]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/jbd2/journal.c
Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-bionic-kernel.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110 return 1;
111
112 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117 __u32 csum, old_csum;
118
119 old_csum = sb->s_checksum;
120 sb->s_checksum = 0;
121 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122 sb->s_checksum = old_csum;
123
124 return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130 return 1;
131
132 return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138 return;
139
140 sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
147 static void commit_timeout(unsigned long __data)
148 {
149 struct task_struct * p = (struct task_struct *) __data;
150
151 wake_up_process(p);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk.
163 *
164 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165 * of the data in that part of the log has been rewritten elsewhere on
166 * the disk. Flushing these old buffers to reclaim space in the log is
167 * known as checkpointing, and this thread is responsible for that job.
168 */
169
170 static int kjournald2(void *arg)
171 {
172 journal_t *journal = arg;
173 transaction_t *transaction;
174
175 /*
176 * Set up an interval timer which can be used to trigger a commit wakeup
177 * after the commit interval expires
178 */
179 setup_timer(&journal->j_commit_timer, commit_timeout,
180 (unsigned long)current);
181
182 set_freezable();
183
184 /* Record that the journal thread is running */
185 journal->j_task = current;
186 wake_up(&journal->j_wait_done_commit);
187
188 /*
189 * And now, wait forever for commit wakeup events.
190 */
191 write_lock(&journal->j_state_lock);
192
193 loop:
194 if (journal->j_flags & JBD2_UNMOUNT)
195 goto end_loop;
196
197 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198 journal->j_commit_sequence, journal->j_commit_request);
199
200 if (journal->j_commit_sequence != journal->j_commit_request) {
201 jbd_debug(1, "OK, requests differ\n");
202 write_unlock(&journal->j_state_lock);
203 del_timer_sync(&journal->j_commit_timer);
204 jbd2_journal_commit_transaction(journal);
205 write_lock(&journal->j_state_lock);
206 goto loop;
207 }
208
209 wake_up(&journal->j_wait_done_commit);
210 if (freezing(current)) {
211 /*
212 * The simpler the better. Flushing journal isn't a
213 * good idea, because that depends on threads that may
214 * be already stopped.
215 */
216 jbd_debug(1, "Now suspending kjournald2\n");
217 write_unlock(&journal->j_state_lock);
218 try_to_freeze();
219 write_lock(&journal->j_state_lock);
220 } else {
221 /*
222 * We assume on resume that commits are already there,
223 * so we don't sleep
224 */
225 DEFINE_WAIT(wait);
226 int should_sleep = 1;
227
228 prepare_to_wait(&journal->j_wait_commit, &wait,
229 TASK_INTERRUPTIBLE);
230 if (journal->j_commit_sequence != journal->j_commit_request)
231 should_sleep = 0;
232 transaction = journal->j_running_transaction;
233 if (transaction && time_after_eq(jiffies,
234 transaction->t_expires))
235 should_sleep = 0;
236 if (journal->j_flags & JBD2_UNMOUNT)
237 should_sleep = 0;
238 if (should_sleep) {
239 write_unlock(&journal->j_state_lock);
240 schedule();
241 write_lock(&journal->j_state_lock);
242 }
243 finish_wait(&journal->j_wait_commit, &wait);
244 }
245
246 jbd_debug(1, "kjournald2 wakes\n");
247
248 /*
249 * Were we woken up by a commit wakeup event?
250 */
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253 journal->j_commit_request = transaction->t_tid;
254 jbd_debug(1, "woke because of timeout\n");
255 }
256 goto loop;
257
258 end_loop:
259 write_unlock(&journal->j_state_lock);
260 del_timer_sync(&journal->j_commit_timer);
261 journal->j_task = NULL;
262 wake_up(&journal->j_wait_done_commit);
263 jbd_debug(1, "Journal thread exiting.\n");
264 return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269 struct task_struct *t;
270
271 t = kthread_run(kjournald2, journal, "jbd2/%s",
272 journal->j_devname);
273 if (IS_ERR(t))
274 return PTR_ERR(t);
275
276 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277 return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282 write_lock(&journal->j_state_lock);
283 journal->j_flags |= JBD2_UNMOUNT;
284
285 while (journal->j_task) {
286 wake_up(&journal->j_wait_commit);
287 write_unlock(&journal->j_state_lock);
288 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289 write_lock(&journal->j_state_lock);
290 }
291 write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 *
297 * Writes a metadata buffer to a given disk block. The actual IO is not
298 * performed but a new buffer_head is constructed which labels the data
299 * to be written with the correct destination disk block.
300 *
301 * Any magic-number escaping which needs to be done will cause a
302 * copy-out here. If the buffer happens to start with the
303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 * magic number is only written to the log for descripter blocks. In
305 * this case, we copy the data and replace the first word with 0, and we
306 * return a result code which indicates that this buffer needs to be
307 * marked as an escaped buffer in the corresponding log descriptor
308 * block. The missing word can then be restored when the block is read
309 * during recovery.
310 *
311 * If the source buffer has already been modified by a new transaction
312 * since we took the last commit snapshot, we use the frozen copy of
313 * that data for IO. If we end up using the existing buffer_head's data
314 * for the write, then we *have* to lock the buffer to prevent anyone
315 * else from using and possibly modifying it while the IO is in
316 * progress.
317 *
318 * The function returns a pointer to the buffer_heads to be used for IO.
319 *
320 * We assume that the journal has already been locked in this function.
321 *
322 * Return value:
323 * <0: Error
324 * >=0: Finished OK
325 *
326 * On success:
327 * Bit 0 set == escape performed on the data
328 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329 */
330
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332 struct journal_head *jh_in,
333 struct journal_head **jh_out,
334 unsigned long long blocknr)
335 {
336 int need_copy_out = 0;
337 int done_copy_out = 0;
338 int do_escape = 0;
339 char *mapped_data;
340 struct buffer_head *new_bh;
341 struct journal_head *new_jh;
342 struct page *new_page;
343 unsigned int new_offset;
344 struct buffer_head *bh_in = jh2bh(jh_in);
345 journal_t *journal = transaction->t_journal;
346
347 /*
348 * The buffer really shouldn't be locked: only the current committing
349 * transaction is allowed to write it, so nobody else is allowed
350 * to do any IO.
351 *
352 * akpm: except if we're journalling data, and write() output is
353 * also part of a shared mapping, and another thread has
354 * decided to launch a writepage() against this buffer.
355 */
356 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357
358 retry_alloc:
359 new_bh = alloc_buffer_head(GFP_NOFS);
360 if (!new_bh) {
361 /*
362 * Failure is not an option, but __GFP_NOFAIL is going
363 * away; so we retry ourselves here.
364 */
365 congestion_wait(BLK_RW_ASYNC, HZ/50);
366 goto retry_alloc;
367 }
368
369 /* keep subsequent assertions sane */
370 new_bh->b_state = 0;
371 init_buffer(new_bh, NULL, NULL);
372 atomic_set(&new_bh->b_count, 1);
373 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
374
375 /*
376 * If a new transaction has already done a buffer copy-out, then
377 * we use that version of the data for the commit.
378 */
379 jbd_lock_bh_state(bh_in);
380 repeat:
381 if (jh_in->b_frozen_data) {
382 done_copy_out = 1;
383 new_page = virt_to_page(jh_in->b_frozen_data);
384 new_offset = offset_in_page(jh_in->b_frozen_data);
385 } else {
386 new_page = jh2bh(jh_in)->b_page;
387 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
388 }
389
390 mapped_data = kmap_atomic(new_page);
391 /*
392 * Fire data frozen trigger if data already wasn't frozen. Do this
393 * before checking for escaping, as the trigger may modify the magic
394 * offset. If a copy-out happens afterwards, it will have the correct
395 * data in the buffer.
396 */
397 if (!done_copy_out)
398 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
399 jh_in->b_triggers);
400
401 /*
402 * Check for escaping
403 */
404 if (*((__be32 *)(mapped_data + new_offset)) ==
405 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
406 need_copy_out = 1;
407 do_escape = 1;
408 }
409 kunmap_atomic(mapped_data);
410
411 /*
412 * Do we need to do a data copy?
413 */
414 if (need_copy_out && !done_copy_out) {
415 char *tmp;
416
417 jbd_unlock_bh_state(bh_in);
418 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
419 if (!tmp) {
420 jbd2_journal_put_journal_head(new_jh);
421 return -ENOMEM;
422 }
423 jbd_lock_bh_state(bh_in);
424 if (jh_in->b_frozen_data) {
425 jbd2_free(tmp, bh_in->b_size);
426 goto repeat;
427 }
428
429 jh_in->b_frozen_data = tmp;
430 mapped_data = kmap_atomic(new_page);
431 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
432 kunmap_atomic(mapped_data);
433
434 new_page = virt_to_page(tmp);
435 new_offset = offset_in_page(tmp);
436 done_copy_out = 1;
437
438 /*
439 * This isn't strictly necessary, as we're using frozen
440 * data for the escaping, but it keeps consistency with
441 * b_frozen_data usage.
442 */
443 jh_in->b_frozen_triggers = jh_in->b_triggers;
444 }
445
446 /*
447 * Did we need to do an escaping? Now we've done all the
448 * copying, we can finally do so.
