]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/jbd2/journal.c
Merge branch 'for-linus-3.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
100 static void __journal_abort_soft (journal_t *journal, int errno);
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 /*
104 * Helper function used to manage commit timeouts
105 */
106
107 static void commit_timeout(unsigned long __data)
108 {
109 struct task_struct * p = (struct task_struct *) __data;
110
111 wake_up_process(p);
112 }
113
114 /*
115 * kjournald2: The main thread function used to manage a logging device
116 * journal.
117 *
118 * This kernel thread is responsible for two things:
119 *
120 * 1) COMMIT: Every so often we need to commit the current state of the
121 * filesystem to disk. The journal thread is responsible for writing
122 * all of the metadata buffers to disk.
123 *
124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
125 * of the data in that part of the log has been rewritten elsewhere on
126 * the disk. Flushing these old buffers to reclaim space in the log is
127 * known as checkpointing, and this thread is responsible for that job.
128 */
129
130 static int kjournald2(void *arg)
131 {
132 journal_t *journal = arg;
133 transaction_t *transaction;
134
135 /*
136 * Set up an interval timer which can be used to trigger a commit wakeup
137 * after the commit interval expires
138 */
139 setup_timer(&journal->j_commit_timer, commit_timeout,
140 (unsigned long)current);
141
142 set_freezable();
143
144 /* Record that the journal thread is running */
145 journal->j_task = current;
146 wake_up(&journal->j_wait_done_commit);
147
148 /*
149 * And now, wait forever for commit wakeup events.
150 */
151 write_lock(&journal->j_state_lock);
152
153 loop:
154 if (journal->j_flags & JBD2_UNMOUNT)
155 goto end_loop;
156
157 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
158 journal->j_commit_sequence, journal->j_commit_request);
159
160 if (journal->j_commit_sequence != journal->j_commit_request) {
161 jbd_debug(1, "OK, requests differ\n");
162 write_unlock(&journal->j_state_lock);
163 del_timer_sync(&journal->j_commit_timer);
164 jbd2_journal_commit_transaction(journal);
165 write_lock(&journal->j_state_lock);
166 goto loop;
167 }
168
169 wake_up(&journal->j_wait_done_commit);
170 if (freezing(current)) {
171 /*
172 * The simpler the better. Flushing journal isn't a
173 * good idea, because that depends on threads that may
174 * be already stopped.
175 */
176 jbd_debug(1, "Now suspending kjournald2\n");
177 write_unlock(&journal->j_state_lock);
178 try_to_freeze();
179 write_lock(&journal->j_state_lock);
180 } else {
181 /*
182 * We assume on resume that commits are already there,
183 * so we don't sleep
184 */
185 DEFINE_WAIT(wait);
186 int should_sleep = 1;
187
188 prepare_to_wait(&journal->j_wait_commit, &wait,
189 TASK_INTERRUPTIBLE);
190 if (journal->j_commit_sequence != journal->j_commit_request)
191 should_sleep = 0;
192 transaction = journal->j_running_transaction;
193 if (transaction && time_after_eq(jiffies,
194 transaction->t_expires))
195 should_sleep = 0;
196 if (journal->j_flags & JBD2_UNMOUNT)
197 should_sleep = 0;
198 if (should_sleep) {
199 write_unlock(&journal->j_state_lock);
200 schedule();
201 write_lock(&journal->j_state_lock);
202 }
203 finish_wait(&journal->j_wait_commit, &wait);
204 }
205
206 jbd_debug(1, "kjournald2 wakes\n");
207
208 /*
209 * Were we woken up by a commit wakeup event?
210 */
211 transaction = journal->j_running_transaction;
212 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
213 journal->j_commit_request = transaction->t_tid;
214 jbd_debug(1, "woke because of timeout\n");
215 }
216 goto loop;
217
218 end_loop:
219 write_unlock(&journal->j_state_lock);
220 del_timer_sync(&journal->j_commit_timer);
221 journal->j_task = NULL;
222 wake_up(&journal->j_wait_done_commit);
223 jbd_debug(1, "Journal thread exiting.\n");
224 return 0;
225 }
226
227 static int jbd2_journal_start_thread(journal_t *journal)
228 {
229 struct task_struct *t;
230
231 t = kthread_run(kjournald2, journal, "jbd2/%s",
232 journal->j_devname);
233 if (IS_ERR(t))
234 return PTR_ERR(t);
235
236 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
237 return 0;
238 }
239
240 static void journal_kill_thread(journal_t *journal)
241 {
242 write_lock(&journal->j_state_lock);
243 journal->j_flags |= JBD2_UNMOUNT;
244
245 while (journal->j_task) {
246 wake_up(&journal->j_wait_commit);
247 write_unlock(&journal->j_state_lock);
248 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
249 write_lock(&journal->j_state_lock);
250 }
251 write_unlock(&journal->j_state_lock);
252 }
253
254 /*
255 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
256 *
257 * Writes a metadata buffer to a given disk block. The actual IO is not
258 * performed but a new buffer_head is constructed which labels the data
259 * to be written with the correct destination disk block.
260 *
261 * Any magic-number escaping which needs to be done will cause a
262 * copy-out here. If the buffer happens to start with the
263 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
264 * magic number is only written to the log for descripter blocks. In
265 * this case, we copy the data and replace the first word with 0, and we
266 * return a result code which indicates that this buffer needs to be
267 * marked as an escaped buffer in the corresponding log descriptor
268 * block. The missing word can then be restored when the block is read
269 * during recovery.
270 *
271 * If the source buffer has already been modified by a new transaction
272 * since we took the last commit snapshot, we use the frozen copy of
273 * that data for IO. If we end up using the existing buffer_head's data
274 * for the write, then we *have* to lock the buffer to prevent anyone
275 * else from using and possibly modifying it while the IO is in
276 * progress.
277 *
278 * The function returns a pointer to the buffer_heads to be used for IO.
279 *
280 * We assume that the journal has already been locked in this function.
281 *
282 * Return value:
283 * <0: Error
284 * >=0: Finished OK
285 *
286 * On success:
287 * Bit 0 set == escape performed on the data
288 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
289 */
290
291 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
292 struct journal_head *jh_in,
293 struct journal_head **jh_out,
294 unsigned long long blocknr)
295 {
296 int need_copy_out = 0;
297 int done_copy_out = 0;
298 int do_escape = 0;
299 char *mapped_data;
300 struct buffer_head *new_bh;
301 struct journal_head *new_jh;
302 struct page *new_page;
303 unsigned int new_offset;
304 struct buffer_head *bh_in = jh2bh(jh_in);
305 journal_t *journal = transaction->t_journal;
306
307 /*
308 * The buffer really shouldn't be locked: only the current committing
309 * transaction is allowed to write it, so nobody else is allowed
310 * to do any IO.
311 *
312 * akpm: except if we're journalling data, and write() output is
313 * also part of a shared mapping, and another thread has
314 * decided to launch a writepage() against this buffer.
315 */
316 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
317
318 retry_alloc:
319 new_bh = alloc_buffer_head(GFP_NOFS);
320 if (!new_bh) {
321 /*
322 * Failure is not an option, but __GFP_NOFAIL is going
323 * away; so we retry ourselves here.
324 */
325 congestion_wait(BLK_RW_ASYNC, HZ/50);
326 goto retry_alloc;
327 }
328
329 /* keep subsequent assertions sane */
330 new_bh->b_state = 0;
331 init_buffer(new_bh, NULL, NULL);
332 atomic_set(&new_bh->b_count, 1);
333 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
334
335 /*
336 * If a new transaction has already done a buffer copy-out, then
337 * we use that version of the data for the commit.
338 */
339 jbd_lock_bh_state(bh_in);
340 repeat:
341 if (jh_in->b_frozen_data) {
342 done_copy_out = 1;
343 new_page = virt_to_page(jh_in->b_frozen_data);
344 new_offset = offset_in_page(jh_in->b_frozen_data);
345 } else {
346 new_page = jh2bh(jh_in)->b_page;
347 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
348 }
349
350 mapped_data = kmap_atomic(new_page);
351 /*
352 * Fire data frozen trigger if data already wasn't frozen. Do this
353 * before checking for escaping, as the trigger may modify the magic
354 * offset. If a copy-out happens afterwards, it will have the correct
355 * data in the buffer.
356 */
357 if (!done_copy_out)
358 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
359 jh_in->b_triggers);
360
361 /*
362 * Check for escaping
363 */
364 if (*((__be32 *)(mapped_data + new_offset)) ==
365 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
366 need_copy_out = 1;
367 do_escape = 1;
368 }
369 kunmap_atomic(mapped_data);
370
371 /*
372 * Do we need to do a data copy?
