]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/jbd2/transaction.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-artful-kernel.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
94 atomic_set(&transaction->t_handle_count, 0);
95 INIT_LIST_HEAD(&transaction->t_inode_list);
96 INIT_LIST_HEAD(&transaction->t_private_list);
97
98 /* Set up the commit timer for the new transaction. */
99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
106 transaction->t_requested = 0;
107
108 return transaction;
109 }
110
111 /*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119 /*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141 #endif
142 }
143
144 /*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149 static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151 {
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
162 schedule();
163 finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 atomic_sub(blocks, &journal->j_reserved_credits);
169 wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173 * Wait until we can add credits for handle to the running transaction. Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 int rsv_blocks)
180 {
181 transaction_t *t = journal->j_running_transaction;
182 int needed;
183 int total = blocks + rsv_blocks;
184
185 /*
186 * If the current transaction is locked down for commit, wait
187 * for the lock to be released.
188 */
189 if (t->t_state == T_LOCKED) {
190 wait_transaction_locked(journal);
191 return 1;
192 }
193
194 /*
195 * If there is not enough space left in the log to write all
196 * potential buffers requested by this operation, we need to
197 * stall pending a log checkpoint to free some more log space.
198 */
199 needed = atomic_add_return(total, &t->t_outstanding_credits);
200 if (needed > journal->j_max_transaction_buffers) {
201 /*
202 * If the current transaction is already too large,
203 * then start to commit it: we can then go back and
204 * attach this handle to a new transaction.
205 */
206 atomic_sub(total, &t->t_outstanding_credits);
207
208 /*
209 * Is the number of reserved credits in the current transaction too
210 * big to fit this handle? Wait until reserved credits are freed.
211 */
212 if (atomic_read(&journal->j_reserved_credits) + total >
213 journal->j_max_transaction_buffers) {
214 read_unlock(&journal->j_state_lock);
215 wait_event(journal->j_wait_reserved,
216 atomic_read(&journal->j_reserved_credits) + total <=
217 journal->j_max_transaction_buffers);
218 return 1;
219 }
220
221 wait_transaction_locked(journal);
222 return 1;
223 }
224
225 /*
226 * The commit code assumes that it can get enough log space
227 * without forcing a checkpoint. This is *critical* for
228 * correctness: a checkpoint of a buffer which is also
229 * associated with a committing transaction creates a deadlock,
230 * so commit simply cannot force through checkpoints.
231 *
232 * We must therefore ensure the necessary space in the journal
233 * *before* starting to dirty potentially checkpointed buffers
234 * in the new transaction.
235 */
236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 atomic_sub(total, &t->t_outstanding_credits);
238 read_unlock(&journal->j_state_lock);
239 write_lock(&journal->j_state_lock);
240 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
241 __jbd2_log_wait_for_space(journal);
242 write_unlock(&journal->j_state_lock);
243 return 1;
244 }
245
246 /* No reservation? We are done... */
247 if (!rsv_blocks)
248 return 0;
249
250 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
251 /* We allow at most half of a transaction to be reserved */
252 if (needed > journal->j_max_transaction_buffers / 2) {
253 sub_reserved_credits(journal, rsv_blocks);
254 atomic_sub(total, &t->t_outstanding_credits);
255 read_unlock(&journal->j_state_lock);
256 wait_event(journal->j_wait_reserved,
257 atomic_read(&journal->j_reserved_credits) + rsv_blocks
258 <= journal->j_max_transaction_buffers / 2);
259 return 1;
260 }
261 return 0;
262 }
263
264 /*
265 * start_this_handle: Given a handle, deal with any locking or stalling
266 * needed to make sure that there is enough journal space for the handle
267 * to begin. Attach the handle to a transaction and set up the
268 * transaction's buffer credits.
269 */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272 gfp_t gfp_mask)
273 {
274 transaction_t *transaction, *new_transaction = NULL;
275 int blocks = handle->h_buffer_credits;
276 int rsv_blocks = 0;
277 unsigned long ts = jiffies;
278
279 if (handle->h_rsv_handle)
280 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282 /*
283 * Limit the number of reserved credits to 1/2 of maximum transaction
284 * size and limit the number of total credits to not exceed maximum
285 * transaction size per operation.
286 */
287 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289 printk(KERN_ERR "JBD2: %s wants too many credits "
290 "credits:%d rsv_credits:%d max:%d\n",
291 current->comm, blocks, rsv_blocks,
292 journal->j_max_transaction_buffers);
293 WARN_ON(1);
294 return -ENOSPC;
295 }
296
297 alloc_transaction:
298 if (!journal->j_running_transaction) {
299 /*
300 * If __GFP_FS is not present, then we may be being called from
301 * inside the fs writeback layer, so we MUST NOT fail.
302 */
303 if ((gfp_mask & __GFP_FS) == 0)
304 gfp_mask |= __GFP_NOFAIL;
305 new_transaction = kmem_cache_zalloc(transaction_cache,
306 gfp_mask);
307 if (!new_transaction)
308 return -ENOMEM;
309 }
310
311 jbd_debug(3, "New handle %p going live.\n", handle);
312
313 /*
314 * We need to hold j_state_lock until t_updates has been incremented,
315 * for proper journal barrier handling
316 */
317 repeat:
318 read_lock(&journal->j_state_lock);
319 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320 if (is_journal_aborted(journal) ||
321 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322 read_unlock(&journal->j_state_lock);
323 jbd2_journal_free_transaction(new_transaction);
324 return -EROFS;
325 }
326
327 /*
328 * Wait on the journal's transaction barrier if necessary. Specifically
329 * we allow reserved handles to proceed because otherwise commit could
330 * deadlock on page writeback not being able to complete.
331 */
332 if (!handle->h_reserved && journal->j_barrier_count) {
333 read_unlock(&journal->j_state_lock);
334 wait_event(journal->j_wait_transaction_locked,
335 journal->j_barrier_count == 0);
336 goto repeat;
337 }
338
339 if (!journal->j_running_transaction) {
340 read_unlock(&journal->j_state_lock);
341 if (!new_transaction)
342 goto alloc_transaction;
343 write_lock(&journal->j_state_lock);
344 if (!journal->j_running_transaction &&
345 (handle->h_reserved || !journal->j_barrier_count)) {
346 jbd2_get_transaction(journal, new_transaction);
347 new_transaction = NULL;
348 }
349 write_unlock(&journal->j_state_lock);
350 goto repeat;
351 }
352
353 transaction = journal->j_running_transaction;
354
355 if (!handle->h_reserved) {
356 /* We may have dropped j_state_lock - restart in that case */
357 if (add_transaction_credits(journal, blocks, rsv_blocks))
358 goto repeat;
359 } else {
360 /*
361 * We have handle reserved so we are allowed to join T_LOCKED
362 * transaction and we don't have to check for transaction size
363 * and journal space.
364 */
365 sub_reserved_credits(journal, blocks);
366 handle->h_reserved = 0;
367 }
368
369 /* OK, account for the buffers that this operation expects to
370 * use and add the handle to the running transaction.
371 */
372 update_t_max_wait(transaction, ts);
373 handle->h_transaction = transaction;
374 handle->h_requested_credits = blocks;
375 handle->h_start_jiffies = jiffies;
376 atomic_inc(&transaction->t_updates);
377 atomic_inc(&transaction->t_handle_count);
378 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379 handle, blocks,
380 atomic_read(&transaction->t_outstanding_credits),
381 jbd2_log_space_left(journal));
382 read_unlock(&journal->j_state_lock);
383 current->journal_info = handle;
384
385 lock_map_acquire(&handle->h_lockdep_map);
386 jbd2_journal_free_transaction(new_transaction);
387 return 0;
388 }
389
390 static struct lock_class_key jbd2_handle_key;
391
392 /* Allocate a new handle. This should probably be in a slab... */
393 static handle_t *new_handle(int nblocks)
394 {
395 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
396 if (!handle)
397 return NULL;
398 handle->h_buffer_credits = nblocks;
399 handle->h_ref = 1;
400
401 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
402 &jbd2_handle_key, 0);
403
404 return handle;
405 }
406
407 /**
408 * handle_t *jbd2_journal_start() - Obtain a new handle.
409 * @journal: Journal to start transaction on.
410 * @nblocks: number of block buffer we might modify
411 *
412 * We make sure that the transaction can guarantee at least nblocks of
413 * modified buffers in the log. We block until the log can guarantee
414 * that much space. Additionally, if rsv_blocks > 0, we also create another
415 * handle with rsv_blocks reserved blocks in the journal. This handle is
416 * is stored in h_rsv_handle. It is not attached to any particular transaction
417 * and thus doesn't block transaction commit. If the caller uses this reserved
418 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
419 * on the parent handle will dispose the reserved one. Reserved handle has to
420 * be converted to a normal handle using jbd2_journal_start_reserved() before
421 * it can be used.
422 *
423 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
424 * on failure.
425 */
426 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
427 gfp_t gfp_mask, unsigned int type,
428 unsigned int line_no)
429 {
430 handle_t *handle = journal_current_handle();
431 int err;
432
433 if (!journal)
434 return ERR_PTR(-EROFS);
435
436 if (handle) {
437 J_ASSERT(handle->h_transaction->t_journal == journal);
438 handle->h_ref++;
439 return handle;
440 }
441
442 handle = new_handle(nblocks);
443 if (!handle)
444 return ERR_PTR(-ENOMEM);
445 if (rsv_blocks) {
446 handle_t *rsv_handle;
447
448 rsv_handle = new_handle(rsv_blocks);
449 if (!rsv_handle) {
450 jbd2_free_handle(handle);
451 return ERR_PTR(-ENOMEM);
452 }
453 rsv_handle->h_reserved = 1;
454 rsv_handle->h_journal = journal;
455 handle->h_rsv_handle = rsv_handle;
456 }
457
458 err = start_this_handle(journal, handle, gfp_mask);
459 if (err < 0) {
460 if (handle->h_rsv_handle)
461 jbd2_free_handle(handle->h_rsv_handle);
462 jbd2_free_handle(handle);
463 return ERR_PTR(err);
464 }
465 handle->h_type = type;
466 handle->h_line_no = line_no;
467 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
468 handle->h_transaction->t_tid, type,
469 line_no, nblocks);
470 return handle;
471 }
472 EXPORT_SYMBOL(jbd2__journal_start);
473
474
475 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
476 {
477 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
478 }
479 EXPORT_SYMBOL(jbd2_journal_start);
480
481 void jbd2_journal_free_reserved(handle_t *handle)
482 {
483 journal_t *journal = handle->h_journal;
484
485 WARN_ON(!handle->h_reserved);
486 sub_reserved_credits(journal, handle->h_buffer_credits);
487 jbd2_free_handle(handle);
488 }
489 EXPORT_SYMBOL(jbd2_journal_free_reserved);
490
491 /**
492 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
493 * @handle: handle to start
494 *
495 * Start handle that has been previously reserved with jbd2_journal_reserve().
