]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/jbd2/revoke.c
Merge tag 'pinctrl-v5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-jammy-kernel.git] / fs / jbd2 / revoke.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/revoke.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6 *
7 * Copyright 2000 Red Hat corp --- All Rights Reserved
8 *
9 * Journal revoke routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
11 *
12 * Revoke is the mechanism used to prevent old log records for deleted
13 * metadata from being replayed on top of newer data using the same
14 * blocks. The revoke mechanism is used in two separate places:
15 *
16 * + Commit: during commit we write the entire list of the current
17 * transaction's revoked blocks to the journal
18 *
19 * + Recovery: during recovery we record the transaction ID of all
20 * revoked blocks. If there are multiple revoke records in the log
21 * for a single block, only the last one counts, and if there is a log
22 * entry for a block beyond the last revoke, then that log entry still
23 * gets replayed.
24 *
25 * We can get interactions between revokes and new log data within a
26 * single transaction:
27 *
28 * Block is revoked and then journaled:
29 * The desired end result is the journaling of the new block, so we
30 * cancel the revoke before the transaction commits.
31 *
32 * Block is journaled and then revoked:
33 * The revoke must take precedence over the write of the block, so we
34 * need either to cancel the journal entry or to write the revoke
35 * later in the log than the log block. In this case, we choose the
36 * latter: journaling a block cancels any revoke record for that block
37 * in the current transaction, so any revoke for that block in the
38 * transaction must have happened after the block was journaled and so
39 * the revoke must take precedence.
40 *
41 * Block is revoked and then written as data:
42 * The data write is allowed to succeed, but the revoke is _not_
43 * cancelled. We still need to prevent old log records from
44 * overwriting the new data. We don't even need to clear the revoke
45 * bit here.
46 *
47 * We cache revoke status of a buffer in the current transaction in b_states
48 * bits. As the name says, revokevalid flag indicates that the cached revoke
49 * status of a buffer is valid and we can rely on the cached status.
50 *
51 * Revoke information on buffers is a tri-state value:
52 *
53 * RevokeValid clear: no cached revoke status, need to look it up
54 * RevokeValid set, Revoked clear:
55 * buffer has not been revoked, and cancel_revoke
56 * need do nothing.
57 * RevokeValid set, Revoked set:
58 * buffer has been revoked.
59 *
60 * Locking rules:
61 * We keep two hash tables of revoke records. One hashtable belongs to the
62 * running transaction (is pointed to by journal->j_revoke), the other one
63 * belongs to the committing transaction. Accesses to the second hash table
64 * happen only from the kjournald and no other thread touches this table. Also
65 * journal_switch_revoke_table() which switches which hashtable belongs to the
66 * running and which to the committing transaction is called only from
67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
68 * to the committing transaction.
69 *
70 * All users operating on the hash table belonging to the running transaction
71 * have a handle to the transaction. Therefore they are safe from kjournald
72 * switching hash tables under them. For operations on the lists of entries in
73 * the hash table j_revoke_lock is used.
74 *
75 * Finally, also replay code uses the hash tables but at this moment no one else
76 * can touch them (filesystem isn't mounted yet) and hence no locking is
77 * needed.