373 */
374 if (need_copy_out && !done_copy_out) {
375 char *tmp;
376
377 jbd_unlock_bh_state(bh_in);
378 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
379 if (!tmp) {
380 jbd2_journal_put_journal_head(new_jh);
381 return -ENOMEM;
382 }
383 jbd_lock_bh_state(bh_in);
384 if (jh_in->b_frozen_data) {
385 jbd2_free(tmp, bh_in->b_size);
386 goto repeat;
387 }
388
389 jh_in->b_frozen_data = tmp;
390 mapped_data = kmap_atomic(new_page);
391 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
392 kunmap_atomic(mapped_data);
393
394 new_page = virt_to_page(tmp);
395 new_offset = offset_in_page(tmp);
396 done_copy_out = 1;
397
398 /*
399 * This isn't strictly necessary, as we're using frozen
400 * data for the escaping, but it keeps consistency with
401 * b_frozen_data usage.
402 */
403 jh_in->b_frozen_triggers = jh_in->b_triggers;
404 }
405
406 /*
407 * Did we need to do an escaping? Now we've done all the
408 * copying, we can finally do so.
409 */
410 if (do_escape) {
411 mapped_data = kmap_atomic(new_page);
412 *((unsigned int *)(mapped_data + new_offset)) = 0;
413 kunmap_atomic(mapped_data);
414 }
415
416 set_bh_page(new_bh, new_page, new_offset);
417 new_jh->b_transaction = NULL;
418 new_bh->b_size = jh2bh(jh_in)->b_size;
419 new_bh->b_bdev = transaction->t_journal->j_dev;
420 new_bh->b_blocknr = blocknr;
421 set_buffer_mapped(new_bh);
422 set_buffer_dirty(new_bh);
423
424 *jh_out = new_jh;
425
426 /*
427 * The to-be-written buffer needs to get moved to the io queue,
428 * and the original buffer whose contents we are shadowing or
429 * copying is moved to the transaction's shadow queue.
430 */
431 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
432 spin_lock(&journal->j_list_lock);
433 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
434 spin_unlock(&journal->j_list_lock);
435 jbd_unlock_bh_state(bh_in);
436
437 JBUFFER_TRACE(new_jh, "file as BJ_IO");
438 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
439
440 return do_escape | (done_copy_out << 1);
441 }
442
443 /*
444 * Allocation code for the journal file. Manage the space left in the
445 * journal, so that we can begin checkpointing when appropriate.
446 */
447
448 /*
449 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
450 *
451 * Called with the journal already locked.
452 *
453 * Called under j_state_lock
454 */
455
456 int __jbd2_log_space_left(journal_t *journal)
457 {
458 int left = journal->j_free;
459
460 /* assert_spin_locked(&journal->j_state_lock); */
461
462 /*
463 * Be pessimistic here about the number of those free blocks which
464 * might be required for log descriptor control blocks.
465 */
466
467 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
468
469 left -= MIN_LOG_RESERVED_BLOCKS;
470
471 if (left <= 0)
472 return 0;
473 left -= (left >> 3);
474 return left;
475 }
476
477 /*
478 * Called with j_state_lock locked for writing.
479 * Returns true if a transaction commit was started.
480 */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483 /*
484 * The only transaction we can possibly wait upon is the
485 * currently running transaction (if it exists). Otherwise,
486 * the target tid must be an old one.
487 */
488 if (journal->j_running_transaction &&
489 journal->j_running_transaction->t_tid == target) {
490 /*
491 * We want a new commit: OK, mark the request and wakeup the
492 * commit thread. We do _not_ do the commit ourselves.
493 */
494
495 journal->j_commit_request = target;
496 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
497 journal->j_commit_request,
498 journal->j_commit_sequence);
499 wake_up(&journal->j_wait_commit);
500 return 1;
501 } else if (!tid_geq(journal->j_commit_request, target))
502 /* This should never happen, but if it does, preserve
503 the evidence before kjournald goes into a loop and
504 increments j_commit_sequence beyond all recognition. */
505 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
506 journal->j_commit_request,
507 journal->j_commit_sequence,
508 target, journal->j_running_transaction ?
509 journal->j_running_transaction->t_tid : 0);
510 return 0;
511 }
512
513 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
514 {
515 int ret;
516
517 write_lock(&journal->j_state_lock);
518 ret = __jbd2_log_start_commit(journal, tid);
519 write_unlock(&journal->j_state_lock);
520 return ret;
521 }
522
523 /*
524 * Force and wait upon a commit if the calling process is not within
525 * transaction. This is used for forcing out undo-protected data which contains
526 * bitmaps, when the fs is running out of space.
527 *
528 * We can only force the running transaction if we don't have an active handle;
529 * otherwise, we will deadlock.
530 *
531 * Returns true if a transaction was started.
532 */
533 int jbd2_journal_force_commit_nested(journal_t *journal)
534 {
535 transaction_t *transaction = NULL;
536 tid_t tid;
537 int need_to_start = 0;
538
539 read_lock(&journal->j_state_lock);
540 if (journal->j_running_transaction && !current->journal_info) {
541 transaction = journal->j_running_transaction;
542 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
543 need_to_start = 1;
544 } else if (journal->j_committing_transaction)
545 transaction = journal->j_committing_transaction;
546
547 if (!transaction) {
548 read_unlock(&journal->j_state_lock);
549 return 0; /* Nothing to retry */
550 }
551
552 tid = transaction->t_tid;
553 read_unlock(&journal->j_state_lock);
554 if (need_to_start)
555 jbd2_log_start_commit(journal, tid);
556 jbd2_log_wait_commit(journal, tid);
557 return 1;
558 }
559
560 /*
561 * Start a commit of the current running transaction (if any). Returns true
562 * if a transaction is going to be committed (or is currently already
563 * committing), and fills its tid in at *ptid
564 */
565 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
566 {
567 int ret = 0;
568
569 write_lock(&journal->j_state_lock);
570 if (journal->j_running_transaction) {
571 tid_t tid = journal->j_running_transaction->t_tid;
572
573 __jbd2_log_start_commit(journal, tid);
574 /* There's a running transaction and we've just made sure
575 * it's commit has been scheduled. */
576 if (ptid)
577 *ptid = tid;
578 ret = 1;
579 } else if (journal->j_committing_transaction) {
580 /*
581 * If ext3_write_super() recently started a commit, then we
582 * have to wait for completion of that transaction
583 */
584 if (ptid)
585 *ptid = journal->j_committing_transaction->t_tid;
586 ret = 1;
587 }
588 write_unlock(&journal->j_state_lock);
589 return ret;
590 }
591
592 /*
593 * Return 1 if a given transaction has not yet sent barrier request
594 * connected with a transaction commit. If 0 is returned, transaction
595 * may or may not have sent the barrier. Used to avoid sending barrier
596 * twice in common cases.
597 */
598 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
599 {
600 int ret = 0;
601 transaction_t *commit_trans;
602
603 if (!(journal->j_flags & JBD2_BARRIER))
604 return 0;
605 read_lock(&journal->j_state_lock);
606 /* Transaction already committed? */
607 if (tid_geq(journal->j_commit_sequence, tid))
608 goto out;
609 commit_trans = journal->j_committing_transaction;
610 if (!commit_trans || commit_trans->t_tid != tid) {
611 ret = 1;
612 goto out;
613 }
614 /*
615 * Transaction is being committed and we already proceeded to
616 * submitting a flush to fs partition?
617 */
618 if (journal->j_fs_dev != journal->j_dev) {
619 if (!commit_trans->t_need_data_flush ||
620 commit_trans->t_state >= T_COMMIT_DFLUSH)
621 goto out;
622 } else {
623 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
624 goto out;
625 }
626 ret = 1;
627 out:
628 read_unlock(&journal->j_state_lock);
629 return ret;
630 }
631 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
632
633 /*
634 * Wait for a specified commit to complete.
635 * The caller may not hold the journal lock.
636 */
637 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
638 {
639 int err = 0;
640
641 read_lock(&journal->j_state_lock);
642 #ifdef CONFIG_JBD2_DEBUG
643 if (!tid_geq(journal->j_commit_request, tid)) {
644 printk(KERN_EMERG
645 "%s: error: j_commit_request=%d, tid=%d\n",
646 __func__, journal->j_commit_request, tid);
647 }
648 #endif
649 while (tid_gt(tid, journal->j_commit_sequence)) {
650 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
651 tid, journal->j_commit_sequence);
652 wake_up(&journal->j_wait_commit);
653 read_unlock(&journal->j_state_lock);
654 wait_event(journal->j_wait_done_commit,
655 !tid_gt(tid, journal->j_commit_sequence));
656 read_lock(&journal->j_state_lock);
657 }
658 read_unlock(&journal->j_state_lock);
659
660 if (unlikely(is_journal_aborted(journal))) {
661 printk(KERN_EMERG "journal commit I/O error\n");
662 err = -EIO;
663 }
664 return err;
665 }
666
667 /*
668 * Log buffer allocation routines:
669 */
670
671 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
672 {
673 unsigned long blocknr;
674
675 write_lock(&journal->j_state_lock);
676 J_ASSERT(journal->j_free > 1);
677
678 blocknr = journal->j_head;
679 journal->j_head++;
680 journal->j_free--;
681 if (journal->j_head == journal->j_last)
682 journal->j_head = journal->j_first;
683 write_unlock(&journal->j_state_lock);
684 return jbd2_journal_bmap(journal, blocknr, retp);
685 }
686
687 /*
688 * Conversion of logical to physical block numbers for the journal
689 *
690 * On external journals the journal blocks are identity-mapped, so
691 * this is a no-op. If needed, we can use j_blk_offset - everything is
692 * ready.
