]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/jfs/jfs_logmgr.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[mirror_ubuntu-artful-kernel.git] / fs / jfs / jfs_logmgr.c
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/completion.h>
66 #include <linux/kthread.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/freezer.h>
70 #include <linux/export.h>
71 #include <linux/delay.h>
72 #include <linux/mutex.h>
73 #include <linux/seq_file.h>
74 #include <linux/slab.h>
75 #include "jfs_incore.h"
76 #include "jfs_filsys.h"
77 #include "jfs_metapage.h"
78 #include "jfs_superblock.h"
79 #include "jfs_txnmgr.h"
80 #include "jfs_debug.h"
81
82
83 /*
84 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
85 */
86 static struct lbuf *log_redrive_list;
87 static DEFINE_SPINLOCK(log_redrive_lock);
88
89
90 /*
91 * log read/write serialization (per log)
92 */
93 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
94 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
95 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
96
97
98 /*
99 * log group commit serialization (per log)
100 */
101
102 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
103 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
104 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
105 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
106
107 /*
108 * log sync serialization (per log)
109 */
110 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
111 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
112 /*
113 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
114 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
115 */
116
117
118 /*
119 * log buffer cache synchronization
120 */
121 static DEFINE_SPINLOCK(jfsLCacheLock);
122
123 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
124 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
125
126 /*
127 * See __SLEEP_COND in jfs_locks.h
128 */
129 #define LCACHE_SLEEP_COND(wq, cond, flags) \
130 do { \
131 if (cond) \
132 break; \
133 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
134 } while (0)
135
136 #define LCACHE_WAKEUP(event) wake_up(event)
137
138
139 /*
140 * lbuf buffer cache (lCache) control
141 */
142 /* log buffer manager pageout control (cumulative, inclusive) */
143 #define lbmREAD 0x0001
144 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
145 * init pageout if at head of queue;
146 */
147 #define lbmRELEASE 0x0004 /* remove from write queue
148 * at completion of pageout;
149 * do not free/recycle it yet:
150 * caller will free it;
151 */
152 #define lbmSYNC 0x0008 /* do not return to freelist
153 * when removed from write queue;
154 */
155 #define lbmFREE 0x0010 /* return to freelist
156 * at completion of pageout;
157 * the buffer may be recycled;
158 */
159 #define lbmDONE 0x0020
160 #define lbmERROR 0x0040
161 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
162 * of log page
163 */
164 #define lbmDIRECT 0x0100
165
166 /*
167 * Global list of active external journals
168 */
169 static LIST_HEAD(jfs_external_logs);
170 static struct jfs_log *dummy_log = NULL;
171 static DEFINE_MUTEX(jfs_log_mutex);
172
173 /*
174 * forward references
175 */
176 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
177 struct lrd * lrd, struct tlock * tlck);
178
179 static int lmNextPage(struct jfs_log * log);
180 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
181 int activate);
182
183 static int open_inline_log(struct super_block *sb);
184 static int open_dummy_log(struct super_block *sb);
185 static int lbmLogInit(struct jfs_log * log);
186 static void lbmLogShutdown(struct jfs_log * log);
187 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
188 static void lbmFree(struct lbuf * bp);
189 static void lbmfree(struct lbuf * bp);
190 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
191 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
192 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
193 static int lbmIOWait(struct lbuf * bp, int flag);
194 static bio_end_io_t lbmIODone;
195 static void lbmStartIO(struct lbuf * bp);
196 static void lmGCwrite(struct jfs_log * log, int cant_block);
197 static int lmLogSync(struct jfs_log * log, int hard_sync);
198
199
200
201 /*
202 * statistics
203 */
204 #ifdef CONFIG_JFS_STATISTICS
205 static struct lmStat {
206 uint commit; /* # of commit */
207 uint pagedone; /* # of page written */
208 uint submitted; /* # of pages submitted */
209 uint full_page; /* # of full pages submitted */
210 uint partial_page; /* # of partial pages submitted */
211 } lmStat;
212 #endif
213
214 static void write_special_inodes(struct jfs_log *log,
215 int (*writer)(struct address_space *))
216 {
217 struct jfs_sb_info *sbi;
218
219 list_for_each_entry(sbi, &log->sb_list, log_list) {
220 writer(sbi->ipbmap->i_mapping);
221 writer(sbi->ipimap->i_mapping);
222 writer(sbi->direct_inode->i_mapping);
223 }
224 }
225
226 /*
227 * NAME: lmLog()
228 *
229 * FUNCTION: write a log record;
230 *
231 * PARAMETER:
232 *
233 * RETURN: lsn - offset to the next log record to write (end-of-log);
234 * -1 - error;
235 *
236 * note: todo: log error handler
237 */
238 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
239 struct tlock * tlck)
240 {
241 int lsn;
242 int diffp, difft;
243 struct metapage *mp = NULL;
244 unsigned long flags;
245
246 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
247 log, tblk, lrd, tlck);
248
249 LOG_LOCK(log);
250
251 /* log by (out-of-transaction) JFS ? */
252 if (tblk == NULL)
253 goto writeRecord;
254
255 /* log from page ? */
256 if (tlck == NULL ||
257 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
258 goto writeRecord;
259
260 /*
261 * initialize/update page/transaction recovery lsn
262 */
263 lsn = log->lsn;
264
265 LOGSYNC_LOCK(log, flags);
266
267 /*
268 * initialize page lsn if first log write of the page
269 */
270 if (mp->lsn == 0) {
271 mp->log = log;
272 mp->lsn = lsn;
273 log->count++;
274
275 /* insert page at tail of logsynclist */
276 list_add_tail(&mp->synclist, &log->synclist);
277 }
278
279 /*
280 * initialize/update lsn of tblock of the page
281 *
282 * transaction inherits oldest lsn of pages associated
283 * with allocation/deallocation of resources (their
284 * log records are used to reconstruct allocation map
285 * at recovery time: inode for inode allocation map,
286 * B+-tree index of extent descriptors for block
287 * allocation map);
288 * allocation map pages inherit transaction lsn at
289 * commit time to allow forwarding log syncpt past log
290 * records associated with allocation/deallocation of
291 * resources only after persistent map of these map pages
292 * have been updated and propagated to home.
293 */
294 /*
295 * initialize transaction lsn:
296 */
297 if (tblk->lsn == 0) {
298 /* inherit lsn of its first page logged */
299 tblk->lsn = mp->lsn;
300 log->count++;
301
302 /* insert tblock after the page on logsynclist */
303 list_add(&tblk->synclist, &mp->synclist);
304 }
305 /*
306 * update transaction lsn:
307 */
308 else {
309 /* inherit oldest/smallest lsn of page */
310 logdiff(diffp, mp->lsn, log);
311 logdiff(difft, tblk->lsn, log);
312 if (diffp < difft) {
313 /* update tblock lsn with page lsn */
314 tblk->lsn = mp->lsn;
315
316 /* move tblock after page on logsynclist */
317 list_move(&tblk->synclist, &mp->synclist);
318 }
319 }
320
321 LOGSYNC_UNLOCK(log, flags);
322
323 /*
324 * write the log record
325 */
326 writeRecord:
327 lsn = lmWriteRecord(log, tblk, lrd, tlck);
328
329 /*
330 * forward log syncpt if log reached next syncpt trigger
331 */
332 logdiff(diffp, lsn, log);
333 if (diffp >= log->nextsync)
334 lsn = lmLogSync(log, 0);
335
336 /* update end-of-log lsn */
337 log->lsn = lsn;
338
339 LOG_UNLOCK(log);
340
341 /* return end-of-log address */
342 return lsn;
343 }
344
345 /*
346 * NAME: lmWriteRecord()
347 *
348 * FUNCTION: move the log record to current log page
349 *
350 * PARAMETER: cd - commit descriptor
351 *
352 * RETURN: end-of-log address
353 *
354 * serialization: LOG_LOCK() held on entry/exit
355 */
356 static int
357 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
358 struct tlock * tlck)
359 {
360 int lsn = 0; /* end-of-log address */
361 struct lbuf *bp; /* dst log page buffer */
362 struct logpage *lp; /* dst log page */
363 caddr_t dst; /* destination address in log page */
364 int dstoffset; /* end-of-log offset in log page */
365 int freespace; /* free space in log page */
366 caddr_t p; /* src meta-data page */
367 caddr_t src;
368 int srclen;
369 int nbytes; /* number of bytes to move */
370 int i;
371 int len;
372 struct linelock *linelock;