78 */
79
80 #ifndef __KERNEL__
81 #include "jfs_user.h"
82 #else
83 #include <linux/time.h>
84 #include <linux/fs.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
93 #endif
94
95 static struct kmem_cache *jbd2_revoke_record_cache;
96 static struct kmem_cache *jbd2_revoke_table_cache;
97
98 /* Each revoke record represents one single revoked block. During
99 journal replay, this involves recording the transaction ID of the
100 last transaction to revoke this block. */
101
102 struct jbd2_revoke_record_s
103 {
104 struct list_head hash;
105 tid_t sequence; /* Used for recovery only */
106 unsigned long long blocknr;
107 };
108
109
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
112 {
113 /* It is conceivable that we might want a larger hash table
114 * for recovery. Must be a power of two. */
115 int hash_size;
116 int hash_shift;
117 struct list_head *hash_table;
118 };
119
120
121 #ifdef __KERNEL__
122 static void write_one_revoke_record(transaction_t *,
123 struct list_head *,
124 struct buffer_head **, int *,
125 struct jbd2_revoke_record_s *);
126 static void flush_descriptor(journal_t *, struct buffer_head *, int);
127 #endif
128
129 /* Utility functions to maintain the revoke table */
130
131 static inline int hash(journal_t *journal, unsigned long long block)
132 {
133 return hash_64(block, journal->j_revoke->hash_shift);
134 }
135
136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137 tid_t seq)
138 {
139 struct list_head *hash_list;
140 struct jbd2_revoke_record_s *record;
141 gfp_t gfp_mask = GFP_NOFS;
142
143 if (journal_oom_retry)
144 gfp_mask |= __GFP_NOFAIL;
145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146 if (!record)
147 return -ENOMEM;
148
149 record->sequence = seq;
150 record->blocknr = blocknr;
151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 spin_lock(&journal->j_revoke_lock);
153 list_add(&record->hash, hash_list);
154 spin_unlock(&journal->j_revoke_lock);
155 return 0;
156 }
157
158 /* Find a revoke record in the journal's hash table. */
159
160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161 unsigned long long blocknr)
162 {
163 struct list_head *hash_list;
164 struct jbd2_revoke_record_s *record;
165
166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
167
168 spin_lock(&journal->j_revoke_lock);
169 record = (struct jbd2_revoke_record_s *) hash_list->next;
170 while (&(record->hash) != hash_list) {
171 if (record->blocknr == blocknr) {
172 spin_unlock(&journal->j_revoke_lock);
173 return record;
174 }
175 record = (struct jbd2_revoke_record_s *) record->hash.next;
176 }
177 spin_unlock(&journal->j_revoke_lock);
178 return NULL;
179 }
180
181 void jbd2_journal_destroy_revoke_record_cache(void)
182 {
183 kmem_cache_destroy(jbd2_revoke_record_cache);
184 jbd2_revoke_record_cache = NULL;
185 }
186
187 void jbd2_journal_destroy_revoke_table_cache(void)
188 {
189 kmem_cache_destroy(jbd2_revoke_table_cache);
190 jbd2_revoke_table_cache = NULL;
191 }
192
193 int __init jbd2_journal_init_revoke_record_cache(void)
194 {
195 J_ASSERT(!jbd2_revoke_record_cache);
196 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
197 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
198
199 if (!jbd2_revoke_record_cache) {
200 pr_emerg("JBD2: failed to create revoke_record cache\n");
201 return -ENOMEM;
202 }
203 return 0;
204 }
205
206 int __init jbd2_journal_init_revoke_table_cache(void)
207 {
208 J_ASSERT(!jbd2_revoke_table_cache);
209 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
210 SLAB_TEMPORARY);
211 if (!jbd2_revoke_table_cache) {
212 pr_emerg("JBD2: failed to create revoke_table cache\n");
213 return -ENOMEM;
214 }
215 return 0;
216 }
217
218 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
219 {
220 int shift = 0;
221 int tmp = hash_size;
222 struct jbd2_revoke_table_s *table;
223
224 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
225 if (!table)
226 goto out;
227
228 while((tmp >>= 1UL) != 0UL)
229 shift++;
230
231 table->hash_size = hash_size;
232 table->hash_shift = shift;
233 table->hash_table =
234 kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL);
235 if (!table->hash_table) {
236 kmem_cache_free(jbd2_revoke_table_cache, table);
237 table = NULL;
238 goto out;
239 }
240
241 for (tmp = 0; tmp < hash_size; tmp++)
242 INIT_LIST_HEAD(&table->hash_table[tmp]);
243
244 out:
245 return table;
246 }
247
248 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
249 {
250 int i;
251 struct list_head *hash_list;
252
253 for (i = 0; i < table->hash_size; i++) {
