]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/jffs2/wbuf.c
[JFFS2] Disable summary after wbuf recovery
[mirror_ubuntu-hirsute-kernel.git] / fs / jffs2 / wbuf.c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 #include <linux/sched.h>
23
24 #include "nodelist.h"
25
26 /* For testing write failures */
27 #undef BREAKME
28 #undef BREAKMEHEADER
29
30 #ifdef BREAKME
31 static unsigned char *brokenbuf;
32 #endif
33
34 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
35 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
36
37 /* max. erase failures before we mark a block bad */
38 #define MAX_ERASE_FAILURES 2
39
40 struct jffs2_inodirty {
41 uint32_t ino;
42 struct jffs2_inodirty *next;
43 };
44
45 static struct jffs2_inodirty inodirty_nomem;
46
47 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
48 {
49 struct jffs2_inodirty *this = c->wbuf_inodes;
50
51 /* If a malloc failed, consider _everything_ dirty */
52 if (this == &inodirty_nomem)
53 return 1;
54
55 /* If ino == 0, _any_ non-GC writes mean 'yes' */
56 if (this && !ino)
57 return 1;
58
59 /* Look to see if the inode in question is pending in the wbuf */
60 while (this) {
61 if (this->ino == ino)
62 return 1;
63 this = this->next;
64 }
65 return 0;
66 }
67
68 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
69 {
70 struct jffs2_inodirty *this;
71
72 this = c->wbuf_inodes;
73
74 if (this != &inodirty_nomem) {
75 while (this) {
76 struct jffs2_inodirty *next = this->next;
77 kfree(this);
78 this = next;
79 }
80 }
81 c->wbuf_inodes = NULL;
82 }
83
84 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
85 {
86 struct jffs2_inodirty *new;
87
88 /* Mark the superblock dirty so that kupdated will flush... */
89 jffs2_erase_pending_trigger(c);
90
91 if (jffs2_wbuf_pending_for_ino(c, ino))
92 return;
93
94 new = kmalloc(sizeof(*new), GFP_KERNEL);
95 if (!new) {
96 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
97 jffs2_clear_wbuf_ino_list(c);
98 c->wbuf_inodes = &inodirty_nomem;
99 return;
100 }
101 new->ino = ino;
102 new->next = c->wbuf_inodes;
103 c->wbuf_inodes = new;
104 return;
105 }
106
107 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
108 {
109 struct list_head *this, *next;
110 static int n;
111
112 if (list_empty(&c->erasable_pending_wbuf_list))
113 return;
114
115 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
116 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
117
118 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
119 list_del(this);
120 if ((jiffies + (n++)) & 127) {
121 /* Most of the time, we just erase it immediately. Otherwise we
122 spend ages scanning it on mount, etc. */
123 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
124 list_add_tail(&jeb->list, &c->erase_pending_list);
125 c->nr_erasing_blocks++;
126 jffs2_erase_pending_trigger(c);
127 } else {
128 /* Sometimes, however, we leave it elsewhere so it doesn't get
129 immediately reused, and we spread the load a bit. */
130 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
131 list_add_tail(&jeb->list, &c->erasable_list);
132 }
133 }
134 }
135
136 #define REFILE_NOTEMPTY 0
137 #define REFILE_ANYWAY 1
138
139 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
140 {
141 D1(printk("About to refile bad block at %08x\n", jeb->offset));
142
143 /* File the existing block on the bad_used_list.... */
144 if (c->nextblock == jeb)
145 c->nextblock = NULL;
146 else /* Not sure this should ever happen... need more coffee */
147 list_del(&jeb->list);
148 if (jeb->first_node) {
149 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
150 list_add(&jeb->list, &c->bad_used_list);
151 } else {
152 BUG_ON(allow_empty == REFILE_NOTEMPTY);
153 /* It has to have had some nodes or we couldn't be here */
154 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
155 list_add(&jeb->list, &c->erase_pending_list);
156 c->nr_erasing_blocks++;
157 jffs2_erase_pending_trigger(c);
158 }
159
160 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