373 struct lv *lv;
374 struct lvd *lvd;
375 int l2linesize;
376
377 len = 0;
378
379 /* retrieve destination log page to write */
380 bp = (struct lbuf *) log->bp;
381 lp = (struct logpage *) bp->l_ldata;
382 dstoffset = log->eor;
383
384 /* any log data to write ? */
385 if (tlck == NULL)
386 goto moveLrd;
387
388 /*
389 * move log record data
390 */
391 /* retrieve source meta-data page to log */
392 if (tlck->flag & tlckPAGELOCK) {
393 p = (caddr_t) (tlck->mp->data);
394 linelock = (struct linelock *) & tlck->lock;
395 }
396 /* retrieve source in-memory inode to log */
397 else if (tlck->flag & tlckINODELOCK) {
398 if (tlck->type & tlckDTREE)
399 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
400 else
401 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
402 linelock = (struct linelock *) & tlck->lock;
403 }
404 #ifdef _JFS_WIP
405 else if (tlck->flag & tlckINLINELOCK) {
406
407 inlinelock = (struct inlinelock *) & tlck;
408 p = (caddr_t) & inlinelock->pxd;
409 linelock = (struct linelock *) & tlck;
410 }
411 #endif /* _JFS_WIP */
412 else {
413 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
414 return 0; /* Probably should trap */
415 }
416 l2linesize = linelock->l2linesize;
417
418 moveData:
419 ASSERT(linelock->index <= linelock->maxcnt);
420
421 lv = linelock->lv;
422 for (i = 0; i < linelock->index; i++, lv++) {
423 if (lv->length == 0)
424 continue;
425
426 /* is page full ? */
427 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
428 /* page become full: move on to next page */
429 lmNextPage(log);
430
431 bp = log->bp;
432 lp = (struct logpage *) bp->l_ldata;
433 dstoffset = LOGPHDRSIZE;
434 }
435
436 /*
437 * move log vector data
438 */
439 src = (u8 *) p + (lv->offset << l2linesize);
440 srclen = lv->length << l2linesize;
441 len += srclen;
442 while (srclen > 0) {
443 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
444 nbytes = min(freespace, srclen);
445 dst = (caddr_t) lp + dstoffset;
446 memcpy(dst, src, nbytes);
447 dstoffset += nbytes;
448
449 /* is page not full ? */
450 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
451 break;
452
453 /* page become full: move on to next page */
454 lmNextPage(log);
455
456 bp = (struct lbuf *) log->bp;
457 lp = (struct logpage *) bp->l_ldata;
458 dstoffset = LOGPHDRSIZE;
459
460 srclen -= nbytes;
461 src += nbytes;
462 }
463
464 /*
465 * move log vector descriptor
466 */
467 len += 4;
468 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
469 lvd->offset = cpu_to_le16(lv->offset);
470 lvd->length = cpu_to_le16(lv->length);
471 dstoffset += 4;
472 jfs_info("lmWriteRecord: lv offset:%d length:%d",
473 lv->offset, lv->length);
474 }
475
476 if ((i = linelock->next)) {
477 linelock = (struct linelock *) lid_to_tlock(i);
478 goto moveData;
479 }
480
481 /*
482 * move log record descriptor
483 */
484 moveLrd:
485 lrd->length = cpu_to_le16(len);
486
487 src = (caddr_t) lrd;
488 srclen = LOGRDSIZE;
489
490 while (srclen > 0) {
491 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
492 nbytes = min(freespace, srclen);
493 dst = (caddr_t) lp + dstoffset;
494 memcpy(dst, src, nbytes);
495
496 dstoffset += nbytes;
497 srclen -= nbytes;
498
499 /* are there more to move than freespace of page ? */
500 if (srclen)
501 goto pageFull;
502
503 /*
504 * end of log record descriptor
505 */
506
507 /* update last log record eor */
508 log->eor = dstoffset;
509 bp->l_eor = dstoffset;
510 lsn = (log->page << L2LOGPSIZE) + dstoffset;
511
512 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
513 tblk->clsn = lsn;
514 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
515 bp->l_eor);
516
517 INCREMENT(lmStat.commit); /* # of commit */
518
519 /*
520 * enqueue tblock for group commit:
521 *
522 * enqueue tblock of non-trivial/synchronous COMMIT
523 * at tail of group commit queue
524 * (trivial/asynchronous COMMITs are ignored by
525 * group commit.)
526 */
527 LOGGC_LOCK(log);
528
529 /* init tblock gc state */
530 tblk->flag = tblkGC_QUEUE;
531 tblk->bp = log->bp;
532 tblk->pn = log->page;
533 tblk->eor = log->eor;
534
535 /* enqueue transaction to commit queue */
536 list_add_tail(&tblk->cqueue, &log->cqueue);
537
538 LOGGC_UNLOCK(log);
539 }
540
541 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
542 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
543
544 /* page not full ? */
545 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
546 return lsn;
547
548 pageFull:
549 /* page become full: move on to next page */
550 lmNextPage(log);
551
552 bp = (struct lbuf *) log->bp;
553 lp = (struct logpage *) bp->l_ldata;
554 dstoffset = LOGPHDRSIZE;
555 src += nbytes;
556 }
557
558 return lsn;
559 }
560
561
562 /*
563 * NAME: lmNextPage()
564 *
565 * FUNCTION: write current page and allocate next page.
566 *
567 * PARAMETER: log
568 *
569 * RETURN: 0
570 *
571 * serialization: LOG_LOCK() held on entry/exit
572 */
573 static int lmNextPage(struct jfs_log * log)
574 {
575 struct logpage *lp;
576 int lspn; /* log sequence page number */
577 int pn; /* current page number */
578 struct lbuf *bp;
579 struct lbuf *nextbp;
580 struct tblock *tblk;
581
582 /* get current log page number and log sequence page number */
583 pn = log->page;
584 bp = log->bp;
585 lp = (struct logpage *) bp->l_ldata;
586 lspn = le32_to_cpu(lp->h.page);
587
588 LOGGC_LOCK(log);
589
590 /*
591 * write or queue the full page at the tail of write queue
592 */
593 /* get the tail tblk on commit queue */
594 if (list_empty(&log->cqueue))
595 tblk = NULL;
596 else
597 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
598
599 /* every tblk who has COMMIT record on the current page,
600 * and has not been committed, must be on commit queue
601 * since tblk is queued at commit queueu at the time
602 * of writing its COMMIT record on the page before
603 * page becomes full (even though the tblk thread
604 * who wrote COMMIT record may have been suspended
605 * currently);
606 */
607
608 /* is page bound with outstanding tail tblk ? */
609 if (tblk && tblk->pn == pn) {
610 /* mark tblk for end-of-page */
611 tblk->flag |= tblkGC_EOP;
612
613 if (log->cflag & logGC_PAGEOUT) {
614 /* if page is not already on write queue,
615 * just enqueue (no lbmWRITE to prevent redrive)
616 * buffer to wqueue to ensure correct serial order
617 * of the pages since log pages will be added
618 * continuously
619 */
620 if (bp->l_wqnext == NULL)
621 lbmWrite(log, bp, 0, 0);
622 } else {
623 /*
624 * No current GC leader, initiate group commit
625 */
626 log->cflag |= logGC_PAGEOUT;
627 lmGCwrite(log, 0);
628 }
629 }
630 /* page is not bound with outstanding tblk:
631 * init write or mark it to be redriven (lbmWRITE)
632 */
633 else {
634 /* finalize the page */
635 bp->l_ceor = bp->l_eor;
636 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
637 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
638 }
639 LOGGC_UNLOCK(log);
640
641 /*
642 * allocate/initialize next page
643 */
644 /* if log wraps, the first data page of log is 2
645 * (0 never used, 1 is superblock).
646 */
647 log->page = (pn == log->size - 1) ? 2 : pn + 1;
648 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
649
650 /* allocate/initialize next log page buffer */
651 nextbp = lbmAllocate(log, log->page);
652 nextbp->l_eor = log->eor;
653 log->bp = nextbp;
654
655 /* initialize next log page */
656 lp = (struct logpage *) nextbp->l_ldata;
657 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
658 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
659
660 return 0;
661 }
662
663
664 /*
665 * NAME: lmGroupCommit()
666 *
667 * FUNCTION: group commit
668 * initiate pageout of the pages with COMMIT in the order of
669 * page number - redrive pageout of the page at the head of
670 * pageout queue until full page has been written.
671 *
672 * RETURN:
673 *
674 * NOTE:
675 * LOGGC_LOCK serializes log group commit queue, and
676 * transaction blocks on the commit queue.
677 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
678 */
679 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
680 {
681 int rc = 0;
682
683 LOGGC_LOCK(log);
684
685 /* group committed already ? */
686 if (tblk->flag & tblkGC_COMMITTED) {
687 if (tblk->flag & tblkGC_ERROR)
688 rc = -EIO;
689
690 LOGGC_UNLOCK(log);
691 return rc;
692 }
693 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
694
695 if (tblk->xflag & COMMIT_LAZY)
696 tblk->flag |= tblkGC_LAZY;
697
698 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
699 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
700 || jfs_tlocks_low)) {
701 /*
702 * No pageout in progress
703 *
704 * start group commit as its group leader.