496 * This attaches @handle to the running transaction (or creates one if there's
497 * not transaction running). Unlike jbd2_journal_start() this function cannot
498 * block on journal commit, checkpointing, or similar stuff. It can block on
499 * memory allocation or frozen journal though.
500 *
501 * Return 0 on success, non-zero on error - handle is freed in that case.
502 */
503 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
504 unsigned int line_no)
505 {
506 journal_t *journal = handle->h_journal;
507 int ret = -EIO;
508
509 if (WARN_ON(!handle->h_reserved)) {
510 /* Someone passed in normal handle? Just stop it. */
511 jbd2_journal_stop(handle);
512 return ret;
513 }
514 /*
515 * Usefulness of mixing of reserved and unreserved handles is
516 * questionable. So far nobody seems to need it so just error out.
517 */
518 if (WARN_ON(current->journal_info)) {
519 jbd2_journal_free_reserved(handle);
520 return ret;
521 }
522
523 handle->h_journal = NULL;
524 /*
525 * GFP_NOFS is here because callers are likely from writeback or
526 * similarly constrained call sites
527 */
528 ret = start_this_handle(journal, handle, GFP_NOFS);
529 if (ret < 0) {
530 jbd2_journal_free_reserved(handle);
531 return ret;
532 }
533 handle->h_type = type;
534 handle->h_line_no = line_no;
535 return 0;
536 }
537 EXPORT_SYMBOL(jbd2_journal_start_reserved);
538
539 /**
540 * int jbd2_journal_extend() - extend buffer credits.
541 * @handle: handle to 'extend'
542 * @nblocks: nr blocks to try to extend by.
543 *
544 * Some transactions, such as large extends and truncates, can be done
545 * atomically all at once or in several stages. The operation requests
546 * a credit for a number of buffer modications in advance, but can
547 * extend its credit if it needs more.
548 *
549 * jbd2_journal_extend tries to give the running handle more buffer credits.
550 * It does not guarantee that allocation - this is a best-effort only.
551 * The calling process MUST be able to deal cleanly with a failure to
552 * extend here.
553 *
554 * Return 0 on success, non-zero on failure.
555 *
556 * return code < 0 implies an error
557 * return code > 0 implies normal transaction-full status.
558 */
559 int jbd2_journal_extend(handle_t *handle, int nblocks)
560 {
561 transaction_t *transaction = handle->h_transaction;
562 journal_t *journal;
563 int result;
564 int wanted;
565
566 if (is_handle_aborted(handle))
567 return -EROFS;
568 journal = transaction->t_journal;
569
570 result = 1;
571
572 read_lock(&journal->j_state_lock);
573
574 /* Don't extend a locked-down transaction! */
575 if (transaction->t_state != T_RUNNING) {
576 jbd_debug(3, "denied handle %p %d blocks: "
577 "transaction not running\n", handle, nblocks);
578 goto error_out;
579 }
580
581 spin_lock(&transaction->t_handle_lock);
582 wanted = atomic_add_return(nblocks,
583 &transaction->t_outstanding_credits);
584
585 if (wanted > journal->j_max_transaction_buffers) {
586 jbd_debug(3, "denied handle %p %d blocks: "
587 "transaction too large\n", handle, nblocks);
588 atomic_sub(nblocks, &transaction->t_outstanding_credits);
589 goto unlock;
590 }
591
592 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
593 jbd2_log_space_left(journal)) {
594 jbd_debug(3, "denied handle %p %d blocks: "
595 "insufficient log space\n", handle, nblocks);
596 atomic_sub(nblocks, &transaction->t_outstanding_credits);
597 goto unlock;
598 }
599
600 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
601 transaction->t_tid,
602 handle->h_type, handle->h_line_no,
603 handle->h_buffer_credits,
604 nblocks);
605
606 handle->h_buffer_credits += nblocks;
607 handle->h_requested_credits += nblocks;
608 result = 0;
609
610 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
611 unlock:
612 spin_unlock(&transaction->t_handle_lock);
613 error_out:
614 read_unlock(&journal->j_state_lock);
615 return result;
616 }
617
618
619 /**
620 * int jbd2_journal_restart() - restart a handle .
621 * @handle: handle to restart
622 * @nblocks: nr credits requested
623 *
624 * Restart a handle for a multi-transaction filesystem
625 * operation.
626 *
627 * If the jbd2_journal_extend() call above fails to grant new buffer credits
628 * to a running handle, a call to jbd2_journal_restart will commit the
629 * handle's transaction so far and reattach the handle to a new
630 * transaction capabable of guaranteeing the requested number of
631 * credits. We preserve reserved handle if there's any attached to the
632 * passed in handle.
633 */
634 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
635 {
636 transaction_t *transaction = handle->h_transaction;
637 journal_t *journal;
638 tid_t tid;
639 int need_to_start, ret;
640
641 /* If we've had an abort of any type, don't even think about
642 * actually doing the restart! */
643 if (is_handle_aborted(handle))
644 return 0;
645 journal = transaction->t_journal;
646
647 /*
648 * First unlink the handle from its current transaction, and start the
649 * commit on that.
650 */
651 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
652 J_ASSERT(journal_current_handle() == handle);
653
654 read_lock(&journal->j_state_lock);
655 spin_lock(&transaction->t_handle_lock);
656 atomic_sub(handle->h_buffer_credits,
657 &transaction->t_outstanding_credits);
658 if (handle->h_rsv_handle) {
659 sub_reserved_credits(journal,
660 handle->h_rsv_handle->h_buffer_credits);
661 }
662 if (atomic_dec_and_test(&transaction->t_updates))
663 wake_up(&journal->j_wait_updates);
664 tid = transaction->t_tid;
665 spin_unlock(&transaction->t_handle_lock);
666 handle->h_transaction = NULL;
667 current->journal_info = NULL;
668
669 jbd_debug(2, "restarting handle %p\n", handle);
670 need_to_start = !tid_geq(journal->j_commit_request, tid);
671 read_unlock(&journal->j_state_lock);
672 if (need_to_start)
673 jbd2_log_start_commit(journal, tid);
674
675 lock_map_release(&handle->h_lockdep_map);
676 handle->h_buffer_credits = nblocks;
677 ret = start_this_handle(journal, handle, gfp_mask);
678 return ret;
679 }
680 EXPORT_SYMBOL(jbd2__journal_restart);
681
682
683 int jbd2_journal_restart(handle_t *handle, int nblocks)
684 {
685 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
686 }
687 EXPORT_SYMBOL(jbd2_journal_restart);
688
689 /**
690 * void jbd2_journal_lock_updates () - establish a transaction barrier.
691 * @journal: Journal to establish a barrier on.
692 *
693 * This locks out any further updates from being started, and blocks
694 * until all existing updates have completed, returning only once the
695 * journal is in a quiescent state with no updates running.
696 *
697 * The journal lock should not be held on entry.
698 */
699 void jbd2_journal_lock_updates(journal_t *journal)
700 {
701 DEFINE_WAIT(wait);
702
703 write_lock(&journal->j_state_lock);
704 ++journal->j_barrier_count;
705
706 /* Wait until there are no reserved handles */
707 if (atomic_read(&journal->j_reserved_credits)) {
708 write_unlock(&journal->j_state_lock);
709 wait_event(journal->j_wait_reserved,
710 atomic_read(&journal->j_reserved_credits) == 0);
711 write_lock(&journal->j_state_lock);
712 }
713
714 /* Wait until there are no running updates */
715 while (1) {
716 transaction_t *transaction = journal->j_running_transaction;
717
718 if (!transaction)
719 break;
720
721 spin_lock(&transaction->t_handle_lock);
722 prepare_to_wait(&journal->j_wait_updates, &wait,
723 TASK_UNINTERRUPTIBLE);
724 if (!atomic_read(&transaction->t_updates)) {
725 spin_unlock(&transaction->t_handle_lock);
726 finish_wait(&journal->j_wait_updates, &wait);
727 break;
728 }
729 spin_unlock(&transaction->t_handle_lock);
730 write_unlock(&journal->j_state_lock);
731 schedule();
732 finish_wait(&journal->j_wait_updates, &wait);
733 write_lock(&journal->j_state_lock);
734 }
735 write_unlock(&journal->j_state_lock);
736
737 /*
738 * We have now established a barrier against other normal updates, but
739 * we also need to barrier against other jbd2_journal_lock_updates() calls
740 * to make sure that we serialise special journal-locked operations
741 * too.
742 */
743 mutex_lock(&journal->j_barrier);
744 }
745
746 /**
747 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
748 * @journal: Journal to release the barrier on.
749 *
750 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
751 *
752 * Should be called without the journal lock held.
753 */
754 void jbd2_journal_unlock_updates (journal_t *journal)
755 {
756 J_ASSERT(journal->j_barrier_count != 0);
757
758 mutex_unlock(&journal->j_barrier);
759 write_lock(&journal->j_state_lock);
760 --journal->j_barrier_count;
761 write_unlock(&journal->j_state_lock);
762 wake_up(&journal->j_wait_transaction_locked);
763 }
764
765 static void warn_dirty_buffer(struct buffer_head *bh)
766 {
767 printk(KERN_WARNING
768 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
769 "There's a risk of filesystem corruption in case of system "
770 "crash.\n",
771 bh->b_bdev, (unsigned long long)bh->b_blocknr);
772 }
773
774 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
775 static void jbd2_freeze_jh_data(struct journal_head *jh)
776 {
777 struct page *page;
778 int offset;
779 char *source;
780 struct buffer_head *bh = jh2bh(jh);
781
782 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
783 page = bh->b_page;
784 offset = offset_in_page(bh->b_data);
785 source = kmap_atomic(page);
786 /* Fire data frozen trigger just before we copy the data */
787 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
788 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
789 kunmap_atomic(source);
790
791 /*
792 * Now that the frozen data is saved off, we need to store any matching
793 * triggers.