161 uint32_t oldfree = jeb->free_size;
162
163 jffs2_link_node_ref(c, jeb,
164 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
165 oldfree, NULL);
166 /* convert to wasted */
167 c->wasted_size += oldfree;
168 jeb->wasted_size += oldfree;
169 c->dirty_size -= oldfree;
170 jeb->dirty_size -= oldfree;
171 }
172
173 jffs2_dbg_dump_block_lists_nolock(c);
174 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
175 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
176 }
177
178 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
179 struct jffs2_inode_info *f,
180 struct jffs2_raw_node_ref *raw,
181 union jffs2_node_union *node)
182 {
183 struct jffs2_node_frag *frag;
184 struct jffs2_full_dirent *fd;
185
186 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
187 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
188
189 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
190 je16_to_cpu(node->u.magic) != 0);
191
192 switch (je16_to_cpu(node->u.nodetype)) {
193 case JFFS2_NODETYPE_INODE:
194 if (f->metadata && f->metadata->raw == raw) {
195 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
196 return &f->metadata->raw;
197 }
198 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
199 BUG_ON(!frag);
200 /* Find a frag which refers to the full_dnode we want to modify */
201 while (!frag->node || frag->node->raw != raw) {
202 frag = frag_next(frag);
203 BUG_ON(!frag);
204 }
205 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
206 return &frag->node->raw;
207
208 case JFFS2_NODETYPE_DIRENT:
209 for (fd = f->dents; fd; fd = fd->next) {
210 if (fd->raw == raw) {
211 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
212 return &fd->raw;
213 }
214 }
215 BUG();
216
217 default:
218 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
219 je16_to_cpu(node->u.nodetype));
220 break;
221 }
222 return NULL;
223 }
224
225 /* Recover from failure to write wbuf. Recover the nodes up to the
226 * wbuf, not the one which we were starting to try to write. */
227
228 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
229 {
230 struct jffs2_eraseblock *jeb, *new_jeb;
231 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
232 size_t retlen;
233 int ret;
234 int nr_refile = 0;
235 unsigned char *buf;
236 uint32_t start, end, ofs, len;
237
238 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
239
240 spin_lock(&c->erase_completion_lock);
241 if (c->wbuf_ofs % c->mtd->erasesize)
242 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
243 else
244 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
245 spin_unlock(&c->erase_completion_lock);
246
247 BUG_ON(!ref_obsolete(jeb->last_node));
248
249 /* Find the first node to be recovered, by skipping over every
250 node which ends before the wbuf starts, or which is obsolete. */
251 for (next = raw = jeb->first_node; next; raw = next) {
252 next = ref_next(raw);
253
254 if (ref_obsolete(raw) ||
255 (next && ref_offset(next) <= c->wbuf_ofs)) {
256 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
257 ref_offset(raw), ref_flags(raw),
258 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
259 c->wbuf_ofs);
260 continue;
261 }
262 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
263 ref_offset(raw), ref_flags(raw),
264 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
265
266 first_raw = raw;
267 break;
268 }
269
270 if (!first_raw) {
271 /* All nodes were obsolete. Nothing to recover. */
272 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
273 c->wbuf_len = 0;
274 return;
275 }
276
277 start = ref_offset(first_raw);
278 end = ref_offset(jeb->last_node);
279 nr_refile = 1;
280
281 /* Count the number of refs which need to be copied */
282 while ((raw = ref_next(raw)) != jeb->last_node)
283 nr_refile++;
284
285 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
286 start, end, end - start, nr_refile);
287
288 buf = NULL;
289 if (start < c->wbuf_ofs) {
290 /* First affected node was already partially written.