705 */
706 log->cflag |= logGC_PAGEOUT;
707
708 lmGCwrite(log, 0);
709 }
710
711 if (tblk->xflag & COMMIT_LAZY) {
712 /*
713 * Lazy transactions can leave now
714 */
715 LOGGC_UNLOCK(log);
716 return 0;
717 }
718
719 /* lmGCwrite gives up LOGGC_LOCK, check again */
720
721 if (tblk->flag & tblkGC_COMMITTED) {
722 if (tblk->flag & tblkGC_ERROR)
723 rc = -EIO;
724
725 LOGGC_UNLOCK(log);
726 return rc;
727 }
728
729 /* upcount transaction waiting for completion
730 */
731 log->gcrtc++;
732 tblk->flag |= tblkGC_READY;
733
734 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
735 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
736
737 /* removed from commit queue */
738 if (tblk->flag & tblkGC_ERROR)
739 rc = -EIO;
740
741 LOGGC_UNLOCK(log);
742 return rc;
743 }
744
745 /*
746 * NAME: lmGCwrite()
747 *
748 * FUNCTION: group commit write
749 * initiate write of log page, building a group of all transactions
750 * with commit records on that page.
751 *
752 * RETURN: None
753 *
754 * NOTE:
755 * LOGGC_LOCK must be held by caller.
756 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
757 */
758 static void lmGCwrite(struct jfs_log * log, int cant_write)
759 {
760 struct lbuf *bp;
761 struct logpage *lp;
762 int gcpn; /* group commit page number */
763 struct tblock *tblk;
764 struct tblock *xtblk = NULL;
765
766 /*
767 * build the commit group of a log page
768 *
769 * scan commit queue and make a commit group of all
770 * transactions with COMMIT records on the same log page.
771 */
772 /* get the head tblk on the commit queue */
773 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
774
775 list_for_each_entry(tblk, &log->cqueue, cqueue) {
776 if (tblk->pn != gcpn)
777 break;
778
779 xtblk = tblk;
780
781 /* state transition: (QUEUE, READY) -> COMMIT */
782 tblk->flag |= tblkGC_COMMIT;
783 }
784 tblk = xtblk; /* last tblk of the page */
785
786 /*
787 * pageout to commit transactions on the log page.
788 */
789 bp = (struct lbuf *) tblk->bp;
790 lp = (struct logpage *) bp->l_ldata;
791 /* is page already full ? */
792 if (tblk->flag & tblkGC_EOP) {
793 /* mark page to free at end of group commit of the page */
794 tblk->flag &= ~tblkGC_EOP;
795 tblk->flag |= tblkGC_FREE;
796 bp->l_ceor = bp->l_eor;
797 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
798 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
799 cant_write);
800 INCREMENT(lmStat.full_page);
801 }
802 /* page is not yet full */
803 else {
804 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
805 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
806 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
807 INCREMENT(lmStat.partial_page);
808 }
809 }
810
811 /*
812 * NAME: lmPostGC()
813 *
814 * FUNCTION: group commit post-processing
815 * Processes transactions after their commit records have been written
816 * to disk, redriving log I/O if necessary.
817 *
818 * RETURN: None
819 *
820 * NOTE:
821 * This routine is called a interrupt time by lbmIODone
822 */
823 static void lmPostGC(struct lbuf * bp)
824 {
825 unsigned long flags;
826 struct jfs_log *log = bp->l_log;
827 struct logpage *lp;
828 struct tblock *tblk, *temp;
829
830 //LOGGC_LOCK(log);
831 spin_lock_irqsave(&log->gclock, flags);
832 /*
833 * current pageout of group commit completed.
834 *
835 * remove/wakeup transactions from commit queue who were
836 * group committed with the current log page
837 */
838 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
839 if (!(tblk->flag & tblkGC_COMMIT))
840 break;
841 /* if transaction was marked GC_COMMIT then
842 * it has been shipped in the current pageout
843 * and made it to disk - it is committed.
844 */
845
846 if (bp->l_flag & lbmERROR)
847 tblk->flag |= tblkGC_ERROR;
848
849 /* remove it from the commit queue */
850 list_del(&tblk->cqueue);
851 tblk->flag &= ~tblkGC_QUEUE;
852
853 if (tblk == log->flush_tblk) {
854 /* we can stop flushing the log now */
855 clear_bit(log_FLUSH, &log->flag);
856 log->flush_tblk = NULL;
857 }
858
859 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
860 tblk->flag);
861
862 if (!(tblk->xflag & COMMIT_FORCE))
863 /*
864 * Hand tblk over to lazy commit thread
865 */
866 txLazyUnlock(tblk);
867 else {
868 /* state transition: COMMIT -> COMMITTED */
869 tblk->flag |= tblkGC_COMMITTED;
870
871 if (tblk->flag & tblkGC_READY)
872 log->gcrtc--;
873
874 LOGGC_WAKEUP(tblk);
875 }
876
877 /* was page full before pageout ?
878 * (and this is the last tblk bound with the page)
879 */
880 if (tblk->flag & tblkGC_FREE)
881 lbmFree(bp);
882 /* did page become full after pageout ?
883 * (and this is the last tblk bound with the page)
884 */
885 else if (tblk->flag & tblkGC_EOP) {
886 /* finalize the page */
887 lp = (struct logpage *) bp->l_ldata;
888 bp->l_ceor = bp->l_eor;
889 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
890 jfs_info("lmPostGC: calling lbmWrite");
891 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
892 1);
893 }
894
895 }
896
897 /* are there any transactions who have entered lnGroupCommit()
898 * (whose COMMITs are after that of the last log page written.
899 * They are waiting for new group commit (above at (SLEEP 1))
900 * or lazy transactions are on a full (queued) log page,
901 * select the latest ready transaction as new group leader and
902 * wake her up to lead her group.
903 */
904 if ((!list_empty(&log->cqueue)) &&
905 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
906 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
907 /*
908 * Call lmGCwrite with new group leader
909 */
910 lmGCwrite(log, 1);
911
912 /* no transaction are ready yet (transactions are only just
913 * queued (GC_QUEUE) and not entered for group commit yet).
914 * the first transaction entering group commit
915 * will elect herself as new group leader.
916 */
917 else
918 log->cflag &= ~logGC_PAGEOUT;
919
920 //LOGGC_UNLOCK(log);
921 spin_unlock_irqrestore(&log->gclock, flags);
922 return;
923 }
924
925 /*
926 * NAME: lmLogSync()
927 *
928 * FUNCTION: write log SYNCPT record for specified log
929 * if new sync address is available
930 * (normally the case if sync() is executed by back-ground
931 * process).
932 * calculate new value of i_nextsync which determines when
933 * this code is called again.
934 *
935 * PARAMETERS: log - log structure
936 * hard_sync - 1 to force all metadata to be written
937 *
938 * RETURN: 0
939 *
940 * serialization: LOG_LOCK() held on entry/exit
941 */
942 static int lmLogSync(struct jfs_log * log, int hard_sync)
943 {
944 int logsize;
945 int written; /* written since last syncpt */
946 int free; /* free space left available */
947 int delta; /* additional delta to write normally */
948 int more; /* additional write granted */
949 struct lrd lrd;
950 int lsn;
951 struct logsyncblk *lp;
952 unsigned long flags;
953
954 /* push dirty metapages out to disk */
955 if (hard_sync)
956 write_special_inodes(log, filemap_fdatawrite);
957 else
958 write_special_inodes(log, filemap_flush);
959
960 /*
961 * forward syncpt
962 */
963 /* if last sync is same as last syncpt,
964 * invoke sync point forward processing to update sync.
965 */
966
967 if (log->sync == log->syncpt) {
968 LOGSYNC_LOCK(log, flags);
969 if (list_empty(&log->synclist))
970 log->sync = log->lsn;
971 else {
972 lp = list_entry(log->synclist.next,
973 struct logsyncblk, synclist);
974 log->sync = lp->lsn;
975 }
976 LOGSYNC_UNLOCK(log, flags);
977
978 }
979
980 /* if sync is different from last syncpt,
981 * write a SYNCPT record with syncpt = sync.
982 * reset syncpt = sync
983 */
984 if (log->sync != log->syncpt) {
985 lrd.logtid = 0;
986 lrd.backchain = 0;
987 lrd.type = cpu_to_le16(LOG_SYNCPT);
988 lrd.length = 0;
989 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
990 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
991
992 log->syncpt = log->sync;
993 } else
994 lsn = log->lsn;
995
996 /*
997 * setup next syncpt trigger (SWAG)
998 */
999 logsize = log->logsize;
1000
1001 logdiff(written, lsn, log);
1002 free = logsize - written;
1003 delta = LOGSYNC_DELTA(logsize);
1004 more = min(free / 2, delta);
1005 if (more < 2 * LOGPSIZE) {
1006 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1007 /*
1008 * log wrapping
1009 *
1010 * option 1 - panic ? No.!
1011 * option 2 - shutdown file systems
1012 * associated with log ?
1013 * option 3 - extend log ?
1014 * option 4 - second chance
1015 *
1016 * mark log wrapped, and continue.
1017 * when all active transactions are completed,
1018 * mark log valid for recovery.
1019 * if crashed during invalid state, log state
1020 * implies invalid log, forcing fsck().
