]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/kernfs/dir.c
Merge remote-tracking branch 'regulator/fix/core' into regulator-linus
[mirror_ubuntu-bionic-kernel.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49 {
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69 }
70
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92 }
93
94 /**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116
117 /**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134
135 /**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157
158 /**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176 }
177
178 /**
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199 }
200
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
203 {
204 if (hash != kn->hash)
205 return hash - kn->hash;
206 if (ns != kn->ns)
207 return ns - kn->ns;
208 return strcmp(name, kn->name);
209 }
210
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 const struct kernfs_node *right)
213 {
214 return kernfs_name_compare(left->hash, left->name, left->ns, right);
215 }
216
217 /**
218 * kernfs_link_sibling - link kernfs_node into sibling rbtree
219 * @kn: kernfs_node of interest
220 *
221 * Link @kn into its sibling rbtree which starts from
222 * @kn->parent->dir.children.
223 *
224 * Locking:
225 * mutex_lock(kernfs_mutex)
226 *
227 * RETURNS:
228 * 0 on susccess -EEXIST on failure.
229 */
230 static int kernfs_link_sibling(struct kernfs_node *kn)
231 {
232 struct rb_node **node = &kn->parent->dir.children.rb_node;
233 struct rb_node *parent = NULL;
234
235 while (*node) {
236 struct kernfs_node *pos;
237 int result;
238
239 pos = rb_to_kn(*node);
240 parent = *node;
241 result = kernfs_sd_compare(kn, pos);
242 if (result < 0)
243 node = &pos->rb.rb_left;
244 else if (result > 0)
245 node = &pos->rb.rb_right;
246 else
247 return -EEXIST;
248 }
249
250 /* add new node and rebalance the tree */
251 rb_link_node(&kn->rb, parent, node);
252 rb_insert_color(&kn->rb, &kn->parent->dir.children);
253
254 /* successfully added, account subdir number */
255 if (kernfs_type(kn) == KERNFS_DIR)
256 kn->parent->dir.subdirs++;
257
258 return 0;
259 }
260
261 /**
262 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
263 * @kn: kernfs_node of interest
264 *
265 * Try to unlink @kn from its sibling rbtree which starts from
266 * kn->parent->dir.children. Returns %true if @kn was actually
267 * removed, %false if @kn wasn't on the rbtree.
268 *
269 * Locking:
270 * mutex_lock(kernfs_mutex)
271 */
272 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
273 {
274 if (RB_EMPTY_NODE(&kn->rb))
275 return false;
276
277 if (kernfs_type(kn) == KERNFS_DIR)
278 kn->parent->dir.subdirs--;
279
280 rb_erase(&kn->rb, &kn->parent->dir.children);
281 RB_CLEAR_NODE(&kn->rb);
282 return true;
283 }
284
285 /**
286 * kernfs_get_active - get an active reference to kernfs_node
287 * @kn: kernfs_node to get an active reference to
288 *
289 * Get an active reference of @kn. This function is noop if @kn
290 * is NULL.
291 *
292 * RETURNS:
293 * Pointer to @kn on success, NULL on failure.
294 */
295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
296 {
297 if (unlikely(!kn))
298 return NULL;
299
300 if (!atomic_inc_unless_negative(&kn->active))
301 return NULL;
302
303 if (kernfs_lockdep(kn))
304 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
305 return kn;
306 }
307
308 /**
309 * kernfs_put_active - put an active reference to kernfs_node
310 * @kn: kernfs_node to put an active reference to
311 *
312 * Put an active reference to @kn. This function is noop if @kn
313 * is NULL.
314 */
315 void kernfs_put_active(struct kernfs_node *kn)
316 {
317 struct kernfs_root *root = kernfs_root(kn);
318 int v;
319
320 if (unlikely(!kn))
321 return;
322
323 if (kernfs_lockdep(kn))
324 rwsem_release(&kn->dep_map, 1, _RET_IP_);
325 v = atomic_dec_return(&kn->active);
326 if (likely(v != KN_DEACTIVATED_BIAS))
327 return;
328
329 wake_up_all(&root->deactivate_waitq);
330 }
331
332 /**
333 * kernfs_drain - drain kernfs_node
334 * @kn: kernfs_node to drain
335 *
336 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
337 * removers may invoke this function concurrently on @kn and all will
338 * return after draining is complete.