291 * Attempt to reread the old data into our buffer. */
292
293 buf = kmalloc(end - start, GFP_KERNEL);
294 if (!buf) {
295 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
296
297 goto read_failed;
298 }
299
300 /* Do the read... */
301 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
302
303 /* ECC recovered ? */
304 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
305 (retlen == c->wbuf_ofs - start))
306 ret = 0;
307
308 if (ret || retlen != c->wbuf_ofs - start) {
309 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
310
311 kfree(buf);
312 buf = NULL;
313 read_failed:
314 first_raw = ref_next(first_raw);
315 nr_refile--;
316 while (first_raw && ref_obsolete(first_raw)) {
317 first_raw = ref_next(first_raw);
318 nr_refile--;
319 }
320
321 /* If this was the only node to be recovered, give up */
322 if (!first_raw) {
323 c->wbuf_len = 0;
324 return;
325 }
326
327 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
328 start = ref_offset(first_raw);
329 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
330 start, end, end - start, nr_refile);
331
332 } else {
333 /* Read succeeded. Copy the remaining data from the wbuf */
334 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
335 }
336 }
337 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
338 Either 'buf' contains the data, or we find it in the wbuf */
339
340 /* ... and get an allocation of space from a shiny new block instead */
341 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
342 if (ret) {
343 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
344 kfree(buf);
345 return;
346 }
347
348 /* The summary is not recovered, so it must be disabled for this erase block */
349 jffs2_sum_disable_collecting(c->summary);
350
351 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
352 if (ret) {
353 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
354 kfree(buf);
355 return;
356 }
357
358 ofs = write_ofs(c);
359
360 if (end-start >= c->wbuf_pagesize) {
361 /* Need to do another write immediately, but it's possible
362 that this is just because the wbuf itself is completely
363 full, and there's nothing earlier read back from the
364 flash. Hence 'buf' isn't necessarily what we're writing
365 from. */
366 unsigned char *rewrite_buf = buf?:c->wbuf;
367 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
368
369 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
370 towrite, ofs));
371
372 #ifdef BREAKMEHEADER
373 static int breakme;
374 if (breakme++ == 20) {
375 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
376 breakme = 0;
377 c->mtd->write(c->mtd, ofs, towrite, &retlen,
378 brokenbuf);
379 ret = -EIO;
380 } else
381 #endif
382 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
383 rewrite_buf);
384
385 if (ret || retlen != towrite) {
386 /* Argh. We tried. Really we did. */
387 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
388 kfree(buf);
389
390 if (retlen)
391 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
392
393 return;
394 }
395 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
396
397 c->wbuf_len = (end - start) - towrite;
398 c->wbuf_ofs = ofs + towrite;
399 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
400 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
401 } else {
402 /* OK, now we're left with the dregs in whichever buffer we're using */
403 if (buf) {
404 memcpy(c->wbuf, buf, end-start);
405 } else {
406 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
407 }
408 c->wbuf_ofs = ofs;
409 c->wbuf_len = end - start;
410 }
411
412 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
413 new_jeb = &c->blocks[ofs / c->sector_size];
414
415 spin_lock(&c->erase_completion_lock);
416 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
417 uint32_t rawlen = ref_totlen(c, jeb, raw);
418 struct jffs2_inode_cache *ic;
419 struct jffs2_raw_node_ref *new_ref;
420 struct jffs2_raw_node_ref **adjust_ref = NULL;
421 struct jffs2_inode_info *f = NULL;
422
423 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
424 rawlen, ref_offset(raw), ref_flags(raw), ofs));
425
426 ic = jffs2_raw_ref_to_ic(raw);
427
428 /* Ick. This XATTR mess should be fixed shortly... */
429 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
430 struct jffs2_xattr_datum *xd = (void *)ic;
431 BUG_ON(xd->node != raw);
432 adjust_ref = &xd->node;
433 raw->next_in_ino = NULL;
434 ic = NULL;
435 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
436 struct jffs2_xattr_datum *xr = (void *)ic;
437 BUG_ON(xr->node != raw);
438 adjust_ref = &xr->node;
439 raw->next_in_ino = NULL;
440 ic = NULL;
441 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
442 struct jffs2_raw_node_ref **p = &ic->nodes;
443
444 /* Remove the old node from the per-inode list */
445 while (*p && *p != (void *)ic) {
446 if (*p == raw) {
447 (*p) = (raw->next_in_ino);
448 raw->next_in_ino = NULL;
449 break;
450 }
451 p = &((*p)->next_in_ino);
452 }
453
454 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
455 /* If it's an in-core inode, then we have to adjust any
456 full_dirent or full_dnode structure to point to the
457 new version instead of the old */
458 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
459 if (IS_ERR(f)) {
460 /* Should never happen; it _must_ be present */
461 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
462 ic->ino, PTR_ERR(f));
463 BUG();
464 }
465 /* We don't lock f->sem. There's a number of ways we could
466 end up in here with it already being locked, and nobody's
467 going to modify it on us anyway because we hold the