693 */
694 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
695 unsigned long long *retp)
696 {
697 int err = 0;
698 unsigned long long ret;
699
700 if (journal->j_inode) {
701 ret = bmap(journal->j_inode, blocknr);
702 if (ret)
703 *retp = ret;
704 else {
705 printk(KERN_ALERT "%s: journal block not found "
706 "at offset %lu on %s\n",
707 __func__, blocknr, journal->j_devname);
708 err = -EIO;
709 __journal_abort_soft(journal, err);
710 }
711 } else {
712 *retp = blocknr; /* +journal->j_blk_offset */
713 }
714 return err;
715 }
716
717 /*
718 * We play buffer_head aliasing tricks to write data/metadata blocks to
719 * the journal without copying their contents, but for journal
720 * descriptor blocks we do need to generate bona fide buffers.
721 *
722 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
723 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
724 * But we don't bother doing that, so there will be coherency problems with
725 * mmaps of blockdevs which hold live JBD-controlled filesystems.
726 */
727 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
728 {
729 struct buffer_head *bh;
730 unsigned long long blocknr;
731 int err;
732
733 err = jbd2_journal_next_log_block(journal, &blocknr);
734
735 if (err)
736 return NULL;
737
738 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
739 if (!bh)
740 return NULL;
741 lock_buffer(bh);
742 memset(bh->b_data, 0, journal->j_blocksize);
743 set_buffer_uptodate(bh);
744 unlock_buffer(bh);
745 BUFFER_TRACE(bh, "return this buffer");
746 return jbd2_journal_add_journal_head(bh);
747 }
748
749 struct jbd2_stats_proc_session {
750 journal_t *journal;
751 struct transaction_stats_s *stats;
752 int start;
753 int max;
754 };
755
756 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
757 {
758 return *pos ? NULL : SEQ_START_TOKEN;
759 }
760
761 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
762 {
763 return NULL;
764 }
765
766 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
767 {
768 struct jbd2_stats_proc_session *s = seq->private;
769
770 if (v != SEQ_START_TOKEN)
771 return 0;
772 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
773 s->stats->ts_tid,
774 s->journal->j_max_transaction_buffers);
775 if (s->stats->ts_tid == 0)
776 return 0;
777 seq_printf(seq, "average: \n %ums waiting for transaction\n",
778 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
779 seq_printf(seq, " %ums running transaction\n",
780 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
781 seq_printf(seq, " %ums transaction was being locked\n",
782 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
783 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
784 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
785 seq_printf(seq, " %ums logging transaction\n",
786 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
787 seq_printf(seq, " %lluus average transaction commit time\n",
788 div_u64(s->journal->j_average_commit_time, 1000));
789 seq_printf(seq, " %lu handles per transaction\n",
790 s->stats->run.rs_handle_count / s->stats->ts_tid);
791 seq_printf(seq, " %lu blocks per transaction\n",
792 s->stats->run.rs_blocks / s->stats->ts_tid);
793 seq_printf(seq, " %lu logged blocks per transaction\n",
794 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
795 return 0;
796 }
797
798 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
799 {
800 }
801
802 static const struct seq_operations jbd2_seq_info_ops = {
803 .start = jbd2_seq_info_start,
804 .next = jbd2_seq_info_next,
805 .stop = jbd2_seq_info_stop,
806 .show = jbd2_seq_info_show,
807 };
808
809 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
810 {
811 journal_t *journal = PDE(inode)->data;
812 struct jbd2_stats_proc_session *s;
813 int rc, size;
814
815 s = kmalloc(sizeof(*s), GFP_KERNEL);
816 if (s == NULL)
817 return -ENOMEM;
818 size = sizeof(struct transaction_stats_s);
819 s->stats = kmalloc(size, GFP_KERNEL);
820 if (s->stats == NULL) {
821 kfree(s);
822 return -ENOMEM;
823 }
824 spin_lock(&journal->j_history_lock);
825 memcpy(s->stats, &journal->j_stats, size);
826 s->journal = journal;
827 spin_unlock(&journal->j_history_lock);
828
829 rc = seq_open(file, &jbd2_seq_info_ops);
830 if (rc == 0) {
831 struct seq_file *m = file->private_data;
832 m->private = s;
833 } else {
834 kfree(s->stats);
835 kfree(s);
836 }
837 return rc;
838
839 }
840
841 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
842 {
843 struct seq_file *seq = file->private_data;
844 struct jbd2_stats_proc_session *s = seq->private;
845 kfree(s->stats);
846 kfree(s);
847 return seq_release(inode, file);
848 }
849
850 static const struct file_operations jbd2_seq_info_fops = {
851 .owner = THIS_MODULE,
852 .open = jbd2_seq_info_open,
853 .read = seq_read,
854 .llseek = seq_lseek,
855 .release = jbd2_seq_info_release,
856 };
857
858 static struct proc_dir_entry *proc_jbd2_stats;
859
860 static void jbd2_stats_proc_init(journal_t *journal)
861 {
862 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
863 if (journal->j_proc_entry) {
864 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
865 &jbd2_seq_info_fops, journal);
866 }
867 }
868
869 static void jbd2_stats_proc_exit(journal_t *journal)
870 {
871 remove_proc_entry("info", journal->j_proc_entry);
872 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
873 }
874
875 /*
876 * Management for journal control blocks: functions to create and
877 * destroy journal_t structures, and to initialise and read existing
878 * journal blocks from disk. */
879
880 /* First: create and setup a journal_t object in memory. We initialise
881 * very few fields yet: that has to wait until we have created the
882 * journal structures from from scratch, or loaded them from disk. */
883
884 static journal_t * journal_init_common (void)
885 {
886 journal_t *journal;
887 int err;
888
889 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
890 if (!journal)
891 return NULL;
892
893 init_waitqueue_head(&journal->j_wait_transaction_locked);
894 init_waitqueue_head(&journal->j_wait_logspace);
895 init_waitqueue_head(&journal->j_wait_done_commit);
896 init_waitqueue_head(&journal->j_wait_checkpoint);
897 init_waitqueue_head(&journal->j_wait_commit);
898 init_waitqueue_head(&journal->j_wait_updates);
899 mutex_init(&journal->j_barrier);
900 mutex_init(&journal->j_checkpoint_mutex);
901 spin_lock_init(&journal->j_revoke_lock);
902 spin_lock_init(&journal->j_list_lock);
903 rwlock_init(&journal->j_state_lock);
904
905 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
906 journal->j_min_batch_time = 0;
907 journal->j_max_batch_time = 15000; /* 15ms */
908
909 /* The journal is marked for error until we succeed with recovery! */
910 journal->j_flags = JBD2_ABORT;
911
912 /* Set up a default-sized revoke table for the new mount. */
913 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
914 if (err) {
915 kfree(journal);
916 return NULL;
917 }
918
919 spin_lock_init(&journal->j_history_lock);
920
921 return journal;
922 }
923
924 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
925 *
926 * Create a journal structure assigned some fixed set of disk blocks to
927 * the journal. We don't actually touch those disk blocks yet, but we
928 * need to set up all of the mapping information to tell the journaling
929 * system where the journal blocks are.
930 *
931 */
932
933 /**
934 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
935 * @bdev: Block device on which to create the journal
936 * @fs_dev: Device which hold journalled filesystem for this journal.
937 * @start: Block nr Start of journal.
938 * @len: Length of the journal in blocks.
939 * @blocksize: blocksize of journalling device
940 *
941 * Returns: a newly created journal_t *
942 *
943 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
944 * range of blocks on an arbitrary block device.
945 *
946 */
947 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
948 struct block_device *fs_dev,
949 unsigned long long start, int len, int blocksize)
950 {
951 journal_t *journal = journal_init_common();
952 struct buffer_head *bh;
953 char *p;
954 int n;
955
956 if (!journal)
957 return NULL;
958
959 /* journal descriptor can store up to n blocks -bzzz */
960 journal->j_blocksize = blocksize;
961 journal->j_dev = bdev;
962 journal->j_fs_dev = fs_dev;
963 journal->j_blk_offset = start;
964 journal->j_maxlen = len;
965 bdevname(journal->j_dev, journal->j_devname);
966 p = journal->j_devname;
967 while ((p = strchr(p, '/')))
968 *p = '!';
969 jbd2_stats_proc_init(journal);
970 n = journal->j_blocksize / sizeof(journal_block_tag_t);
971 journal->j_wbufsize = n;
972 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
973 if (!journal->j_wbuf) {
974 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
975 __func__);
976 goto out_err;
977 }
978
979 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
980 if (!bh) {
981 printk(KERN_ERR
982 "%s: Cannot get buffer for journal superblock\n",
983 __func__);
984 goto out_err;
985 }
986 journal->j_sb_buffer = bh;
987 journal->j_superblock = (journal_superblock_t *)bh->b_data;
988
989 return journal;
990 out_err:
991 kfree(journal->j_wbuf);
992 jbd2_stats_proc_exit(journal);
993 kfree(journal);
994 return NULL;
995 }
996
997 /**
998 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
999 * @inode: An inode to create the journal in
1000 *
1001 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1002 * the journal. The inode must exist already, must support bmap() and
1003 * must have all data blocks preallocated.
