]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/jffs2/nodemgmt.c
[JFFS2] Switch to using an array of jffs2_raw_node_refs instead of a list.
[mirror_ubuntu-bionic-kernel.git] / fs / jffs2 / nodemgmt.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: nodemgmt.c,v 1.127 2005/09/20 15:49:12 dedekind Exp $
11 *
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/compiler.h>
18 #include <linux/sched.h> /* For cond_resched() */
19 #include "nodelist.h"
20 #include "debug.h"
21
22 /**
23 * jffs2_reserve_space - request physical space to write nodes to flash
24 * @c: superblock info
25 * @minsize: Minimum acceptable size of allocation
26 * @len: Returned value of allocation length
27 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
28 *
29 * Requests a block of physical space on the flash. Returns zero for success
30 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
31 * error if appropriate. Doesn't return len since that's
32 *
33 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
34 * allocation semaphore, to prevent more than one allocation from being
35 * active at any time. The semaphore is later released by jffs2_commit_allocation()
36 *
37 * jffs2_reserve_space() may trigger garbage collection in order to make room
38 * for the requested allocation.
39 */
40
41 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
42 uint32_t *len, uint32_t sumsize);
43
44 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
45 uint32_t *len, int prio, uint32_t sumsize)
46 {
47 int ret = -EAGAIN;
48 int blocksneeded = c->resv_blocks_write;
49 /* align it */
50 minsize = PAD(minsize);
51
52 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
53 down(&c->alloc_sem);
54
55 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
56
57 spin_lock(&c->erase_completion_lock);
58
59 /* this needs a little more thought (true <tglx> :)) */
60 while(ret == -EAGAIN) {
61 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
62 int ret;
63 uint32_t dirty, avail;
64
65 /* calculate real dirty size
66 * dirty_size contains blocks on erase_pending_list
67 * those blocks are counted in c->nr_erasing_blocks.
68 * If one block is actually erased, it is not longer counted as dirty_space
69 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
70 * with c->nr_erasing_blocks * c->sector_size again.
71 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
72 * This helps us to force gc and pick eventually a clean block to spread the load.
73 * We add unchecked_size here, as we hopefully will find some space to use.
74 * This will affect the sum only once, as gc first finishes checking
75 * of nodes.
76 */
77 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
78 if (dirty < c->nospc_dirty_size) {
79 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
80 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
81 break;
82 }
83 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
84 dirty, c->unchecked_size, c->sector_size));
85
86 spin_unlock(&c->erase_completion_lock);
87 up(&c->alloc_sem);
88 return -ENOSPC;
89 }
90
91 /* Calc possibly available space. Possibly available means that we
92 * don't know, if unchecked size contains obsoleted nodes, which could give us some
93 * more usable space. This will affect the sum only once, as gc first finishes checking
94 * of nodes.
95 + Return -ENOSPC, if the maximum possibly available space is less or equal than
96 * blocksneeded * sector_size.
97 * This blocks endless gc looping on a filesystem, which is nearly full, even if
98 * the check above passes.
