release(page);
525 return 1;
526 }
527 EXPORT_SYMBOL_GPL(iomap_releasepage);
528
529 void
530 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
531 {
532 trace_iomap_invalidatepage(page->mapping->host, offset, len);
533
534 /*
535 * If we are invalidating the entire page, clear the dirty state from it
536 * and release it to avoid unnecessary buildup of the LRU.
537 */
538 if (offset == 0 && len == PAGE_SIZE) {
539 WARN_ON_ONCE(PageWriteback(page));
540 cancel_dirty_page(page);
541 iomap_page_release(page);
542 }
543 }
544 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
545
546 #ifdef CONFIG_MIGRATION
547 int
548 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
549 struct page *page, enum migrate_mode mode)
550 {
551 int ret;
552
553 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
554 if (ret != MIGRATEPAGE_SUCCESS)
555 return ret;
556
557 if (page_has_private(page)) {
558 ClearPagePrivate(page);
559 get_page(newpage);
560 set_page_private(newpage, page_private(page));
561 set_page_private(page, 0);
562 put_page(page);
563 SetPagePrivate(newpage);
564 }
565
566 if (mode != MIGRATE_SYNC_NO_COPY)
567 migrate_page_copy(newpage, page);
568 else
569 migrate_page_states(newpage, page);
570 return MIGRATEPAGE_SUCCESS;
571 }
572 EXPORT_SYMBOL_GPL(iomap_migrate_page);
573 #endif /* CONFIG_MIGRATION */
574
575 enum {
576 IOMAP_WRITE_F_UNSHARE = (1 << 0),
577 };
578
579 static void
580 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
581 {
582 loff_t i_size = i_size_read(inode);
583
584 /*
585 * Only truncate newly allocated pages beyoned EOF, even if the
586 * write started inside the existing inode size.
587 */
588 if (pos + len > i_size)
589 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
590 }
591
592 static int
593 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
594 unsigned plen, struct iomap *iomap)
595 {
596 struct bio_vec bvec;
597 struct bio bio;
598
599 bio_init(&bio, &bvec, 1);
600 bio.bi_opf = REQ_OP_READ;
601 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
602 bio_set_dev(&bio, iomap->bdev);
603 __bio_add_page(&bio, page, plen, poff);
604 return submit_bio_wait(&bio);
605 }
606
607 static int
608 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
609 struct page *page, struct iomap *srcmap)
610 {
611 struct iomap_page *iop = iomap_page_create(inode, page);
612 loff_t block_size = i_blocksize(inode);
613 loff_t block_start = pos & ~(block_size - 1);
614 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
615 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
616 int status;
617
618 if (PageUptodate(page))
619 return 0;
620
621 do {
622 iomap_adjust_read_range(inode, iop, &block_start,
623 block_end - block_start, &poff, &plen);
624 if (plen == 0)
625 break;
626
627 if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
628 (from <= poff || from >= poff + plen) &&
629 (to <= poff || to >= poff + plen))
630 continue;
631
632 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
633 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
634 return -EIO;
635 zero_user_segments(page, poff, from, to, poff + plen);
636 iomap_set_range_uptodate(page, poff, plen);
637 continue;
638 }
639
640 status = iomap_read_page_sync(block_start, page, poff, plen,
641 srcmap);
642 if (status)
643 return status;
644 } while ((block_start += plen) < block_end);
645
646 return 0;
647 }
648
649 static int
650 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
651 struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
652 {
653 const struct iomap_page_ops *page_ops = iomap->page_ops;
654 struct page *page;
655 int status = 0;
656
657 BUG_ON(pos + len > iomap->offset + iomap->length);
658 if (srcmap != iomap)
659 BUG_ON(pos + len > srcmap->offset + srcmap->length);
660
661 if (fatal_signal_pending(current))
662 return -EINTR;
663
664 if (page_ops && page_ops->page_prepare) {
665 status = page_ops->page_prepare(inode, pos, len, iomap);
666 if (status)
667 return status;
668 }
669
670 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
671 AOP_FLAG_NOFS);
672 if (!page) {
673 status = -ENOMEM;
674 goto out_no_page;
675 }
676
677 if (srcmap->type == IOMAP_INLINE)
678 iomap_read_inline_data(inode, page, srcmap);
679 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
680 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
681 else
682 status = __iomap_write_begin(inode, pos, len, flags, page,
683 srcmap);
684
685 if (unlikely(status))
686 goto out_unlock;
687
688 *pagep = page;
689 return 0;
690
691 out_unlock:
692 unlock_page(page);
693 put_page(page);
694 iomap_write_failed(inode, pos, len);
695
696 out_no_page:
697 if (page_ops && page_ops->page_done)
698 page_ops->page_done(inode, pos, 0, NULL, iomap);
699 return status;
700 }
701
702 int
703 iomap_set_page_dirty(struct page *page)
704 {
705 struct address_space *mapping = page_mapping(page);
706 int newly_dirty;
707
708 if (unlikely(!mapping))
709 return !TestSetPageDirty(page);
710
711 /*
712 * Lock out page->mem_cgroup migration to keep PageDirty
713 * synchronized with per-memcg dirty page counters.
