]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/iomap.c
proc: use down_read_killable mmap_sem for /proc/pid/clear_refs
[mirror_ubuntu-hirsute-kernel.git] / fs / iomap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/uaccess.h>
11 #include <linux/gfp.h>
12 #include <linux/migrate.h>
13 #include <linux/mm.h>
14 #include <linux/mm_inline.h>
15 #include <linux/swap.h>
16 #include <linux/pagemap.h>
17 #include <linux/pagevec.h>
18 #include <linux/file.h>
19 #include <linux/uio.h>
20 #include <linux/backing-dev.h>
21 #include <linux/buffer_head.h>
22 #include <linux/task_io_accounting_ops.h>
23 #include <linux/dax.h>
24 #include <linux/sched/signal.h>
25
26 #include "internal.h"
27
28 /*
29 * Execute a iomap write on a segment of the mapping that spans a
30 * contiguous range of pages that have identical block mapping state.
31 *
32 * This avoids the need to map pages individually, do individual allocations
33 * for each page and most importantly avoid the need for filesystem specific
34 * locking per page. Instead, all the operations are amortised over the entire
35 * range of pages. It is assumed that the filesystems will lock whatever
36 * resources they require in the iomap_begin call, and release them in the
37 * iomap_end call.
38 */
39 loff_t
40 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
41 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
42 {
43 struct iomap iomap = { 0 };
44 loff_t written = 0, ret;
45
46 /*
47 * Need to map a range from start position for length bytes. This can
48 * span multiple pages - it is only guaranteed to return a range of a
49 * single type of pages (e.g. all into a hole, all mapped or all
50 * unwritten). Failure at this point has nothing to undo.
51 *
52 * If allocation is required for this range, reserve the space now so
53 * that the allocation is guaranteed to succeed later on. Once we copy
54 * the data into the page cache pages, then we cannot fail otherwise we
55 * expose transient stale data. If the reserve fails, we can safely
56 * back out at this point as there is nothing to undo.
57 */
58 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
59 if (ret)
60 return ret;
61 if (WARN_ON(iomap.offset > pos))
62 return -EIO;
63 if (WARN_ON(iomap.length == 0))
64 return -EIO;
65
66 /*
67 * Cut down the length to the one actually provided by the filesystem,
68 * as it might not be able to give us the whole size that we requested.
69 */
70 if (iomap.offset + iomap.length < pos + length)
71 length = iomap.offset + iomap.length - pos;
72
73 /*
74 * Now that we have guaranteed that the space allocation will succeed.
75 * we can do the copy-in page by page without having to worry about
76 * failures exposing transient data.
77 */
78 written = actor(inode, pos, length, data, &iomap);
79
80 /*
81 * Now the data has been copied, commit the range we've copied. This
82 * should not fail unless the filesystem has had a fatal error.
83 */
84 if (ops->iomap_end) {
85 ret = ops->iomap_end(inode, pos, length,
86 written > 0 ? written : 0,
87 flags, &iomap);
88 }
89
90 return written ? written : ret;
91 }
92
93 static sector_t
94 iomap_sector(struct iomap *iomap, loff_t pos)
95 {
96 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
97 }
98
99 static struct iomap_page *
100 iomap_page_create(struct inode *inode, struct page *page)
101 {
102 struct iomap_page *iop = to_iomap_page(page);
103
104 if (iop || i_blocksize(inode) == PAGE_SIZE)
105 return iop;
106
107 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
108 atomic_set(&iop->read_count, 0);
109 atomic_set(&iop->write_count, 0);
110 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
111
112 /*
113 * migrate_page_move_mapping() assumes that pages with private data have
114 * their count elevated by 1.
115 */
116 get_page(page);
117 set_page_private(page, (unsigned long)iop);
118 SetPagePrivate(page);
119 return iop;
120 }
121
122 static void
123 iomap_page_release(struct page *page)
124 {
125 struct iomap_page *iop = to_iomap_page(page);
126
127 if (!iop)
128 return;
129 WARN_ON_ONCE(atomic_read(&iop->read_count));
130 WARN_ON_ONCE(atomic_read(&iop->write_count));
131 ClearPagePrivate(page);
132 set_page_private(page, 0);
133 put_page(page);
134 kfree(iop);
135 }
136
137 /*
138 * Calculate the range inside the page that we actually need to read.
139 */
140 static void
141 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
142 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
143 {
144 loff_t orig_pos = *pos;
145 loff_t isize = i_size_read(inode);
146 unsigned block_bits = inode->i_blkbits;
147 unsigned block_size = (1 << block_bits);
148 unsigned poff = offset_in_page(*pos);
149 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
150 unsigned first = poff >> block_bits;
151 unsigned last = (poff + plen - 1) >> block_bits;
152
153 /*
154 * If the block size is smaller than the page size we need to check the
155 * per-block uptodate status and adjust the offset and length if needed
156 * to avoid reading in already uptodate ranges.
157 */
158 if (iop) {
159 unsigned int i;
160
161 /* move forward for each leading block marked uptodate */
162 for (i = first; i <= last; i++) {
163 if (!test_bit(i, iop->uptodate))
164 break;
165 *pos += block_size;
166 poff += block_size;
167 plen -= block_size;
168 first++;
169 }
170
171 /* truncate len if we find any trailing uptodate block(s) */
172 for ( ; i <= last; i++) {
173 if (test_bit(i, iop->uptodate)) {
174 plen -= (last - i + 1) * block_size;
175 last = i - 1;
176 break;
177 }
178 }
179 }
180
181 /*
182 * If the extent spans the block that contains the i_size we need to
183 * handle both halves separately so that we properly zero data in the
184 * page cache for blocks that are entirely outside of i_size.
185 */
186 if (orig_pos <= isize && orig_pos + length > isize) {
187 unsigned end = offset_in_page(isize - 1) >> block_bits;
188
189 if (first <= end && last > end)
190 plen -= (last - end) * block_size;
191 }
192
193 *offp = poff;
194 *lenp = plen;
195 }
196
197 static void
198 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
199 {
200 struct iomap_page *iop = to_iomap_page(page);
201 struct inode *inode = page->mapping->host;
202 unsigned first = off >> inode->i_blkbits;
203 unsigned last = (off + len - 1) >> inode->i_blkbits;
204 unsigned int i;
205 bool uptodate = true;
206
207 if (iop) {
208 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
209 if (i >= first && i <= last)
210 set_bit(i, iop->uptodate);
211 else if (!test_bit(i, iop->uptodate))
212 uptodate = false;
213 }
214 }
215
216 if (uptodate && !PageError(page))
217 SetPageUptodate(page);
218 }
219
220 static void
221 iomap_read_finish(struct iomap_page *iop, struct page *page)
222 {
223 if (!iop || atomic_dec_and_test(&iop->read_count))
224 unlock_page(page);
225 }
226
227 static void
228 iomap_read_page_end_io(struct bio_vec *bvec, int error)
229 {
230 struct page *page = bvec->bv_page;
231 struct iomap_page *iop = to_iomap_page(page);
232
233 if (unlikely(error)) {
234 ClearPageUptodate(page);
235 SetPageError(page);
236 } else {
237 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
238 }
239
240 iomap_read_finish(iop, page);
241 }
242
243 static void
244 iomap_read_end_io(struct bio *bio)
245 {
246 int error = blk_status_to_errno(bio->bi_status);
247 struct bio_vec *bvec;
248 struct bvec_iter_all iter_all;
249
250 bio_for_each_segment_all(bvec, bio, iter_all)
251 iomap_read_page_end_io(bvec, error);
252 bio_put(bio);
253 }
254
255 struct iomap_readpage_ctx {
256 struct page *cur_page;
257 bool cur_page_in_bio;
258 bool is_readahead;
259 struct bio *bio;
260 struct list_head *pages;
261 };
262
263 static void
264 iomap_read_inline_data(struct inode *inode, struct page *page,
265 struct iomap *iomap)
266 {
267 size_t size = i_size_read(inode);
268 void *addr;
269
270 if (PageUptodate(page))
271 return;
272
273 BUG_ON(page->index);
274 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
275
276 addr = kmap_atomic(page);
277 memcpy(addr, iomap->inline_data, size);
278 memset(addr + size, 0, PAGE_SIZE - size);
279 kunmap_atomic(addr);
280 SetPageUptodate(page);
281 }
282
283 static loff_t
284 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
285 struct iomap *iomap)
286 {
287 struct iomap_readpage_ctx *ctx = data;
288 struct page *page = ctx->cur_page;
289 struct iomap_page *iop = iomap_page_create(inode, page);
290 bool same_page = false, is_contig = false;
291 loff_t orig_pos = pos;
292 unsigned poff, plen;
293 sector_t sector;
294
295 if (iomap->type == IOMAP_INLINE) {
296 WARN_ON_ONCE(pos);
297 iomap_read_inline_data(inode, page, iomap);
298 return PAGE_SIZE;
299 }
300
301 /* zero post-eof blocks as the page may be mapped */
302 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
303 if (plen == 0)
304 goto done;
305
306 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
307 zero_user(page, poff, plen);
308 iomap_set_range_uptodate(page, poff, plen);
309 goto done;
310 }
311
312 ctx->cur_page_in_bio = true;
313
314 /*
315 * Try to merge into a previous segment if we can.