794 */
795 jh->b_frozen_triggers = jh->b_triggers;
796 }
797
798 /*
799 * If the buffer is already part of the current transaction, then there
800 * is nothing we need to do. If it is already part of a prior
801 * transaction which we are still committing to disk, then we need to
802 * make sure that we do not overwrite the old copy: we do copy-out to
803 * preserve the copy going to disk. We also account the buffer against
804 * the handle's metadata buffer credits (unless the buffer is already
805 * part of the transaction, that is).
806 *
807 */
808 static int
809 do_get_write_access(handle_t *handle, struct journal_head *jh,
810 int force_copy)
811 {
812 struct buffer_head *bh;
813 transaction_t *transaction = handle->h_transaction;
814 journal_t *journal;
815 int error;
816 char *frozen_buffer = NULL;
817 unsigned long start_lock, time_lock;
818
819 if (is_handle_aborted(handle))
820 return -EROFS;
821 journal = transaction->t_journal;
822
823 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
824
825 JBUFFER_TRACE(jh, "entry");
826 repeat:
827 bh = jh2bh(jh);
828
829 /* @@@ Need to check for errors here at some point. */
830
831 start_lock = jiffies;
832 lock_buffer(bh);
833 jbd_lock_bh_state(bh);
834
835 /* If it takes too long to lock the buffer, trace it */
836 time_lock = jbd2_time_diff(start_lock, jiffies);
837 if (time_lock > HZ/10)
838 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
839 jiffies_to_msecs(time_lock));
840
841 /* We now hold the buffer lock so it is safe to query the buffer
842 * state. Is the buffer dirty?
843 *
844 * If so, there are two possibilities. The buffer may be
845 * non-journaled, and undergoing a quite legitimate writeback.
846 * Otherwise, it is journaled, and we don't expect dirty buffers
847 * in that state (the buffers should be marked JBD_Dirty
848 * instead.) So either the IO is being done under our own
849 * control and this is a bug, or it's a third party IO such as
850 * dump(8) (which may leave the buffer scheduled for read ---
851 * ie. locked but not dirty) or tune2fs (which may actually have
852 * the buffer dirtied, ugh.) */
853
854 if (buffer_dirty(bh)) {
855 /*
856 * First question: is this buffer already part of the current
857 * transaction or the existing committing transaction?
858 */
859 if (jh->b_transaction) {
860 J_ASSERT_JH(jh,
861 jh->b_transaction == transaction ||
862 jh->b_transaction ==
863 journal->j_committing_transaction);
864 if (jh->b_next_transaction)
865 J_ASSERT_JH(jh, jh->b_next_transaction ==
866 transaction);
867 warn_dirty_buffer(bh);
868 }
869 /*
870 * In any case we need to clean the dirty flag and we must
871 * do it under the buffer lock to be sure we don't race
872 * with running write-out.
873 */
874 JBUFFER_TRACE(jh, "Journalling dirty buffer");
875 clear_buffer_dirty(bh);
876 set_buffer_jbddirty(bh);
877 }
878
879 unlock_buffer(bh);
880
881 error = -EROFS;
882 if (is_handle_aborted(handle)) {
883 jbd_unlock_bh_state(bh);
884 goto out;
885 }
886 error = 0;
887
888 /*
889 * The buffer is already part of this transaction if b_transaction or
890 * b_next_transaction points to it
891 */
892 if (jh->b_transaction == transaction ||
893 jh->b_next_transaction == transaction)
894 goto done;
895
896 /*
897 * this is the first time this transaction is touching this buffer,
898 * reset the modified flag
899 */
900 jh->b_modified = 0;
901
902 /*
903 * If the buffer is not journaled right now, we need to make sure it
904 * doesn't get written to disk before the caller actually commits the
905 * new data
906 */
907 if (!jh->b_transaction) {
908 JBUFFER_TRACE(jh, "no transaction");
909 J_ASSERT_JH(jh, !jh->b_next_transaction);
910 JBUFFER_TRACE(jh, "file as BJ_Reserved");
911 /*
912 * Make sure all stores to jh (b_modified, b_frozen_data) are
913 * visible before attaching it to the running transaction.
914 * Paired with barrier in jbd2_write_access_granted()
915 */
916 smp_wmb();
917 spin_lock(&journal->j_list_lock);
918 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
919 spin_unlock(&journal->j_list_lock);
920 goto done;
921 }
922 /*
923 * If there is already a copy-out version of this buffer, then we don't
924 * need to make another one
925 */
926 if (jh->b_frozen_data) {
927 JBUFFER_TRACE(jh, "has frozen data");
928 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
929 goto attach_next;
930 }
931
932 JBUFFER_TRACE(jh, "owned by older transaction");
933 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
934 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
935
936 /*
937 * There is one case we have to be very careful about. If the
938 * committing transaction is currently writing this buffer out to disk
939 * and has NOT made a copy-out, then we cannot modify the buffer
940 * contents at all right now. The essence of copy-out is that it is
941 * the extra copy, not the primary copy, which gets journaled. If the
942 * primary copy is already going to disk then we cannot do copy-out
943 * here.
944 */
945 if (buffer_shadow(bh)) {
946 JBUFFER_TRACE(jh, "on shadow: sleep");
947 jbd_unlock_bh_state(bh);
948 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
949 goto repeat;
950 }
951
952 /*
953 * Only do the copy if the currently-owning transaction still needs it.
954 * If buffer isn't on BJ_Metadata list, the committing transaction is
955 * past that stage (here we use the fact that BH_Shadow is set under
956 * bh_state lock together with refiling to BJ_Shadow list and at this
957 * point we know the buffer doesn't have BH_Shadow set).
958 *
959 * Subtle point, though: if this is a get_undo_access, then we will be
960 * relying on the frozen_data to contain the new value of the
961 * committed_data record after the transaction, so we HAVE to force the
962 * frozen_data copy in that case.
963 */
964 if (jh->b_jlist == BJ_Metadata || force_copy) {
965 JBUFFER_TRACE(jh, "generate frozen data");
966 if (!frozen_buffer) {
967 JBUFFER_TRACE(jh, "allocate memory for buffer");
968 jbd_unlock_bh_state(bh);
969 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
970 GFP_NOFS | __GFP_NOFAIL);
971 goto repeat;
972 }
973 jh->b_frozen_data = frozen_buffer;
974 frozen_buffer = NULL;
975 jbd2_freeze_jh_data(jh);
976 }
977 attach_next:
978 /*
979 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
980 * before attaching it to the running transaction. Paired with barrier
981 * in jbd2_write_access_granted()
982 */
983 smp_wmb();
984 jh->b_next_transaction = transaction;
985
986 done:
987 jbd_unlock_bh_state(bh);
988
989 /*
990 * If we are about to journal a buffer, then any revoke pending on it is
991 * no longer valid
992 */
993 jbd2_journal_cancel_revoke(handle, jh);
994
995 out:
996 if (unlikely(frozen_buffer)) /* It's usually NULL */
997 jbd2_free(frozen_buffer, bh->b_size);
998
999 JBUFFER_TRACE(jh, "exit");
1000 return error;
1001 }
1002
1003 /* Fast check whether buffer is already attached to the required transaction */
1004 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1005 bool undo)
1006 {
1007 struct journal_head *jh;
1008 bool ret = false;
1009
1010 /* Dirty buffers require special handling... */
1011 if (buffer_dirty(bh))
1012 return false;
1013
1014 /*
1015 * RCU protects us from dereferencing freed pages. So the checks we do
1016 * are guaranteed not to oops. However the jh slab object can get freed
1017 * & reallocated while we work with it. So we have to be careful. When
1018 * we see jh attached to the running transaction, we know it must stay
1019 * so until the transaction is committed. Thus jh won't be freed and
1020 * will be attached to the same bh while we run. However it can
1021 * happen jh gets freed, reallocated, and attached to the transaction
1022 * just after we get pointer to it from bh. So we have to be careful
1023 * and recheck jh still belongs to our bh before we return success.
1024 */
1025 rcu_read_lock();
1026 if (!buffer_jbd(bh))
1027 goto out;
1028 /* This should be bh2jh() but that doesn't work with inline functions */
1029 jh = READ_ONCE(bh->b_private);
1030 if (!jh)
1031 goto out;
1032 /* For undo access buffer must have data copied */
1033 if (undo && !jh->b_committed_data)
1034 goto out;
1035 if (jh->b_transaction != handle->h_transaction &&
1036 jh->b_next_transaction != handle->h_transaction)
1037 goto out;
1038 /*
1039 * There are two reasons for the barrier here:
1040 * 1) Make sure to fetch b_bh after we did previous checks so that we
1041 * detect when jh went through free, realloc, attach to transaction
1042 * while we were checking. Paired with implicit barrier in that path.
1043 * 2) So that access to bh done after jbd2_write_access_granted()
1044 * doesn't get reordered and see inconsistent state of concurrent
1045 * do_get_write_access().
1046 */
1047 smp_mb();
1048 if (unlikely(jh->b_bh != bh))
1049 goto out;
1050 ret = true;
1051 out:
1052 rcu_read_unlock();
1053 return ret;
1054 }
1055
1056 /**
1057 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1058 * @handle: transaction to add buffer modifications to
1059 * @bh: bh to be used for metadata writes
1060 *
1061 * Returns an error code or 0 on success.
1062 *
1063 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1064 * because we're write()ing a buffer which is also part of a shared mapping.
1065 */
1066
1067 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1068 {
1069 struct journal_head *jh;
1070 int rc;
1071
1072 if (jbd2_write_access_granted(handle, bh, false))
1073 return 0;
1074
1075 jh = jbd2_journal_add_journal_head(bh);
1076 /* We do not want to get caught playing with fields which the
1077 * log thread also manipulates. Make sure that the buffer
1078 * completes any outstanding IO before proceeding. */
1079 rc = do_get_write_access(handle, jh, 0);
1080 jbd2_journal_put_journal_head(jh);
1081 return rc;
1082 }
1083
1084
1085 /*
1086 * When the user wants to journal a newly created buffer_head
1087 * (ie. getblk() returned a new buffer and we are going to populate it
1088 * manually rather than reading off disk), then we need to keep the
1089 * buffer_head locked until it has been completely filled with new
1090 * data. In this case, we should be able to make the assertion that
1091 * the bh is not already part of an existing transaction.
