]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/jffs2/nodelist.h
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / fs / jffs2 / nodelist.h
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: nodelist.h,v 1.126 2004/11/19 15:06:29 dedekind Exp $
11 *
12 */
13
14 #ifndef __JFFS2_NODELIST_H__
15 #define __JFFS2_NODELIST_H__
16
17 #include <linux/config.h>
18 #include <linux/fs.h>
19 #include <linux/types.h>
20 #include <linux/jffs2.h>
21 #include <linux/jffs2_fs_sb.h>
22 #include <linux/jffs2_fs_i.h>
23
24 #ifdef __ECOS
25 #include "os-ecos.h"
26 #else
27 #include <linux/mtd/compatmac.h> /* For min/max in older kernels */
28 #include "os-linux.h"
29 #endif
30
31 #ifndef CONFIG_JFFS2_FS_DEBUG
32 #define CONFIG_JFFS2_FS_DEBUG 1
33 #endif
34
35 #if CONFIG_JFFS2_FS_DEBUG > 0
36 #define D1(x) x
37 #else
38 #define D1(x)
39 #endif
40
41 #if CONFIG_JFFS2_FS_DEBUG > 1
42 #define D2(x) x
43 #else
44 #define D2(x)
45 #endif
46
47 #define JFFS2_NATIVE_ENDIAN
48
49 /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from
50 whatever OS we're actually running on here too. */
51
52 #if defined(JFFS2_NATIVE_ENDIAN)
53 #define cpu_to_je16(x) ((jint16_t){x})
54 #define cpu_to_je32(x) ((jint32_t){x})
55 #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)})
56
57 #define je16_to_cpu(x) ((x).v16)
58 #define je32_to_cpu(x) ((x).v32)
59 #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m))
60 #elif defined(JFFS2_BIG_ENDIAN)
61 #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)})
62 #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)})
63 #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))})
64
65 #define je16_to_cpu(x) (be16_to_cpu(x.v16))
66 #define je32_to_cpu(x) (be32_to_cpu(x.v32))
67 #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m)))
68 #elif defined(JFFS2_LITTLE_ENDIAN)
69 #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)})
70 #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)})
71 #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))})
72
73 #define je16_to_cpu(x) (le16_to_cpu(x.v16))
74 #define je32_to_cpu(x) (le32_to_cpu(x.v32))
75 #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m)))
76 #else
77 #error wibble
78 #endif
79
80 /*
81 This is all we need to keep in-core for each raw node during normal
82 operation. As and when we do read_inode on a particular inode, we can
83 scan the nodes which are listed for it and build up a proper map of
84 which nodes are currently valid. JFFSv1 always used to keep that whole
85 map in core for each inode.
86 */
87 struct jffs2_raw_node_ref
88 {
89 struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref
90 for this inode. If this is the last, it points to the inode_cache
91 for this inode instead. The inode_cache will have NULL in the first
92 word so you know when you've got there :) */
93 struct jffs2_raw_node_ref *next_phys;
94 uint32_t flash_offset;
95 uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */
96 };
97
98 /* flash_offset & 3 always has to be zero, because nodes are
99 always aligned at 4 bytes. So we have a couple of extra bits
100 to play with, which indicate the node's status; see below: */
101 #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */
102 #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */
103 #define REF_PRISTINE 2 /* Completely clean. GC without looking */
104 #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */
105 #define ref_flags(ref) ((ref)->flash_offset & 3)
106 #define ref_offset(ref) ((ref)->flash_offset & ~3)
107 #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE)
108 #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0)
109
110 /* For each inode in the filesystem, we need to keep a record of
111 nlink, because it would be a PITA to scan the whole directory tree
112 at read_inode() time to calculate it, and to keep sufficient information
113 in the raw_node_ref (basically both parent and child inode number for
114 dirent nodes) would take more space than this does. We also keep
115 a pointer to the first physical node which is part of this inode, too.
