]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/jbd2/journal.c
Merge tag 'modules-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[mirror_ubuntu-kernels.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105 unsigned int line, const char *fmt, ...)
106 {
107 struct va_format vaf;
108 va_list args;
109
110 if (level > jbd2_journal_enable_debug)
111 return;
112 va_start(args, fmt);
113 vaf.fmt = fmt;
114 vaf.va = &args;
115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 if (!jbd2_journal_has_csum_v2or3_feature(j))
125 return 1;
126
127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 __u32 csum;
133 __be32 old_csum;
134
135 old_csum = sb->s_checksum;
136 sb->s_checksum = 0;
137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 sb->s_checksum = old_csum;
139
140 return cpu_to_be32(csum);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
147 static void commit_timeout(struct timer_list *t)
148 {
149 journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151 wake_up_process(journal->j_task);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk. If a fast commit is ongoing
163 * journal thread waits until it's done and then continues from
164 * there on.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
170 */
171
172 static int kjournald2(void *arg)
173 {
174 journal_t *journal = arg;
175 transaction_t *transaction;
176
177 /*
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
180 */
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183 set_freezable();
184
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
188
189 /*
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
194 */
195 memalloc_nofs_save();
196
197 /*
198 * And now, wait forever for commit wakeup events.
199 */
200 write_lock(&journal->j_state_lock);
201
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
205
206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 journal->j_commit_sequence, journal->j_commit_request);
208
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
216 }
217
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
220 /*
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
224 */
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
230 /*
231 * We assume on resume that commits are already there,
232 * so we don't sleep
233 */
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
236
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
251 }
252 finish_wait(&journal->j_wait_commit, &wait);
253 }
254
255 jbd_debug(1, "kjournald2 wakes\n");
256
257 /*
258 * Were we woken up by a commit wakeup event?
259 */
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
264 }
265 goto loop;
266
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
274 }
275
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 struct task_struct *t;
279
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
284
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
287 }
288
289 static void journal_kill_thread(journal_t *journal)
290 {
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
293
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
299 }
300 write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
342 {
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
352
353 /*
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
357 *
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
361 */
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
368
369 spin_lock(&jh_in->b_state_lock);
370 repeat:
371 /*
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
374 */
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 spin_unlock(&jh_in->b_state_lock);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
416 }
417 spin_lock(&jh_in->b_state_lock);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *bh_out = new_bh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 spin_unlock(&jh_in->b_state_lock);
471
472 return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480 /*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
489
490 /*
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
494 */
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
497 /*
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
500 */
501
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 int ret;
524
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
529 }
530
531 /*
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
537 */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
543
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
551
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
556 }
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
564
565 return ret;
566 }
567
568 /**
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
571 *
572 * @journal: journal to force
573 * Returns true if progress was made.
574 *
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
577 */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 int ret;
581
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
584 }
585
586 /**
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 int ret;
596
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
602 }
603
604 /*
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 int ret = 0;
612
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
616
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
624 /*
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
627 */
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
631 }
632 write_unlock(&journal->j_state_lock);
633 return ret;
634 }
635
636 /*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 int ret = 0;
645 transaction_t *commit_trans;
646
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
657 }
658 /*
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
661 */
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
669 }
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677 /*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 int err = 0;
684
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 /*
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
691 */
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
698 }
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
705 }
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
715 }
716 read_unlock(&journal->j_state_lock);
717
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
721 }
722
723 /*
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
729 */
730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 if (unlikely(is_journal_aborted(journal)))
733 return -EIO;
734 /*
735 * Fast commits only allowed if at least one full commit has
736 * been processed.
737 */
738 if (!journal->j_stats.ts_tid)
739 return -EINVAL;
740
741 write_lock(&journal->j_state_lock);
742 if (tid <= journal->j_commit_sequence) {
743 write_unlock(&journal->j_state_lock);
744 return -EALREADY;
745 }
746
747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 DEFINE_WAIT(wait);
750
751 prepare_to_wait(&journal->j_fc_wait, &wait,
752 TASK_UNINTERRUPTIBLE);
753 write_unlock(&journal->j_state_lock);
754 schedule();
755 finish_wait(&journal->j_fc_wait, &wait);
756 return -EALREADY;
757 }
758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 write_unlock(&journal->j_state_lock);
760
761 return 0;
762 }
763 EXPORT_SYMBOL(jbd2_fc_begin_commit);
764
765 /*
766 * Stop a fast commit. If fallback is set, this function starts commit of
767 * TID tid before any other fast commit can start.
768 */
769 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
770 {
771 if (journal->j_fc_cleanup_callback)
772 journal->j_fc_cleanup_callback(journal, 0);
773 write_lock(&journal->j_state_lock);
774 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
775 if (fallback)
776 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
777 write_unlock(&journal->j_state_lock);
778 wake_up(&journal->j_fc_wait);
779 if (fallback)
780 return jbd2_complete_transaction(journal, tid);
781 return 0;
782 }
783
784 int jbd2_fc_end_commit(journal_t *journal)
785 {
786 return __jbd2_fc_end_commit(journal, 0, false);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit);
789
790 int jbd2_fc_end_commit_fallback(journal_t *journal)
791 {
792 tid_t tid;
793
794 read_lock(&journal->j_state_lock);
795 tid = journal->j_running_transaction ?
796 journal->j_running_transaction->t_tid : 0;
797 read_unlock(&journal->j_state_lock);
798 return __jbd2_fc_end_commit(journal, tid, true);
799 }
800 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
801
802 /* Return 1 when transaction with given tid has already committed. */
803 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
804 {
805 int ret = 1;
806
807 read_lock(&journal->j_state_lock);
808 if (journal->j_running_transaction &&
809 journal->j_running_transaction->t_tid == tid)
810 ret = 0;
811 if (journal->j_committing_transaction &&
812 journal->j_committing_transaction->t_tid == tid)
813 ret = 0;
814 read_unlock(&journal->j_state_lock);
815 return ret;
816 }
817 EXPORT_SYMBOL(jbd2_transaction_committed);
818
819 /*
820 * When this function returns the transaction corresponding to tid
821 * will be completed. If the transaction has currently running, start
822 * committing that transaction before waiting for it to complete. If
823 * the transaction id is stale, it is by definition already completed,
824 * so just return SUCCESS.
825 */
826 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
827 {
828 int need_to_wait = 1;
829
830 read_lock(&journal->j_state_lock);
831 if (journal->j_running_transaction &&
832 journal->j_running_transaction->t_tid == tid) {
833 if (journal->j_commit_request != tid) {
834 /* transaction not yet started, so request it */
835 read_unlock(&journal->j_state_lock);
836 jbd2_log_start_commit(journal, tid);
837 goto wait_commit;
838 }
839 } else if (!(journal->j_committing_transaction &&
840 journal->j_committing_transaction->t_tid == tid))
841 need_to_wait = 0;
842 read_unlock(&journal->j_state_lock);
843 if (!need_to_wait)
844 return 0;
845 wait_commit:
846 return jbd2_log_wait_commit(journal, tid);
847 }
848 EXPORT_SYMBOL(jbd2_complete_transaction);
849
850 /*
851 * Log buffer allocation routines:
852 */
853
854 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
855 {
856 unsigned long blocknr;
857
858 write_lock(&journal->j_state_lock);
859 J_ASSERT(journal->j_free > 1);
860
861 blocknr = journal->j_head;
862 journal->j_head++;
863 journal->j_free--;
864 if (journal->j_head == journal->j_last)
865 journal->j_head = journal->j_first;
866 write_unlock(&journal->j_state_lock);
867 return jbd2_journal_bmap(journal, blocknr, retp);
868 }
869
870 /* Map one fast commit buffer for use by the file system */
871 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
872 {
873 unsigned long long pblock;
874 unsigned long blocknr;
875 int ret = 0;
876 struct buffer_head *bh;
877 int fc_off;
878
879 *bh_out = NULL;
880
881 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
882 fc_off = journal->j_fc_off;
883 blocknr = journal->j_fc_first + fc_off;
884 journal->j_fc_off++;
885 } else {
886 ret = -EINVAL;
887 }
888
889 if (ret)
890 return ret;
891
892 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
893 if (ret)
894 return ret;
895
896 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
897 if (!bh)
898 return -ENOMEM;
899
900
901 journal->j_fc_wbuf[fc_off] = bh;
902
903 *bh_out = bh;
904
905 return 0;
906 }
907 EXPORT_SYMBOL(jbd2_fc_get_buf);
908
909 /*
910 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
911 * for completion.
912 */
913 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
914 {
915 struct buffer_head *bh;
916 int i, j_fc_off;
917
918 j_fc_off = journal->j_fc_off;
919
920 /*
921 * Wait in reverse order to minimize chances of us being woken up before
922 * all IOs have completed
923 */
924 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
925 bh = journal->j_fc_wbuf[i];
926 wait_on_buffer(bh);
927 put_bh(bh);
928 journal->j_fc_wbuf[i] = NULL;
929 if (unlikely(!buffer_uptodate(bh)))
930 return -EIO;
931 }
932
933 return 0;
934 }
935 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
936
937 int jbd2_fc_release_bufs(journal_t *journal)
938 {
939 struct buffer_head *bh;
940 int i, j_fc_off;
941
942 j_fc_off = journal->j_fc_off;
943
944 for (i = j_fc_off - 1; i >= 0; i--) {
945 bh = journal->j_fc_wbuf[i];
946 if (!bh)
947 break;
948 put_bh(bh);
949 journal->j_fc_wbuf[i] = NULL;
950 }
951
952 return 0;
953 }
954 EXPORT_SYMBOL(jbd2_fc_release_bufs);
955
956 /*
957 * Conversion of logical to physical block numbers for the journal
958 *
959 * On external journals the journal blocks are identity-mapped, so
960 * this is a no-op. If needed, we can use j_blk_offset - everything is
961 * ready.