1092 *
1093 * The buffer should already be locked by the caller by this point.
1094 * There is no lock ranking violation: it was a newly created,
1095 * unlocked buffer beforehand. */
1096
1097 /**
1098 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1099 * @handle: transaction to new buffer to
1100 * @bh: new buffer.
1101 *
1102 * Call this if you create a new bh.
1103 */
1104 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1105 {
1106 transaction_t *transaction = handle->h_transaction;
1107 journal_t *journal;
1108 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1109 int err;
1110
1111 jbd_debug(5, "journal_head %p\n", jh);
1112 err = -EROFS;
1113 if (is_handle_aborted(handle))
1114 goto out;
1115 journal = transaction->t_journal;
1116 err = 0;
1117
1118 JBUFFER_TRACE(jh, "entry");
1119 /*
1120 * The buffer may already belong to this transaction due to pre-zeroing
1121 * in the filesystem's new_block code. It may also be on the previous,
1122 * committing transaction's lists, but it HAS to be in Forget state in
1123 * that case: the transaction must have deleted the buffer for it to be
1124 * reused here.
1125 */
1126 jbd_lock_bh_state(bh);
1127 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1128 jh->b_transaction == NULL ||
1129 (jh->b_transaction == journal->j_committing_transaction &&
1130 jh->b_jlist == BJ_Forget)));
1131
1132 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1133 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1134
1135 if (jh->b_transaction == NULL) {
1136 /*
1137 * Previous jbd2_journal_forget() could have left the buffer
1138 * with jbddirty bit set because it was being committed. When
1139 * the commit finished, we've filed the buffer for
1140 * checkpointing and marked it dirty. Now we are reallocating
1141 * the buffer so the transaction freeing it must have
1142 * committed and so it's safe to clear the dirty bit.
1143 */
1144 clear_buffer_dirty(jh2bh(jh));
1145 /* first access by this transaction */
1146 jh->b_modified = 0;
1147
1148 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1149 spin_lock(&journal->j_list_lock);
1150 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1151 } else if (jh->b_transaction == journal->j_committing_transaction) {
1152 /* first access by this transaction */
1153 jh->b_modified = 0;
1154
1155 JBUFFER_TRACE(jh, "set next transaction");
1156 spin_lock(&journal->j_list_lock);
1157 jh->b_next_transaction = transaction;
1158 }
1159 spin_unlock(&journal->j_list_lock);
1160 jbd_unlock_bh_state(bh);
1161
1162 /*
1163 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1164 * blocks which contain freed but then revoked metadata. We need
1165 * to cancel the revoke in case we end up freeing it yet again
1166 * and the reallocating as data - this would cause a second revoke,
1167 * which hits an assertion error.
1168 */
1169 JBUFFER_TRACE(jh, "cancelling revoke");
1170 jbd2_journal_cancel_revoke(handle, jh);
1171 out:
1172 jbd2_journal_put_journal_head(jh);
1173 return err;
1174 }
1175
1176 /**
1177 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1178 * non-rewindable consequences
1179 * @handle: transaction
1180 * @bh: buffer to undo
1181 *
1182 * Sometimes there is a need to distinguish between metadata which has
1183 * been committed to disk and that which has not. The ext3fs code uses
1184 * this for freeing and allocating space, we have to make sure that we
1185 * do not reuse freed space until the deallocation has been committed,
1186 * since if we overwrote that space we would make the delete
1187 * un-rewindable in case of a crash.
1188 *
1189 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1190 * buffer for parts of non-rewindable operations such as delete
1191 * operations on the bitmaps. The journaling code must keep a copy of
1192 * the buffer's contents prior to the undo_access call until such time
1193 * as we know that the buffer has definitely been committed to disk.
1194 *
1195 * We never need to know which transaction the committed data is part
1196 * of, buffers touched here are guaranteed to be dirtied later and so
1197 * will be committed to a new transaction in due course, at which point
1198 * we can discard the old committed data pointer.
1199 *
1200 * Returns error number or 0 on success.
1201 */
1202 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1203 {
1204 int err;
1205 struct journal_head *jh;
1206 char *committed_data = NULL;
1207
1208 JBUFFER_TRACE(jh, "entry");
1209 if (jbd2_write_access_granted(handle, bh, true))
1210 return 0;
1211
1212 jh = jbd2_journal_add_journal_head(bh);
1213 /*
1214 * Do this first --- it can drop the journal lock, so we want to
1215 * make sure that obtaining the committed_data is done
1216 * atomically wrt. completion of any outstanding commits.
1217 */
1218 err = do_get_write_access(handle, jh, 1);
1219 if (err)
1220 goto out;
1221
1222 repeat:
1223 if (!jh->b_committed_data)
1224 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1225 GFP_NOFS|__GFP_NOFAIL);
1226
1227 jbd_lock_bh_state(bh);
1228 if (!jh->b_committed_data) {
1229 /* Copy out the current buffer contents into the
1230 * preserved, committed copy. */
1231 JBUFFER_TRACE(jh, "generate b_committed data");
1232 if (!committed_data) {
1233 jbd_unlock_bh_state(bh);
1234 goto repeat;
1235 }
1236
1237 jh->b_committed_data = committed_data;
1238 committed_data = NULL;
1239 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1240 }
1241 jbd_unlock_bh_state(bh);
1242 out:
1243 jbd2_journal_put_journal_head(jh);
1244 if (unlikely(committed_data))
1245 jbd2_free(committed_data, bh->b_size);
1246 return err;
1247 }
1248
1249 /**
1250 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1251 * @bh: buffer to trigger on
1252 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1253 *
1254 * Set any triggers on this journal_head. This is always safe, because
1255 * triggers for a committing buffer will be saved off, and triggers for
1256 * a running transaction will match the buffer in that transaction.
1257 *
1258 * Call with NULL to clear the triggers.
1259 */
1260 void jbd2_journal_set_triggers(struct buffer_head *bh,
1261 struct jbd2_buffer_trigger_type *type)
1262 {
1263 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1264
1265 if (WARN_ON(!jh))
1266 return;
1267 jh->b_triggers = type;
1268 jbd2_journal_put_journal_head(jh);
1269 }
1270
1271 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1272 struct jbd2_buffer_trigger_type *triggers)
1273 {
1274 struct buffer_head *bh = jh2bh(jh);
1275
1276 if (!triggers || !triggers->t_frozen)
1277 return;
1278
1279 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1280 }
1281
1282 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1283 struct jbd2_buffer_trigger_type *triggers)
1284 {
1285 if (!triggers || !triggers->t_abort)
1286 return;
1287
1288 triggers->t_abort(triggers, jh2bh(jh));
1289 }
1290
1291 /**
1292 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1293 * @handle: transaction to add buffer to.
1294 * @bh: buffer to mark
1295 *
1296 * mark dirty metadata which needs to be journaled as part of the current
1297 * transaction.
1298 *
1299 * The buffer must have previously had jbd2_journal_get_write_access()
1300 * called so that it has a valid journal_head attached to the buffer
1301 * head.
1302 *
1303 * The buffer is placed on the transaction's metadata list and is marked
1304 * as belonging to the transaction.
1305 *
1306 * Returns error number or 0 on success.
1307 *
1308 * Special care needs to be taken if the buffer already belongs to the
1309 * current committing transaction (in which case we should have frozen
1310 * data present for that commit). In that case, we don't relink the
1311 * buffer: that only gets done when the old transaction finally
1312 * completes its commit.
1313 */
1314 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1315 {
1316 transaction_t *transaction = handle->h_transaction;
1317 journal_t *journal;
1318 struct journal_head *jh;
1319 int ret = 0;
1320
1321 if (is_handle_aborted(handle))
1322 return -EROFS;
1323 if (!buffer_jbd(bh)) {
1324 ret = -EUCLEAN;
1325 goto out;
1326 }
1327 /*
1328 * We don't grab jh reference here since the buffer must be part
1329 * of the running transaction.
1330 */
1331 jh = bh2jh(bh);
1332 /*
1333 * This and the following assertions are unreliable since we may see jh
1334 * in inconsistent state unless we grab bh_state lock. But this is
1335 * crucial to catch bugs so let's do a reliable check until the
1336 * lockless handling is fully proven.
1337 */
1338 if (jh->b_transaction != transaction &&
1339 jh->b_next_transaction != transaction) {
1340 jbd_lock_bh_state(bh);
1341 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1342 jh->b_next_transaction == transaction);
1343 jbd_unlock_bh_state(bh);
1344 }
1345 if (jh->b_modified == 1) {
1346 /* If it's in our transaction it must be in BJ_Metadata list. */
1347 if (jh->b_transaction == transaction &&
1348 jh->b_jlist != BJ_Metadata) {
1349 jbd_lock_bh_state(bh);
1350 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1351 jh->b_jlist == BJ_Metadata);
1352 jbd_unlock_bh_state(bh);
1353 }
1354 goto out;
1355 }
1356
1357 journal = transaction->t_journal;
1358 jbd_debug(5, "journal_head %p\n", jh);
1359 JBUFFER_TRACE(jh, "entry");
1360
1361 jbd_lock_bh_state(bh);
1362
1363 if (jh->b_modified == 0) {
1364 /*
1365 * This buffer's got modified and becoming part
1366 * of the transaction. This needs to be done
1367 * once a transaction -bzzz
1368 */
1369 jh->b_modified = 1;
1370 if (handle->h_buffer_credits <= 0) {
1371 ret = -ENOSPC;
1372 goto out_unlock_bh;
1373 }
1374 handle->h_buffer_credits--;
1375 }
1376
1377 /*
1378 * fastpath, to avoid expensive locking. If this buffer is already
1379 * on the running transaction's metadata list there is nothing to do.
1380 * Nobody can take it off again because there is a handle open.
1381 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1382 * result in this test being false, so we go in and take the locks.
1383 */
1384 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1385 JBUFFER_TRACE(jh, "fastpath");
1386 if (unlikely(jh->b_transaction !=
1387 journal->j_running_transaction)) {
1388 printk(KERN_ERR "JBD2: %s: "
1389 "jh->b_transaction (%llu, %p, %u) != "
1390 "journal->j_running_transaction (%p, %u)\n",
1391 journal->j_devname,
1392 (unsigned long long) bh->b_blocknr,
1393 jh->b_transaction,
1394 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1395 journal->j_running_transaction,
1396 journal->j_running_transaction ?