99 */
100 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
101 if ( (avail / c->sector_size) <= blocksneeded) {
102 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
103 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
104 break;
105 }
106
107 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
108 avail, blocksneeded * c->sector_size));
109 spin_unlock(&c->erase_completion_lock);
110 up(&c->alloc_sem);
111 return -ENOSPC;
112 }
113
114 up(&c->alloc_sem);
115
116 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
117 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
118 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
119 spin_unlock(&c->erase_completion_lock);
120
121 ret = jffs2_garbage_collect_pass(c);
122 if (ret)
123 return ret;
124
125 cond_resched();
126
127 if (signal_pending(current))
128 return -EINTR;
129
130 down(&c->alloc_sem);
131 spin_lock(&c->erase_completion_lock);
132 }
133
134 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 if (ret) {
136 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
137 }
138 }
139 spin_unlock(&c->erase_completion_lock);
140 if (!ret)
141 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 if (ret)
143 up(&c->alloc_sem);
144 return ret;
145 }
146
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 uint32_t *len, uint32_t sumsize)
149 {
150 int ret = -EAGAIN;
151 minsize = PAD(minsize);
152
153 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
154
155 spin_lock(&c->erase_completion_lock);
156 while(ret == -EAGAIN) {
157 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 if (ret) {
159 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
160 }
161 }
162 spin_unlock(&c->erase_completion_lock);
163 if (!ret)
164 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
165
166 return ret;
167 }
168
169
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
171
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
173 {
174
175 /* Check, if we have a dirty block now, or if it was dirty already */
176 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
177 c->dirty_size += jeb->wasted_size;
178 c->wasted_size -= jeb->wasted_size;
179 jeb->dirty_size += jeb->wasted_size;
180 jeb->wasted_size = 0;
181 if (VERYDIRTY(c, jeb->dirty_size)) {
182 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
183 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
184 list_add_tail(&jeb->list, &c->very_dirty_list);
185 } else {
186 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
187 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
188 list_add_tail(&jeb->list, &c->dirty_list);
189 }
190 } else {
191 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 list_add_tail(&jeb->list, &c->clean_list);
194 }
195 c->nextblock = NULL;
196
197 }
198
199 /* Select a new jeb for nextblock */
200
201 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
202 {
203 struct list_head *next;
204
205 /* Take the next block off the 'free' list */
206
207 if (list_empty(&c->free_list)) {
208
209 if (!c->nr_erasing_blocks &&
210 !list_empty(&c->erasable_list)) {
211 struct jffs2_eraseblock *ejeb;
212
213 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
214 list_del(&ejeb->list);
215 list_add_tail(&ejeb->list, &c->erase_pending_list);
216 c->nr_erasing_blocks++;
217 jffs2_erase_pending_trigger(c);
218 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
219 ejeb->offset));
220 }
221
222 if (!c->nr_erasing_blocks &&
223 !list_empty(&c->erasable_pending_wbuf_list)) {
224 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
225 /* c->nextblock is NULL, no update to c->nextblock allowed */
226 spin_unlock(&c->erase_completion_lock);
227 jffs2_flush_wbuf_pad(c);
228 spin_lock(&c->erase_completion_lock);
229 /* Have another go. It'll be on the erasable_list now */
230 return -EAGAIN;
231 }
232
233 if (!c->nr_erasing_blocks) {
234 /* Ouch. We're in GC, or we wouldn't have got here.
235 And there's no space left. At all. */
236 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
237 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
238 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
239 return -ENOSPC;
240 }
241
242 spin_unlock(&c->erase_completion_lock);
243 /* Don't wait for it; just erase one right now */
244 jffs2_erase_pending_blocks(c, 1);
245 spin_lock(&c->erase_completion_lock);
246
247 /* An erase may have failed, decreasing the
248 amount of free space available. So we must
249 restart from the beginning */
250 return -EAGAIN;
251 }
252
253 next = c->free_list.next;
254 list_del(next);
255 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
256 c->nr_free_blocks--;
257
258 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
259
260 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
261
262 return 0;
263 }
264
265 /* Called with alloc sem _and_ erase_completion_lock */
266 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
267 uint32_t *len, uint32_t sumsize)
268 {
269 struct jffs2_eraseblock *jeb = c->nextblock;
