]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/kernfs/dir.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-hirsute-kernel.git] / fs / kernfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17
18 #include "kernfs-internal.h"
19
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 size_t depth = 0;
54
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60 }
61
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64 {
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90 }
91
92 /**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
121 */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125 {
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
130
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
140 if (!buf)
141 return -EINVAL;
142
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
145 return -EINVAL;
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
150 buf[0] = '\0';
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
164 }
165
166 return len;
167 }
168
169 /**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
181 * This function can be called from any context.
182 */
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192 }
193
194 /**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
209 */
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212 {
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
223 /**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240
241 /**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 unsigned long flags;
250 int sz;
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
267
268 out:
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271
272 /**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290 }
291
292 /**
293 * kernfs_name_hash
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 if (hash < 2)
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313 }
314
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
317 {
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
326 return strcmp(name, kn->name);
327 }
328
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
331 {
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334
335 /**
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
338 *
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
341 *
342 * Locking:
343 * mutex_lock(kernfs_mutex)
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
352
353 while (*node) {
354 struct kernfs_node *pos;
355 int result;
356
357 pos = rb_to_kn(*node);
358 parent = *node;
359 result = kernfs_sd_compare(kn, pos);
360 if (result < 0)
361 node = &pos->rb.rb_left;
362 else if (result > 0)
363 node = &pos->rb.rb_right;
364 else
365 return -EEXIST;
366 }
367
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375
376 return 0;
377 }
378
379 /**
380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381 * @kn: kernfs_node of interest
382 *
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
386 *
387 * Locking:
388 * mutex_lock(kernfs_mutex)
389 */
390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
391 {
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
394
395 if (kernfs_type(kn) == KERNFS_DIR)
396 kn->parent->dir.subdirs--;
397
398 rb_erase(&kn->rb, &kn->parent->dir.children);
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
401 }
402
403 /**
404 * kernfs_get_active - get an active reference to kernfs_node
405 * @kn: kernfs_node to get an active reference to
406 *
407 * Get an active reference of @kn. This function is noop if @kn
408 * is NULL.
409 *
410 * RETURNS:
411 * Pointer to @kn on success, NULL on failure.
412 */
413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
414 {
415 if (unlikely(!kn))
416 return NULL;
417
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
420
421 if (kernfs_lockdep(kn))
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
424 }
425
426 /**
427 * kernfs_put_active - put an active reference to kernfs_node
428 * @kn: kernfs_node to put an active reference to
429 *
430 * Put an active reference to @kn. This function is noop if @kn
431 * is NULL.
432 */
433 void kernfs_put_active(struct kernfs_node *kn)
434 {
435 int v;
436
437 if (unlikely(!kn))
438 return;
439
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
445
446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
447 }
448
449 /**
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
452 *
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
456 */
457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 struct kernfs_root *root = kernfs_root(kn);
461
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
464
465 mutex_unlock(&kernfs_mutex);
466
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
472
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, _RET_IP_);
480 }
481
482 kernfs_drain_open_files(kn);
483
484 mutex_lock(&kernfs_mutex);
485 }
486
487 /**
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
490 */
491 void kernfs_get(struct kernfs_node *kn)
492 {
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
496 }
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499
500 /**
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
503 *
504 * Put a reference count of @kn and destroy it if it reached zero.
505 */
506 void kernfs_put(struct kernfs_node *kn)
507 {
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
510
511 if (!kn || !atomic_dec_and_test(&kn->count))
512 return;
513 root = kernfs_root(kn);
514 repeat:
515 /*
516 * Moving/renaming is always done while holding reference.
517 * kn->parent won't change beneath us.