714 */
715 lock_page_memcg(page);
716 newly_dirty = !TestSetPageDirty(page);
717 if (newly_dirty)
718 __set_page_dirty(page, mapping, 0);
719 unlock_page_memcg(page);
720
721 if (newly_dirty)
722 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723 return newly_dirty;
724 }
725 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
726
727 static int
728 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
729 unsigned copied, struct page *page)
730 {
731 flush_dcache_page(page);
732
733 /*
734 * The blocks that were entirely written will now be uptodate, so we
735 * don't have to worry about a readpage reading them and overwriting a
736 * partial write. However if we have encountered a short write and only
737 * partially written into a block, it will not be marked uptodate, so a
738 * readpage might come in and destroy our partial write.
739 *
740 * Do the simplest thing, and just treat any short write to a non
741 * uptodate page as a zero-length write, and force the caller to redo
742 * the whole thing.
743 */
744 if (unlikely(copied < len && !PageUptodate(page)))
745 return 0;
746 iomap_set_range_uptodate(page, offset_in_page(pos), len);
747 iomap_set_page_dirty(page);
748 return copied;
749 }
750
751 static int
752 iomap_write_end_inline(struct inode *inode, struct page *page,
753 struct iomap *iomap, loff_t pos, unsigned copied)
754 {
755 void *addr;
756
757 WARN_ON_ONCE(!PageUptodate(page));
758 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
759
760 addr = kmap_atomic(page);
761 memcpy(iomap->inline_data + pos, addr + pos, copied);
762 kunmap_atomic(addr);
763
764 mark_inode_dirty(inode);
765 return copied;
766 }
767
768 static int
769 iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied,
770 struct page *page, struct iomap *iomap, struct iomap *srcmap)
771 {
772 const struct iomap_page_ops *page_ops = iomap->page_ops;
773 loff_t old_size = inode->i_size;
774 int ret;
775
776 if (srcmap->type == IOMAP_INLINE) {
777 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
778 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
779 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
780 page, NULL);
781 } else {
782 ret = __iomap_write_end(inode, pos, len, copied, page);
783 }
784
785 /*
786 * Update the in-memory inode size after copying the data into the page
787 * cache. It's up to the file system to write the updated size to disk,
788 * preferably after I/O completion so that no stale data is exposed.
789 */
790 if (pos + ret > old_size) {
791 i_size_write(inode, pos + ret);
792 iomap->flags |= IOMAP_F_SIZE_CHANGED;
793 }
794 unlock_page(page);
795
796 if (old_size < pos)
797 pagecache_isize_extended(inode, old_size, pos);
798 if (page_ops && page_ops->page_done)
799 page_ops->page_done(inode, pos, ret, page, iomap);
800 put_page(page);
801
802 if (ret < len)
803 iomap_write_failed(inode, pos, len);
804 return ret;
805 }
806
807 static loff_t
808 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
809 struct iomap *iomap, struct iomap *srcmap)
810 {
811 struct iov_iter *i = data;
812 long status = 0;
813 ssize_t written = 0;
814
815 do {
816 struct page *page;
817 unsigned long offset; /* Offset into pagecache page */
818 unsigned long bytes; /* Bytes to write to page */
819 size_t copied; /* Bytes copied from user */
820
821 offset = offset_in_page(pos);
822 bytes = min_t(unsigned long, PAGE_SIZE - offset,
823 iov_iter_count(i));
824 again:
825 if (bytes > length)
826 bytes = length;
827
828 /*
829 * Bring in the user page that we will copy from _first_.