254 hash_list = &table->hash_table[i];
255 J_ASSERT(list_empty(hash_list));
256 }
257
258 kfree(table->hash_table);
259 kmem_cache_free(jbd2_revoke_table_cache, table);
260 }
261
262 /* Initialise the revoke table for a given journal to a given size. */
263 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
264 {
265 J_ASSERT(journal->j_revoke_table[0] == NULL);
266 J_ASSERT(is_power_of_2(hash_size));
267
268 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
269 if (!journal->j_revoke_table[0])
270 goto fail0;
271
272 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
273 if (!journal->j_revoke_table[1])
274 goto fail1;
275
276 journal->j_revoke = journal->j_revoke_table[1];
277
278 spin_lock_init(&journal->j_revoke_lock);
279
280 return 0;
281
282 fail1:
283 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
284 journal->j_revoke_table[0] = NULL;
285 fail0:
286 return -ENOMEM;
287 }
288
289 /* Destroy a journal's revoke table. The table must already be empty! */
290 void jbd2_journal_destroy_revoke(journal_t *journal)
291 {
292 journal->j_revoke = NULL;
293 if (journal->j_revoke_table[0])
294 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
295 if (journal->j_revoke_table[1])
296 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
297 }
298
299
300 #ifdef __KERNEL__
301
302 /*
303 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
304 * prevents the block from being replayed during recovery if we take a
305 * crash after this current transaction commits. Any subsequent
306 * metadata writes of the buffer in this transaction cancel the
307 * revoke.
308 *
309 * Note that this call may block --- it is up to the caller to make
310 * sure that there are no further calls to journal_write_metadata
311 * before the revoke is complete. In ext3, this implies calling the
312 * revoke before clearing the block bitmap when we are deleting
313 * metadata.
314 *
315 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
316 * parameter, but does _not_ forget the buffer_head if the bh was only
317 * found implicitly.
318 *
319 * bh_in may not be a journalled buffer - it may have come off
320 * the hash tables without an attached journal_head.
321 *
322 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
323 * by one.
324 */
325
326 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
327 struct buffer_head *bh_in)
328 {
329 struct buffer_head *bh = NULL;
330 journal_t *journal;
331 struct block_device *bdev;
332 int err;
333
334 might_sleep();
335 if (bh_in)
336 BUFFER_TRACE(bh_in, "enter");
337
338 journal = handle->h_transaction->t_journal;
339 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
340 J_ASSERT (!"Cannot set revoke feature!");
341 return -EINVAL;
342 }
343
344 bdev = journal->j_fs_dev;
345 bh = bh_in;
346
347 if (!bh) {
348 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
349 if (bh)
350 BUFFER_TRACE(bh, "found on hash");
351 }
352 #ifdef JBD2_EXPENSIVE_CHECKING
353 else {
354 struct buffer_head *bh2;
355
356 /* If there is a different buffer_head lying around in
357 * memory anywhere... */
358 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
359 if (bh2) {
360 /* ... and it has RevokeValid status... */
361 if (bh2 != bh && buffer_revokevalid(bh2))
362 /* ...then it better be revoked too,
363 * since it's illegal to create a revoke
364 * record against a buffer_head which is
365 * not marked revoked --- that would
366 * risk missing a subsequent revoke
367 * cancel. */
368 J_ASSERT_BH(bh2, buffer_revoked(bh2));
369 put_bh(bh2);
370 }
371 }
372 #endif
373
374 /* We really ought not ever to revoke twice in a row without
375 first having the revoke cancelled: it's illegal to free a
376 block twice without allocating it in between! */
377 if (bh) {
378 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
379 "inconsistent data on disk")) {
380 if (!bh_in)
381 brelse(bh);
382 return -EIO;
383 }
384 set_buffer_revoked(bh);
385 set_buffer_revokevalid(bh);
386 if (bh_in) {
387 BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
388 jbd2_journal_forget(handle, bh_in);
389 } else {
390 BUFFER_TRACE(bh, "call brelse");
391 __brelse(bh);
392 }
393 }
394
395 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
396 err = insert_revoke_hash(journal, blocknr,
397 handle->h_transaction->t_tid);
398 BUFFER_TRACE(bh_in, "exit");
399 return err;
400 }
401
402 /*
403 * Cancel an outstanding revoke. For use only internally by the
404 * journaling code (called from jbd2_journal_get_write_access).