518 */
519 parent = kn->parent;
520
521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
524
525 if (kernfs_type(kn) == KERNFS_LINK)
526 kernfs_put(kn->symlink.target_kn);
527
528 kfree_const(kn->name);
529
530 if (kn->iattr) {
531 simple_xattrs_free(&kn->iattr->xattrs);
532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
533 }
534 spin_lock(&kernfs_idr_lock);
535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
536 spin_unlock(&kernfs_idr_lock);
537 kmem_cache_free(kernfs_node_cache, kn);
538
539 kn = parent;
540 if (kn) {
541 if (atomic_dec_and_test(&kn->count))
542 goto repeat;
543 } else {
544 /* just released the root kn, free @root too */
545 idr_destroy(&root->ino_idr);
546 kfree(root);
547 }
548 }
549 EXPORT_SYMBOL_GPL(kernfs_put);
550
551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
552 {
553 struct kernfs_node *kn;
554
555 if (flags & LOOKUP_RCU)
556 return -ECHILD;
557
558 /* Always perform fresh lookup for negatives */
559 if (d_really_is_negative(dentry))
560 goto out_bad_unlocked;
561
562 kn = kernfs_dentry_node(dentry);
563 mutex_lock(&kernfs_mutex);
564
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
567 goto out_bad;
568
569 /* The kernfs node has been moved? */
570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
571 goto out_bad;
572
573 /* The kernfs node has been renamed */
574 if (strcmp(dentry->d_name.name, kn->name) != 0)
575 goto out_bad;
576
577 /* The kernfs node has been moved to a different namespace */
578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579 kernfs_info(dentry->d_sb)->ns != kn->ns)
580 goto out_bad;
581
582 mutex_unlock(&kernfs_mutex);
583 return 1;
584 out_bad:
585 mutex_unlock(&kernfs_mutex);
586 out_bad_unlocked:
587 return 0;
588 }
589
590 const struct dentry_operations kernfs_dops = {
591 .d_revalidate = kernfs_dop_revalidate,
592 };
593
594 /**
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
597 *
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
600 *
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
604 */
605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
606 {
607 if (dentry->d_sb->s_op == &kernfs_sops)
608 return kernfs_dentry_node(dentry);
609 return NULL;
610 }
611
612 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
613 struct kernfs_node *parent,
614 const char *name, umode_t mode,
615 kuid_t uid, kgid_t gid,
616 unsigned flags)
617 {
618 struct kernfs_node *kn;
619 u32 id_highbits;
620 int ret;
621
622 name = kstrdup_const(name, GFP_KERNEL);
623 if (!name)
624 return NULL;
625
626 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
627 if (!kn)
628 goto err_out1;
629
630 idr_preload(GFP_KERNEL);
631 spin_lock(&kernfs_idr_lock);
632 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
633 if (ret >= 0 && ret < root->last_id_lowbits)
634 root->id_highbits++;
635 id_highbits = root->id_highbits;
636 root->last_id_lowbits = ret;
637 spin_unlock(&kernfs_idr_lock);
638 idr_preload_end();
639 if (ret < 0)
640 goto err_out2;
641
642 kn->id = (u64)id_highbits << 32 | ret;
643
644 atomic_set(&kn->count, 1);
645 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
646 RB_CLEAR_NODE(&kn->rb);
647
648 kn->name = name;
649 kn->mode = mode;
650 kn->flags = flags;
651
652 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
653 struct iattr iattr = {
654 .ia_valid = ATTR_UID | ATTR_GID,
655 .ia_uid = uid,
656 .ia_gid = gid,
657 };
658
659 ret = __kernfs_setattr(kn, &iattr);
660 if (ret < 0)
661 goto err_out3;
662 }
663
664 if (parent) {
665 ret = security_kernfs_init_security(parent, kn);
666 if (ret)
667 goto err_out3;
668 }
669
670 return kn;
671
672 err_out3:
673 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
674 err_out2:
675 kmem_cache_free(kernfs_node_cache, kn);
676 err_out1:
677 kfree_const(name);
678 return NULL;
679 }
680
681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
682 const char *name, umode_t mode,
683 kuid_t uid, kgid_t gid,
684 unsigned flags)
685 {
686 struct kernfs_node *kn;
687
688 kn = __kernfs_new_node(kernfs_root(parent), parent,
689 name, mode, uid, gid, flags);
690 if (kn) {
691 kernfs_get(parent);
692 kn->parent = parent;
693 }
694 return kn;
695 }
696
697 /*
698 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
699 * @root: the kernfs root
700 * @id: the target node id
701 *
702 * @id's lower 32bits encode ino and upper gen. If the gen portion is
703 * zero, all generations are matched.
704 *
705 * RETURNS:
706 * NULL on failure. Return a kernfs node with reference counter incremented
707 */
708 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
709 u64 id)
710 {
711 struct kernfs_node *kn;
712 ino_t ino = kernfs_id_ino(id);
713 u32 gen = kernfs_id_gen(id);
714
715 spin_lock(&kernfs_idr_lock);
716
717 kn = idr_find(&root->ino_idr, (u32)ino);
718 if (!kn)
719 goto err_unlock;
720
721 if (sizeof(ino_t) >= sizeof(u64)) {
722 /* we looked up with the low 32bits, compare the whole */
723 if (kernfs_ino(kn) != ino)
724 goto err_unlock;
725 } else {
726 /* 0 matches all generations */
727 if (unlikely(gen && kernfs_gen(kn) != gen))
728 goto err_unlock;
729 }
730
731 /*
732 * ACTIVATED is protected with kernfs_mutex but it was clear when
733 * @kn was added to idr and we just wanna see it set. No need to
734 * grab kernfs_mutex.