449 */
450 if (do_escape) {
451 mapped_data = kmap_atomic(new_page);
452 *((unsigned int *)(mapped_data + new_offset)) = 0;
453 kunmap_atomic(mapped_data);
454 }
455
456 set_bh_page(new_bh, new_page, new_offset);
457 new_jh->b_transaction = NULL;
458 new_bh->b_size = jh2bh(jh_in)->b_size;
459 new_bh->b_bdev = transaction->t_journal->j_dev;
460 new_bh->b_blocknr = blocknr;
461 set_buffer_mapped(new_bh);
462 set_buffer_dirty(new_bh);
463
464 *jh_out = new_jh;
465
466 /*
467 * The to-be-written buffer needs to get moved to the io queue,
468 * and the original buffer whose contents we are shadowing or
469 * copying is moved to the transaction's shadow queue.
470 */
471 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
472 spin_lock(&journal->j_list_lock);
473 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
474 spin_unlock(&journal->j_list_lock);
475 jbd_unlock_bh_state(bh_in);
476
477 JBUFFER_TRACE(new_jh, "file as BJ_IO");
478 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
479
480 return do_escape | (done_copy_out << 1);
481 }
482
483 /*
484 * Allocation code for the journal file. Manage the space left in the
485 * journal, so that we can begin checkpointing when appropriate.
486 */
487
488 /*
489 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
490 *
491 * Called with the journal already locked.
492 *
493 * Called under j_state_lock
494 */
495
496 int __jbd2_log_space_left(journal_t *journal)
497 {
498 int left = journal->j_free;
499
500 /* assert_spin_locked(&journal->j_state_lock); */
501
502 /*
503 * Be pessimistic here about the number of those free blocks which
504 * might be required for log descriptor control blocks.
505 */
506
507 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
508
509 left -= MIN_LOG_RESERVED_BLOCKS;
510
511 if (left <= 0)
512 return 0;
513 left -= (left >> 3);
514 return left;
515 }
516
517 /*
518 * Called with j_state_lock locked for writing.
519 * Returns true if a transaction commit was started.
520 */
521 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
522 {
523 /* Return if the txn has already requested to be committed */
524 if (journal->j_commit_request == target)
525 return 0;
526
527 /*
528 * The only transaction we can possibly wait upon is the
529 * currently running transaction (if it exists). Otherwise,
530 * the target tid must be an old one.
531 */
532 if (journal->j_running_transaction &&
533 journal->j_running_transaction->t_tid == target) {
534 /*
535 * We want a new commit: OK, mark the request and wakeup the
536 * commit thread. We do _not_ do the commit ourselves.
537 */
538
539 journal->j_commit_request = target;
540 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
541 journal->j_commit_request,
542 journal->j_commit_sequence);
543 journal->j_running_transaction->t_requested = jiffies;
544 wake_up(&journal->j_wait_commit);
545 return 1;
546 } else if (!tid_geq(journal->j_commit_request, target))
547 /* This should never happen, but if it does, preserve
548 the evidence before kjournald goes into a loop and
549 increments j_commit_sequence beyond all recognition. */
550 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
551 journal->j_commit_request,
552 journal->j_commit_sequence,
553 target, journal->j_running_transaction ?
554 journal->j_running_transaction->t_tid : 0);
555 return 0;
556 }
557
558 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
559 {
560 int ret;
561
562 write_lock(&journal->j_state_lock);
563 ret = __jbd2_log_start_commit(journal, tid);
564 write_unlock(&journal->j_state_lock);
565 return ret;
566 }
567
568 /*
569 * Force and wait upon a commit if the calling process is not within
570 * transaction. This is used for forcing out undo-protected data which contains
571 * bitmaps, when the fs is running out of space.
572 *
573 * We can only force the running transaction if we don't have an active handle;
574 * otherwise, we will deadlock.
575 *
576 * Returns true if a transaction was started.
577 */
578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 transaction_t *transaction = NULL;
581 tid_t tid;
582 int need_to_start = 0;
583
584 read_lock(&journal->j_state_lock);
585 if (journal->j_running_transaction && !current->journal_info) {
586 transaction = journal->j_running_transaction;
587 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
588 need_to_start = 1;
589 } else if (journal->j_committing_transaction)
590 transaction = journal->j_committing_transaction;
591
592 if (!transaction) {
593 read_unlock(&journal->j_state_lock);
594 return 0; /* Nothing to retry */
595 }
596
597 tid = transaction->t_tid;
598 read_unlock(&journal->j_state_lock);
599 if (need_to_start)
600 jbd2_log_start_commit(journal, tid);
601 jbd2_log_wait_commit(journal, tid);
602 return 1;
603 }
604
605 /*
606 * Start a commit of the current running transaction (if any). Returns true
607 * if a transaction is going to be committed (or is currently already
608 * committing), and fills its tid in at *ptid
609 */
610 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
611 {
612 int ret = 0;
613
614 write_lock(&journal->j_state_lock);
615 if (journal->j_running_transaction) {
616 tid_t tid = journal->j_running_transaction->t_tid;
617
618 __jbd2_log_start_commit(journal, tid);
619 /* There's a running transaction and we've just made sure
620 * it's commit has been scheduled. */
621 if (ptid)
622 *ptid = tid;
623 ret = 1;
624 } else if (journal->j_committing_transaction) {
625 /*
626 * If commit has been started, then we have to wait for
627 * completion of that transaction.
628 */
629 if (ptid)
630 *ptid = journal->j_committing_transaction->t_tid;
631 ret = 1;
632 }
633 write_unlock(&journal->j_state_lock);
634 return ret;
635 }
636
637 /*
638 * Return 1 if a given transaction has not yet sent barrier request
639 * connected with a transaction commit. If 0 is returned, transaction
640 * may or may not have sent the barrier. Used to avoid sending barrier
641 * twice in common cases.
642 */
643 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
644 {
645 int ret = 0;
646 transaction_t *commit_trans;
647
648 if (!(journal->j_flags & JBD2_BARRIER))
649 return 0;
650 read_lock(&journal->j_state_lock);
651 /* Transaction already committed? */
652 if (tid_geq(journal->j_commit_sequence, tid))
653 goto out;
654 commit_trans = journal->j_committing_transaction;
655 if (!commit_trans || commit_trans->t_tid != tid) {
656 ret = 1;
657 goto out;
658 }
659 /*
660 * Transaction is being committed and we already proceeded to
661 * submitting a flush to fs partition?
662 */
663 if (journal->j_fs_dev != journal->j_dev) {
664 if (!commit_trans->t_need_data_flush ||
665 commit_trans->t_state >= T_COMMIT_DFLUSH)
666 goto out;
667 } else {
668 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
669 goto out;
670 }
671 ret = 1;
672 out:
673 read_unlock(&journal->j_state_lock);
674 return ret;
675 }
676 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
677
678 /*
679 * Wait for a specified commit to complete.
680 * The caller may not hold the journal lock.
681 */
682 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
683 {
684 int err = 0;
685
686 read_lock(&journal->j_state_lock);
687 #ifdef CONFIG_JBD2_DEBUG
688 if (!tid_geq(journal->j_commit_request, tid)) {
689 printk(KERN_EMERG
690 "%s: error: j_commit_request=%d, tid=%d\n",
691 __func__, journal->j_commit_request, tid);
692 }
693 #endif
694 while (tid_gt(tid, journal->j_commit_sequence)) {
695 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
696 tid, journal->j_commit_sequence);
697 wake_up(&journal->j_wait_commit);
698 read_unlock(&journal->j_state_lock);
699 wait_event(journal->j_wait_done_commit,
700 !tid_gt(tid, journal->j_commit_sequence));
701 read_lock(&journal->j_state_lock);
702 }
703 read_unlock(&journal->j_state_lock);
704
705 if (unlikely(is_journal_aborted(journal))) {
706 printk(KERN_EMERG "journal commit I/O error\n");
707 err = -EIO;
708 }
709 return err;
710 }
711
712 /*
713 * Log buffer allocation routines:
714 */
715
716 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
717 {
718 unsigned long blocknr;
719
720 write_lock(&journal->j_state_lock);
721 J_ASSERT(journal->j_free > 1);
722
723 blocknr = journal->j_head;
724 journal->j_head++;
725 journal->j_free--;
726 if (journal->j_head == journal->j_last)
727 journal->j_head = journal->j_first;
728 write_unlock(&journal->j_state_lock);
729 return jbd2_journal_bmap(journal, blocknr, retp);
730 }
731
732 /*
733 * Conversion of logical to physical block numbers for the journal
734 *
735 * On external journals the journal blocks are identity-mapped, so
736 * this is a no-op. If needed, we can use j_blk_offset - everything is
737 * ready.
738 */
739 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
740 unsigned long long *retp)
741 {
742 int err = 0;
743 unsigned long long ret;
744
745 if (journal->j_inode) {
746 ret = bmap(journal->j_inode, blocknr);
747 if (ret)
748 *retp = ret;
749 else {
750 printk(KERN_ALERT "%s: journal block not found "
751 "at offset %lu on %s\n",
752 __func__, blocknr, journal->j_devname);
753 err = -EIO;
754 __journal_abort_soft(journal, err);
755 }
756 } else {
757 *retp = blocknr; /* +journal->j_blk_offset */
758 }
759 return err;
760 }
761
762 /*
763 * We play buffer_head aliasing tricks to write data/metadata blocks to
764 * the journal without copying their contents, but for journal
765 * descriptor blocks we do need to generate bona fide buffers.
766 *
767 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
768 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
769 * But we don't bother doing that, so there will be coherency problems with
770 * mmaps of blockdevs which hold live JBD-controlled filesystems.
