]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/jbd2/journal.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-bionic-kernel.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110 unsigned int line, const char *fmt, ...)
111 {
112 struct va_format vaf;
113 va_list args;
114
115 if (level > jbd2_journal_enable_debug)
116 return;
117 va_start(args, fmt);
118 vaf.fmt = fmt;
119 vaf.va = &args;
120 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121 va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129 if (!jbd2_journal_has_csum_v2or3_feature(j))
130 return 1;
131
132 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137 __u32 csum;
138 __be32 old_csum;
139
140 old_csum = sb->s_checksum;
141 sb->s_checksum = 0;
142 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143 sb->s_checksum = old_csum;
144
145 return cpu_to_be32(csum);
146 }
147
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150 if (!jbd2_journal_has_csum_v2or3(j))
151 return 1;
152
153 return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158 if (!jbd2_journal_has_csum_v2or3(j))
159 return;
160
161 sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163
164 /*
165 * Helper function used to manage commit timeouts
166 */
167
168 static void commit_timeout(struct timer_list *t)
169 {
170 journal_t *journal = from_timer(journal, t, j_commit_timer);
171
172 wake_up_process(journal->j_task);
173 }
174
175 /*
176 * kjournald2: The main thread function used to manage a logging device
177 * journal.
178 *
179 * This kernel thread is responsible for two things:
180 *
181 * 1) COMMIT: Every so often we need to commit the current state of the
182 * filesystem to disk. The journal thread is responsible for writing
183 * all of the metadata buffers to disk.
184 *
185 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186 * of the data in that part of the log has been rewritten elsewhere on
187 * the disk. Flushing these old buffers to reclaim space in the log is
188 * known as checkpointing, and this thread is responsible for that job.
189 */
190
191 static int kjournald2(void *arg)
192 {
193 journal_t *journal = arg;
194 transaction_t *transaction;
195
196 /*
197 * Set up an interval timer which can be used to trigger a commit wakeup
198 * after the commit interval expires
199 */
200 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
201
202 set_freezable();
203
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
207
208 /*
209 * Make sure that no allocations from this kernel thread will ever
210 * recurse to the fs layer because we are responsible for the
211 * transaction commit and any fs involvement might get stuck waiting for
212 * the trasn. commit.
213 */
214 memalloc_nofs_save();
215
216 /*
217 * And now, wait forever for commit wakeup events.
218 */
219 write_lock(&journal->j_state_lock);
220
221 loop:
222 if (journal->j_flags & JBD2_UNMOUNT)
223 goto end_loop;
224
225 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226 journal->j_commit_sequence, journal->j_commit_request);
227
228 if (journal->j_commit_sequence != journal->j_commit_request) {
229 jbd_debug(1, "OK, requests differ\n");
230 write_unlock(&journal->j_state_lock);
231 del_timer_sync(&journal->j_commit_timer);
232 jbd2_journal_commit_transaction(journal);
233 write_lock(&journal->j_state_lock);
234 goto loop;
235 }
236
237 wake_up(&journal->j_wait_done_commit);
238 if (freezing(current)) {
239 /*
240 * The simpler the better. Flushing journal isn't a
241 * good idea, because that depends on threads that may
242 * be already stopped.
243 */
244 jbd_debug(1, "Now suspending kjournald2\n");
245 write_unlock(&journal->j_state_lock);
246 try_to_freeze();
247 write_lock(&journal->j_state_lock);
248 } else {
249 /*
250 * We assume on resume that commits are already there,
251 * so we don't sleep
252 */
253 DEFINE_WAIT(wait);
254 int should_sleep = 1;
255
256 prepare_to_wait(&journal->j_wait_commit, &wait,
257 TASK_INTERRUPTIBLE);
258 if (journal->j_commit_sequence != journal->j_commit_request)
259 should_sleep = 0;
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies,
262 transaction->t_expires))
263 should_sleep = 0;
264 if (journal->j_flags & JBD2_UNMOUNT)
265 should_sleep = 0;
266 if (should_sleep) {
267 write_unlock(&journal->j_state_lock);
268 schedule();
269 write_lock(&journal->j_state_lock);
270 }
271 finish_wait(&journal->j_wait_commit, &wait);
272 }
273
274 jbd_debug(1, "kjournald2 wakes\n");
275
276 /*
277 * Were we woken up by a commit wakeup event?
278 */
279 transaction = journal->j_running_transaction;
280 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281 journal->j_commit_request = transaction->t_tid;
282 jbd_debug(1, "woke because of timeout\n");
283 }
284 goto loop;
285
286 end_loop:
287 del_timer_sync(&journal->j_commit_timer);
288 journal->j_task = NULL;
289 wake_up(&journal->j_wait_done_commit);
290 jbd_debug(1, "Journal thread exiting.\n");
291 write_unlock(&journal->j_state_lock);
292 return 0;
293 }
294
295 static int jbd2_journal_start_thread(journal_t *journal)
296 {
297 struct task_struct *t;
298
299 t = kthread_run(kjournald2, journal, "jbd2/%s",
300 journal->j_devname);
301 if (IS_ERR(t))
302 return PTR_ERR(t);
303
304 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
305 return 0;
306 }
307
308 static void journal_kill_thread(journal_t *journal)
309 {
310 write_lock(&journal->j_state_lock);
311 journal->j_flags |= JBD2_UNMOUNT;
312
313 while (journal->j_task) {
314 write_unlock(&journal->j_state_lock);
315 wake_up(&journal->j_wait_commit);
316 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317 write_lock(&journal->j_state_lock);
318 }
319 write_unlock(&journal->j_state_lock);
320 }
321
322 /*
323 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324 *
325 * Writes a metadata buffer to a given disk block. The actual IO is not
326 * performed but a new buffer_head is constructed which labels the data
327 * to be written with the correct destination disk block.
328 *
329 * Any magic-number escaping which needs to be done will cause a
330 * copy-out here. If the buffer happens to start with the
331 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332 * magic number is only written to the log for descripter blocks. In
333 * this case, we copy the data and replace the first word with 0, and we
334 * return a result code which indicates that this buffer needs to be
335 * marked as an escaped buffer in the corresponding log descriptor
336 * block. The missing word can then be restored when the block is read
337 * during recovery.
338 *
339 * If the source buffer has already been modified by a new transaction
340 * since we took the last commit snapshot, we use the frozen copy of
341 * that data for IO. If we end up using the existing buffer_head's data
342 * for the write, then we have to make sure nobody modifies it while the
343 * IO is in progress. do_get_write_access() handles this.
344 *
345 * The function returns a pointer to the buffer_head to be used for IO.
346 *
347 *
348 * Return value:
349 * <0: Error
350 * >=0: Finished OK
351 *
352 * On success:
353 * Bit 0 set == escape performed on the data
354 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
355 */
356
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358 struct journal_head *jh_in,
359 struct buffer_head **bh_out,
360 sector_t blocknr)
361 {
362 int need_copy_out = 0;
363 int done_copy_out = 0;
364 int do_escape = 0;
365 char *mapped_data;
366 struct buffer_head *new_bh;
367 struct page *new_page;
368 unsigned int new_offset;
369 struct buffer_head *bh_in = jh2bh(jh_in);
370 journal_t *journal = transaction->t_journal;
371
372 /*
373 * The buffer really shouldn't be locked: only the current committing
374 * transaction is allowed to write it, so nobody else is allowed
375 * to do any IO.
376 *
377 * akpm: except if we're journalling data, and write() output is
378 * also part of a shared mapping, and another thread has
379 * decided to launch a writepage() against this buffer.
380 */
381 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
382
383 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
384
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh->b_count, 1);
387
388 jbd_lock_bh_state(bh_in);
389 repeat:
390 /*
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
393 */
394 if (jh_in->b_frozen_data) {
395 done_copy_out = 1;
396 new_page = virt_to_page(jh_in->b_frozen_data);
397 new_offset = offset_in_page(jh_in->b_frozen_data);
398 } else {
399 new_page = jh2bh(jh_in)->b_page;
400 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401 }
402
403 mapped_data = kmap_atomic(new_page);
404 /*
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
409 */
410 if (!done_copy_out)
411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 jh_in->b_triggers);
413
414 /*
415 * Check for escaping
416 */
417 if (*((__be32 *)(mapped_data + new_offset)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 need_copy_out = 1;
420 do_escape = 1;
421 }
422 kunmap_atomic(mapped_data);
423
424 /*
425 * Do we need to do a data copy?