1021 */
1022 /* mark log state log wrap in log superblock */
1023 /* log->state = LOGWRAP; */
1024
1025 /* reset sync point computation */
1026 log->syncpt = log->sync = lsn;
1027 log->nextsync = delta;
1028 } else
1029 /* next syncpt trigger = written + more */
1030 log->nextsync = written + more;
1031
1032 /* if number of bytes written from last sync point is more
1033 * than 1/4 of the log size, stop new transactions from
1034 * starting until all current transactions are completed
1035 * by setting syncbarrier flag.
1036 */
1037 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1038 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1039 set_bit(log_SYNCBARRIER, &log->flag);
1040 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1041 log->syncpt);
1042 /*
1043 * We may have to initiate group commit
1044 */
1045 jfs_flush_journal(log, 0);
1046 }
1047
1048 return lsn;
1049 }
1050
1051 /*
1052 * NAME: jfs_syncpt
1053 *
1054 * FUNCTION: write log SYNCPT record for specified log
1055 *
1056 * PARAMETERS: log - log structure
1057 * hard_sync - set to 1 to force metadata to be written
1058 */
1059 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1060 { LOG_LOCK(log);
1061 if (!test_bit(log_QUIESCE, &log->flag))
1062 lmLogSync(log, hard_sync);
1063 LOG_UNLOCK(log);
1064 }
1065
1066 /*
1067 * NAME: lmLogOpen()
1068 *
1069 * FUNCTION: open the log on first open;
1070 * insert filesystem in the active list of the log.
1071 *
1072 * PARAMETER: ipmnt - file system mount inode
1073 * iplog - log inode (out)
1074 *
1075 * RETURN:
1076 *
1077 * serialization:
1078 */
1079 int lmLogOpen(struct super_block *sb)
1080 {
1081 int rc;
1082 struct block_device *bdev;
1083 struct jfs_log *log;
1084 struct jfs_sb_info *sbi = JFS_SBI(sb);
1085
1086 if (sbi->flag & JFS_NOINTEGRITY)
1087 return open_dummy_log(sb);
1088
1089 if (sbi->mntflag & JFS_INLINELOG)
1090 return open_inline_log(sb);
1091
1092 mutex_lock(&jfs_log_mutex);
1093 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1094 if (log->bdev->bd_dev == sbi->logdev) {
1095 if (memcmp(log->uuid, sbi->loguuid,
1096 sizeof(log->uuid))) {
1097 jfs_warn("wrong uuid on JFS journal\n");
1098 mutex_unlock(&jfs_log_mutex);
1099 return -EINVAL;
1100 }
1101 /*
1102 * add file system to log active file system list
1103 */
1104 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1105 mutex_unlock(&jfs_log_mutex);
1106 return rc;
1107 }
1108 goto journal_found;
1109 }
1110 }
1111
1112 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1113 mutex_unlock(&jfs_log_mutex);
1114 return -ENOMEM;
1115 }
1116 INIT_LIST_HEAD(&log->sb_list);
1117 init_waitqueue_head(&log->syncwait);
1118
1119 /*
1120 * external log as separate logical volume
1121 *
1122 * file systems to log may have n-to-1 relationship;
1123 */
1124
1125 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1126 log);
1127 if (IS_ERR(bdev)) {
1128 rc = PTR_ERR(bdev);
1129 goto free;
1130 }
1131
1132 log->bdev = bdev;
1133 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1134
1135 /*
1136 * initialize log:
1137 */
1138 if ((rc = lmLogInit(log)))
1139 goto close;
1140
1141 list_add(&log->journal_list, &jfs_external_logs);
1142
1143 /*
1144 * add file system to log active file system list
1145 */
1146 if ((rc = lmLogFileSystem(log, sbi, 1)))
1147 goto shutdown;
1148
1149 journal_found:
1150 LOG_LOCK(log);
1151 list_add(&sbi->log_list, &log->sb_list);
1152 sbi->log = log;
1153 LOG_UNLOCK(log);
1154
1155 mutex_unlock(&jfs_log_mutex);
1156 return 0;
1157
1158 /*
1159 * unwind on error
1160 */
1161 shutdown: /* unwind lbmLogInit() */
1162 list_del(&log->journal_list);
1163 lbmLogShutdown(log);
1164
1165 close: /* close external log device */
1166 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1167
1168 free: /* free log descriptor */
1169 mutex_unlock(&jfs_log_mutex);
1170 kfree(log);
1171
1172 jfs_warn("lmLogOpen: exit(%d)", rc);
1173 return rc;
1174 }
1175
1176 static int open_inline_log(struct super_block *sb)
1177 {
1178 struct jfs_log *log;
1179 int rc;
1180
1181 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1182 return -ENOMEM;
1183 INIT_LIST_HEAD(&log->sb_list);
1184 init_waitqueue_head(&log->syncwait);
1185
1186 set_bit(log_INLINELOG, &log->flag);
1187 log->bdev = sb->s_bdev;
1188 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1189 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1190 (L2LOGPSIZE - sb->s_blocksize_bits);
1191 log->l2bsize = sb->s_blocksize_bits;
1192 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1193
1194 /*
1195 * initialize log.
1196 */
1197 if ((rc = lmLogInit(log))) {
1198 kfree(log);
1199 jfs_warn("lmLogOpen: exit(%d)", rc);
1200 return rc;
1201 }
1202
1203 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1204 JFS_SBI(sb)->log = log;
1205
1206 return rc;
1207 }
1208
1209 static int open_dummy_log(struct super_block *sb)
1210 {
1211 int rc;
1212
1213 mutex_lock(&jfs_log_mutex);
1214 if (!dummy_log) {
1215 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1216 if (!dummy_log) {
1217 mutex_unlock(&jfs_log_mutex);
1218 return -ENOMEM;
1219 }
1220 INIT_LIST_HEAD(&dummy_log->sb_list);
1221 init_waitqueue_head(&dummy_log->syncwait);
1222 dummy_log->no_integrity = 1;
1223 /* Make up some stuff */
1224 dummy_log->base = 0;
1225 dummy_log->size = 1024;
1226 rc = lmLogInit(dummy_log);
1227 if (rc) {
1228 kfree(dummy_log);
1229 dummy_log = NULL;
1230 mutex_unlock(&jfs_log_mutex);
1231 return rc;
1232 }
1233 }
1234
1235 LOG_LOCK(dummy_log);
1236 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1237 JFS_SBI(sb)->log = dummy_log;
1238 LOG_UNLOCK(dummy_log);
1239 mutex_unlock(&jfs_log_mutex);
1240
1241 return 0;
1242 }
1243
1244 /*
1245 * NAME: lmLogInit()
1246 *
1247 * FUNCTION: log initialization at first log open.
1248 *
1249 * logredo() (or logformat()) should have been run previously.
1250 * initialize the log from log superblock.
1251 * set the log state in the superblock to LOGMOUNT and
1252 * write SYNCPT log record.
1253 *
1254 * PARAMETER: log - log structure
1255 *
1256 * RETURN: 0 - if ok
1257 * -EINVAL - bad log magic number or superblock dirty
1258 * error returned from logwait()
1259 *
1260 * serialization: single first open thread
1261 */
1262 int lmLogInit(struct jfs_log * log)
1263 {
1264 int rc = 0;
1265 struct lrd lrd;
1266 struct logsuper *logsuper;
1267 struct lbuf *bpsuper;
1268 struct lbuf *bp;
1269 struct logpage *lp;
1270 int lsn = 0;
1271
1272 jfs_info("lmLogInit: log:0x%p", log);
1273
1274 /* initialize the group commit serialization lock */
1275 LOGGC_LOCK_INIT(log);
1276
1277 /* allocate/initialize the log write serialization lock */
1278 LOG_LOCK_INIT(log);
1279
1280 LOGSYNC_LOCK_INIT(log);
1281
1282 INIT_LIST_HEAD(&log->synclist);
1283
1284 INIT_LIST_HEAD(&log->cqueue);
1285 log->flush_tblk = NULL;
1286
1287 log->count = 0;
1288
1289 /*
1290 * initialize log i/o
1291 */
1292 if ((rc = lbmLogInit(log)))
1293 return rc;
1294
1295 if (!test_bit(log_INLINELOG, &log->flag))
1296 log->l2bsize = L2LOGPSIZE;
1297
1298 /* check for disabled journaling to disk */
1299 if (log->no_integrity) {
1300 /*
1301 * Journal pages will still be filled. When the time comes
1302 * to actually do the I/O, the write is not done, and the
1303 * endio routine is called directly.