962 */
963 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
964 unsigned long long *retp)
965 {
966 int err = 0;
967 unsigned long long ret;
968 sector_t block = 0;
969
970 if (journal->j_inode) {
971 block = blocknr;
972 ret = bmap(journal->j_inode, &block);
973
974 if (ret || !block) {
975 printk(KERN_ALERT "%s: journal block not found "
976 "at offset %lu on %s\n",
977 __func__, blocknr, journal->j_devname);
978 err = -EIO;
979 jbd2_journal_abort(journal, err);
980 } else {
981 *retp = block;
982 }
983
984 } else {
985 *retp = blocknr; /* +journal->j_blk_offset */
986 }
987 return err;
988 }
989
990 /*
991 * We play buffer_head aliasing tricks to write data/metadata blocks to
992 * the journal without copying their contents, but for journal
993 * descriptor blocks we do need to generate bona fide buffers.
994 *
995 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
996 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
997 * But we don't bother doing that, so there will be coherency problems with
998 * mmaps of blockdevs which hold live JBD-controlled filesystems.
999 */
1000 struct buffer_head *
1001 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1002 {
1003 journal_t *journal = transaction->t_journal;
1004 struct buffer_head *bh;
1005 unsigned long long blocknr;
1006 journal_header_t *header;
1007 int err;
1008
1009 err = jbd2_journal_next_log_block(journal, &blocknr);
1010
1011 if (err)
1012 return NULL;
1013
1014 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1015 if (!bh)
1016 return NULL;
1017 atomic_dec(&transaction->t_outstanding_credits);
1018 lock_buffer(bh);
1019 memset(bh->b_data, 0, journal->j_blocksize);
1020 header = (journal_header_t *)bh->b_data;
1021 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1022 header->h_blocktype = cpu_to_be32(type);
1023 header->h_sequence = cpu_to_be32(transaction->t_tid);
1024 set_buffer_uptodate(bh);
1025 unlock_buffer(bh);
1026 BUFFER_TRACE(bh, "return this buffer");
1027 return bh;
1028 }
1029
1030 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1031 {
1032 struct jbd2_journal_block_tail *tail;
1033 __u32 csum;
1034
1035 if (!jbd2_journal_has_csum_v2or3(j))
1036 return;
1037
1038 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1039 sizeof(struct jbd2_journal_block_tail));
1040 tail->t_checksum = 0;
1041 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1042 tail->t_checksum = cpu_to_be32(csum);
1043 }
1044
1045 /*
1046 * Return tid of the oldest transaction in the journal and block in the journal
1047 * where the transaction starts.
1048 *
1049 * If the journal is now empty, return which will be the next transaction ID
1050 * we will write and where will that transaction start.
1051 *
1052 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1053 * it can.
1054 */
1055 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1056 unsigned long *block)
1057 {
1058 transaction_t *transaction;
1059 int ret;
1060
1061 read_lock(&journal->j_state_lock);
1062 spin_lock(&journal->j_list_lock);
1063 transaction = journal->j_checkpoint_transactions;
1064 if (transaction) {
1065 *tid = transaction->t_tid;
1066 *block = transaction->t_log_start;
1067 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1068 *tid = transaction->t_tid;
1069 *block = transaction->t_log_start;
1070 } else if ((transaction = journal->j_running_transaction) != NULL) {
1071 *tid = transaction->t_tid;
1072 *block = journal->j_head;
1073 } else {
1074 *tid = journal->j_transaction_sequence;
1075 *block = journal->j_head;
1076 }
1077 ret = tid_gt(*tid, journal->j_tail_sequence);
1078 spin_unlock(&journal->j_list_lock);
1079 read_unlock(&journal->j_state_lock);
1080
1081 return ret;
1082 }
1083
1084 /*
1085 * Update information in journal structure and in on disk journal superblock
1086 * about log tail. This function does not check whether information passed in
1087 * really pushes log tail further. It's responsibility of the caller to make
1088 * sure provided log tail information is valid (e.g. by holding
1089 * j_checkpoint_mutex all the time between computing log tail and calling this
1090 * function as is the case with jbd2_cleanup_journal_tail()).
1091 *
1092 * Requires j_checkpoint_mutex
1093 */
1094 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1095 {
1096 unsigned long freed;
1097 int ret;
1098
1099 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1100
1101 /*
1102 * We cannot afford for write to remain in drive's caches since as
1103 * soon as we update j_tail, next transaction can start reusing journal
1104 * space and if we lose sb update during power failure we'd replay
1105 * old transaction with possibly newly overwritten data.
1106 */
1107 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1108 REQ_SYNC | REQ_FUA);
1109 if (ret)
1110 goto out;
1111
1112 write_lock(&journal->j_state_lock);
1113 freed = block - journal->j_tail;
1114 if (block < journal->j_tail)
1115 freed += journal->j_last - journal->j_first;
1116
1117 trace_jbd2_update_log_tail(journal, tid, block, freed);
1118 jbd_debug(1,
1119 "Cleaning journal tail from %u to %u (offset %lu), "
1120 "freeing %lu\n",
1121 journal->j_tail_sequence, tid, block, freed);
1122
1123 journal->j_free += freed;
1124 journal->j_tail_sequence = tid;
1125 journal->j_tail = block;
1126 write_unlock(&journal->j_state_lock);
1127
1128 out:
1129 return ret;
1130 }
1131
1132 /*
1133 * This is a variation of __jbd2_update_log_tail which checks for validity of
1134 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1135 * with other threads updating log tail.
1136 */
1137 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1138 {
1139 mutex_lock_io(&journal->j_checkpoint_mutex);
1140 if (tid_gt(tid, journal->j_tail_sequence))
1141 __jbd2_update_log_tail(journal, tid, block);
1142 mutex_unlock(&journal->j_checkpoint_mutex);
1143 }
1144
1145 struct jbd2_stats_proc_session {
1146 journal_t *journal;
1147 struct transaction_stats_s *stats;
1148 int start;
1149 int max;
1150 };
1151
1152 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1153 {
1154 return *pos ? NULL : SEQ_START_TOKEN;
1155 }
1156
1157 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1158 {
1159 (*pos)++;
1160 return NULL;
1161 }
1162
1163 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1164 {
1165 struct jbd2_stats_proc_session *s = seq->private;
1166
1167 if (v != SEQ_START_TOKEN)
1168 return 0;
1169 seq_printf(seq, "%lu transactions (%lu requested), "
1170 "each up to %u blocks\n",
1171 s->stats->ts_tid, s->stats->ts_requested,
1172 s->journal->j_max_transaction_buffers);
1173 if (s->stats->ts_tid == 0)
1174 return 0;
1175 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1176 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1177 seq_printf(seq, " %ums request delay\n",
1178 (s->stats->ts_requested == 0) ? 0 :
1179 jiffies_to_msecs(s->stats->run.rs_request_delay /
1180 s->stats->ts_requested));
1181 seq_printf(seq, " %ums running transaction\n",
1182 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1183 seq_printf(seq, " %ums transaction was being locked\n",
1184 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1185 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1186 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1187 seq_printf(seq, " %ums logging transaction\n",
1188 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1189 seq_printf(seq, " %lluus average transaction commit time\n",
1190 div_u64(s->journal->j_average_commit_time, 1000));
1191 seq_printf(seq, " %lu handles per transaction\n",
1192 s->stats->run.rs_handle_count / s->stats->ts_tid);
1193 seq_printf(seq, " %lu blocks per transaction\n",
1194 s->stats->run.rs_blocks / s->stats->ts_tid);
1195 seq_printf(seq, " %lu logged blocks per transaction\n",
1196 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1197 return 0;
1198 }
1199
1200 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1201 {
1202 }
1203
1204 static const struct seq_operations jbd2_seq_info_ops = {
1205 .start = jbd2_seq_info_start,
1206 .next = jbd2_seq_info_next,
1207 .stop = jbd2_seq_info_stop,
1208 .show = jbd2_seq_info_show,
1209 };
1210
1211 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1212 {
1213 journal_t *journal = PDE_DATA(inode);
1214 struct jbd2_stats_proc_session *s;
1215 int rc, size;
1216
1217 s = kmalloc(sizeof(*s), GFP_KERNEL);
1218 if (s == NULL)
1219 return -ENOMEM;
1220 size = sizeof(struct transaction_stats_s);
1221 s->stats = kmalloc(size, GFP_KERNEL);
1222 if (s->stats == NULL) {
1223 kfree(s);
1224 return -ENOMEM;
1225 }
1226 spin_lock(&journal->j_history_lock);
1227 memcpy(s->stats, &journal->j_stats, size);
1228 s->journal = journal;
1229 spin_unlock(&journal->j_history_lock);
1230
1231 rc = seq_open(file, &jbd2_seq_info_ops);
1232 if (rc == 0) {
1233 struct seq_file *m = file->private_data;
1234 m->private = s;
1235 } else {
1236 kfree(s->stats);
1237 kfree(s);
1238 }
1239 return rc;
1240
1241 }
1242
1243 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1244 {
1245 struct seq_file *seq = file->private_data;
1246 struct jbd2_stats_proc_session *s = seq->private;
1247 kfree(s->stats);
1248 kfree(s);
1249 return seq_release(inode, file);
1250 }
1251
1252 static const struct proc_ops jbd2_info_proc_ops = {
1253 .proc_open = jbd2_seq_info_open,
1254 .proc_read = seq_read,
1255 .proc_lseek = seq_lseek,
1256 .proc_release = jbd2_seq_info_release,
1257 };
1258
1259 static struct proc_dir_entry *proc_jbd2_stats;
1260
1261 static void jbd2_stats_proc_init(journal_t *journal)
1262 {
1263 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1264 if (journal->j_proc_entry) {
1265 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1266 &jbd2_info_proc_ops, journal);
1267 }
1268 }
1269
1270 static void jbd2_stats_proc_exit(journal_t *journal)
1271 {
1272 remove_proc_entry("info", journal->j_proc_entry);
1273 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1274 }
1275
1276 /* Minimum size of descriptor tag */
1277 static int jbd2_min_tag_size(void)
1278 {
1279 /*
1280 * Tag with 32-bit block numbers does not use last four bytes of the
1281 * structure
1282 */
1283 return sizeof(journal_block_tag_t) - 4;
1284 }
1285
1286 /**
1287 * jbd2_journal_shrink_scan()
1288 *
1289 * Scan the checkpointed buffer on the checkpoint list and release the
1290 * journal_head.