426 */
427 if (need_copy_out && !done_copy_out) {
428 char *tmp;
429
430 jbd_unlock_bh_state(bh_in);
431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 if (!tmp) {
433 brelse(new_bh);
434 return -ENOMEM;
435 }
436 jbd_lock_bh_state(bh_in);
437 if (jh_in->b_frozen_data) {
438 jbd2_free(tmp, bh_in->b_size);
439 goto repeat;
440 }
441
442 jh_in->b_frozen_data = tmp;
443 mapped_data = kmap_atomic(new_page);
444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 kunmap_atomic(mapped_data);
446
447 new_page = virt_to_page(tmp);
448 new_offset = offset_in_page(tmp);
449 done_copy_out = 1;
450
451 /*
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
455 */
456 jh_in->b_frozen_triggers = jh_in->b_triggers;
457 }
458
459 /*
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
462 */
463 if (do_escape) {
464 mapped_data = kmap_atomic(new_page);
465 *((unsigned int *)(mapped_data + new_offset)) = 0;
466 kunmap_atomic(mapped_data);
467 }
468
469 set_bh_page(new_bh, new_page, new_offset);
470 new_bh->b_size = bh_in->b_size;
471 new_bh->b_bdev = journal->j_dev;
472 new_bh->b_blocknr = blocknr;
473 new_bh->b_private = bh_in;
474 set_buffer_mapped(new_bh);
475 set_buffer_dirty(new_bh);
476
477 *bh_out = new_bh;
478
479 /*
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
483 */
484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 spin_lock(&journal->j_list_lock);
486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 spin_unlock(&journal->j_list_lock);
488 set_buffer_shadow(bh_in);
489 jbd_unlock_bh_state(bh_in);
490
491 return do_escape | (done_copy_out << 1);
492 }
493
494 /*
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
497 */
498
499 /*
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
502 */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505 /* Return if the txn has already requested to be committed */
506 if (journal->j_commit_request == target)
507 return 0;
508
509 /*
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
513 */
514 if (journal->j_running_transaction &&
515 journal->j_running_transaction->t_tid == target) {
516 /*
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
519 */
520
521 journal->j_commit_request = target;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal->j_commit_request,
524 journal->j_commit_sequence);
525 journal->j_running_transaction->t_requested = jiffies;
526 wake_up(&journal->j_wait_commit);
527 return 1;
528 } else if (!tid_geq(journal->j_commit_request, target))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal->j_commit_request,
534 journal->j_commit_sequence,
535 target, journal->j_running_transaction ?
536 journal->j_running_transaction->t_tid : 0);
537 return 0;
538 }
539
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542 int ret;
543
544 write_lock(&journal->j_state_lock);
545 ret = __jbd2_log_start_commit(journal, tid);
546 write_unlock(&journal->j_state_lock);
547 return ret;
548 }
549
550 /*
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
556 */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559 transaction_t *transaction = NULL;
560 tid_t tid;
561 int need_to_start = 0, ret = 0;
562
563 read_lock(&journal->j_state_lock);
564 if (journal->j_running_transaction && !current->journal_info) {
565 transaction = journal->j_running_transaction;
566 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 need_to_start = 1;
568 } else if (journal->j_committing_transaction)
569 transaction = journal->j_committing_transaction;
570
571 if (!transaction) {
572 /* Nothing to commit */
573 read_unlock(&journal->j_state_lock);
574 return 0;
575 }
576 tid = transaction->t_tid;
577 read_unlock(&journal->j_state_lock);
578 if (need_to_start)
579 jbd2_log_start_commit(journal, tid);
580 ret = jbd2_log_wait_commit(journal, tid);
581 if (!ret)
582 ret = 1;
583
584 return ret;
585 }
586
587 /**
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
591 *
592 * @journal: journal to force
593 * Returns true if progress was made.
594 */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597 int ret;
598
599 ret = __jbd2_journal_force_commit(journal);
600 return ret > 0;
601 }
602
603 /**
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
606 *
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
609 */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612 int ret;
613
614 J_ASSERT(!current->journal_info);
615 ret = __jbd2_journal_force_commit(journal);
616 if (ret > 0)
617 ret = 0;
618 return ret;
619 }
620
621 /*
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
625 */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628 int ret = 0;
629
630 write_lock(&journal->j_state_lock);
631 if (journal->j_running_transaction) {
632 tid_t tid = journal->j_running_transaction->t_tid;
633
634 __jbd2_log_start_commit(journal, tid);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
637 if (ptid)
638 *ptid = tid;
639 ret = 1;
640 } else if (journal->j_committing_transaction) {
641 /*
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
644 */
645 if (ptid)
646 *ptid = journal->j_committing_transaction->t_tid;
647 ret = 1;
648 }
649 write_unlock(&journal->j_state_lock);
650 return ret;
651 }
652
653 /*
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
658 */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661 int ret = 0;
662 transaction_t *commit_trans;
663
664 if (!(journal->j_flags & JBD2_BARRIER))
665 return 0;
666 read_lock(&journal->j_state_lock);
667 /* Transaction already committed? */
668 if (tid_geq(journal->j_commit_sequence, tid))
669 goto out;
670 commit_trans = journal->j_committing_transaction;
671 if (!commit_trans || commit_trans->t_tid != tid) {
672 ret = 1;
673 goto out;
674 }
675 /*
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
678 */
679 if (journal->j_fs_dev != journal->j_dev) {
680 if (!commit_trans->t_need_data_flush ||
681 commit_trans->t_state >= T_COMMIT_DFLUSH)
682 goto out;
683 } else {
684 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 goto out;
686 }
687 ret = 1;
688 out:
689 read_unlock(&journal->j_state_lock);
690 return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694 /*
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
697 */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700 int err = 0;
701
702 read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
704 /*
705 * Some callers make sure transaction is already committing and in that
706 * case we cannot block on open handles anymore. So don't warn in that
707 * case.
708 */
709 if (tid_gt(tid, journal->j_commit_sequence) &&
710 (!journal->j_committing_transaction ||
711 journal->j_committing_transaction->t_tid != tid)) {
712 read_unlock(&journal->j_state_lock);
713 jbd2_might_wait_for_commit(journal);
714 read_lock(&journal->j_state_lock);
715 }
716 #endif
717 #ifdef CONFIG_JBD2_DEBUG
718 if (!tid_geq(journal->j_commit_request, tid)) {
719 printk(KERN_ERR
720 "%s: error: j_commit_request=%d, tid=%d\n",
721 __func__, journal->j_commit_request, tid);
722 }
723 #endif
724 while (tid_gt(tid, journal->j_commit_sequence)) {
725 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726 tid, journal->j_commit_sequence);
727 read_unlock(&journal->j_state_lock);
728 wake_up(&journal->j_wait_commit);
729 wait_event(journal->j_wait_done_commit,
730 !tid_gt(tid, journal->j_commit_sequence));
731 read_lock(&journal->j_state_lock);
732 }
733 read_unlock(&journal->j_state_lock);
734
735 if (unlikely(is_journal_aborted(journal)))
736 err = -EIO;
737 return err;
738 }
739
740 /* Return 1 when transaction with given tid has already committed. */
741 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
742 {
743 int ret = 1;
744
745 read_lock(&journal->j_state_lock);
746 if (journal->j_running_transaction &&
747 journal->j_running_transaction->t_tid == tid)
748 ret = 0;
749 if (journal->j_committing_transaction &&
750 journal->j_committing_transaction->t_tid == tid)
751 ret = 0;
752 read_unlock(&journal->j_state_lock);
753 return ret;
754 }
755 EXPORT_SYMBOL(jbd2_transaction_committed);
756
757 /*
758 * When this function returns the transaction corresponding to tid
759 * will be completed. If the transaction has currently running, start
760 * committing that transaction before waiting for it to complete. If
761 * the transaction id is stale, it is by definition already completed,
762 * so just return SUCCESS.
763 */
764 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
765 {
766 int need_to_wait = 1;
767
768 read_lock(&journal->j_state_lock);
769 if (journal->j_running_transaction &&
770 journal->j_running_transaction->t_tid == tid) {
771 if (journal->j_commit_request != tid) {
772 /* transaction not yet started, so request it */
773 read_unlock(&journal->j_state_lock);
774 jbd2_log_start_commit(journal, tid);
775 goto wait_commit;
776 }
777 } else if (!(journal->j_committing_transaction &&
778 journal->j_committing_transaction->t_tid == tid))
779 need_to_wait = 0;
780 read_unlock(&journal->j_state_lock);
781 if (!need_to_wait)
782 return 0;
783 wait_commit:
784 return jbd2_log_wait_commit(journal, tid);
785 }
786 EXPORT_SYMBOL(jbd2_complete_transaction);
787
788 /*
789 * Log buffer allocation routines:
790 */
791
792 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
793 {
794 unsigned long blocknr;
795
796 write_lock(&journal->j_state_lock);
797 J_ASSERT(journal->j_free > 1);
798
799 blocknr = journal->j_head;
800 journal->j_head++;
801 journal->j_free--;
802 if (journal->j_head == journal->j_last)
803 journal->j_head = journal->j_first;
804 write_unlock(&journal->j_state_lock);
805 return jbd2_journal_bmap(journal, blocknr, retp);
806 }
807
808 /*
809 * Conversion of logical to physical block numbers for the journal
810 *
811 * On external journals the journal blocks are identity-mapped, so
812 * this is a no-op. If needed, we can use j_blk_offset - everything is
813 * ready.
814 */
815 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
816 unsigned long long *retp)
817 {
818 int err = 0;
819 unsigned long long ret;
820
821 if (journal->j_inode) {
822 ret = bmap(journal->j_inode, blocknr);
823 if (ret)
824 *retp = ret;
825 else {
826 printk(KERN_ALERT "%s: journal block not found "
827 "at offset %lu on %s\n",
828 __func__, blocknr, journal->j_devname);
829 err = -EIO;
830 __journal_abort_soft(journal, err);
831 }
832 } else {
833 *retp = blocknr; /* +journal->j_blk_offset */
834 }
835 return err;
836 }
837
838 /*
839 * We play buffer_head aliasing tricks to write data/metadata blocks to
840 * the journal without copying their contents, but for journal
841 * descriptor blocks we do need to generate bona fide buffers.
842 *
843 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
844 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
845 * But we don't bother doing that, so there will be coherency problems with
846 * mmaps of blockdevs which hold live JBD-controlled filesystems.