830 * Otherwise there's a nasty deadlock on copying from the
831 * same page as we're writing to, without it being marked
832 * up-to-date.
833 *
834 * Not only is this an optimisation, but it is also required
835 * to check that the address is actually valid, when atomic
836 * usercopies are used, below.
837 */
838 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
839 status = -EFAULT;
840 break;
841 }
842
843 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
844 srcmap);
845 if (unlikely(status))
846 break;
847
848 if (mapping_writably_mapped(inode->i_mapping))
849 flush_dcache_page(page);
850
851 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
852
853 flush_dcache_page(page);
854
855 status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
856 srcmap);
857 if (unlikely(status < 0))
858 break;
859 copied = status;
860
861 cond_resched();
862
863 iov_iter_advance(i, copied);
864 if (unlikely(copied == 0)) {
865 /*
866 * If we were unable to copy any data at all, we must
867 * fall back to a single segment length write.
868 *
869 * If we didn't fallback here, we could livelock
870 * because not all segments in the iov can be copied at
871 * once without a pagefault.
872 */
873 bytes = min_t(unsigned long, PAGE_SIZE - offset,
874 iov_iter_single_seg_count(i));
875 goto again;
876 }
877 pos += copied;
878 written += copied;
879 length -= copied;
880
881 balance_dirty_pages_ratelimited(inode->i_mapping);
882 } while (iov_iter_count(i) && length);
883
884 return written ? written : status;
885 }
886
887 ssize_t
888 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
889 const struct iomap_ops *ops)
890 {
891 struct inode *inode = iocb->ki_filp->f_mapping->host;
892 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
893
894 while (iov_iter_count(iter)) {
895 ret = iomap_apply(inode, pos, iov_iter_count(iter),
896 IOMAP_WRITE, ops, iter, iomap_write_actor);
897 if (ret <= 0)
898 break;
899 pos += ret;
900 written += ret;
901 }
902
903 return written ? written : ret;
904 }
905 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
906
907 static loff_t
908 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
909 struct iomap *iomap, struct iomap *srcmap)
910 {
911 long status = 0;
912 ssize_t written = 0;
913
914 /* don't bother with blocks that are not shared to start with */
915 if (!(iomap->flags & IOMAP_F_SHARED))
916 return length;
917 /* don't bother with holes or unwritten extents */
918 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
919 return length;
920
921 do {
922 unsigned long offset = offset_in_page(pos);
923 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
924 struct page *page;
925
926 status = iomap_write_begin(inode, pos, bytes,
927 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
928 if (unlikely(status))
929 return status;
930
931 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
932 srcmap);
933 if (unlikely(status <= 0)) {
934 if (WARN_ON_ONCE(status == 0))
935 return -EIO;
936 return status;
937 }
938
939 cond_resched();
940
941 pos += status;
942 written += status;
943 length -= status;
944
945 balance_dirty_pages_ratelimited(inode->i_mapping);
946 } while (length);
947
948 return written;
949 }
950
951 int
952 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
953 const struct iomap_ops *ops)
954 {
955 loff_t ret;
956
957 while (len) {
958 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
959 iomap_unshare_actor);
960 if (ret <= 0)
961 return ret;
962 pos += ret;
963 len -= ret;
964 }
965
966 return 0;
967 }
968 EXPORT_SYMBOL_GPL(iomap_file_unshare);
969
970 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
971 unsigned bytes, struct iomap *iomap, struct iomap *srcmap)
972 {
973 struct page *page;
974 int status;
975
976 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
977 if (status)
978 return status;
979
980 zero_user(page, offset, bytes);