468 alloc_sem. We're only changing one ->raw pointer too,
469 which we can get away with without upsetting readers. */
470 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
471 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
472 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
473 ic->state != INO_STATE_CHECKEDABSENT &&
474 ic->state != INO_STATE_GC)) {
475 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
476 BUG();
477 }
478 }
479
480 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
481
482 if (adjust_ref) {
483 BUG_ON(*adjust_ref != raw);
484 *adjust_ref = new_ref;
485 }
486 if (f)
487 jffs2_gc_release_inode(c, f);
488
489 if (!ref_obsolete(raw)) {
490 jeb->dirty_size += rawlen;
491 jeb->used_size -= rawlen;
492 c->dirty_size += rawlen;
493 c->used_size -= rawlen;
494 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
495 BUG_ON(raw->next_in_ino);
496 }
497 ofs += rawlen;
498 }
499
500 kfree(buf);
501
502 /* Fix up the original jeb now it's on the bad_list */
503 if (first_raw == jeb->first_node) {
504 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
505 list_move(&jeb->list, &c->erase_pending_list);
506 c->nr_erasing_blocks++;
507 jffs2_erase_pending_trigger(c);
508 }
509
510 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
511 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
512
513 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
514 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
515
516 spin_unlock(&c->erase_completion_lock);
517
518 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
519
520 }
521
522 /* Meaning of pad argument:
523 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
524 1: Pad, do not adjust nextblock free_size
525 2: Pad, adjust nextblock free_size
526 */
527 #define NOPAD 0
528 #define PAD_NOACCOUNT 1
529 #define PAD_ACCOUNTING 2
530
531 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
532 {
533 struct jffs2_eraseblock *wbuf_jeb;
534 int ret;
535 size_t retlen;
536
537 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
538 del_timer() the timer we never initialised. */
539 if (!jffs2_is_writebuffered(c))
540 return 0;
541
542 if (!down_trylock(&c->alloc_sem)) {
543 up(&c->alloc_sem);
544 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
545 BUG();
546 }
547
548 if (!c->wbuf_len) /* already checked c->wbuf above */
549 return 0;
550
551 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
552 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
553 return -ENOMEM;
554
555 /* claim remaining space on the page
556 this happens, if we have a change to a new block,
557 or if fsync forces us to flush the writebuffer.
558 if we have a switch to next page, we will not have
559 enough remaining space for this.
560 */
561 if (pad ) {
562 c->wbuf_len = PAD(c->wbuf_len);
563
564 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
565 with 8 byte page size */
566 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
567
568 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
569 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
570 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
571 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
572 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
573 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
574 }
575 }
576 /* else jffs2_flash_writev has actually filled in the rest of the
577 buffer for us, and will deal with the node refs etc. later. */
578
579 #ifdef BREAKME
580 static int breakme;
581 if (breakme++ == 20) {
582 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
583 breakme = 0;
584 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
585 brokenbuf);
586 ret = -EIO;
587 } else
588 #endif
589
590 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
591
592 if (ret || retlen != c->wbuf_pagesize) {
593 if (ret)
594 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
595 else {
596 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
597 retlen, c->wbuf_pagesize);
598 ret = -EIO;
599 }
600
601 jffs2_wbuf_recover(c);
602
603 return ret;
604 }
605
606 /* Adjust free size of the block if we padded. */
607 if (pad) {
608 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
609
610 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
611 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
612
613 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
614 padded. If there is less free space in the block than that,
615 something screwed up */
616 if (wbuf_jeb->free_size < waste) {
617 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
618 c->wbuf_ofs, c->wbuf_len, waste);
619 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
620 wbuf_jeb->offset, wbuf_jeb->free_size);
621 BUG();
622 }
623
624 spin_lock(&c->erase_completion_lock);
625
626 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
627 /* FIXME: that made it count as dirty. Convert to wasted */
628 wbuf_jeb->dirty_size -= waste;
629 c->dirty_size -= waste;
630 wbuf_jeb->wasted_size += waste;
631 c->wasted_size += waste;
632 } else
633 spin_lock(&c->erase_completion_lock);
634
635 /* Stick any now-obsoleted blocks on the erase_pending_list */
636 jffs2_refile_wbuf_blocks(c);
637 jffs2_clear_wbuf_ino_list(c);
638 spin_unlock(&c->erase_completion_lock);
639
640 memset(c->wbuf,0xff,c->wbuf_pagesize);
641 /* adjust write buffer offset, else we get a non contiguous write bug */
642 c->wbuf_ofs += c->wbuf_pagesize;
643 c->wbuf_len = 0;
644 return 0;
645 }
646
647 /* Trigger garbage collection to flush the write-buffer.