847 */
848 struct buffer_head *
849 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
850 {
851 journal_t *journal = transaction->t_journal;
852 struct buffer_head *bh;
853 unsigned long long blocknr;
854 journal_header_t *header;
855 int err;
856
857 err = jbd2_journal_next_log_block(journal, &blocknr);
858
859 if (err)
860 return NULL;
861
862 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
863 if (!bh)
864 return NULL;
865 lock_buffer(bh);
866 memset(bh->b_data, 0, journal->j_blocksize);
867 header = (journal_header_t *)bh->b_data;
868 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
869 header->h_blocktype = cpu_to_be32(type);
870 header->h_sequence = cpu_to_be32(transaction->t_tid);
871 set_buffer_uptodate(bh);
872 unlock_buffer(bh);
873 BUFFER_TRACE(bh, "return this buffer");
874 return bh;
875 }
876
877 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
878 {
879 struct jbd2_journal_block_tail *tail;
880 __u32 csum;
881
882 if (!jbd2_journal_has_csum_v2or3(j))
883 return;
884
885 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
886 sizeof(struct jbd2_journal_block_tail));
887 tail->t_checksum = 0;
888 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
889 tail->t_checksum = cpu_to_be32(csum);
890 }
891
892 /*
893 * Return tid of the oldest transaction in the journal and block in the journal
894 * where the transaction starts.
895 *
896 * If the journal is now empty, return which will be the next transaction ID
897 * we will write and where will that transaction start.
898 *
899 * The return value is 0 if journal tail cannot be pushed any further, 1 if
900 * it can.
901 */
902 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
903 unsigned long *block)
904 {
905 transaction_t *transaction;
906 int ret;
907
908 read_lock(&journal->j_state_lock);
909 spin_lock(&journal->j_list_lock);
910 transaction = journal->j_checkpoint_transactions;
911 if (transaction) {
912 *tid = transaction->t_tid;
913 *block = transaction->t_log_start;
914 } else if ((transaction = journal->j_committing_transaction) != NULL) {
915 *tid = transaction->t_tid;
916 *block = transaction->t_log_start;
917 } else if ((transaction = journal->j_running_transaction) != NULL) {
918 *tid = transaction->t_tid;
919 *block = journal->j_head;
920 } else {
921 *tid = journal->j_transaction_sequence;
922 *block = journal->j_head;
923 }
924 ret = tid_gt(*tid, journal->j_tail_sequence);
925 spin_unlock(&journal->j_list_lock);
926 read_unlock(&journal->j_state_lock);
927
928 return ret;
929 }
930
931 /*
932 * Update information in journal structure and in on disk journal superblock
933 * about log tail. This function does not check whether information passed in
934 * really pushes log tail further. It's responsibility of the caller to make
935 * sure provided log tail information is valid (e.g. by holding
936 * j_checkpoint_mutex all the time between computing log tail and calling this
937 * function as is the case with jbd2_cleanup_journal_tail()).
938 *
939 * Requires j_checkpoint_mutex
940 */
941 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
942 {
943 unsigned long freed;
944 int ret;
945
946 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
947
948 /*
949 * We cannot afford for write to remain in drive's caches since as
950 * soon as we update j_tail, next transaction can start reusing journal
951 * space and if we lose sb update during power failure we'd replay
952 * old transaction with possibly newly overwritten data.
953 */
954 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
955 REQ_SYNC | REQ_FUA);
956 if (ret)
957 goto out;
958
959 write_lock(&journal->j_state_lock);
960 freed = block - journal->j_tail;
961 if (block < journal->j_tail)
962 freed += journal->j_last - journal->j_first;
963
964 trace_jbd2_update_log_tail(journal, tid, block, freed);
965 jbd_debug(1,
966 "Cleaning journal tail from %d to %d (offset %lu), "
967 "freeing %lu\n",
968 journal->j_tail_sequence, tid, block, freed);
969
970 journal->j_free += freed;
971 journal->j_tail_sequence = tid;
972 journal->j_tail = block;
973 write_unlock(&journal->j_state_lock);
974
975 out:
976 return ret;
977 }
978
979 /*
980 * This is a variaon of __jbd2_update_log_tail which checks for validity of
981 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
982 * with other threads updating log tail.
983 */
984 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
985 {
986 mutex_lock_io(&journal->j_checkpoint_mutex);
987 if (tid_gt(tid, journal->j_tail_sequence))
988 __jbd2_update_log_tail(journal, tid, block);
989 mutex_unlock(&journal->j_checkpoint_mutex);
990 }
991
992 struct jbd2_stats_proc_session {
993 journal_t *journal;
994 struct transaction_stats_s *stats;
995 int start;
996 int max;
997 };
998
999 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1000 {
1001 return *pos ? NULL : SEQ_START_TOKEN;
1002 }
1003
1004 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1005 {
1006 return NULL;
1007 }
1008
1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011 struct jbd2_stats_proc_session *s = seq->private;
1012
1013 if (v != SEQ_START_TOKEN)
1014 return 0;
1015 seq_printf(seq, "%lu transactions (%lu requested), "
1016 "each up to %u blocks\n",
1017 s->stats->ts_tid, s->stats->ts_requested,
1018 s->journal->j_max_transaction_buffers);
1019 if (s->stats->ts_tid == 0)
1020 return 0;
1021 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1022 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023 seq_printf(seq, " %ums request delay\n",
1024 (s->stats->ts_requested == 0) ? 0 :
1025 jiffies_to_msecs(s->stats->run.rs_request_delay /
1026 s->stats->ts_requested));
1027 seq_printf(seq, " %ums running transaction\n",
1028 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029 seq_printf(seq, " %ums transaction was being locked\n",
1030 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1032 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033 seq_printf(seq, " %ums logging transaction\n",
1034 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035 seq_printf(seq, " %lluus average transaction commit time\n",
1036 div_u64(s->journal->j_average_commit_time, 1000));
1037 seq_printf(seq, " %lu handles per transaction\n",
1038 s->stats->run.rs_handle_count / s->stats->ts_tid);
1039 seq_printf(seq, " %lu blocks per transaction\n",
1040 s->stats->run.rs_blocks / s->stats->ts_tid);
1041 seq_printf(seq, " %lu logged blocks per transaction\n",
1042 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043 return 0;
1044 }
1045
1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051 .start = jbd2_seq_info_start,
1052 .next = jbd2_seq_info_next,
1053 .stop = jbd2_seq_info_stop,
1054 .show = jbd2_seq_info_show,
1055 };
1056
1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059 journal_t *journal = PDE_DATA(inode);
1060 struct jbd2_stats_proc_session *s;
1061 int rc, size;
1062
1063 s = kmalloc(sizeof(*s), GFP_KERNEL);
1064 if (s == NULL)
1065 return -ENOMEM;
1066 size = sizeof(struct transaction_stats_s);
1067 s->stats = kmalloc(size, GFP_KERNEL);
1068 if (s->stats == NULL) {
1069 kfree(s);
1070 return -ENOMEM;
1071 }
1072 spin_lock(&journal->j_history_lock);
1073 memcpy(s->stats, &journal->j_stats, size);
1074 s->journal = journal;
1075 spin_unlock(&journal->j_history_lock);
1076
1077 rc = seq_open(file, &jbd2_seq_info_ops);
1078 if (rc == 0) {
1079 struct seq_file *m = file->private_data;
1080 m->private = s;
1081 } else {
1082 kfree(s->stats);
1083 kfree(s);
1084 }
1085 return rc;
1086
1087 }
1088
1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091 struct seq_file *seq = file->private_data;
1092 struct jbd2_stats_proc_session *s = seq->private;
1093 kfree(s->stats);
1094 kfree(s);
1095 return seq_release(inode, file);
1096 }
1097
1098 static const struct file_operations jbd2_seq_info_fops = {
1099 .owner = THIS_MODULE,
1100 .open = jbd2_seq_info_open,
1101 .read = seq_read,
1102 .llseek = seq_lseek,
1103 .release = jbd2_seq_info_release,
1104 };
1105
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107
1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111 if (journal->j_proc_entry) {
1112 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113 &jbd2_seq_info_fops, journal);
1114 }
1115 }
1116
1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119 remove_proc_entry("info", journal->j_proc_entry);
1120 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122
1123 /*
1124 * Management for journal control blocks: functions to create and
1125 * destroy journal_t structures, and to initialise and read existing
1126 * journal blocks from disk. */
1127
1128 /* First: create and setup a journal_t object in memory. We initialise
1129 * very few fields yet: that has to wait until we have created the
1130 * journal structures from from scratch, or loaded them from disk. */
1131
1132 static journal_t *journal_init_common(struct block_device *bdev,
1133 struct block_device *fs_dev,
1134 unsigned long long start, int len, int blocksize)
1135 {
1136 static struct lock_class_key jbd2_trans_commit_key;
1137 journal_t *journal;
1138 int err;
1139 struct buffer_head *bh;
1140 int n;
1141
1142 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143 if (!journal)
1144 return NULL;
1145
1146 init_waitqueue_head(&journal->j_wait_transaction_locked);
1147 init_waitqueue_head(&journal->j_wait_done_commit);
1148 init_waitqueue_head(&journal->j_wait_commit);
1149 init_waitqueue_head(&journal->j_wait_updates);
1150 init_waitqueue_head(&journal->j_wait_reserved);
1151 mutex_init(&journal->j_barrier);
1152 mutex_init(&journal->j_checkpoint_mutex);
1153 spin_lock_init(&journal->j_revoke_lock);
1154 spin_lock_init(&journal->j_list_lock);
1155 rwlock_init(&journal->j_state_lock);
1156
1157 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158 journal->j_min_batch_time = 0;
1159 journal->j_max_batch_time = 15000; /* 15ms */
1160 atomic_set(&journal->j_reserved_credits, 0);
1161
1162 /* The journal is marked for error until we succeed with recovery! */
1163 journal->j_flags = JBD2_ABORT;
1164
1165 /* Set up a default-sized revoke table for the new mount. */
1166 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167 if (err)
1168 goto err_cleanup;
1169
1170 spin_lock_init(&journal->j_history_lock);
1171
1172 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173 &jbd2_trans_commit_key, 0);
1174
1175 /* journal descriptor can store up to n blocks -bzzz */
1176 journal->j_blocksize = blocksize;
1177 journal->j_dev = bdev;
1178 journal->j_fs_dev = fs_dev;
1179 journal->j_blk_offset = start;
1180 journal->j_maxlen = len;
1181 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182 journal->j_wbufsize = n;
1183 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184 GFP_KERNEL);
1185 if (!journal->j_wbuf)
1186 goto err_cleanup;
1187
1188 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189 if (!bh) {
1190 pr_err("%s: Cannot get buffer for journal superblock\n",
1191 __func__);
1192 goto err_cleanup;
1193 }
1194 journal->j_sb_buffer = bh;
1195 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197 return journal;
1198
1199 err_cleanup:
1200 kfree(journal->j_wbuf);
1201 jbd2_journal_destroy_revoke(journal);
1202 kfree(journal);
1203 return NULL;
1204 }
1205
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207 *
1208 * Create a journal structure assigned some fixed set of disk blocks to
1209 * the journal. We don't actually touch those disk blocks yet, but we
1210 * need to set up all of the mapping information to tell the journaling
1211 * system where the journal blocks are.