339 */
340 static void kernfs_drain(struct kernfs_node *kn)
341 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
342 {
343 struct kernfs_root *root = kernfs_root(kn);
344
345 lockdep_assert_held(&kernfs_mutex);
346 WARN_ON_ONCE(kernfs_active(kn));
347
348 mutex_unlock(&kernfs_mutex);
349
350 if (kernfs_lockdep(kn)) {
351 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
352 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
353 lock_contended(&kn->dep_map, _RET_IP_);
354 }
355
356 /* but everyone should wait for draining */
357 wait_event(root->deactivate_waitq,
358 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
359
360 if (kernfs_lockdep(kn)) {
361 lock_acquired(&kn->dep_map, _RET_IP_);
362 rwsem_release(&kn->dep_map, 1, _RET_IP_);
363 }
364
365 kernfs_unmap_bin_file(kn);
366
367 mutex_lock(&kernfs_mutex);
368 }
369
370 /**
371 * kernfs_get - get a reference count on a kernfs_node
372 * @kn: the target kernfs_node
373 */
374 void kernfs_get(struct kernfs_node *kn)
375 {
376 if (kn) {
377 WARN_ON(!atomic_read(&kn->count));
378 atomic_inc(&kn->count);
379 }
380 }
381 EXPORT_SYMBOL_GPL(kernfs_get);
382
383 /**
384 * kernfs_put - put a reference count on a kernfs_node
385 * @kn: the target kernfs_node
386 *
387 * Put a reference count of @kn and destroy it if it reached zero.
388 */
389 void kernfs_put(struct kernfs_node *kn)
390 {
391 struct kernfs_node *parent;
392 struct kernfs_root *root;
393
394 if (!kn || !atomic_dec_and_test(&kn->count))
395 return;
396 root = kernfs_root(kn);
397 repeat:
398 /*
399 * Moving/renaming is always done while holding reference.
400 * kn->parent won't change beneath us.
401 */
402 parent = kn->parent;
403
404 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
405 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
406 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
407
408 if (kernfs_type(kn) == KERNFS_LINK)
409 kernfs_put(kn->symlink.target_kn);
410 if (!(kn->flags & KERNFS_STATIC_NAME))
411 kfree(kn->name);
412 if (kn->iattr) {
413 if (kn->iattr->ia_secdata)
414 security_release_secctx(kn->iattr->ia_secdata,
415 kn->iattr->ia_secdata_len);
416 simple_xattrs_free(&kn->iattr->xattrs);
417 }
418 kfree(kn->iattr);
419 ida_simple_remove(&root->ino_ida, kn->ino);
420 kmem_cache_free(kernfs_node_cache, kn);
421
422 kn = parent;
423 if (kn) {
424 if (atomic_dec_and_test(&kn->count))
425 goto repeat;
426 } else {
427 /* just released the root kn, free @root too */
428 ida_destroy(&root->ino_ida);
429 kfree(root);
430 }
431 }
432 EXPORT_SYMBOL_GPL(kernfs_put);
433
434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
435 {
436 struct kernfs_node *kn;
437
438 if (flags & LOOKUP_RCU)
439 return -ECHILD;
440
441 /* Always perform fresh lookup for negatives */
442 if (!dentry->d_inode)
443 goto out_bad_unlocked;
444
445 kn = dentry->d_fsdata;
446 mutex_lock(&kernfs_mutex);
447
448 /* The kernfs node has been deactivated */
449 if (!kernfs_active(kn))
450 goto out_bad;
451
452 /* The kernfs node has been moved? */
453 if (dentry->d_parent->d_fsdata != kn->parent)
454 goto out_bad;
455
456 /* The kernfs node has been renamed */
457 if (strcmp(dentry->d_name.name, kn->name) != 0)
458 goto out_bad;
459
460 /* The kernfs node has been moved to a different namespace */
461 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
462 kernfs_info(dentry->d_sb)->ns != kn->ns)
463 goto out_bad;
464
465 mutex_unlock(&kernfs_mutex);
466 return 1;
467 out_bad:
468 mutex_unlock(&kernfs_mutex);
469 out_bad_unlocked:
470 return 0;
471 }
472
473 static void kernfs_dop_release(struct dentry *dentry)
474 {
475 kernfs_put(dentry->d_fsdata);
476 }
477
478 const struct dentry_operations kernfs_dops = {
479 .d_revalidate = kernfs_dop_revalidate,
480 .d_release = kernfs_dop_release,
481 };
482
483 /**
484 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
485 * @dentry: the dentry in question
486 *
487 * Return the kernfs_node associated with @dentry. If @dentry is not a
488 * kernfs one, %NULL is returned.
489 *
490 * While the returned kernfs_node will stay accessible as long as @dentry
491 * is accessible, the returned node can be in any state and the caller is
492 * fully responsible for determining what's accessible.