735 */
736 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
737 !atomic_inc_not_zero(&kn->count)))
738 goto err_unlock;
739
740 spin_unlock(&kernfs_idr_lock);
741 return kn;
742 err_unlock:
743 spin_unlock(&kernfs_idr_lock);
744 return NULL;
745 }
746
747 /**
748 * kernfs_add_one - add kernfs_node to parent without warning
749 * @kn: kernfs_node to be added
750 *
751 * The caller must already have initialized @kn->parent. This
752 * function increments nlink of the parent's inode if @kn is a
753 * directory and link into the children list of the parent.
754 *
755 * RETURNS:
756 * 0 on success, -EEXIST if entry with the given name already
757 * exists.
758 */
759 int kernfs_add_one(struct kernfs_node *kn)
760 {
761 struct kernfs_node *parent = kn->parent;
762 struct kernfs_iattrs *ps_iattr;
763 bool has_ns;
764 int ret;
765
766 mutex_lock(&kernfs_mutex);
767
768 ret = -EINVAL;
769 has_ns = kernfs_ns_enabled(parent);
770 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
771 has_ns ? "required" : "invalid", parent->name, kn->name))
772 goto out_unlock;
773
774 if (kernfs_type(parent) != KERNFS_DIR)
775 goto out_unlock;
776
777 ret = -ENOENT;
778 if (parent->flags & KERNFS_EMPTY_DIR)
779 goto out_unlock;
780
781 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
782 goto out_unlock;
783
784 kn->hash = kernfs_name_hash(kn->name, kn->ns);
785
786 ret = kernfs_link_sibling(kn);
787 if (ret)
788 goto out_unlock;
789
790 /* Update timestamps on the parent */
791 ps_iattr = parent->iattr;
792 if (ps_iattr) {
793 ktime_get_real_ts64(&ps_iattr->ia_ctime);
794 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
795 }
796
797 mutex_unlock(&kernfs_mutex);
798
799 /*
800 * Activate the new node unless CREATE_DEACTIVATED is requested.
801 * If not activated here, the kernfs user is responsible for
802 * activating the node with kernfs_activate(). A node which hasn't
803 * been activated is not visible to userland and its removal won't
804 * trigger deactivation.
805 */
806 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
807 kernfs_activate(kn);
808 return 0;
809
810 out_unlock:
811 mutex_unlock(&kernfs_mutex);
812 return ret;
813 }
814
815 /**
816 * kernfs_find_ns - find kernfs_node with the given name
817 * @parent: kernfs_node to search under
818 * @name: name to look for
819 * @ns: the namespace tag to use
820 *
821 * Look for kernfs_node with name @name under @parent. Returns pointer to
822 * the found kernfs_node on success, %NULL on failure.
823 */
824 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
825 const unsigned char *name,
826 const void *ns)
827 {
828 struct rb_node *node = parent->dir.children.rb_node;
829 bool has_ns = kernfs_ns_enabled(parent);
830 unsigned int hash;
831
832 lockdep_assert_held(&kernfs_mutex);
833
834 if (has_ns != (bool)ns) {
835 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
836 has_ns ? "required" : "invalid", parent->name, name);
837 return NULL;
838 }
839
840 hash = kernfs_name_hash(name, ns);
841 while (node) {
842 struct kernfs_node *kn;
843 int result;
844
845 kn = rb_to_kn(node);
846 result = kernfs_name_compare(hash, name, ns, kn);
847 if (result < 0)
848 node = node->rb_left;
849 else if (result > 0)
850 node = node->rb_right;
851 else
852 return kn;
853 }
854 return NULL;
855 }
856
857 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
858 const unsigned char *path,
859 const void *ns)
860 {
861 size_t len;
862 char *p, *name;
863
864 lockdep_assert_held(&kernfs_mutex);
865
866 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
867 spin_lock_irq(&kernfs_rename_lock);
868
869 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
870
871 if (len >= sizeof(kernfs_pr_cont_buf)) {
872 spin_unlock_irq(&kernfs_rename_lock);
873 return NULL;
874 }
875
876 p = kernfs_pr_cont_buf;
877
878 while ((name = strsep(&p, "/")) && parent) {
879 if (*name == '\0')
880 continue;
881 parent = kernfs_find_ns(parent, name, ns);
882 }
883
884 spin_unlock_irq(&kernfs_rename_lock);
885
886 return parent;
887 }
888
889 /**
890 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
891 * @parent: kernfs_node to search under
892 * @name: name to look for
893 * @ns: the namespace tag to use
894 *
895 * Look for kernfs_node with name @name under @parent and get a reference
896 * if found. This function may sleep and returns pointer to the found
897 * kernfs_node on success, %NULL on failure.