1291 */
1292 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1293 struct shrink_control *sc)
1294 {
1295 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1296 unsigned long nr_to_scan = sc->nr_to_scan;
1297 unsigned long nr_shrunk;
1298 unsigned long count;
1299
1300 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1301 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1302
1303 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1304
1305 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1306 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1307
1308 return nr_shrunk;
1309 }
1310
1311 /**
1312 * jbd2_journal_shrink_count()
1313 *
1314 * Count the number of checkpoint buffers on the checkpoint list.
1315 */
1316 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1317 struct shrink_control *sc)
1318 {
1319 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1320 unsigned long count;
1321
1322 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1323 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1324
1325 return count;
1326 }
1327
1328 /*
1329 * Management for journal control blocks: functions to create and
1330 * destroy journal_t structures, and to initialise and read existing
1331 * journal blocks from disk. */
1332
1333 /* First: create and setup a journal_t object in memory. We initialise
1334 * very few fields yet: that has to wait until we have created the
1335 * journal structures from from scratch, or loaded them from disk. */
1336
1337 static journal_t *journal_init_common(struct block_device *bdev,
1338 struct block_device *fs_dev,
1339 unsigned long long start, int len, int blocksize)
1340 {
1341 static struct lock_class_key jbd2_trans_commit_key;
1342 journal_t *journal;
1343 int err;
1344 struct buffer_head *bh;
1345 int n;
1346
1347 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1348 if (!journal)
1349 return NULL;
1350
1351 init_waitqueue_head(&journal->j_wait_transaction_locked);
1352 init_waitqueue_head(&journal->j_wait_done_commit);
1353 init_waitqueue_head(&journal->j_wait_commit);
1354 init_waitqueue_head(&journal->j_wait_updates);
1355 init_waitqueue_head(&journal->j_wait_reserved);
1356 init_waitqueue_head(&journal->j_fc_wait);
1357 mutex_init(&journal->j_abort_mutex);
1358 mutex_init(&journal->j_barrier);
1359 mutex_init(&journal->j_checkpoint_mutex);
1360 spin_lock_init(&journal->j_revoke_lock);
1361 spin_lock_init(&journal->j_list_lock);
1362 rwlock_init(&journal->j_state_lock);
1363
1364 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1365 journal->j_min_batch_time = 0;
1366 journal->j_max_batch_time = 15000; /* 15ms */
1367 atomic_set(&journal->j_reserved_credits, 0);
1368
1369 /* The journal is marked for error until we succeed with recovery! */
1370 journal->j_flags = JBD2_ABORT;
1371
1372 /* Set up a default-sized revoke table for the new mount. */
1373 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1374 if (err)
1375 goto err_cleanup;
1376
1377 spin_lock_init(&journal->j_history_lock);
1378
1379 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1380 &jbd2_trans_commit_key, 0);
1381
1382 /* journal descriptor can store up to n blocks -bzzz */
1383 journal->j_blocksize = blocksize;
1384 journal->j_dev = bdev;
1385 journal->j_fs_dev = fs_dev;
1386 journal->j_blk_offset = start;
1387 journal->j_total_len = len;
1388 /* We need enough buffers to write out full descriptor block. */
1389 n = journal->j_blocksize / jbd2_min_tag_size();
1390 journal->j_wbufsize = n;
1391 journal->j_fc_wbuf = NULL;
1392 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1393 GFP_KERNEL);
1394 if (!journal->j_wbuf)
1395 goto err_cleanup;
1396
1397 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1398 if (!bh) {
1399 pr_err("%s: Cannot get buffer for journal superblock\n",
1400 __func__);
1401 goto err_cleanup;
1402 }
1403 journal->j_sb_buffer = bh;
1404 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1405
1406 journal->j_shrink_transaction = NULL;
1407 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1408 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1409 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1410 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1411
1412 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1413 goto err_cleanup;
1414
1415 if (register_shrinker(&journal->j_shrinker)) {
1416 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1417 goto err_cleanup;
1418 }
1419 return journal;
1420
1421 err_cleanup:
1422 brelse(journal->j_sb_buffer);
1423 kfree(journal->j_wbuf);
1424 jbd2_journal_destroy_revoke(journal);
1425 kfree(journal);
1426 return NULL;
1427 }
1428
1429 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1430 *
1431 * Create a journal structure assigned some fixed set of disk blocks to
1432 * the journal. We don't actually touch those disk blocks yet, but we
1433 * need to set up all of the mapping information to tell the journaling
1434 * system where the journal blocks are.
1435 *
1436 */
1437
1438 /**
1439 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1440 * @bdev: Block device on which to create the journal
1441 * @fs_dev: Device which hold journalled filesystem for this journal.
1442 * @start: Block nr Start of journal.
1443 * @len: Length of the journal in blocks.
1444 * @blocksize: blocksize of journalling device
1445 *
1446 * Returns: a newly created journal_t *
1447 *
1448 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1449 * range of blocks on an arbitrary block device.
1450 *
1451 */
1452 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1453 struct block_device *fs_dev,
1454 unsigned long long start, int len, int blocksize)
1455 {
1456 journal_t *journal;
1457
1458 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1459 if (!journal)
1460 return NULL;
1461
1462 bdevname(journal->j_dev, journal->j_devname);
1463 strreplace(journal->j_devname, '/', '!');
1464 jbd2_stats_proc_init(journal);
1465
1466 return journal;
1467 }
1468
1469 /**
1470 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1471 * @inode: An inode to create the journal in
1472 *
1473 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1474 * the journal. The inode must exist already, must support bmap() and
1475 * must have all data blocks preallocated.
1476 */
1477 journal_t *jbd2_journal_init_inode(struct inode *inode)
1478 {
1479 journal_t *journal;
1480 sector_t blocknr;
1481 char *p;
1482 int err = 0;
1483
1484 blocknr = 0;
1485 err = bmap(inode, &blocknr);
1486
1487 if (err || !blocknr) {
1488 pr_err("%s: Cannot locate journal superblock\n",
1489 __func__);
1490 return NULL;
1491 }
1492
1493 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1494 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1495 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1496
1497 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1498 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1499 inode->i_sb->s_blocksize);
1500 if (!journal)
1501 return NULL;
1502
1503 journal->j_inode = inode;
1504 bdevname(journal->j_dev, journal->j_devname);
1505 p = strreplace(journal->j_devname, '/', '!');
1506 sprintf(p, "-%lu", journal->j_inode->i_ino);
1507 jbd2_stats_proc_init(journal);
1508
1509 return journal;
1510 }
1511
1512 /*
1513 * If the journal init or create aborts, we need to mark the journal
1514 * superblock as being NULL to prevent the journal destroy from writing
1515 * back a bogus superblock.
1516 */
1517 static void journal_fail_superblock(journal_t *journal)
1518 {
1519 struct buffer_head *bh = journal->j_sb_buffer;
1520 brelse(bh);
1521 journal->j_sb_buffer = NULL;
1522 }
1523
1524 /*
1525 * Given a journal_t structure, initialise the various fields for
1526 * startup of a new journaling session. We use this both when creating
1527 * a journal, and after recovering an old journal to reset it for
1528 * subsequent use.
1529 */
1530
1531 static int journal_reset(journal_t *journal)
1532 {
1533 journal_superblock_t *sb = journal->j_superblock;
1534 unsigned long long first, last;
1535
1536 first = be32_to_cpu(sb->s_first);
1537 last = be32_to_cpu(sb->s_maxlen);
1538 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1539 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1540 first, last);
1541 journal_fail_superblock(journal);
1542 return -EINVAL;
1543 }
1544
1545 journal->j_first = first;
1546 journal->j_last = last;
1547
1548 journal->j_head = journal->j_first;
1549 journal->j_tail = journal->j_first;
1550 journal->j_free = journal->j_last - journal->j_first;
1551
1552 journal->j_tail_sequence = journal->j_transaction_sequence;
1553 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1554 journal->j_commit_request = journal->j_commit_sequence;
1555
1556 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1557
1558 /*
1559 * Now that journal recovery is done, turn fast commits off here. This
1560 * way, if fast commit was enabled before the crash but if now FS has
1561 * disabled it, we don't enable fast commits.
1562 */
1563 jbd2_clear_feature_fast_commit(journal);
1564
1565 /*
1566 * As a special case, if the on-disk copy is already marked as needing
1567 * no recovery (s_start == 0), then we can safely defer the superblock
1568 * update until the next commit by setting JBD2_FLUSHED. This avoids
1569 * attempting a write to a potential-readonly device.
1570 */
1571 if (sb->s_start == 0) {
1572 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1573 "(start %ld, seq %u, errno %d)\n",
1574 journal->j_tail, journal->j_tail_sequence,
1575 journal->j_errno);
1576 journal->j_flags |= JBD2_FLUSHED;
1577 } else {
1578 /* Lock here to make assertions happy... */
1579 mutex_lock_io(&journal->j_checkpoint_mutex);
1580 /*
1581 * Update log tail information. We use REQ_FUA since new
1582 * transaction will start reusing journal space and so we
1583 * must make sure information about current log tail is on
1584 * disk before that.