1004 */
1005 journal_t * jbd2_journal_init_inode (struct inode *inode)
1006 {
1007 struct buffer_head *bh;
1008 journal_t *journal = journal_init_common();
1009 char *p;
1010 int err;
1011 int n;
1012 unsigned long long blocknr;
1013
1014 if (!journal)
1015 return NULL;
1016
1017 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1018 journal->j_inode = inode;
1019 bdevname(journal->j_dev, journal->j_devname);
1020 p = journal->j_devname;
1021 while ((p = strchr(p, '/')))
1022 *p = '!';
1023 p = journal->j_devname + strlen(journal->j_devname);
1024 sprintf(p, "-%lu", journal->j_inode->i_ino);
1025 jbd_debug(1,
1026 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1027 journal, inode->i_sb->s_id, inode->i_ino,
1028 (long long) inode->i_size,
1029 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1030
1031 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1032 journal->j_blocksize = inode->i_sb->s_blocksize;
1033 jbd2_stats_proc_init(journal);
1034
1035 /* journal descriptor can store up to n blocks -bzzz */
1036 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1037 journal->j_wbufsize = n;
1038 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1039 if (!journal->j_wbuf) {
1040 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1041 __func__);
1042 goto out_err;
1043 }
1044
1045 err = jbd2_journal_bmap(journal, 0, &blocknr);
1046 /* If that failed, give up */
1047 if (err) {
1048 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1049 __func__);
1050 goto out_err;
1051 }
1052
1053 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1054 if (!bh) {
1055 printk(KERN_ERR
1056 "%s: Cannot get buffer for journal superblock\n",
1057 __func__);
1058 goto out_err;
1059 }
1060 journal->j_sb_buffer = bh;
1061 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1062
1063 return journal;
1064 out_err:
1065 kfree(journal->j_wbuf);
1066 jbd2_stats_proc_exit(journal);
1067 kfree(journal);
1068 return NULL;
1069 }
1070
1071 /*
1072 * If the journal init or create aborts, we need to mark the journal
1073 * superblock as being NULL to prevent the journal destroy from writing
1074 * back a bogus superblock.
1075 */
1076 static void journal_fail_superblock (journal_t *journal)
1077 {
1078 struct buffer_head *bh = journal->j_sb_buffer;
1079 brelse(bh);
1080 journal->j_sb_buffer = NULL;
1081 }
1082
1083 /*
1084 * Given a journal_t structure, initialise the various fields for
1085 * startup of a new journaling session. We use this both when creating
1086 * a journal, and after recovering an old journal to reset it for
1087 * subsequent use.
1088 */
1089
1090 static int journal_reset(journal_t *journal)
1091 {
1092 journal_superblock_t *sb = journal->j_superblock;
1093 unsigned long long first, last;
1094
1095 first = be32_to_cpu(sb->s_first);
1096 last = be32_to_cpu(sb->s_maxlen);
1097 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1098 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1099 first, last);
1100 journal_fail_superblock(journal);
1101 return -EINVAL;
1102 }
1103
1104 journal->j_first = first;
1105 journal->j_last = last;
1106
1107 journal->j_head = first;
1108 journal->j_tail = first;
1109 journal->j_free = last - first;
1110
1111 journal->j_tail_sequence = journal->j_transaction_sequence;
1112 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1113 journal->j_commit_request = journal->j_commit_sequence;
1114
1115 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1116
1117 /* Add the dynamic fields and write it to disk. */
1118 jbd2_journal_update_superblock(journal, 1);
1119 return jbd2_journal_start_thread(journal);
1120 }
1121
1122 /**
1123 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1124 * @journal: The journal to update.
1125 * @wait: Set to '0' if you don't want to wait for IO completion.
1126 *
1127 * Update a journal's dynamic superblock fields and write it to disk,
1128 * optionally waiting for the IO to complete.
1129 */
1130 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1131 {
1132 journal_superblock_t *sb = journal->j_superblock;
1133 struct buffer_head *bh = journal->j_sb_buffer;
1134
1135 /*
1136 * As a special case, if the on-disk copy is already marked as needing
1137 * no recovery (s_start == 0) and there are no outstanding transactions
1138 * in the filesystem, then we can safely defer the superblock update
1139 * until the next commit by setting JBD2_FLUSHED. This avoids
1140 * attempting a write to a potential-readonly device.
1141 */
1142 if (sb->s_start == 0 && journal->j_tail_sequence ==
1143 journal->j_transaction_sequence) {
1144 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1145 "(start %ld, seq %d, errno %d)\n",
1146 journal->j_tail, journal->j_tail_sequence,
1147 journal->j_errno);
1148 goto out;
1149 }
1150
1151 if (buffer_write_io_error(bh)) {
1152 /*
1153 * Oh, dear. A previous attempt to write the journal
1154 * superblock failed. This could happen because the
1155 * USB device was yanked out. Or it could happen to
1156 * be a transient write error and maybe the block will
1157 * be remapped. Nothing we can do but to retry the
1158 * write and hope for the best.
1159 */
1160 printk(KERN_ERR "JBD2: previous I/O error detected "
1161 "for journal superblock update for %s.\n",
1162 journal->j_devname);
1163 clear_buffer_write_io_error(bh);
1164 set_buffer_uptodate(bh);
1165 }
1166
1167 read_lock(&journal->j_state_lock);
1168 jbd_debug(1, "JBD2: updating superblock (start %ld, seq %d, errno %d)\n",
1169 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1170
1171 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1172 sb->s_start = cpu_to_be32(journal->j_tail);
1173 sb->s_errno = cpu_to_be32(journal->j_errno);
1174 read_unlock(&journal->j_state_lock);
1175
1176 BUFFER_TRACE(bh, "marking dirty");
1177 mark_buffer_dirty(bh);
1178 if (wait) {
1179 sync_dirty_buffer(bh);
1180 if (buffer_write_io_error(bh)) {
1181 printk(KERN_ERR "JBD2: I/O error detected "
1182 "when updating journal superblock for %s.\n",
1183 journal->j_devname);
1184 clear_buffer_write_io_error(bh);
1185 set_buffer_uptodate(bh);
1186 }
1187 } else
1188 write_dirty_buffer(bh, WRITE);
1189
1190 out:
1191 /* If we have just flushed the log (by marking s_start==0), then
1192 * any future commit will have to be careful to update the
1193 * superblock again to re-record the true start of the log. */
1194
1195 write_lock(&journal->j_state_lock);
1196 if (sb->s_start)
1197 journal->j_flags &= ~JBD2_FLUSHED;
1198 else
1199 journal->j_flags |= JBD2_FLUSHED;
1200 write_unlock(&journal->j_state_lock);
1201 }
1202
1203 /*
1204 * Read the superblock for a given journal, performing initial
1205 * validation of the format.
1206 */
1207
1208 static int journal_get_superblock(journal_t *journal)
1209 {
1210 struct buffer_head *bh;
1211 journal_superblock_t *sb;
1212 int err = -EIO;
1213
1214 bh = journal->j_sb_buffer;
1215
1216 J_ASSERT(bh != NULL);
1217 if (!buffer_uptodate(bh)) {
1218 ll_rw_block(READ, 1, &bh);
1219 wait_on_buffer(bh);
1220 if (!buffer_uptodate(bh)) {
1221 printk(KERN_ERR
1222 "JBD2: IO error reading journal superblock\n");
1223 goto out;
1224 }
1225 }
1226
1227 sb = journal->j_superblock;
1228
1229 err = -EINVAL;
1230
1231 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1232 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1233 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1234 goto out;
1235 }
1236
1237 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1238 case JBD2_SUPERBLOCK_V1:
1239 journal->j_format_version = 1;
1240 break;
1241 case JBD2_SUPERBLOCK_V2:
1242 journal->j_format_version = 2;
1243 break;
1244 default:
1245 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1246 goto out;
1247 }
1248
1249 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1250 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1251 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1252 printk(KERN_WARNING "JBD2: journal file too short\n");
1253 goto out;
1254 }
1255
1256 if (be32_to_cpu(sb->s_first) == 0 ||
1257 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1258 printk(KERN_WARNING
1259 "JBD2: Invalid start block of journal: %u\n",
1260 be32_to_cpu(sb->s_first));
1261 goto out;
1262 }
1263
1264 return 0;
1265
1266 out:
1267 journal_fail_superblock(journal);
1268 return err;
1269 }
1270
1271 /*
1272 * Load the on-disk journal superblock and read the key fields into the
1273 * journal_t.