898 */
899 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
900 const char *name, const void *ns)
901 {
902 struct kernfs_node *kn;
903
904 mutex_lock(&kernfs_mutex);
905 kn = kernfs_find_ns(parent, name, ns);
906 kernfs_get(kn);
907 mutex_unlock(&kernfs_mutex);
908
909 return kn;
910 }
911 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
912
913 /**
914 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
915 * @parent: kernfs_node to search under
916 * @path: path to look for
917 * @ns: the namespace tag to use
918 *
919 * Look for kernfs_node with path @path under @parent and get a reference
920 * if found. This function may sleep and returns pointer to the found
921 * kernfs_node on success, %NULL on failure.
922 */
923 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
924 const char *path, const void *ns)
925 {
926 struct kernfs_node *kn;
927
928 mutex_lock(&kernfs_mutex);
929 kn = kernfs_walk_ns(parent, path, ns);
930 kernfs_get(kn);
931 mutex_unlock(&kernfs_mutex);
932
933 return kn;
934 }
935
936 /**
937 * kernfs_create_root - create a new kernfs hierarchy
938 * @scops: optional syscall operations for the hierarchy
939 * @flags: KERNFS_ROOT_* flags
940 * @priv: opaque data associated with the new directory
941 *
942 * Returns the root of the new hierarchy on success, ERR_PTR() value on
943 * failure.
944 */
945 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
946 unsigned int flags, void *priv)
947 {
948 struct kernfs_root *root;
949 struct kernfs_node *kn;
950
951 root = kzalloc(sizeof(*root), GFP_KERNEL);
952 if (!root)
953 return ERR_PTR(-ENOMEM);
954
955 idr_init(&root->ino_idr);
956 INIT_LIST_HEAD(&root->supers);
957
958 /*
959 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
960 * High bits generation. The starting value for both ino and
961 * genenration is 1. Initialize upper 32bit allocation
962 * accordingly.
963 */
964 if (sizeof(ino_t) >= sizeof(u64))
965 root->id_highbits = 0;
966 else
967 root->id_highbits = 1;
968
969 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
970 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
971 KERNFS_DIR);
972 if (!kn) {
973 idr_destroy(&root->ino_idr);
974 kfree(root);
975 return ERR_PTR(-ENOMEM);
976 }
977
978 kn->priv = priv;
979 kn->dir.root = root;
980
981 root->syscall_ops = scops;
982 root->flags = flags;
983 root->kn = kn;
984 init_waitqueue_head(&root->deactivate_waitq);
985
986 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
987 kernfs_activate(kn);
988
989 return root;
990 }
991
992 /**
993 * kernfs_destroy_root - destroy a kernfs hierarchy
994 * @root: root of the hierarchy to destroy
995 *
996 * Destroy the hierarchy anchored at @root by removing all existing
997 * directories and destroying @root.
998 */
999 void kernfs_destroy_root(struct kernfs_root *root)
1000 {
1001 kernfs_remove(root->kn); /* will also free @root */
1002 }
1003
1004 /**
1005 * kernfs_create_dir_ns - create a directory
1006 * @parent: parent in which to create a new directory
1007 * @name: name of the new directory
1008 * @mode: mode of the new directory
1009 * @uid: uid of the new directory
1010 * @gid: gid of the new directory
1011 * @priv: opaque data associated with the new directory
1012 * @ns: optional namespace tag of the directory
1013 *
1014 * Returns the created node on success, ERR_PTR() value on failure.
1015 */
1016 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1017 const char *name, umode_t mode,
1018 kuid_t uid, kgid_t gid,
1019 void *priv, const void *ns)
1020 {
1021 struct kernfs_node *kn;
1022 int rc;
1023
1024 /* allocate */
1025 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1026 uid, gid, KERNFS_DIR);
1027 if (!kn)
1028 return ERR_PTR(-ENOMEM);
1029
1030 kn->dir.root = parent->dir.root;
1031 kn->ns = ns;
1032 kn->priv = priv;
1033
1034 /* link in */
1035 rc = kernfs_add_one(kn);
1036 if (!rc)
1037 return kn;
1038
1039 kernfs_put(kn);
1040 return ERR_PTR(rc);
1041 }
1042
1043 /**
1044 * kernfs_create_empty_dir - create an always empty directory
1045 * @parent: parent in which to create a new directory
1046 * @name: name of the new directory
1047 *
1048 * Returns the created node on success, ERR_PTR() value on failure.