1212 *
1213 */
1214
1215 /**
1216 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217 * @bdev: Block device on which to create the journal
1218 * @fs_dev: Device which hold journalled filesystem for this journal.
1219 * @start: Block nr Start of journal.
1220 * @len: Length of the journal in blocks.
1221 * @blocksize: blocksize of journalling device
1222 *
1223 * Returns: a newly created journal_t *
1224 *
1225 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226 * range of blocks on an arbitrary block device.
1227 *
1228 */
1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230 struct block_device *fs_dev,
1231 unsigned long long start, int len, int blocksize)
1232 {
1233 journal_t *journal;
1234
1235 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236 if (!journal)
1237 return NULL;
1238
1239 bdevname(journal->j_dev, journal->j_devname);
1240 strreplace(journal->j_devname, '/', '!');
1241 jbd2_stats_proc_init(journal);
1242
1243 return journal;
1244 }
1245
1246 /**
1247 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248 * @inode: An inode to create the journal in
1249 *
1250 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251 * the journal. The inode must exist already, must support bmap() and
1252 * must have all data blocks preallocated.
1253 */
1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256 journal_t *journal;
1257 char *p;
1258 unsigned long long blocknr;
1259
1260 blocknr = bmap(inode, 0);
1261 if (!blocknr) {
1262 pr_err("%s: Cannot locate journal superblock\n",
1263 __func__);
1264 return NULL;
1265 }
1266
1267 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270
1271 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273 inode->i_sb->s_blocksize);
1274 if (!journal)
1275 return NULL;
1276
1277 journal->j_inode = inode;
1278 bdevname(journal->j_dev, journal->j_devname);
1279 p = strreplace(journal->j_devname, '/', '!');
1280 sprintf(p, "-%lu", journal->j_inode->i_ino);
1281 jbd2_stats_proc_init(journal);
1282
1283 return journal;
1284 }
1285
1286 /*
1287 * If the journal init or create aborts, we need to mark the journal
1288 * superblock as being NULL to prevent the journal destroy from writing
1289 * back a bogus superblock.
1290 */
1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293 struct buffer_head *bh = journal->j_sb_buffer;
1294 brelse(bh);
1295 journal->j_sb_buffer = NULL;
1296 }
1297
1298 /*
1299 * Given a journal_t structure, initialise the various fields for
1300 * startup of a new journaling session. We use this both when creating
1301 * a journal, and after recovering an old journal to reset it for
1302 * subsequent use.
1303 */
1304
1305 static int journal_reset(journal_t *journal)
1306 {
1307 journal_superblock_t *sb = journal->j_superblock;
1308 unsigned long long first, last;
1309
1310 first = be32_to_cpu(sb->s_first);
1311 last = be32_to_cpu(sb->s_maxlen);
1312 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314 first, last);
1315 journal_fail_superblock(journal);
1316 return -EINVAL;
1317 }
1318
1319 journal->j_first = first;
1320 journal->j_last = last;
1321
1322 journal->j_head = first;
1323 journal->j_tail = first;
1324 journal->j_free = last - first;
1325
1326 journal->j_tail_sequence = journal->j_transaction_sequence;
1327 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328 journal->j_commit_request = journal->j_commit_sequence;
1329
1330 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331
1332 /*
1333 * As a special case, if the on-disk copy is already marked as needing
1334 * no recovery (s_start == 0), then we can safely defer the superblock
1335 * update until the next commit by setting JBD2_FLUSHED. This avoids
1336 * attempting a write to a potential-readonly device.
1337 */
1338 if (sb->s_start == 0) {
1339 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340 "(start %ld, seq %d, errno %d)\n",
1341 journal->j_tail, journal->j_tail_sequence,
1342 journal->j_errno);
1343 journal->j_flags |= JBD2_FLUSHED;
1344 } else {
1345 /* Lock here to make assertions happy... */
1346 mutex_lock_io(&journal->j_checkpoint_mutex);
1347 /*
1348 * Update log tail information. We use REQ_FUA since new
1349 * transaction will start reusing journal space and so we
1350 * must make sure information about current log tail is on
1351 * disk before that.
1352 */
1353 jbd2_journal_update_sb_log_tail(journal,
1354 journal->j_tail_sequence,
1355 journal->j_tail,
1356 REQ_SYNC | REQ_FUA);
1357 mutex_unlock(&journal->j_checkpoint_mutex);
1358 }
1359 return jbd2_journal_start_thread(journal);
1360 }
1361
1362 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1363 {
1364 struct buffer_head *bh = journal->j_sb_buffer;
1365 journal_superblock_t *sb = journal->j_superblock;
1366 int ret;
1367
1368 trace_jbd2_write_superblock(journal, write_flags);
1369 if (!(journal->j_flags & JBD2_BARRIER))
1370 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1371 lock_buffer(bh);
1372 if (buffer_write_io_error(bh)) {
1373 /*
1374 * Oh, dear. A previous attempt to write the journal
1375 * superblock failed. This could happen because the
1376 * USB device was yanked out. Or it could happen to
1377 * be a transient write error and maybe the block will
1378 * be remapped. Nothing we can do but to retry the
1379 * write and hope for the best.
1380 */
1381 printk(KERN_ERR "JBD2: previous I/O error detected "
1382 "for journal superblock update for %s.\n",
1383 journal->j_devname);
1384 clear_buffer_write_io_error(bh);
1385 set_buffer_uptodate(bh);
1386 }
1387 jbd2_superblock_csum_set(journal, sb);
1388 get_bh(bh);
1389 bh->b_end_io = end_buffer_write_sync;
1390 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1391 wait_on_buffer(bh);
1392 if (buffer_write_io_error(bh)) {
1393 clear_buffer_write_io_error(bh);
1394 set_buffer_uptodate(bh);
1395 ret = -EIO;
1396 }
1397 if (ret) {
1398 printk(KERN_ERR "JBD2: Error %d detected when updating "
1399 "journal superblock for %s.\n", ret,
1400 journal->j_devname);
1401 jbd2_journal_abort(journal, ret);
1402 }
1403
1404 return ret;
1405 }
1406
1407 /**
1408 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1409 * @journal: The journal to update.
1410 * @tail_tid: TID of the new transaction at the tail of the log
1411 * @tail_block: The first block of the transaction at the tail of the log
1412 * @write_op: With which operation should we write the journal sb
1413 *
1414 * Update a journal's superblock information about log tail and write it to
1415 * disk, waiting for the IO to complete.
1416 */
1417 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1418 unsigned long tail_block, int write_op)
1419 {
1420 journal_superblock_t *sb = journal->j_superblock;
1421 int ret;
1422
1423 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425 tail_block, tail_tid);
1426
1427 sb->s_sequence = cpu_to_be32(tail_tid);
1428 sb->s_start = cpu_to_be32(tail_block);
1429
1430 ret = jbd2_write_superblock(journal, write_op);
1431 if (ret)
1432 goto out;
1433
1434 /* Log is no longer empty */
1435 write_lock(&journal->j_state_lock);
1436 WARN_ON(!sb->s_sequence);
1437 journal->j_flags &= ~JBD2_FLUSHED;
1438 write_unlock(&journal->j_state_lock);
1439
1440 out:
1441 return ret;
1442 }
1443
1444 /**
1445 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446 * @journal: The journal to update.
1447 * @write_op: With which operation should we write the journal sb
1448 *
1449 * Update a journal's dynamic superblock fields to show that journal is empty.
1450 * Write updated superblock to disk waiting for IO to complete.
1451 */
1452 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453 {
1454 journal_superblock_t *sb = journal->j_superblock;
1455
1456 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457 read_lock(&journal->j_state_lock);
1458 /* Is it already empty? */
1459 if (sb->s_start == 0) {
1460 read_unlock(&journal->j_state_lock);
1461 return;
1462 }
1463 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464 journal->j_tail_sequence);
1465
1466 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467 sb->s_start = cpu_to_be32(0);
1468 read_unlock(&journal->j_state_lock);
1469
1470 jbd2_write_superblock(journal, write_op);
1471
1472 /* Log is no longer empty */
1473 write_lock(&journal->j_state_lock);
1474 journal->j_flags |= JBD2_FLUSHED;
1475 write_unlock(&journal->j_state_lock);
1476 }
1477
1478
1479 /**
1480 * jbd2_journal_update_sb_errno() - Update error in the journal.