1397 journal->j_running_transaction->t_tid : 0);
1398 ret = -EINVAL;
1399 }
1400 goto out_unlock_bh;
1401 }
1402
1403 set_buffer_jbddirty(bh);
1404
1405 /*
1406 * Metadata already on the current transaction list doesn't
1407 * need to be filed. Metadata on another transaction's list must
1408 * be committing, and will be refiled once the commit completes:
1409 * leave it alone for now.
1410 */
1411 if (jh->b_transaction != transaction) {
1412 JBUFFER_TRACE(jh, "already on other transaction");
1413 if (unlikely(((jh->b_transaction !=
1414 journal->j_committing_transaction)) ||
1415 (jh->b_next_transaction != transaction))) {
1416 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1417 "bad jh for block %llu: "
1418 "transaction (%p, %u), "
1419 "jh->b_transaction (%p, %u), "
1420 "jh->b_next_transaction (%p, %u), jlist %u\n",
1421 journal->j_devname,
1422 (unsigned long long) bh->b_blocknr,
1423 transaction, transaction->t_tid,
1424 jh->b_transaction,
1425 jh->b_transaction ?
1426 jh->b_transaction->t_tid : 0,
1427 jh->b_next_transaction,
1428 jh->b_next_transaction ?
1429 jh->b_next_transaction->t_tid : 0,
1430 jh->b_jlist);
1431 WARN_ON(1);
1432 ret = -EINVAL;
1433 }
1434 /* And this case is illegal: we can't reuse another
1435 * transaction's data buffer, ever. */
1436 goto out_unlock_bh;
1437 }
1438
1439 /* That test should have eliminated the following case: */
1440 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1441
1442 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1443 spin_lock(&journal->j_list_lock);
1444 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1445 spin_unlock(&journal->j_list_lock);
1446 out_unlock_bh:
1447 jbd_unlock_bh_state(bh);
1448 out:
1449 JBUFFER_TRACE(jh, "exit");
1450 return ret;
1451 }
1452
1453 /**
1454 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1455 * @handle: transaction handle
1456 * @bh: bh to 'forget'
1457 *
1458 * We can only do the bforget if there are no commits pending against the
1459 * buffer. If the buffer is dirty in the current running transaction we
1460 * can safely unlink it.
1461 *
1462 * bh may not be a journalled buffer at all - it may be a non-JBD
1463 * buffer which came off the hashtable. Check for this.
1464 *
1465 * Decrements bh->b_count by one.
1466 *
1467 * Allow this call even if the handle has aborted --- it may be part of
1468 * the caller's cleanup after an abort.
1469 */
1470 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1471 {
1472 transaction_t *transaction = handle->h_transaction;
1473 journal_t *journal;
1474 struct journal_head *jh;
1475 int drop_reserve = 0;
1476 int err = 0;
1477 int was_modified = 0;
1478
1479 if (is_handle_aborted(handle))
1480 return -EROFS;
1481 journal = transaction->t_journal;
1482
1483 BUFFER_TRACE(bh, "entry");
1484
1485 jbd_lock_bh_state(bh);
1486
1487 if (!buffer_jbd(bh))
1488 goto not_jbd;
1489 jh = bh2jh(bh);
1490
1491 /* Critical error: attempting to delete a bitmap buffer, maybe?
1492 * Don't do any jbd operations, and return an error. */
1493 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1494 "inconsistent data on disk")) {
1495 err = -EIO;
1496 goto not_jbd;
1497 }
1498
1499 /* keep track of whether or not this transaction modified us */
1500 was_modified = jh->b_modified;
1501
1502 /*
1503 * The buffer's going from the transaction, we must drop
1504 * all references -bzzz
1505 */
1506 jh->b_modified = 0;
1507
1508 if (jh->b_transaction == transaction) {
1509 J_ASSERT_JH(jh, !jh->b_frozen_data);
1510
1511 /* If we are forgetting a buffer which is already part
1512 * of this transaction, then we can just drop it from
1513 * the transaction immediately. */
1514 clear_buffer_dirty(bh);
1515 clear_buffer_jbddirty(bh);
1516
1517 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1518
1519 /*
1520 * we only want to drop a reference if this transaction
1521 * modified the buffer
1522 */
1523 if (was_modified)
1524 drop_reserve = 1;
1525
1526 /*
1527 * We are no longer going to journal this buffer.
1528 * However, the commit of this transaction is still
1529 * important to the buffer: the delete that we are now
1530 * processing might obsolete an old log entry, so by
1531 * committing, we can satisfy the buffer's checkpoint.
1532 *
1533 * So, if we have a checkpoint on the buffer, we should
1534 * now refile the buffer on our BJ_Forget list so that
1535 * we know to remove the checkpoint after we commit.
1536 */
1537
1538 spin_lock(&journal->j_list_lock);
1539 if (jh->b_cp_transaction) {
1540 __jbd2_journal_temp_unlink_buffer(jh);
1541 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1542 } else {
1543 __jbd2_journal_unfile_buffer(jh);
1544 if (!buffer_jbd(bh)) {
1545 spin_unlock(&journal->j_list_lock);
1546 jbd_unlock_bh_state(bh);
1547 __bforget(bh);
1548 goto drop;
1549 }
1550 }
1551 spin_unlock(&journal->j_list_lock);
1552 } else if (jh->b_transaction) {
1553 J_ASSERT_JH(jh, (jh->b_transaction ==
1554 journal->j_committing_transaction));
1555 /* However, if the buffer is still owned by a prior
1556 * (committing) transaction, we can't drop it yet... */
1557 JBUFFER_TRACE(jh, "belongs to older transaction");
1558 /* ... but we CAN drop it from the new transaction if we
1559 * have also modified it since the original commit. */
1560
1561 if (jh->b_next_transaction) {
1562 J_ASSERT(jh->b_next_transaction == transaction);
1563 spin_lock(&journal->j_list_lock);
1564 jh->b_next_transaction = NULL;
1565 spin_unlock(&journal->j_list_lock);
1566
1567 /*
1568 * only drop a reference if this transaction modified
1569 * the buffer
1570 */
1571 if (was_modified)
1572 drop_reserve = 1;
1573 }
1574 }
1575
1576 not_jbd:
1577 jbd_unlock_bh_state(bh);
1578 __brelse(bh);
1579 drop:
1580 if (drop_reserve) {
1581 /* no need to reserve log space for this block -bzzz */
1582 handle->h_buffer_credits++;
1583 }
1584 return err;
1585 }
1586
1587 /**
1588 * int jbd2_journal_stop() - complete a transaction
1589 * @handle: tranaction to complete.
1590 *
1591 * All done for a particular handle.
1592 *
1593 * There is not much action needed here. We just return any remaining
1594 * buffer credits to the transaction and remove the handle. The only
1595 * complication is that we need to start a commit operation if the
1596 * filesystem is marked for synchronous update.
1597 *
1598 * jbd2_journal_stop itself will not usually return an error, but it may
1599 * do so in unusual circumstances. In particular, expect it to
1600 * return -EIO if a jbd2_journal_abort has been executed since the
1601 * transaction began.
1602 */
1603 int jbd2_journal_stop(handle_t *handle)
1604 {
1605 transaction_t *transaction = handle->h_transaction;
1606 journal_t *journal;
1607 int err = 0, wait_for_commit = 0;
1608 tid_t tid;
1609 pid_t pid;
1610
1611 if (!transaction) {
1612 /*
1613 * Handle is already detached from the transaction so
1614 * there is nothing to do other than decrease a refcount,
1615 * or free the handle if refcount drops to zero
1616 */
1617 if (--handle->h_ref > 0) {
1618 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1619 handle->h_ref);
1620 return err;
1621 } else {
1622 if (handle->h_rsv_handle)
1623 jbd2_free_handle(handle->h_rsv_handle);
1624 goto free_and_exit;
1625 }
1626 }
1627 journal = transaction->t_journal;
1628
1629 J_ASSERT(journal_current_handle() == handle);
1630
1631 if (is_handle_aborted(handle))
1632 err = -EIO;
1633 else
1634 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1635
1636 if (--handle->h_ref > 0) {
1637 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1638 handle->h_ref);
1639 return err;
1640 }
1641
1642 jbd_debug(4, "Handle %p going down\n", handle);
1643 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1644 transaction->t_tid,
1645 handle->h_type, handle->h_line_no,
1646 jiffies - handle->h_start_jiffies,
1647 handle->h_sync, handle->h_requested_credits,
1648 (handle->h_requested_credits -
1649 handle->h_buffer_credits));
1650
1651 /*
1652 * Implement synchronous transaction batching. If the handle
1653 * was synchronous, don't force a commit immediately. Let's
1654 * yield and let another thread piggyback onto this
1655 * transaction. Keep doing that while new threads continue to
1656 * arrive. It doesn't cost much - we're about to run a commit
1657 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1658 * operations by 30x or more...
1659 *
1660 * We try and optimize the sleep time against what the
1661 * underlying disk can do, instead of having a static sleep
1662 * time. This is useful for the case where our storage is so
1663 * fast that it is more optimal to go ahead and force a flush
1664 * and wait for the transaction to be committed than it is to
1665 * wait for an arbitrary amount of time for new writers to
1666 * join the transaction. We achieve this by measuring how
1667 * long it takes to commit a transaction, and compare it with
1668 * how long this transaction has been running, and if run time
1669 * < commit time then we sleep for the delta and commit. This
1670 * greatly helps super fast disks that would see slowdowns as
1671 * more threads started doing fsyncs.
1672 *
1673 * But don't do this if this process was the most recent one
1674 * to perform a synchronous write. We do this to detect the
1675 * case where a single process is doing a stream of sync
1676 * writes. No point in waiting for joiners in that case.
1677 *
1678 * Setting max_batch_time to 0 disables this completely.