1049 */
1050 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1051 const char *name)
1052 {
1053 struct kernfs_node *kn;
1054 int rc;
1055
1056 /* allocate */
1057 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1058 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1059 if (!kn)
1060 return ERR_PTR(-ENOMEM);
1061
1062 kn->flags |= KERNFS_EMPTY_DIR;
1063 kn->dir.root = parent->dir.root;
1064 kn->ns = NULL;
1065 kn->priv = NULL;
1066
1067 /* link in */
1068 rc = kernfs_add_one(kn);
1069 if (!rc)
1070 return kn;
1071
1072 kernfs_put(kn);
1073 return ERR_PTR(rc);
1074 }
1075
1076 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1077 struct dentry *dentry,
1078 unsigned int flags)
1079 {
1080 struct dentry *ret;
1081 struct kernfs_node *parent = dir->i_private;
1082 struct kernfs_node *kn;
1083 struct inode *inode;
1084 const void *ns = NULL;
1085
1086 mutex_lock(&kernfs_mutex);
1087
1088 if (kernfs_ns_enabled(parent))
1089 ns = kernfs_info(dir->i_sb)->ns;
1090
1091 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1092
1093 /* no such entry */
1094 if (!kn || !kernfs_active(kn)) {
1095 ret = NULL;
1096 goto out_unlock;
1097 }
1098
1099 /* attach dentry and inode */
1100 inode = kernfs_get_inode(dir->i_sb, kn);
1101 if (!inode) {
1102 ret = ERR_PTR(-ENOMEM);
1103 goto out_unlock;
1104 }
1105
1106 /* instantiate and hash dentry */
1107 ret = d_splice_alias(inode, dentry);
1108 out_unlock:
1109 mutex_unlock(&kernfs_mutex);
1110 return ret;
1111 }
1112
1113 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1114 umode_t mode)
1115 {
1116 struct kernfs_node *parent = dir->i_private;
1117 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1118 int ret;
1119
1120 if (!scops || !scops->mkdir)
1121 return -EPERM;
1122
1123 if (!kernfs_get_active(parent))
1124 return -ENODEV;
1125
1126 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1127
1128 kernfs_put_active(parent);
1129 return ret;
1130 }
1131
1132 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1133 {
1134 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1135 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1136 int ret;
1137
1138 if (!scops || !scops->rmdir)
1139 return -EPERM;
1140
1141 if (!kernfs_get_active(kn))
1142 return -ENODEV;
1143
1144 ret = scops->rmdir(kn);
1145
1146 kernfs_put_active(kn);
1147 return ret;
1148 }
1149
1150 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1151 struct inode *new_dir, struct dentry *new_dentry,
1152 unsigned int flags)
1153 {
1154 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1155 struct kernfs_node *new_parent = new_dir->i_private;
1156 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1157 int ret;
1158
1159 if (flags)
1160 return -EINVAL;
1161
1162 if (!scops || !scops->rename)
1163 return -EPERM;
1164
1165 if (!kernfs_get_active(kn))
1166 return -ENODEV;
1167
1168 if (!kernfs_get_active(new_parent)) {
1169 kernfs_put_active(kn);
1170 return -ENODEV;
1171 }
1172
1173 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1174
1175 kernfs_put_active(new_parent);
1176 kernfs_put_active(kn);
1177 return ret;
1178 }
1179
1180 const struct inode_operations kernfs_dir_iops = {
1181 .lookup = kernfs_iop_lookup,
1182 .permission = kernfs_iop_permission,
1183 .setattr = kernfs_iop_setattr,
1184 .getattr = kernfs_iop_getattr,
1185 .listxattr = kernfs_iop_listxattr,
1186
1187 .mkdir = kernfs_iop_mkdir,
1188 .rmdir = kernfs_iop_rmdir,
1189 .rename = kernfs_iop_rename,
1190 };
1191
1192 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1193 {
1194 struct kernfs_node *last;
1195
1196 while (true) {
1197 struct rb_node *rbn;
1198
1199 last = pos;
1200
1201 if (kernfs_type(pos) != KERNFS_DIR)
1202 break;
1203
1204 rbn = rb_first(&pos->dir.children);
1205 if (!rbn)
1206 break;
1207
1208 pos = rb_to_kn(rbn);
1209 }
1210
1211 return last;
1212 }
1213
1214 /**
1215 * kernfs_next_descendant_post - find the next descendant for post-order walk
1216 * @pos: the current position (%NULL to initiate traversal)
1217 * @root: kernfs_node whose descendants to walk
1218 *
1219 * Find the next descendant to visit for post-order traversal of @root's
1220 * descendants. @root is included in the iteration and the last node to be
1221 * visited.
1222 */
1223 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1224 struct kernfs_node *root)
1225 {
1226 struct rb_node *rbn;
1227
1228 lockdep_assert_held(&kernfs_mutex);
1229
1230 /* if first iteration, visit leftmost descendant which may be root */
1231 if (!pos)
1232 return kernfs_leftmost_descendant(root);
1233
1234 /* if we visited @root, we're done */
1235 if (pos == root)
1236 return NULL;
1237
1238 /* if there's an unvisited sibling, visit its leftmost descendant */
1239 rbn = rb_next(&pos->rb);
1240 if (rbn)
1241 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1242
1243 /* no sibling left, visit parent */
1244 return pos->parent;
1245 }
1246
1247 /**
1248 * kernfs_activate - activate a node which started deactivated
1249 * @kn: kernfs_node whose subtree is to be activated
1250 *
1251 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1252 * needs to be explicitly activated. A node which hasn't been activated
1253 * isn't visible to userland and deactivation is skipped during its
1254 * removal. This is useful to construct atomic init sequences where
1255 * creation of multiple nodes should either succeed or fail atomically.