981 mark_page_accessed(page);
982
983 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
984 }
985
986 static loff_t
987 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
988 void *data, struct iomap *iomap, struct iomap *srcmap)
989 {
990 bool *did_zero = data;
991 loff_t written = 0;
992 int status;
993
994 /* already zeroed? we're done. */
995 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
996 return count;
997
998 do {
999 unsigned offset, bytes;
1000
1001 offset = offset_in_page(pos);
1002 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1003
1004 if (IS_DAX(inode))
1005 status = dax_iomap_zero(pos, offset, bytes, iomap);
1006 else
1007 status = iomap_zero(inode, pos, offset, bytes, iomap,
1008 srcmap);
1009 if (status < 0)
1010 return status;
1011
1012 pos += bytes;
1013 count -= bytes;
1014 written += bytes;
1015 if (did_zero)
1016 *did_zero = true;
1017 } while (count > 0);
1018
1019 return written;
1020 }
1021
1022 int
1023 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1024 const struct iomap_ops *ops)
1025 {
1026 loff_t ret;
1027
1028 while (len > 0) {
1029 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1030 ops, did_zero, iomap_zero_range_actor);
1031 if (ret <= 0)
1032 return ret;
1033
1034 pos += ret;
1035 len -= ret;
1036 }
1037
1038 return 0;
1039 }
1040 EXPORT_SYMBOL_GPL(iomap_zero_range);
1041
1042 int
1043 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1044 const struct iomap_ops *ops)
1045 {
1046 unsigned int blocksize = i_blocksize(inode);
1047 unsigned int off = pos & (blocksize - 1);
1048
1049 /* Block boundary? Nothing to do */
1050 if (!off)
1051 return 0;
1052 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1053 }
1054 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1055
1056 static loff_t
1057 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1058 void *data, struct iomap *iomap, struct iomap *srcmap)
1059 {
1060 struct page *page = data;
1061 int ret;
1062
1063 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1064 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1065 if (ret)
1066 return ret;
1067 block_commit_write(page, 0, length);
1068 } else {
1069 WARN_ON_ONCE(!PageUptodate(page));
1070 iomap_page_create(inode, page);
1071 set_page_dirty(page);
1072 }
1073
1074 return length;
1075 }
1076
1077 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1078 {
1079 struct page *page = vmf->page;
1080 struct inode *inode = file_inode(vmf->vma->vm_file);
1081 unsigned long length;
1082 loff_t offset;
1083 ssize_t ret;
1084
1085 lock_page(page);
1086 ret = page_mkwrite_check_truncate(page, inode);
1087 if (ret < 0)
1088 goto out_unlock;
1089 length = ret;
1090
1091 offset = page_offset(page);
1092 while (length > 0) {
1093 ret = iomap_apply(inode, offset, length,
1094 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1095 iomap_page_mkwrite_actor);
1096 if (unlikely(ret <= 0))
1097 goto out_unlock;
1098 offset += ret;
1099 length -= ret;
1100 }
1101
1102 wait_for_stable_page(page);
1103 return VM_FAULT_LOCKED;
1104 out_unlock:
1105 unlock_page(page);
1106 return block_page_mkwrite_return(ret);
1107 }
1108 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1109
1110 static void
1111 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1112 int error)
1113 {
1114 struct iomap_page *iop = to_iomap_page(page);
1115
1116 if (error) {
1117 SetPageError(page);
1118 mapping_set_error(inode->i_mapping, -EIO);
1119 }
1120
1121 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1122 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1123
1124 if (!iop || atomic_dec_and_test(&iop->write_count))
1125 end_page_writeback(page);
1126 }
1127
1128 /*
1129 * We're now finished for good with this ioend structure. Update the page
1130 * state, release holds on bios, and finally free up memory. Do not use the
1131 * ioend after this.