648 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
649 outstanding. If ino arg non-zero, do it only if a write for the
650 given inode is outstanding. */
651 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
652 {
653 uint32_t old_wbuf_ofs;
654 uint32_t old_wbuf_len;
655 int ret = 0;
656
657 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
658
659 if (!c->wbuf)
660 return 0;
661
662 down(&c->alloc_sem);
663 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
664 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
665 up(&c->alloc_sem);
666 return 0;
667 }
668
669 old_wbuf_ofs = c->wbuf_ofs;
670 old_wbuf_len = c->wbuf_len;
671
672 if (c->unchecked_size) {
673 /* GC won't make any progress for a while */
674 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
675 down_write(&c->wbuf_sem);
676 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
677 /* retry flushing wbuf in case jffs2_wbuf_recover
678 left some data in the wbuf */
679 if (ret)
680 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
681 up_write(&c->wbuf_sem);
682 } else while (old_wbuf_len &&
683 old_wbuf_ofs == c->wbuf_ofs) {
684
685 up(&c->alloc_sem);
686
687 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
688
689 ret = jffs2_garbage_collect_pass(c);
690 if (ret) {
691 /* GC failed. Flush it with padding instead */
692 down(&c->alloc_sem);
693 down_write(&c->wbuf_sem);
694 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
695 /* retry flushing wbuf in case jffs2_wbuf_recover
696 left some data in the wbuf */
697 if (ret)
698 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
699 up_write(&c->wbuf_sem);
700 break;
701 }
702 down(&c->alloc_sem);
703 }
704
705 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
706
707 up(&c->alloc_sem);
708 return ret;
709 }
710
711 /* Pad write-buffer to end and write it, wasting space. */
712 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
713 {
714 int ret;
715
716 if (!c->wbuf)
717 return 0;
718
719 down_write(&c->wbuf_sem);
720 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
721 /* retry - maybe wbuf recover left some data in wbuf. */
722 if (ret)
723 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
724 up_write(&c->wbuf_sem);
725
726 return ret;
727 }
728
729 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
730 size_t len)
731 {
732 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
733 return 0;
734
735 if (len > (c->wbuf_pagesize - c->wbuf_len))
736 len = c->wbuf_pagesize - c->wbuf_len;
737 memcpy(c->wbuf + c->wbuf_len, buf, len);
738 c->wbuf_len += (uint32_t) len;
739 return len;
740 }
741
742 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
743 unsigned long count, loff_t to, size_t *retlen,
744 uint32_t ino)
745 {
746 struct jffs2_eraseblock *jeb;
747 size_t wbuf_retlen, donelen = 0;
748 uint32_t outvec_to = to;
749 int ret, invec;
750
751 /* If not writebuffered flash, don't bother */
752 if (!jffs2_is_writebuffered(c))
753 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
754
755 down_write(&c->wbuf_sem);
756
757 /* If wbuf_ofs is not initialized, set it to target address */
758 if (c->wbuf_ofs == 0xFFFFFFFF) {
759 c->wbuf_ofs = PAGE_DIV(to);
760 c->wbuf_len = PAGE_MOD(to);
761 memset(c->wbuf,0xff,c->wbuf_pagesize);
762 }
763
764 /*