405 *
406 * We trust buffer_revoked() on the buffer if the buffer is already
407 * being journaled: if there is no revoke pending on the buffer, then we
408 * don't do anything here.
409 *
410 * This would break if it were possible for a buffer to be revoked and
411 * discarded, and then reallocated within the same transaction. In such
412 * a case we would have lost the revoked bit, but when we arrived here
413 * the second time we would still have a pending revoke to cancel. So,
414 * do not trust the Revoked bit on buffers unless RevokeValid is also
415 * set.
416 */
417 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
418 {
419 struct jbd2_revoke_record_s *record;
420 journal_t *journal = handle->h_transaction->t_journal;
421 int need_cancel;
422 int did_revoke = 0; /* akpm: debug */
423 struct buffer_head *bh = jh2bh(jh);
424
425 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
426
427 /* Is the existing Revoke bit valid? If so, we trust it, and
428 * only perform the full cancel if the revoke bit is set. If
429 * not, we can't trust the revoke bit, and we need to do the
430 * full search for a revoke record. */
431 if (test_set_buffer_revokevalid(bh)) {
432 need_cancel = test_clear_buffer_revoked(bh);
433 } else {
434 need_cancel = 1;
435 clear_buffer_revoked(bh);
436 }
437
438 if (need_cancel) {
439 record = find_revoke_record(journal, bh->b_blocknr);
440 if (record) {
441 jbd_debug(4, "cancelled existing revoke on "
442 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
443 spin_lock(&journal->j_revoke_lock);
444 list_del(&record->hash);
445 spin_unlock(&journal->j_revoke_lock);
446 kmem_cache_free(jbd2_revoke_record_cache, record);
447 did_revoke = 1;
448 }
449 }
450
451 #ifdef JBD2_EXPENSIVE_CHECKING
452 /* There better not be one left behind by now! */
453 record = find_revoke_record(journal, bh->b_blocknr);
454 J_ASSERT_JH(jh, record == NULL);
455 #endif
456
457 /* Finally, have we just cleared revoke on an unhashed
458 * buffer_head? If so, we'd better make sure we clear the
459 * revoked status on any hashed alias too, otherwise the revoke
460 * state machine will get very upset later on. */
461 if (need_cancel) {
462 struct buffer_head *bh2;
463 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
464 if (bh2) {
465 if (bh2 != bh)
466 clear_buffer_revoked(bh2);
467 __brelse(bh2);
468 }
469 }
470 return did_revoke;
471 }
472
473 /*
474 * journal_clear_revoked_flag clears revoked flag of buffers in
475 * revoke table to reflect there is no revoked buffers in the next
476 * transaction which is going to be started.