771 */
772 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
773 {
774 struct buffer_head *bh;
775 unsigned long long blocknr;
776 int err;
777
778 err = jbd2_journal_next_log_block(journal, &blocknr);
779
780 if (err)
781 return NULL;
782
783 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
784 if (!bh)
785 return NULL;
786 lock_buffer(bh);
787 memset(bh->b_data, 0, journal->j_blocksize);
788 set_buffer_uptodate(bh);
789 unlock_buffer(bh);
790 BUFFER_TRACE(bh, "return this buffer");
791 return jbd2_journal_add_journal_head(bh);
792 }
793
794 /*
795 * Return tid of the oldest transaction in the journal and block in the journal
796 * where the transaction starts.
797 *
798 * If the journal is now empty, return which will be the next transaction ID
799 * we will write and where will that transaction start.
800 *
801 * The return value is 0 if journal tail cannot be pushed any further, 1 if
802 * it can.
803 */
804 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
805 unsigned long *block)
806 {
807 transaction_t *transaction;
808 int ret;
809
810 read_lock(&journal->j_state_lock);
811 spin_lock(&journal->j_list_lock);
812 transaction = journal->j_checkpoint_transactions;
813 if (transaction) {
814 *tid = transaction->t_tid;
815 *block = transaction->t_log_start;
816 } else if ((transaction = journal->j_committing_transaction) != NULL) {
817 *tid = transaction->t_tid;
818 *block = transaction->t_log_start;
819 } else if ((transaction = journal->j_running_transaction) != NULL) {
820 *tid = transaction->t_tid;
821 *block = journal->j_head;
822 } else {
823 *tid = journal->j_transaction_sequence;
824 *block = journal->j_head;
825 }
826 ret = tid_gt(*tid, journal->j_tail_sequence);
827 spin_unlock(&journal->j_list_lock);
828 read_unlock(&journal->j_state_lock);
829
830 return ret;
831 }
832
833 /*
834 * Update information in journal structure and in on disk journal superblock
835 * about log tail. This function does not check whether information passed in
836 * really pushes log tail further. It's responsibility of the caller to make
837 * sure provided log tail information is valid (e.g. by holding
838 * j_checkpoint_mutex all the time between computing log tail and calling this
839 * function as is the case with jbd2_cleanup_journal_tail()).
840 *
841 * Requires j_checkpoint_mutex
842 */
843 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
844 {
845 unsigned long freed;
846
847 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
848
849 /*
850 * We cannot afford for write to remain in drive's caches since as
851 * soon as we update j_tail, next transaction can start reusing journal
852 * space and if we lose sb update during power failure we'd replay
853 * old transaction with possibly newly overwritten data.
854 */
855 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
856 write_lock(&journal->j_state_lock);
857 freed = block - journal->j_tail;
858 if (block < journal->j_tail)
859 freed += journal->j_last - journal->j_first;
860
861 trace_jbd2_update_log_tail(journal, tid, block, freed);
862 jbd_debug(1,
863 "Cleaning journal tail from %d to %d (offset %lu), "
864 "freeing %lu\n",
865 journal->j_tail_sequence, tid, block, freed);
866
867 journal->j_free += freed;
868 journal->j_tail_sequence = tid;
869 journal->j_tail = block;
870 write_unlock(&journal->j_state_lock);
871 }
872
873 /*
874 * This is a variaon of __jbd2_update_log_tail which checks for validity of
875 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
876 * with other threads updating log tail.
877 */
878 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
879 {
880 mutex_lock(&journal->j_checkpoint_mutex);
881 if (tid_gt(tid, journal->j_tail_sequence))
882 __jbd2_update_log_tail(journal, tid, block);
883 mutex_unlock(&journal->j_checkpoint_mutex);
884 }
885
886 struct jbd2_stats_proc_session {
887 journal_t *journal;
888 struct transaction_stats_s *stats;
889 int start;
890 int max;
891 };
892
893 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
894 {
895 return *pos ? NULL : SEQ_START_TOKEN;
896 }
897
898 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
899 {
900 return NULL;
901 }
902
903 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
904 {
905 struct jbd2_stats_proc_session *s = seq->private;
906
907 if (v != SEQ_START_TOKEN)
908 return 0;
909 seq_printf(seq, "%lu transactions (%lu requested), "
910 "each up to %u blocks\n",
911 s->stats->ts_tid, s->stats->ts_requested,
912 s->journal->j_max_transaction_buffers);
913 if (s->stats->ts_tid == 0)
914 return 0;
915 seq_printf(seq, "average: \n %ums waiting for transaction\n",
916 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
917 seq_printf(seq, " %ums request delay\n",
918 (s->stats->ts_requested == 0) ? 0 :
919 jiffies_to_msecs(s->stats->run.rs_request_delay /
920 s->stats->ts_requested));
921 seq_printf(seq, " %ums running transaction\n",
922 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
923 seq_printf(seq, " %ums transaction was being locked\n",
924 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
925 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
926 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
927 seq_printf(seq, " %ums logging transaction\n",
928 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
929 seq_printf(seq, " %lluus average transaction commit time\n",
930 div_u64(s->journal->j_average_commit_time, 1000));
931 seq_printf(seq, " %lu handles per transaction\n",
932 s->stats->run.rs_handle_count / s->stats->ts_tid);
933 seq_printf(seq, " %lu blocks per transaction\n",
934 s->stats->run.rs_blocks / s->stats->ts_tid);
935 seq_printf(seq, " %lu logged blocks per transaction\n",
936 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
937 return 0;
938 }
939
940 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
941 {
942 }
943
944 static const struct seq_operations jbd2_seq_info_ops = {
945 .start = jbd2_seq_info_start,
946 .next = jbd2_seq_info_next,
947 .stop = jbd2_seq_info_stop,
948 .show = jbd2_seq_info_show,
949 };
950
951 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
952 {
953 journal_t *journal = PDE(inode)->data;
954 struct jbd2_stats_proc_session *s;
955 int rc, size;
956
957 s = kmalloc(sizeof(*s), GFP_KERNEL);
958 if (s == NULL)
959 return -ENOMEM;
960 size = sizeof(struct transaction_stats_s);
961 s->stats = kmalloc(size, GFP_KERNEL);
962 if (s->stats == NULL) {
963 kfree(s);
964 return -ENOMEM;
965 }
966 spin_lock(&journal->j_history_lock);
967 memcpy(s->stats, &journal->j_stats, size);
968 s->journal = journal;
969 spin_unlock(&journal->j_history_lock);
970
971 rc = seq_open(file, &jbd2_seq_info_ops);
972 if (rc == 0) {
973 struct seq_file *m = file->private_data;
974 m->private = s;
975 } else {
976 kfree(s->stats);
977 kfree(s);
978 }
979 return rc;
980
981 }
982
983 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
984 {
985 struct seq_file *seq = file->private_data;
986 struct jbd2_stats_proc_session *s = seq->private;
987 kfree(s->stats);
988 kfree(s);
989 return seq_release(inode, file);
990 }
991
992 static const struct file_operations jbd2_seq_info_fops = {
993 .owner = THIS_MODULE,
994 .open = jbd2_seq_info_open,
995 .read = seq_read,
996 .llseek = seq_lseek,
997 .release = jbd2_seq_info_release,
998 };
999
1000 static struct proc_dir_entry *proc_jbd2_stats;
1001
1002 static void jbd2_stats_proc_init(journal_t *journal)
1003 {
1004 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1005 if (journal->j_proc_entry) {
1006 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1007 &jbd2_seq_info_fops, journal);
1008 }
1009 }
1010
1011 static void jbd2_stats_proc_exit(journal_t *journal)
1012 {
1013 remove_proc_entry("info", journal->j_proc_entry);
1014 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1015 }
1016
1017 /*
1018 * Management for journal control blocks: functions to create and
1019 * destroy journal_t structures, and to initialise and read existing
1020 * journal blocks from disk. */
1021
1022 /* First: create and setup a journal_t object in memory. We initialise
1023 * very few fields yet: that has to wait until we have created the
1024 * journal structures from from scratch, or loaded them from disk. */
1025
1026 static journal_t * journal_init_common (void)
1027 {
1028 journal_t *journal;
1029 int err;
1030
1031 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1032 if (!journal)
1033 return NULL;
1034
1035 init_waitqueue_head(&journal->j_wait_transaction_locked);
1036 init_waitqueue_head(&journal->j_wait_logspace);
1037 init_waitqueue_head(&journal->j_wait_done_commit);
1038 init_waitqueue_head(&journal->j_wait_checkpoint);
1039 init_waitqueue_head(&journal->j_wait_commit);
1040 init_waitqueue_head(&journal->j_wait_updates);
1041 mutex_init(&journal->j_barrier);
1042 mutex_init(&journal->j_checkpoint_mutex);
1043 spin_lock_init(&journal->j_revoke_lock);
1044 spin_lock_init(&journal->j_list_lock);
1045 rwlock_init(&journal->j_state_lock);
1046
1047 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1048 journal->j_min_batch_time = 0;
1049 journal->j_max_batch_time = 15000; /* 15ms */
1050
1051 /* The journal is marked for error until we succeed with recovery! */
1052 journal->j_flags = JBD2_ABORT;
1053
1054 /* Set up a default-sized revoke table for the new mount. */
1055 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1056 if (err) {
1057 kfree(journal);
1058 return NULL;
1059 }
1060
1061 spin_lock_init(&journal->j_history_lock);
1062
1063 return journal;
1064 }
1065
1066 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1067 *
1068 * Create a journal structure assigned some fixed set of disk blocks to
1069 * the journal. We don't actually touch those disk blocks yet, but we
1070 * need to set up all of the mapping information to tell the journaling
1071 * system where the journal blocks are.
1072 *
1073 */
1074
1075 /**
1076 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1077 * @bdev: Block device on which to create the journal
1078 * @fs_dev: Device which hold journalled filesystem for this journal.