1132 */
1133 static void
1134 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1135 {
1136 struct inode *inode = ioend->io_inode;
1137 struct bio *bio = &ioend->io_inline_bio;
1138 struct bio *last = ioend->io_bio, *next;
1139 u64 start = bio->bi_iter.bi_sector;
1140 loff_t offset = ioend->io_offset;
1141 bool quiet = bio_flagged(bio, BIO_QUIET);
1142
1143 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1144 struct bio_vec *bv;
1145 struct bvec_iter_all iter_all;
1146
1147 /*
1148 * For the last bio, bi_private points to the ioend, so we
1149 * need to explicitly end the iteration here.
1150 */
1151 if (bio == last)
1152 next = NULL;
1153 else
1154 next = bio->bi_private;
1155
1156 /* walk each page on bio, ending page IO on them */
1157 bio_for_each_segment_all(bv, bio, iter_all)
1158 iomap_finish_page_writeback(inode, bv->bv_page, error);
1159 bio_put(bio);
1160 }
1161 /* The ioend has been freed by bio_put() */
1162
1163 if (unlikely(error && !quiet)) {
1164 printk_ratelimited(KERN_ERR
1165 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1166 inode->i_sb->s_id, inode->i_ino, offset, start);
1167 }
1168 }
1169
1170 void
1171 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1172 {
1173 struct list_head tmp;
1174
1175 list_replace_init(&ioend->io_list, &tmp);
1176 iomap_finish_ioend(ioend, error);
1177
1178 while (!list_empty(&tmp)) {
1179 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1180 list_del_init(&ioend->io_list);
1181 iomap_finish_ioend(ioend, error);
1182 }
1183 }
1184 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1185
1186 /*
1187 * We can merge two adjacent ioends if they have the same set of work to do.
1188 */
1189 static bool
1190 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1191 {
1192 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1193 return false;
1194 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1195 (next->io_flags & IOMAP_F_SHARED))
1196 return false;
1197 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1198 (next->io_type == IOMAP_UNWRITTEN))
1199 return false;
1200 if (ioend->io_offset + ioend->io_size != next->io_offset)
1201 return false;
1202 return true;
1203 }
1204
1205 void
1206 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1207 void (*merge_private)(struct iomap_ioend *ioend,
1208 struct iomap_ioend *next))
1209 {
1210 struct iomap_ioend *next;
1211
1212 INIT_LIST_HEAD(&ioend->io_list);
1213
1214 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1215 io_list))) {
1216 if (!iomap_ioend_can_merge(ioend, next))
1217 break;
1218 list_move_tail(&next->io_list, &ioend->io_list);
1219 ioend->io_size += next->io_size;
1220 if (next->io_private && merge_private)
1221 merge_private(ioend, next);
1222 }
1223 }
1224 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1225
1226 static int
1227 iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1228 {
1229 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1230 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1231
1232 if (ia->io_offset < ib->io_offset)
1233 return -1;
1234 if (ia->io_offset > ib->io_offset)
1235 return 1;
1236 return 0;
1237 }
1238
1239 void
1240 iomap_sort_ioends(struct list_head *ioend_list)
1241 {
1242 list_sort(NULL, ioend_list, iomap_ioend_compare);
1243 }
1244 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1245
1246 static void iomap_writepage_end_bio(struct bio *bio)
1247 {
1248 struct iomap_ioend *ioend = bio->bi_private;
1249
1250 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1251 }
1252
1253 /*
1254 * Submit the final bio for an ioend.
1255 *
1256 * If @error is non-zero, it means that we have a situation where some part of
1257 * the submission process has failed after we have marked paged for writeback
1258 * and unlocked them. In this situation, we need to fail the bio instead of
1259 * submitting it. This typically only happens on a filesystem shutdown.
1260 */
1261 static int
1262 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1263 int error)
1264 {
1265 ioend->io_bio->bi_private = ioend;
1266 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1267
1268 if (wpc->ops->prepare_ioend)
1269 error = wpc->ops->prepare_ioend(ioend, error);
1270 if (error) {
1271 /*
1272 * If we are failing the IO now, just mark the ioend with an
1273 * error and finish it. This will run IO completion immediately
1274 * as there is only one reference to the ioend at this point in
1275 * time.