1679 */
1680 pid = current->pid;
1681 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1682 journal->j_max_batch_time) {
1683 u64 commit_time, trans_time;
1684
1685 journal->j_last_sync_writer = pid;
1686
1687 read_lock(&journal->j_state_lock);
1688 commit_time = journal->j_average_commit_time;
1689 read_unlock(&journal->j_state_lock);
1690
1691 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1692 transaction->t_start_time));
1693
1694 commit_time = max_t(u64, commit_time,
1695 1000*journal->j_min_batch_time);
1696 commit_time = min_t(u64, commit_time,
1697 1000*journal->j_max_batch_time);
1698
1699 if (trans_time < commit_time) {
1700 ktime_t expires = ktime_add_ns(ktime_get(),
1701 commit_time);
1702 set_current_state(TASK_UNINTERRUPTIBLE);
1703 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1704 }
1705 }
1706
1707 if (handle->h_sync)
1708 transaction->t_synchronous_commit = 1;
1709 current->journal_info = NULL;
1710 atomic_sub(handle->h_buffer_credits,
1711 &transaction->t_outstanding_credits);
1712
1713 /*
1714 * If the handle is marked SYNC, we need to set another commit
1715 * going! We also want to force a commit if the current
1716 * transaction is occupying too much of the log, or if the
1717 * transaction is too old now.
1718 */
1719 if (handle->h_sync ||
1720 (atomic_read(&transaction->t_outstanding_credits) >
1721 journal->j_max_transaction_buffers) ||
1722 time_after_eq(jiffies, transaction->t_expires)) {
1723 /* Do this even for aborted journals: an abort still
1724 * completes the commit thread, it just doesn't write
1725 * anything to disk. */
1726
1727 jbd_debug(2, "transaction too old, requesting commit for "
1728 "handle %p\n", handle);
1729 /* This is non-blocking */
1730 jbd2_log_start_commit(journal, transaction->t_tid);
1731
1732 /*
1733 * Special case: JBD2_SYNC synchronous updates require us
1734 * to wait for the commit to complete.
1735 */
1736 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1737 wait_for_commit = 1;
1738 }
1739
1740 /*
1741 * Once we drop t_updates, if it goes to zero the transaction
1742 * could start committing on us and eventually disappear. So
1743 * once we do this, we must not dereference transaction
1744 * pointer again.
1745 */
1746 tid = transaction->t_tid;
1747 if (atomic_dec_and_test(&transaction->t_updates)) {
1748 wake_up(&journal->j_wait_updates);
1749 if (journal->j_barrier_count)
1750 wake_up(&journal->j_wait_transaction_locked);
1751 }
1752
1753 if (wait_for_commit)
1754 err = jbd2_log_wait_commit(journal, tid);
1755
1756 lock_map_release(&handle->h_lockdep_map);
1757
1758 if (handle->h_rsv_handle)
1759 jbd2_journal_free_reserved(handle->h_rsv_handle);
1760 free_and_exit:
1761 jbd2_free_handle(handle);
1762 return err;
1763 }
1764
1765 /*
1766 *
1767 * List management code snippets: various functions for manipulating the
1768 * transaction buffer lists.
1769 *
1770 */
1771
1772 /*
1773 * Append a buffer to a transaction list, given the transaction's list head
1774 * pointer.
1775 *
1776 * j_list_lock is held.
1777 *
1778 * jbd_lock_bh_state(jh2bh(jh)) is held.
1779 */
1780
1781 static inline void
1782 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1783 {
1784 if (!*list) {
1785 jh->b_tnext = jh->b_tprev = jh;
1786 *list = jh;
1787 } else {
1788 /* Insert at the tail of the list to preserve order */
1789 struct journal_head *first = *list, *last = first->b_tprev;
1790 jh->b_tprev = last;
1791 jh->b_tnext = first;
1792 last->b_tnext = first->b_tprev = jh;
1793 }
1794 }
1795
1796 /*
1797 * Remove a buffer from a transaction list, given the transaction's list
1798 * head pointer.
1799 *
1800 * Called with j_list_lock held, and the journal may not be locked.
1801 *
1802 * jbd_lock_bh_state(jh2bh(jh)) is held.
1803 */
1804
1805 static inline void
1806 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1807 {
1808 if (*list == jh) {
1809 *list = jh->b_tnext;
1810 if (*list == jh)
1811 *list = NULL;
1812 }
1813 jh->b_tprev->b_tnext = jh->b_tnext;
1814 jh->b_tnext->b_tprev = jh->b_tprev;
1815 }
1816
1817 /*
1818 * Remove a buffer from the appropriate transaction list.
1819 *
1820 * Note that this function can *change* the value of
1821 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1822 * t_reserved_list. If the caller is holding onto a copy of one of these
1823 * pointers, it could go bad. Generally the caller needs to re-read the
1824 * pointer from the transaction_t.
1825 *
1826 * Called under j_list_lock.
1827 */
1828 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1829 {
1830 struct journal_head **list = NULL;
1831 transaction_t *transaction;
1832 struct buffer_head *bh = jh2bh(jh);
1833
1834 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1835 transaction = jh->b_transaction;
1836 if (transaction)
1837 assert_spin_locked(&transaction->t_journal->j_list_lock);
1838
1839 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1840 if (jh->b_jlist != BJ_None)
1841 J_ASSERT_JH(jh, transaction != NULL);
1842
1843 switch (jh->b_jlist) {
1844 case BJ_None:
1845 return;
1846 case BJ_Metadata:
1847 transaction->t_nr_buffers--;
1848 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1849 list = &transaction->t_buffers;
1850 break;
1851 case BJ_Forget:
1852 list = &transaction->t_forget;
1853 break;
1854 case BJ_Shadow:
1855 list = &transaction->t_shadow_list;
1856 break;
1857 case BJ_Reserved:
1858 list = &transaction->t_reserved_list;
1859 break;
1860 }
1861
1862 __blist_del_buffer(list, jh);
1863 jh->b_jlist = BJ_None;
1864 if (test_clear_buffer_jbddirty(bh))
1865 mark_buffer_dirty(bh); /* Expose it to the VM */
1866 }
1867
1868 /*
1869 * Remove buffer from all transactions.
1870 *
1871 * Called with bh_state lock and j_list_lock
1872 *
1873 * jh and bh may be already freed when this function returns.
1874 */
1875 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1876 {
1877 __jbd2_journal_temp_unlink_buffer(jh);
1878 jh->b_transaction = NULL;
1879 jbd2_journal_put_journal_head(jh);
1880 }
1881
1882 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1883 {
1884 struct buffer_head *bh = jh2bh(jh);
1885
1886 /* Get reference so that buffer cannot be freed before we unlock it */
1887 get_bh(bh);
1888 jbd_lock_bh_state(bh);
1889 spin_lock(&journal->j_list_lock);
1890 __jbd2_journal_unfile_buffer(jh);
1891 spin_unlock(&journal->j_list_lock);
1892 jbd_unlock_bh_state(bh);
1893 __brelse(bh);
1894 }
1895
1896 /*
1897 * Called from jbd2_journal_try_to_free_buffers().
1898 *
1899 * Called under jbd_lock_bh_state(bh)
1900 */
1901 static void
1902 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1903 {
1904 struct journal_head *jh;
1905
1906 jh = bh2jh(bh);
1907
1908 if (buffer_locked(bh) || buffer_dirty(bh))
1909 goto out;
1910
1911 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1912 goto out;
1913
1914 spin_lock(&journal->j_list_lock);
1915 if (jh->b_cp_transaction != NULL) {
1916 /* written-back checkpointed metadata buffer */
1917 JBUFFER_TRACE(jh, "remove from checkpoint list");
1918 __jbd2_journal_remove_checkpoint(jh);
1919 }
1920 spin_unlock(&journal->j_list_lock);
1921 out:
1922 return;
1923 }
1924
1925 /**
1926 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1927 * @journal: journal for operation
1928 * @page: to try and free
1929 * @gfp_mask: we use the mask to detect how hard should we try to release
1930 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1931 * code to release the buffers.
1932 *
1933 *
1934 * For all the buffers on this page,
1935 * if they are fully written out ordered data, move them onto BUF_CLEAN
1936 * so try_to_free_buffers() can reap them.
1937 *
1938 * This function returns non-zero if we wish try_to_free_buffers()
1939 * to be called. We do this if the page is releasable by try_to_free_buffers().
1940 * We also do it if the page has locked or dirty buffers and the caller wants
1941 * us to perform sync or async writeout.
1942 *
1943 * This complicates JBD locking somewhat. We aren't protected by the
1944 * BKL here. We wish to remove the buffer from its committing or
1945 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1946 *
1947 * This may *change* the value of transaction_t->t_datalist, so anyone
1948 * who looks at t_datalist needs to lock against this function.
1949 *
1950 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1951 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1952 * will come out of the lock with the buffer dirty, which makes it
1953 * ineligible for release here.
1954 *
1955 * Who else is affected by this? hmm... Really the only contender
1956 * is do_get_write_access() - it could be looking at the buffer while
1957 * journal_try_to_free_buffer() is changing its state. But that
1958 * cannot happen because we never reallocate freed data as metadata
1959 * while the data is part of a transaction. Yes?
1960 *
1961 * Return 0 on failure, 1 on success
1962 */
1963 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1964 struct page *page, gfp_t gfp_mask)
1965 {
1966 struct buffer_head *head;
1967 struct buffer_head *bh;
1968 int ret = 0;
1969
1970 J_ASSERT(PageLocked(page));
1971
1972 head = page_buffers(page);
1973 bh = head;
1974 do {
1975 struct journal_head *jh;
1976
1977 /*
1978 * We take our own ref against the journal_head here to avoid
1979 * having to add tons of locking around each instance of
1980 * jbd2_journal_put_journal_head().
1981 */
1982 jh = jbd2_journal_grab_journal_head(bh);
1983 if (!jh)
1984 continue;
1985
1986 jbd_lock_bh_state(bh);
1987 __journal_try_to_free_buffer(journal, bh);
1988 jbd2_journal_put_journal_head(jh);
1989 jbd_unlock_bh_state(bh);
1990 if (buffer_jbd(bh))
1991 goto busy;
1992 } while ((bh = bh->b_this_page) != head);
1993
1994 ret = try_to_free_buffers(page);
1995
1996 busy:
1997 return ret;
1998 }
1999
2000 /*
2001 * This buffer is no longer needed. If it is on an older transaction's
2002 * checkpoint list we need to record it on this transaction's forget list
2003 * to pin this buffer (and hence its checkpointing transaction) down until
2004 * this transaction commits. If the buffer isn't on a checkpoint list, we
2005 * release it.
2006 * Returns non-zero if JBD no longer has an interest in the buffer.
2007 *
2008 * Called under j_list_lock.
2009 *
2010 * Called under jbd_lock_bh_state(bh).