1256 *
1257 * The caller is responsible for ensuring that this function is not called
1258 * after kernfs_remove*() is invoked on @kn.
1259 */
1260 void kernfs_activate(struct kernfs_node *kn)
1261 {
1262 struct kernfs_node *pos;
1263
1264 mutex_lock(&kernfs_mutex);
1265
1266 pos = NULL;
1267 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1268 if (pos->flags & KERNFS_ACTIVATED)
1269 continue;
1270
1271 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1272 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1273
1274 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1275 pos->flags |= KERNFS_ACTIVATED;
1276 }
1277
1278 mutex_unlock(&kernfs_mutex);
1279 }
1280
1281 static void __kernfs_remove(struct kernfs_node *kn)
1282 {
1283 struct kernfs_node *pos;
1284
1285 lockdep_assert_held(&kernfs_mutex);
1286
1287 /*
1288 * Short-circuit if non-root @kn has already finished removal.
1289 * This is for kernfs_remove_self() which plays with active ref
1290 * after removal.
1291 */
1292 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1293 return;
1294
1295 pr_debug("kernfs %s: removing\n", kn->name);
1296
1297 /* prevent any new usage under @kn by deactivating all nodes */
1298 pos = NULL;
1299 while ((pos = kernfs_next_descendant_post(pos, kn)))
1300 if (kernfs_active(pos))
1301 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1302
1303 /* deactivate and unlink the subtree node-by-node */
1304 do {
1305 pos = kernfs_leftmost_descendant(kn);
1306
1307 /*
1308 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1309 * base ref could have been put by someone else by the time
1310 * the function returns. Make sure it doesn't go away
1311 * underneath us.
1312 */
1313 kernfs_get(pos);
1314
1315 /*
1316 * Drain iff @kn was activated. This avoids draining and
1317 * its lockdep annotations for nodes which have never been
1318 * activated and allows embedding kernfs_remove() in create
1319 * error paths without worrying about draining.
1320 */
1321 if (kn->flags & KERNFS_ACTIVATED)
1322 kernfs_drain(pos);
1323 else
1324 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1325
1326 /*
1327 * kernfs_unlink_sibling() succeeds once per node. Use it
1328 * to decide who's responsible for cleanups.
1329 */
1330 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1331 struct kernfs_iattrs *ps_iattr =
1332 pos->parent ? pos->parent->iattr : NULL;
1333
1334 /* update timestamps on the parent */
1335 if (ps_iattr) {
1336 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1337 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1338 }
1339
1340 kernfs_put(pos);
1341 }
1342
1343 kernfs_put(pos);
1344 } while (pos != kn);
1345 }
1346
1347 /**
1348 * kernfs_remove - remove a kernfs_node recursively
1349 * @kn: the kernfs_node to remove
1350 *
1351 * Remove @kn along with all its subdirectories and files.
1352 */
1353 void kernfs_remove(struct kernfs_node *kn)
1354 {
1355 mutex_lock(&kernfs_mutex);
1356 __kernfs_remove(kn);
1357 mutex_unlock(&kernfs_mutex);
1358 }
1359
1360 /**
1361 * kernfs_break_active_protection - break out of active protection
1362 * @kn: the self kernfs_node
1363 *
1364 * The caller must be running off of a kernfs operation which is invoked
1365 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1366 * this function must also be matched with an invocation of
1367 * kernfs_unbreak_active_protection().
1368 *
1369 * This function releases the active reference of @kn the caller is
1370 * holding. Once this function is called, @kn may be removed at any point
1371 * and the caller is solely responsible for ensuring that the objects it
1372 * dereferences are accessible.
1373 */
1374 void kernfs_break_active_protection(struct kernfs_node *kn)
1375 {
1376 /*
1377 * Take out ourself out of the active ref dependency chain. If
1378 * we're called without an active ref, lockdep will complain.
1379 */
1380 kernfs_put_active(kn);
1381 }
1382
1383 /**
1384 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1385 * @kn: the self kernfs_node
1386 *
1387 * If kernfs_break_active_protection() was called, this function must be
1388 * invoked before finishing the kernfs operation. Note that while this
1389 * function restores the active reference, it doesn't and can't actually
1390 * restore the active protection - @kn may already or be in the process of
1391 * being removed. Once kernfs_break_active_protection() is invoked, that
1392 * protection is irreversibly gone for the kernfs operation instance.