1079 * @start: Block nr Start of journal.
1080 * @len: Length of the journal in blocks.
1081 * @blocksize: blocksize of journalling device
1082 *
1083 * Returns: a newly created journal_t *
1084 *
1085 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1086 * range of blocks on an arbitrary block device.
1087 *
1088 */
1089 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1090 struct block_device *fs_dev,
1091 unsigned long long start, int len, int blocksize)
1092 {
1093 journal_t *journal = journal_init_common();
1094 struct buffer_head *bh;
1095 char *p;
1096 int n;
1097
1098 if (!journal)
1099 return NULL;
1100
1101 /* journal descriptor can store up to n blocks -bzzz */
1102 journal->j_blocksize = blocksize;
1103 journal->j_dev = bdev;
1104 journal->j_fs_dev = fs_dev;
1105 journal->j_blk_offset = start;
1106 journal->j_maxlen = len;
1107 bdevname(journal->j_dev, journal->j_devname);
1108 p = journal->j_devname;
1109 while ((p = strchr(p, '/')))
1110 *p = '!';
1111 jbd2_stats_proc_init(journal);
1112 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1113 journal->j_wbufsize = n;
1114 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1115 if (!journal->j_wbuf) {
1116 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1117 __func__);
1118 goto out_err;
1119 }
1120
1121 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1122 if (!bh) {
1123 printk(KERN_ERR
1124 "%s: Cannot get buffer for journal superblock\n",
1125 __func__);
1126 goto out_err;
1127 }
1128 journal->j_sb_buffer = bh;
1129 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1130
1131 return journal;
1132 out_err:
1133 kfree(journal->j_wbuf);
1134 jbd2_stats_proc_exit(journal);
1135 kfree(journal);
1136 return NULL;
1137 }
1138
1139 /**
1140 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1141 * @inode: An inode to create the journal in
1142 *
1143 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1144 * the journal. The inode must exist already, must support bmap() and
1145 * must have all data blocks preallocated.
1146 */
1147 journal_t * jbd2_journal_init_inode (struct inode *inode)
1148 {
1149 struct buffer_head *bh;
1150 journal_t *journal = journal_init_common();
1151 char *p;
1152 int err;
1153 int n;
1154 unsigned long long blocknr;
1155
1156 if (!journal)
1157 return NULL;
1158
1159 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1160 journal->j_inode = inode;
1161 bdevname(journal->j_dev, journal->j_devname);
1162 p = journal->j_devname;
1163 while ((p = strchr(p, '/')))
1164 *p = '!';
1165 p = journal->j_devname + strlen(journal->j_devname);
1166 sprintf(p, "-%lu", journal->j_inode->i_ino);
1167 jbd_debug(1,
1168 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1169 journal, inode->i_sb->s_id, inode->i_ino,
1170 (long long) inode->i_size,
1171 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1172
1173 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1174 journal->j_blocksize = inode->i_sb->s_blocksize;
1175 jbd2_stats_proc_init(journal);
1176
1177 /* journal descriptor can store up to n blocks -bzzz */
1178 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1179 journal->j_wbufsize = n;
1180 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1181 if (!journal->j_wbuf) {
1182 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1183 __func__);
1184 goto out_err;
1185 }
1186
1187 err = jbd2_journal_bmap(journal, 0, &blocknr);
1188 /* If that failed, give up */
1189 if (err) {
1190 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1191 __func__);
1192 goto out_err;
1193 }
1194
1195 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1196 if (!bh) {
1197 printk(KERN_ERR
1198 "%s: Cannot get buffer for journal superblock\n",
1199 __func__);
1200 goto out_err;
1201 }
1202 journal->j_sb_buffer = bh;
1203 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1204
1205 return journal;
1206 out_err:
1207 kfree(journal->j_wbuf);
1208 jbd2_stats_proc_exit(journal);
1209 kfree(journal);
1210 return NULL;
1211 }
1212
1213 /*
1214 * If the journal init or create aborts, we need to mark the journal
1215 * superblock as being NULL to prevent the journal destroy from writing
1216 * back a bogus superblock.
1217 */
1218 static void journal_fail_superblock (journal_t *journal)
1219 {
1220 struct buffer_head *bh = journal->j_sb_buffer;
1221 brelse(bh);
1222 journal->j_sb_buffer = NULL;
1223 }
1224
1225 /*
1226 * Given a journal_t structure, initialise the various fields for
1227 * startup of a new journaling session. We use this both when creating
1228 * a journal, and after recovering an old journal to reset it for
1229 * subsequent use.
1230 */
1231
1232 static int journal_reset(journal_t *journal)
1233 {
1234 journal_superblock_t *sb = journal->j_superblock;
1235 unsigned long long first, last;
1236
1237 first = be32_to_cpu(sb->s_first);
1238 last = be32_to_cpu(sb->s_maxlen);
1239 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1240 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1241 first, last);
1242 journal_fail_superblock(journal);
1243 return -EINVAL;
1244 }
1245
1246 journal->j_first = first;
1247 journal->j_last = last;
1248
1249 journal->j_head = first;
1250 journal->j_tail = first;
1251 journal->j_free = last - first;
1252
1253 journal->j_tail_sequence = journal->j_transaction_sequence;
1254 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1255 journal->j_commit_request = journal->j_commit_sequence;
1256
1257 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1258
1259 /*
1260 * As a special case, if the on-disk copy is already marked as needing
1261 * no recovery (s_start == 0), then we can safely defer the superblock
1262 * update until the next commit by setting JBD2_FLUSHED. This avoids
1263 * attempting a write to a potential-readonly device.
1264 */
1265 if (sb->s_start == 0) {
1266 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1267 "(start %ld, seq %d, errno %d)\n",
1268 journal->j_tail, journal->j_tail_sequence,
1269 journal->j_errno);
1270 journal->j_flags |= JBD2_FLUSHED;
1271 } else {
1272 /* Lock here to make assertions happy... */
1273 mutex_lock(&journal->j_checkpoint_mutex);
1274 /*
1275 * Update log tail information. We use WRITE_FUA since new
1276 * transaction will start reusing journal space and so we
1277 * must make sure information about current log tail is on
1278 * disk before that.
1279 */
1280 jbd2_journal_update_sb_log_tail(journal,
1281 journal->j_tail_sequence,
1282 journal->j_tail,
1283 WRITE_FUA);
1284 mutex_unlock(&journal->j_checkpoint_mutex);
1285 }
1286 return jbd2_journal_start_thread(journal);
1287 }
1288
1289 static void jbd2_write_superblock(journal_t *journal, int write_op)
1290 {
1291 struct buffer_head *bh = journal->j_sb_buffer;
1292 int ret;
1293
1294 trace_jbd2_write_superblock(journal, write_op);
1295 if (!(journal->j_flags & JBD2_BARRIER))
1296 write_op &= ~(REQ_FUA | REQ_FLUSH);
1297 lock_buffer(bh);
1298 if (buffer_write_io_error(bh)) {
1299 /*
1300 * Oh, dear. A previous attempt to write the journal
1301 * superblock failed. This could happen because the
1302 * USB device was yanked out. Or it could happen to
1303 * be a transient write error and maybe the block will
1304 * be remapped. Nothing we can do but to retry the
1305 * write and hope for the best.
1306 */
1307 printk(KERN_ERR "JBD2: previous I/O error detected "
1308 "for journal superblock update for %s.\n",
1309 journal->j_devname);
1310 clear_buffer_write_io_error(bh);
1311 set_buffer_uptodate(bh);
1312 }
1313 get_bh(bh);
1314 bh->b_end_io = end_buffer_write_sync;
1315 ret = submit_bh(write_op, bh);
1316 wait_on_buffer(bh);
1317 if (buffer_write_io_error(bh)) {
1318 clear_buffer_write_io_error(bh);
1319 set_buffer_uptodate(bh);
1320 ret = -EIO;
1321 }
1322 if (ret) {
1323 printk(KERN_ERR "JBD2: Error %d detected when updating "
1324 "journal superblock for %s.\n", ret,
1325 journal->j_devname);
1326 }
1327 }
1328
1329 /**
1330 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1331 * @journal: The journal to update.
1332 * @tail_tid: TID of the new transaction at the tail of the log
1333 * @tail_block: The first block of the transaction at the tail of the log
1334 * @write_op: With which operation should we write the journal sb
1335 *
1336 * Update a journal's superblock information about log tail and write it to
1337 * disk, waiting for the IO to complete.
1338 */
1339 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1340 unsigned long tail_block, int write_op)
1341 {
1342 journal_superblock_t *sb = journal->j_superblock;
1343
1344 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1345 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1346 tail_block, tail_tid);
1347
1348 sb->s_sequence = cpu_to_be32(tail_tid);
1349 sb->s_start = cpu_to_be32(tail_block);
1350
1351 jbd2_write_superblock(journal, write_op);
1352
1353 /* Log is no longer empty */
1354 write_lock(&journal->j_state_lock);
1355 WARN_ON(!sb->s_sequence);
1356 journal->j_flags &= ~JBD2_FLUSHED;
1357 write_unlock(&journal->j_state_lock);
1358 }
1359
1360 /**
1361 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1362 * @journal: The journal to update.
1363 *
1364 * Update a journal's dynamic superblock fields to show that journal is empty.
1365 * Write updated superblock to disk waiting for IO to complete.