1276 */
1277 ioend->io_bio->bi_status = errno_to_blk_status(error);
1278 bio_endio(ioend->io_bio);
1279 return error;
1280 }
1281
1282 submit_bio(ioend->io_bio);
1283 return 0;
1284 }
1285
1286 static struct iomap_ioend *
1287 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1288 loff_t offset, sector_t sector, struct writeback_control *wbc)
1289 {
1290 struct iomap_ioend *ioend;
1291 struct bio *bio;
1292
1293 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1294 bio_set_dev(bio, wpc->iomap.bdev);
1295 bio->bi_iter.bi_sector = sector;
1296 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1297 bio->bi_write_hint = inode->i_write_hint;
1298 wbc_init_bio(wbc, bio);
1299
1300 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1301 INIT_LIST_HEAD(&ioend->io_list);
1302 ioend->io_type = wpc->iomap.type;
1303 ioend->io_flags = wpc->iomap.flags;
1304 ioend->io_inode = inode;
1305 ioend->io_size = 0;
1306 ioend->io_offset = offset;
1307 ioend->io_private = NULL;
1308 ioend->io_bio = bio;
1309 return ioend;
1310 }
1311
1312 /*
1313 * Allocate a new bio, and chain the old bio to the new one.
1314 *
1315 * Note that we have to do perform the chaining in this unintuitive order
1316 * so that the bi_private linkage is set up in the right direction for the
1317 * traversal in iomap_finish_ioend().
1318 */
1319 static struct bio *
1320 iomap_chain_bio(struct bio *prev)
1321 {
1322 struct bio *new;
1323
1324 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1325 bio_copy_dev(new, prev);/* also copies over blkcg information */
1326 new->bi_iter.bi_sector = bio_end_sector(prev);
1327 new->bi_opf = prev->bi_opf;
1328 new->bi_write_hint = prev->bi_write_hint;
1329
1330 bio_chain(prev, new);
1331 bio_get(prev); /* for iomap_finish_ioend */
1332 submit_bio(prev);
1333 return new;
1334 }
1335
1336 static bool
1337 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1338 sector_t sector)
1339 {
1340 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1341 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1342 return false;
1343 if (wpc->iomap.type != wpc->ioend->io_type)
1344 return false;
1345 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1346 return false;
1347 if (sector != bio_end_sector(wpc->ioend->io_bio))
1348 return false;
1349 return true;
1350 }
1351
1352 /*
1353 * Test to see if we have an existing ioend structure that we could append to
1354 * first, otherwise finish off the current ioend and start another.
1355 */
1356 static void
1357 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1358 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1359 struct writeback_control *wbc, struct list_head *iolist)
1360 {
1361 sector_t sector = iomap_sector(&wpc->iomap, offset);
1362 unsigned len = i_blocksize(inode);
1363 unsigned poff = offset & (PAGE_SIZE - 1);
1364 bool merged, same_page = false;
1365
1366 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1367 if (wpc->ioend)
1368 list_add(&wpc->ioend->io_list, iolist);
1369 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1370 }
1371
1372 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1373 &same_page);
1374 if (iop && !same_page)
1375 atomic_inc(&iop->write_count);
1376
1377 if (!merged) {
1378 if (bio_full(wpc->ioend->io_bio, len)) {
1379 wpc->ioend->io_bio =
1380 iomap_chain_bio(wpc->ioend->io_bio);
1381 }
1382 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1383 }
1384
1385 wpc->ioend->io_size += len;
1386 wbc_account_cgroup_owner(wbc, page, len);
1387 }
1388
1389 /*
1390 * We implement an immediate ioend submission policy here to avoid needing to
1391 * chain multiple ioends and hence nest mempool allocations which can violate
1392 * forward progress guarantees we need to provide. The current ioend we are
1393 * adding blocks to is cached on the writepage context, and if the new block
1394 * does not append to the cached ioend it will create a new ioend and cache that
1395 * instead.
1396 *
1397 * If a new ioend is created and cached, the old ioend is returned and queued
1398 * locally for submission once the entire page is processed or an error has been
1399 * detected. While ioends are submitted immediately after they are completed,
1400 * batching optimisations are provided by higher level block plugging.