1585 */
1586 jbd2_journal_update_sb_log_tail(journal,
1587 journal->j_tail_sequence,
1588 journal->j_tail,
1589 REQ_SYNC | REQ_FUA);
1590 mutex_unlock(&journal->j_checkpoint_mutex);
1591 }
1592 return jbd2_journal_start_thread(journal);
1593 }
1594
1595 /*
1596 * This function expects that the caller will have locked the journal
1597 * buffer head, and will return with it unlocked
1598 */
1599 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1600 {
1601 struct buffer_head *bh = journal->j_sb_buffer;
1602 journal_superblock_t *sb = journal->j_superblock;
1603 int ret;
1604
1605 /* Buffer got discarded which means block device got invalidated */
1606 if (!buffer_mapped(bh)) {
1607 unlock_buffer(bh);
1608 return -EIO;
1609 }
1610
1611 trace_jbd2_write_superblock(journal, write_flags);
1612 if (!(journal->j_flags & JBD2_BARRIER))
1613 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1614 if (buffer_write_io_error(bh)) {
1615 /*
1616 * Oh, dear. A previous attempt to write the journal
1617 * superblock failed. This could happen because the
1618 * USB device was yanked out. Or it could happen to
1619 * be a transient write error and maybe the block will
1620 * be remapped. Nothing we can do but to retry the
1621 * write and hope for the best.
1622 */
1623 printk(KERN_ERR "JBD2: previous I/O error detected "
1624 "for journal superblock update for %s.\n",
1625 journal->j_devname);
1626 clear_buffer_write_io_error(bh);
1627 set_buffer_uptodate(bh);
1628 }
1629 if (jbd2_journal_has_csum_v2or3(journal))
1630 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1631 get_bh(bh);
1632 bh->b_end_io = end_buffer_write_sync;
1633 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1634 wait_on_buffer(bh);
1635 if (buffer_write_io_error(bh)) {
1636 clear_buffer_write_io_error(bh);
1637 set_buffer_uptodate(bh);
1638 ret = -EIO;
1639 }
1640 if (ret) {
1641 printk(KERN_ERR "JBD2: Error %d detected when updating "
1642 "journal superblock for %s.\n", ret,
1643 journal->j_devname);
1644 if (!is_journal_aborted(journal))
1645 jbd2_journal_abort(journal, ret);
1646 }
1647
1648 return ret;
1649 }
1650
1651 /**
1652 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1653 * @journal: The journal to update.
1654 * @tail_tid: TID of the new transaction at the tail of the log
1655 * @tail_block: The first block of the transaction at the tail of the log
1656 * @write_op: With which operation should we write the journal sb
1657 *
1658 * Update a journal's superblock information about log tail and write it to
1659 * disk, waiting for the IO to complete.
1660 */
1661 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1662 unsigned long tail_block, int write_op)
1663 {
1664 journal_superblock_t *sb = journal->j_superblock;
1665 int ret;
1666
1667 if (is_journal_aborted(journal))
1668 return -EIO;
1669 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1670 jbd2_journal_abort(journal, -EIO);
1671 return -EIO;
1672 }
1673
1674 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1675 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1676 tail_block, tail_tid);
1677
1678 lock_buffer(journal->j_sb_buffer);
1679 sb->s_sequence = cpu_to_be32(tail_tid);
1680 sb->s_start = cpu_to_be32(tail_block);
1681
1682 ret = jbd2_write_superblock(journal, write_op);
1683 if (ret)
1684 goto out;
1685
1686 /* Log is no longer empty */
1687 write_lock(&journal->j_state_lock);
1688 WARN_ON(!sb->s_sequence);
1689 journal->j_flags &= ~JBD2_FLUSHED;
1690 write_unlock(&journal->j_state_lock);
1691
1692 out:
1693 return ret;
1694 }
1695
1696 /**
1697 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1698 * @journal: The journal to update.
1699 * @write_op: With which operation should we write the journal sb
1700 *
1701 * Update a journal's dynamic superblock fields to show that journal is empty.
1702 * Write updated superblock to disk waiting for IO to complete.
1703 */
1704 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1705 {
1706 journal_superblock_t *sb = journal->j_superblock;
1707 bool had_fast_commit = false;
1708
1709 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1710 lock_buffer(journal->j_sb_buffer);
1711 if (sb->s_start == 0) { /* Is it already empty? */
1712 unlock_buffer(journal->j_sb_buffer);
1713 return;
1714 }
1715
1716 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1717 journal->j_tail_sequence);
1718
1719 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1720 sb->s_start = cpu_to_be32(0);
1721 if (jbd2_has_feature_fast_commit(journal)) {
1722 /*
1723 * When journal is clean, no need to commit fast commit flag and
1724 * make file system incompatible with older kernels.
1725 */
1726 jbd2_clear_feature_fast_commit(journal);
1727 had_fast_commit = true;
1728 }
1729
1730 jbd2_write_superblock(journal, write_op);
1731
1732 if (had_fast_commit)
1733 jbd2_set_feature_fast_commit(journal);
1734
1735 /* Log is no longer empty */
1736 write_lock(&journal->j_state_lock);
1737 journal->j_flags |= JBD2_FLUSHED;
1738 write_unlock(&journal->j_state_lock);
1739 }
1740
1741 /**
1742 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1743 * @journal: The journal to erase.
1744 * @flags: A discard/zeroout request is sent for each physically contigous
1745 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1746 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1747 * to perform.
1748 *
1749 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1750 * will be explicitly written if no hardware offload is available, see
1751 * blkdev_issue_zeroout for more details.
1752 */
1753 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1754 {
1755 int err = 0;
1756 unsigned long block, log_offset; /* logical */
1757 unsigned long long phys_block, block_start, block_stop; /* physical */
1758 loff_t byte_start, byte_stop, byte_count;
1759 struct request_queue *q = bdev_get_queue(journal->j_dev);
1760
1761 /* flags must be set to either discard or zeroout */
1762 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1763 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1764 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1765 return -EINVAL;
1766
1767 if (!q)
1768 return -ENXIO;
1769
1770 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && !blk_queue_discard(q))
1771 return -EOPNOTSUPP;
1772
1773 /*
1774 * lookup block mapping and issue discard/zeroout for each
1775 * contiguous region
1776 */
1777 log_offset = be32_to_cpu(journal->j_superblock->s_first);
1778 block_start = ~0ULL;
1779 for (block = log_offset; block < journal->j_total_len; block++) {
1780 err = jbd2_journal_bmap(journal, block, &phys_block);
1781 if (err) {
1782 pr_err("JBD2: bad block at offset %lu", block);
1783 return err;
1784 }
1785
1786 if (block_start == ~0ULL) {
1787 block_start = phys_block;
1788 block_stop = block_start - 1;
1789 }
1790
1791 /*
1792 * last block not contiguous with current block,
1793 * process last contiguous region and return to this block on
1794 * next loop
1795 */
1796 if (phys_block != block_stop + 1) {
1797 block--;
1798 } else {
1799 block_stop++;
1800 /*
1801 * if this isn't the last block of journal,
1802 * no need to process now because next block may also
1803 * be part of this contiguous region
1804 */
1805 if (block != journal->j_total_len - 1)
1806 continue;
1807 }
1808
1809 /*
1810 * end of contiguous region or this is last block of journal,
1811 * take care of the region
1812 */
1813 byte_start = block_start * journal->j_blocksize;
1814 byte_stop = block_stop * journal->j_blocksize;
1815 byte_count = (block_stop - block_start + 1) *
1816 journal->j_blocksize;
1817
1818 truncate_inode_pages_range(journal->j_dev->bd_inode->i_mapping,
1819 byte_start, byte_stop);
1820
1821 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
1822 err = blkdev_issue_discard(journal->j_dev,
1823 byte_start >> SECTOR_SHIFT,
1824 byte_count >> SECTOR_SHIFT,
1825 GFP_NOFS, 0);
1826 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
1827 err = blkdev_issue_zeroout(journal->j_dev,
1828 byte_start >> SECTOR_SHIFT,
1829 byte_count >> SECTOR_SHIFT,
1830 GFP_NOFS, 0);
1831 }
1832
1833 if (unlikely(err != 0)) {
1834 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
1835 err, block_start, block_stop);
1836 return err;
1837 }
1838
1839 /* reset start and stop after processing a region */
1840 block_start = ~0ULL;
1841 }
1842
1843 return blkdev_issue_flush(journal->j_dev);
1844 }
1845
1846 /**
1847 * jbd2_journal_update_sb_errno() - Update error in the journal.
1848 * @journal: The journal to update.
1849 *
1850 * Update a journal's errno. Write updated superblock to disk waiting for IO
1851 * to complete.
1852 */
1853 void jbd2_journal_update_sb_errno(journal_t *journal)
1854 {
1855 journal_superblock_t *sb = journal->j_superblock;
1856 int errcode;
1857
1858 lock_buffer(journal->j_sb_buffer);
1859 errcode = journal->j_errno;
1860 if (errcode == -ESHUTDOWN)
1861 errcode = 0;
1862 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1863 sb->s_errno = cpu_to_be32(errcode);
1864
1865 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1866 }
1867 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1868
1869 static int journal_revoke_records_per_block(journal_t *journal)
1870 {
1871 int record_size;
1872 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1873
1874 if (jbd2_has_feature_64bit(journal))
1875 record_size = 8;
1876 else
1877 record_size = 4;
1878
1879 if (jbd2_journal_has_csum_v2or3(journal))
1880 space -= sizeof(struct jbd2_journal_block_tail);
1881 return space / record_size;
1882 }
1883
1884 /*
1885 * Read the superblock for a given journal, performing initial
1886 * validation of the format.