270 uint32_t reserved_size; /* for summary information at the end of the jeb */
271 int ret;
272
273 restart:
274 reserved_size = 0;
275
276 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
277 /* NOSUM_SIZE means not to generate summary */
278
279 if (jeb) {
280 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
281 dbg_summary("minsize=%d , jeb->free=%d ,"
282 "summary->size=%d , sumsize=%d\n",
283 minsize, jeb->free_size,
284 c->summary->sum_size, sumsize);
285 }
286
287 /* Is there enough space for writing out the current node, or we have to
288 write out summary information now, close this jeb and select new nextblock? */
289 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
290 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
291
292 /* Has summary been disabled for this jeb? */
293 if (jffs2_sum_is_disabled(c->summary)) {
294 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
295 goto restart;
296 }
297
298 /* Writing out the collected summary information */
299 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
300 ret = jffs2_sum_write_sumnode(c);
301
302 if (ret)
303 return ret;
304
305 if (jffs2_sum_is_disabled(c->summary)) {
306 /* jffs2_write_sumnode() couldn't write out the summary information
307 diabling summary for this jeb and free the collected information
308 */
309 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
310 goto restart;
311 }
312
313 jffs2_close_nextblock(c, jeb);
314 jeb = NULL;
315 /* keep always valid value in reserved_size */
316 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
317 }
318 } else {
319 if (jeb && minsize > jeb->free_size) {
320 /* Skip the end of this block and file it as having some dirty space */
321 /* If there's a pending write to it, flush now */
322
323 if (jffs2_wbuf_dirty(c)) {
324 spin_unlock(&c->erase_completion_lock);
325 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
326 jffs2_flush_wbuf_pad(c);
327 spin_lock(&c->erase_completion_lock);
328 jeb = c->nextblock;
329 goto restart;
330 }
331
332 c->wasted_size += jeb->free_size;
333 c->free_size -= jeb->free_size;
334 jeb->wasted_size += jeb->free_size;
335 jeb->free_size = 0;
336
337 jffs2_close_nextblock(c, jeb);
338 jeb = NULL;
339 }
340 }
341
342 if (!jeb) {
343
344 ret = jffs2_find_nextblock(c);
345 if (ret)
346 return ret;
347
348 jeb = c->nextblock;
349
350 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
351 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
352 goto restart;
353 }
354 }
355 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
356 enough space */
357 *len = jeb->free_size - reserved_size;
358
359 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
360 !jeb->first_node->next_in_ino) {
361 /* Only node in it beforehand was a CLEANMARKER node (we think).
362 So mark it obsolete now that there's going to be another node
363 in the block. This will reduce used_size to zero but We've
364 already set c->nextblock so that jffs2_mark_node_obsolete()
365 won't try to refile it to the dirty_list.
366 */
367 spin_unlock(&c->erase_completion_lock);
368 jffs2_mark_node_obsolete(c, jeb->first_node);
369 spin_lock(&c->erase_completion_lock);
370 }
371
372 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
373 *len, jeb->offset + (c->sector_size - jeb->free_size)));
374 return 0;
375 }
376
377 /**
378 * jffs2_add_physical_node_ref - add a physical node reference to the list
379 * @c: superblock info
380 * @new: new node reference to add
381 * @len: length of this physical node
382 *
383 * Should only be used to report nodes for which space has been allocated
384 * by jffs2_reserve_space.
385 *
386 * Must be called with the alloc_sem held.
387 */
388
389 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
390 uint32_t ofs, uint32_t len,
391 struct jffs2_inode_cache *ic)
392 {
393 struct jffs2_eraseblock *jeb;
394 struct jffs2_raw_node_ref *new;
395
396 jeb = &c->blocks[ofs / c->sector_size];
397
398 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
399 ofs & ~3, ofs & 3, len));
400 #if 1
401 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
402 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
403 even after refiling c->nextblock */
404 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
405 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
406 printk(KERN_WARNING "argh. node added in wrong place\n");
407 return ERR_PTR(-EINVAL);
408 }
409 #endif
410 spin_lock(&c->erase_completion_lock);
411
412 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
413
414 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
415 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
416 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
417 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
418 if (jffs2_wbuf_dirty(c)) {
419 /* Flush the last write in the block if it's outstanding */
420 spin_unlock(&c->erase_completion_lock);
421 jffs2_flush_wbuf_pad(c);
422 spin_lock(&c->erase_completion_lock);
423 }
424