1366 */
1367 static void jbd2_mark_journal_empty(journal_t *journal)
1368 {
1369 journal_superblock_t *sb = journal->j_superblock;
1370
1371 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1372 read_lock(&journal->j_state_lock);
1373 /* Is it already empty? */
1374 if (sb->s_start == 0) {
1375 read_unlock(&journal->j_state_lock);
1376 return;
1377 }
1378 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1379 journal->j_tail_sequence);
1380
1381 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1382 sb->s_start = cpu_to_be32(0);
1383 read_unlock(&journal->j_state_lock);
1384
1385 jbd2_write_superblock(journal, WRITE_FUA);
1386
1387 /* Log is no longer empty */
1388 write_lock(&journal->j_state_lock);
1389 journal->j_flags |= JBD2_FLUSHED;
1390 write_unlock(&journal->j_state_lock);
1391 }
1392
1393
1394 /**
1395 * jbd2_journal_update_sb_errno() - Update error in the journal.
1396 * @journal: The journal to update.
1397 *
1398 * Update a journal's errno. Write updated superblock to disk waiting for IO
1399 * to complete.
1400 */
1401 void jbd2_journal_update_sb_errno(journal_t *journal)
1402 {
1403 journal_superblock_t *sb = journal->j_superblock;
1404
1405 read_lock(&journal->j_state_lock);
1406 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1407 journal->j_errno);
1408 sb->s_errno = cpu_to_be32(journal->j_errno);
1409 jbd2_superblock_csum_set(journal, sb);
1410 read_unlock(&journal->j_state_lock);
1411
1412 jbd2_write_superblock(journal, WRITE_SYNC);
1413 }
1414 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1415
1416 /*
1417 * Read the superblock for a given journal, performing initial
1418 * validation of the format.
1419 */
1420 static int journal_get_superblock(journal_t *journal)
1421 {
1422 struct buffer_head *bh;
1423 journal_superblock_t *sb;
1424 int err = -EIO;
1425
1426 bh = journal->j_sb_buffer;
1427
1428 J_ASSERT(bh != NULL);
1429 if (!buffer_uptodate(bh)) {
1430 ll_rw_block(READ, 1, &bh);
1431 wait_on_buffer(bh);
1432 if (!buffer_uptodate(bh)) {
1433 printk(KERN_ERR
1434 "JBD2: IO error reading journal superblock\n");
1435 goto out;
1436 }
1437 }
1438
1439 if (buffer_verified(bh))
1440 return 0;
1441
1442 sb = journal->j_superblock;
1443
1444 err = -EINVAL;
1445
1446 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1447 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1448 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1449 goto out;
1450 }
1451
1452 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1453 case JBD2_SUPERBLOCK_V1:
1454 journal->j_format_version = 1;
1455 break;
1456 case JBD2_SUPERBLOCK_V2:
1457 journal->j_format_version = 2;
1458 break;
1459 default:
1460 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1461 goto out;
1462 }
1463
1464 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1465 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1466 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1467 printk(KERN_WARNING "JBD2: journal file too short\n");
1468 goto out;
1469 }
1470
1471 if (be32_to_cpu(sb->s_first) == 0 ||
1472 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1473 printk(KERN_WARNING
1474 "JBD2: Invalid start block of journal: %u\n",
1475 be32_to_cpu(sb->s_first));
1476 goto out;
1477 }
1478
1479 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1480 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1481 /* Can't have checksum v1 and v2 on at the same time! */
1482 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1483 "at the same time!\n");
1484 goto out;
1485 }
1486
1487 if (!jbd2_verify_csum_type(journal, sb)) {
1488 printk(KERN_ERR "JBD: Unknown checksum type\n");
1489 goto out;
1490 }
1491
1492 /* Load the checksum driver */
1493 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1494 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1495 if (IS_ERR(journal->j_chksum_driver)) {
1496 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1497 err = PTR_ERR(journal->j_chksum_driver);
1498 journal->j_chksum_driver = NULL;
1499 goto out;
1500 }
1501 }
1502
1503 /* Check superblock checksum */
1504 if (!jbd2_superblock_csum_verify(journal, sb)) {
1505 printk(KERN_ERR "JBD: journal checksum error\n");
1506 goto out;
1507 }
1508
1509 /* Precompute checksum seed for all metadata */
1510 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1511 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1512 sizeof(sb->s_uuid));
1513
1514 set_buffer_verified(bh);
1515
1516 return 0;
1517
1518 out:
1519 journal_fail_superblock(journal);
1520 return err;
1521 }
1522
1523 /*
1524 * Load the on-disk journal superblock and read the key fields into the
1525 * journal_t.
1526 */
1527
1528 static int load_superblock(journal_t *journal)
1529 {
1530 int err;
1531 journal_superblock_t *sb;
1532
1533 err = journal_get_superblock(journal);
1534 if (err)
1535 return err;
1536
1537 sb = journal->j_superblock;
1538
1539 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1540 journal->j_tail = be32_to_cpu(sb->s_start);
1541 journal->j_first = be32_to_cpu(sb->s_first);
1542 journal->j_last = be32_to_cpu(sb->s_maxlen);
1543 journal->j_errno = be32_to_cpu(sb->s_errno);
1544
1545 return 0;
1546 }
1547
1548
1549 /**
1550 * int jbd2_journal_load() - Read journal from disk.
1551 * @journal: Journal to act on.
1552 *
1553 * Given a journal_t structure which tells us which disk blocks contain
1554 * a journal, read the journal from disk to initialise the in-memory
1555 * structures.
1556 */
1557 int jbd2_journal_load(journal_t *journal)
1558 {
1559 int err;
1560 journal_superblock_t *sb;
1561
1562 err = load_superblock(journal);
1563 if (err)
1564 return err;
1565
1566 sb = journal->j_superblock;
1567 /* If this is a V2 superblock, then we have to check the
1568 * features flags on it. */
1569
1570 if (journal->j_format_version >= 2) {
1571 if ((sb->s_feature_ro_compat &
1572 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1573 (sb->s_feature_incompat &
1574 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1575 printk(KERN_WARNING
1576 "JBD2: Unrecognised features on journal\n");
1577 return -EINVAL;
1578 }
1579 }
1580
1581 /*
1582 * Create a slab for this blocksize
1583 */
1584 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1585 if (err)
1586 return err;
1587
1588 /* Let the recovery code check whether it needs to recover any
1589 * data from the journal. */
1590 if (jbd2_journal_recover(journal))
1591 goto recovery_error;
1592
1593 if (journal->j_failed_commit) {
1594 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1595 "is corrupt.\n", journal->j_failed_commit,
1596 journal->j_devname);
1597 return -EIO;
1598 }
1599
1600 /* OK, we've finished with the dynamic journal bits:
1601 * reinitialise the dynamic contents of the superblock in memory
1602 * and reset them on disk. */
1603 if (journal_reset(journal))
1604 goto recovery_error;
1605
1606 journal->j_flags &= ~JBD2_ABORT;
1607 journal->j_flags |= JBD2_LOADED;
1608 return 0;
1609
1610 recovery_error:
1611 printk(KERN_WARNING "JBD2: recovery failed\n");
1612 return -EIO;
1613 }
1614
1615 /**
1616 * void jbd2_journal_destroy() - Release a journal_t structure.
1617 * @journal: Journal to act on.
1618 *
1619 * Release a journal_t structure once it is no longer in use by the
1620 * journaled object.
1621 * Return <0 if we couldn't clean up the journal.
1622 */
1623 int jbd2_journal_destroy(journal_t *journal)
1624 {
1625 int err = 0;
1626
1627 /* Wait for the commit thread to wake up and die. */
1628 journal_kill_thread(journal);
1629
1630 /* Force a final log commit */
1631 if (journal->j_running_transaction)
1632 jbd2_journal_commit_transaction(journal);
1633
1634 /* Force any old transactions to disk */
1635
1636 /* Totally anal locking here... */
1637 spin_lock(&journal->j_list_lock);
1638 while (journal->j_checkpoint_transactions != NULL) {
1639 spin_unlock(&journal->j_list_lock);
1640 mutex_lock(&journal->j_checkpoint_mutex);
1641 jbd2_log_do_checkpoint(journal);
1642 mutex_unlock(&journal->j_checkpoint_mutex);
1643 spin_lock(&journal->j_list_lock);
1644 }
1645
1646 J_ASSERT(journal->j_running_transaction == NULL);
1647 J_ASSERT(journal->j_committing_transaction == NULL);
1648 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1649 spin_unlock(&journal->j_list_lock);
1650
1651 if (journal->j_sb_buffer) {
1652 if (!is_journal_aborted(journal)) {
1653 mutex_lock(&journal->j_checkpoint_mutex);
1654 jbd2_mark_journal_empty(journal);
1655 mutex_unlock(&journal->j_checkpoint_mutex);
1656 } else
1657 err = -EIO;
1658 brelse(journal->j_sb_buffer);
1659 }
1660
1661 if (journal->j_proc_entry)
1662 jbd2_stats_proc_exit(journal);
1663 if (journal->j_inode)
1664 iput(journal->j_inode);
1665 if (journal->j_revoke)
1666 jbd2_journal_destroy_revoke(journal);
1667 if (journal->j_chksum_driver)
1668 crypto_free_shash(journal->j_chksum_driver);
1669 kfree(journal->j_wbuf);
1670 kfree(journal);
1671
1672 return err;
1673 }
1674
1675
1676 /**
1677 *int jbd2_journal_check_used_features () - Check if features specified are used.
1678 * @journal: Journal to check.
1679 * @compat: bitmask of compatible features
1680 * @ro: bitmask of features that force read-only mount
1681 * @incompat: bitmask of incompatible features
1682 *
1683 * Check whether the journal uses all of a given set of
1684 * features. Return true (non-zero) if it does.