1481 * @journal: The journal to update.
1482 *
1483 * Update a journal's errno. Write updated superblock to disk waiting for IO
1484 * to complete.
1485 */
1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488 journal_superblock_t *sb = journal->j_superblock;
1489
1490 read_lock(&journal->j_state_lock);
1491 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1492 journal->j_errno);
1493 sb->s_errno = cpu_to_be32(journal->j_errno);
1494 read_unlock(&journal->j_state_lock);
1495
1496 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1497 }
1498 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1499
1500 /*
1501 * Read the superblock for a given journal, performing initial
1502 * validation of the format.
1503 */
1504 static int journal_get_superblock(journal_t *journal)
1505 {
1506 struct buffer_head *bh;
1507 journal_superblock_t *sb;
1508 int err = -EIO;
1509
1510 bh = journal->j_sb_buffer;
1511
1512 J_ASSERT(bh != NULL);
1513 if (!buffer_uptodate(bh)) {
1514 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1515 wait_on_buffer(bh);
1516 if (!buffer_uptodate(bh)) {
1517 printk(KERN_ERR
1518 "JBD2: IO error reading journal superblock\n");
1519 goto out;
1520 }
1521 }
1522
1523 if (buffer_verified(bh))
1524 return 0;
1525
1526 sb = journal->j_superblock;
1527
1528 err = -EINVAL;
1529
1530 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1531 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1532 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1533 goto out;
1534 }
1535
1536 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1537 case JBD2_SUPERBLOCK_V1:
1538 journal->j_format_version = 1;
1539 break;
1540 case JBD2_SUPERBLOCK_V2:
1541 journal->j_format_version = 2;
1542 break;
1543 default:
1544 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1545 goto out;
1546 }
1547
1548 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1549 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1550 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1551 printk(KERN_WARNING "JBD2: journal file too short\n");
1552 goto out;
1553 }
1554
1555 if (be32_to_cpu(sb->s_first) == 0 ||
1556 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1557 printk(KERN_WARNING
1558 "JBD2: Invalid start block of journal: %u\n",
1559 be32_to_cpu(sb->s_first));
1560 goto out;
1561 }
1562
1563 if (jbd2_has_feature_csum2(journal) &&
1564 jbd2_has_feature_csum3(journal)) {
1565 /* Can't have checksum v2 and v3 at the same time! */
1566 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1567 "at the same time!\n");
1568 goto out;
1569 }
1570
1571 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1572 jbd2_has_feature_checksum(journal)) {
1573 /* Can't have checksum v1 and v2 on at the same time! */
1574 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1575 "at the same time!\n");
1576 goto out;
1577 }
1578
1579 if (!jbd2_verify_csum_type(journal, sb)) {
1580 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1581 goto out;
1582 }
1583
1584 /* Load the checksum driver */
1585 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1586 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1587 if (IS_ERR(journal->j_chksum_driver)) {
1588 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1589 err = PTR_ERR(journal->j_chksum_driver);
1590 journal->j_chksum_driver = NULL;
1591 goto out;
1592 }
1593 }
1594
1595 /* Check superblock checksum */
1596 if (!jbd2_superblock_csum_verify(journal, sb)) {
1597 printk(KERN_ERR "JBD2: journal checksum error\n");
1598 err = -EFSBADCRC;
1599 goto out;
1600 }
1601
1602 /* Precompute checksum seed for all metadata */
1603 if (jbd2_journal_has_csum_v2or3(journal))
1604 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1605 sizeof(sb->s_uuid));
1606
1607 set_buffer_verified(bh);
1608
1609 return 0;
1610
1611 out:
1612 journal_fail_superblock(journal);
1613 return err;
1614 }
1615
1616 /*
1617 * Load the on-disk journal superblock and read the key fields into the
1618 * journal_t.
1619 */
1620
1621 static int load_superblock(journal_t *journal)
1622 {
1623 int err;
1624 journal_superblock_t *sb;
1625
1626 err = journal_get_superblock(journal);
1627 if (err)
1628 return err;
1629
1630 sb = journal->j_superblock;
1631
1632 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1633 journal->j_tail = be32_to_cpu(sb->s_start);
1634 journal->j_first = be32_to_cpu(sb->s_first);
1635 journal->j_last = be32_to_cpu(sb->s_maxlen);
1636 journal->j_errno = be32_to_cpu(sb->s_errno);
1637
1638 return 0;
1639 }
1640
1641
1642 /**
1643 * int jbd2_journal_load() - Read journal from disk.
1644 * @journal: Journal to act on.
1645 *
1646 * Given a journal_t structure which tells us which disk blocks contain
1647 * a journal, read the journal from disk to initialise the in-memory
1648 * structures.
1649 */
1650 int jbd2_journal_load(journal_t *journal)
1651 {
1652 int err;
1653 journal_superblock_t *sb;
1654
1655 err = load_superblock(journal);
1656 if (err)
1657 return err;
1658
1659 sb = journal->j_superblock;
1660 /* If this is a V2 superblock, then we have to check the
1661 * features flags on it. */
1662
1663 if (journal->j_format_version >= 2) {
1664 if ((sb->s_feature_ro_compat &
1665 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1666 (sb->s_feature_incompat &
1667 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1668 printk(KERN_WARNING
1669 "JBD2: Unrecognised features on journal\n");
1670 return -EINVAL;
1671 }
1672 }
1673
1674 /*
1675 * Create a slab for this blocksize
1676 */
1677 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1678 if (err)
1679 return err;
1680
1681 /* Let the recovery code check whether it needs to recover any
1682 * data from the journal. */
1683 if (jbd2_journal_recover(journal))
1684 goto recovery_error;
1685
1686 if (journal->j_failed_commit) {
1687 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1688 "is corrupt.\n", journal->j_failed_commit,
1689 journal->j_devname);
1690 return -EFSCORRUPTED;
1691 }
1692
1693 /* OK, we've finished with the dynamic journal bits:
1694 * reinitialise the dynamic contents of the superblock in memory
1695 * and reset them on disk. */
1696 if (journal_reset(journal))
1697 goto recovery_error;
1698
1699 journal->j_flags &= ~JBD2_ABORT;
1700 journal->j_flags |= JBD2_LOADED;
1701 return 0;
1702
1703 recovery_error:
1704 printk(KERN_WARNING "JBD2: recovery failed\n");
1705 return -EIO;
1706 }
1707
1708 /**
1709 * void jbd2_journal_destroy() - Release a journal_t structure.
1710 * @journal: Journal to act on.
1711 *
1712 * Release a journal_t structure once it is no longer in use by the
1713 * journaled object.
1714 * Return <0 if we couldn't clean up the journal.
1715 */
1716 int jbd2_journal_destroy(journal_t *journal)
1717 {
1718 int err = 0;
1719
1720 /* Wait for the commit thread to wake up and die. */
1721 journal_kill_thread(journal);
1722
1723 /* Force a final log commit */
1724 if (journal->j_running_transaction)
1725 jbd2_journal_commit_transaction(journal);
1726
1727 /* Force any old transactions to disk */
1728
1729 /* Totally anal locking here... */
1730 spin_lock(&journal->j_list_lock);
1731 while (journal->j_checkpoint_transactions != NULL) {
1732 spin_unlock(&journal->j_list_lock);
1733 mutex_lock_io(&journal->j_checkpoint_mutex);
1734 err = jbd2_log_do_checkpoint(journal);
1735 mutex_unlock(&journal->j_checkpoint_mutex);
1736 /*
1737 * If checkpointing failed, just free the buffers to avoid
1738 * looping forever
1739 */
1740 if (err) {
1741 jbd2_journal_destroy_checkpoint(journal);
1742 spin_lock(&journal->j_list_lock);
1743 break;
1744 }
1745 spin_lock(&journal->j_list_lock);
1746 }
1747
1748 J_ASSERT(journal->j_running_transaction == NULL);
1749 J_ASSERT(journal->j_committing_transaction == NULL);
1750 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1751 spin_unlock(&journal->j_list_lock);
1752
1753 if (journal->j_sb_buffer) {
1754 if (!is_journal_aborted(journal)) {
1755 mutex_lock_io(&journal->j_checkpoint_mutex);
1756
1757 write_lock(&journal->j_state_lock);
1758 journal->j_tail_sequence =
1759 ++journal->j_transaction_sequence;
1760 write_unlock(&journal->j_state_lock);
1761
1762 jbd2_mark_journal_empty(journal,
1763 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1764 mutex_unlock(&journal->j_checkpoint_mutex);
1765 } else
1766 err = -EIO;
1767 brelse(journal->j_sb_buffer);
1768 }
1769
1770 if (journal->j_proc_entry)
1771 jbd2_stats_proc_exit(journal);
1772 iput(journal->j_inode);
1773 if (journal->j_revoke)
1774 jbd2_journal_destroy_revoke(journal);
1775 if (journal->j_chksum_driver)
1776 crypto_free_shash(journal->j_chksum_driver);
1777 kfree(journal->j_wbuf);
1778 kfree(journal);
1779
1780 return err;
1781 }
1782
1783
1784 /**
1785 *int jbd2_journal_check_used_features () - Check if features specified are used.
1786 * @journal: Journal to check.