493 */
494 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
495 {
496 if (dentry->d_sb->s_op == &kernfs_sops)
497 return dentry->d_fsdata;
498 return NULL;
499 }
500
501 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
502 const char *name, umode_t mode,
503 unsigned flags)
504 {
505 char *dup_name = NULL;
506 struct kernfs_node *kn;
507 int ret;
508
509 if (!(flags & KERNFS_STATIC_NAME)) {
510 name = dup_name = kstrdup(name, GFP_KERNEL);
511 if (!name)
512 return NULL;
513 }
514
515 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
516 if (!kn)
517 goto err_out1;
518
519 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
520 if (ret < 0)
521 goto err_out2;
522 kn->ino = ret;
523
524 atomic_set(&kn->count, 1);
525 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
526 RB_CLEAR_NODE(&kn->rb);
527
528 kn->name = name;
529 kn->mode = mode;
530 kn->flags = flags;
531
532 return kn;
533
534 err_out2:
535 kmem_cache_free(kernfs_node_cache, kn);
536 err_out1:
537 kfree(dup_name);
538 return NULL;
539 }
540
541 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
542 const char *name, umode_t mode,
543 unsigned flags)
544 {
545 struct kernfs_node *kn;
546
547 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
548 if (kn) {
549 kernfs_get(parent);
550 kn->parent = parent;
551 }
552 return kn;
553 }
554
555 /**
556 * kernfs_add_one - add kernfs_node to parent without warning
557 * @kn: kernfs_node to be added
558 *
559 * The caller must already have initialized @kn->parent. This
560 * function increments nlink of the parent's inode if @kn is a
561 * directory and link into the children list of the parent.
562 *
563 * RETURNS:
564 * 0 on success, -EEXIST if entry with the given name already
565 * exists.
566 */
567 int kernfs_add_one(struct kernfs_node *kn)
568 {
569 struct kernfs_node *parent = kn->parent;
570 struct kernfs_iattrs *ps_iattr;
571 bool has_ns;
572 int ret;
573
574 mutex_lock(&kernfs_mutex);
575
576 ret = -EINVAL;
577 has_ns = kernfs_ns_enabled(parent);
578 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
579 has_ns ? "required" : "invalid", parent->name, kn->name))
580 goto out_unlock;
581
582 if (kernfs_type(parent) != KERNFS_DIR)
583 goto out_unlock;
584
585 ret = -ENOENT;
586 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
587 goto out_unlock;
588
589 kn->hash = kernfs_name_hash(kn->name, kn->ns);
590
591 ret = kernfs_link_sibling(kn);
592 if (ret)
593 goto out_unlock;
594
595 /* Update timestamps on the parent */
596 ps_iattr = parent->iattr;
597 if (ps_iattr) {
598 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
599 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
600 }
601
602 mutex_unlock(&kernfs_mutex);
603
604 /*
605 * Activate the new node unless CREATE_DEACTIVATED is requested.
606 * If not activated here, the kernfs user is responsible for
607 * activating the node with kernfs_activate(). A node which hasn't
608 * been activated is not visible to userland and its removal won't
609 * trigger deactivation.
610 */
611 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
612 kernfs_activate(kn);
613 return 0;
614
615 out_unlock:
616 mutex_unlock(&kernfs_mutex);
617 return ret;
618 }
619
620 /**
621 * kernfs_find_ns - find kernfs_node with the given name
622 * @parent: kernfs_node to search under
623 * @name: name to look for
624 * @ns: the namespace tag to use
625 *
626 * Look for kernfs_node with name @name under @parent. Returns pointer to
627 * the found kernfs_node on success, %NULL on failure.
628 */
629 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
630 const unsigned char *name,
631 const void *ns)
632 {
633 struct rb_node *node = parent->dir.children.rb_node;
634 bool has_ns = kernfs_ns_enabled(parent);
635 unsigned int hash;
636
637 lockdep_assert_held(&kernfs_mutex);
638
639 if (has_ns != (bool)ns) {
640 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
641 has_ns ? "required" : "invalid", parent->name, name);
642 return NULL;
643 }
644
645 hash = kernfs_name_hash(name, ns);
646 while (node) {
647 struct kernfs_node *kn;
648 int result;
649
650 kn = rb_to_kn(node);
651 result = kernfs_name_compare(hash, name, ns, kn);
652 if (result < 0)
653 node = node->rb_left;
654 else if (result > 0)
655 node = node->rb_right;
656 else
657 return kn;
658 }
659 return NULL;
660 }
661
662 /**
663 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
664 * @parent: kernfs_node to search under
665 * @name: name to look for
666 * @ns: the namespace tag to use
667 *
668 * Look for kernfs_node with name @name under @parent and get a reference
669 * if found. This function may sleep and returns pointer to the found
670 * kernfs_node on success, %NULL on failure.