425 list_add_tail(&jeb->list, &c->clean_list);
426 c->nextblock = NULL;
427 }
428 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
429 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
430
431 spin_unlock(&c->erase_completion_lock);
432
433 return new;
434 }
435
436
437 void jffs2_complete_reservation(struct jffs2_sb_info *c)
438 {
439 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
440 jffs2_garbage_collect_trigger(c);
441 up(&c->alloc_sem);
442 }
443
444 static inline int on_list(struct list_head *obj, struct list_head *head)
445 {
446 struct list_head *this;
447
448 list_for_each(this, head) {
449 if (this == obj) {
450 D1(printk("%p is on list at %p\n", obj, head));
451 return 1;
452
453 }
454 }
455 return 0;
456 }
457
458 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
459 {
460 struct jffs2_eraseblock *jeb;
461 int blocknr;
462 struct jffs2_unknown_node n;
463 int ret, addedsize;
464 size_t retlen;
465 uint32_t freed_len;
466
467 if(unlikely(!ref)) {
468 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
469 return;
470 }
471 if (ref_obsolete(ref)) {
472 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
473 return;
474 }
475 blocknr = ref->flash_offset / c->sector_size;
476 if (blocknr >= c->nr_blocks) {
477 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
478 BUG();
479 }
480 jeb = &c->blocks[blocknr];
481
482 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
483 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
484 /* Hm. This may confuse static lock analysis. If any of the above
485 three conditions is false, we're going to return from this
486 function without actually obliterating any nodes or freeing
487 any jffs2_raw_node_refs. So we don't need to stop erases from
488 happening, or protect against people holding an obsolete
489 jffs2_raw_node_ref without the erase_completion_lock. */
490 down(&c->erase_free_sem);
491 }
492
493 spin_lock(&c->erase_completion_lock);
494
495 freed_len = ref_totlen(c, jeb, ref);
496
497 if (ref_flags(ref) == REF_UNCHECKED) {
498 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
499 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
500 freed_len, blocknr, ref->flash_offset, jeb->used_size);
501 BUG();
502 })
503 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
504 jeb->unchecked_size -= freed_len;
505 c->unchecked_size -= freed_len;
506 } else {
507 D1(if (unlikely(jeb->used_size < freed_len)) {
508 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
509 freed_len, blocknr, ref->flash_offset, jeb->used_size);
510 BUG();
511 })
512 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
513 jeb->used_size -= freed_len;
514 c->used_size -= freed_len;
515 }
516
517 // Take care, that wasted size is taken into concern
518 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
519 D1(printk("Dirtying\n"));
520 addedsize = freed_len;
521 jeb->dirty_size += freed_len;
522 c->dirty_size += freed_len;
523
524 /* Convert wasted space to dirty, if not a bad block */
525 if (jeb->wasted_size) {
526 if (on_list(&jeb->list, &c->bad_used_list)) {
527 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
528 jeb->offset));
529 addedsize = 0; /* To fool the refiling code later */
530 } else {
531 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
532 jeb->wasted_size, jeb->offset));
533 addedsize += jeb->wasted_size;
534 jeb->dirty_size += jeb->wasted_size;
535 c->dirty_size += jeb->wasted_size;
536 c->wasted_size -= jeb->wasted_size;
537 jeb->wasted_size = 0;
538 }
539 }
540 } else {
541 D1(printk("Wasting\n"));
542 addedsize = 0;
543 jeb->wasted_size += freed_len;
544 c->wasted_size += freed_len;
545 }
546 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
547
548 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
549 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
550
551 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
552 /* Flash scanning is in progress. Don't muck about with the block
553 lists because they're not ready yet, and don't actually
554 obliterate nodes that look obsolete. If they weren't
555 marked obsolete on the flash at the time they _became_
556 obsolete, there was probably a reason for that. */
557 spin_unlock(&c->erase_completion_lock);
558 /* We didn't lock the erase_free_sem */
559 return;
560 }
561
562 if (jeb == c->nextblock) {
563 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
564 } else if (!jeb->used_size && !jeb->unchecked_size) {
565 if (jeb == c->gcblock) {
566 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
567 c->gcblock = NULL;
568 } else {
569 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
570 list_del(&jeb->list);
571 }
572 if (jffs2_wbuf_dirty(c)) {
573 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
574 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
575 } else {
576 if (jiffies & 127) {
577 /* Most of the time, we just erase it immediately. Otherwise we
578 spend ages scanning it on mount, etc. */