1401 *
1402 * At the end of a writeback pass, there will be a cached ioend remaining on the
1403 * writepage context that the caller will need to submit.
1404 */
1405 static int
1406 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1407 struct writeback_control *wbc, struct inode *inode,
1408 struct page *page, u64 end_offset)
1409 {
1410 struct iomap_page *iop = to_iomap_page(page);
1411 struct iomap_ioend *ioend, *next;
1412 unsigned len = i_blocksize(inode);
1413 u64 file_offset; /* file offset of page */
1414 int error = 0, count = 0, i;
1415 LIST_HEAD(submit_list);
1416
1417 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1418 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1419
1420 /*
1421 * Walk through the page to find areas to write back. If we run off the
1422 * end of the current map or find the current map invalid, grab a new
1423 * one.
1424 */
1425 for (i = 0, file_offset = page_offset(page);
1426 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1427 i++, file_offset += len) {
1428 if (iop && !test_bit(i, iop->uptodate))
1429 continue;
1430
1431 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1432 if (error)
1433 break;
1434 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1435 continue;
1436 if (wpc->iomap.type == IOMAP_HOLE)
1437 continue;
1438 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1439 &submit_list);
1440 count++;
1441 }
1442
1443 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1444 WARN_ON_ONCE(!PageLocked(page));
1445 WARN_ON_ONCE(PageWriteback(page));
1446
1447 /*
1448 * We cannot cancel the ioend directly here on error. We may have
1449 * already set other pages under writeback and hence we have to run I/O
1450 * completion to mark the error state of the pages under writeback
1451 * appropriately.
1452 */
1453 if (unlikely(error)) {
1454 if (!count) {
1455 /*
1456 * If the current page hasn't been added to ioend, it
1457 * won't be affected by I/O completions and we must
1458 * discard and unlock it right here.
1459 */
1460 if (wpc->ops->discard_page)
1461 wpc->ops->discard_page(page);
1462 ClearPageUptodate(page);
1463 unlock_page(page);
1464 goto done;
1465 }
1466
1467 /*
1468 * If the page was not fully cleaned, we need to ensure that the
1469 * higher layers come back to it correctly. That means we need
1470 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1471 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1472 * so another attempt to write this page in this writeback sweep
1473 * will be made.
1474 */
1475 set_page_writeback_keepwrite(page);
1476 } else {
1477 clear_page_dirty_for_io(page);
1478 set_page_writeback(page);
1479 }
1480
1481 unlock_page(page);
1482
1483 /*
1484 * Preserve the original error if there was one, otherwise catch
1485 * submission errors here and propagate into subsequent ioend
1486 * submissions.
1487 */
1488 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1489 int error2;
1490
1491 list_del_init(&ioend->io_list);
1492 error2 = iomap_submit_ioend(wpc, ioend, error);
1493 if (error2 && !error)
1494 error = error2;
1495 }
1496
1497 /*
1498 * We can end up here with no error and nothing to write only if we race
1499 * with a partial page truncate on a sub-page block sized filesystem.
1500 */
1501 if (!count)
1502 end_page_writeback(page);
1503 done:
1504 mapping_set_error(page->mapping, error);
1505 return error;
1506 }
1507
1508 /*
1509 * Write out a dirty page.
1510 *
1511 * For delalloc space on the page we need to allocate space and flush it.
1512 * For unwritten space on the page we need to start the conversion to
1513 * regular allocated space.
1514 */
1515 static int
1516 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1517 {
1518 struct iomap_writepage_ctx *wpc = data;
1519 struct inode *inode = page->mapping->host;
1520 pgoff_t end_index;
1521 u64 end_offset;
1522 loff_t offset;
1523
1524 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1525
1526 /*
1527 * Refuse to write the page out if we are called from reclaim context.
1528 *
1529 * This avoids stack overflows when called from deeply used stacks in
1530 * random callers for direct reclaim or memcg reclaim. We explicitly
1531 * allow reclaim from kswapd as the stack usage there is relatively low.
1532 *
1533 * This should never happen except in the case of a VM regression so
1534 * warn about it.