1887 */
1888 static int journal_get_superblock(journal_t *journal)
1889 {
1890 struct buffer_head *bh;
1891 journal_superblock_t *sb;
1892 int err = -EIO;
1893
1894 bh = journal->j_sb_buffer;
1895
1896 J_ASSERT(bh != NULL);
1897 if (!buffer_uptodate(bh)) {
1898 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1899 wait_on_buffer(bh);
1900 if (!buffer_uptodate(bh)) {
1901 printk(KERN_ERR
1902 "JBD2: IO error reading journal superblock\n");
1903 goto out;
1904 }
1905 }
1906
1907 if (buffer_verified(bh))
1908 return 0;
1909
1910 sb = journal->j_superblock;
1911
1912 err = -EINVAL;
1913
1914 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1915 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1916 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1917 goto out;
1918 }
1919
1920 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1921 case JBD2_SUPERBLOCK_V1:
1922 journal->j_format_version = 1;
1923 break;
1924 case JBD2_SUPERBLOCK_V2:
1925 journal->j_format_version = 2;
1926 break;
1927 default:
1928 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1929 goto out;
1930 }
1931
1932 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1933 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1934 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1935 printk(KERN_WARNING "JBD2: journal file too short\n");
1936 goto out;
1937 }
1938
1939 if (be32_to_cpu(sb->s_first) == 0 ||
1940 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1941 printk(KERN_WARNING
1942 "JBD2: Invalid start block of journal: %u\n",
1943 be32_to_cpu(sb->s_first));
1944 goto out;
1945 }
1946
1947 if (jbd2_has_feature_csum2(journal) &&
1948 jbd2_has_feature_csum3(journal)) {
1949 /* Can't have checksum v2 and v3 at the same time! */
1950 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1951 "at the same time!\n");
1952 goto out;
1953 }
1954
1955 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1956 jbd2_has_feature_checksum(journal)) {
1957 /* Can't have checksum v1 and v2 on at the same time! */
1958 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1959 "at the same time!\n");
1960 goto out;
1961 }
1962
1963 if (!jbd2_verify_csum_type(journal, sb)) {
1964 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1965 goto out;
1966 }
1967
1968 /* Load the checksum driver */
1969 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1970 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1971 if (IS_ERR(journal->j_chksum_driver)) {
1972 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1973 err = PTR_ERR(journal->j_chksum_driver);
1974 journal->j_chksum_driver = NULL;
1975 goto out;
1976 }
1977 }
1978
1979 if (jbd2_journal_has_csum_v2or3(journal)) {
1980 /* Check superblock checksum */
1981 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1982 printk(KERN_ERR "JBD2: journal checksum error\n");
1983 err = -EFSBADCRC;
1984 goto out;
1985 }
1986
1987 /* Precompute checksum seed for all metadata */
1988 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1989 sizeof(sb->s_uuid));
1990 }
1991
1992 journal->j_revoke_records_per_block =
1993 journal_revoke_records_per_block(journal);
1994 set_buffer_verified(bh);
1995
1996 return 0;
1997
1998 out:
1999 journal_fail_superblock(journal);
2000 return err;
2001 }
2002
2003 /*
2004 * Load the on-disk journal superblock and read the key fields into the
2005 * journal_t.
2006 */
2007
2008 static int load_superblock(journal_t *journal)
2009 {
2010 int err;
2011 journal_superblock_t *sb;
2012 int num_fc_blocks;
2013
2014 err = journal_get_superblock(journal);
2015 if (err)
2016 return err;
2017
2018 sb = journal->j_superblock;
2019
2020 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
2021 journal->j_tail = be32_to_cpu(sb->s_start);
2022 journal->j_first = be32_to_cpu(sb->s_first);
2023 journal->j_errno = be32_to_cpu(sb->s_errno);
2024 journal->j_last = be32_to_cpu(sb->s_maxlen);
2025
2026 if (jbd2_has_feature_fast_commit(journal)) {
2027 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
2028 num_fc_blocks = jbd2_journal_get_num_fc_blks(sb);
2029 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
2030 journal->j_last = journal->j_fc_last - num_fc_blocks;
2031 journal->j_fc_first = journal->j_last + 1;
2032 journal->j_fc_off = 0;
2033 }
2034
2035 return 0;
2036 }
2037
2038
2039 /**
2040 * jbd2_journal_load() - Read journal from disk.
2041 * @journal: Journal to act on.
2042 *
2043 * Given a journal_t structure which tells us which disk blocks contain
2044 * a journal, read the journal from disk to initialise the in-memory
2045 * structures.
2046 */
2047 int jbd2_journal_load(journal_t *journal)
2048 {
2049 int err;
2050 journal_superblock_t *sb;
2051
2052 err = load_superblock(journal);
2053 if (err)
2054 return err;
2055
2056 sb = journal->j_superblock;
2057 /* If this is a V2 superblock, then we have to check the
2058 * features flags on it. */
2059
2060 if (journal->j_format_version >= 2) {
2061 if ((sb->s_feature_ro_compat &
2062 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
2063 (sb->s_feature_incompat &
2064 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
2065 printk(KERN_WARNING
2066 "JBD2: Unrecognised features on journal\n");
2067 return -EINVAL;
2068 }
2069 }
2070
2071 /*
2072 * Create a slab for this blocksize
2073 */
2074 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2075 if (err)
2076 return err;
2077
2078 /* Let the recovery code check whether it needs to recover any
2079 * data from the journal. */
2080 if (jbd2_journal_recover(journal))
2081 goto recovery_error;
2082
2083 if (journal->j_failed_commit) {
2084 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2085 "is corrupt.\n", journal->j_failed_commit,
2086 journal->j_devname);
2087 return -EFSCORRUPTED;
2088 }
2089 /*
2090 * clear JBD2_ABORT flag initialized in journal_init_common
2091 * here to update log tail information with the newest seq.
2092 */
2093 journal->j_flags &= ~JBD2_ABORT;
2094
2095 /* OK, we've finished with the dynamic journal bits:
2096 * reinitialise the dynamic contents of the superblock in memory
2097 * and reset them on disk. */
2098 if (journal_reset(journal))
2099 goto recovery_error;
2100
2101 journal->j_flags |= JBD2_LOADED;
2102 return 0;
2103
2104 recovery_error:
2105 printk(KERN_WARNING "JBD2: recovery failed\n");
2106 return -EIO;
2107 }
2108
2109 /**
2110 * jbd2_journal_destroy() - Release a journal_t structure.
2111 * @journal: Journal to act on.
2112 *
2113 * Release a journal_t structure once it is no longer in use by the
2114 * journaled object.
2115 * Return <0 if we couldn't clean up the journal.
2116 */
2117 int jbd2_journal_destroy(journal_t *journal)
2118 {
2119 int err = 0;
2120
2121 /* Wait for the commit thread to wake up and die. */
2122 journal_kill_thread(journal);
2123
2124 /* Force a final log commit */
2125 if (journal->j_running_transaction)
2126 jbd2_journal_commit_transaction(journal);
2127
2128 /* Force any old transactions to disk */
2129
2130 /* Totally anal locking here... */
2131 spin_lock(&journal->j_list_lock);
2132 while (journal->j_checkpoint_transactions != NULL) {
2133 spin_unlock(&journal->j_list_lock);
2134 mutex_lock_io(&journal->j_checkpoint_mutex);
2135 err = jbd2_log_do_checkpoint(journal);
2136 mutex_unlock(&journal->j_checkpoint_mutex);
2137 /*
2138 * If checkpointing failed, just free the buffers to avoid
2139 * looping forever
2140 */
2141 if (err) {
2142 jbd2_journal_destroy_checkpoint(journal);
2143 spin_lock(&journal->j_list_lock);
2144 break;
2145 }
2146 spin_lock(&journal->j_list_lock);
2147 }
2148
2149 J_ASSERT(journal->j_running_transaction == NULL);
2150 J_ASSERT(journal->j_committing_transaction == NULL);
2151 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2152 spin_unlock(&journal->j_list_lock);
2153
2154 /*
2155 * OK, all checkpoint transactions have been checked, now check the
2156 * write out io error flag and abort the journal if some buffer failed
2157 * to write back to the original location, otherwise the filesystem
2158 * may become inconsistent.
2159 */
2160 if (!is_journal_aborted(journal) &&
2161 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2162 jbd2_journal_abort(journal, -EIO);
2163
2164 if (journal->j_sb_buffer) {
2165 if (!is_journal_aborted(journal)) {
2166 mutex_lock_io(&journal->j_checkpoint_mutex);
2167
2168 write_lock(&journal->j_state_lock);
2169 journal->j_tail_sequence =
2170 ++journal->j_transaction_sequence;
2171 write_unlock(&journal->j_state_lock);
2172
2173 jbd2_mark_journal_empty(journal,
2174 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2175 mutex_unlock(&journal->j_checkpoint_mutex);
2176 } else
2177 err = -EIO;
2178 brelse(journal->j_sb_buffer);
2179 }
2180
2181 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2182 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2183 unregister_shrinker(&journal->j_shrinker);
2184 }
2185 if (journal->j_proc_entry)
2186 jbd2_stats_proc_exit(journal);
2187 iput(journal->j_inode);
2188 if (journal->j_revoke)
2189 jbd2_journal_destroy_revoke(journal);
2190 if (journal->j_chksum_driver)
2191 crypto_free_shash(journal->j_chksum_driver);
2192 kfree(journal->j_fc_wbuf);
2193 kfree(journal->j_wbuf);
2194 kfree(journal);
2195
2196 return err;
2197 }
2198
2199
2200 /**
2201 * jbd2_journal_check_used_features() - Check if features specified are used.
2202 * @journal: Journal to check.
2203 * @compat: bitmask of compatible features
2204 * @ro: bitmask of features that force read-only mount
2205 * @incompat: bitmask of incompatible features
2206 *
2207 * Check whether the journal uses all of a given set of
2208 * features. Return true (non-zero) if it does.
2209 **/
2210
2211 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2212 unsigned long ro, unsigned long incompat)
2213 {
2214 journal_superblock_t *sb;
2215
2216 if (!compat && !ro && !incompat)
2217 return 1;
2218 /* Load journal superblock if it is not loaded yet. */
2219 if (journal->j_format_version == 0 &&
2220 journal_get_superblock(journal) != 0)
2221 return 0;
2222 if (journal->j_format_version == 1)
2223 return 0;
2224
2225 sb = journal->j_superblock;
2226
2227 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2228 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2229 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2230 return 1;
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2237 * @journal: Journal to check.