316 */
317 sector = iomap_sector(iomap, pos);
318 if (ctx->bio && bio_end_sector(ctx->bio) == sector)
319 is_contig = true;
320
321 if (is_contig &&
322 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
323 if (!same_page && iop)
324 atomic_inc(&iop->read_count);
325 goto done;
326 }
327
328 /*
329 * If we start a new segment we need to increase the read count, and we
330 * need to do so before submitting any previous full bio to make sure
331 * that we don't prematurely unlock the page.
332 */
333 if (iop)
334 atomic_inc(&iop->read_count);
335
336 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
337 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
338 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
339
340 if (ctx->bio)
341 submit_bio(ctx->bio);
342
343 if (ctx->is_readahead) /* same as readahead_gfp_mask */
344 gfp |= __GFP_NORETRY | __GFP_NOWARN;
345 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
346 ctx->bio->bi_opf = REQ_OP_READ;
347 if (ctx->is_readahead)
348 ctx->bio->bi_opf |= REQ_RAHEAD;
349 ctx->bio->bi_iter.bi_sector = sector;
350 bio_set_dev(ctx->bio, iomap->bdev);
351 ctx->bio->bi_end_io = iomap_read_end_io;
352 }
353
354 bio_add_page(ctx->bio, page, plen, poff);
355 done:
356 /*
357 * Move the caller beyond our range so that it keeps making progress.
358 * For that we have to include any leading non-uptodate ranges, but
359 * we can skip trailing ones as they will be handled in the next
360 * iteration.
361 */
362 return pos - orig_pos + plen;
363 }
364
365 int
366 iomap_readpage(struct page *page, const struct iomap_ops *ops)
367 {
368 struct iomap_readpage_ctx ctx = { .cur_page = page };
369 struct inode *inode = page->mapping->host;
370 unsigned poff;
371 loff_t ret;
372
373 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
374 ret = iomap_apply(inode, page_offset(page) + poff,
375 PAGE_SIZE - poff, 0, ops, &ctx,
376 iomap_readpage_actor);
377 if (ret <= 0) {
378 WARN_ON_ONCE(ret == 0);
379 SetPageError(page);
380 break;
381 }
382 }
383
384 if (ctx.bio) {
385 submit_bio(ctx.bio);
386 WARN_ON_ONCE(!ctx.cur_page_in_bio);
387 } else {
388 WARN_ON_ONCE(ctx.cur_page_in_bio);
389 unlock_page(page);
390 }
391
392 /*
393 * Just like mpage_readpages and block_read_full_page we always
394 * return 0 and just mark the page as PageError on errors. This
395 * should be cleaned up all through the stack eventually.
396 */
397 return 0;
398 }
399 EXPORT_SYMBOL_GPL(iomap_readpage);
400
401 static struct page *
402 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
403 loff_t length, loff_t *done)
404 {
405 while (!list_empty(pages)) {
406 struct page *page = lru_to_page(pages);
407
408 if (page_offset(page) >= (u64)pos + length)
409 break;
410
411 list_del(&page->lru);
412 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
413 GFP_NOFS))
414 return page;
415
416 /*
417 * If we already have a page in the page cache at index we are
418 * done. Upper layers don't care if it is uptodate after the
419 * readpages call itself as every page gets checked again once
420 * actually needed.
421 */
422 *done += PAGE_SIZE;
423 put_page(page);
424 }
425
426 return NULL;
427 }
428
429 static loff_t
430 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
431 void *data, struct iomap *iomap)
432 {
433 struct iomap_readpage_ctx *ctx = data;
434 loff_t done, ret;
435
436 for (done = 0; done < length; done += ret) {
437 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
438 if (!ctx->cur_page_in_bio)
439 unlock_page(ctx->cur_page);
440 put_page(ctx->cur_page);
441 ctx->cur_page = NULL;
442 }
443 if (!ctx->cur_page) {
444 ctx->cur_page = iomap_next_page(inode, ctx->pages,
445 pos, length, &done);
446 if (!ctx->cur_page)
447 break;
448 ctx->cur_page_in_bio = false;
449 }
450 ret = iomap_readpage_actor(inode, pos + done, length - done,
451 ctx, iomap);
452 }
453
454 return done;
455 }
456
457 int
458 iomap_readpages(struct address_space *mapping, struct list_head *pages,
459 unsigned nr_pages, const struct iomap_ops *ops)
460 {
461 struct iomap_readpage_ctx ctx = {
462 .pages = pages,
463 .is_readahead = true,
464 };
465 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
466 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
467 loff_t length = last - pos + PAGE_SIZE, ret = 0;
468
469 while (length > 0) {
470 ret = iomap_apply(mapping->host, pos, length, 0, ops,
471 &ctx, iomap_readpages_actor);
472 if (ret <= 0) {
473 WARN_ON_ONCE(ret == 0);
474 goto done;
475 }
476 pos += ret;
477 length -= ret;
478 }
479 ret = 0;
480 done:
481 if (ctx.bio)
482 submit_bio(ctx.bio);
483 if (ctx.cur_page) {
484 if (!ctx.cur_page_in_bio)
485 unlock_page(ctx.cur_page);
486 put_page(ctx.cur_page);
487 }
488
489 /*
490 * Check that we didn't lose a page due to the arcance calling
491 * conventions..
492 */
493 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
494 return ret;
495 }
496 EXPORT_SYMBOL_GPL(iomap_readpages);
497
498 /*
499 * iomap_is_partially_uptodate checks whether blocks within a page are
500 * uptodate or not.
501 *
502 * Returns true if all blocks which correspond to a file portion
503 * we want to read within the page are uptodate.
504 */
505 int
506 iomap_is_partially_uptodate(struct page *page, unsigned long from,
507 unsigned long count)
508 {
509 struct iomap_page *iop = to_iomap_page(page);
510 struct inode *inode = page->mapping->host;
511 unsigned len, first, last;
512 unsigned i;
513
514 /* Limit range to one page */
515 len = min_t(unsigned, PAGE_SIZE - from, count);
516
517 /* First and last blocks in range within page */
518 first = from >> inode->i_blkbits;
519 last = (from + len - 1) >> inode->i_blkbits;
520
521 if (iop) {
522 for (i = first; i <= last; i++)
523 if (!test_bit(i, iop->uptodate))
524 return 0;
525 return 1;
526 }
527
528 return 0;
529 }
530 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
531
532 int
533 iomap_releasepage(struct page *page, gfp_t gfp_mask)
534 {
535 /*
536 * mm accommodates an old ext3 case where clean pages might not have had
537 * the dirty bit cleared. Thus, it can send actual dirty pages to
538 * ->releasepage() via shrink_active_list(), skip those here.