1274 */
1275
1276 static int load_superblock(journal_t *journal)
1277 {
1278 int err;
1279 journal_superblock_t *sb;
1280
1281 err = journal_get_superblock(journal);
1282 if (err)
1283 return err;
1284
1285 sb = journal->j_superblock;
1286
1287 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1288 journal->j_tail = be32_to_cpu(sb->s_start);
1289 journal->j_first = be32_to_cpu(sb->s_first);
1290 journal->j_last = be32_to_cpu(sb->s_maxlen);
1291 journal->j_errno = be32_to_cpu(sb->s_errno);
1292
1293 return 0;
1294 }
1295
1296
1297 /**
1298 * int jbd2_journal_load() - Read journal from disk.
1299 * @journal: Journal to act on.
1300 *
1301 * Given a journal_t structure which tells us which disk blocks contain
1302 * a journal, read the journal from disk to initialise the in-memory
1303 * structures.
1304 */
1305 int jbd2_journal_load(journal_t *journal)
1306 {
1307 int err;
1308 journal_superblock_t *sb;
1309
1310 err = load_superblock(journal);
1311 if (err)
1312 return err;
1313
1314 sb = journal->j_superblock;
1315 /* If this is a V2 superblock, then we have to check the
1316 * features flags on it. */
1317
1318 if (journal->j_format_version >= 2) {
1319 if ((sb->s_feature_ro_compat &
1320 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1321 (sb->s_feature_incompat &
1322 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1323 printk(KERN_WARNING
1324 "JBD2: Unrecognised features on journal\n");
1325 return -EINVAL;
1326 }
1327 }
1328
1329 /*
1330 * Create a slab for this blocksize
1331 */
1332 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1333 if (err)
1334 return err;
1335
1336 /* Let the recovery code check whether it needs to recover any
1337 * data from the journal. */
1338 if (jbd2_journal_recover(journal))
1339 goto recovery_error;
1340
1341 if (journal->j_failed_commit) {
1342 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1343 "is corrupt.\n", journal->j_failed_commit,
1344 journal->j_devname);
1345 return -EIO;
1346 }
1347
1348 /* OK, we've finished with the dynamic journal bits:
1349 * reinitialise the dynamic contents of the superblock in memory
1350 * and reset them on disk. */
1351 if (journal_reset(journal))
1352 goto recovery_error;
1353
1354 journal->j_flags &= ~JBD2_ABORT;
1355 journal->j_flags |= JBD2_LOADED;
1356 return 0;
1357
1358 recovery_error:
1359 printk(KERN_WARNING "JBD2: recovery failed\n");
1360 return -EIO;
1361 }
1362
1363 /**
1364 * void jbd2_journal_destroy() - Release a journal_t structure.
1365 * @journal: Journal to act on.
1366 *
1367 * Release a journal_t structure once it is no longer in use by the
1368 * journaled object.
1369 * Return <0 if we couldn't clean up the journal.
1370 */
1371 int jbd2_journal_destroy(journal_t *journal)
1372 {
1373 int err = 0;
1374
1375 /* Wait for the commit thread to wake up and die. */
1376 journal_kill_thread(journal);
1377
1378 /* Force a final log commit */
1379 if (journal->j_running_transaction)
1380 jbd2_journal_commit_transaction(journal);
1381
1382 /* Force any old transactions to disk */
1383
1384 /* Totally anal locking here... */
1385 spin_lock(&journal->j_list_lock);
1386 while (journal->j_checkpoint_transactions != NULL) {
1387 spin_unlock(&journal->j_list_lock);
1388 mutex_lock(&journal->j_checkpoint_mutex);
1389 jbd2_log_do_checkpoint(journal);
1390 mutex_unlock(&journal->j_checkpoint_mutex);
1391 spin_lock(&journal->j_list_lock);
1392 }
1393
1394 J_ASSERT(journal->j_running_transaction == NULL);
1395 J_ASSERT(journal->j_committing_transaction == NULL);
1396 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1397 spin_unlock(&journal->j_list_lock);
1398
1399 if (journal->j_sb_buffer) {
1400 if (!is_journal_aborted(journal)) {
1401 /* We can now mark the journal as empty. */
1402 journal->j_tail = 0;
1403 journal->j_tail_sequence =
1404 ++journal->j_transaction_sequence;
1405 jbd2_journal_update_superblock(journal, 1);
1406 } else {
1407 err = -EIO;
1408 }
1409 brelse(journal->j_sb_buffer);
1410 }
1411
1412 if (journal->j_proc_entry)
1413 jbd2_stats_proc_exit(journal);
1414 if (journal->j_inode)
1415 iput(journal->j_inode);
1416 if (journal->j_revoke)
1417 jbd2_journal_destroy_revoke(journal);
1418 kfree(journal->j_wbuf);
1419 kfree(journal);
1420
1421 return err;
1422 }
1423
1424
1425 /**
1426 *int jbd2_journal_check_used_features () - Check if features specified are used.
1427 * @journal: Journal to check.
1428 * @compat: bitmask of compatible features
1429 * @ro: bitmask of features that force read-only mount
1430 * @incompat: bitmask of incompatible features
1431 *
1432 * Check whether the journal uses all of a given set of
1433 * features. Return true (non-zero) if it does.
1434 **/
1435
1436 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1437 unsigned long ro, unsigned long incompat)
1438 {
1439 journal_superblock_t *sb;
1440
1441 if (!compat && !ro && !incompat)
1442 return 1;
1443 /* Load journal superblock if it is not loaded yet. */
1444 if (journal->j_format_version == 0 &&
1445 journal_get_superblock(journal) != 0)
1446 return 0;
1447 if (journal->j_format_version == 1)
1448 return 0;
1449
1450 sb = journal->j_superblock;
1451
1452 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1453 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1454 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1455 return 1;
1456
1457 return 0;
1458 }
1459
1460 /**
1461 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1462 * @journal: Journal to check.
1463 * @compat: bitmask of compatible features
1464 * @ro: bitmask of features that force read-only mount
1465 * @incompat: bitmask of incompatible features
1466 *
1467 * Check whether the journaling code supports the use of
1468 * all of a given set of features on this journal. Return true
1469 * (non-zero) if it can. */
1470
1471 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1472 unsigned long ro, unsigned long incompat)
1473 {
1474 if (!compat && !ro && !incompat)
1475 return 1;
1476
1477 /* We can support any known requested features iff the
1478 * superblock is in version 2. Otherwise we fail to support any
1479 * extended sb features. */
1480
1481 if (journal->j_format_version != 2)
1482 return 0;
1483
1484 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1485 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1486 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1487 return 1;
1488
1489 return 0;
1490 }
1491
1492 /**
1493 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1494 * @journal: Journal to act on.
1495 * @compat: bitmask of compatible features
1496 * @ro: bitmask of features that force read-only mount
1497 * @incompat: bitmask of incompatible features
1498 *
1499 * Mark a given journal feature as present on the
1500 * superblock. Returns true if the requested features could be set.
1501 *
1502 */
1503
1504 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1505 unsigned long ro, unsigned long incompat)
1506 {
1507 journal_superblock_t *sb;
1508
1509 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1510 return 1;
1511
1512 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1513 return 0;
1514
1515 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1516 compat, ro, incompat);
1517
1518 sb = journal->j_superblock;
1519
1520 sb->s_feature_compat |= cpu_to_be32(compat);
1521 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1522 sb->s_feature_incompat |= cpu_to_be32(incompat);
1523
1524 return 1;
1525 }
1526
1527 /*
1528 * jbd2_journal_clear_features () - Clear a given journal feature in the
1529 * superblock
1530 * @journal: Journal to act on.
1531 * @compat: bitmask of compatible features
1532 * @ro: bitmask of features that force read-only mount
1533 * @incompat: bitmask of incompatible features
1534 *
1535 * Clear a given journal feature as present on the
1536 * superblock.
1537 */
1538 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1539 unsigned long ro, unsigned long incompat)
1540 {
1541 journal_superblock_t *sb;
1542
1543 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1544 compat, ro, incompat);
1545
1546 sb = journal->j_superblock;
1547
1548 sb->s_feature_compat &= ~cpu_to_be32(compat);
1549 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1550 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1551 }
1552 EXPORT_SYMBOL(jbd2_journal_clear_features);
1553
1554 /**
1555 * int jbd2_journal_update_format () - Update on-disk journal structure.
1556 * @journal: Journal to act on.
1557 *
1558 * Given an initialised but unloaded journal struct, poke about in the
1559 * on-disk structure to update it to the most recent supported version.