1393 *
1394 * While this function may be called at any point after
1395 * kernfs_break_active_protection() is invoked, its most useful location
1396 * would be right before the enclosing kernfs operation returns.
1397 */
1398 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1399 {
1400 /*
1401 * @kn->active could be in any state; however, the increment we do
1402 * here will be undone as soon as the enclosing kernfs operation
1403 * finishes and this temporary bump can't break anything. If @kn
1404 * is alive, nothing changes. If @kn is being deactivated, the
1405 * soon-to-follow put will either finish deactivation or restore
1406 * deactivated state. If @kn is already removed, the temporary
1407 * bump is guaranteed to be gone before @kn is released.
1408 */
1409 atomic_inc(&kn->active);
1410 if (kernfs_lockdep(kn))
1411 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1412 }
1413
1414 /**
1415 * kernfs_remove_self - remove a kernfs_node from its own method
1416 * @kn: the self kernfs_node to remove
1417 *
1418 * The caller must be running off of a kernfs operation which is invoked
1419 * with an active reference - e.g. one of kernfs_ops. This can be used to
1420 * implement a file operation which deletes itself.
1421 *
1422 * For example, the "delete" file for a sysfs device directory can be
1423 * implemented by invoking kernfs_remove_self() on the "delete" file
1424 * itself. This function breaks the circular dependency of trying to
1425 * deactivate self while holding an active ref itself. It isn't necessary
1426 * to modify the usual removal path to use kernfs_remove_self(). The
1427 * "delete" implementation can simply invoke kernfs_remove_self() on self
1428 * before proceeding with the usual removal path. kernfs will ignore later
1429 * kernfs_remove() on self.
1430 *
1431 * kernfs_remove_self() can be called multiple times concurrently on the
1432 * same kernfs_node. Only the first one actually performs removal and
1433 * returns %true. All others will wait until the kernfs operation which
1434 * won self-removal finishes and return %false. Note that the losers wait
1435 * for the completion of not only the winning kernfs_remove_self() but also
1436 * the whole kernfs_ops which won the arbitration. This can be used to
1437 * guarantee, for example, all concurrent writes to a "delete" file to
1438 * finish only after the whole operation is complete.
1439 */
1440 bool kernfs_remove_self(struct kernfs_node *kn)
1441 {
1442 bool ret;
1443
1444 mutex_lock(&kernfs_mutex);
1445 kernfs_break_active_protection(kn);
1446
1447 /*
1448 * SUICIDAL is used to arbitrate among competing invocations. Only
1449 * the first one will actually perform removal. When the removal
1450 * is complete, SUICIDED is set and the active ref is restored
1451 * while holding kernfs_mutex. The ones which lost arbitration
1452 * waits for SUICDED && drained which can happen only after the
1453 * enclosing kernfs operation which executed the winning instance
1454 * of kernfs_remove_self() finished.
1455 */
1456 if (!(kn->flags & KERNFS_SUICIDAL)) {
1457 kn->flags |= KERNFS_SUICIDAL;
1458 __kernfs_remove(kn);
1459 kn->flags |= KERNFS_SUICIDED;
1460 ret = true;
1461 } else {
1462 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1463 DEFINE_WAIT(wait);
1464
1465 while (true) {
1466 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1467
1468 if ((kn->flags & KERNFS_SUICIDED) &&
1469 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1470 break;
1471
1472 mutex_unlock(&kernfs_mutex);
1473 schedule();
1474 mutex_lock(&kernfs_mutex);
1475 }
1476 finish_wait(waitq, &wait);
1477 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1478 ret = false;
1479 }
1480
1481 /*
1482 * This must be done while holding kernfs_mutex; otherwise, waiting
1483 * for SUICIDED && deactivated could finish prematurely.