2011 */
2012 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2013 {
2014 int may_free = 1;
2015 struct buffer_head *bh = jh2bh(jh);
2016
2017 if (jh->b_cp_transaction) {
2018 JBUFFER_TRACE(jh, "on running+cp transaction");
2019 __jbd2_journal_temp_unlink_buffer(jh);
2020 /*
2021 * We don't want to write the buffer anymore, clear the
2022 * bit so that we don't confuse checks in
2023 * __journal_file_buffer
2024 */
2025 clear_buffer_dirty(bh);
2026 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2027 may_free = 0;
2028 } else {
2029 JBUFFER_TRACE(jh, "on running transaction");
2030 __jbd2_journal_unfile_buffer(jh);
2031 }
2032 return may_free;
2033 }
2034
2035 /*
2036 * jbd2_journal_invalidatepage
2037 *
2038 * This code is tricky. It has a number of cases to deal with.
2039 *
2040 * There are two invariants which this code relies on:
2041 *
2042 * i_size must be updated on disk before we start calling invalidatepage on the
2043 * data.
2044 *
2045 * This is done in ext3 by defining an ext3_setattr method which
2046 * updates i_size before truncate gets going. By maintaining this
2047 * invariant, we can be sure that it is safe to throw away any buffers
2048 * attached to the current transaction: once the transaction commits,
2049 * we know that the data will not be needed.
2050 *
2051 * Note however that we can *not* throw away data belonging to the
2052 * previous, committing transaction!
2053 *
2054 * Any disk blocks which *are* part of the previous, committing
2055 * transaction (and which therefore cannot be discarded immediately) are
2056 * not going to be reused in the new running transaction
2057 *
2058 * The bitmap committed_data images guarantee this: any block which is
2059 * allocated in one transaction and removed in the next will be marked
2060 * as in-use in the committed_data bitmap, so cannot be reused until
2061 * the next transaction to delete the block commits. This means that
2062 * leaving committing buffers dirty is quite safe: the disk blocks
2063 * cannot be reallocated to a different file and so buffer aliasing is
2064 * not possible.
2065 *
2066 *
2067 * The above applies mainly to ordered data mode. In writeback mode we
2068 * don't make guarantees about the order in which data hits disk --- in
2069 * particular we don't guarantee that new dirty data is flushed before
2070 * transaction commit --- so it is always safe just to discard data
2071 * immediately in that mode. --sct
2072 */
2073
2074 /*
2075 * The journal_unmap_buffer helper function returns zero if the buffer
2076 * concerned remains pinned as an anonymous buffer belonging to an older
2077 * transaction.
2078 *
2079 * We're outside-transaction here. Either or both of j_running_transaction
2080 * and j_committing_transaction may be NULL.
2081 */
2082 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2083 int partial_page)
2084 {
2085 transaction_t *transaction;
2086 struct journal_head *jh;
2087 int may_free = 1;
2088
2089 BUFFER_TRACE(bh, "entry");
2090
2091 /*
2092 * It is safe to proceed here without the j_list_lock because the
2093 * buffers cannot be stolen by try_to_free_buffers as long as we are
2094 * holding the page lock. --sct
2095 */
2096
2097 if (!buffer_jbd(bh))
2098 goto zap_buffer_unlocked;
2099
2100 /* OK, we have data buffer in journaled mode */
2101 write_lock(&journal->j_state_lock);
2102 jbd_lock_bh_state(bh);
2103 spin_lock(&journal->j_list_lock);
2104
2105 jh = jbd2_journal_grab_journal_head(bh);
2106 if (!jh)
2107 goto zap_buffer_no_jh;
2108
2109 /*
2110 * We cannot remove the buffer from checkpoint lists until the
2111 * transaction adding inode to orphan list (let's call it T)
2112 * is committed. Otherwise if the transaction changing the
2113 * buffer would be cleaned from the journal before T is
2114 * committed, a crash will cause that the correct contents of
2115 * the buffer will be lost. On the other hand we have to
2116 * clear the buffer dirty bit at latest at the moment when the
2117 * transaction marking the buffer as freed in the filesystem
2118 * structures is committed because from that moment on the
2119 * block can be reallocated and used by a different page.
2120 * Since the block hasn't been freed yet but the inode has
2121 * already been added to orphan list, it is safe for us to add
2122 * the buffer to BJ_Forget list of the newest transaction.
2123 *
2124 * Also we have to clear buffer_mapped flag of a truncated buffer
2125 * because the buffer_head may be attached to the page straddling
2126 * i_size (can happen only when blocksize < pagesize) and thus the
2127 * buffer_head can be reused when the file is extended again. So we end
2128 * up keeping around invalidated buffers attached to transactions'
2129 * BJ_Forget list just to stop checkpointing code from cleaning up
2130 * the transaction this buffer was modified in.
2131 */
2132 transaction = jh->b_transaction;
2133 if (transaction == NULL) {
2134 /* First case: not on any transaction. If it
2135 * has no checkpoint link, then we can zap it:
2136 * it's a writeback-mode buffer so we don't care
2137 * if it hits disk safely. */
2138 if (!jh->b_cp_transaction) {
2139 JBUFFER_TRACE(jh, "not on any transaction: zap");
2140 goto zap_buffer;
2141 }
2142
2143 if (!buffer_dirty(bh)) {
2144 /* bdflush has written it. We can drop it now */
2145 __jbd2_journal_remove_checkpoint(jh);
2146 goto zap_buffer;
2147 }
2148
2149 /* OK, it must be in the journal but still not
2150 * written fully to disk: it's metadata or
2151 * journaled data... */
2152
2153 if (journal->j_running_transaction) {
2154 /* ... and once the current transaction has
2155 * committed, the buffer won't be needed any
2156 * longer. */
2157 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2158 may_free = __dispose_buffer(jh,
2159 journal->j_running_transaction);
2160 goto zap_buffer;
2161 } else {
2162 /* There is no currently-running transaction. So the
2163 * orphan record which we wrote for this file must have
2164 * passed into commit. We must attach this buffer to
2165 * the committing transaction, if it exists. */
2166 if (journal->j_committing_transaction) {
2167 JBUFFER_TRACE(jh, "give to committing trans");
2168 may_free = __dispose_buffer(jh,
2169 journal->j_committing_transaction);
2170 goto zap_buffer;
2171 } else {
2172 /* The orphan record's transaction has
2173 * committed. We can cleanse this buffer */
2174 clear_buffer_jbddirty(bh);
2175 __jbd2_journal_remove_checkpoint(jh);
2176 goto zap_buffer;
2177 }
2178 }
2179 } else if (transaction == journal->j_committing_transaction) {
2180 JBUFFER_TRACE(jh, "on committing transaction");
2181 /*
2182 * The buffer is committing, we simply cannot touch
2183 * it. If the page is straddling i_size we have to wait
2184 * for commit and try again.
2185 */
2186 if (partial_page) {
2187 jbd2_journal_put_journal_head(jh);
2188 spin_unlock(&journal->j_list_lock);
2189 jbd_unlock_bh_state(bh);
2190 write_unlock(&journal->j_state_lock);
2191 return -EBUSY;
2192 }
2193 /*
2194 * OK, buffer won't be reachable after truncate. We just set
2195 * j_next_transaction to the running transaction (if there is
2196 * one) and mark buffer as freed so that commit code knows it
2197 * should clear dirty bits when it is done with the buffer.
2198 */
2199 set_buffer_freed(bh);
2200 if (journal->j_running_transaction && buffer_jbddirty(bh))
2201 jh->b_next_transaction = journal->j_running_transaction;
2202 jbd2_journal_put_journal_head(jh);
2203 spin_unlock(&journal->j_list_lock);
2204 jbd_unlock_bh_state(bh);
2205 write_unlock(&journal->j_state_lock);
2206 return 0;
2207 } else {
2208 /* Good, the buffer belongs to the running transaction.
2209 * We are writing our own transaction's data, not any
2210 * previous one's, so it is safe to throw it away
2211 * (remember that we expect the filesystem to have set
2212 * i_size already for this truncate so recovery will not
2213 * expose the disk blocks we are discarding here.) */
2214 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2215 JBUFFER_TRACE(jh, "on running transaction");
2216 may_free = __dispose_buffer(jh, transaction);
2217 }
2218
2219 zap_buffer:
2220 /*
2221 * This is tricky. Although the buffer is truncated, it may be reused
2222 * if blocksize < pagesize and it is attached to the page straddling
2223 * EOF. Since the buffer might have been added to BJ_Forget list of the
2224 * running transaction, journal_get_write_access() won't clear
2225 * b_modified and credit accounting gets confused. So clear b_modified
2226 * here.
2227 */
2228 jh->b_modified = 0;
2229 jbd2_journal_put_journal_head(jh);
2230 zap_buffer_no_jh:
2231 spin_unlock(&journal->j_list_lock);
2232 jbd_unlock_bh_state(bh);
2233 write_unlock(&journal->j_state_lock);
2234 zap_buffer_unlocked:
2235 clear_buffer_dirty(bh);
2236 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2237 clear_buffer_mapped(bh);
2238 clear_buffer_req(bh);
2239 clear_buffer_new(bh);
2240 clear_buffer_delay(bh);
2241 clear_buffer_unwritten(bh);
2242 bh->b_bdev = NULL;
2243 return may_free;
2244 }
2245
2246 /**
2247 * void jbd2_journal_invalidatepage()
2248 * @journal: journal to use for flush...
2249 * @page: page to flush
2250 * @offset: start of the range to invalidate
2251 * @length: length of the range to invalidate
2252 *
2253 * Reap page buffers containing data after in the specified range in page.
2254 * Can return -EBUSY if buffers are part of the committing transaction and
2255 * the page is straddling i_size. Caller then has to wait for current commit
2256 * and try again.