671 */
672 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
673 const char *name, const void *ns)
674 {
675 struct kernfs_node *kn;
676
677 mutex_lock(&kernfs_mutex);
678 kn = kernfs_find_ns(parent, name, ns);
679 kernfs_get(kn);
680 mutex_unlock(&kernfs_mutex);
681
682 return kn;
683 }
684 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
685
686 /**
687 * kernfs_create_root - create a new kernfs hierarchy
688 * @scops: optional syscall operations for the hierarchy
689 * @flags: KERNFS_ROOT_* flags
690 * @priv: opaque data associated with the new directory
691 *
692 * Returns the root of the new hierarchy on success, ERR_PTR() value on
693 * failure.
694 */
695 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
696 unsigned int flags, void *priv)
697 {
698 struct kernfs_root *root;
699 struct kernfs_node *kn;
700
701 root = kzalloc(sizeof(*root), GFP_KERNEL);
702 if (!root)
703 return ERR_PTR(-ENOMEM);
704
705 ida_init(&root->ino_ida);
706 INIT_LIST_HEAD(&root->supers);
707
708 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
709 KERNFS_DIR);
710 if (!kn) {
711 ida_destroy(&root->ino_ida);
712 kfree(root);
713 return ERR_PTR(-ENOMEM);
714 }
715
716 kn->priv = priv;
717 kn->dir.root = root;
718
719 root->syscall_ops = scops;
720 root->flags = flags;
721 root->kn = kn;
722 init_waitqueue_head(&root->deactivate_waitq);
723
724 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
725 kernfs_activate(kn);
726
727 return root;
728 }
729
730 /**
731 * kernfs_destroy_root - destroy a kernfs hierarchy
732 * @root: root of the hierarchy to destroy
733 *
734 * Destroy the hierarchy anchored at @root by removing all existing
735 * directories and destroying @root.
736 */
737 void kernfs_destroy_root(struct kernfs_root *root)
738 {
739 kernfs_remove(root->kn); /* will also free @root */
740 }
741
742 /**
743 * kernfs_create_dir_ns - create a directory
744 * @parent: parent in which to create a new directory
745 * @name: name of the new directory
746 * @mode: mode of the new directory
747 * @priv: opaque data associated with the new directory
748 * @ns: optional namespace tag of the directory
749 *
750 * Returns the created node on success, ERR_PTR() value on failure.
751 */
752 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
753 const char *name, umode_t mode,
754 void *priv, const void *ns)
755 {
756 struct kernfs_node *kn;
757 int rc;
758
759 /* allocate */
760 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
761 if (!kn)
762 return ERR_PTR(-ENOMEM);
763
764 kn->dir.root = parent->dir.root;
765 kn->ns = ns;
766 kn->priv = priv;
767
768 /* link in */
769 rc = kernfs_add_one(kn);
770 if (!rc)
771 return kn;
772
773 kernfs_put(kn);
774 return ERR_PTR(rc);
775 }
776
777 static struct dentry *kernfs_iop_lookup(struct inode *dir,
778 struct dentry *dentry,
779 unsigned int flags)
780 {
781 struct dentry *ret;
782 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
783 struct kernfs_node *kn;
784 struct inode *inode;
785 const void *ns = NULL;
786
787 mutex_lock(&kernfs_mutex);
788
789 if (kernfs_ns_enabled(parent))
790 ns = kernfs_info(dir->i_sb)->ns;
791
792 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
793
794 /* no such entry */
795 if (!kn || !kernfs_active(kn)) {
796 ret = NULL;
797 goto out_unlock;
798 }
799 kernfs_get(kn);
800 dentry->d_fsdata = kn;
801
802 /* attach dentry and inode */
803 inode = kernfs_get_inode(dir->i_sb, kn);
804 if (!inode) {
805 ret = ERR_PTR(-ENOMEM);
806 goto out_unlock;
807 }
808
809 /* instantiate and hash dentry */
810 ret = d_materialise_unique(dentry, inode);
811 out_unlock:
812 mutex_unlock(&kernfs_mutex);
813 return ret;
814 }
815
816 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
817 umode_t mode)
818 {
819 struct kernfs_node *parent = dir->i_private;
820 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
821 int ret;
822
823 if (!scops || !scops->mkdir)
824 return -EPERM;
825
826 if (!kernfs_get_active(parent))
827 return -ENODEV;
828
829 ret = scops->mkdir(parent, dentry->d_name.name, mode);
830
831 kernfs_put_active(parent);
832 return ret;
833 }
834
835 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
836 {
837 struct kernfs_node *kn = dentry->d_fsdata;