539 */
540 if (PageDirty(page) || PageWriteback(page))
541 return 0;
542 iomap_page_release(page);
543 return 1;
544 }
545 EXPORT_SYMBOL_GPL(iomap_releasepage);
546
547 void
548 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
549 {
550 /*
551 * If we are invalidating the entire page, clear the dirty state from it
552 * and release it to avoid unnecessary buildup of the LRU.
553 */
554 if (offset == 0 && len == PAGE_SIZE) {
555 WARN_ON_ONCE(PageWriteback(page));
556 cancel_dirty_page(page);
557 iomap_page_release(page);
558 }
559 }
560 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
561
562 #ifdef CONFIG_MIGRATION
563 int
564 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
565 struct page *page, enum migrate_mode mode)
566 {
567 int ret;
568
569 ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
570 if (ret != MIGRATEPAGE_SUCCESS)
571 return ret;
572
573 if (page_has_private(page)) {
574 ClearPagePrivate(page);
575 get_page(newpage);
576 set_page_private(newpage, page_private(page));
577 set_page_private(page, 0);
578 put_page(page);
579 SetPagePrivate(newpage);
580 }
581
582 if (mode != MIGRATE_SYNC_NO_COPY)
583 migrate_page_copy(newpage, page);
584 else
585 migrate_page_states(newpage, page);
586 return MIGRATEPAGE_SUCCESS;
587 }
588 EXPORT_SYMBOL_GPL(iomap_migrate_page);
589 #endif /* CONFIG_MIGRATION */
590
591 static void
592 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
593 {
594 loff_t i_size = i_size_read(inode);
595
596 /*
597 * Only truncate newly allocated pages beyoned EOF, even if the
598 * write started inside the existing inode size.
599 */
600 if (pos + len > i_size)
601 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
602 }
603
604 static int
605 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
606 unsigned poff, unsigned plen, unsigned from, unsigned to,
607 struct iomap *iomap)
608 {
609 struct bio_vec bvec;
610 struct bio bio;
611
612 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
613 zero_user_segments(page, poff, from, to, poff + plen);
614 iomap_set_range_uptodate(page, poff, plen);
615 return 0;
616 }
617
618 bio_init(&bio, &bvec, 1);
619 bio.bi_opf = REQ_OP_READ;
620 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
621 bio_set_dev(&bio, iomap->bdev);
622 __bio_add_page(&bio, page, plen, poff);
623 return submit_bio_wait(&bio);
624 }
625
626 static int
627 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
628 struct page *page, struct iomap *iomap)
629 {
630 struct iomap_page *iop = iomap_page_create(inode, page);
631 loff_t block_size = i_blocksize(inode);
632 loff_t block_start = pos & ~(block_size - 1);
633 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
634 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
635 int status = 0;
636
637 if (PageUptodate(page))
638 return 0;
639
640 do {
641 iomap_adjust_read_range(inode, iop, &block_start,
642 block_end - block_start, &poff, &plen);
643 if (plen == 0)
644 break;
645
646 if ((from > poff && from < poff + plen) ||
647 (to > poff && to < poff + plen)) {
648 status = iomap_read_page_sync(inode, block_start, page,
649 poff, plen, from, to, iomap);
650 if (status)
651 break;
652 }
653
654 } while ((block_start += plen) < block_end);
655
656 return status;
657 }
658
659 static int
660 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
661 struct page **pagep, struct iomap *iomap)
662 {
663 const struct iomap_page_ops *page_ops = iomap->page_ops;
664 pgoff_t index = pos >> PAGE_SHIFT;
665 struct page *page;
666 int status = 0;
667
668 BUG_ON(pos + len > iomap->offset + iomap->length);
669
670 if (fatal_signal_pending(current))
671 return -EINTR;
672
673 if (page_ops && page_ops->page_prepare) {
674 status = page_ops->page_prepare(inode, pos, len, iomap);
675 if (status)
676 return status;
677 }
678
679 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
680 if (!page) {
681 status = -ENOMEM;
682 goto out_no_page;
683 }
684
685 if (iomap->type == IOMAP_INLINE)
686 iomap_read_inline_data(inode, page, iomap);
687 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
688 status = __block_write_begin_int(page, pos, len, NULL, iomap);
689 else
690 status = __iomap_write_begin(inode, pos, len, page, iomap);
691
692 if (unlikely(status))
693 goto out_unlock;
694
695 *pagep = page;
696 return 0;
697
698 out_unlock:
699 unlock_page(page);
700 put_page(page);
701 iomap_write_failed(inode, pos, len);
702
703 out_no_page:
704 if (page_ops && page_ops->page_done)
705 page_ops->page_done(inode, pos, 0, NULL, iomap);
706 return status;
707 }
708
709 int
710 iomap_set_page_dirty(struct page *page)
711 {
712 struct address_space *mapping = page_mapping(page);
713 int newly_dirty;
714
715 if (unlikely(!mapping))
716 return !TestSetPageDirty(page);
717
718 /*
719 * Lock out page->mem_cgroup migration to keep PageDirty
720 * synchronized with per-memcg dirty page counters.
721 */
722 lock_page_memcg(page);
723 newly_dirty = !TestSetPageDirty(page);
724 if (newly_dirty)
725 __set_page_dirty(page, mapping, 0);
726 unlock_page_memcg(page);
727
728 if (newly_dirty)
729 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
730 return newly_dirty;
731 }
732 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
733
734 static int
735 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
736 unsigned copied, struct page *page, struct iomap *iomap)
737 {
738 flush_dcache_page(page);
739
740 /*
741 * The blocks that were entirely written will now be uptodate, so we
742 * don't have to worry about a readpage reading them and overwriting a
743 * partial write. However if we have encountered a short write and only
744 * partially written into a block, it will not be marked uptodate, so a
745 * readpage might come in and destroy our partial write.
746 *
747 * Do the simplest thing, and just treat any short write to a non
748 * uptodate page as a zero-length write, and force the caller to redo
749 * the whole thing.
750 */
751 if (unlikely(copied < len && !PageUptodate(page)))
752 return 0;
753 iomap_set_range_uptodate(page, offset_in_page(pos), len);
754 iomap_set_page_dirty(page);
755 return copied;
756 }
757
758 static int
759 iomap_write_end_inline(struct inode *inode, struct page *page,
760 struct iomap *iomap, loff_t pos, unsigned copied)
761 {
762 void *addr;
763
764 WARN_ON_ONCE(!PageUptodate(page));
765 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
766
767 addr = kmap_atomic(page);
768 memcpy(iomap->inline_data + pos, addr + pos, copied);
769 kunmap_atomic(addr);
770
771 mark_inode_dirty(inode);
772 return copied;
773 }
774
775 static int
776 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
777 unsigned copied, struct page *page, struct iomap *iomap)
778 {
779 const struct iomap_page_ops *page_ops = iomap->page_ops;
780 loff_t old_size = inode->i_size;
781 int ret;
782
783 if (iomap->type == IOMAP_INLINE) {
784 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
785 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
786 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
787 page, NULL);
788 } else {
789 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
790 }
791
792 /*
793 * Update the in-memory inode size after copying the data into the page
794 * cache. It's up to the file system to write the updated size to disk,
795 * preferably after I/O completion so that no stale data is exposed.
796 */
797 if (pos + ret > old_size) {
798 i_size_write(inode, pos + ret);
799 iomap->flags |= IOMAP_F_SIZE_CHANGED;
800 }
801 unlock_page(page);
802
803 if (old_size < pos)
804 pagecache_isize_extended(inode, old_size, pos);
805 if (page_ops && page_ops->page_done)
806 page_ops->page_done(inode, pos, ret, page, iomap);
807 put_page(page);
808
809 if (ret < len)
810 iomap_write_failed(inode, pos, len);
811 return ret;
812 }
813
814 static loff_t
815 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
816 struct iomap *iomap)
817 {
818 struct iov_iter *i = data;
819 long status = 0;
820 ssize_t written = 0;
821 unsigned int flags = AOP_FLAG_NOFS;
822
823 do {
824 struct page *page;
825 unsigned long offset; /* Offset into pagecache page */
826 unsigned long bytes; /* Bytes to write to page */
827 size_t copied; /* Bytes copied from user */
828
829 offset = offset_in_page(pos);
830 bytes = min_t(unsigned long, PAGE_SIZE - offset,
831 iov_iter_count(i));
832 again:
833 if (bytes > length)
834 bytes = length;
835
836 /*
837 * Bring in the user page that we will copy from _first_.