1787 * @compat: bitmask of compatible features
1788 * @ro: bitmask of features that force read-only mount
1789 * @incompat: bitmask of incompatible features
1790 *
1791 * Check whether the journal uses all of a given set of
1792 * features. Return true (non-zero) if it does.
1793 **/
1794
1795 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1796 unsigned long ro, unsigned long incompat)
1797 {
1798 journal_superblock_t *sb;
1799
1800 if (!compat && !ro && !incompat)
1801 return 1;
1802 /* Load journal superblock if it is not loaded yet. */
1803 if (journal->j_format_version == 0 &&
1804 journal_get_superblock(journal) != 0)
1805 return 0;
1806 if (journal->j_format_version == 1)
1807 return 0;
1808
1809 sb = journal->j_superblock;
1810
1811 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1812 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1813 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1814 return 1;
1815
1816 return 0;
1817 }
1818
1819 /**
1820 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1821 * @journal: Journal to check.
1822 * @compat: bitmask of compatible features
1823 * @ro: bitmask of features that force read-only mount
1824 * @incompat: bitmask of incompatible features
1825 *
1826 * Check whether the journaling code supports the use of
1827 * all of a given set of features on this journal. Return true
1828 * (non-zero) if it can. */
1829
1830 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1831 unsigned long ro, unsigned long incompat)
1832 {
1833 if (!compat && !ro && !incompat)
1834 return 1;
1835
1836 /* We can support any known requested features iff the
1837 * superblock is in version 2. Otherwise we fail to support any
1838 * extended sb features. */
1839
1840 if (journal->j_format_version != 2)
1841 return 0;
1842
1843 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1844 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1845 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1846 return 1;
1847
1848 return 0;
1849 }
1850
1851 /**
1852 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1853 * @journal: Journal to act on.
1854 * @compat: bitmask of compatible features
1855 * @ro: bitmask of features that force read-only mount
1856 * @incompat: bitmask of incompatible features
1857 *
1858 * Mark a given journal feature as present on the
1859 * superblock. Returns true if the requested features could be set.
1860 *
1861 */
1862
1863 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1864 unsigned long ro, unsigned long incompat)
1865 {
1866 #define INCOMPAT_FEATURE_ON(f) \
1867 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1868 #define COMPAT_FEATURE_ON(f) \
1869 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1870 journal_superblock_t *sb;
1871
1872 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1873 return 1;
1874
1875 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1876 return 0;
1877
1878 /* If enabling v2 checksums, turn on v3 instead */
1879 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1880 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1881 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1882 }
1883
1884 /* Asking for checksumming v3 and v1? Only give them v3. */
1885 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1886 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1887 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1888
1889 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1890 compat, ro, incompat);
1891
1892 sb = journal->j_superblock;
1893
1894 /* If enabling v3 checksums, update superblock */
1895 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1896 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1897 sb->s_feature_compat &=
1898 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1899
1900 /* Load the checksum driver */
1901 if (journal->j_chksum_driver == NULL) {
1902 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1903 0, 0);
1904 if (IS_ERR(journal->j_chksum_driver)) {
1905 printk(KERN_ERR "JBD2: Cannot load crc32c "
1906 "driver.\n");
1907 journal->j_chksum_driver = NULL;
1908 return 0;
1909 }
1910
1911 /* Precompute checksum seed for all metadata */
1912 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1913 sb->s_uuid,
1914 sizeof(sb->s_uuid));
1915 }
1916 }
1917
1918 /* If enabling v1 checksums, downgrade superblock */
1919 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1920 sb->s_feature_incompat &=
1921 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1922 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1923
1924 sb->s_feature_compat |= cpu_to_be32(compat);
1925 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1926 sb->s_feature_incompat |= cpu_to_be32(incompat);
1927
1928 return 1;
1929 #undef COMPAT_FEATURE_ON
1930 #undef INCOMPAT_FEATURE_ON
1931 }
1932
1933 /*
1934 * jbd2_journal_clear_features () - Clear a given journal feature in the
1935 * superblock
1936 * @journal: Journal to act on.
1937 * @compat: bitmask of compatible features
1938 * @ro: bitmask of features that force read-only mount
1939 * @incompat: bitmask of incompatible features
1940 *
1941 * Clear a given journal feature as present on the
1942 * superblock.
1943 */
1944 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1945 unsigned long ro, unsigned long incompat)
1946 {
1947 journal_superblock_t *sb;
1948
1949 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1950 compat, ro, incompat);
1951
1952 sb = journal->j_superblock;
1953
1954 sb->s_feature_compat &= ~cpu_to_be32(compat);
1955 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1956 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1957 }
1958 EXPORT_SYMBOL(jbd2_journal_clear_features);
1959
1960 /**
1961 * int jbd2_journal_flush () - Flush journal
1962 * @journal: Journal to act on.
1963 *
1964 * Flush all data for a given journal to disk and empty the journal.
1965 * Filesystems can use this when remounting readonly to ensure that
1966 * recovery does not need to happen on remount.
1967 */
1968
1969 int jbd2_journal_flush(journal_t *journal)
1970 {
1971 int err = 0;
1972 transaction_t *transaction = NULL;
1973
1974 write_lock(&journal->j_state_lock);
1975
1976 /* Force everything buffered to the log... */
1977 if (journal->j_running_transaction) {
1978 transaction = journal->j_running_transaction;
1979 __jbd2_log_start_commit(journal, transaction->t_tid);
1980 } else if (journal->j_committing_transaction)
1981 transaction = journal->j_committing_transaction;
1982
1983 /* Wait for the log commit to complete... */
1984 if (transaction) {
1985 tid_t tid = transaction->t_tid;
1986
1987 write_unlock(&journal->j_state_lock);
1988 jbd2_log_wait_commit(journal, tid);
1989 } else {
1990 write_unlock(&journal->j_state_lock);
1991 }
1992
1993 /* ...and flush everything in the log out to disk. */
1994 spin_lock(&journal->j_list_lock);
1995 while (!err && journal->j_checkpoint_transactions != NULL) {
1996 spin_unlock(&journal->j_list_lock);
1997 mutex_lock_io(&journal->j_checkpoint_mutex);
1998 err = jbd2_log_do_checkpoint(journal);
1999 mutex_unlock(&journal->j_checkpoint_mutex);
2000 spin_lock(&journal->j_list_lock);
2001 }
2002 spin_unlock(&journal->j_list_lock);
2003
2004 if (is_journal_aborted(journal))
2005 return -EIO;
2006
2007 mutex_lock_io(&journal->j_checkpoint_mutex);
2008 if (!err) {
2009 err = jbd2_cleanup_journal_tail(journal);
2010 if (err < 0) {
2011 mutex_unlock(&journal->j_checkpoint_mutex);
2012 goto out;
2013 }
2014 err = 0;
2015 }
2016
2017 /* Finally, mark the journal as really needing no recovery.
2018 * This sets s_start==0 in the underlying superblock, which is
2019 * the magic code for a fully-recovered superblock. Any future
2020 * commits of data to the journal will restore the current
2021 * s_start value. */
2022 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2023 mutex_unlock(&journal->j_checkpoint_mutex);
2024 write_lock(&journal->j_state_lock);
2025 J_ASSERT(!journal->j_running_transaction);
2026 J_ASSERT(!journal->j_committing_transaction);
2027 J_ASSERT(!journal->j_checkpoint_transactions);
2028 J_ASSERT(journal->j_head == journal->j_tail);
2029 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2030 write_unlock(&journal->j_state_lock);
2031 out:
2032 return err;
2033 }
2034
2035 /**
2036 * int jbd2_journal_wipe() - Wipe journal contents
2037 * @journal: Journal to act on.
2038 * @write: flag (see below)
2039 *
2040 * Wipe out all of the contents of a journal, safely. This will produce
2041 * a warning if the journal contains any valid recovery information.
2042 * Must be called between journal_init_*() and jbd2_journal_load().
2043 *
2044 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2045 * we merely suppress recovery.
2046 */
2047
2048 int jbd2_journal_wipe(journal_t *journal, int write)
2049 {
2050 int err = 0;
2051
2052 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2053
2054 err = load_superblock(journal);
2055 if (err)
2056 return err;
2057
2058 if (!journal->j_tail)
2059 goto no_recovery;
2060
2061 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2062 write ? "Clearing" : "Ignoring");
2063
2064 err = jbd2_journal_skip_recovery(journal);
2065 if (write) {
2066 /* Lock to make assertions happy... */
2067 mutex_lock(&journal->j_checkpoint_mutex);
2068 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2069 mutex_unlock(&journal->j_checkpoint_mutex);
2070 }
2071
2072 no_recovery:
2073 return err;
2074 }
2075
2076 /*
2077 * Journal abort has very specific semantics, which we describe
2078 * for journal abort.
2079 *
2080 * Two internal functions, which provide abort to the jbd layer
2081 * itself are here.
2082 */
2083
2084 /*
2085 * Quick version for internal journal use (doesn't lock the journal).
2086 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2087 * and don't attempt to make any other journal updates.