1560 */
1561 int jbd2_journal_update_format (journal_t *journal)
1562 {
1563 journal_superblock_t *sb;
1564 int err;
1565
1566 err = journal_get_superblock(journal);
1567 if (err)
1568 return err;
1569
1570 sb = journal->j_superblock;
1571
1572 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1573 case JBD2_SUPERBLOCK_V2:
1574 return 0;
1575 case JBD2_SUPERBLOCK_V1:
1576 return journal_convert_superblock_v1(journal, sb);
1577 default:
1578 break;
1579 }
1580 return -EINVAL;
1581 }
1582
1583 static int journal_convert_superblock_v1(journal_t *journal,
1584 journal_superblock_t *sb)
1585 {
1586 int offset, blocksize;
1587 struct buffer_head *bh;
1588
1589 printk(KERN_WARNING
1590 "JBD2: Converting superblock from version 1 to 2.\n");
1591
1592 /* Pre-initialise new fields to zero */
1593 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1594 blocksize = be32_to_cpu(sb->s_blocksize);
1595 memset(&sb->s_feature_compat, 0, blocksize-offset);
1596
1597 sb->s_nr_users = cpu_to_be32(1);
1598 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1599 journal->j_format_version = 2;
1600
1601 bh = journal->j_sb_buffer;
1602 BUFFER_TRACE(bh, "marking dirty");
1603 mark_buffer_dirty(bh);
1604 sync_dirty_buffer(bh);
1605 return 0;
1606 }
1607
1608
1609 /**
1610 * int jbd2_journal_flush () - Flush journal
1611 * @journal: Journal to act on.
1612 *
1613 * Flush all data for a given journal to disk and empty the journal.
1614 * Filesystems can use this when remounting readonly to ensure that
1615 * recovery does not need to happen on remount.
1616 */
1617
1618 int jbd2_journal_flush(journal_t *journal)
1619 {
1620 int err = 0;
1621 transaction_t *transaction = NULL;
1622 unsigned long old_tail;
1623
1624 write_lock(&journal->j_state_lock);
1625
1626 /* Force everything buffered to the log... */
1627 if (journal->j_running_transaction) {
1628 transaction = journal->j_running_transaction;
1629 __jbd2_log_start_commit(journal, transaction->t_tid);
1630 } else if (journal->j_committing_transaction)
1631 transaction = journal->j_committing_transaction;
1632
1633 /* Wait for the log commit to complete... */
1634 if (transaction) {
1635 tid_t tid = transaction->t_tid;
1636
1637 write_unlock(&journal->j_state_lock);
1638 jbd2_log_wait_commit(journal, tid);
1639 } else {
1640 write_unlock(&journal->j_state_lock);
1641 }
1642
1643 /* ...and flush everything in the log out to disk. */
1644 spin_lock(&journal->j_list_lock);
1645 while (!err && journal->j_checkpoint_transactions != NULL) {
1646 spin_unlock(&journal->j_list_lock);
1647 mutex_lock(&journal->j_checkpoint_mutex);
1648 err = jbd2_log_do_checkpoint(journal);
1649 mutex_unlock(&journal->j_checkpoint_mutex);
1650 spin_lock(&journal->j_list_lock);
1651 }
1652 spin_unlock(&journal->j_list_lock);
1653
1654 if (is_journal_aborted(journal))
1655 return -EIO;
1656
1657 jbd2_cleanup_journal_tail(journal);
1658
1659 /* Finally, mark the journal as really needing no recovery.
1660 * This sets s_start==0 in the underlying superblock, which is
1661 * the magic code for a fully-recovered superblock. Any future
1662 * commits of data to the journal will restore the current
1663 * s_start value. */
1664 write_lock(&journal->j_state_lock);
1665 old_tail = journal->j_tail;
1666 journal->j_tail = 0;
1667 write_unlock(&journal->j_state_lock);
1668 jbd2_journal_update_superblock(journal, 1);
1669 write_lock(&journal->j_state_lock);
1670 journal->j_tail = old_tail;
1671
1672 J_ASSERT(!journal->j_running_transaction);
1673 J_ASSERT(!journal->j_committing_transaction);
1674 J_ASSERT(!journal->j_checkpoint_transactions);
1675 J_ASSERT(journal->j_head == journal->j_tail);
1676 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1677 write_unlock(&journal->j_state_lock);
1678 return 0;
1679 }
1680
1681 /**
1682 * int jbd2_journal_wipe() - Wipe journal contents
1683 * @journal: Journal to act on.
1684 * @write: flag (see below)
1685 *
1686 * Wipe out all of the contents of a journal, safely. This will produce
1687 * a warning if the journal contains any valid recovery information.
1688 * Must be called between journal_init_*() and jbd2_journal_load().
1689 *
1690 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1691 * we merely suppress recovery.
1692 */
1693
1694 int jbd2_journal_wipe(journal_t *journal, int write)
1695 {
1696 int err = 0;
1697
1698 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1699
1700 err = load_superblock(journal);
1701 if (err)
1702 return err;
1703
1704 if (!journal->j_tail)
1705 goto no_recovery;
1706
1707 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1708 write ? "Clearing" : "Ignoring");
1709
1710 err = jbd2_journal_skip_recovery(journal);
1711 if (write)
1712 jbd2_journal_update_superblock(journal, 1);
1713
1714 no_recovery:
1715 return err;
1716 }
1717
1718 /*
1719 * Journal abort has very specific semantics, which we describe
1720 * for journal abort.
1721 *
1722 * Two internal functions, which provide abort to the jbd layer
1723 * itself are here.
1724 */
1725
1726 /*
1727 * Quick version for internal journal use (doesn't lock the journal).
1728 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1729 * and don't attempt to make any other journal updates.
1730 */
1731 void __jbd2_journal_abort_hard(journal_t *journal)
1732 {
1733 transaction_t *transaction;
1734
1735 if (journal->j_flags & JBD2_ABORT)
1736 return;
1737
1738 printk(KERN_ERR "Aborting journal on device %s.\n",
1739 journal->j_devname);
1740
1741 write_lock(&journal->j_state_lock);
1742 journal->j_flags |= JBD2_ABORT;
1743 transaction = journal->j_running_transaction;
1744 if (transaction)
1745 __jbd2_log_start_commit(journal, transaction->t_tid);
1746 write_unlock(&journal->j_state_lock);
1747 }
1748
1749 /* Soft abort: record the abort error status in the journal superblock,
1750 * but don't do any other IO. */
1751 static void __journal_abort_soft (journal_t *journal, int errno)
1752 {
1753 if (journal->j_flags & JBD2_ABORT)
1754 return;
1755
1756 if (!journal->j_errno)
1757 journal->j_errno = errno;
1758
1759 __jbd2_journal_abort_hard(journal);
1760
1761 if (errno)
1762 jbd2_journal_update_superblock(journal, 1);
1763 }
1764
1765 /**
1766 * void jbd2_journal_abort () - Shutdown the journal immediately.
1767 * @journal: the journal to shutdown.
1768 * @errno: an error number to record in the journal indicating
1769 * the reason for the shutdown.
1770 *
1771 * Perform a complete, immediate shutdown of the ENTIRE
1772 * journal (not of a single transaction). This operation cannot be
1773 * undone without closing and reopening the journal.
1774 *
1775 * The jbd2_journal_abort function is intended to support higher level error
1776 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1777 * mode.
1778 *
1779 * Journal abort has very specific semantics. Any existing dirty,
1780 * unjournaled buffers in the main filesystem will still be written to
1781 * disk by bdflush, but the journaling mechanism will be suspended
1782 * immediately and no further transaction commits will be honoured.
1783 *
1784 * Any dirty, journaled buffers will be written back to disk without
1785 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1786 * filesystem, but we _do_ attempt to leave as much data as possible
1787 * behind for fsck to use for cleanup.
1788 *
1789 * Any attempt to get a new transaction handle on a journal which is in
1790 * ABORT state will just result in an -EROFS error return. A
1791 * jbd2_journal_stop on an existing handle will return -EIO if we have
1792 * entered abort state during the update.
1793 *
1794 * Recursive transactions are not disturbed by journal abort until the
1795 * final jbd2_journal_stop, which will receive the -EIO error.
1796 *
1797 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1798 * which will be recorded (if possible) in the journal superblock. This
1799 * allows a client to record failure conditions in the middle of a
1800 * transaction without having to complete the transaction to record the
1801 * failure to disk. ext3_error, for example, now uses this
1802 * functionality.
1803 *
1804 * Errors which originate from within the journaling layer will NOT
1805 * supply an errno; a null errno implies that absolutely no further
1806 * writes are done to the journal (unless there are any already in
1807 * progress).
1808 *
1809 */
1810
1811 void jbd2_journal_abort(journal_t *journal, int errno)
1812 {
1813 __journal_abort_soft(journal, errno);
1814 }
1815
1816 /**
1817 * int jbd2_journal_errno () - returns the journal's error state.
1818 * @journal: journal to examine.
1819 *
1820 * This is the errno number set with jbd2_journal_abort(), the last
1821 * time the journal was mounted - if the journal was stopped
1822 * without calling abort this will be 0.