579 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
580 list_add_tail(&jeb->list, &c->erase_pending_list);
581 c->nr_erasing_blocks++;
582 jffs2_erase_pending_trigger(c);
583 } else {
584 /* Sometimes, however, we leave it elsewhere so it doesn't get
585 immediately reused, and we spread the load a bit. */
586 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
587 list_add_tail(&jeb->list, &c->erasable_list);
588 }
589 }
590 D1(printk(KERN_DEBUG "Done OK\n"));
591 } else if (jeb == c->gcblock) {
592 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
593 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
594 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
595 list_del(&jeb->list);
596 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
597 list_add_tail(&jeb->list, &c->dirty_list);
598 } else if (VERYDIRTY(c, jeb->dirty_size) &&
599 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
600 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
601 list_del(&jeb->list);
602 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
603 list_add_tail(&jeb->list, &c->very_dirty_list);
604 } else {
605 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
606 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
607 }
608
609 spin_unlock(&c->erase_completion_lock);
610
611 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
612 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
613 /* We didn't lock the erase_free_sem */
614 return;
615 }
616
617 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
618 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
619 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
620 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
621
622 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
623 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
624 if (ret) {
625 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
626 goto out_erase_sem;
627 }
628 if (retlen != sizeof(n)) {
629 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
630 goto out_erase_sem;
631 }
632 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
633 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
634 goto out_erase_sem;
635 }
636 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
637 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
638 goto out_erase_sem;
639 }
640 /* XXX FIXME: This is ugly now */
641 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
642 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
643 if (ret) {
644 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
645 goto out_erase_sem;
646 }
647 if (retlen != sizeof(n)) {
648 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
649 goto out_erase_sem;
650 }
651
652 /* Nodes which have been marked obsolete no longer need to be
653 associated with any inode. Remove them from the per-inode list.
654
655 Note we can't do this for NAND at the moment because we need
656 obsolete dirent nodes to stay on the lists, because of the
657 horridness in jffs2_garbage_collect_deletion_dirent(). Also
658 because we delete the inocache, and on NAND we need that to
659 stay around until all the nodes are actually erased, in order
660 to stop us from giving the same inode number to another newly
661 created inode. */
662 if (ref->next_in_ino) {
663 struct jffs2_inode_cache *ic;
664 struct jffs2_raw_node_ref **p;
665
666 spin_lock(&c->erase_completion_lock);
667
668 ic = jffs2_raw_ref_to_ic(ref);
669 /* It seems we should never call jffs2_mark_node_obsolete() for
670 XATTR nodes.... yet. Make sure we notice if/when we change
671 that :) */
672 BUG_ON(ic->class != RAWNODE_CLASS_INODE_CACHE);
673 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
674 ;
675
676 *p = ref->next_in_ino;
677 ref->next_in_ino = NULL;
678
679 if (ic->nodes == (void *)ic && ic->nlink == 0)
680 jffs2_del_ino_cache(c, ic);
681
682 spin_unlock(&c->erase_completion_lock);
683 }
684
685 out_erase_sem:
686 up(&c->erase_free_sem);
687 }
688
689 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
690 {
691 int ret = 0;
692 uint32_t dirty;
693
694 if (c->unchecked_size) {
695 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
696 c->unchecked_size, c->checked_ino));
697 return 1;
698 }
699
700 /* dirty_size contains blocks on erase_pending_list
701 * those blocks are counted in c->nr_erasing_blocks.
702 * If one block is actually erased, it is not longer counted as dirty_space
703 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
704 * with c->nr_erasing_blocks * c->sector_size again.
705 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
706 * This helps us to force gc and pick eventually a clean block to spread the load.
707 */
708 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
709
710 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
711 (dirty > c->nospc_dirty_size))
712 ret = 1;
713
714 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
715 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
716
717 return ret;
718 }