1304 */
1305 bp = lbmAllocate(log , 0);
1306 log->bp = bp;
1307 bp->l_pn = bp->l_eor = 0;
1308 } else {
1309 /*
1310 * validate log superblock
1311 */
1312 if ((rc = lbmRead(log, 1, &bpsuper)))
1313 goto errout10;
1314
1315 logsuper = (struct logsuper *) bpsuper->l_ldata;
1316
1317 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1318 jfs_warn("*** Log Format Error ! ***");
1319 rc = -EINVAL;
1320 goto errout20;
1321 }
1322
1323 /* logredo() should have been run successfully. */
1324 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1325 jfs_warn("*** Log Is Dirty ! ***");
1326 rc = -EINVAL;
1327 goto errout20;
1328 }
1329
1330 /* initialize log from log superblock */
1331 if (test_bit(log_INLINELOG,&log->flag)) {
1332 if (log->size != le32_to_cpu(logsuper->size)) {
1333 rc = -EINVAL;
1334 goto errout20;
1335 }
1336 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1337 "size:0x%x", log,
1338 (unsigned long long) log->base, log->size);
1339 } else {
1340 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1341 jfs_warn("wrong uuid on JFS log device");
1342 goto errout20;
1343 }
1344 log->size = le32_to_cpu(logsuper->size);
1345 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1346 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1347 "size:0x%x", log,
1348 (unsigned long long) log->base, log->size);
1349 }
1350
1351 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1352 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1353
1354 /*
1355 * initialize for log append write mode
1356 */
1357 /* establish current/end-of-log page/buffer */
1358 if ((rc = lbmRead(log, log->page, &bp)))
1359 goto errout20;
1360
1361 lp = (struct logpage *) bp->l_ldata;
1362
1363 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1364 le32_to_cpu(logsuper->end), log->page, log->eor,
1365 le16_to_cpu(lp->h.eor));
1366
1367 log->bp = bp;
1368 bp->l_pn = log->page;
1369 bp->l_eor = log->eor;
1370
1371 /* if current page is full, move on to next page */
1372 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1373 lmNextPage(log);
1374
1375 /*
1376 * initialize log syncpoint
1377 */
1378 /*
1379 * write the first SYNCPT record with syncpoint = 0
1380 * (i.e., log redo up to HERE !);
1381 * remove current page from lbm write queue at end of pageout
1382 * (to write log superblock update), but do not release to
1383 * freelist;
1384 */
1385 lrd.logtid = 0;
1386 lrd.backchain = 0;
1387 lrd.type = cpu_to_le16(LOG_SYNCPT);
1388 lrd.length = 0;
1389 lrd.log.syncpt.sync = 0;
1390 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1391 bp = log->bp;
1392 bp->l_ceor = bp->l_eor;
1393 lp = (struct logpage *) bp->l_ldata;
1394 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1395 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1396 if ((rc = lbmIOWait(bp, 0)))
1397 goto errout30;
1398
1399 /*
1400 * update/write superblock
1401 */
1402 logsuper->state = cpu_to_le32(LOGMOUNT);
1403 log->serial = le32_to_cpu(logsuper->serial) + 1;
1404 logsuper->serial = cpu_to_le32(log->serial);
1405 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1406 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1407 goto errout30;
1408 }
1409
1410 /* initialize logsync parameters */
1411 log->logsize = (log->size - 2) << L2LOGPSIZE;
1412 log->lsn = lsn;
1413 log->syncpt = lsn;
1414 log->sync = log->syncpt;
1415 log->nextsync = LOGSYNC_DELTA(log->logsize);
1416
1417 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1418 log->lsn, log->syncpt, log->sync);
1419
1420 /*
1421 * initialize for lazy/group commit
1422 */
1423 log->clsn = lsn;
1424
1425 return 0;
1426
1427 /*
1428 * unwind on error
1429 */
1430 errout30: /* release log page */
1431 log->wqueue = NULL;
1432 bp->l_wqnext = NULL;
1433 lbmFree(bp);
1434
1435 errout20: /* release log superblock */
1436 lbmFree(bpsuper);
1437
1438 errout10: /* unwind lbmLogInit() */
1439 lbmLogShutdown(log);
1440
1441 jfs_warn("lmLogInit: exit(%d)", rc);
1442 return rc;
1443 }
1444
1445
1446 /*
1447 * NAME: lmLogClose()
1448 *
1449 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1450 * and close it on last close.
1451 *
1452 * PARAMETER: sb - superblock
1453 *
1454 * RETURN: errors from subroutines
1455 *
1456 * serialization:
1457 */
1458 int lmLogClose(struct super_block *sb)
1459 {
1460 struct jfs_sb_info *sbi = JFS_SBI(sb);
1461 struct jfs_log *log = sbi->log;
1462 struct block_device *bdev;
1463 int rc = 0;
1464
1465 jfs_info("lmLogClose: log:0x%p", log);
1466
1467 mutex_lock(&jfs_log_mutex);
1468 LOG_LOCK(log);
1469 list_del(&sbi->log_list);
1470 LOG_UNLOCK(log);
1471 sbi->log = NULL;
1472
1473 /*
1474 * We need to make sure all of the "written" metapages
1475 * actually make it to disk
1476 */
1477 sync_blockdev(sb->s_bdev);
1478
1479 if (test_bit(log_INLINELOG, &log->flag)) {
1480 /*
1481 * in-line log in host file system
1482 */
1483 rc = lmLogShutdown(log);
1484 kfree(log);
1485 goto out;
1486 }
1487
1488 if (!log->no_integrity)
1489 lmLogFileSystem(log, sbi, 0);
1490
1491 if (!list_empty(&log->sb_list))
1492 goto out;
1493
1494 /*
1495 * TODO: ensure that the dummy_log is in a state to allow
1496 * lbmLogShutdown to deallocate all the buffers and call
1497 * kfree against dummy_log. For now, leave dummy_log & its
1498 * buffers in memory, and resuse if another no-integrity mount
1499 * is requested.
1500 */
1501 if (log->no_integrity)
1502 goto out;
1503
1504 /*
1505 * external log as separate logical volume
1506 */
1507 list_del(&log->journal_list);
1508 bdev = log->bdev;
1509 rc = lmLogShutdown(log);
1510
1511 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1512
1513 kfree(log);
1514
1515 out:
1516 mutex_unlock(&jfs_log_mutex);
1517 jfs_info("lmLogClose: exit(%d)", rc);
1518 return rc;
1519 }
1520
1521
1522 /*
1523 * NAME: jfs_flush_journal()
1524 *
1525 * FUNCTION: initiate write of any outstanding transactions to the journal
1526 * and optionally wait until they are all written to disk
1527 *
1528 * wait == 0 flush until latest txn is committed, don't wait
1529 * wait == 1 flush until latest txn is committed, wait
1530 * wait > 1 flush until all txn's are complete, wait
1531 */
1532 void jfs_flush_journal(struct jfs_log *log, int wait)
1533 {
1534 int i;
1535 struct tblock *target = NULL;
1536
1537 /* jfs_write_inode may call us during read-only mount */
1538 if (!log)
1539 return;
1540
1541 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1542
1543 LOGGC_LOCK(log);
1544
1545 if (!list_empty(&log->cqueue)) {
1546 /*
1547 * This ensures that we will keep writing to the journal as long
1548 * as there are unwritten commit records
1549 */
1550 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1551
1552 if (test_bit(log_FLUSH, &log->flag)) {
1553 /*
1554 * We're already flushing.
1555 * if flush_tblk is NULL, we are flushing everything,
1556 * so leave it that way. Otherwise, update it to the
1557 * latest transaction
1558 */
1559 if (log->flush_tblk)
1560 log->flush_tblk = target;
1561 } else {
1562 /* Only flush until latest transaction is committed */
1563 log->flush_tblk = target;
1564 set_bit(log_FLUSH, &log->flag);
1565
1566 /*
1567 * Initiate I/O on outstanding transactions
1568 */
1569 if (!(log->cflag & logGC_PAGEOUT)) {
1570 log->cflag |= logGC_PAGEOUT;
1571 lmGCwrite(log, 0);
1572 }
1573 }
1574 }
1575 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1576 /* Flush until all activity complete */
1577 set_bit(log_FLUSH, &log->flag);
1578 log->flush_tblk = NULL;
1579 }
1580
1581 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1582 DECLARE_WAITQUEUE(__wait, current);
1583
1584 add_wait_queue(&target->gcwait, &__wait);
1585 set_current_state(TASK_UNINTERRUPTIBLE);
1586 LOGGC_UNLOCK(log);
1587 schedule();
1588 __set_current_state(TASK_RUNNING);
1589 LOGGC_LOCK(log);
1590 remove_wait_queue(&target->gcwait, &__wait);
1591 }
1592 LOGGC_UNLOCK(log);
1593
1594 if (wait < 2)
1595 return;
1596
1597 write_special_inodes(log, filemap_fdatawrite);
1598
1599 /*
1600 * If there was recent activity, we may need to wait
1601 * for the lazycommit thread to catch up
1602 */
1603 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1604 for (i = 0; i < 200; i++) { /* Too much? */
1605 msleep(250);
1606 write_special_inodes(log, filemap_fdatawrite);
1607 if (list_empty(&log->cqueue) &&
1608 list_empty(&log->synclist))
1609 break;
1610 }
1611 }
1612 assert(list_empty(&log->cqueue));
1613
1614 #ifdef CONFIG_JFS_DEBUG
1615 if (!list_empty(&log->synclist)) {
1616 struct logsyncblk *lp;
1617
1618 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1619 list_for_each_entry(lp, &log->synclist, synclist) {
1620 if (lp->xflag & COMMIT_PAGE) {
1621 struct metapage *mp = (struct metapage *)lp;
1622 print_hex_dump(KERN_ERR, "metapage: ",
1623 DUMP_PREFIX_ADDRESS, 16, 4,
1624 mp, sizeof(struct metapage), 0);
1625 print_hex_dump(KERN_ERR, "page: ",
1626 DUMP_PREFIX_ADDRESS, 16,
1627 sizeof(long), mp->page,
1628 sizeof(struct page), 0);
1629 } else
1630 print_hex_dump(KERN_ERR, "tblock:",
1631 DUMP_PREFIX_ADDRESS, 16, 4,
1632 lp, sizeof(struct tblock), 0);
1633 }
1634 }
1635 #else
1636 WARN_ON(!list_empty(&log->synclist));
1637 #endif
1638 clear_bit(log_FLUSH, &log->flag);
1639 }
1640
1641 /*
1642 * NAME: lmLogShutdown()
1643 *
1644 * FUNCTION: log shutdown at last LogClose().