2088 */
2089 void __jbd2_journal_abort_hard(journal_t *journal)
2090 {
2091 transaction_t *transaction;
2092
2093 if (journal->j_flags & JBD2_ABORT)
2094 return;
2095
2096 printk(KERN_ERR "Aborting journal on device %s.\n",
2097 journal->j_devname);
2098
2099 write_lock(&journal->j_state_lock);
2100 journal->j_flags |= JBD2_ABORT;
2101 transaction = journal->j_running_transaction;
2102 if (transaction)
2103 __jbd2_log_start_commit(journal, transaction->t_tid);
2104 write_unlock(&journal->j_state_lock);
2105 }
2106
2107 /* Soft abort: record the abort error status in the journal superblock,
2108 * but don't do any other IO. */
2109 static void __journal_abort_soft (journal_t *journal, int errno)
2110 {
2111 if (journal->j_flags & JBD2_ABORT)
2112 return;
2113
2114 if (!journal->j_errno)
2115 journal->j_errno = errno;
2116
2117 __jbd2_journal_abort_hard(journal);
2118
2119 if (errno) {
2120 jbd2_journal_update_sb_errno(journal);
2121 write_lock(&journal->j_state_lock);
2122 journal->j_flags |= JBD2_REC_ERR;
2123 write_unlock(&journal->j_state_lock);
2124 }
2125 }
2126
2127 /**
2128 * void jbd2_journal_abort () - Shutdown the journal immediately.
2129 * @journal: the journal to shutdown.
2130 * @errno: an error number to record in the journal indicating
2131 * the reason for the shutdown.
2132 *
2133 * Perform a complete, immediate shutdown of the ENTIRE
2134 * journal (not of a single transaction). This operation cannot be
2135 * undone without closing and reopening the journal.
2136 *
2137 * The jbd2_journal_abort function is intended to support higher level error
2138 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2139 * mode.
2140 *
2141 * Journal abort has very specific semantics. Any existing dirty,
2142 * unjournaled buffers in the main filesystem will still be written to
2143 * disk by bdflush, but the journaling mechanism will be suspended
2144 * immediately and no further transaction commits will be honoured.
2145 *
2146 * Any dirty, journaled buffers will be written back to disk without
2147 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2148 * filesystem, but we _do_ attempt to leave as much data as possible
2149 * behind for fsck to use for cleanup.
2150 *
2151 * Any attempt to get a new transaction handle on a journal which is in
2152 * ABORT state will just result in an -EROFS error return. A
2153 * jbd2_journal_stop on an existing handle will return -EIO if we have
2154 * entered abort state during the update.
2155 *
2156 * Recursive transactions are not disturbed by journal abort until the
2157 * final jbd2_journal_stop, which will receive the -EIO error.
2158 *
2159 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2160 * which will be recorded (if possible) in the journal superblock. This
2161 * allows a client to record failure conditions in the middle of a
2162 * transaction without having to complete the transaction to record the
2163 * failure to disk. ext3_error, for example, now uses this
2164 * functionality.
2165 *
2166 * Errors which originate from within the journaling layer will NOT
2167 * supply an errno; a null errno implies that absolutely no further
2168 * writes are done to the journal (unless there are any already in
2169 * progress).
2170 *
2171 */
2172
2173 void jbd2_journal_abort(journal_t *journal, int errno)
2174 {
2175 __journal_abort_soft(journal, errno);
2176 }
2177
2178 /**
2179 * int jbd2_journal_errno () - returns the journal's error state.
2180 * @journal: journal to examine.
2181 *
2182 * This is the errno number set with jbd2_journal_abort(), the last
2183 * time the journal was mounted - if the journal was stopped
2184 * without calling abort this will be 0.
2185 *
2186 * If the journal has been aborted on this mount time -EROFS will
2187 * be returned.
2188 */
2189 int jbd2_journal_errno(journal_t *journal)
2190 {
2191 int err;
2192
2193 read_lock(&journal->j_state_lock);
2194 if (journal->j_flags & JBD2_ABORT)
2195 err = -EROFS;
2196 else
2197 err = journal->j_errno;
2198 read_unlock(&journal->j_state_lock);
2199 return err;
2200 }
2201
2202 /**
2203 * int jbd2_journal_clear_err () - clears the journal's error state
2204 * @journal: journal to act on.
2205 *
2206 * An error must be cleared or acked to take a FS out of readonly
2207 * mode.
2208 */
2209 int jbd2_journal_clear_err(journal_t *journal)
2210 {
2211 int err = 0;
2212
2213 write_lock(&journal->j_state_lock);
2214 if (journal->j_flags & JBD2_ABORT)
2215 err = -EROFS;
2216 else
2217 journal->j_errno = 0;
2218 write_unlock(&journal->j_state_lock);
2219 return err;
2220 }
2221
2222 /**
2223 * void jbd2_journal_ack_err() - Ack journal err.
2224 * @journal: journal to act on.
2225 *
2226 * An error must be cleared or acked to take a FS out of readonly
2227 * mode.
2228 */
2229 void jbd2_journal_ack_err(journal_t *journal)
2230 {
2231 write_lock(&journal->j_state_lock);
2232 if (journal->j_errno)
2233 journal->j_flags |= JBD2_ACK_ERR;
2234 write_unlock(&journal->j_state_lock);
2235 }
2236
2237 int jbd2_journal_blocks_per_page(struct inode *inode)
2238 {
2239 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2240 }
2241
2242 /*
2243 * helper functions to deal with 32 or 64bit block numbers.
2244 */
2245 size_t journal_tag_bytes(journal_t *journal)
2246 {
2247 size_t sz;
2248
2249 if (jbd2_has_feature_csum3(journal))
2250 return sizeof(journal_block_tag3_t);
2251
2252 sz = sizeof(journal_block_tag_t);
2253
2254 if (jbd2_has_feature_csum2(journal))
2255 sz += sizeof(__u16);
2256
2257 if (jbd2_has_feature_64bit(journal))
2258 return sz;
2259 else
2260 return sz - sizeof(__u32);
2261 }
2262
2263 /*
2264 * JBD memory management
2265 *
2266 * These functions are used to allocate block-sized chunks of memory
2267 * used for making copies of buffer_head data. Very often it will be
2268 * page-sized chunks of data, but sometimes it will be in
2269 * sub-page-size chunks. (For example, 16k pages on Power systems
2270 * with a 4k block file system.) For blocks smaller than a page, we
2271 * use a SLAB allocator. There are slab caches for each block size,
2272 * which are allocated at mount time, if necessary, and we only free
2273 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2274 * this reason we don't need to a mutex to protect access to
2275 * jbd2_slab[] allocating or releasing memory; only in
2276 * jbd2_journal_create_slab().
2277 */
2278 #define JBD2_MAX_SLABS 8
2279 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2280
2281 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2282 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2283 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284 };
2285
2286
2287 static void jbd2_journal_destroy_slabs(void)
2288 {
2289 int i;
2290
2291 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2292 if (jbd2_slab[i])
2293 kmem_cache_destroy(jbd2_slab[i]);
2294 jbd2_slab[i] = NULL;
2295 }
2296 }
2297
2298 static int jbd2_journal_create_slab(size_t size)
2299 {
2300 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2301 int i = order_base_2(size) - 10;
2302 size_t slab_size;
2303
2304 if (size == PAGE_SIZE)
2305 return 0;
2306
2307 if (i >= JBD2_MAX_SLABS)
2308 return -EINVAL;
2309
2310 if (unlikely(i < 0))
2311 i = 0;
2312 mutex_lock(&jbd2_slab_create_mutex);
2313 if (jbd2_slab[i]) {
2314 mutex_unlock(&jbd2_slab_create_mutex);
2315 return 0; /* Already created */
2316 }
2317
2318 slab_size = 1 << (i+10);
2319 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2320 slab_size, 0, NULL);
2321 mutex_unlock(&jbd2_slab_create_mutex);
2322 if (!jbd2_slab[i]) {
2323 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2324 return -ENOMEM;
2325 }
2326 return 0;
2327 }
2328
2329 static struct kmem_cache *get_slab(size_t size)
2330 {
2331 int i = order_base_2(size) - 10;
2332
2333 BUG_ON(i >= JBD2_MAX_SLABS);
2334 if (unlikely(i < 0))
2335 i = 0;
2336 BUG_ON(jbd2_slab[i] == NULL);
2337 return jbd2_slab[i];
2338 }
2339
2340 void *jbd2_alloc(size_t size, gfp_t flags)
2341 {
2342 void *ptr;
2343
2344 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2345
2346 if (size < PAGE_SIZE)
2347 ptr = kmem_cache_alloc(get_slab(size), flags);
2348 else
2349 ptr = (void *)__get_free_pages(flags, get_order(size));
2350
2351 /* Check alignment; SLUB has gotten this wrong in the past,
2352 * and this can lead to user data corruption! */
2353 BUG_ON(((unsigned long) ptr) & (size-1));
2354
2355 return ptr;
2356 }
2357
2358 void jbd2_free(void *ptr, size_t size)
2359 {
2360 if (size < PAGE_SIZE)
2361 kmem_cache_free(get_slab(size), ptr);
2362 else
2363 free_pages((unsigned long)ptr, get_order(size));
2364 };
2365
2366 /*
2367 * Journal_head storage management
2368 */
2369 static struct kmem_cache *jbd2_journal_head_cache;
2370 #ifdef CONFIG_JBD2_DEBUG
2371 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2372 #endif
2373
2374 static int jbd2_journal_init_journal_head_cache(void)
2375 {
2376 int retval;
2377
2378 J_ASSERT(jbd2_journal_head_cache == NULL);
2379 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2380 sizeof(struct journal_head),
2381 0, /* offset */
2382 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2383 NULL); /* ctor */
2384 retval = 0;
2385 if (!jbd2_journal_head_cache) {
2386 retval = -ENOMEM;
2387 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2388 }
2389 return retval;
2390 }
2391
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394 if (jbd2_journal_head_cache) {
2395 kmem_cache_destroy(jbd2_journal_head_cache);
2396 jbd2_journal_head_cache = NULL;
2397 }
2398 }
2399
2400 /*
2401 * journal_head splicing and dicing
2402 */
2403 static struct journal_head *journal_alloc_journal_head(void)
2404 {
2405 struct journal_head *ret;
2406
2407 #ifdef CONFIG_JBD2_DEBUG
2408 atomic_inc(&nr_journal_heads);
2409 #endif
2410 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2411 if (!ret) {
2412 jbd_debug(1, "out of memory for journal_head\n");
2413 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2414 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2415 GFP_NOFS | __GFP_NOFAIL);
2416 }
2417 return ret;
2418 }
2419
2420 static void journal_free_journal_head(struct journal_head *jh)
2421 {
2422 #ifdef CONFIG_JBD2_DEBUG
2423 atomic_dec(&nr_journal_heads);
2424 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2425 #endif
2426 kmem_cache_free(jbd2_journal_head_cache, jh);
2427 }
2428
2429 /*
2430 * A journal_head is attached to a buffer_head whenever JBD has an
2431 * interest in the buffer.