2238 * @compat: bitmask of compatible features
2239 * @ro: bitmask of features that force read-only mount
2240 * @incompat: bitmask of incompatible features
2241 *
2242 * Check whether the journaling code supports the use of
2243 * all of a given set of features on this journal. Return true
2244 * (non-zero) if it can. */
2245
2246 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2247 unsigned long ro, unsigned long incompat)
2248 {
2249 if (!compat && !ro && !incompat)
2250 return 1;
2251
2252 /* We can support any known requested features iff the
2253 * superblock is in version 2. Otherwise we fail to support any
2254 * extended sb features. */
2255
2256 if (journal->j_format_version != 2)
2257 return 0;
2258
2259 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2260 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2261 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2262 return 1;
2263
2264 return 0;
2265 }
2266
2267 static int
2268 jbd2_journal_initialize_fast_commit(journal_t *journal)
2269 {
2270 journal_superblock_t *sb = journal->j_superblock;
2271 unsigned long long num_fc_blks;
2272
2273 num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2274 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2275 return -ENOSPC;
2276
2277 /* Are we called twice? */
2278 WARN_ON(journal->j_fc_wbuf != NULL);
2279 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2280 sizeof(struct buffer_head *), GFP_KERNEL);
2281 if (!journal->j_fc_wbuf)
2282 return -ENOMEM;
2283
2284 journal->j_fc_wbufsize = num_fc_blks;
2285 journal->j_fc_last = journal->j_last;
2286 journal->j_last = journal->j_fc_last - num_fc_blks;
2287 journal->j_fc_first = journal->j_last + 1;
2288 journal->j_fc_off = 0;
2289 journal->j_free = journal->j_last - journal->j_first;
2290 journal->j_max_transaction_buffers =
2291 jbd2_journal_get_max_txn_bufs(journal);
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2298 * @journal: Journal to act on.
2299 * @compat: bitmask of compatible features
2300 * @ro: bitmask of features that force read-only mount
2301 * @incompat: bitmask of incompatible features
2302 *
2303 * Mark a given journal feature as present on the
2304 * superblock. Returns true if the requested features could be set.
2305 *
2306 */
2307
2308 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2309 unsigned long ro, unsigned long incompat)
2310 {
2311 #define INCOMPAT_FEATURE_ON(f) \
2312 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2313 #define COMPAT_FEATURE_ON(f) \
2314 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2315 journal_superblock_t *sb;
2316
2317 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2318 return 1;
2319
2320 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2321 return 0;
2322
2323 /* If enabling v2 checksums, turn on v3 instead */
2324 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2325 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2326 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2327 }
2328
2329 /* Asking for checksumming v3 and v1? Only give them v3. */
2330 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2331 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2332 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2333
2334 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2335 compat, ro, incompat);
2336
2337 sb = journal->j_superblock;
2338
2339 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2340 if (jbd2_journal_initialize_fast_commit(journal)) {
2341 pr_err("JBD2: Cannot enable fast commits.\n");
2342 return 0;
2343 }
2344 }
2345
2346 /* Load the checksum driver if necessary */
2347 if ((journal->j_chksum_driver == NULL) &&
2348 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2349 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2350 if (IS_ERR(journal->j_chksum_driver)) {
2351 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2352 journal->j_chksum_driver = NULL;
2353 return 0;
2354 }
2355 /* Precompute checksum seed for all metadata */
2356 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2357 sizeof(sb->s_uuid));
2358 }
2359
2360 lock_buffer(journal->j_sb_buffer);
2361
2362 /* If enabling v3 checksums, update superblock */
2363 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2364 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2365 sb->s_feature_compat &=
2366 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2367 }
2368
2369 /* If enabling v1 checksums, downgrade superblock */
2370 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2371 sb->s_feature_incompat &=
2372 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2373 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2374
2375 sb->s_feature_compat |= cpu_to_be32(compat);
2376 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2377 sb->s_feature_incompat |= cpu_to_be32(incompat);
2378 unlock_buffer(journal->j_sb_buffer);
2379 journal->j_revoke_records_per_block =
2380 journal_revoke_records_per_block(journal);
2381
2382 return 1;
2383 #undef COMPAT_FEATURE_ON
2384 #undef INCOMPAT_FEATURE_ON
2385 }
2386
2387 /*
2388 * jbd2_journal_clear_features() - Clear a given journal feature in the
2389 * superblock
2390 * @journal: Journal to act on.
2391 * @compat: bitmask of compatible features
2392 * @ro: bitmask of features that force read-only mount
2393 * @incompat: bitmask of incompatible features
2394 *
2395 * Clear a given journal feature as present on the
2396 * superblock.
2397 */
2398 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2399 unsigned long ro, unsigned long incompat)
2400 {
2401 journal_superblock_t *sb;
2402
2403 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2404 compat, ro, incompat);
2405
2406 sb = journal->j_superblock;
2407
2408 sb->s_feature_compat &= ~cpu_to_be32(compat);
2409 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2410 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2411 journal->j_revoke_records_per_block =
2412 journal_revoke_records_per_block(journal);
2413 }
2414 EXPORT_SYMBOL(jbd2_journal_clear_features);
2415
2416 /**
2417 * jbd2_journal_flush() - Flush journal
2418 * @journal: Journal to act on.
2419 * @flags: optional operation on the journal blocks after the flush (see below)
2420 *
2421 * Flush all data for a given journal to disk and empty the journal.
2422 * Filesystems can use this when remounting readonly to ensure that
2423 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2424 * can be issued on the journal blocks after flushing.
2425 *
2426 * flags:
2427 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2428 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2429 */
2430 int jbd2_journal_flush(journal_t *journal, unsigned int flags)
2431 {
2432 int err = 0;
2433 transaction_t *transaction = NULL;
2434
2435 write_lock(&journal->j_state_lock);
2436
2437 /* Force everything buffered to the log... */
2438 if (journal->j_running_transaction) {
2439 transaction = journal->j_running_transaction;
2440 __jbd2_log_start_commit(journal, transaction->t_tid);
2441 } else if (journal->j_committing_transaction)
2442 transaction = journal->j_committing_transaction;
2443
2444 /* Wait for the log commit to complete... */
2445 if (transaction) {
2446 tid_t tid = transaction->t_tid;
2447
2448 write_unlock(&journal->j_state_lock);
2449 jbd2_log_wait_commit(journal, tid);
2450 } else {
2451 write_unlock(&journal->j_state_lock);
2452 }
2453
2454 /* ...and flush everything in the log out to disk. */
2455 spin_lock(&journal->j_list_lock);
2456 while (!err && journal->j_checkpoint_transactions != NULL) {
2457 spin_unlock(&journal->j_list_lock);
2458 mutex_lock_io(&journal->j_checkpoint_mutex);
2459 err = jbd2_log_do_checkpoint(journal);
2460 mutex_unlock(&journal->j_checkpoint_mutex);
2461 spin_lock(&journal->j_list_lock);
2462 }
2463 spin_unlock(&journal->j_list_lock);
2464
2465 if (is_journal_aborted(journal))
2466 return -EIO;
2467
2468 mutex_lock_io(&journal->j_checkpoint_mutex);
2469 if (!err) {
2470 err = jbd2_cleanup_journal_tail(journal);
2471 if (err < 0) {
2472 mutex_unlock(&journal->j_checkpoint_mutex);
2473 goto out;
2474 }
2475 err = 0;
2476 }
2477
2478 /* Finally, mark the journal as really needing no recovery.
2479 * This sets s_start==0 in the underlying superblock, which is
2480 * the magic code for a fully-recovered superblock. Any future
2481 * commits of data to the journal will restore the current
2482 * s_start value. */
2483 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2484
2485 if (flags)
2486 err = __jbd2_journal_erase(journal, flags);
2487
2488 mutex_unlock(&journal->j_checkpoint_mutex);
2489 write_lock(&journal->j_state_lock);
2490 J_ASSERT(!journal->j_running_transaction);
2491 J_ASSERT(!journal->j_committing_transaction);
2492 J_ASSERT(!journal->j_checkpoint_transactions);
2493 J_ASSERT(journal->j_head == journal->j_tail);
2494 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2495 write_unlock(&journal->j_state_lock);
2496 out:
2497 return err;
2498 }
2499
2500 /**
2501 * jbd2_journal_wipe() - Wipe journal contents
2502 * @journal: Journal to act on.
2503 * @write: flag (see below)
2504 *
2505 * Wipe out all of the contents of a journal, safely. This will produce
2506 * a warning if the journal contains any valid recovery information.
2507 * Must be called between journal_init_*() and jbd2_journal_load().
2508 *
2509 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2510 * we merely suppress recovery.
2511 */
2512
2513 int jbd2_journal_wipe(journal_t *journal, int write)
2514 {
2515 int err = 0;
2516
2517 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2518
2519 err = load_superblock(journal);
2520 if (err)
2521 return err;
2522
2523 if (!journal->j_tail)
2524 goto no_recovery;
2525
2526 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2527 write ? "Clearing" : "Ignoring");
2528
2529 err = jbd2_journal_skip_recovery(journal);
2530 if (write) {
2531 /* Lock to make assertions happy... */
2532 mutex_lock_io(&journal->j_checkpoint_mutex);
2533 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2534 mutex_unlock(&journal->j_checkpoint_mutex);
2535 }
2536
2537 no_recovery:
2538 return err;
2539 }
2540
2541 /**
2542 * jbd2_journal_abort () - Shutdown the journal immediately.
2543 * @journal: the journal to shutdown.
2544 * @errno: an error number to record in the journal indicating
2545 * the reason for the shutdown.
2546 *
2547 * Perform a complete, immediate shutdown of the ENTIRE
2548 * journal (not of a single transaction). This operation cannot be
2549 * undone without closing and reopening the journal.
2550 *
2551 * The jbd2_journal_abort function is intended to support higher level error
2552 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2553 * mode.
2554 *
2555 * Journal abort has very specific semantics. Any existing dirty,
2556 * unjournaled buffers in the main filesystem will still be written to
2557 * disk by bdflush, but the journaling mechanism will be suspended
2558 * immediately and no further transaction commits will be honoured.