116 */
117 struct jffs2_inode_cache {
118 struct jffs2_full_dirent *scan_dents; /* Used during scan to hold
119 temporary lists of dirents, and later must be set to
120 NULL to mark the end of the raw_node_ref->next_in_ino
121 chain. */
122 struct jffs2_inode_cache *next;
123 struct jffs2_raw_node_ref *nodes;
124 uint32_t ino;
125 int nlink;
126 int state;
127 };
128
129 /* Inode states for 'state' above. We need the 'GC' state to prevent
130 someone from doing a read_inode() while we're moving a 'REF_PRISTINE'
131 node without going through all the iget() nonsense */
132 #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */
133 #define INO_STATE_CHECKING 1 /* CRC checks in progress */
134 #define INO_STATE_PRESENT 2 /* In core */
135 #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */
136 #define INO_STATE_GC 4 /* GCing a 'pristine' node */
137 #define INO_STATE_READING 5 /* In read_inode() */
138
139 #define INOCACHE_HASHSIZE 128
140
141 /*
142 Larger representation of a raw node, kept in-core only when the
143 struct inode for this particular ino is instantiated.
144 */
145
146 struct jffs2_full_dnode
147 {
148 struct jffs2_raw_node_ref *raw;
149 uint32_t ofs; /* The offset to which the data of this node belongs */
150 uint32_t size;
151 uint32_t frags; /* Number of fragments which currently refer
152 to this node. When this reaches zero,
153 the node is obsolete. */
154 };
155
156 /*
157 Even larger representation of a raw node, kept in-core only while
158 we're actually building up the original map of which nodes go where,
159 in read_inode()
160 */
161 struct jffs2_tmp_dnode_info
162 {
163 struct jffs2_tmp_dnode_info *next;
164 struct jffs2_full_dnode *fn;
165 uint32_t version;
166 };
167
168 struct jffs2_full_dirent
169 {
170 struct jffs2_raw_node_ref *raw;
171 struct jffs2_full_dirent *next;
172 uint32_t version;
173 uint32_t ino; /* == zero for unlink */
174 unsigned int nhash;
175 unsigned char type;
176 unsigned char name[0];
177 };
178
179 /*
180 Fragments - used to build a map of which raw node to obtain
181 data from for each part of the ino
182 */
183 struct jffs2_node_frag
184 {
185 struct rb_node rb;
186 struct jffs2_full_dnode *node; /* NULL for holes */
187 uint32_t size;
188 uint32_t ofs; /* The offset to which this fragment belongs */
189 };
190
191 struct jffs2_eraseblock
192 {
193 struct list_head list;
194 int bad_count;
195 uint32_t offset; /* of this block in the MTD */
196
197 uint32_t unchecked_size;
198 uint32_t used_size;
199 uint32_t dirty_size;
200 uint32_t wasted_size;
201 uint32_t free_size; /* Note that sector_size - free_size
202 is the address of the first free space */
203 struct jffs2_raw_node_ref *first_node;
204 struct jffs2_raw_node_ref *last_node;
205
206 struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */
207 };
208
209 #define ACCT_SANITY_CHECK(c, jeb) do { \
210 struct jffs2_eraseblock *___j = jeb; \
211 if ((___j) && ___j->used_size + ___j->dirty_size + ___j->free_size + ___j->wasted_size + ___j->unchecked_size != c->sector_size) { \
212 printk(KERN_NOTICE "Eeep. Space accounting for block at 0x%08x is screwed\n", ___j->offset); \
213 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + wasted %08x + unchecked %08x != total %08x\n", \
214 ___j->free_size, ___j->dirty_size, ___j->used_size, ___j->wasted_size, ___j->unchecked_size, c->sector_size); \
215 BUG(); \
216 } \
217 if (c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size + c->wasted_size + c->unchecked_size != c->flash_size) { \
218 printk(KERN_NOTICE "Eeep. Space accounting superblock info is screwed\n"); \
219 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + erasing %08x + bad %08x + wasted %08x + unchecked %08x != total %08x\n", \
220 c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size, c->wasted_size, c->unchecked_size, c->flash_size); \
221 BUG(); \
222 } \
223 } while(0)
224
225 static inline void paranoia_failed_dump(struct jffs2_eraseblock *jeb)
226 {
227 struct jffs2_raw_node_ref *ref;
228 int i=0;
229
230 printk(KERN_NOTICE);
231 for (ref = jeb->first_node; ref; ref = ref->next_phys) {
232 printk("%08x->", ref_offset(ref));
233 if (++i == 8) {
234 i = 0;
235 printk("\n" KERN_NOTICE);
236 }
237 }
238 printk("\n");
239 }
240
241
242 #define ACCT_PARANOIA_CHECK(jeb) do { \
243 uint32_t my_used_size = 0; \
244 uint32_t my_unchecked_size = 0; \
245 struct jffs2_raw_node_ref *ref2 = jeb->first_node; \
246 while (ref2) { \
247 if (unlikely(ref2->flash_offset < jeb->offset || \