838 * Otherwise there's a nasty deadlock on copying from the
839 * same page as we're writing to, without it being marked
840 * up-to-date.
841 *
842 * Not only is this an optimisation, but it is also required
843 * to check that the address is actually valid, when atomic
844 * usercopies are used, below.
845 */
846 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
847 status = -EFAULT;
848 break;
849 }
850
851 status = iomap_write_begin(inode, pos, bytes, flags, &page,
852 iomap);
853 if (unlikely(status))
854 break;
855
856 if (mapping_writably_mapped(inode->i_mapping))
857 flush_dcache_page(page);
858
859 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
860
861 flush_dcache_page(page);
862
863 status = iomap_write_end(inode, pos, bytes, copied, page,
864 iomap);
865 if (unlikely(status < 0))
866 break;
867 copied = status;
868
869 cond_resched();
870
871 iov_iter_advance(i, copied);
872 if (unlikely(copied == 0)) {
873 /*
874 * If we were unable to copy any data at all, we must
875 * fall back to a single segment length write.
876 *
877 * If we didn't fallback here, we could livelock
878 * because not all segments in the iov can be copied at
879 * once without a pagefault.
880 */
881 bytes = min_t(unsigned long, PAGE_SIZE - offset,
882 iov_iter_single_seg_count(i));
883 goto again;
884 }
885 pos += copied;
886 written += copied;
887 length -= copied;
888
889 balance_dirty_pages_ratelimited(inode->i_mapping);
890 } while (iov_iter_count(i) && length);
891
892 return written ? written : status;
893 }
894
895 ssize_t
896 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
897 const struct iomap_ops *ops)
898 {
899 struct inode *inode = iocb->ki_filp->f_mapping->host;
900 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
901
902 while (iov_iter_count(iter)) {
903 ret = iomap_apply(inode, pos, iov_iter_count(iter),
904 IOMAP_WRITE, ops, iter, iomap_write_actor);
905 if (ret <= 0)
906 break;
907 pos += ret;
908 written += ret;
909 }
910
911 return written ? written : ret;
912 }
913 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
914
915 static struct page *
916 __iomap_read_page(struct inode *inode, loff_t offset)
917 {
918 struct address_space *mapping = inode->i_mapping;
919 struct page *page;
920
921 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
922 if (IS_ERR(page))
923 return page;
924 if (!PageUptodate(page)) {
925 put_page(page);
926 return ERR_PTR(-EIO);
927 }
928 return page;
929 }
930
931 static loff_t
932 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
933 struct iomap *iomap)
934 {
935 long status = 0;
936 ssize_t written = 0;
937
938 do {
939 struct page *page, *rpage;
940 unsigned long offset; /* Offset into pagecache page */
941 unsigned long bytes; /* Bytes to write to page */
942
943 offset = offset_in_page(pos);
944 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
945
946 rpage = __iomap_read_page(inode, pos);
947 if (IS_ERR(rpage))
948 return PTR_ERR(rpage);
949
950 status = iomap_write_begin(inode, pos, bytes,
951 AOP_FLAG_NOFS, &page, iomap);
952 put_page(rpage);
953 if (unlikely(status))
954 return status;
955
956 WARN_ON_ONCE(!PageUptodate(page));
957
958 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
959 if (unlikely(status <= 0)) {
960 if (WARN_ON_ONCE(status == 0))
961 return -EIO;
962 return status;
963 }
964
965 cond_resched();
966
967 pos += status;
968 written += status;
969 length -= status;
970
971 balance_dirty_pages_ratelimited(inode->i_mapping);
972 } while (length);
973
974 return written;
975 }
976
977 int
978 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
979 const struct iomap_ops *ops)
980 {
981 loff_t ret;
982
983 while (len) {
984 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
985 iomap_dirty_actor);
986 if (ret <= 0)
987 return ret;
988 pos += ret;
989 len -= ret;
990 }
991
992 return 0;
993 }
994 EXPORT_SYMBOL_GPL(iomap_file_dirty);
995
996 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
997 unsigned bytes, struct iomap *iomap)
998 {
999 struct page *page;
1000 int status;
1001
1002 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
1003 iomap);
1004 if (status)
1005 return status;
1006
1007 zero_user(page, offset, bytes);
1008 mark_page_accessed(page);
1009
1010 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
1011 }
1012
1013 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
1014 struct iomap *iomap)
1015 {
1016 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
1017 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
1018 }
1019
1020 static loff_t
1021 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
1022 void *data, struct iomap *iomap)
1023 {
1024 bool *did_zero = data;
1025 loff_t written = 0;
1026 int status;
1027
1028 /* already zeroed? we're done. */
1029 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1030 return count;
1031
1032 do {
1033 unsigned offset, bytes;
1034
1035 offset = offset_in_page(pos);
1036 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1037
1038 if (IS_DAX(inode))
1039 status = iomap_dax_zero(pos, offset, bytes, iomap);
1040 else
1041 status = iomap_zero(inode, pos, offset, bytes, iomap);
1042 if (status < 0)
1043 return status;
1044
1045 pos += bytes;
1046 count -= bytes;
1047 written += bytes;
1048 if (did_zero)
1049 *did_zero = true;
1050 } while (count > 0);
1051
1052 return written;
1053 }
1054
1055 int
1056 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1057 const struct iomap_ops *ops)
1058 {
1059 loff_t ret;
1060
1061 while (len > 0) {
1062 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1063 ops, did_zero, iomap_zero_range_actor);
1064 if (ret <= 0)
1065 return ret;
1066
1067 pos += ret;
1068 len -= ret;
1069 }
1070
1071 return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(iomap_zero_range);
1074
1075 int
1076 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1077 const struct iomap_ops *ops)
1078 {
1079 unsigned int blocksize = i_blocksize(inode);
1080 unsigned int off = pos & (blocksize - 1);
1081
1082 /* Block boundary? Nothing to do */
1083 if (!off)
1084 return 0;
1085 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1086 }
1087 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1088
1089 static loff_t
1090 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1091 void *data, struct iomap *iomap)
1092 {
1093 struct page *page = data;
1094 int ret;
1095
1096 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1097 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1098 if (ret)
1099 return ret;
1100 block_commit_write(page, 0, length);
1101 } else {
1102 WARN_ON_ONCE(!PageUptodate(page));
1103 iomap_page_create(inode, page);
1104 set_page_dirty(page);
1105 }
1106
1107 return length;
1108 }
1109
1110 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1111 {
1112 struct page *page = vmf->page;
1113 struct inode *inode = file_inode(vmf->vma->vm_file);
1114 unsigned long length;
1115 loff_t offset, size;
1116 ssize_t ret;
1117
1118 lock_page(page);
1119 size = i_size_read(inode);
1120 if ((page->mapping != inode->i_mapping) ||
1121 (page_offset(page) > size)) {
1122 /* We overload EFAULT to mean page got truncated */
1123 ret = -EFAULT;
1124 goto out_unlock;
1125 }
1126
1127 /* page is wholly or partially inside EOF */
1128 if (((page->index + 1) << PAGE_SHIFT) > size)
1129 length = offset_in_page(size);
1130 else
1131 length = PAGE_SIZE;
1132
1133 offset = page_offset(page);
1134 while (length > 0) {
1135 ret = iomap_apply(inode, offset, length,
1136 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1137 iomap_page_mkwrite_actor);
1138 if (unlikely(ret <= 0))
1139 goto out_unlock;
1140 offset += ret;
1141 length -= ret;
1142 }
1143
1144 wait_for_stable_page(page);
1145 return VM_FAULT_LOCKED;
1146 out_unlock:
1147 unlock_page(page);
1148 return block_page_mkwrite_return(ret);