2559 *
2560 * Any dirty, journaled buffers will be written back to disk without
2561 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2562 * filesystem, but we _do_ attempt to leave as much data as possible
2563 * behind for fsck to use for cleanup.
2564 *
2565 * Any attempt to get a new transaction handle on a journal which is in
2566 * ABORT state will just result in an -EROFS error return. A
2567 * jbd2_journal_stop on an existing handle will return -EIO if we have
2568 * entered abort state during the update.
2569 *
2570 * Recursive transactions are not disturbed by journal abort until the
2571 * final jbd2_journal_stop, which will receive the -EIO error.
2572 *
2573 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2574 * which will be recorded (if possible) in the journal superblock. This
2575 * allows a client to record failure conditions in the middle of a
2576 * transaction without having to complete the transaction to record the
2577 * failure to disk. ext3_error, for example, now uses this
2578 * functionality.
2579 *
2580 */
2581
2582 void jbd2_journal_abort(journal_t *journal, int errno)
2583 {
2584 transaction_t *transaction;
2585
2586 /*
2587 * Lock the aborting procedure until everything is done, this avoid
2588 * races between filesystem's error handling flow (e.g. ext4_abort()),
2589 * ensure panic after the error info is written into journal's
2590 * superblock.
2591 */
2592 mutex_lock(&journal->j_abort_mutex);
2593 /*
2594 * ESHUTDOWN always takes precedence because a file system check
2595 * caused by any other journal abort error is not required after
2596 * a shutdown triggered.
2597 */
2598 write_lock(&journal->j_state_lock);
2599 if (journal->j_flags & JBD2_ABORT) {
2600 int old_errno = journal->j_errno;
2601
2602 write_unlock(&journal->j_state_lock);
2603 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2604 journal->j_errno = errno;
2605 jbd2_journal_update_sb_errno(journal);
2606 }
2607 mutex_unlock(&journal->j_abort_mutex);
2608 return;
2609 }
2610
2611 /*
2612 * Mark the abort as occurred and start current running transaction
2613 * to release all journaled buffer.
2614 */
2615 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2616
2617 journal->j_flags |= JBD2_ABORT;
2618 journal->j_errno = errno;
2619 transaction = journal->j_running_transaction;
2620 if (transaction)
2621 __jbd2_log_start_commit(journal, transaction->t_tid);
2622 write_unlock(&journal->j_state_lock);
2623
2624 /*
2625 * Record errno to the journal super block, so that fsck and jbd2
2626 * layer could realise that a filesystem check is needed.
2627 */
2628 jbd2_journal_update_sb_errno(journal);
2629 mutex_unlock(&journal->j_abort_mutex);
2630 }
2631
2632 /**
2633 * jbd2_journal_errno() - returns the journal's error state.
2634 * @journal: journal to examine.
2635 *
2636 * This is the errno number set with jbd2_journal_abort(), the last
2637 * time the journal was mounted - if the journal was stopped
2638 * without calling abort this will be 0.
2639 *
2640 * If the journal has been aborted on this mount time -EROFS will
2641 * be returned.
2642 */
2643 int jbd2_journal_errno(journal_t *journal)
2644 {
2645 int err;
2646
2647 read_lock(&journal->j_state_lock);
2648 if (journal->j_flags & JBD2_ABORT)
2649 err = -EROFS;
2650 else
2651 err = journal->j_errno;
2652 read_unlock(&journal->j_state_lock);
2653 return err;
2654 }
2655
2656 /**
2657 * jbd2_journal_clear_err() - clears the journal's error state
2658 * @journal: journal to act on.
2659 *
2660 * An error must be cleared or acked to take a FS out of readonly
2661 * mode.
2662 */
2663 int jbd2_journal_clear_err(journal_t *journal)
2664 {
2665 int err = 0;
2666
2667 write_lock(&journal->j_state_lock);
2668 if (journal->j_flags & JBD2_ABORT)
2669 err = -EROFS;
2670 else
2671 journal->j_errno = 0;
2672 write_unlock(&journal->j_state_lock);
2673 return err;
2674 }
2675
2676 /**
2677 * jbd2_journal_ack_err() - Ack journal err.
2678 * @journal: journal to act on.
2679 *
2680 * An error must be cleared or acked to take a FS out of readonly
2681 * mode.
2682 */
2683 void jbd2_journal_ack_err(journal_t *journal)
2684 {
2685 write_lock(&journal->j_state_lock);
2686 if (journal->j_errno)
2687 journal->j_flags |= JBD2_ACK_ERR;
2688 write_unlock(&journal->j_state_lock);
2689 }
2690
2691 int jbd2_journal_blocks_per_page(struct inode *inode)
2692 {
2693 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2694 }
2695
2696 /*
2697 * helper functions to deal with 32 or 64bit block numbers.
2698 */
2699 size_t journal_tag_bytes(journal_t *journal)
2700 {
2701 size_t sz;
2702
2703 if (jbd2_has_feature_csum3(journal))
2704 return sizeof(journal_block_tag3_t);
2705
2706 sz = sizeof(journal_block_tag_t);
2707
2708 if (jbd2_has_feature_csum2(journal))
2709 sz += sizeof(__u16);
2710
2711 if (jbd2_has_feature_64bit(journal))
2712 return sz;
2713 else
2714 return sz - sizeof(__u32);
2715 }
2716
2717 /*
2718 * JBD memory management
2719 *
2720 * These functions are used to allocate block-sized chunks of memory
2721 * used for making copies of buffer_head data. Very often it will be
2722 * page-sized chunks of data, but sometimes it will be in
2723 * sub-page-size chunks. (For example, 16k pages on Power systems
2724 * with a 4k block file system.) For blocks smaller than a page, we
2725 * use a SLAB allocator. There are slab caches for each block size,
2726 * which are allocated at mount time, if necessary, and we only free
2727 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2728 * this reason we don't need to a mutex to protect access to
2729 * jbd2_slab[] allocating or releasing memory; only in
2730 * jbd2_journal_create_slab().
2731 */
2732 #define JBD2_MAX_SLABS 8
2733 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2734
2735 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2736 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2737 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2738 };
2739
2740
2741 static void jbd2_journal_destroy_slabs(void)
2742 {
2743 int i;
2744
2745 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2746 kmem_cache_destroy(jbd2_slab[i]);
2747 jbd2_slab[i] = NULL;
2748 }
2749 }
2750
2751 static int jbd2_journal_create_slab(size_t size)
2752 {
2753 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2754 int i = order_base_2(size) - 10;
2755 size_t slab_size;
2756
2757 if (size == PAGE_SIZE)
2758 return 0;
2759
2760 if (i >= JBD2_MAX_SLABS)
2761 return -EINVAL;
2762
2763 if (unlikely(i < 0))
2764 i = 0;
2765 mutex_lock(&jbd2_slab_create_mutex);
2766 if (jbd2_slab[i]) {
2767 mutex_unlock(&jbd2_slab_create_mutex);
2768 return 0; /* Already created */
2769 }
2770
2771 slab_size = 1 << (i+10);
2772 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2773 slab_size, 0, NULL);
2774 mutex_unlock(&jbd2_slab_create_mutex);
2775 if (!jbd2_slab[i]) {
2776 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2777 return -ENOMEM;
2778 }
2779 return 0;
2780 }
2781
2782 static struct kmem_cache *get_slab(size_t size)
2783 {
2784 int i = order_base_2(size) - 10;
2785
2786 BUG_ON(i >= JBD2_MAX_SLABS);
2787 if (unlikely(i < 0))
2788 i = 0;
2789 BUG_ON(jbd2_slab[i] == NULL);
2790 return jbd2_slab[i];
2791 }
2792
2793 void *jbd2_alloc(size_t size, gfp_t flags)
2794 {
2795 void *ptr;
2796
2797 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2798
2799 if (size < PAGE_SIZE)
2800 ptr = kmem_cache_alloc(get_slab(size), flags);
2801 else
2802 ptr = (void *)__get_free_pages(flags, get_order(size));
2803
2804 /* Check alignment; SLUB has gotten this wrong in the past,
2805 * and this can lead to user data corruption! */
2806 BUG_ON(((unsigned long) ptr) & (size-1));
2807
2808 return ptr;
2809 }
2810
2811 void jbd2_free(void *ptr, size_t size)
2812 {
2813 if (size < PAGE_SIZE)
2814 kmem_cache_free(get_slab(size), ptr);
2815 else
2816 free_pages((unsigned long)ptr, get_order(size));
2817 };
2818
2819 /*
2820 * Journal_head storage management
2821 */
2822 static struct kmem_cache *jbd2_journal_head_cache;
2823 #ifdef CONFIG_JBD2_DEBUG
2824 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2825 #endif
2826
2827 static int __init jbd2_journal_init_journal_head_cache(void)
2828 {
2829 J_ASSERT(!jbd2_journal_head_cache);
2830 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2831 sizeof(struct journal_head),
2832 0, /* offset */
2833 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2834 NULL); /* ctor */
2835 if (!jbd2_journal_head_cache) {
2836 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2837 return -ENOMEM;
2838 }
2839 return 0;
2840 }
2841
2842 static void jbd2_journal_destroy_journal_head_cache(void)
2843 {
2844 kmem_cache_destroy(jbd2_journal_head_cache);
2845 jbd2_journal_head_cache = NULL;
2846 }
2847
2848 /*
2849 * journal_head splicing and dicing
2850 */
2851 static struct journal_head *journal_alloc_journal_head(void)
2852 {
2853 struct journal_head *ret;
2854
2855 #ifdef CONFIG_JBD2_DEBUG
2856 atomic_inc(&nr_journal_heads);
2857 #endif
2858 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2859 if (!ret) {
2860 jbd_debug(1, "out of memory for journal_head\n");
2861 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2862 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2863 GFP_NOFS | __GFP_NOFAIL);
2864 }
2865 if (ret)
2866 spin_lock_init(&ret->b_state_lock);
2867 return ret;
2868 }
2869
2870 static void journal_free_journal_head(struct journal_head *jh)
2871 {
2872 #ifdef CONFIG_JBD2_DEBUG
2873 atomic_dec(&nr_journal_heads);
2874 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2875 #endif
2876 kmem_cache_free(jbd2_journal_head_cache, jh);
2877 }
2878
2879 /*
2880 * A journal_head is attached to a buffer_head whenever JBD has an
2881 * interest in the buffer.