1645 *
1646 * write log syncpt record.
1647 * update super block to set redone flag to 0.
1648 *
1649 * PARAMETER: log - log inode
1650 *
1651 * RETURN: 0 - success
1652 *
1653 * serialization: single last close thread
1654 */
1655 int lmLogShutdown(struct jfs_log * log)
1656 {
1657 int rc;
1658 struct lrd lrd;
1659 int lsn;
1660 struct logsuper *logsuper;
1661 struct lbuf *bpsuper;
1662 struct lbuf *bp;
1663 struct logpage *lp;
1664
1665 jfs_info("lmLogShutdown: log:0x%p", log);
1666
1667 jfs_flush_journal(log, 2);
1668
1669 /*
1670 * write the last SYNCPT record with syncpoint = 0
1671 * (i.e., log redo up to HERE !)
1672 */
1673 lrd.logtid = 0;
1674 lrd.backchain = 0;
1675 lrd.type = cpu_to_le16(LOG_SYNCPT);
1676 lrd.length = 0;
1677 lrd.log.syncpt.sync = 0;
1678
1679 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1680 bp = log->bp;
1681 lp = (struct logpage *) bp->l_ldata;
1682 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1683 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1684 lbmIOWait(log->bp, lbmFREE);
1685 log->bp = NULL;
1686
1687 /*
1688 * synchronous update log superblock
1689 * mark log state as shutdown cleanly
1690 * (i.e., Log does not need to be replayed).
1691 */
1692 if ((rc = lbmRead(log, 1, &bpsuper)))
1693 goto out;
1694
1695 logsuper = (struct logsuper *) bpsuper->l_ldata;
1696 logsuper->state = cpu_to_le32(LOGREDONE);
1697 logsuper->end = cpu_to_le32(lsn);
1698 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1699 rc = lbmIOWait(bpsuper, lbmFREE);
1700
1701 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1702 lsn, log->page, log->eor);
1703
1704 out:
1705 /*
1706 * shutdown per log i/o
1707 */
1708 lbmLogShutdown(log);
1709
1710 if (rc) {
1711 jfs_warn("lmLogShutdown: exit(%d)", rc);
1712 }
1713 return rc;
1714 }
1715
1716
1717 /*
1718 * NAME: lmLogFileSystem()
1719 *
1720 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1721 * file system into/from log active file system list.
1722 *
1723 * PARAMETE: log - pointer to logs inode.
1724 * fsdev - kdev_t of filesystem.
1725 * serial - pointer to returned log serial number
1726 * activate - insert/remove device from active list.
1727 *
1728 * RETURN: 0 - success
1729 * errors returned by vms_iowait().
1730 */
1731 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1732 int activate)
1733 {
1734 int rc = 0;
1735 int i;
1736 struct logsuper *logsuper;
1737 struct lbuf *bpsuper;
1738 char *uuid = sbi->uuid;
1739
1740 /*
1741 * insert/remove file system device to log active file system list.
1742 */
1743 if ((rc = lbmRead(log, 1, &bpsuper)))
1744 return rc;
1745
1746 logsuper = (struct logsuper *) bpsuper->l_ldata;
1747 if (activate) {
1748 for (i = 0; i < MAX_ACTIVE; i++)
1749 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1750 memcpy(logsuper->active[i].uuid, uuid, 16);
1751 sbi->aggregate = i;
1752 break;
1753 }
1754 if (i == MAX_ACTIVE) {
1755 jfs_warn("Too many file systems sharing journal!");
1756 lbmFree(bpsuper);
1757 return -EMFILE; /* Is there a better rc? */
1758 }
1759 } else {
1760 for (i = 0; i < MAX_ACTIVE; i++)
1761 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1762 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1763 break;
1764 }
1765 if (i == MAX_ACTIVE) {
1766 jfs_warn("Somebody stomped on the journal!");
1767 lbmFree(bpsuper);
1768 return -EIO;
1769 }
1770
1771 }
1772
1773 /*
1774 * synchronous write log superblock:
1775 *
1776 * write sidestream bypassing write queue:
1777 * at file system mount, log super block is updated for
1778 * activation of the file system before any log record
1779 * (MOUNT record) of the file system, and at file system
1780 * unmount, all meta data for the file system has been
1781 * flushed before log super block is updated for deactivation
1782 * of the file system.
1783 */
1784 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1785 rc = lbmIOWait(bpsuper, lbmFREE);
1786
1787 return rc;
1788 }
1789
1790 /*
1791 * log buffer manager (lbm)
1792 * ------------------------
1793 *
1794 * special purpose buffer manager supporting log i/o requirements.
1795 *
1796 * per log write queue:
1797 * log pageout occurs in serial order by fifo write queue and
1798 * restricting to a single i/o in pregress at any one time.
1799 * a circular singly-linked list
1800 * (log->wrqueue points to the tail, and buffers are linked via
1801 * bp->wrqueue field), and
1802 * maintains log page in pageout ot waiting for pageout in serial pageout.
1803 */
1804
1805 /*
1806 * lbmLogInit()
1807 *
1808 * initialize per log I/O setup at lmLogInit()
1809 */
1810 static int lbmLogInit(struct jfs_log * log)
1811 { /* log inode */
1812 int i;
1813 struct lbuf *lbuf;
1814
1815 jfs_info("lbmLogInit: log:0x%p", log);
1816
1817 /* initialize current buffer cursor */
1818 log->bp = NULL;
1819
1820 /* initialize log device write queue */
1821 log->wqueue = NULL;
1822
1823 /*
1824 * Each log has its own buffer pages allocated to it. These are
1825 * not managed by the page cache. This ensures that a transaction
1826 * writing to the log does not block trying to allocate a page from
1827 * the page cache (for the log). This would be bad, since page
1828 * allocation waits on the kswapd thread that may be committing inodes
1829 * which would cause log activity. Was that clear? I'm trying to
1830 * avoid deadlock here.
1831 */
1832 init_waitqueue_head(&log->free_wait);
1833
1834 log->lbuf_free = NULL;
1835
1836 for (i = 0; i < LOGPAGES;) {
1837 char *buffer;
1838 uint offset;
1839 struct page *page;
1840
1841 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1842 if (buffer == NULL)
1843 goto error;
1844 page = virt_to_page(buffer);
1845 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1846 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1847 if (lbuf == NULL) {
1848 if (offset == 0)
1849 free_page((unsigned long) buffer);
1850 goto error;
1851 }
1852 if (offset) /* we already have one reference */
1853 get_page(page);
1854 lbuf->l_offset = offset;
1855 lbuf->l_ldata = buffer + offset;
1856 lbuf->l_page = page;
1857 lbuf->l_log = log;
1858 init_waitqueue_head(&lbuf->l_ioevent);
1859
1860 lbuf->l_freelist = log->lbuf_free;
1861 log->lbuf_free = lbuf;
1862 i++;
1863 }
1864 }
1865
1866 return (0);
1867
1868 error:
1869 lbmLogShutdown(log);
1870 return -ENOMEM;
1871 }
1872
1873
1874 /*
1875 * lbmLogShutdown()
1876 *
1877 * finalize per log I/O setup at lmLogShutdown()
1878 */
1879 static void lbmLogShutdown(struct jfs_log * log)
1880 {
1881 struct lbuf *lbuf;
1882
1883 jfs_info("lbmLogShutdown: log:0x%p", log);
1884
1885 lbuf = log->lbuf_free;
1886 while (lbuf) {
1887 struct lbuf *next = lbuf->l_freelist;
1888 __free_page(lbuf->l_page);
1889 kfree(lbuf);
1890 lbuf = next;
1891 }
1892 }
1893
1894
1895 /*
1896 * lbmAllocate()
1897 *
1898 * allocate an empty log buffer
1899 */
1900 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1901 {
1902 struct lbuf *bp;
1903 unsigned long flags;
1904
1905 /*
1906 * recycle from log buffer freelist if any
1907 */
1908 LCACHE_LOCK(flags);
1909 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1910 log->lbuf_free = bp->l_freelist;
1911 LCACHE_UNLOCK(flags);
1912
1913 bp->l_flag = 0;
1914
1915 bp->l_wqnext = NULL;
1916 bp->l_freelist = NULL;
1917
1918 bp->l_pn = pn;
1919 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1920 bp->l_ceor = 0;
1921
1922 return bp;
1923 }
1924
1925
1926 /*
1927 * lbmFree()
1928 *
1929 * release a log buffer to freelist
1930 */
1931 static void lbmFree(struct lbuf * bp)
1932 {
1933 unsigned long flags;
1934
1935 LCACHE_LOCK(flags);
1936
1937 lbmfree(bp);
1938
1939 LCACHE_UNLOCK(flags);
1940 }
1941
1942 static void lbmfree(struct lbuf * bp)
1943 {
1944 struct jfs_log *log = bp->l_log;
1945
1946 assert(bp->l_wqnext == NULL);
1947
1948 /*
1949 * return the buffer to head of freelist
1950 */
1951 bp->l_freelist = log->lbuf_free;
1952 log->lbuf_free = bp;
1953
1954 wake_up(&log->free_wait);
1955 return;
1956 }
1957
1958
1959 /*
1960 * NAME: lbmRedrive
1961 *
1962 * FUNCTION: add a log buffer to the log redrive list
1963 *
1964 * PARAMETER:
1965 * bp - log buffer
1966 *
1967 * NOTES:
1968 * Takes log_redrive_lock.