765 * Sanity checks on target address. It's permitted to write
766 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
767 * write at the beginning of a new erase block. Anything else,
768 * and you die. New block starts at xxx000c (0-b = block
769 * header)
770 */
771 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
772 /* It's a write to a new block */
773 if (c->wbuf_len) {
774 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
775 "causes flush of wbuf at 0x%08x\n",
776 (unsigned long)to, c->wbuf_ofs));
777 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
778 if (ret)
779 goto outerr;
780 }
781 /* set pointer to new block */
782 c->wbuf_ofs = PAGE_DIV(to);
783 c->wbuf_len = PAGE_MOD(to);
784 }
785
786 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
787 /* We're not writing immediately after the writebuffer. Bad. */
788 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
789 "to %08lx\n", (unsigned long)to);
790 if (c->wbuf_len)
791 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
792 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
793 BUG();
794 }
795
796 /* adjust alignment offset */
797 if (c->wbuf_len != PAGE_MOD(to)) {
798 c->wbuf_len = PAGE_MOD(to);
799 /* take care of alignment to next page */
800 if (!c->wbuf_len) {
801 c->wbuf_len = c->wbuf_pagesize;
802 ret = __jffs2_flush_wbuf(c, NOPAD);
803 if (ret)
804 goto outerr;
805 }
806 }
807
808 for (invec = 0; invec < count; invec++) {
809 int vlen = invecs[invec].iov_len;
810 uint8_t *v = invecs[invec].iov_base;
811
812 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
813
814 if (c->wbuf_len == c->wbuf_pagesize) {
815 ret = __jffs2_flush_wbuf(c, NOPAD);
816 if (ret)
817 goto outerr;
818 }
819 vlen -= wbuf_retlen;
820 outvec_to += wbuf_retlen;
821 donelen += wbuf_retlen;
822 v += wbuf_retlen;
823
824 if (vlen >= c->wbuf_pagesize) {
825 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
826 &wbuf_retlen, v);
827 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
828 goto outfile;
829
830 vlen -= wbuf_retlen;
831 outvec_to += wbuf_retlen;
832 c->wbuf_ofs = outvec_to;
833 donelen += wbuf_retlen;
834 v += wbuf_retlen;
835 }
836
837 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
838 if (c->wbuf_len == c->wbuf_pagesize) {
839 ret = __jffs2_flush_wbuf(c, NOPAD);
840 if (ret)
841 goto outerr;
842 }
843
844 outvec_to += wbuf_retlen;
845 donelen += wbuf_retlen;
846 }
847
848 /*
849 * If there's a remainder in the wbuf and it's a non-GC write,
850 * remember that the wbuf affects this ino
851 */
852 *retlen = donelen;
853
854 if (jffs2_sum_active()) {
855 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
856 if (res)
857 return res;
858 }
859
860 if (c->wbuf_len && ino)
861 jffs2_wbuf_dirties_inode(c, ino);
862
863 ret = 0;
864 up_write(&c->wbuf_sem);
865 return ret;
866
867 outfile:
868 /*
869 * At this point we have no problem, c->wbuf is empty. However
870 * refile nextblock to avoid writing again to same address.
871 */
872
873 spin_lock(&c->erase_completion_lock);
874
875 jeb = &c->blocks[outvec_to / c->sector_size];
876 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
877
878 spin_unlock(&c->erase_completion_lock);
879
880 outerr:
881 *retlen = 0;
882 up_write(&c->wbuf_sem);
883 return ret;
884 }
885
886 /*
887 * This is the entry for flash write.