1149 }
1150 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1151
1152 struct fiemap_ctx {
1153 struct fiemap_extent_info *fi;
1154 struct iomap prev;
1155 };
1156
1157 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1158 struct iomap *iomap, u32 flags)
1159 {
1160 switch (iomap->type) {
1161 case IOMAP_HOLE:
1162 /* skip holes */
1163 return 0;
1164 case IOMAP_DELALLOC:
1165 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1166 break;
1167 case IOMAP_MAPPED:
1168 break;
1169 case IOMAP_UNWRITTEN:
1170 flags |= FIEMAP_EXTENT_UNWRITTEN;
1171 break;
1172 case IOMAP_INLINE:
1173 flags |= FIEMAP_EXTENT_DATA_INLINE;
1174 break;
1175 }
1176
1177 if (iomap->flags & IOMAP_F_MERGED)
1178 flags |= FIEMAP_EXTENT_MERGED;
1179 if (iomap->flags & IOMAP_F_SHARED)
1180 flags |= FIEMAP_EXTENT_SHARED;
1181
1182 return fiemap_fill_next_extent(fi, iomap->offset,
1183 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1184 iomap->length, flags);
1185 }
1186
1187 static loff_t
1188 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1189 struct iomap *iomap)
1190 {
1191 struct fiemap_ctx *ctx = data;
1192 loff_t ret = length;
1193
1194 if (iomap->type == IOMAP_HOLE)
1195 return length;
1196
1197 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1198 ctx->prev = *iomap;
1199 switch (ret) {
1200 case 0: /* success */
1201 return length;
1202 case 1: /* extent array full */
1203 return 0;
1204 default:
1205 return ret;
1206 }
1207 }
1208
1209 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1210 loff_t start, loff_t len, const struct iomap_ops *ops)
1211 {
1212 struct fiemap_ctx ctx;
1213 loff_t ret;
1214
1215 memset(&ctx, 0, sizeof(ctx));
1216 ctx.fi = fi;
1217 ctx.prev.type = IOMAP_HOLE;
1218
1219 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1220 if (ret)
1221 return ret;
1222
1223 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1224 ret = filemap_write_and_wait(inode->i_mapping);
1225 if (ret)
1226 return ret;
1227 }
1228
1229 while (len > 0) {
1230 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1231 iomap_fiemap_actor);
1232 /* inode with no (attribute) mapping will give ENOENT */
1233 if (ret == -ENOENT)
1234 break;
1235 if (ret < 0)
1236 return ret;
1237 if (ret == 0)
1238 break;
1239
1240 start += ret;
1241 len -= ret;
1242 }
1243
1244 if (ctx.prev.type != IOMAP_HOLE) {
1245 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1246 if (ret < 0)
1247 return ret;
1248 }
1249
1250 return 0;
1251 }
1252 EXPORT_SYMBOL_GPL(iomap_fiemap);
1253
1254 /*
1255 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1256 * Returns true if found and updates @lastoff to the offset in file.
1257 */
1258 static bool
1259 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1260 int whence)
1261 {
1262 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1263 unsigned int bsize = i_blocksize(inode), off;
1264 bool seek_data = whence == SEEK_DATA;
1265 loff_t poff = page_offset(page);
1266
1267 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1268 return false;
1269
1270 if (*lastoff < poff) {
1271 /*
1272 * Last offset smaller than the start of the page means we found
1273 * a hole:
1274 */
1275 if (whence == SEEK_HOLE)
1276 return true;
1277 *lastoff = poff;
1278 }
1279
1280 /*
1281 * Just check the page unless we can and should check block ranges:
1282 */
1283 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1284 return PageUptodate(page) == seek_data;
1285
1286 lock_page(page);
1287 if (unlikely(page->mapping != inode->i_mapping))
1288 goto out_unlock_not_found;
1289
1290 for (off = 0; off < PAGE_SIZE; off += bsize) {
1291 if (offset_in_page(*lastoff) >= off + bsize)
1292 continue;
1293 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1294 unlock_page(page);
1295 return true;
1296 }
1297 *lastoff = poff + off + bsize;
1298 }
1299
1300 out_unlock_not_found:
1301 unlock_page(page);
1302 return false;
1303 }
1304
1305 /*
1306 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1307 *
1308 * Within unwritten extents, the page cache determines which parts are holes
1309 * and which are data: uptodate buffer heads count as data; everything else
1310 * counts as a hole.
1311 *
1312 * Returns the resulting offset on successs, and -ENOENT otherwise.
1313 */
1314 static loff_t
1315 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1316 int whence)
1317 {
1318 pgoff_t index = offset >> PAGE_SHIFT;
1319 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1320 loff_t lastoff = offset;
1321 struct pagevec pvec;
1322
1323 if (length <= 0)
1324 return -ENOENT;
1325
1326 pagevec_init(&pvec);
1327
1328 do {
1329 unsigned nr_pages, i;
1330
1331 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1332 end - 1);
1333 if (nr_pages == 0)
1334 break;
1335
1336 for (i = 0; i < nr_pages; i++) {
1337 struct page *page = pvec.pages[i];
1338
1339 if (page_seek_hole_data(inode, page, &lastoff, whence))
1340 goto check_range;
1341 lastoff = page_offset(page) + PAGE_SIZE;
1342 }
1343 pagevec_release(&pvec);
1344 } while (index < end);
1345
1346 /* When no page at lastoff and we are not done, we found a hole. */
1347 if (whence != SEEK_HOLE)
1348 goto not_found;
1349
1350 check_range:
1351 if (lastoff < offset + length)
1352 goto out;
1353 not_found:
1354 lastoff = -ENOENT;
1355 out:
1356 pagevec_release(&pvec);
1357 return lastoff;
1358 }
1359
1360
1361 static loff_t
1362 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1363 void *data, struct iomap *iomap)
1364 {
1365 switch (iomap->type) {
1366 case IOMAP_UNWRITTEN:
1367 offset = page_cache_seek_hole_data(inode, offset, length,
1368 SEEK_HOLE);
1369 if (offset < 0)
1370 return length;
1371 /* fall through */
1372 case IOMAP_HOLE:
1373 *(loff_t *)data = offset;
1374 return 0;
1375 default:
1376 return length;
1377 }
1378 }
1379
1380 loff_t
1381 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1382 {
1383 loff_t size = i_size_read(inode);
1384 loff_t length = size - offset;
1385 loff_t ret;
1386
1387 /* Nothing to be found before or beyond the end of the file. */
1388 if (offset < 0 || offset >= size)
1389 return -ENXIO;
1390
1391 while (length > 0) {
1392 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1393 &offset, iomap_seek_hole_actor);
1394 if (ret < 0)
1395 return ret;
1396 if (ret == 0)
1397 break;
1398
1399 offset += ret;
1400 length -= ret;
1401 }
1402
1403 return offset;
1404 }
1405 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1406
1407 static loff_t
1408 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1409 void *data, struct iomap *iomap)
1410 {
1411 switch (iomap->type) {
1412 case IOMAP_HOLE:
1413 return length;
1414 case IOMAP_UNWRITTEN:
1415 offset = page_cache_seek_hole_data(inode, offset, length,
1416 SEEK_DATA);
1417 if (offset < 0)
1418 return length;
1419 /*FALLTHRU*/
1420 default:
1421 *(loff_t *)data = offset;
1422 return 0;
1423 }
1424 }
1425
1426 loff_t
1427 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1428 {
1429 loff_t size = i_size_read(inode);
1430 loff_t length = size - offset;
1431 loff_t ret;
1432
1433 /* Nothing to be found before or beyond the end of the file. */
1434 if (offset < 0 || offset >= size)
1435 return -ENXIO;
1436
1437 while (length > 0) {
1438 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1439 &offset, iomap_seek_data_actor);
1440 if (ret < 0)
1441 return ret;
1442 if (ret == 0)
1443 break;
1444
1445 offset += ret;
1446 length -= ret;
1447 }
1448
1449 if (length <= 0)
1450 return -ENXIO;
1451 return offset;
1452 }
1453 EXPORT_SYMBOL_GPL(iomap_seek_data);
1454
1455 /*
1456 * Private flags for iomap_dio, must not overlap with the public ones in
1457 * iomap.h:
1458 */
1459 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1460 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1461 #define IOMAP_DIO_WRITE (1 << 30)