477 */
478 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
479 {
480 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
481 int i = 0;
482
483 for (i = 0; i < revoke->hash_size; i++) {
484 struct list_head *hash_list;
485 struct list_head *list_entry;
486 hash_list = &revoke->hash_table[i];
487
488 list_for_each(list_entry, hash_list) {
489 struct jbd2_revoke_record_s *record;
490 struct buffer_head *bh;
491 record = (struct jbd2_revoke_record_s *)list_entry;
492 bh = __find_get_block(journal->j_fs_dev,
493 record->blocknr,
494 journal->j_blocksize);
495 if (bh) {
496 clear_buffer_revoked(bh);
497 __brelse(bh);
498 }
499 }
500 }
501 }
502
503 /* journal_switch_revoke table select j_revoke for next transaction
504 * we do not want to suspend any processing until all revokes are
505 * written -bzzz
506 */
507 void jbd2_journal_switch_revoke_table(journal_t *journal)
508 {
509 int i;
510
511 if (journal->j_revoke == journal->j_revoke_table[0])
512 journal->j_revoke = journal->j_revoke_table[1];
513 else
514 journal->j_revoke = journal->j_revoke_table[0];
515
516 for (i = 0; i < journal->j_revoke->hash_size; i++)
517 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
518 }
519
520 /*
521 * Write revoke records to the journal for all entries in the current
522 * revoke hash, deleting the entries as we go.
523 */
524 void jbd2_journal_write_revoke_records(transaction_t *transaction,
525 struct list_head *log_bufs)
526 {
527 journal_t *journal = transaction->t_journal;
528 struct buffer_head *descriptor;
529 struct jbd2_revoke_record_s *record;
530 struct jbd2_revoke_table_s *revoke;
531 struct list_head *hash_list;
532 int i, offset, count;
533
534 descriptor = NULL;
535 offset = 0;
536 count = 0;
537
538 /* select revoke table for committing transaction */
539 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
540 journal->j_revoke_table[1] : journal->j_revoke_table[0];
541
542 for (i = 0; i < revoke->hash_size; i++) {
543 hash_list = &revoke->hash_table[i];
544
545 while (!list_empty(hash_list)) {
546 record = (struct jbd2_revoke_record_s *)
547 hash_list->next;
548 write_one_revoke_record(transaction, log_bufs,
549 &descriptor, &offset, record);
550 count++;
551 list_del(&record->hash);
552 kmem_cache_free(jbd2_revoke_record_cache, record);
553 }
554 }
555 if (descriptor)
556 flush_descriptor(journal, descriptor, offset);
557 jbd_debug(1, "Wrote %d revoke records\n", count);
558 }
559
560 /*
561 * Write out one revoke record. We need to create a new descriptor
562 * block if the old one is full or if we have not already created one.
563 */
564
565 static void write_one_revoke_record(transaction_t *transaction,
566 struct list_head *log_bufs,
567 struct buffer_head **descriptorp,
568 int *offsetp,
569 struct jbd2_revoke_record_s *record)
570 {
571 journal_t *journal = transaction->t_journal;
572 int csum_size = 0;
573 struct buffer_head *descriptor;
574 int sz, offset;
575
576 /* If we are already aborting, this all becomes a noop. We
577 still need to go round the loop in
578 jbd2_journal_write_revoke_records in order to free all of the
579 revoke records: only the IO to the journal is omitted. */
580 if (is_journal_aborted(journal))
581 return;
582
583 descriptor = *descriptorp;
584 offset = *offsetp;
585
586 /* Do we need to leave space at the end for a checksum? */
587 if (jbd2_journal_has_csum_v2or3(journal))
588 csum_size = sizeof(struct jbd2_journal_block_tail);
589
590 if (jbd2_has_feature_64bit(journal))
591 sz = 8;
592 else
593 sz = 4;
594
595 /* Make sure we have a descriptor with space left for the record */
596 if (descriptor) {
597 if (offset + sz > journal->j_blocksize - csum_size) {
598 flush_descriptor(journal, descriptor, offset);
599 descriptor = NULL;
600 }
601 }
602
603 if (!descriptor) {
604 descriptor = jbd2_journal_get_descriptor_buffer(transaction,
605 JBD2_REVOKE_BLOCK);
606 if (!descriptor)
607 return;
608
609 /* Record it so that we can wait for IO completion later */
610 BUFFER_TRACE(descriptor, "file in log_bufs");
611 jbd2_file_log_bh(log_bufs, descriptor);
612
613 offset = sizeof(jbd2_journal_revoke_header_t);
614 *descriptorp = descriptor;
615 }
616
617 if (jbd2_has_feature_64bit(journal))
618 * ((__be64 *)(&descriptor->b_data[offset])) =
619 cpu_to_be64(record->blocknr);
620 else
621 * ((__be32 *)(&descriptor->b_data[offset])) =
622 cpu_to_be32(record->blocknr);
623 offset += sz;
624
625 *offsetp = offset;
626 }
627
628 /*
629 * Flush a revoke descriptor out to the journal. If we are aborting,
630 * this is a noop; otherwise we are generating a buffer which needs to
631 * be waited for during commit, so it has to go onto the appropriate
632 * journal buffer list.