1685 **/
1686
1687 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1688 unsigned long ro, unsigned long incompat)
1689 {
1690 journal_superblock_t *sb;
1691
1692 if (!compat && !ro && !incompat)
1693 return 1;
1694 /* Load journal superblock if it is not loaded yet. */
1695 if (journal->j_format_version == 0 &&
1696 journal_get_superblock(journal) != 0)
1697 return 0;
1698 if (journal->j_format_version == 1)
1699 return 0;
1700
1701 sb = journal->j_superblock;
1702
1703 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1704 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1705 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1706 return 1;
1707
1708 return 0;
1709 }
1710
1711 /**
1712 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1713 * @journal: Journal to check.
1714 * @compat: bitmask of compatible features
1715 * @ro: bitmask of features that force read-only mount
1716 * @incompat: bitmask of incompatible features
1717 *
1718 * Check whether the journaling code supports the use of
1719 * all of a given set of features on this journal. Return true
1720 * (non-zero) if it can. */
1721
1722 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1723 unsigned long ro, unsigned long incompat)
1724 {
1725 if (!compat && !ro && !incompat)
1726 return 1;
1727
1728 /* We can support any known requested features iff the
1729 * superblock is in version 2. Otherwise we fail to support any
1730 * extended sb features. */
1731
1732 if (journal->j_format_version != 2)
1733 return 0;
1734
1735 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1736 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1737 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1738 return 1;
1739
1740 return 0;
1741 }
1742
1743 /**
1744 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1745 * @journal: Journal to act on.
1746 * @compat: bitmask of compatible features
1747 * @ro: bitmask of features that force read-only mount
1748 * @incompat: bitmask of incompatible features
1749 *
1750 * Mark a given journal feature as present on the
1751 * superblock. Returns true if the requested features could be set.
1752 *
1753 */
1754
1755 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1756 unsigned long ro, unsigned long incompat)
1757 {
1758 #define INCOMPAT_FEATURE_ON(f) \
1759 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1760 #define COMPAT_FEATURE_ON(f) \
1761 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1762 journal_superblock_t *sb;
1763
1764 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1765 return 1;
1766
1767 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1768 return 0;
1769
1770 /* Asking for checksumming v2 and v1? Only give them v2. */
1771 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1772 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1773 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1774
1775 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1776 compat, ro, incompat);
1777
1778 sb = journal->j_superblock;
1779
1780 /* If enabling v2 checksums, update superblock */
1781 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1782 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1783 sb->s_feature_compat &=
1784 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1785
1786 /* Load the checksum driver */
1787 if (journal->j_chksum_driver == NULL) {
1788 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1789 0, 0);
1790 if (IS_ERR(journal->j_chksum_driver)) {
1791 printk(KERN_ERR "JBD: Cannot load crc32c "
1792 "driver.\n");
1793 journal->j_chksum_driver = NULL;
1794 return 0;
1795 }
1796 }
1797
1798 /* Precompute checksum seed for all metadata */
1799 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1800 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1801 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1802 sb->s_uuid,
1803 sizeof(sb->s_uuid));
1804 }
1805
1806 /* If enabling v1 checksums, downgrade superblock */
1807 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1808 sb->s_feature_incompat &=
1809 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1810
1811 sb->s_feature_compat |= cpu_to_be32(compat);
1812 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1813 sb->s_feature_incompat |= cpu_to_be32(incompat);
1814
1815 return 1;
1816 #undef COMPAT_FEATURE_ON
1817 #undef INCOMPAT_FEATURE_ON
1818 }
1819
1820 /*
1821 * jbd2_journal_clear_features () - Clear a given journal feature in the
1822 * superblock
1823 * @journal: Journal to act on.
1824 * @compat: bitmask of compatible features
1825 * @ro: bitmask of features that force read-only mount
1826 * @incompat: bitmask of incompatible features
1827 *
1828 * Clear a given journal feature as present on the
1829 * superblock.
1830 */
1831 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1832 unsigned long ro, unsigned long incompat)
1833 {
1834 journal_superblock_t *sb;
1835
1836 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1837 compat, ro, incompat);
1838
1839 sb = journal->j_superblock;
1840
1841 sb->s_feature_compat &= ~cpu_to_be32(compat);
1842 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1843 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1844 }
1845 EXPORT_SYMBOL(jbd2_journal_clear_features);
1846
1847 /**
1848 * int jbd2_journal_flush () - Flush journal
1849 * @journal: Journal to act on.
1850 *
1851 * Flush all data for a given journal to disk and empty the journal.
1852 * Filesystems can use this when remounting readonly to ensure that
1853 * recovery does not need to happen on remount.
1854 */
1855
1856 int jbd2_journal_flush(journal_t *journal)
1857 {
1858 int err = 0;
1859 transaction_t *transaction = NULL;
1860
1861 write_lock(&journal->j_state_lock);
1862
1863 /* Force everything buffered to the log... */
1864 if (journal->j_running_transaction) {
1865 transaction = journal->j_running_transaction;
1866 __jbd2_log_start_commit(journal, transaction->t_tid);
1867 } else if (journal->j_committing_transaction)
1868 transaction = journal->j_committing_transaction;
1869
1870 /* Wait for the log commit to complete... */
1871 if (transaction) {
1872 tid_t tid = transaction->t_tid;
1873
1874 write_unlock(&journal->j_state_lock);
1875 jbd2_log_wait_commit(journal, tid);
1876 } else {
1877 write_unlock(&journal->j_state_lock);
1878 }
1879
1880 /* ...and flush everything in the log out to disk. */
1881 spin_lock(&journal->j_list_lock);
1882 while (!err && journal->j_checkpoint_transactions != NULL) {
1883 spin_unlock(&journal->j_list_lock);
1884 mutex_lock(&journal->j_checkpoint_mutex);
1885 err = jbd2_log_do_checkpoint(journal);
1886 mutex_unlock(&journal->j_checkpoint_mutex);
1887 spin_lock(&journal->j_list_lock);
1888 }
1889 spin_unlock(&journal->j_list_lock);
1890
1891 if (is_journal_aborted(journal))
1892 return -EIO;
1893
1894 mutex_lock(&journal->j_checkpoint_mutex);
1895 jbd2_cleanup_journal_tail(journal);
1896
1897 /* Finally, mark the journal as really needing no recovery.
1898 * This sets s_start==0 in the underlying superblock, which is
1899 * the magic code for a fully-recovered superblock. Any future
1900 * commits of data to the journal will restore the current
1901 * s_start value. */
1902 jbd2_mark_journal_empty(journal);
1903 mutex_unlock(&journal->j_checkpoint_mutex);
1904 write_lock(&journal->j_state_lock);
1905 J_ASSERT(!journal->j_running_transaction);
1906 J_ASSERT(!journal->j_committing_transaction);
1907 J_ASSERT(!journal->j_checkpoint_transactions);
1908 J_ASSERT(journal->j_head == journal->j_tail);
1909 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1910 write_unlock(&journal->j_state_lock);
1911 return 0;
1912 }
1913
1914 /**
1915 * int jbd2_journal_wipe() - Wipe journal contents
1916 * @journal: Journal to act on.
1917 * @write: flag (see below)
1918 *
1919 * Wipe out all of the contents of a journal, safely. This will produce
1920 * a warning if the journal contains any valid recovery information.
1921 * Must be called between journal_init_*() and jbd2_journal_load().
1922 *
1923 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1924 * we merely suppress recovery.
1925 */
1926
1927 int jbd2_journal_wipe(journal_t *journal, int write)
1928 {
1929 int err = 0;
1930
1931 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1932
1933 err = load_superblock(journal);
1934 if (err)
1935 return err;
1936
1937 if (!journal->j_tail)
1938 goto no_recovery;
1939
1940 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1941 write ? "Clearing" : "Ignoring");
1942
1943 err = jbd2_journal_skip_recovery(journal);
1944 if (write) {
1945 /* Lock to make assertions happy... */
1946 mutex_lock(&journal->j_checkpoint_mutex);
1947 jbd2_mark_journal_empty(journal);
1948 mutex_unlock(&journal->j_checkpoint_mutex);
1949 }
1950
1951 no_recovery:
1952 return err;
1953 }
1954
1955 /*
1956 * Journal abort has very specific semantics, which we describe
1957 * for journal abort.
1958 *
1959 * Two internal functions, which provide abort to the jbd layer
1960 * itself are here.
1961 */
1962
1963 /*
1964 * Quick version for internal journal use (doesn't lock the journal).
1965 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1966 * and don't attempt to make any other journal updates.
1967 */
1968 void __jbd2_journal_abort_hard(journal_t *journal)
1969 {
1970 transaction_t *transaction;
1971
1972 if (journal->j_flags & JBD2_ABORT)
1973 return;
1974
1975 printk(KERN_ERR "Aborting journal on device %s.\n",
1976 journal->j_devname);
1977
1978 write_lock(&journal->j_state_lock);
1979 journal->j_flags |= JBD2_ABORT;
1980 transaction = journal->j_running_transaction;
1981 if (transaction)
1982 __jbd2_log_start_commit(journal, transaction->t_tid);
1983 write_unlock(&journal->j_state_lock);
1984 }
1985
1986 /* Soft abort: record the abort error status in the journal superblock,
1987 * but don't do any other IO. */
1988 static void __journal_abort_soft (journal_t *journal, int errno)
1989 {
1990 if (journal->j_flags & JBD2_ABORT)
1991 return;
1992
1993 if (!journal->j_errno)
1994 journal->j_errno = errno;
1995
1996 __jbd2_journal_abort_hard(journal);
1997
1998 if (errno)
1999 jbd2_journal_update_sb_errno(journal);
2000 }
2001
2002 /**
2003 * void jbd2_journal_abort () - Shutdown the journal immediately.