838 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
839 int ret;
840
841 if (!scops || !scops->rmdir)
842 return -EPERM;
843
844 if (!kernfs_get_active(kn))
845 return -ENODEV;
846
847 ret = scops->rmdir(kn);
848
849 kernfs_put_active(kn);
850 return ret;
851 }
852
853 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
854 struct inode *new_dir, struct dentry *new_dentry)
855 {
856 struct kernfs_node *kn = old_dentry->d_fsdata;
857 struct kernfs_node *new_parent = new_dir->i_private;
858 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
859 int ret;
860
861 if (!scops || !scops->rename)
862 return -EPERM;
863
864 if (!kernfs_get_active(kn))
865 return -ENODEV;
866
867 if (!kernfs_get_active(new_parent)) {
868 kernfs_put_active(kn);
869 return -ENODEV;
870 }
871
872 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
873
874 kernfs_put_active(new_parent);
875 kernfs_put_active(kn);
876 return ret;
877 }
878
879 const struct inode_operations kernfs_dir_iops = {
880 .lookup = kernfs_iop_lookup,
881 .permission = kernfs_iop_permission,
882 .setattr = kernfs_iop_setattr,
883 .getattr = kernfs_iop_getattr,
884 .setxattr = kernfs_iop_setxattr,
885 .removexattr = kernfs_iop_removexattr,
886 .getxattr = kernfs_iop_getxattr,
887 .listxattr = kernfs_iop_listxattr,
888
889 .mkdir = kernfs_iop_mkdir,
890 .rmdir = kernfs_iop_rmdir,
891 .rename = kernfs_iop_rename,
892 };
893
894 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
895 {
896 struct kernfs_node *last;
897
898 while (true) {
899 struct rb_node *rbn;
900
901 last = pos;
902
903 if (kernfs_type(pos) != KERNFS_DIR)
904 break;
905
906 rbn = rb_first(&pos->dir.children);
907 if (!rbn)
908 break;
909
910 pos = rb_to_kn(rbn);
911 }
912
913 return last;
914 }
915
916 /**
917 * kernfs_next_descendant_post - find the next descendant for post-order walk
918 * @pos: the current position (%NULL to initiate traversal)
919 * @root: kernfs_node whose descendants to walk
920 *
921 * Find the next descendant to visit for post-order traversal of @root's
922 * descendants. @root is included in the iteration and the last node to be
923 * visited.
924 */
925 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
926 struct kernfs_node *root)
927 {
928 struct rb_node *rbn;
929
930 lockdep_assert_held(&kernfs_mutex);
931
932 /* if first iteration, visit leftmost descendant which may be root */
933 if (!pos)
934 return kernfs_leftmost_descendant(root);
935
936 /* if we visited @root, we're done */
937 if (pos == root)
938 return NULL;
939
940 /* if there's an unvisited sibling, visit its leftmost descendant */
941 rbn = rb_next(&pos->rb);
942 if (rbn)
943 return kernfs_leftmost_descendant(rb_to_kn(rbn));
944
945 /* no sibling left, visit parent */
946 return pos->parent;
947 }
948
949 /**
950 * kernfs_activate - activate a node which started deactivated
951 * @kn: kernfs_node whose subtree is to be activated
952 *
953 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
954 * needs to be explicitly activated. A node which hasn't been activated
955 * isn't visible to userland and deactivation is skipped during its
956 * removal. This is useful to construct atomic init sequences where
957 * creation of multiple nodes should either succeed or fail atomically.
958 *
959 * The caller is responsible for ensuring that this function is not called
960 * after kernfs_remove*() is invoked on @kn.
961 */
962 void kernfs_activate(struct kernfs_node *kn)
963 {
964 struct kernfs_node *pos;
965
966 mutex_lock(&kernfs_mutex);
967
968 pos = NULL;
969 while ((pos = kernfs_next_descendant_post(pos, kn))) {
970 if (!pos || (pos->flags & KERNFS_ACTIVATED))
971 continue;
972
973 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
974 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
975
976 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
977 pos->flags |= KERNFS_ACTIVATED;
978 }
979
980 mutex_unlock(&kernfs_mutex);
981 }
982
983 static void __kernfs_remove(struct kernfs_node *kn)
984 {
985 struct kernfs_node *pos;
986
987 lockdep_assert_held(&kernfs_mutex);
988
989 /*
990 * Short-circuit if non-root @kn has already finished removal.
991 * This is for kernfs_remove_self() which plays with active ref
992 * after removal.