1823 *
1824 * If the journal has been aborted on this mount time -EROFS will
1825 * be returned.
1826 */
1827 int jbd2_journal_errno(journal_t *journal)
1828 {
1829 int err;
1830
1831 read_lock(&journal->j_state_lock);
1832 if (journal->j_flags & JBD2_ABORT)
1833 err = -EROFS;
1834 else
1835 err = journal->j_errno;
1836 read_unlock(&journal->j_state_lock);
1837 return err;
1838 }
1839
1840 /**
1841 * int jbd2_journal_clear_err () - clears the journal's error state
1842 * @journal: journal to act on.
1843 *
1844 * An error must be cleared or acked to take a FS out of readonly
1845 * mode.
1846 */
1847 int jbd2_journal_clear_err(journal_t *journal)
1848 {
1849 int err = 0;
1850
1851 write_lock(&journal->j_state_lock);
1852 if (journal->j_flags & JBD2_ABORT)
1853 err = -EROFS;
1854 else
1855 journal->j_errno = 0;
1856 write_unlock(&journal->j_state_lock);
1857 return err;
1858 }
1859
1860 /**
1861 * void jbd2_journal_ack_err() - Ack journal err.
1862 * @journal: journal to act on.
1863 *
1864 * An error must be cleared or acked to take a FS out of readonly
1865 * mode.
1866 */
1867 void jbd2_journal_ack_err(journal_t *journal)
1868 {
1869 write_lock(&journal->j_state_lock);
1870 if (journal->j_errno)
1871 journal->j_flags |= JBD2_ACK_ERR;
1872 write_unlock(&journal->j_state_lock);
1873 }
1874
1875 int jbd2_journal_blocks_per_page(struct inode *inode)
1876 {
1877 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1878 }
1879
1880 /*
1881 * helper functions to deal with 32 or 64bit block numbers.
1882 */
1883 size_t journal_tag_bytes(journal_t *journal)
1884 {
1885 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1886 return JBD2_TAG_SIZE64;
1887 else
1888 return JBD2_TAG_SIZE32;
1889 }
1890
1891 /*
1892 * JBD memory management
1893 *
1894 * These functions are used to allocate block-sized chunks of memory
1895 * used for making copies of buffer_head data. Very often it will be
1896 * page-sized chunks of data, but sometimes it will be in
1897 * sub-page-size chunks. (For example, 16k pages on Power systems
1898 * with a 4k block file system.) For blocks smaller than a page, we
1899 * use a SLAB allocator. There are slab caches for each block size,
1900 * which are allocated at mount time, if necessary, and we only free
1901 * (all of) the slab caches when/if the jbd2 module is unloaded. For
1902 * this reason we don't need to a mutex to protect access to
1903 * jbd2_slab[] allocating or releasing memory; only in
1904 * jbd2_journal_create_slab().
1905 */
1906 #define JBD2_MAX_SLABS 8
1907 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1908
1909 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1910 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1911 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1912 };
1913
1914
1915 static void jbd2_journal_destroy_slabs(void)
1916 {
1917 int i;
1918
1919 for (i = 0; i < JBD2_MAX_SLABS; i++) {
1920 if (jbd2_slab[i])
1921 kmem_cache_destroy(jbd2_slab[i]);
1922 jbd2_slab[i] = NULL;
1923 }
1924 }
1925
1926 static int jbd2_journal_create_slab(size_t size)
1927 {
1928 static DEFINE_MUTEX(jbd2_slab_create_mutex);
1929 int i = order_base_2(size) - 10;
1930 size_t slab_size;
1931
1932 if (size == PAGE_SIZE)
1933 return 0;
1934
1935 if (i >= JBD2_MAX_SLABS)
1936 return -EINVAL;
1937
1938 if (unlikely(i < 0))
1939 i = 0;
1940 mutex_lock(&jbd2_slab_create_mutex);
1941 if (jbd2_slab[i]) {
1942 mutex_unlock(&jbd2_slab_create_mutex);
1943 return 0; /* Already created */
1944 }
1945
1946 slab_size = 1 << (i+10);
1947 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1948 slab_size, 0, NULL);
1949 mutex_unlock(&jbd2_slab_create_mutex);
1950 if (!jbd2_slab[i]) {
1951 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1952 return -ENOMEM;
1953 }
1954 return 0;
1955 }
1956
1957 static struct kmem_cache *get_slab(size_t size)
1958 {
1959 int i = order_base_2(size) - 10;
1960
1961 BUG_ON(i >= JBD2_MAX_SLABS);
1962 if (unlikely(i < 0))
1963 i = 0;
1964 BUG_ON(jbd2_slab[i] == NULL);
1965 return jbd2_slab[i];
1966 }
1967
1968 void *jbd2_alloc(size_t size, gfp_t flags)
1969 {
1970 void *ptr;
1971
1972 BUG_ON(size & (size-1)); /* Must be a power of 2 */
1973
1974 flags |= __GFP_REPEAT;
1975 if (size == PAGE_SIZE)
1976 ptr = (void *)__get_free_pages(flags, 0);
1977 else if (size > PAGE_SIZE) {
1978 int order = get_order(size);
1979
1980 if (order < 3)
1981 ptr = (void *)__get_free_pages(flags, order);
1982 else
1983 ptr = vmalloc(size);
1984 } else
1985 ptr = kmem_cache_alloc(get_slab(size), flags);
1986
1987 /* Check alignment; SLUB has gotten this wrong in the past,
1988 * and this can lead to user data corruption! */
1989 BUG_ON(((unsigned long) ptr) & (size-1));
1990
1991 return ptr;
1992 }
1993
1994 void jbd2_free(void *ptr, size_t size)
1995 {
1996 if (size == PAGE_SIZE) {
1997 free_pages((unsigned long)ptr, 0);
1998 return;
1999 }
2000 if (size > PAGE_SIZE) {
2001 int order = get_order(size);
2002
2003 if (order < 3)
2004 free_pages((unsigned long)ptr, order);
2005 else
2006 vfree(ptr);
2007 return;
2008 }
2009 kmem_cache_free(get_slab(size), ptr);
2010 };
2011
2012 /*
2013 * Journal_head storage management
2014 */
2015 static struct kmem_cache *jbd2_journal_head_cache;
2016 #ifdef CONFIG_JBD2_DEBUG
2017 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2018 #endif
2019
2020 static int journal_init_jbd2_journal_head_cache(void)
2021 {
2022 int retval;
2023
2024 J_ASSERT(jbd2_journal_head_cache == NULL);
2025 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2026 sizeof(struct journal_head),
2027 0, /* offset */
2028 SLAB_TEMPORARY, /* flags */
2029 NULL); /* ctor */
2030 retval = 0;
2031 if (!jbd2_journal_head_cache) {
2032 retval = -ENOMEM;
2033 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2034 }
2035 return retval;
2036 }
2037
2038 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
2039 {
2040 if (jbd2_journal_head_cache) {
2041 kmem_cache_destroy(jbd2_journal_head_cache);
2042 jbd2_journal_head_cache = NULL;
2043 }
2044 }
2045
2046 /*
2047 * journal_head splicing and dicing
2048 */
2049 static struct journal_head *journal_alloc_journal_head(void)
2050 {
2051 struct journal_head *ret;
2052
2053 #ifdef CONFIG_JBD2_DEBUG
2054 atomic_inc(&nr_journal_heads);
2055 #endif
2056 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2057 if (!ret) {
2058 jbd_debug(1, "out of memory for journal_head\n");
2059 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2060 while (!ret) {
2061 yield();
2062 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2063 }
2064 }
2065 return ret;
2066 }
2067
2068 static void journal_free_journal_head(struct journal_head *jh)
2069 {
2070 #ifdef CONFIG_JBD2_DEBUG
2071 atomic_dec(&nr_journal_heads);
2072 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2073 #endif
2074 kmem_cache_free(jbd2_journal_head_cache, jh);
2075 }
2076
2077 /*
2078 * A journal_head is attached to a buffer_head whenever JBD has an
2079 * interest in the buffer.
2080 *
2081 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2082 * is set. This bit is tested in core kernel code where we need to take
2083 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2084 * there.
2085 *
2086 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2087 *
2088 * When a buffer has its BH_JBD bit set it is immune from being released by
2089 * core kernel code, mainly via ->b_count.
2090 *
2091 * A journal_head is detached from its buffer_head when the journal_head's
2092 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2093 * transaction (b_cp_transaction) hold their references to b_jcount.
2094 *
2095 * Various places in the kernel want to attach a journal_head to a buffer_head
2096 * _before_ attaching the journal_head to a transaction. To protect the
2097 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2098 * journal_head's b_jcount refcount by one. The caller must call
2099 * jbd2_journal_put_journal_head() to undo this.
2100 *
2101 * So the typical usage would be:
2102 *
2103 * (Attach a journal_head if needed. Increments b_jcount)
2104 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2105 * ...