633 */
634
635 static void flush_descriptor(journal_t *journal,
636 struct buffer_head *descriptor,
637 int offset)
638 {
639 jbd2_journal_revoke_header_t *header;
640
641 if (is_journal_aborted(journal)) {
642 put_bh(descriptor);
643 return;
644 }
645
646 header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
647 header->r_count = cpu_to_be32(offset);
648 jbd2_descriptor_block_csum_set(journal, descriptor);
649
650 set_buffer_jwrite(descriptor);
651 BUFFER_TRACE(descriptor, "write");
652 set_buffer_dirty(descriptor);
653 write_dirty_buffer(descriptor, REQ_SYNC);
654 }
655 #endif
656
657 /*
658 * Revoke support for recovery.
659 *
660 * Recovery needs to be able to:
661 *
662 * record all revoke records, including the tid of the latest instance
663 * of each revoke in the journal
664 *
665 * check whether a given block in a given transaction should be replayed
666 * (ie. has not been revoked by a revoke record in that or a subsequent
667 * transaction)
668 *
669 * empty the revoke table after recovery.
670 */
671
672 /*
673 * First, setting revoke records. We create a new revoke record for
674 * every block ever revoked in the log as we scan it for recovery, and
675 * we update the existing records if we find multiple revokes for a
676 * single block.
677 */
678
679 int jbd2_journal_set_revoke(journal_t *journal,
680 unsigned long long blocknr,
681 tid_t sequence)
682 {
683 struct jbd2_revoke_record_s *record;
684
685 record = find_revoke_record(journal, blocknr);
686 if (record) {
687 /* If we have multiple occurrences, only record the
688 * latest sequence number in the hashed record */
689 if (tid_gt(sequence, record->sequence))
690 record->sequence = sequence;
691 return 0;
692 }
693 return insert_revoke_hash(journal, blocknr, sequence);
694 }
695
696 /*
697 * Test revoke records. For a given block referenced in the log, has
698 * that block been revoked? A revoke record with a given transaction
699 * sequence number revokes all blocks in that transaction and earlier
700 * ones, but later transactions still need replayed.
701 */
702
703 int jbd2_journal_test_revoke(journal_t *journal,
704 unsigned long long blocknr,
705 tid_t sequence)
706 {
707 struct jbd2_revoke_record_s *record;
708
709 record = find_revoke_record(journal, blocknr);
710 if (!record)
711 return 0;
712 if (tid_gt(sequence, record->sequence))
713 return 0;
714 return 1;
715 }
716
717 /*
718 * Finally, once recovery is over, we need to clear the revoke table so
719 * that it can be reused by the running filesystem.
720 */
721
722 void jbd2_journal_clear_revoke(journal_t *journal)
723 {
724 int i;
725 struct list_head *hash_list;
726 struct jbd2_revoke_record_s *record;
727 struct jbd2_revoke_table_s *revoke;
728
729 revoke = journal->j_revoke;
730
731 for (i = 0; i < revoke->hash_size; i++) {
732 hash_list = &revoke->hash_table[i];
733 while (!list_empty(hash_list)) {
734 record = (struct jbd2_revoke_record_s*) hash_list->next;
735 list_del(&record->hash);
736 kmem_cache_free(jbd2_revoke_record_cache, record);
737 }
738 }
739 }