248 ref2->flash_offset > jeb->offset + c->sector_size)) { \
249 printk(KERN_NOTICE "Node %08x shouldn't be in block at %08x!\n", \
250 ref_offset(ref2), jeb->offset); \
251 paranoia_failed_dump(jeb); \
252 BUG(); \
253 } \
254 if (ref_flags(ref2) == REF_UNCHECKED) \
255 my_unchecked_size += ref_totlen(c, jeb, ref2); \
256 else if (!ref_obsolete(ref2)) \
257 my_used_size += ref_totlen(c, jeb, ref2); \
258 if (unlikely((!ref2->next_phys) != (ref2 == jeb->last_node))) { \
259 if (!ref2->next_phys) \
260 printk("ref for node at %p (phys %08x) has next_phys->%p (----), last_node->%p (phys %08x)\n", \
261 ref2, ref_offset(ref2), ref2->next_phys, \
262 jeb->last_node, ref_offset(jeb->last_node)); \
263 else \
264 printk("ref for node at %p (phys %08x) has next_phys->%p (%08x), last_node->%p (phys %08x)\n", \
265 ref2, ref_offset(ref2), ref2->next_phys, ref_offset(ref2->next_phys), \
266 jeb->last_node, ref_offset(jeb->last_node)); \
267 paranoia_failed_dump(jeb); \
268 BUG(); \
269 } \
270 ref2 = ref2->next_phys; \
271 } \
272 if (my_used_size != jeb->used_size) { \
273 printk(KERN_NOTICE "Calculated used size %08x != stored used size %08x\n", my_used_size, jeb->used_size); \
274 BUG(); \
275 } \
276 if (my_unchecked_size != jeb->unchecked_size) { \
277 printk(KERN_NOTICE "Calculated unchecked size %08x != stored unchecked size %08x\n", my_unchecked_size, jeb->unchecked_size); \
278 BUG(); \
279 } \
280 } while(0)
281
282 /* Calculate totlen from surrounding nodes or eraseblock */
283 static inline uint32_t __ref_totlen(struct jffs2_sb_info *c,
284 struct jffs2_eraseblock *jeb,
285 struct jffs2_raw_node_ref *ref)
286 {
287 uint32_t ref_end;
288
289 if (ref->next_phys)
290 ref_end = ref_offset(ref->next_phys);
291 else {
292 if (!jeb)
293 jeb = &c->blocks[ref->flash_offset / c->sector_size];
294
295 /* Last node in block. Use free_space */
296 BUG_ON(ref != jeb->last_node);
297 ref_end = jeb->offset + c->sector_size - jeb->free_size;
298 }
299 return ref_end - ref_offset(ref);
300 }
301
302 static inline uint32_t ref_totlen(struct jffs2_sb_info *c,
303 struct jffs2_eraseblock *jeb,
304 struct jffs2_raw_node_ref *ref)
305 {
306 uint32_t ret;
307
308 D1(if (jeb && jeb != &c->blocks[ref->flash_offset / c->sector_size]) {
309 printk(KERN_CRIT "ref_totlen called with wrong block -- at 0x%08x instead of 0x%08x; ref 0x%08x\n",
310 jeb->offset, c->blocks[ref->flash_offset / c->sector_size].offset, ref_offset(ref));
311 BUG();
312 })
313
314 #if 1
315 ret = ref->__totlen;
316 #else
317 /* This doesn't actually work yet */
318 ret = __ref_totlen(c, jeb, ref);
319 if (ret != ref->__totlen) {
320 printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n",
321 ref, ref_offset(ref), ref_offset(ref)+ref->__totlen,
322 ret, ref->__totlen);
323 if (!jeb)
324 jeb = &c->blocks[ref->flash_offset / c->sector_size];
325 paranoia_failed_dump(jeb);
326 BUG();
327 }
328 #endif
329 return ret;
330 }
331
332
333 #define ALLOC_NORMAL 0 /* Normal allocation */
334 #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */
335 #define ALLOC_GC 2 /* Space requested for GC. Give it or die */
336 #define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */
337
338 /* How much dirty space before it goes on the very_dirty_list */
339 #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2))
340
341 /* check if dirty space is more than 255 Byte */
342 #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
343
344 #define PAD(x) (((x)+3)&~3)
345
346 static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw)
347 {
348 while(raw->next_in_ino) {
349 raw = raw->next_in_ino;
350 }
351
352 return ((struct jffs2_inode_cache *)raw);
353 }
354
355 static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
356 {
357 struct rb_node *node = root->rb_node;
358
359 if (!node)
360 return NULL;
361 while(node->rb_left)
362 node = node->rb_left;
363 return rb_entry(node, struct jffs2_node_frag, rb);
364 }
365 #define rb_parent(rb) ((rb)->rb_parent)
366 #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
367 #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
368 #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb)
369 #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb)
370 #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb)
371 #define frag_erase(frag, list) rb_erase(&frag->rb, list);
372
373 /* nodelist.c */
374 D2(void jffs2_print_frag_list(struct jffs2_inode_info *f));
375 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