888 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
889 */
890 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
891 size_t *retlen, const u_char *buf)
892 {
893 struct kvec vecs[1];
894
895 if (!jffs2_is_writebuffered(c))
896 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
897
898 vecs[0].iov_base = (unsigned char *) buf;
899 vecs[0].iov_len = len;
900 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
901 }
902
903 /*
904 Handle readback from writebuffer and ECC failure return
905 */
906 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
907 {
908 loff_t orbf = 0, owbf = 0, lwbf = 0;
909 int ret;
910
911 if (!jffs2_is_writebuffered(c))
912 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
913
914 /* Read flash */
915 down_read(&c->wbuf_sem);
916 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
917
918 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
919 if (ret == -EBADMSG)
920 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
921 " returned ECC error\n", len, ofs);
922 /*
923 * We have the raw data without ECC correction in the buffer,
924 * maybe we are lucky and all data or parts are correct. We
925 * check the node. If data are corrupted node check will sort
926 * it out. We keep this block, it will fail on write or erase
927 * and the we mark it bad. Or should we do that now? But we
928 * should give him a chance. Maybe we had a system crash or
929 * power loss before the ecc write or a erase was completed.
930 * So we return success. :)
931 */
932 ret = 0;
933 }
934
935 /* if no writebuffer available or write buffer empty, return */
936 if (!c->wbuf_pagesize || !c->wbuf_len)
937 goto exit;
938
939 /* if we read in a different block, return */
940 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
941 goto exit;
942
943 if (ofs >= c->wbuf_ofs) {
944 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
945 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
946 goto exit;
947 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
948 if (lwbf > len)
949 lwbf = len;
950 } else {
951 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
952 if (orbf > len) /* is write beyond write buffer ? */
953 goto exit;
954 lwbf = len - orbf; /* number of bytes to copy */
955 if (lwbf > c->wbuf_len)
956 lwbf = c->wbuf_len;
957 }
958 if (lwbf > 0)
959 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
960
961 exit:
962 up_read(&c->wbuf_sem);
963 return ret;
964 }
965
966 #define NR_OOB_SCAN_PAGES 4
967
968 /* For historical reasons we use only 12 bytes for OOB clean marker */
969 #define OOB_CM_SIZE 12
970
971 static const struct jffs2_unknown_node oob_cleanmarker =
972 {
973 .magic = cpu_to_je16(JFFS2_MAGIC_BITMASK),
974 .nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
975 .totlen = cpu_to_je32(8)
976 };
977
978 /*
979 * Check, if the out of band area is empty. This function knows about the clean
980 * marker and if it is present in OOB, treats the OOB as empty anyway.
981 */
982 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
983 struct jffs2_eraseblock *jeb, int mode)
984 {
985 int i, ret;
986 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
987 struct mtd_oob_ops ops;
988
989 ops.mode = MTD_OOB_AUTO;
990 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
991 ops.oobbuf = c->oobbuf;
992 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
993 ops.datbuf = NULL;
994
995 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
996 if (ret || ops.oobretlen != ops.ooblen) {
997 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
998 " bytes, read %zd bytes, error %d\n",
999 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1000 if (!ret)
1001 ret = -EIO;
1002 return ret;
1003 }
1004
1005 for(i = 0; i < ops.ooblen; i++) {
1006 if (mode && i < cmlen)
1007 /* Yeah, we know about the cleanmarker */
1008 continue;
1009
1010 if (ops.oobbuf[i] != 0xFF) {
1011 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1012 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1013 return 1;
1014 }
1015 }
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * Check for a valid cleanmarker.
1022 * Returns: 0 if a valid cleanmarker was found
1023 * 1 if no cleanmarker was found
1024 * negative error code if an error occurred
1025 */
1026 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1027 struct jffs2_eraseblock *jeb)
1028 {
1029 struct mtd_oob_ops ops;
1030 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1031
1032 ops.mode = MTD_OOB_AUTO;
1033 ops.ooblen = cmlen;
1034 ops.oobbuf = c->oobbuf;
1035 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1036 ops.datbuf = NULL;
1037
1038 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1039 if (ret || ops.oobretlen != ops.ooblen) {
1040 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1041 " bytes, read %zd bytes, error %d\n",
1042 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1043 if (!ret)
1044 ret = -EIO;
1045 return ret;
1046 }
1047
1048 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1049 }
1050
1051 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1052 struct jffs2_eraseblock *jeb)
1053 {
1054 int ret;
1055 struct mtd_oob_ops ops;
1056 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1057
1058 ops.mode = MTD_OOB_AUTO;
1059 ops.ooblen = cmlen;
1060 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1061 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1062 ops.datbuf = NULL;
1063
1064 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1065 if (ret || ops.oobretlen != ops.ooblen) {
1066 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1067 " bytes, read %zd bytes, error %d\n",
1068 jeb->offset, ops.ooblen, ops.oobretlen, ret);
1069 if (!ret)
1070 ret = -EIO;
1071 return ret;
1072 }
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * On NAND we try to mark this block bad. If the block was erased more
1079 * than MAX_ERASE_FAILURES we mark it finaly bad.