1969 */
1970 static inline void lbmRedrive(struct lbuf *bp)
1971 {
1972 unsigned long flags;
1973
1974 spin_lock_irqsave(&log_redrive_lock, flags);
1975 bp->l_redrive_next = log_redrive_list;
1976 log_redrive_list = bp;
1977 spin_unlock_irqrestore(&log_redrive_lock, flags);
1978
1979 wake_up_process(jfsIOthread);
1980 }
1981
1982
1983 /*
1984 * lbmRead()
1985 */
1986 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1987 {
1988 struct bio *bio;
1989 struct lbuf *bp;
1990
1991 /*
1992 * allocate a log buffer
1993 */
1994 *bpp = bp = lbmAllocate(log, pn);
1995 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1996
1997 bp->l_flag |= lbmREAD;
1998
1999 bio = bio_alloc(GFP_NOFS, 1);
2000
2001 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2002 bio->bi_bdev = log->bdev;
2003 bio->bi_io_vec[0].bv_page = bp->l_page;
2004 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2005 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2006
2007 bio->bi_vcnt = 1;
2008 bio->bi_idx = 0;
2009 bio->bi_size = LOGPSIZE;
2010
2011 bio->bi_end_io = lbmIODone;
2012 bio->bi_private = bp;
2013 submit_bio(READ_SYNC, bio);
2014
2015 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2016
2017 return 0;
2018 }
2019
2020
2021 /*
2022 * lbmWrite()
2023 *
2024 * buffer at head of pageout queue stays after completion of
2025 * partial-page pageout and redriven by explicit initiation of
2026 * pageout by caller until full-page pageout is completed and
2027 * released.
2028 *
2029 * device driver i/o done redrives pageout of new buffer at
2030 * head of pageout queue when current buffer at head of pageout
2031 * queue is released at the completion of its full-page pageout.
2032 *
2033 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2034 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2035 */
2036 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2037 int cant_block)
2038 {
2039 struct lbuf *tail;
2040 unsigned long flags;
2041
2042 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2043
2044 /* map the logical block address to physical block address */
2045 bp->l_blkno =
2046 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2047
2048 LCACHE_LOCK(flags); /* disable+lock */
2049
2050 /*
2051 * initialize buffer for device driver
2052 */
2053 bp->l_flag = flag;
2054
2055 /*
2056 * insert bp at tail of write queue associated with log
2057 *
2058 * (request is either for bp already/currently at head of queue
2059 * or new bp to be inserted at tail)
2060 */
2061 tail = log->wqueue;
2062
2063 /* is buffer not already on write queue ? */
2064 if (bp->l_wqnext == NULL) {
2065 /* insert at tail of wqueue */
2066 if (tail == NULL) {
2067 log->wqueue = bp;
2068 bp->l_wqnext = bp;
2069 } else {
2070 log->wqueue = bp;
2071 bp->l_wqnext = tail->l_wqnext;
2072 tail->l_wqnext = bp;
2073 }
2074
2075 tail = bp;
2076 }
2077
2078 /* is buffer at head of wqueue and for write ? */
2079 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2080 LCACHE_UNLOCK(flags); /* unlock+enable */
2081 return;
2082 }
2083
2084 LCACHE_UNLOCK(flags); /* unlock+enable */
2085
2086 if (cant_block)
2087 lbmRedrive(bp);
2088 else if (flag & lbmSYNC)
2089 lbmStartIO(bp);
2090 else {
2091 LOGGC_UNLOCK(log);
2092 lbmStartIO(bp);
2093 LOGGC_LOCK(log);
2094 }
2095 }
2096
2097
2098 /*
2099 * lbmDirectWrite()
2100 *
2101 * initiate pageout bypassing write queue for sidestream
2102 * (e.g., log superblock) write;
2103 */
2104 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2105 {
2106 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2107 bp, flag, bp->l_pn);
2108
2109 /*
2110 * initialize buffer for device driver
2111 */
2112 bp->l_flag = flag | lbmDIRECT;
2113
2114 /* map the logical block address to physical block address */
2115 bp->l_blkno =
2116 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2117
2118 /*
2119 * initiate pageout of the page
2120 */
2121 lbmStartIO(bp);
2122 }
2123
2124
2125 /*
2126 * NAME: lbmStartIO()
2127 *
2128 * FUNCTION: Interface to DD strategy routine
2129 *
2130 * RETURN: none
2131 *
2132 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2133 */
2134 static void lbmStartIO(struct lbuf * bp)
2135 {
2136 struct bio *bio;
2137 struct jfs_log *log = bp->l_log;
2138
2139 jfs_info("lbmStartIO\n");
2140
2141 bio = bio_alloc(GFP_NOFS, 1);
2142 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2143 bio->bi_bdev = log->bdev;
2144 bio->bi_io_vec[0].bv_page = bp->l_page;
2145 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2146 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2147
2148 bio->bi_vcnt = 1;
2149 bio->bi_idx = 0;
2150 bio->bi_size = LOGPSIZE;
2151
2152 bio->bi_end_io = lbmIODone;
2153 bio->bi_private = bp;
2154
2155 /* check if journaling to disk has been disabled */
2156 if (log->no_integrity) {
2157 bio->bi_size = 0;
2158 lbmIODone(bio, 0);
2159 } else {
2160 submit_bio(WRITE_SYNC, bio);
2161 INCREMENT(lmStat.submitted);
2162 }
2163 }
2164
2165
2166 /*
2167 * lbmIOWait()
2168 */
2169 static int lbmIOWait(struct lbuf * bp, int flag)
2170 {
2171 unsigned long flags;
2172 int rc = 0;
2173
2174 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2175
2176 LCACHE_LOCK(flags); /* disable+lock */
2177
2178 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2179
2180 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2181
2182 if (flag & lbmFREE)
2183 lbmfree(bp);
2184
2185 LCACHE_UNLOCK(flags); /* unlock+enable */
2186
2187 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2188 return rc;
2189 }
2190
2191 /*
2192 * lbmIODone()
2193 *
2194 * executed at INTIODONE level
2195 */
2196 static void lbmIODone(struct bio *bio, int error)
2197 {
2198 struct lbuf *bp = bio->bi_private;
2199 struct lbuf *nextbp, *tail;
2200 struct jfs_log *log;
2201 unsigned long flags;
2202
2203 /*
2204 * get back jfs buffer bound to the i/o buffer
2205 */
2206 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2207
2208 LCACHE_LOCK(flags); /* disable+lock */
2209
2210 bp->l_flag |= lbmDONE;
2211
2212 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2213 bp->l_flag |= lbmERROR;
2214
2215 jfs_err("lbmIODone: I/O error in JFS log");
2216 }
2217
2218 bio_put(bio);
2219
2220 /*
2221 * pagein completion
2222 */
2223 if (bp->l_flag & lbmREAD) {
2224 bp->l_flag &= ~lbmREAD;
2225
2226 LCACHE_UNLOCK(flags); /* unlock+enable */
2227
2228 /* wakeup I/O initiator */
2229 LCACHE_WAKEUP(&bp->l_ioevent);
2230
2231 return;
2232 }
2233
2234 /*
2235 * pageout completion
2236 *
2237 * the bp at the head of write queue has completed pageout.
2238 *
2239 * if single-commit/full-page pageout, remove the current buffer
2240 * from head of pageout queue, and redrive pageout with
2241 * the new buffer at head of pageout queue;
2242 * otherwise, the partial-page pageout buffer stays at
2243 * the head of pageout queue to be redriven for pageout
2244 * by lmGroupCommit() until full-page pageout is completed.