993 */
994 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
995 return;
996
997 pr_debug("kernfs %s: removing\n", kn->name);
998
999 /* prevent any new usage under @kn by deactivating all nodes */
1000 pos = NULL;
1001 while ((pos = kernfs_next_descendant_post(pos, kn)))
1002 if (kernfs_active(pos))
1003 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1004
1005 /* deactivate and unlink the subtree node-by-node */
1006 do {
1007 pos = kernfs_leftmost_descendant(kn);
1008
1009 /*
1010 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1011 * base ref could have been put by someone else by the time
1012 * the function returns. Make sure it doesn't go away
1013 * underneath us.
1014 */
1015 kernfs_get(pos);
1016
1017 /*
1018 * Drain iff @kn was activated. This avoids draining and
1019 * its lockdep annotations for nodes which have never been
1020 * activated and allows embedding kernfs_remove() in create
1021 * error paths without worrying about draining.
1022 */
1023 if (kn->flags & KERNFS_ACTIVATED)
1024 kernfs_drain(pos);
1025 else
1026 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1027
1028 /*
1029 * kernfs_unlink_sibling() succeeds once per node. Use it
1030 * to decide who's responsible for cleanups.
1031 */
1032 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1033 struct kernfs_iattrs *ps_iattr =
1034 pos->parent ? pos->parent->iattr : NULL;
1035
1036 /* update timestamps on the parent */
1037 if (ps_iattr) {
1038 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1039 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1040 }
1041
1042 kernfs_put(pos);
1043 }
1044
1045 kernfs_put(pos);
1046 } while (pos != kn);
1047 }
1048
1049 /**
1050 * kernfs_remove - remove a kernfs_node recursively
1051 * @kn: the kernfs_node to remove
1052 *
1053 * Remove @kn along with all its subdirectories and files.
1054 */
1055 void kernfs_remove(struct kernfs_node *kn)
1056 {
1057 mutex_lock(&kernfs_mutex);
1058 __kernfs_remove(kn);
1059 mutex_unlock(&kernfs_mutex);
1060 }
1061
1062 /**
1063 * kernfs_break_active_protection - break out of active protection
1064 * @kn: the self kernfs_node
1065 *
1066 * The caller must be running off of a kernfs operation which is invoked
1067 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1068 * this function must also be matched with an invocation of
1069 * kernfs_unbreak_active_protection().
1070 *
1071 * This function releases the active reference of @kn the caller is
1072 * holding. Once this function is called, @kn may be removed at any point
1073 * and the caller is solely responsible for ensuring that the objects it
1074 * dereferences are accessible.
1075 */
1076 void kernfs_break_active_protection(struct kernfs_node *kn)
1077 {
1078 /*
1079 * Take out ourself out of the active ref dependency chain. If
1080 * we're called without an active ref, lockdep will complain.
1081 */
1082 kernfs_put_active(kn);
1083 }
1084
1085 /**
1086 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1087 * @kn: the self kernfs_node
1088 *
1089 * If kernfs_break_active_protection() was called, this function must be
1090 * invoked before finishing the kernfs operation. Note that while this
1091 * function restores the active reference, it doesn't and can't actually
1092 * restore the active protection - @kn may already or be in the process of
1093 * being removed. Once kernfs_break_active_protection() is invoked, that
1094 * protection is irreversibly gone for the kernfs operation instance.
1095 *
1096 * While this function may be called at any point after
1097 * kernfs_break_active_protection() is invoked, its most useful location
1098 * would be right before the enclosing kernfs operation returns.
1099 */
1100 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1101 {
1102 /*
1103 * @kn->active could be in any state; however, the increment we do
1104 * here will be undone as soon as the enclosing kernfs operation
1105 * finishes and this temporary bump can't break anything. If @kn
1106 * is alive, nothing changes. If @kn is being deactivated, the
1107 * soon-to-follow put will either finish deactivation or restore
1108 * deactivated state. If @kn is already removed, the temporary
1109 * bump is guaranteed to be gone before @kn is released.
1110 */
1111 atomic_inc(&kn->active);
1112 if (kernfs_lockdep(kn))
1113 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1114 }
1115
1116 /**
1117 * kernfs_remove_self - remove a kernfs_node from its own method
1118 * @kn: the self kernfs_node to remove
1119 *
1120 * The caller must be running off of a kernfs operation which is invoked
1121 * with an active reference - e.g. one of kernfs_ops. This can be used to
1122 * implement a file operation which deletes itself.