1080 * Don't care about failures. This block remains on the erase-pending
1081 * or badblock list as long as nobody manipulates the flash with
1082 * a bootloader or something like that.
1083 */
1084
1085 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1086 {
1087 int ret;
1088
1089 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1090 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1091 return 0;
1092
1093 if (!c->mtd->block_markbad)
1094 return 1; // What else can we do?
1095
1096 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1097 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1098
1099 if (ret) {
1100 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1101 return ret;
1102 }
1103 return 1;
1104 }
1105
1106 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1107 {
1108 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1109
1110 if (!c->mtd->oobsize)
1111 return 0;
1112
1113 /* Cleanmarker is out-of-band, so inline size zero */
1114 c->cleanmarker_size = 0;
1115
1116 if (!oinfo || oinfo->oobavail == 0) {
1117 printk(KERN_ERR "inconsistent device description\n");
1118 return -EINVAL;
1119 }
1120
1121 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1122
1123 c->oobavail = oinfo->oobavail;
1124
1125 /* Initialise write buffer */
1126 init_rwsem(&c->wbuf_sem);
1127 c->wbuf_pagesize = c->mtd->writesize;
1128 c->wbuf_ofs = 0xFFFFFFFF;
1129
1130 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1131 if (!c->wbuf)
1132 return -ENOMEM;
1133
1134 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1135 if (!c->oobbuf) {
1136 kfree(c->wbuf);
1137 return -ENOMEM;
1138 }
1139
1140 return 0;
1141 }
1142
1143 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1144 {
1145 kfree(c->wbuf);
1146 kfree(c->oobbuf);
1147 }
1148
1149 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1150 c->cleanmarker_size = 0; /* No cleanmarkers needed */
1151
1152 /* Initialize write buffer */
1153 init_rwsem(&c->wbuf_sem);
1154
1155
1156 c->wbuf_pagesize = c->mtd->erasesize;
1157
1158 /* Find a suitable c->sector_size
1159 * - Not too much sectors
1160 * - Sectors have to be at least 4 K + some bytes
1161 * - All known dataflashes have erase sizes of 528 or 1056
1162 * - we take at least 8 eraseblocks and want to have at least 8K size
1163 * - The concatenation should be a power of 2
1164 */
1165
1166 c->sector_size = 8 * c->mtd->erasesize;
1167
1168 while (c->sector_size < 8192) {
1169 c->sector_size *= 2;
1170 }
1171
1172 /* It may be necessary to adjust the flash size */
1173 c->flash_size = c->mtd->size;
1174
1175 if ((c->flash_size % c->sector_size) != 0) {
1176 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1177 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1178 };
1179
1180 c->wbuf_ofs = 0xFFFFFFFF;
1181 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1182 if (!c->wbuf)
1183 return -ENOMEM;
1184
1185 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1186
1187 return 0;
1188 }
1189
1190 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1191 kfree(c->wbuf);
1192 }
1193
1194 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1195 /* Cleanmarker currently occupies whole programming regions,
1196 * either one or 2 for 8Byte STMicro flashes. */
1197 c->cleanmarker_size = max(16u, c->mtd->writesize);
1198
1199 /* Initialize write buffer */
1200 init_rwsem(&c->wbuf_sem);
1201 c->wbuf_pagesize = c->mtd->writesize;
1202 c->wbuf_ofs = 0xFFFFFFFF;
1203
1204 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1205 if (!c->wbuf)
1206 return -ENOMEM;
1207
1208 return 0;
1209 }
1210
1211 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1212 kfree(c->wbuf);
1213 }