2004 * @journal: the journal to shutdown.
2005 * @errno: an error number to record in the journal indicating
2006 * the reason for the shutdown.
2007 *
2008 * Perform a complete, immediate shutdown of the ENTIRE
2009 * journal (not of a single transaction). This operation cannot be
2010 * undone without closing and reopening the journal.
2011 *
2012 * The jbd2_journal_abort function is intended to support higher level error
2013 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2014 * mode.
2015 *
2016 * Journal abort has very specific semantics. Any existing dirty,
2017 * unjournaled buffers in the main filesystem will still be written to
2018 * disk by bdflush, but the journaling mechanism will be suspended
2019 * immediately and no further transaction commits will be honoured.
2020 *
2021 * Any dirty, journaled buffers will be written back to disk without
2022 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2023 * filesystem, but we _do_ attempt to leave as much data as possible
2024 * behind for fsck to use for cleanup.
2025 *
2026 * Any attempt to get a new transaction handle on a journal which is in
2027 * ABORT state will just result in an -EROFS error return. A
2028 * jbd2_journal_stop on an existing handle will return -EIO if we have
2029 * entered abort state during the update.
2030 *
2031 * Recursive transactions are not disturbed by journal abort until the
2032 * final jbd2_journal_stop, which will receive the -EIO error.
2033 *
2034 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2035 * which will be recorded (if possible) in the journal superblock. This
2036 * allows a client to record failure conditions in the middle of a
2037 * transaction without having to complete the transaction to record the
2038 * failure to disk. ext3_error, for example, now uses this
2039 * functionality.
2040 *
2041 * Errors which originate from within the journaling layer will NOT
2042 * supply an errno; a null errno implies that absolutely no further
2043 * writes are done to the journal (unless there are any already in
2044 * progress).
2045 *
2046 */
2047
2048 void jbd2_journal_abort(journal_t *journal, int errno)
2049 {
2050 __journal_abort_soft(journal, errno);
2051 }
2052
2053 /**
2054 * int jbd2_journal_errno () - returns the journal's error state.
2055 * @journal: journal to examine.
2056 *
2057 * This is the errno number set with jbd2_journal_abort(), the last
2058 * time the journal was mounted - if the journal was stopped
2059 * without calling abort this will be 0.
2060 *
2061 * If the journal has been aborted on this mount time -EROFS will
2062 * be returned.
2063 */
2064 int jbd2_journal_errno(journal_t *journal)
2065 {
2066 int err;
2067
2068 read_lock(&journal->j_state_lock);
2069 if (journal->j_flags & JBD2_ABORT)
2070 err = -EROFS;
2071 else
2072 err = journal->j_errno;
2073 read_unlock(&journal->j_state_lock);
2074 return err;
2075 }
2076
2077 /**
2078 * int jbd2_journal_clear_err () - clears the journal's error state
2079 * @journal: journal to act on.
2080 *
2081 * An error must be cleared or acked to take a FS out of readonly
2082 * mode.
2083 */
2084 int jbd2_journal_clear_err(journal_t *journal)
2085 {
2086 int err = 0;
2087
2088 write_lock(&journal->j_state_lock);
2089 if (journal->j_flags & JBD2_ABORT)
2090 err = -EROFS;
2091 else
2092 journal->j_errno = 0;
2093 write_unlock(&journal->j_state_lock);
2094 return err;
2095 }
2096
2097 /**
2098 * void jbd2_journal_ack_err() - Ack journal err.
2099 * @journal: journal to act on.
2100 *
2101 * An error must be cleared or acked to take a FS out of readonly
2102 * mode.
2103 */
2104 void jbd2_journal_ack_err(journal_t *journal)
2105 {
2106 write_lock(&journal->j_state_lock);
2107 if (journal->j_errno)
2108 journal->j_flags |= JBD2_ACK_ERR;
2109 write_unlock(&journal->j_state_lock);
2110 }
2111
2112 int jbd2_journal_blocks_per_page(struct inode *inode)
2113 {
2114 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2115 }
2116
2117 /*
2118 * helper functions to deal with 32 or 64bit block numbers.
2119 */
2120 size_t journal_tag_bytes(journal_t *journal)
2121 {
2122 journal_block_tag_t tag;
2123 size_t x = 0;
2124
2125 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2126 x += sizeof(tag.t_checksum);
2127
2128 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2129 return x + JBD2_TAG_SIZE64;
2130 else
2131 return x + JBD2_TAG_SIZE32;
2132 }
2133
2134 /*
2135 * JBD memory management
2136 *
2137 * These functions are used to allocate block-sized chunks of memory
2138 * used for making copies of buffer_head data. Very often it will be
2139 * page-sized chunks of data, but sometimes it will be in
2140 * sub-page-size chunks. (For example, 16k pages on Power systems
2141 * with a 4k block file system.) For blocks smaller than a page, we
2142 * use a SLAB allocator. There are slab caches for each block size,
2143 * which are allocated at mount time, if necessary, and we only free
2144 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2145 * this reason we don't need to a mutex to protect access to
2146 * jbd2_slab[] allocating or releasing memory; only in
2147 * jbd2_journal_create_slab().
2148 */
2149 #define JBD2_MAX_SLABS 8
2150 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2151
2152 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2153 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2154 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2155 };
2156
2157
2158 static void jbd2_journal_destroy_slabs(void)
2159 {
2160 int i;
2161
2162 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2163 if (jbd2_slab[i])
2164 kmem_cache_destroy(jbd2_slab[i]);
2165 jbd2_slab[i] = NULL;
2166 }
2167 }
2168
2169 static int jbd2_journal_create_slab(size_t size)
2170 {
2171 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2172 int i = order_base_2(size) - 10;
2173 size_t slab_size;
2174
2175 if (size == PAGE_SIZE)
2176 return 0;
2177
2178 if (i >= JBD2_MAX_SLABS)
2179 return -EINVAL;
2180
2181 if (unlikely(i < 0))
2182 i = 0;
2183 mutex_lock(&jbd2_slab_create_mutex);
2184 if (jbd2_slab[i]) {
2185 mutex_unlock(&jbd2_slab_create_mutex);
2186 return 0; /* Already created */
2187 }
2188
2189 slab_size = 1 << (i+10);
2190 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2191 slab_size, 0, NULL);
2192 mutex_unlock(&jbd2_slab_create_mutex);
2193 if (!jbd2_slab[i]) {
2194 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2195 return -ENOMEM;
2196 }
2197 return 0;
2198 }
2199
2200 static struct kmem_cache *get_slab(size_t size)
2201 {
2202 int i = order_base_2(size) - 10;
2203
2204 BUG_ON(i >= JBD2_MAX_SLABS);
2205 if (unlikely(i < 0))
2206 i = 0;
2207 BUG_ON(jbd2_slab[i] == NULL);
2208 return jbd2_slab[i];
2209 }
2210
2211 void *jbd2_alloc(size_t size, gfp_t flags)
2212 {
2213 void *ptr;
2214
2215 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2216
2217 flags |= __GFP_REPEAT;
2218 if (size == PAGE_SIZE)
2219 ptr = (void *)__get_free_pages(flags, 0);
2220 else if (size > PAGE_SIZE) {
2221 int order = get_order(size);
2222
2223 if (order < 3)
2224 ptr = (void *)__get_free_pages(flags, order);
2225 else
2226 ptr = vmalloc(size);
2227 } else
2228 ptr = kmem_cache_alloc(get_slab(size), flags);
2229
2230 /* Check alignment; SLUB has gotten this wrong in the past,
2231 * and this can lead to user data corruption! */
2232 BUG_ON(((unsigned long) ptr) & (size-1));
2233
2234 return ptr;
2235 }
2236
2237 void jbd2_free(void *ptr, size_t size)
2238 {
2239 if (size == PAGE_SIZE) {
2240 free_pages((unsigned long)ptr, 0);
2241 return;
2242 }
2243 if (size > PAGE_SIZE) {
2244 int order = get_order(size);
2245
2246 if (order < 3)
2247 free_pages((unsigned long)ptr, order);
2248 else
2249 vfree(ptr);
2250 return;
2251 }
2252 kmem_cache_free(get_slab(size), ptr);
2253 };
2254
2255 /*
2256 * Journal_head storage management
2257 */
2258 static struct kmem_cache *jbd2_journal_head_cache;
2259 #ifdef CONFIG_JBD2_DEBUG
2260 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2261 #endif
2262
2263 static int jbd2_journal_init_journal_head_cache(void)
2264 {
2265 int retval;
2266
2267 J_ASSERT(jbd2_journal_head_cache == NULL);
2268 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2269 sizeof(struct journal_head),
2270 0, /* offset */
2271 SLAB_TEMPORARY, /* flags */
2272 NULL); /* ctor */
2273 retval = 0;
2274 if (!jbd2_journal_head_cache) {
2275 retval = -ENOMEM;
2276 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2277 }
2278 return retval;
2279 }
2280
2281 static void jbd2_journal_destroy_journal_head_cache(void)
2282 {
2283 if (jbd2_journal_head_cache) {
2284 kmem_cache_destroy(jbd2_journal_head_cache);
2285 jbd2_journal_head_cache = NULL;
2286 }
2287 }
2288
2289 /*
2290 * journal_head splicing and dicing
2291 */
2292 static struct journal_head *journal_alloc_journal_head(void)
2293 {
2294 struct journal_head *ret;
2295
2296 #ifdef CONFIG_JBD2_DEBUG
2297 atomic_inc(&nr_journal_heads);
2298 #endif
2299 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2300 if (!ret) {
2301 jbd_debug(1, "out of memory for journal_head\n");
2302 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2303 while (!ret) {
2304 yield();
2305 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2306 }
2307 }
2308 return ret;
2309 }
2310
2311 static void journal_free_journal_head(struct journal_head *jh)
2312 {
2313 #ifdef CONFIG_JBD2_DEBUG
2314 atomic_dec(&nr_journal_heads);
2315 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2316 #endif
2317 kmem_cache_free(jbd2_journal_head_cache, jh);
2318 }
2319
2320 /*
2321 * A journal_head is attached to a buffer_head whenever JBD has an
2322 * interest in the buffer.