1123 *
1124 * For example, the "delete" file for a sysfs device directory can be
1125 * implemented by invoking kernfs_remove_self() on the "delete" file
1126 * itself. This function breaks the circular dependency of trying to
1127 * deactivate self while holding an active ref itself. It isn't necessary
1128 * to modify the usual removal path to use kernfs_remove_self(). The
1129 * "delete" implementation can simply invoke kernfs_remove_self() on self
1130 * before proceeding with the usual removal path. kernfs will ignore later
1131 * kernfs_remove() on self.
1132 *
1133 * kernfs_remove_self() can be called multiple times concurrently on the
1134 * same kernfs_node. Only the first one actually performs removal and
1135 * returns %true. All others will wait until the kernfs operation which
1136 * won self-removal finishes and return %false. Note that the losers wait
1137 * for the completion of not only the winning kernfs_remove_self() but also
1138 * the whole kernfs_ops which won the arbitration. This can be used to
1139 * guarantee, for example, all concurrent writes to a "delete" file to
1140 * finish only after the whole operation is complete.
1141 */
1142 bool kernfs_remove_self(struct kernfs_node *kn)
1143 {
1144 bool ret;
1145
1146 mutex_lock(&kernfs_mutex);
1147 kernfs_break_active_protection(kn);
1148
1149 /*
1150 * SUICIDAL is used to arbitrate among competing invocations. Only
1151 * the first one will actually perform removal. When the removal
1152 * is complete, SUICIDED is set and the active ref is restored
1153 * while holding kernfs_mutex. The ones which lost arbitration
1154 * waits for SUICDED && drained which can happen only after the
1155 * enclosing kernfs operation which executed the winning instance
1156 * of kernfs_remove_self() finished.
1157 */
1158 if (!(kn->flags & KERNFS_SUICIDAL)) {
1159 kn->flags |= KERNFS_SUICIDAL;
1160 __kernfs_remove(kn);
1161 kn->flags |= KERNFS_SUICIDED;
1162 ret = true;
1163 } else {
1164 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1165 DEFINE_WAIT(wait);
1166
1167 while (true) {
1168 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1169
1170 if ((kn->flags & KERNFS_SUICIDED) &&
1171 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1172 break;
1173
1174 mutex_unlock(&kernfs_mutex);
1175 schedule();
1176 mutex_lock(&kernfs_mutex);
1177 }
1178 finish_wait(waitq, &wait);
1179 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1180 ret = false;
1181 }
1182
1183 /*
1184 * This must be done while holding kernfs_mutex; otherwise, waiting
1185 * for SUICIDED && deactivated could finish prematurely.
1186 */
1187 kernfs_unbreak_active_protection(kn);
1188
1189 mutex_unlock(&kernfs_mutex);
1190 return ret;
1191 }
1192
1193 /**
1194 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1195 * @parent: parent of the target
1196 * @name: name of the kernfs_node to remove
1197 * @ns: namespace tag of the kernfs_node to remove
1198 *
1199 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1200 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1201 */
1202 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1203 const void *ns)
1204 {
1205 struct kernfs_node *kn;
1206
1207 if (!parent) {
1208 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1209 name);
1210 return -ENOENT;
1211 }
1212
1213 mutex_lock(&kernfs_mutex);
1214
1215 kn = kernfs_find_ns(parent, name, ns);
1216 if (kn)
1217 __kernfs_remove(kn);
1218
1219 mutex_unlock(&kernfs_mutex);
1220
1221 if (kn)
1222 return 0;
1223 else
1224 return -ENOENT;
1225 }
1226
1227 /**
1228 * kernfs_rename_ns - move and rename a kernfs_node
1229 * @kn: target node
1230 * @new_parent: new parent to put @sd under
1231 * @new_name: new name
1232 * @new_ns: new namespace tag
1233 */
1234 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1235 const char *new_name, const void *new_ns)
1236 {
1237 struct kernfs_node *old_parent;
1238 const char *old_name = NULL;
1239 int error;
1240
1241 /* can't move or rename root */
1242 if (!kn->parent)
1243 return -EINVAL;
1244
1245 mutex_lock(&kernfs_mutex);
1246
1247 error = -ENOENT;
1248 if (!kernfs_active(kn) || !kernfs_active(new_parent))
1249 goto out;
1250
1251 error = 0;
1252 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1253 (strcmp(kn->name, new_name) == 0))
1254 goto out; /* nothing to rename */
1255
1256 error = -EEXIST;
1257 if (kernfs_find_ns(new_parent, new_name, new_ns))
1258 goto out;
1259
1260 /* rename kernfs_node */
1261 if (strcmp(kn->name, new_name) != 0) {
1262 error = -ENOMEM;
1263 new_name = kstrdup(new_name, GFP_KERNEL);
1264 if (!new_name)
1265 goto out;
1266 } else {
1267 new_name = NULL;
1268 }
1269
1270 /*
1271 * Move to the appropriate place in the appropriate directories rbtree.