2882 *
2883 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2884 * is set. This bit is tested in core kernel code where we need to take
2885 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2886 * there.
2887 *
2888 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2889 *
2890 * When a buffer has its BH_JBD bit set it is immune from being released by
2891 * core kernel code, mainly via ->b_count.
2892 *
2893 * A journal_head is detached from its buffer_head when the journal_head's
2894 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2895 * transaction (b_cp_transaction) hold their references to b_jcount.
2896 *
2897 * Various places in the kernel want to attach a journal_head to a buffer_head
2898 * _before_ attaching the journal_head to a transaction. To protect the
2899 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2900 * journal_head's b_jcount refcount by one. The caller must call
2901 * jbd2_journal_put_journal_head() to undo this.
2902 *
2903 * So the typical usage would be:
2904 *
2905 * (Attach a journal_head if needed. Increments b_jcount)
2906 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2907 * ...
2908 * (Get another reference for transaction)
2909 * jbd2_journal_grab_journal_head(bh);
2910 * jh->b_transaction = xxx;
2911 * (Put original reference)
2912 * jbd2_journal_put_journal_head(jh);
2913 */
2914
2915 /*
2916 * Give a buffer_head a journal_head.
2917 *
2918 * May sleep.
2919 */
2920 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2921 {
2922 struct journal_head *jh;
2923 struct journal_head *new_jh = NULL;
2924
2925 repeat:
2926 if (!buffer_jbd(bh))
2927 new_jh = journal_alloc_journal_head();
2928
2929 jbd_lock_bh_journal_head(bh);
2930 if (buffer_jbd(bh)) {
2931 jh = bh2jh(bh);
2932 } else {
2933 J_ASSERT_BH(bh,
2934 (atomic_read(&bh->b_count) > 0) ||
2935 (bh->b_page && bh->b_page->mapping));
2936
2937 if (!new_jh) {
2938 jbd_unlock_bh_journal_head(bh);
2939 goto repeat;
2940 }
2941
2942 jh = new_jh;
2943 new_jh = NULL; /* We consumed it */
2944 set_buffer_jbd(bh);
2945 bh->b_private = jh;
2946 jh->b_bh = bh;
2947 get_bh(bh);
2948 BUFFER_TRACE(bh, "added journal_head");
2949 }
2950 jh->b_jcount++;
2951 jbd_unlock_bh_journal_head(bh);
2952 if (new_jh)
2953 journal_free_journal_head(new_jh);
2954 return bh->b_private;
2955 }
2956
2957 /*
2958 * Grab a ref against this buffer_head's journal_head. If it ended up not
2959 * having a journal_head, return NULL
2960 */
2961 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2962 {
2963 struct journal_head *jh = NULL;
2964
2965 jbd_lock_bh_journal_head(bh);
2966 if (buffer_jbd(bh)) {
2967 jh = bh2jh(bh);
2968 jh->b_jcount++;
2969 }
2970 jbd_unlock_bh_journal_head(bh);
2971 return jh;
2972 }
2973
2974 static void __journal_remove_journal_head(struct buffer_head *bh)
2975 {
2976 struct journal_head *jh = bh2jh(bh);
2977
2978 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2979 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2980 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2981 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2982 J_ASSERT_BH(bh, buffer_jbd(bh));
2983 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2984 BUFFER_TRACE(bh, "remove journal_head");
2985
2986 /* Unlink before dropping the lock */
2987 bh->b_private = NULL;
2988 jh->b_bh = NULL; /* debug, really */
2989 clear_buffer_jbd(bh);
2990 }
2991
2992 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2993 {
2994 if (jh->b_frozen_data) {
2995 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2996 jbd2_free(jh->b_frozen_data, b_size);
2997 }
2998 if (jh->b_committed_data) {
2999 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
3000 jbd2_free(jh->b_committed_data, b_size);
3001 }
3002 journal_free_journal_head(jh);
3003 }
3004
3005 /*
3006 * Drop a reference on the passed journal_head. If it fell to zero then
3007 * release the journal_head from the buffer_head.
3008 */
3009 void jbd2_journal_put_journal_head(struct journal_head *jh)
3010 {
3011 struct buffer_head *bh = jh2bh(jh);
3012
3013 jbd_lock_bh_journal_head(bh);
3014 J_ASSERT_JH(jh, jh->b_jcount > 0);
3015 --jh->b_jcount;
3016 if (!jh->b_jcount) {
3017 __journal_remove_journal_head(bh);
3018 jbd_unlock_bh_journal_head(bh);
3019 journal_release_journal_head(jh, bh->b_size);
3020 __brelse(bh);
3021 } else {
3022 jbd_unlock_bh_journal_head(bh);
3023 }
3024 }
3025
3026 /*
3027 * Initialize jbd inode head
3028 */
3029 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3030 {
3031 jinode->i_transaction = NULL;
3032 jinode->i_next_transaction = NULL;
3033 jinode->i_vfs_inode = inode;
3034 jinode->i_flags = 0;
3035 jinode->i_dirty_start = 0;
3036 jinode->i_dirty_end = 0;
3037 INIT_LIST_HEAD(&jinode->i_list);
3038 }
3039
3040 /*
3041 * Function to be called before we start removing inode from memory (i.e.,
3042 * clear_inode() is a fine place to be called from). It removes inode from
3043 * transaction's lists.
3044 */
3045 void jbd2_journal_release_jbd_inode(journal_t *journal,
3046 struct jbd2_inode *jinode)
3047 {
3048 if (!journal)
3049 return;
3050 restart:
3051 spin_lock(&journal->j_list_lock);
3052 /* Is commit writing out inode - we have to wait */
3053 if (jinode->i_flags & JI_COMMIT_RUNNING) {
3054 wait_queue_head_t *wq;
3055 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3056 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3057 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3058 spin_unlock(&journal->j_list_lock);
3059 schedule();
3060 finish_wait(wq, &wait.wq_entry);
3061 goto restart;
3062 }
3063
3064 if (jinode->i_transaction) {
3065 list_del(&jinode->i_list);
3066 jinode->i_transaction = NULL;
3067 }
3068 spin_unlock(&journal->j_list_lock);
3069 }
3070
3071
3072 #ifdef CONFIG_PROC_FS
3073
3074 #define JBD2_STATS_PROC_NAME "fs/jbd2"
3075
3076 static void __init jbd2_create_jbd_stats_proc_entry(void)
3077 {
3078 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3079 }
3080
3081 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3082 {
3083 if (proc_jbd2_stats)
3084 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3085 }
3086
3087 #else
3088
3089 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3090 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3091
3092 #endif
3093
3094 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3095
3096 static int __init jbd2_journal_init_inode_cache(void)
3097 {
3098 J_ASSERT(!jbd2_inode_cache);
3099 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3100 if (!jbd2_inode_cache) {
3101 pr_emerg("JBD2: failed to create inode cache\n");
3102 return -ENOMEM;
3103 }
3104 return 0;
3105 }
3106
3107 static int __init jbd2_journal_init_handle_cache(void)
3108 {
3109 J_ASSERT(!jbd2_handle_cache);
3110 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3111 if (!jbd2_handle_cache) {
3112 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3113 return -ENOMEM;
3114 }
3115 return 0;
3116 }
3117
3118 static void jbd2_journal_destroy_inode_cache(void)
3119 {
3120 kmem_cache_destroy(jbd2_inode_cache);
3121 jbd2_inode_cache = NULL;
3122 }
3123
3124 static void jbd2_journal_destroy_handle_cache(void)
3125 {
3126 kmem_cache_destroy(jbd2_handle_cache);
3127 jbd2_handle_cache = NULL;
3128 }
3129
3130 /*
3131 * Module startup and shutdown
3132 */
3133
3134 static int __init journal_init_caches(void)
3135 {
3136 int ret;
3137
3138 ret = jbd2_journal_init_revoke_record_cache();
3139 if (ret == 0)
3140 ret = jbd2_journal_init_revoke_table_cache();
3141 if (ret == 0)
3142 ret = jbd2_journal_init_journal_head_cache();
3143 if (ret == 0)
3144 ret = jbd2_journal_init_handle_cache();
3145 if (ret == 0)
3146 ret = jbd2_journal_init_inode_cache();
3147 if (ret == 0)
3148 ret = jbd2_journal_init_transaction_cache();
3149 return ret;
3150 }
3151
3152 static void jbd2_journal_destroy_caches(void)
3153 {
3154 jbd2_journal_destroy_revoke_record_cache();
3155 jbd2_journal_destroy_revoke_table_cache();
3156 jbd2_journal_destroy_journal_head_cache();
3157 jbd2_journal_destroy_handle_cache();
3158 jbd2_journal_destroy_inode_cache();
3159 jbd2_journal_destroy_transaction_cache();
3160 jbd2_journal_destroy_slabs();
3161 }
3162
3163 static int __init journal_init(void)
3164 {
3165 int ret;
3166
3167 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3168
3169 ret = journal_init_caches();
3170 if (ret == 0) {
3171 jbd2_create_jbd_stats_proc_entry();
3172 } else {
3173 jbd2_journal_destroy_caches();
3174 }
3175 return ret;
3176 }
3177
3178 static void __exit journal_exit(void)
3179 {
3180 #ifdef CONFIG_JBD2_DEBUG
3181 int n = atomic_read(&nr_journal_heads);
3182 if (n)
3183 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3184 #endif
3185 jbd2_remove_jbd_stats_proc_entry();
3186 jbd2_journal_destroy_caches();
3187 }
3188
3189 MODULE_LICENSE("GPL");
3190 module_init(journal_init);
3191 module_exit(journal_exit);
3192