2323 *
2324 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2325 * is set. This bit is tested in core kernel code where we need to take
2326 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2327 * there.
2328 *
2329 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2330 *
2331 * When a buffer has its BH_JBD bit set it is immune from being released by
2332 * core kernel code, mainly via ->b_count.
2333 *
2334 * A journal_head is detached from its buffer_head when the journal_head's
2335 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2336 * transaction (b_cp_transaction) hold their references to b_jcount.
2337 *
2338 * Various places in the kernel want to attach a journal_head to a buffer_head
2339 * _before_ attaching the journal_head to a transaction. To protect the
2340 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2341 * journal_head's b_jcount refcount by one. The caller must call
2342 * jbd2_journal_put_journal_head() to undo this.
2343 *
2344 * So the typical usage would be:
2345 *
2346 * (Attach a journal_head if needed. Increments b_jcount)
2347 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2348 * ...
2349 * (Get another reference for transaction)
2350 * jbd2_journal_grab_journal_head(bh);
2351 * jh->b_transaction = xxx;
2352 * (Put original reference)
2353 * jbd2_journal_put_journal_head(jh);
2354 */
2355
2356 /*
2357 * Give a buffer_head a journal_head.
2358 *
2359 * May sleep.
2360 */
2361 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2362 {
2363 struct journal_head *jh;
2364 struct journal_head *new_jh = NULL;
2365
2366 repeat:
2367 if (!buffer_jbd(bh)) {
2368 new_jh = journal_alloc_journal_head();
2369 memset(new_jh, 0, sizeof(*new_jh));
2370 }
2371
2372 jbd_lock_bh_journal_head(bh);
2373 if (buffer_jbd(bh)) {
2374 jh = bh2jh(bh);
2375 } else {
2376 J_ASSERT_BH(bh,
2377 (atomic_read(&bh->b_count) > 0) ||
2378 (bh->b_page && bh->b_page->mapping));
2379
2380 if (!new_jh) {
2381 jbd_unlock_bh_journal_head(bh);
2382 goto repeat;
2383 }
2384
2385 jh = new_jh;
2386 new_jh = NULL; /* We consumed it */
2387 set_buffer_jbd(bh);
2388 bh->b_private = jh;
2389 jh->b_bh = bh;
2390 get_bh(bh);
2391 BUFFER_TRACE(bh, "added journal_head");
2392 }
2393 jh->b_jcount++;
2394 jbd_unlock_bh_journal_head(bh);
2395 if (new_jh)
2396 journal_free_journal_head(new_jh);
2397 return bh->b_private;
2398 }
2399
2400 /*
2401 * Grab a ref against this buffer_head's journal_head. If it ended up not
2402 * having a journal_head, return NULL
2403 */
2404 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2405 {
2406 struct journal_head *jh = NULL;
2407
2408 jbd_lock_bh_journal_head(bh);
2409 if (buffer_jbd(bh)) {
2410 jh = bh2jh(bh);
2411 jh->b_jcount++;
2412 }
2413 jbd_unlock_bh_journal_head(bh);
2414 return jh;
2415 }
2416
2417 static void __journal_remove_journal_head(struct buffer_head *bh)
2418 {
2419 struct journal_head *jh = bh2jh(bh);
2420
2421 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2422 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2423 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2424 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2425 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2426 J_ASSERT_BH(bh, buffer_jbd(bh));
2427 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2428 BUFFER_TRACE(bh, "remove journal_head");
2429 if (jh->b_frozen_data) {
2430 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2431 jbd2_free(jh->b_frozen_data, bh->b_size);
2432 }
2433 if (jh->b_committed_data) {
2434 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2435 jbd2_free(jh->b_committed_data, bh->b_size);
2436 }
2437 bh->b_private = NULL;
2438 jh->b_bh = NULL; /* debug, really */
2439 clear_buffer_jbd(bh);
2440 journal_free_journal_head(jh);
2441 }
2442
2443 /*
2444 * Drop a reference on the passed journal_head. If it fell to zero then
2445 * release the journal_head from the buffer_head.
2446 */
2447 void jbd2_journal_put_journal_head(struct journal_head *jh)
2448 {
2449 struct buffer_head *bh = jh2bh(jh);
2450
2451 jbd_lock_bh_journal_head(bh);
2452 J_ASSERT_JH(jh, jh->b_jcount > 0);
2453 --jh->b_jcount;
2454 if (!jh->b_jcount) {
2455 __journal_remove_journal_head(bh);
2456 jbd_unlock_bh_journal_head(bh);
2457 __brelse(bh);
2458 } else
2459 jbd_unlock_bh_journal_head(bh);
2460 }
2461
2462 /*
2463 * Initialize jbd inode head
2464 */
2465 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2466 {
2467 jinode->i_transaction = NULL;
2468 jinode->i_next_transaction = NULL;
2469 jinode->i_vfs_inode = inode;
2470 jinode->i_flags = 0;
2471 INIT_LIST_HEAD(&jinode->i_list);
2472 }
2473
2474 /*
2475 * Function to be called before we start removing inode from memory (i.e.,
2476 * clear_inode() is a fine place to be called from). It removes inode from
2477 * transaction's lists.
2478 */
2479 void jbd2_journal_release_jbd_inode(journal_t *journal,
2480 struct jbd2_inode *jinode)
2481 {
2482 if (!journal)
2483 return;
2484 restart:
2485 spin_lock(&journal->j_list_lock);
2486 /* Is commit writing out inode - we have to wait */
2487 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2488 wait_queue_head_t *wq;
2489 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2490 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2491 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2492 spin_unlock(&journal->j_list_lock);
2493 schedule();
2494 finish_wait(wq, &wait.wait);
2495 goto restart;
2496 }
2497
2498 if (jinode->i_transaction) {
2499 list_del(&jinode->i_list);
2500 jinode->i_transaction = NULL;
2501 }
2502 spin_unlock(&journal->j_list_lock);
2503 }
2504
2505
2506 #ifdef CONFIG_PROC_FS
2507
2508 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2509
2510 static void __init jbd2_create_jbd_stats_proc_entry(void)
2511 {
2512 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2513 }
2514
2515 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2516 {
2517 if (proc_jbd2_stats)
2518 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2519 }
2520
2521 #else
2522
2523 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2524 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2525
2526 #endif
2527
2528 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2529
2530 static int __init jbd2_journal_init_handle_cache(void)
2531 {
2532 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2533 if (jbd2_handle_cache == NULL) {
2534 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2535 return -ENOMEM;
2536 }
2537 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2538 if (jbd2_inode_cache == NULL) {
2539 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2540 kmem_cache_destroy(jbd2_handle_cache);
2541 return -ENOMEM;
2542 }
2543 return 0;
2544 }
2545
2546 static void jbd2_journal_destroy_handle_cache(void)
2547 {
2548 if (jbd2_handle_cache)
2549 kmem_cache_destroy(jbd2_handle_cache);
2550 if (jbd2_inode_cache)
2551 kmem_cache_destroy(jbd2_inode_cache);
2552
2553 }
2554
2555 /*
2556 * Module startup and shutdown
2557 */
2558
2559 static int __init journal_init_caches(void)
2560 {
2561 int ret;
2562
2563 ret = jbd2_journal_init_revoke_caches();
2564 if (ret == 0)
2565 ret = jbd2_journal_init_journal_head_cache();
2566 if (ret == 0)
2567 ret = jbd2_journal_init_handle_cache();
2568 if (ret == 0)
2569 ret = jbd2_journal_init_transaction_cache();
2570 return ret;
2571 }
2572
2573 static void jbd2_journal_destroy_caches(void)
2574 {
2575 jbd2_journal_destroy_revoke_caches();
2576 jbd2_journal_destroy_journal_head_cache();
2577 jbd2_journal_destroy_handle_cache();
2578 jbd2_journal_destroy_transaction_cache();
2579 jbd2_journal_destroy_slabs();
2580 }
2581
2582 static int __init journal_init(void)
2583 {
2584 int ret;
2585
2586 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2587
2588 ret = journal_init_caches();
2589 if (ret == 0) {
2590 jbd2_create_jbd_stats_proc_entry();
2591 } else {
2592 jbd2_journal_destroy_caches();
2593 }
2594 return ret;
2595 }
2596
2597 static void __exit journal_exit(void)
2598 {
2599 #ifdef CONFIG_JBD2_DEBUG
2600 int n = atomic_read(&nr_journal_heads);
2601 if (n)
2602 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2603 #endif
2604 jbd2_remove_jbd_stats_proc_entry();
2605 jbd2_journal_destroy_caches();
2606 }
2607
2608 MODULE_LICENSE("GPL");
2609 module_init(journal_init);
2610 module_exit(journal_exit);
2611