2106 * (Get another reference for transaction)
2107 * jbd2_journal_grab_journal_head(bh);
2108 * jh->b_transaction = xxx;
2109 * (Put original reference)
2110 * jbd2_journal_put_journal_head(jh);
2111 */
2112
2113 /*
2114 * Give a buffer_head a journal_head.
2115 *
2116 * May sleep.
2117 */
2118 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2119 {
2120 struct journal_head *jh;
2121 struct journal_head *new_jh = NULL;
2122
2123 repeat:
2124 if (!buffer_jbd(bh)) {
2125 new_jh = journal_alloc_journal_head();
2126 memset(new_jh, 0, sizeof(*new_jh));
2127 }
2128
2129 jbd_lock_bh_journal_head(bh);
2130 if (buffer_jbd(bh)) {
2131 jh = bh2jh(bh);
2132 } else {
2133 J_ASSERT_BH(bh,
2134 (atomic_read(&bh->b_count) > 0) ||
2135 (bh->b_page && bh->b_page->mapping));
2136
2137 if (!new_jh) {
2138 jbd_unlock_bh_journal_head(bh);
2139 goto repeat;
2140 }
2141
2142 jh = new_jh;
2143 new_jh = NULL; /* We consumed it */
2144 set_buffer_jbd(bh);
2145 bh->b_private = jh;
2146 jh->b_bh = bh;
2147 get_bh(bh);
2148 BUFFER_TRACE(bh, "added journal_head");
2149 }
2150 jh->b_jcount++;
2151 jbd_unlock_bh_journal_head(bh);
2152 if (new_jh)
2153 journal_free_journal_head(new_jh);
2154 return bh->b_private;
2155 }
2156
2157 /*
2158 * Grab a ref against this buffer_head's journal_head. If it ended up not
2159 * having a journal_head, return NULL
2160 */
2161 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2162 {
2163 struct journal_head *jh = NULL;
2164
2165 jbd_lock_bh_journal_head(bh);
2166 if (buffer_jbd(bh)) {
2167 jh = bh2jh(bh);
2168 jh->b_jcount++;
2169 }
2170 jbd_unlock_bh_journal_head(bh);
2171 return jh;
2172 }
2173
2174 static void __journal_remove_journal_head(struct buffer_head *bh)
2175 {
2176 struct journal_head *jh = bh2jh(bh);
2177
2178 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2179 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2180 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2181 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2182 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2183 J_ASSERT_BH(bh, buffer_jbd(bh));
2184 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2185 BUFFER_TRACE(bh, "remove journal_head");
2186 if (jh->b_frozen_data) {
2187 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2188 jbd2_free(jh->b_frozen_data, bh->b_size);
2189 }
2190 if (jh->b_committed_data) {
2191 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2192 jbd2_free(jh->b_committed_data, bh->b_size);
2193 }
2194 bh->b_private = NULL;
2195 jh->b_bh = NULL; /* debug, really */
2196 clear_buffer_jbd(bh);
2197 journal_free_journal_head(jh);
2198 }
2199
2200 /*
2201 * Drop a reference on the passed journal_head. If it fell to zero then
2202 * release the journal_head from the buffer_head.
2203 */
2204 void jbd2_journal_put_journal_head(struct journal_head *jh)
2205 {
2206 struct buffer_head *bh = jh2bh(jh);
2207
2208 jbd_lock_bh_journal_head(bh);
2209 J_ASSERT_JH(jh, jh->b_jcount > 0);
2210 --jh->b_jcount;
2211 if (!jh->b_jcount) {
2212 __journal_remove_journal_head(bh);
2213 jbd_unlock_bh_journal_head(bh);
2214 __brelse(bh);
2215 } else
2216 jbd_unlock_bh_journal_head(bh);
2217 }
2218
2219 /*
2220 * Initialize jbd inode head
2221 */
2222 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2223 {
2224 jinode->i_transaction = NULL;
2225 jinode->i_next_transaction = NULL;
2226 jinode->i_vfs_inode = inode;
2227 jinode->i_flags = 0;
2228 INIT_LIST_HEAD(&jinode->i_list);
2229 }
2230
2231 /*
2232 * Function to be called before we start removing inode from memory (i.e.,
2233 * clear_inode() is a fine place to be called from). It removes inode from
2234 * transaction's lists.
2235 */
2236 void jbd2_journal_release_jbd_inode(journal_t *journal,
2237 struct jbd2_inode *jinode)
2238 {
2239 if (!journal)
2240 return;
2241 restart:
2242 spin_lock(&journal->j_list_lock);
2243 /* Is commit writing out inode - we have to wait */
2244 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2245 wait_queue_head_t *wq;
2246 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2247 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2248 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2249 spin_unlock(&journal->j_list_lock);
2250 schedule();
2251 finish_wait(wq, &wait.wait);
2252 goto restart;
2253 }
2254
2255 if (jinode->i_transaction) {
2256 list_del(&jinode->i_list);
2257 jinode->i_transaction = NULL;
2258 }
2259 spin_unlock(&journal->j_list_lock);
2260 }
2261
2262 /*
2263 * debugfs tunables
2264 */
2265 #ifdef CONFIG_JBD2_DEBUG
2266 u8 jbd2_journal_enable_debug __read_mostly;
2267 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2268
2269 #define JBD2_DEBUG_NAME "jbd2-debug"
2270
2271 static struct dentry *jbd2_debugfs_dir;
2272 static struct dentry *jbd2_debug;
2273
2274 static void __init jbd2_create_debugfs_entry(void)
2275 {
2276 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2277 if (jbd2_debugfs_dir)
2278 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2279 S_IRUGO | S_IWUSR,
2280 jbd2_debugfs_dir,
2281 &jbd2_journal_enable_debug);
2282 }
2283
2284 static void __exit jbd2_remove_debugfs_entry(void)
2285 {
2286 debugfs_remove(jbd2_debug);
2287 debugfs_remove(jbd2_debugfs_dir);
2288 }
2289
2290 #else
2291
2292 static void __init jbd2_create_debugfs_entry(void)
2293 {
2294 }
2295
2296 static void __exit jbd2_remove_debugfs_entry(void)
2297 {
2298 }
2299
2300 #endif
2301
2302 #ifdef CONFIG_PROC_FS
2303
2304 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2305
2306 static void __init jbd2_create_jbd_stats_proc_entry(void)
2307 {
2308 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2309 }
2310
2311 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2312 {
2313 if (proc_jbd2_stats)
2314 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2315 }
2316
2317 #else
2318
2319 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2320 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2321
2322 #endif
2323
2324 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2325
2326 static int __init journal_init_handle_cache(void)
2327 {
2328 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2329 if (jbd2_handle_cache == NULL) {
2330 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2331 return -ENOMEM;
2332 }
2333 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2334 if (jbd2_inode_cache == NULL) {
2335 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2336 kmem_cache_destroy(jbd2_handle_cache);
2337 return -ENOMEM;
2338 }
2339 return 0;
2340 }
2341
2342 static void jbd2_journal_destroy_handle_cache(void)
2343 {
2344 if (jbd2_handle_cache)
2345 kmem_cache_destroy(jbd2_handle_cache);
2346 if (jbd2_inode_cache)
2347 kmem_cache_destroy(jbd2_inode_cache);
2348
2349 }
2350
2351 /*
2352 * Module startup and shutdown
2353 */
2354
2355 static int __init journal_init_caches(void)
2356 {
2357 int ret;
2358
2359 ret = jbd2_journal_init_revoke_caches();
2360 if (ret == 0)
2361 ret = journal_init_jbd2_journal_head_cache();
2362 if (ret == 0)
2363 ret = journal_init_handle_cache();
2364 return ret;
2365 }
2366
2367 static void jbd2_journal_destroy_caches(void)
2368 {
2369 jbd2_journal_destroy_revoke_caches();
2370 jbd2_journal_destroy_jbd2_journal_head_cache();
2371 jbd2_journal_destroy_handle_cache();
2372 jbd2_journal_destroy_slabs();
2373 }
2374
2375 static int __init journal_init(void)
2376 {
2377 int ret;
2378
2379 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2380
2381 ret = journal_init_caches();
2382 if (ret == 0) {
2383 jbd2_create_debugfs_entry();
2384 jbd2_create_jbd_stats_proc_entry();
2385 } else {
2386 jbd2_journal_destroy_caches();
2387 }
2388 return ret;
2389 }
2390
2391 static void __exit journal_exit(void)
2392 {
2393 #ifdef CONFIG_JBD2_DEBUG
2394 int n = atomic_read(&nr_journal_heads);
2395 if (n)
2396 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2397 #endif
2398 jbd2_remove_debugfs_entry();
2399 jbd2_remove_jbd_stats_proc_entry();
2400 jbd2_journal_destroy_caches();
2401 }
2402
2403 MODULE_LICENSE("GPL");
2404 module_init(journal_init);
2405 module_exit(journal_exit);
2406