1462 #define IOMAP_DIO_DIRTY (1 << 31)
1463
1464 struct iomap_dio {
1465 struct kiocb *iocb;
1466 iomap_dio_end_io_t *end_io;
1467 loff_t i_size;
1468 loff_t size;
1469 atomic_t ref;
1470 unsigned flags;
1471 int error;
1472 bool wait_for_completion;
1473
1474 union {
1475 /* used during submission and for synchronous completion: */
1476 struct {
1477 struct iov_iter *iter;
1478 struct task_struct *waiter;
1479 struct request_queue *last_queue;
1480 blk_qc_t cookie;
1481 } submit;
1482
1483 /* used for aio completion: */
1484 struct {
1485 struct work_struct work;
1486 } aio;
1487 };
1488 };
1489
1490 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
1491 {
1492 struct request_queue *q = READ_ONCE(kiocb->private);
1493
1494 if (!q)
1495 return 0;
1496 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
1497 }
1498 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
1499
1500 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
1501 struct bio *bio)
1502 {
1503 atomic_inc(&dio->ref);
1504
1505 if (dio->iocb->ki_flags & IOCB_HIPRI)
1506 bio_set_polled(bio, dio->iocb);
1507
1508 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1509 dio->submit.cookie = submit_bio(bio);
1510 }
1511
1512 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1513 {
1514 struct kiocb *iocb = dio->iocb;
1515 struct inode *inode = file_inode(iocb->ki_filp);
1516 loff_t offset = iocb->ki_pos;
1517 ssize_t ret;
1518
1519 if (dio->end_io) {
1520 ret = dio->end_io(iocb,
1521 dio->error ? dio->error : dio->size,
1522 dio->flags);
1523 } else {
1524 ret = dio->error;
1525 }
1526
1527 if (likely(!ret)) {
1528 ret = dio->size;
1529 /* check for short read */
1530 if (offset + ret > dio->i_size &&
1531 !(dio->flags & IOMAP_DIO_WRITE))
1532 ret = dio->i_size - offset;
1533 iocb->ki_pos += ret;
1534 }
1535
1536 /*
1537 * Try again to invalidate clean pages which might have been cached by
1538 * non-direct readahead, or faulted in by get_user_pages() if the source
1539 * of the write was an mmap'ed region of the file we're writing. Either
1540 * one is a pretty crazy thing to do, so we don't support it 100%. If
1541 * this invalidation fails, tough, the write still worked...
1542 *
1543 * And this page cache invalidation has to be after dio->end_io(), as
1544 * some filesystems convert unwritten extents to real allocations in
1545 * end_io() when necessary, otherwise a racing buffer read would cache
1546 * zeros from unwritten extents.
1547 */
1548 if (!dio->error &&
1549 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1550 int err;
1551 err = invalidate_inode_pages2_range(inode->i_mapping,
1552 offset >> PAGE_SHIFT,
1553 (offset + dio->size - 1) >> PAGE_SHIFT);
1554 if (err)
1555 dio_warn_stale_pagecache(iocb->ki_filp);
1556 }
1557
1558 /*
1559 * If this is a DSYNC write, make sure we push it to stable storage now
1560 * that we've written data.
1561 */
1562 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1563 ret = generic_write_sync(iocb, ret);
1564
1565 inode_dio_end(file_inode(iocb->ki_filp));
1566 kfree(dio);
1567
1568 return ret;
1569 }
1570
1571 static void iomap_dio_complete_work(struct work_struct *work)
1572 {
1573 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1574 struct kiocb *iocb = dio->iocb;
1575
1576 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1577 }
1578
1579 /*
1580 * Set an error in the dio if none is set yet. We have to use cmpxchg
1581 * as the submission context and the completion context(s) can race to
1582 * update the error.
1583 */
1584 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1585 {
1586 cmpxchg(&dio->error, 0, ret);
1587 }
1588
1589 static void iomap_dio_bio_end_io(struct bio *bio)
1590 {
1591 struct iomap_dio *dio = bio->bi_private;
1592 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1593
1594 if (bio->bi_status)
1595 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1596
1597 if (atomic_dec_and_test(&dio->ref)) {
1598 if (dio->wait_for_completion) {
1599 struct task_struct *waiter = dio->submit.waiter;
1600 WRITE_ONCE(dio->submit.waiter, NULL);
1601 blk_wake_io_task(waiter);
1602 } else if (dio->flags & IOMAP_DIO_WRITE) {
1603 struct inode *inode = file_inode(dio->iocb->ki_filp);
1604
1605 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1606 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1607 } else {
1608 iomap_dio_complete_work(&dio->aio.work);
1609 }
1610 }
1611
1612 if (should_dirty) {
1613 bio_check_pages_dirty(bio);
1614 } else {
1615 bio_release_pages(bio, false);
1616 bio_put(bio);
1617 }
1618 }
1619
1620 static void
1621 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1622 unsigned len)
1623 {
1624 struct page *page = ZERO_PAGE(0);
1625 int flags = REQ_SYNC | REQ_IDLE;
1626 struct bio *bio;
1627
1628 bio = bio_alloc(GFP_KERNEL, 1);
1629 bio_set_dev(bio, iomap->bdev);
1630 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1631 bio->bi_private = dio;
1632 bio->bi_end_io = iomap_dio_bio_end_io;
1633
1634 get_page(page);
1635 __bio_add_page(bio, page, len, 0);
1636 bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1637 iomap_dio_submit_bio(dio, iomap, bio);
1638 }
1639
1640 static loff_t
1641 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1642 struct iomap_dio *dio, struct iomap *iomap)
1643 {
1644 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1645 unsigned int fs_block_size = i_blocksize(inode), pad;
1646 unsigned int align = iov_iter_alignment(dio->submit.iter);
1647 struct iov_iter iter;
1648 struct bio *bio;
1649 bool need_zeroout = false;
1650 bool use_fua = false;
1651 int nr_pages, ret = 0;
1652 size_t copied = 0;
1653
1654 if ((pos | length | align) & ((1 << blkbits) - 1))
1655 return -EINVAL;
1656
1657 if (iomap->type == IOMAP_UNWRITTEN) {
1658 dio->flags |= IOMAP_DIO_UNWRITTEN;
1659 need_zeroout = true;
1660 }
1661
1662 if (iomap->flags & IOMAP_F_SHARED)
1663 dio->flags |= IOMAP_DIO_COW;
1664
1665 if (iomap->flags & IOMAP_F_NEW) {
1666 need_zeroout = true;
1667 } else if (iomap->type == IOMAP_MAPPED) {
1668 /*
1669 * Use a FUA write if we need datasync semantics, this is a pure
1670 * data IO that doesn't require any metadata updates (including
1671 * after IO completion such as unwritten extent conversion) and
1672 * the underlying device supports FUA. This allows us to avoid
1673 * cache flushes on IO completion.
1674 */
1675 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1676 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1677 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1678 use_fua = true;
1679 }
1680
1681 /*
1682 * Operate on a partial iter trimmed to the extent we were called for.
1683 * We'll update the iter in the dio once we're done with this extent.
1684 */
1685 iter = *dio->submit.iter;
1686 iov_iter_truncate(&iter, length);
1687
1688 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1689 if (nr_pages <= 0)
1690 return nr_pages;
1691
1692 if (need_zeroout) {
1693 /* zero out from the start of the block to the write offset */
1694 pad = pos & (fs_block_size - 1);
1695 if (pad)
1696 iomap_dio_zero(dio, iomap, pos - pad, pad);
1697 }
1698
1699 do {
1700 size_t n;
1701 if (dio->error) {
1702 iov_iter_revert(dio->submit.iter, copied);
1703 return 0;
1704 }
1705
1706 bio = bio_alloc(GFP_KERNEL, nr_pages);
1707 bio_set_dev(bio, iomap->bdev);
1708 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1709 bio->bi_write_hint = dio->iocb->ki_hint;
1710 bio->bi_ioprio = dio->iocb->ki_ioprio;
1711 bio->bi_private = dio;
1712 bio->bi_end_io = iomap_dio_bio_end_io;
1713
1714 ret = bio_iov_iter_get_pages(bio, &iter);
1715 if (unlikely(ret)) {
1716 /*
1717 * We have to stop part way through an IO. We must fall
1718 * through to the sub-block tail zeroing here, otherwise
1719 * this short IO may expose stale data in the tail of
1720 * the block we haven't written data to.