2257 */
2258 int jbd2_journal_invalidatepage(journal_t *journal,
2259 struct page *page,
2260 unsigned int offset,
2261 unsigned int length)
2262 {
2263 struct buffer_head *head, *bh, *next;
2264 unsigned int stop = offset + length;
2265 unsigned int curr_off = 0;
2266 int partial_page = (offset || length < PAGE_SIZE);
2267 int may_free = 1;
2268 int ret = 0;
2269
2270 if (!PageLocked(page))
2271 BUG();
2272 if (!page_has_buffers(page))
2273 return 0;
2274
2275 BUG_ON(stop > PAGE_SIZE || stop < length);
2276
2277 /* We will potentially be playing with lists other than just the
2278 * data lists (especially for journaled data mode), so be
2279 * cautious in our locking. */
2280
2281 head = bh = page_buffers(page);
2282 do {
2283 unsigned int next_off = curr_off + bh->b_size;
2284 next = bh->b_this_page;
2285
2286 if (next_off > stop)
2287 return 0;
2288
2289 if (offset <= curr_off) {
2290 /* This block is wholly outside the truncation point */
2291 lock_buffer(bh);
2292 ret = journal_unmap_buffer(journal, bh, partial_page);
2293 unlock_buffer(bh);
2294 if (ret < 0)
2295 return ret;
2296 may_free &= ret;
2297 }
2298 curr_off = next_off;
2299 bh = next;
2300
2301 } while (bh != head);
2302
2303 if (!partial_page) {
2304 if (may_free && try_to_free_buffers(page))
2305 J_ASSERT(!page_has_buffers(page));
2306 }
2307 return 0;
2308 }
2309
2310 /*
2311 * File a buffer on the given transaction list.
2312 */
2313 void __jbd2_journal_file_buffer(struct journal_head *jh,
2314 transaction_t *transaction, int jlist)
2315 {
2316 struct journal_head **list = NULL;
2317 int was_dirty = 0;
2318 struct buffer_head *bh = jh2bh(jh);
2319
2320 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2321 assert_spin_locked(&transaction->t_journal->j_list_lock);
2322
2323 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2324 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2325 jh->b_transaction == NULL);
2326
2327 if (jh->b_transaction && jh->b_jlist == jlist)
2328 return;
2329
2330 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2331 jlist == BJ_Shadow || jlist == BJ_Forget) {
2332 /*
2333 * For metadata buffers, we track dirty bit in buffer_jbddirty
2334 * instead of buffer_dirty. We should not see a dirty bit set
2335 * here because we clear it in do_get_write_access but e.g.
2336 * tune2fs can modify the sb and set the dirty bit at any time
2337 * so we try to gracefully handle that.
2338 */
2339 if (buffer_dirty(bh))
2340 warn_dirty_buffer(bh);
2341 if (test_clear_buffer_dirty(bh) ||
2342 test_clear_buffer_jbddirty(bh))
2343 was_dirty = 1;
2344 }
2345
2346 if (jh->b_transaction)
2347 __jbd2_journal_temp_unlink_buffer(jh);
2348 else
2349 jbd2_journal_grab_journal_head(bh);
2350 jh->b_transaction = transaction;
2351
2352 switch (jlist) {
2353 case BJ_None:
2354 J_ASSERT_JH(jh, !jh->b_committed_data);
2355 J_ASSERT_JH(jh, !jh->b_frozen_data);
2356 return;
2357 case BJ_Metadata:
2358 transaction->t_nr_buffers++;
2359 list = &transaction->t_buffers;
2360 break;
2361 case BJ_Forget:
2362 list = &transaction->t_forget;
2363 break;
2364 case BJ_Shadow:
2365 list = &transaction->t_shadow_list;
2366 break;
2367 case BJ_Reserved:
2368 list = &transaction->t_reserved_list;
2369 break;
2370 }
2371
2372 __blist_add_buffer(list, jh);
2373 jh->b_jlist = jlist;
2374
2375 if (was_dirty)
2376 set_buffer_jbddirty(bh);
2377 }
2378
2379 void jbd2_journal_file_buffer(struct journal_head *jh,
2380 transaction_t *transaction, int jlist)
2381 {
2382 jbd_lock_bh_state(jh2bh(jh));
2383 spin_lock(&transaction->t_journal->j_list_lock);
2384 __jbd2_journal_file_buffer(jh, transaction, jlist);
2385 spin_unlock(&transaction->t_journal->j_list_lock);
2386 jbd_unlock_bh_state(jh2bh(jh));
2387 }
2388
2389 /*
2390 * Remove a buffer from its current buffer list in preparation for
2391 * dropping it from its current transaction entirely. If the buffer has
2392 * already started to be used by a subsequent transaction, refile the
2393 * buffer on that transaction's metadata list.
2394 *
2395 * Called under j_list_lock
2396 * Called under jbd_lock_bh_state(jh2bh(jh))
2397 *
2398 * jh and bh may be already free when this function returns
2399 */
2400 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2401 {
2402 int was_dirty, jlist;
2403 struct buffer_head *bh = jh2bh(jh);
2404
2405 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2406 if (jh->b_transaction)
2407 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2408
2409 /* If the buffer is now unused, just drop it. */
2410 if (jh->b_next_transaction == NULL) {
2411 __jbd2_journal_unfile_buffer(jh);
2412 return;
2413 }
2414
2415 /*
2416 * It has been modified by a later transaction: add it to the new
2417 * transaction's metadata list.
2418 */
2419
2420 was_dirty = test_clear_buffer_jbddirty(bh);
2421 __jbd2_journal_temp_unlink_buffer(jh);
2422 /*
2423 * We set b_transaction here because b_next_transaction will inherit
2424 * our jh reference and thus __jbd2_journal_file_buffer() must not
2425 * take a new one.
2426 */
2427 jh->b_transaction = jh->b_next_transaction;
2428 jh->b_next_transaction = NULL;
2429 if (buffer_freed(bh))
2430 jlist = BJ_Forget;
2431 else if (jh->b_modified)
2432 jlist = BJ_Metadata;
2433 else
2434 jlist = BJ_Reserved;
2435 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2436 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2437
2438 if (was_dirty)
2439 set_buffer_jbddirty(bh);
2440 }
2441
2442 /*
2443 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2444 * bh reference so that we can safely unlock bh.
2445 *
2446 * The jh and bh may be freed by this call.
2447 */
2448 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2449 {
2450 struct buffer_head *bh = jh2bh(jh);
2451
2452 /* Get reference so that buffer cannot be freed before we unlock it */
2453 get_bh(bh);
2454 jbd_lock_bh_state(bh);
2455 spin_lock(&journal->j_list_lock);
2456 __jbd2_journal_refile_buffer(jh);
2457 jbd_unlock_bh_state(bh);
2458 spin_unlock(&journal->j_list_lock);
2459 __brelse(bh);
2460 }
2461
2462 /*
2463 * File inode in the inode list of the handle's transaction
2464 */
2465 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2466 {
2467 transaction_t *transaction = handle->h_transaction;
2468 journal_t *journal;
2469
2470 if (is_handle_aborted(handle))
2471 return -EROFS;
2472 journal = transaction->t_journal;
2473
2474 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2475 transaction->t_tid);
2476
2477 /*
2478 * First check whether inode isn't already on the transaction's
2479 * lists without taking the lock. Note that this check is safe
2480 * without the lock as we cannot race with somebody removing inode
2481 * from the transaction. The reason is that we remove inode from the
2482 * transaction only in journal_release_jbd_inode() and when we commit
2483 * the transaction. We are guarded from the first case by holding
2484 * a reference to the inode. We are safe against the second case
2485 * because if jinode->i_transaction == transaction, commit code
2486 * cannot touch the transaction because we hold reference to it,
2487 * and if jinode->i_next_transaction == transaction, commit code
2488 * will only file the inode where we want it.
2489 */
2490 if (jinode->i_transaction == transaction ||
2491 jinode->i_next_transaction == transaction)
2492 return 0;
2493
2494 spin_lock(&journal->j_list_lock);
2495
2496 if (jinode->i_transaction == transaction ||
2497 jinode->i_next_transaction == transaction)
2498 goto done;
2499
2500 /*
2501 * We only ever set this variable to 1 so the test is safe. Since
2502 * t_need_data_flush is likely to be set, we do the test to save some
2503 * cacheline bouncing
2504 */
2505 if (!transaction->t_need_data_flush)
2506 transaction->t_need_data_flush = 1;
2507 /* On some different transaction's list - should be
2508 * the committing one */
2509 if (jinode->i_transaction) {
2510 J_ASSERT(jinode->i_next_transaction == NULL);
2511 J_ASSERT(jinode->i_transaction ==
2512 journal->j_committing_transaction);
2513 jinode->i_next_transaction = transaction;
2514 goto done;
2515 }
2516 /* Not on any transaction list... */
2517 J_ASSERT(!jinode->i_next_transaction);
2518 jinode->i_transaction = transaction;
2519 list_add(&jinode->i_list, &transaction->t_inode_list);
2520 done:
2521 spin_unlock(&journal->j_list_lock);
2522
2523 return 0;
2524 }
2525
2526 /*
2527 * File truncate and transaction commit interact with each other in a
2528 * non-trivial way. If a transaction writing data block A is
2529 * committing, we cannot discard the data by truncate until we have
2530 * written them. Otherwise if we crashed after the transaction with
2531 * write has committed but before the transaction with truncate has
2532 * committed, we could see stale data in block A. This function is a
2533 * helper to solve this problem. It starts writeout of the truncated
2534 * part in case it is in the committing transaction.
2535 *
2536 * Filesystem code must call this function when inode is journaled in
2537 * ordered mode before truncation happens and after the inode has been
2538 * placed on orphan list with the new inode size. The second condition
2539 * avoids the race that someone writes new data and we start
2540 * committing the transaction after this function has been called but
2541 * before a transaction for truncate is started (and furthermore it
2542 * allows us to optimize the case where the addition to orphan list
2543 * happens in the same transaction as write --- we don't have to write
2544 * any data in such case).
2545 */
2546 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2547 struct jbd2_inode *jinode,
2548 loff_t new_size)
2549 {
2550 transaction_t *inode_trans, *commit_trans;
2551 int ret = 0;
2552
2553 /* This is a quick check to avoid locking if not necessary */
2554 if (!jinode->i_transaction)
2555 goto out;
2556 /* Locks are here just to force reading of recent values, it is
2557 * enough that the transaction was not committing before we started
2558 * a transaction adding the inode to orphan list */
2559 read_lock(&journal->j_state_lock);
2560 commit_trans = journal->j_committing_transaction;
2561 read_unlock(&journal->j_state_lock);
2562 spin_lock(&journal->j_list_lock);
2563 inode_trans = jinode->i_transaction;
2564 spin_unlock(&journal->j_list_lock);
2565 if (inode_trans == commit_trans) {
2566 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2567 new_size, LLONG_MAX);
2568 if (ret)
2569 jbd2_journal_abort(journal, ret);
2570 }
2571 out:
2572 return ret;
2573 }