1535 */
1536 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1537 PF_MEMALLOC))
1538 goto redirty;
1539
1540 /*
1541 * Given that we do not allow direct reclaim to call us, we should
1542 * never be called in a recursive filesystem reclaim context.
1543 */
1544 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1545 goto redirty;
1546
1547 /*
1548 * Is this page beyond the end of the file?
1549 *
1550 * The page index is less than the end_index, adjust the end_offset
1551 * to the highest offset that this page should represent.
1552 * -----------------------------------------------------
1553 * | file mapping | <EOF> |
1554 * -----------------------------------------------------
1555 * | Page ... | Page N-2 | Page N-1 | Page N | |
1556 * ^--------------------------------^----------|--------
1557 * | desired writeback range | see else |
1558 * ---------------------------------^------------------|
1559 */
1560 offset = i_size_read(inode);
1561 end_index = offset >> PAGE_SHIFT;
1562 if (page->index < end_index)
1563 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1564 else {
1565 /*
1566 * Check whether the page to write out is beyond or straddles
1567 * i_size or not.
1568 * -------------------------------------------------------
1569 * | file mapping | <EOF> |
1570 * -------------------------------------------------------
1571 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1572 * ^--------------------------------^-----------|---------
1573 * | | Straddles |
1574 * ---------------------------------^-----------|--------|
1575 */
1576 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1577
1578 /*
1579 * Skip the page if it is fully outside i_size, e.g. due to a
1580 * truncate operation that is in progress. We must redirty the
1581 * page so that reclaim stops reclaiming it. Otherwise
1582 * iomap_vm_releasepage() is called on it and gets confused.
1583 *
1584 * Note that the end_index is unsigned long, it would overflow
1585 * if the given offset is greater than 16TB on 32-bit system
1586 * and if we do check the page is fully outside i_size or not
1587 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1588 * will be evaluated to 0. Hence this page will be redirtied
1589 * and be written out repeatedly which would result in an
1590 * infinite loop, the user program that perform this operation
1591 * will hang. Instead, we can verify this situation by checking
1592 * if the page to write is totally beyond the i_size or if it's
1593 * offset is just equal to the EOF.
1594 */
1595 if (page->index > end_index ||
1596 (page->index == end_index && offset_into_page == 0))
1597 goto redirty;
1598
1599 /*
1600 * The page straddles i_size. It must be zeroed out on each
1601 * and every writepage invocation because it may be mmapped.
1602 * "A file is mapped in multiples of the page size. For a file
1603 * that is not a multiple of the page size, the remaining
1604 * memory is zeroed when mapped, and writes to that region are
1605 * not written out to the file."
1606 */
1607 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1608
1609 /* Adjust the end_offset to the end of file */
1610 end_offset = offset;
1611 }
1612
1613 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1614
1615 redirty:
1616 redirty_page_for_writepage(wbc, page);
1617 unlock_page(page);
1618 return 0;
1619 }
1620
1621 int
1622 iomap_writepage(struct page *page, struct writeback_control *wbc,
1623 struct iomap_writepage_ctx *wpc,
1624 const struct iomap_writeback_ops *ops)
1625 {
1626 int ret;
1627
1628 wpc->ops = ops;
1629 ret = iomap_do_writepage(page, wbc, wpc);
1630 if (!wpc->ioend)
1631 return ret;
1632 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1633 }
1634 EXPORT_SYMBOL_GPL(iomap_writepage);
1635
1636 int
1637 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1638 struct iomap_writepage_ctx *wpc,
1639 const struct iomap_writeback_ops *ops)
1640 {
1641 int ret;
1642
1643 wpc->ops = ops;
1644 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1645 if (!wpc->ioend)
1646 return ret;
1647 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1648 }
1649 EXPORT_SYMBOL_GPL(iomap_writepages);
1650
1651 static int __init iomap_init(void)
1652 {
1653 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1654 offsetof(struct iomap_ioend, io_inline_bio),
1655 BIOSET_NEED_BVECS);
1656 }
1657 fs_initcall(iomap_init);