1721 */
1722 bio_put(bio);
1723 goto zero_tail;
1724 }
1725
1726 n = bio->bi_iter.bi_size;
1727 if (dio->flags & IOMAP_DIO_WRITE) {
1728 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1729 if (use_fua)
1730 bio->bi_opf |= REQ_FUA;
1731 else
1732 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1733 task_io_account_write(n);
1734 } else {
1735 bio->bi_opf = REQ_OP_READ;
1736 if (dio->flags & IOMAP_DIO_DIRTY)
1737 bio_set_pages_dirty(bio);
1738 }
1739
1740 iov_iter_advance(dio->submit.iter, n);
1741
1742 dio->size += n;
1743 pos += n;
1744 copied += n;
1745
1746 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1747 iomap_dio_submit_bio(dio, iomap, bio);
1748 } while (nr_pages);
1749
1750 /*
1751 * We need to zeroout the tail of a sub-block write if the extent type
1752 * requires zeroing or the write extends beyond EOF. If we don't zero
1753 * the block tail in the latter case, we can expose stale data via mmap
1754 * reads of the EOF block.
1755 */
1756 zero_tail:
1757 if (need_zeroout ||
1758 ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1759 /* zero out from the end of the write to the end of the block */
1760 pad = pos & (fs_block_size - 1);
1761 if (pad)
1762 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1763 }
1764 return copied ? copied : ret;
1765 }
1766
1767 static loff_t
1768 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1769 {
1770 length = iov_iter_zero(length, dio->submit.iter);
1771 dio->size += length;
1772 return length;
1773 }
1774
1775 static loff_t
1776 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1777 struct iomap_dio *dio, struct iomap *iomap)
1778 {
1779 struct iov_iter *iter = dio->submit.iter;
1780 size_t copied;
1781
1782 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1783
1784 if (dio->flags & IOMAP_DIO_WRITE) {
1785 loff_t size = inode->i_size;
1786
1787 if (pos > size)
1788 memset(iomap->inline_data + size, 0, pos - size);
1789 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1790 if (copied) {
1791 if (pos + copied > size)
1792 i_size_write(inode, pos + copied);
1793 mark_inode_dirty(inode);
1794 }
1795 } else {
1796 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1797 }
1798 dio->size += copied;
1799 return copied;
1800 }
1801
1802 static loff_t
1803 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1804 void *data, struct iomap *iomap)
1805 {
1806 struct iomap_dio *dio = data;
1807
1808 switch (iomap->type) {
1809 case IOMAP_HOLE:
1810 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1811 return -EIO;
1812 return iomap_dio_hole_actor(length, dio);
1813 case IOMAP_UNWRITTEN:
1814 if (!(dio->flags & IOMAP_DIO_WRITE))
1815 return iomap_dio_hole_actor(length, dio);
1816 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1817 case IOMAP_MAPPED:
1818 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1819 case IOMAP_INLINE:
1820 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1821 default:
1822 WARN_ON_ONCE(1);
1823 return -EIO;
1824 }
1825 }
1826
1827 /*
1828 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1829 * is being issued as AIO or not. This allows us to optimise pure data writes
1830 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1831 * REQ_FLUSH post write. This is slightly tricky because a single request here
1832 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1833 * may be pure data writes. In that case, we still need to do a full data sync
1834 * completion.
1835 */
1836 ssize_t
1837 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1838 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1839 {
1840 struct address_space *mapping = iocb->ki_filp->f_mapping;
1841 struct inode *inode = file_inode(iocb->ki_filp);
1842 size_t count = iov_iter_count(iter);
1843 loff_t pos = iocb->ki_pos, start = pos;
1844 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1845 unsigned int flags = IOMAP_DIRECT;
1846 bool wait_for_completion = is_sync_kiocb(iocb);
1847 struct blk_plug plug;
1848 struct iomap_dio *dio;
1849
1850 lockdep_assert_held(&inode->i_rwsem);
1851
1852 if (!count)
1853 return 0;
1854
1855 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1856 if (!dio)
1857 return -ENOMEM;
1858
1859 dio->iocb = iocb;
1860 atomic_set(&dio->ref, 1);
1861 dio->size = 0;
1862 dio->i_size = i_size_read(inode);
1863 dio->end_io = end_io;
1864 dio->error = 0;
1865 dio->flags = 0;
1866
1867 dio->submit.iter = iter;
1868 dio->submit.waiter = current;
1869 dio->submit.cookie = BLK_QC_T_NONE;
1870 dio->submit.last_queue = NULL;
1871
1872 if (iov_iter_rw(iter) == READ) {
1873 if (pos >= dio->i_size)
1874 goto out_free_dio;
1875
1876 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1877 dio->flags |= IOMAP_DIO_DIRTY;
1878 } else {
1879 flags |= IOMAP_WRITE;
1880 dio->flags |= IOMAP_DIO_WRITE;
1881
1882 /* for data sync or sync, we need sync completion processing */
1883 if (iocb->ki_flags & IOCB_DSYNC)
1884 dio->flags |= IOMAP_DIO_NEED_SYNC;
1885
1886 /*
1887 * For datasync only writes, we optimistically try using FUA for
1888 * this IO. Any non-FUA write that occurs will clear this flag,
1889 * hence we know before completion whether a cache flush is
1890 * necessary.
1891 */
1892 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1893 dio->flags |= IOMAP_DIO_WRITE_FUA;
1894 }
1895
1896 if (iocb->ki_flags & IOCB_NOWAIT) {
1897 if (filemap_range_has_page(mapping, start, end)) {
1898 ret = -EAGAIN;
1899 goto out_free_dio;
1900 }
1901 flags |= IOMAP_NOWAIT;
1902 }
1903
1904 ret = filemap_write_and_wait_range(mapping, start, end);
1905 if (ret)
1906 goto out_free_dio;
1907
1908 /*
1909 * Try to invalidate cache pages for the range we're direct
1910 * writing. If this invalidation fails, tough, the write will
1911 * still work, but racing two incompatible write paths is a
1912 * pretty crazy thing to do, so we don't support it 100%.
1913 */
1914 ret = invalidate_inode_pages2_range(mapping,
1915 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1916 if (ret)
1917 dio_warn_stale_pagecache(iocb->ki_filp);
1918 ret = 0;
1919
1920 if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1921 !inode->i_sb->s_dio_done_wq) {
1922 ret = sb_init_dio_done_wq(inode->i_sb);
1923 if (ret < 0)
1924 goto out_free_dio;
1925 }
1926
1927 inode_dio_begin(inode);
1928
1929 blk_start_plug(&plug);
1930 do {
1931 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1932 iomap_dio_actor);
1933 if (ret <= 0) {
1934 /* magic error code to fall back to buffered I/O */
1935 if (ret == -ENOTBLK) {
1936 wait_for_completion = true;
1937 ret = 0;
1938 }
1939 break;
1940 }
1941 pos += ret;
1942
1943 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1944 break;
1945 } while ((count = iov_iter_count(iter)) > 0);
1946 blk_finish_plug(&plug);
1947
1948 if (ret < 0)
1949 iomap_dio_set_error(dio, ret);
1950
1951 /*
1952 * If all the writes we issued were FUA, we don't need to flush the
1953 * cache on IO completion. Clear the sync flag for this case.