2432 *
2433 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2434 * is set. This bit is tested in core kernel code where we need to take
2435 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2436 * there.
2437 *
2438 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2439 *
2440 * When a buffer has its BH_JBD bit set it is immune from being released by
2441 * core kernel code, mainly via ->b_count.
2442 *
2443 * A journal_head is detached from its buffer_head when the journal_head's
2444 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2445 * transaction (b_cp_transaction) hold their references to b_jcount.
2446 *
2447 * Various places in the kernel want to attach a journal_head to a buffer_head
2448 * _before_ attaching the journal_head to a transaction. To protect the
2449 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2450 * journal_head's b_jcount refcount by one. The caller must call
2451 * jbd2_journal_put_journal_head() to undo this.
2452 *
2453 * So the typical usage would be:
2454 *
2455 * (Attach a journal_head if needed. Increments b_jcount)
2456 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2457 * ...
2458 * (Get another reference for transaction)
2459 * jbd2_journal_grab_journal_head(bh);
2460 * jh->b_transaction = xxx;
2461 * (Put original reference)
2462 * jbd2_journal_put_journal_head(jh);
2463 */
2464
2465 /*
2466 * Give a buffer_head a journal_head.
2467 *
2468 * May sleep.
2469 */
2470 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2471 {
2472 struct journal_head *jh;
2473 struct journal_head *new_jh = NULL;
2474
2475 repeat:
2476 if (!buffer_jbd(bh))
2477 new_jh = journal_alloc_journal_head();
2478
2479 jbd_lock_bh_journal_head(bh);
2480 if (buffer_jbd(bh)) {
2481 jh = bh2jh(bh);
2482 } else {
2483 J_ASSERT_BH(bh,
2484 (atomic_read(&bh->b_count) > 0) ||
2485 (bh->b_page && bh->b_page->mapping));
2486
2487 if (!new_jh) {
2488 jbd_unlock_bh_journal_head(bh);
2489 goto repeat;
2490 }
2491
2492 jh = new_jh;
2493 new_jh = NULL; /* We consumed it */
2494 set_buffer_jbd(bh);
2495 bh->b_private = jh;
2496 jh->b_bh = bh;
2497 get_bh(bh);
2498 BUFFER_TRACE(bh, "added journal_head");
2499 }
2500 jh->b_jcount++;
2501 jbd_unlock_bh_journal_head(bh);
2502 if (new_jh)
2503 journal_free_journal_head(new_jh);
2504 return bh->b_private;
2505 }
2506
2507 /*
2508 * Grab a ref against this buffer_head's journal_head. If it ended up not
2509 * having a journal_head, return NULL
2510 */
2511 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2512 {
2513 struct journal_head *jh = NULL;
2514
2515 jbd_lock_bh_journal_head(bh);
2516 if (buffer_jbd(bh)) {
2517 jh = bh2jh(bh);
2518 jh->b_jcount++;
2519 }
2520 jbd_unlock_bh_journal_head(bh);
2521 return jh;
2522 }
2523
2524 static void __journal_remove_journal_head(struct buffer_head *bh)
2525 {
2526 struct journal_head *jh = bh2jh(bh);
2527
2528 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2529 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2530 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2531 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2532 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2533 J_ASSERT_BH(bh, buffer_jbd(bh));
2534 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2535 BUFFER_TRACE(bh, "remove journal_head");
2536 if (jh->b_frozen_data) {
2537 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2538 jbd2_free(jh->b_frozen_data, bh->b_size);
2539 }
2540 if (jh->b_committed_data) {
2541 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2542 jbd2_free(jh->b_committed_data, bh->b_size);
2543 }
2544 bh->b_private = NULL;
2545 jh->b_bh = NULL; /* debug, really */
2546 clear_buffer_jbd(bh);
2547 journal_free_journal_head(jh);
2548 }
2549
2550 /*
2551 * Drop a reference on the passed journal_head. If it fell to zero then
2552 * release the journal_head from the buffer_head.
2553 */
2554 void jbd2_journal_put_journal_head(struct journal_head *jh)
2555 {
2556 struct buffer_head *bh = jh2bh(jh);
2557
2558 jbd_lock_bh_journal_head(bh);
2559 J_ASSERT_JH(jh, jh->b_jcount > 0);
2560 --jh->b_jcount;
2561 if (!jh->b_jcount) {
2562 __journal_remove_journal_head(bh);
2563 jbd_unlock_bh_journal_head(bh);
2564 __brelse(bh);
2565 } else
2566 jbd_unlock_bh_journal_head(bh);
2567 }
2568
2569 /*
2570 * Initialize jbd inode head
2571 */
2572 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2573 {
2574 jinode->i_transaction = NULL;
2575 jinode->i_next_transaction = NULL;
2576 jinode->i_vfs_inode = inode;
2577 jinode->i_flags = 0;
2578 INIT_LIST_HEAD(&jinode->i_list);
2579 }
2580
2581 /*
2582 * Function to be called before we start removing inode from memory (i.e.,
2583 * clear_inode() is a fine place to be called from). It removes inode from
2584 * transaction's lists.
2585 */
2586 void jbd2_journal_release_jbd_inode(journal_t *journal,
2587 struct jbd2_inode *jinode)
2588 {
2589 if (!journal)
2590 return;
2591 restart:
2592 spin_lock(&journal->j_list_lock);
2593 /* Is commit writing out inode - we have to wait */
2594 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595 wait_queue_head_t *wq;
2596 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599 spin_unlock(&journal->j_list_lock);
2600 schedule();
2601 finish_wait(wq, &wait.wq_entry);
2602 goto restart;
2603 }
2604
2605 if (jinode->i_transaction) {
2606 list_del(&jinode->i_list);
2607 jinode->i_transaction = NULL;
2608 }
2609 spin_unlock(&journal->j_list_lock);
2610 }
2611
2612
2613 #ifdef CONFIG_PROC_FS
2614
2615 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2616
2617 static void __init jbd2_create_jbd_stats_proc_entry(void)
2618 {
2619 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620 }
2621
2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623 {
2624 if (proc_jbd2_stats)
2625 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626 }
2627
2628 #else
2629
2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632
2633 #endif
2634
2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636
2637 static int __init jbd2_journal_init_handle_cache(void)
2638 {
2639 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2640 if (jbd2_handle_cache == NULL) {
2641 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2642 return -ENOMEM;
2643 }
2644 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2645 if (jbd2_inode_cache == NULL) {
2646 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2647 kmem_cache_destroy(jbd2_handle_cache);
2648 return -ENOMEM;
2649 }
2650 return 0;
2651 }
2652
2653 static void jbd2_journal_destroy_handle_cache(void)
2654 {
2655 if (jbd2_handle_cache)
2656 kmem_cache_destroy(jbd2_handle_cache);
2657 if (jbd2_inode_cache)
2658 kmem_cache_destroy(jbd2_inode_cache);
2659
2660 }
2661
2662 /*
2663 * Module startup and shutdown
2664 */
2665
2666 static int __init journal_init_caches(void)
2667 {
2668 int ret;
2669
2670 ret = jbd2_journal_init_revoke_caches();
2671 if (ret == 0)
2672 ret = jbd2_journal_init_journal_head_cache();
2673 if (ret == 0)
2674 ret = jbd2_journal_init_handle_cache();
2675 if (ret == 0)
2676 ret = jbd2_journal_init_transaction_cache();
2677 return ret;
2678 }
2679
2680 static void jbd2_journal_destroy_caches(void)
2681 {
2682 jbd2_journal_destroy_revoke_caches();
2683 jbd2_journal_destroy_journal_head_cache();
2684 jbd2_journal_destroy_handle_cache();
2685 jbd2_journal_destroy_transaction_cache();
2686 jbd2_journal_destroy_slabs();
2687 }
2688
2689 static int __init journal_init(void)
2690 {
2691 int ret;
2692
2693 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2694
2695 ret = journal_init_caches();
2696 if (ret == 0) {
2697 jbd2_create_jbd_stats_proc_entry();
2698 } else {
2699 jbd2_journal_destroy_caches();
2700 }
2701 return ret;
2702 }
2703
2704 static void __exit journal_exit(void)
2705 {
2706 #ifdef CONFIG_JBD2_DEBUG
2707 int n = atomic_read(&nr_journal_heads);
2708 if (n)
2709 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2710 #endif
2711 jbd2_remove_jbd_stats_proc_entry();
2712 jbd2_journal_destroy_caches();
2713 }
2714
2715 MODULE_LICENSE("GPL");
2716 module_init(journal_init);
2717 module_exit(journal_exit);
2718