2245 */
2246 bp->l_flag &= ~lbmWRITE;
2247 INCREMENT(lmStat.pagedone);
2248
2249 /* update committed lsn */
2250 log = bp->l_log;
2251 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2252
2253 if (bp->l_flag & lbmDIRECT) {
2254 LCACHE_WAKEUP(&bp->l_ioevent);
2255 LCACHE_UNLOCK(flags);
2256 return;
2257 }
2258
2259 tail = log->wqueue;
2260
2261 /* single element queue */
2262 if (bp == tail) {
2263 /* remove head buffer of full-page pageout
2264 * from log device write queue
2265 */
2266 if (bp->l_flag & lbmRELEASE) {
2267 log->wqueue = NULL;
2268 bp->l_wqnext = NULL;
2269 }
2270 }
2271 /* multi element queue */
2272 else {
2273 /* remove head buffer of full-page pageout
2274 * from log device write queue
2275 */
2276 if (bp->l_flag & lbmRELEASE) {
2277 nextbp = tail->l_wqnext = bp->l_wqnext;
2278 bp->l_wqnext = NULL;
2279
2280 /*
2281 * redrive pageout of next page at head of write queue:
2282 * redrive next page without any bound tblk
2283 * (i.e., page w/o any COMMIT records), or
2284 * first page of new group commit which has been
2285 * queued after current page (subsequent pageout
2286 * is performed synchronously, except page without
2287 * any COMMITs) by lmGroupCommit() as indicated
2288 * by lbmWRITE flag;
2289 */
2290 if (nextbp->l_flag & lbmWRITE) {
2291 /*
2292 * We can't do the I/O at interrupt time.
2293 * The jfsIO thread can do it
2294 */
2295 lbmRedrive(nextbp);
2296 }
2297 }
2298 }
2299
2300 /*
2301 * synchronous pageout:
2302 *
2303 * buffer has not necessarily been removed from write queue
2304 * (e.g., synchronous write of partial-page with COMMIT):
2305 * leave buffer for i/o initiator to dispose
2306 */
2307 if (bp->l_flag & lbmSYNC) {
2308 LCACHE_UNLOCK(flags); /* unlock+enable */
2309
2310 /* wakeup I/O initiator */
2311 LCACHE_WAKEUP(&bp->l_ioevent);
2312 }
2313
2314 /*
2315 * Group Commit pageout:
2316 */
2317 else if (bp->l_flag & lbmGC) {
2318 LCACHE_UNLOCK(flags);
2319 lmPostGC(bp);
2320 }
2321
2322 /*
2323 * asynchronous pageout:
2324 *
2325 * buffer must have been removed from write queue:
2326 * insert buffer at head of freelist where it can be recycled
2327 */
2328 else {
2329 assert(bp->l_flag & lbmRELEASE);
2330 assert(bp->l_flag & lbmFREE);
2331 lbmfree(bp);
2332
2333 LCACHE_UNLOCK(flags); /* unlock+enable */
2334 }
2335 }
2336
2337 int jfsIOWait(void *arg)
2338 {
2339 struct lbuf *bp;
2340
2341 do {
2342 spin_lock_irq(&log_redrive_lock);
2343 while ((bp = log_redrive_list)) {
2344 log_redrive_list = bp->l_redrive_next;
2345 bp->l_redrive_next = NULL;
2346 spin_unlock_irq(&log_redrive_lock);
2347 lbmStartIO(bp);
2348 spin_lock_irq(&log_redrive_lock);
2349 }
2350
2351 if (freezing(current)) {
2352 spin_unlock_irq(&log_redrive_lock);
2353 try_to_freeze();
2354 } else {
2355 set_current_state(TASK_INTERRUPTIBLE);
2356 spin_unlock_irq(&log_redrive_lock);
2357 schedule();
2358 __set_current_state(TASK_RUNNING);
2359 }
2360 } while (!kthread_should_stop());
2361
2362 jfs_info("jfsIOWait being killed!");
2363 return 0;
2364 }
2365
2366 /*
2367 * NAME: lmLogFormat()/jfs_logform()
2368 *
2369 * FUNCTION: format file system log
2370 *
2371 * PARAMETERS:
2372 * log - volume log
2373 * logAddress - start address of log space in FS block
2374 * logSize - length of log space in FS block;
2375 *
2376 * RETURN: 0 - success
2377 * -EIO - i/o error
2378 *
2379 * XXX: We're synchronously writing one page at a time. This needs to
2380 * be improved by writing multiple pages at once.
2381 */
2382 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2383 {
2384 int rc = -EIO;
2385 struct jfs_sb_info *sbi;
2386 struct logsuper *logsuper;
2387 struct logpage *lp;
2388 int lspn; /* log sequence page number */
2389 struct lrd *lrd_ptr;
2390 int npages = 0;
2391 struct lbuf *bp;
2392
2393 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2394 (long long)logAddress, logSize);
2395
2396 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2397
2398 /* allocate a log buffer */
2399 bp = lbmAllocate(log, 1);
2400
2401 npages = logSize >> sbi->l2nbperpage;
2402
2403 /*
2404 * log space:
2405 *
2406 * page 0 - reserved;
2407 * page 1 - log superblock;
2408 * page 2 - log data page: A SYNC log record is written
2409 * into this page at logform time;
2410 * pages 3-N - log data page: set to empty log data pages;
2411 */
2412 /*
2413 * init log superblock: log page 1
2414 */
2415 logsuper = (struct logsuper *) bp->l_ldata;
2416
2417 logsuper->magic = cpu_to_le32(LOGMAGIC);
2418 logsuper->version = cpu_to_le32(LOGVERSION);
2419 logsuper->state = cpu_to_le32(LOGREDONE);
2420 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2421 logsuper->size = cpu_to_le32(npages);
2422 logsuper->bsize = cpu_to_le32(sbi->bsize);
2423 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2424 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2425
2426 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2427 bp->l_blkno = logAddress + sbi->nbperpage;
2428 lbmStartIO(bp);
2429 if ((rc = lbmIOWait(bp, 0)))
2430 goto exit;
2431
2432 /*
2433 * init pages 2 to npages-1 as log data pages:
2434 *
2435 * log page sequence number (lpsn) initialization:
2436 *
2437 * pn: 0 1 2 3 n-1
2438 * +-----+-----+=====+=====+===.....===+=====+
2439 * lspn: N-1 0 1 N-2
2440 * <--- N page circular file ---->
2441 *
2442 * the N (= npages-2) data pages of the log is maintained as
2443 * a circular file for the log records;
2444 * lpsn grows by 1 monotonically as each log page is written
2445 * to the circular file of the log;
2446 * and setLogpage() will not reset the page number even if
2447 * the eor is equal to LOGPHDRSIZE. In order for binary search
2448 * still work in find log end process, we have to simulate the
2449 * log wrap situation at the log format time.
2450 * The 1st log page written will have the highest lpsn. Then
2451 * the succeeding log pages will have ascending order of
2452 * the lspn starting from 0, ... (N-2)
2453 */
2454 lp = (struct logpage *) bp->l_ldata;
2455 /*
2456 * initialize 1st log page to be written: lpsn = N - 1,
2457 * write a SYNCPT log record is written to this page
2458 */
2459 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2460 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2461
2462 lrd_ptr = (struct lrd *) &lp->data;
2463 lrd_ptr->logtid = 0;
2464 lrd_ptr->backchain = 0;
2465 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2466 lrd_ptr->length = 0;
2467 lrd_ptr->log.syncpt.sync = 0;
2468
2469 bp->l_blkno += sbi->nbperpage;
2470 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2471 lbmStartIO(bp);
2472 if ((rc = lbmIOWait(bp, 0)))
2473 goto exit;
2474
2475 /*
2476 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2477 */
2478 for (lspn = 0; lspn < npages - 3; lspn++) {
2479 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2480 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2481
2482 bp->l_blkno += sbi->nbperpage;
2483 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2484 lbmStartIO(bp);
2485 if ((rc = lbmIOWait(bp, 0)))
2486 goto exit;
2487 }
2488
2489 rc = 0;
2490 exit:
2491 /*
2492 * finalize log
2493 */
2494 /* release the buffer */
2495 lbmFree(bp);
2496
2497 return rc;
2498 }
2499
2500 #ifdef CONFIG_JFS_STATISTICS
2501 static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2502 {
2503 seq_printf(m,
2504 "JFS Logmgr stats\n"
2505 "================\n"
2506 "commits = %d\n"
2507 "writes submitted = %d\n"
2508 "writes completed = %d\n"
2509 "full pages submitted = %d\n"
2510 "partial pages submitted = %d\n",
2511 lmStat.commit,
2512 lmStat.submitted,
2513 lmStat.pagedone,
2514 lmStat.full_page,
2515 lmStat.partial_page);
2516 return 0;
2517 }
2518
2519 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2520 {
2521 return single_open(file, jfs_lmstats_proc_show, NULL);
2522 }
2523
2524 const struct file_operations jfs_lmstats_proc_fops = {
2525 .owner = THIS_MODULE,
2526 .open = jfs_lmstats_proc_open,
2527 .read = seq_read,
2528 .llseek = seq_lseek,
2529 .release = single_release,
2530 };
2531 #endif /* CONFIG_JFS_STATISTICS */