1272 */
1273 kernfs_unlink_sibling(kn);
1274 kernfs_get(new_parent);
1275
1276 /* rename_lock protects ->parent and ->name accessors */
1277 spin_lock_irq(&kernfs_rename_lock);
1278
1279 old_parent = kn->parent;
1280 kn->parent = new_parent;
1281
1282 kn->ns = new_ns;
1283 if (new_name) {
1284 if (!(kn->flags & KERNFS_STATIC_NAME))
1285 old_name = kn->name;
1286 kn->flags &= ~KERNFS_STATIC_NAME;
1287 kn->name = new_name;
1288 }
1289
1290 spin_unlock_irq(&kernfs_rename_lock);
1291
1292 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1293 kernfs_link_sibling(kn);
1294
1295 kernfs_put(old_parent);
1296 kfree(old_name);
1297
1298 error = 0;
1299 out:
1300 mutex_unlock(&kernfs_mutex);
1301 return error;
1302 }
1303
1304 /* Relationship between s_mode and the DT_xxx types */
1305 static inline unsigned char dt_type(struct kernfs_node *kn)
1306 {
1307 return (kn->mode >> 12) & 15;
1308 }
1309
1310 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1311 {
1312 kernfs_put(filp->private_data);
1313 return 0;
1314 }
1315
1316 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1317 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1318 {
1319 if (pos) {
1320 int valid = kernfs_active(pos) &&
1321 pos->parent == parent && hash == pos->hash;
1322 kernfs_put(pos);
1323 if (!valid)
1324 pos = NULL;
1325 }
1326 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1327 struct rb_node *node = parent->dir.children.rb_node;
1328 while (node) {
1329 pos = rb_to_kn(node);
1330
1331 if (hash < pos->hash)
1332 node = node->rb_left;
1333 else if (hash > pos->hash)
1334 node = node->rb_right;
1335 else
1336 break;
1337 }
1338 }
1339 /* Skip over entries which are dying/dead or in the wrong namespace */
1340 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1341 struct rb_node *node = rb_next(&pos->rb);
1342 if (!node)
1343 pos = NULL;
1344 else
1345 pos = rb_to_kn(node);
1346 }
1347 return pos;
1348 }
1349
1350 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1351 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1352 {
1353 pos = kernfs_dir_pos(ns, parent, ino, pos);
1354 if (pos) {
1355 do {
1356 struct rb_node *node = rb_next(&pos->rb);
1357 if (!node)
1358 pos = NULL;
1359 else
1360 pos = rb_to_kn(node);
1361 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1362 }
1363 return pos;
1364 }
1365
1366 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1367 {
1368 struct dentry *dentry = file->f_path.dentry;
1369 struct kernfs_node *parent = dentry->d_fsdata;
1370 struct kernfs_node *pos = file->private_data;
1371 const void *ns = NULL;
1372
1373 if (!dir_emit_dots(file, ctx))
1374 return 0;
1375 mutex_lock(&kernfs_mutex);
1376
1377 if (kernfs_ns_enabled(parent))
1378 ns = kernfs_info(dentry->d_sb)->ns;
1379
1380 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1381 pos;
1382 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1383 const char *name = pos->name;
1384 unsigned int type = dt_type(pos);
1385 int len = strlen(name);
1386 ino_t ino = pos->ino;
1387
1388 ctx->pos = pos->hash;
1389 file->private_data = pos;
1390 kernfs_get(pos);
1391
1392 mutex_unlock(&kernfs_mutex);
1393 if (!dir_emit(ctx, name, len, ino, type))
1394 return 0;
1395 mutex_lock(&kernfs_mutex);
1396 }
1397 mutex_unlock(&kernfs_mutex);
1398 file->private_data = NULL;
1399 ctx->pos = INT_MAX;
1400 return 0;
1401 }
1402
1403 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1404 int whence)
1405 {
1406 struct inode *inode = file_inode(file);
1407 loff_t ret;
1408
1409 mutex_lock(&inode->i_mutex);
1410 ret = generic_file_llseek(file, offset, whence);
1411 mutex_unlock(&inode->i_mutex);
1412
1413 return ret;
1414 }
1415
1416 const struct file_operations kernfs_dir_fops = {
1417 .read = generic_read_dir,
1418 .iterate = kernfs_fop_readdir,
1419 .release = kernfs_dir_fop_release,
1420 .llseek = kernfs_dir_fop_llseek,
1421 };