1954 */
1955 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1956 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1957
1958 WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
1959 WRITE_ONCE(iocb->private, dio->submit.last_queue);
1960
1961 /*
1962 * We are about to drop our additional submission reference, which
1963 * might be the last reference to the dio. There are three three
1964 * different ways we can progress here:
1965 *
1966 * (a) If this is the last reference we will always complete and free
1967 * the dio ourselves.
1968 * (b) If this is not the last reference, and we serve an asynchronous
1969 * iocb, we must never touch the dio after the decrement, the
1970 * I/O completion handler will complete and free it.
1971 * (c) If this is not the last reference, but we serve a synchronous
1972 * iocb, the I/O completion handler will wake us up on the drop
1973 * of the final reference, and we will complete and free it here
1974 * after we got woken by the I/O completion handler.
1975 */
1976 dio->wait_for_completion = wait_for_completion;
1977 if (!atomic_dec_and_test(&dio->ref)) {
1978 if (!wait_for_completion)
1979 return -EIOCBQUEUED;
1980
1981 for (;;) {
1982 set_current_state(TASK_UNINTERRUPTIBLE);
1983 if (!READ_ONCE(dio->submit.waiter))
1984 break;
1985
1986 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1987 !dio->submit.last_queue ||
1988 !blk_poll(dio->submit.last_queue,
1989 dio->submit.cookie, true))
1990 io_schedule();
1991 }
1992 __set_current_state(TASK_RUNNING);
1993 }
1994
1995 return iomap_dio_complete(dio);
1996
1997 out_free_dio:
1998 kfree(dio);
1999 return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(iomap_dio_rw);
2002
2003 /* Swapfile activation */
2004
2005 #ifdef CONFIG_SWAP
2006 struct iomap_swapfile_info {
2007 struct iomap iomap; /* accumulated iomap */
2008 struct swap_info_struct *sis;
2009 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
2010 uint64_t highest_ppage; /* highest physical addr seen (pages) */
2011 unsigned long nr_pages; /* number of pages collected */
2012 int nr_extents; /* extent count */
2013 };
2014
2015 /*
2016 * Collect physical extents for this swap file. Physical extents reported to
2017 * the swap code must be trimmed to align to a page boundary. The logical
2018 * offset within the file is irrelevant since the swapfile code maps logical
2019 * page numbers of the swap device to the physical page-aligned extents.
2020 */
2021 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
2022 {
2023 struct iomap *iomap = &isi->iomap;
2024 unsigned long nr_pages;
2025 uint64_t first_ppage;
2026 uint64_t first_ppage_reported;
2027 uint64_t next_ppage;
2028 int error;
2029
2030 /*
2031 * Round the start up and the end down so that the physical
2032 * extent aligns to a page boundary.
2033 */
2034 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2035 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2036 PAGE_SHIFT;
2037
2038 /* Skip too-short physical extents. */
2039 if (first_ppage >= next_ppage)
2040 return 0;
2041 nr_pages = next_ppage - first_ppage;
2042
2043 /*
2044 * Calculate how much swap space we're adding; the first page contains
2045 * the swap header and doesn't count. The mm still wants that first
2046 * page fed to add_swap_extent, however.
2047 */
2048 first_ppage_reported = first_ppage;
2049 if (iomap->offset == 0)
2050 first_ppage_reported++;
2051 if (isi->lowest_ppage > first_ppage_reported)
2052 isi->lowest_ppage = first_ppage_reported;
2053 if (isi->highest_ppage < (next_ppage - 1))
2054 isi->highest_ppage = next_ppage - 1;
2055
2056 /* Add extent, set up for the next call. */
2057 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2058 if (error < 0)
2059 return error;
2060 isi->nr_extents += error;
2061 isi->nr_pages += nr_pages;
2062 return 0;
2063 }
2064
2065 /*
2066 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2067 * swap only cares about contiguous page-aligned physical extents and makes no
2068 * distinction between written and unwritten extents.
2069 */
2070 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2071 loff_t count, void *data, struct iomap *iomap)
2072 {
2073 struct iomap_swapfile_info *isi = data;
2074 int error;
2075
2076 switch (iomap->type) {
2077 case IOMAP_MAPPED:
2078 case IOMAP_UNWRITTEN:
2079 /* Only real or unwritten extents. */
2080 break;
2081 case IOMAP_INLINE:
2082 /* No inline data. */
2083 pr_err("swapon: file is inline\n");
2084 return -EINVAL;
2085 default:
2086 pr_err("swapon: file has unallocated extents\n");
2087 return -EINVAL;
2088 }
2089
2090 /* No uncommitted metadata or shared blocks. */
2091 if (iomap->flags & IOMAP_F_DIRTY) {
2092 pr_err("swapon: file is not committed\n");
2093 return -EINVAL;
2094 }
2095 if (iomap->flags & IOMAP_F_SHARED) {
2096 pr_err("swapon: file has shared extents\n");
2097 return -EINVAL;
2098 }
2099
2100 /* Only one bdev per swap file. */
2101 if (iomap->bdev != isi->sis->bdev) {
2102 pr_err("swapon: file is on multiple devices\n");
2103 return -EINVAL;
2104 }
2105
2106 if (isi->iomap.length == 0) {
2107 /* No accumulated extent, so just store it. */
2108 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2109 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2110 /* Append this to the accumulated extent. */
2111 isi->iomap.length += iomap->length;
2112 } else {
2113 /* Otherwise, add the retained iomap and store this one. */
2114 error = iomap_swapfile_add_extent(isi);
2115 if (error)
2116 return error;
2117 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2118 }
2119 return count;
2120 }
2121
2122 /*
2123 * Iterate a swap file's iomaps to construct physical extents that can be
2124 * passed to the swapfile subsystem.
2125 */
2126 int iomap_swapfile_activate(struct swap_info_struct *sis,
2127 struct file *swap_file, sector_t *pagespan,
2128 const struct iomap_ops *ops)
2129 {
2130 struct iomap_swapfile_info isi = {
2131 .sis = sis,
2132 .lowest_ppage = (sector_t)-1ULL,
2133 };
2134 struct address_space *mapping = swap_file->f_mapping;
2135 struct inode *inode = mapping->host;
2136 loff_t pos = 0;
2137 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2138 loff_t ret;
2139
2140 /*
2141 * Persist all file mapping metadata so that we won't have any
2142 * IOMAP_F_DIRTY iomaps.
2143 */
2144 ret = vfs_fsync(swap_file, 1);
2145 if (ret)
2146 return ret;
2147
2148 while (len > 0) {
2149 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2150 ops, &isi, iomap_swapfile_activate_actor);
2151 if (ret <= 0)
2152 return ret;
2153
2154 pos += ret;
2155 len -= ret;
2156 }
2157
2158 if (isi.iomap.length) {
2159 ret = iomap_swapfile_add_extent(&isi);
2160 if (ret)
2161 return ret;
2162 }
2163
2164 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2165 sis->max = isi.nr_pages;
2166 sis->pages = isi.nr_pages - 1;
2167 sis->highest_bit = isi.nr_pages - 1;
2168 return isi.nr_extents;
2169 }
2170 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2171 #endif /* CONFIG_SWAP */
2172
2173 static loff_t
2174 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2175 void *data, struct iomap *iomap)
2176 {
2177 sector_t *bno = data, addr;
2178
2179 if (iomap->type == IOMAP_MAPPED) {
2180 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2181 if (addr > INT_MAX)
2182 WARN(1, "would truncate bmap result\n");
2183 else
2184 *bno = addr;
2185 }
2186 return 0;
2187 }
2188
2189 /* legacy ->bmap interface. 0 is the error return (!) */
2190 sector_t
2191 iomap_bmap(struct address_space *mapping, sector_t bno,
2192 const struct iomap_ops *ops)
2193 {
2194 struct inode *inode = mapping->host;
2195 loff_t pos = bno << inode->i_blkbits;
2196 unsigned blocksize = i_blocksize(inode);
2197
2198 if (filemap_write_and_wait(mapping))
2199 return 0;
2200
2201 bno = 0;
2202 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2203 return bno;
2204 }
2205 EXPORT_SYMBOL_GPL(iomap_bmap);