376 int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
377 struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp,
378 uint32_t *highest_version, uint32_t *latest_mctime,
379 uint32_t *mctime_ver);
380 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
381 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
382 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new);
383 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old);
384 void jffs2_free_ino_caches(struct jffs2_sb_info *c);
385 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c);
386 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset);
387 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete);
388 void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base);
389 struct rb_node *rb_next(struct rb_node *);
390 struct rb_node *rb_prev(struct rb_node *);
391 void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root);
392
393 /* nodemgmt.c */
394 int jffs2_thread_should_wake(struct jffs2_sb_info *c);
395 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio);
396 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
397 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new);
398 void jffs2_complete_reservation(struct jffs2_sb_info *c);
399 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw);
400 void jffs2_dump_block_lists(struct jffs2_sb_info *c);
401
402 /* write.c */
403 int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri);
404
405 struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, int alloc_mode);
406 struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, int alloc_mode);
407 int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
408 struct jffs2_raw_inode *ri, unsigned char *buf,
409 uint32_t offset, uint32_t writelen, uint32_t *retlen);
410 int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen);
411 int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f);
412 int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen);
413
414
415 /* readinode.c */
416 void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size);
417 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn);
418 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
419 uint32_t ino, struct jffs2_raw_inode *latest_node);
420 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic);
421 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
422
423 /* malloc.c */
424 int jffs2_create_slab_caches(void);
425 void jffs2_destroy_slab_caches(void);
426
427 struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize);
428 void jffs2_free_full_dirent(struct jffs2_full_dirent *);
429 struct jffs2_full_dnode *jffs2_alloc_full_dnode(void);
430 void jffs2_free_full_dnode(struct jffs2_full_dnode *);
431 struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void);
432 void jffs2_free_raw_dirent(struct jffs2_raw_dirent *);
433 struct jffs2_raw_inode *jffs2_alloc_raw_inode(void);
434 void jffs2_free_raw_inode(struct jffs2_raw_inode *);
435 struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void);
436 void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *);
437 struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void);
438 void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *);
439 struct jffs2_node_frag *jffs2_alloc_node_frag(void);
440 void jffs2_free_node_frag(struct jffs2_node_frag *);
441 struct jffs2_inode_cache *jffs2_alloc_inode_cache(void);
442 void jffs2_free_inode_cache(struct jffs2_inode_cache *);
443
444 /* gc.c */
445 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c);
446
447 /* read.c */
448 int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
449 struct jffs2_full_dnode *fd, unsigned char *buf,
450 int ofs, int len);
451 int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
452 unsigned char *buf, uint32_t offset, uint32_t len);
453 char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
454
455 /* scan.c */
456 int jffs2_scan_medium(struct jffs2_sb_info *c);
457 void jffs2_rotate_lists(struct jffs2_sb_info *c);
458
459 /* build.c */
460 int jffs2_do_mount_fs(struct jffs2_sb_info *c);
461
462 /* erase.c */
463 void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
464
465 #ifdef CONFIG_JFFS2_FS_NAND
466 /* wbuf.c */
467 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
468 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
469 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
470 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
471 #endif
472
473 #endif /* __JFFS2_NODELIST_H__ */