1484 */
1485 kernfs_unbreak_active_protection(kn);
1486
1487 mutex_unlock(&kernfs_mutex);
1488 return ret;
1489 }
1490
1491 /**
1492 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1493 * @parent: parent of the target
1494 * @name: name of the kernfs_node to remove
1495 * @ns: namespace tag of the kernfs_node to remove
1496 *
1497 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1498 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1499 */
1500 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1501 const void *ns)
1502 {
1503 struct kernfs_node *kn;
1504
1505 if (!parent) {
1506 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1507 name);
1508 return -ENOENT;
1509 }
1510
1511 mutex_lock(&kernfs_mutex);
1512
1513 kn = kernfs_find_ns(parent, name, ns);
1514 if (kn)
1515 __kernfs_remove(kn);
1516
1517 mutex_unlock(&kernfs_mutex);
1518
1519 if (kn)
1520 return 0;
1521 else
1522 return -ENOENT;
1523 }
1524
1525 /**
1526 * kernfs_rename_ns - move and rename a kernfs_node
1527 * @kn: target node
1528 * @new_parent: new parent to put @sd under
1529 * @new_name: new name
1530 * @new_ns: new namespace tag
1531 */
1532 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1533 const char *new_name, const void *new_ns)
1534 {
1535 struct kernfs_node *old_parent;
1536 const char *old_name = NULL;
1537 int error;
1538
1539 /* can't move or rename root */
1540 if (!kn->parent)
1541 return -EINVAL;
1542
1543 mutex_lock(&kernfs_mutex);
1544
1545 error = -ENOENT;
1546 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1547 (new_parent->flags & KERNFS_EMPTY_DIR))
1548 goto out;
1549
1550 error = 0;
1551 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1552 (strcmp(kn->name, new_name) == 0))
1553 goto out; /* nothing to rename */
1554
1555 error = -EEXIST;
1556 if (kernfs_find_ns(new_parent, new_name, new_ns))
1557 goto out;
1558
1559 /* rename kernfs_node */
1560 if (strcmp(kn->name, new_name) != 0) {
1561 error = -ENOMEM;
1562 new_name = kstrdup_const(new_name, GFP_KERNEL);
1563 if (!new_name)
1564 goto out;
1565 } else {
1566 new_name = NULL;
1567 }
1568
1569 /*
1570 * Move to the appropriate place in the appropriate directories rbtree.
1571 */
1572 kernfs_unlink_sibling(kn);
1573 kernfs_get(new_parent);
1574
1575 /* rename_lock protects ->parent and ->name accessors */
1576 spin_lock_irq(&kernfs_rename_lock);
1577
1578 old_parent = kn->parent;
1579 kn->parent = new_parent;
1580
1581 kn->ns = new_ns;
1582 if (new_name) {
1583 old_name = kn->name;
1584 kn->name = new_name;
1585 }
1586
1587 spin_unlock_irq(&kernfs_rename_lock);
1588
1589 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1590 kernfs_link_sibling(kn);
1591
1592 kernfs_put(old_parent);
1593 kfree_const(old_name);
1594
1595 error = 0;
1596 out:
1597 mutex_unlock(&kernfs_mutex);
1598 return error;
1599 }
1600
1601 /* Relationship between mode and the DT_xxx types */
1602 static inline unsigned char dt_type(struct kernfs_node *kn)
1603 {
1604 return (kn->mode >> 12) & 15;
1605 }
1606
1607 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1608 {
1609 kernfs_put(filp->private_data);
1610 return 0;
1611 }
1612
1613 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1614 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1615 {
1616 if (pos) {
1617 int valid = kernfs_active(pos) &&
1618 pos->parent == parent && hash == pos->hash;
1619 kernfs_put(pos);
1620 if (!valid)
1621 pos = NULL;
1622 }
1623 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1624 struct rb_node *node = parent->dir.children.rb_node;
1625 while (node) {
1626 pos = rb_to_kn(node);
1627
1628 if (hash < pos->hash)
1629 node = node->rb_left;
1630 else if (hash > pos->hash)
1631 node = node->rb_right;
1632 else
1633 break;
1634 }
1635 }
1636 /* Skip over entries which are dying/dead or in the wrong namespace */
1637 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1638 struct rb_node *node = rb_next(&pos->rb);
1639 if (!node)
1640 pos = NULL;
1641 else
1642 pos = rb_to_kn(node);
1643 }
1644 return pos;
1645 }
1646
1647 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1648 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1649 {
1650 pos = kernfs_dir_pos(ns, parent, ino, pos);
1651 if (pos) {
1652 do {
1653 struct rb_node *node = rb_next(&pos->rb);
1654 if (!node)
1655 pos = NULL;
1656 else
1657 pos = rb_to_kn(node);
1658 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1659 }
1660 return pos;
1661 }
1662
1663 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1664 {
1665 struct dentry *dentry = file->f_path.dentry;
1666 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1667 struct kernfs_node *pos = file->private_data;
1668 const void *ns = NULL;
1669
1670 if (!dir_emit_dots(file, ctx))
1671 return 0;
1672 mutex_lock(&kernfs_mutex);
1673
1674 if (kernfs_ns_enabled(parent))
1675 ns = kernfs_info(dentry->d_sb)->ns;
1676
1677 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1678 pos;
1679 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1680 const char *name = pos->name;
1681 unsigned int type = dt_type(pos);
1682 int len = strlen(name);
1683 ino_t ino = kernfs_ino(pos);
1684
1685 ctx->pos = pos->hash;
1686 file->private_data = pos;
1687 kernfs_get(pos);
1688
1689 mutex_unlock(&kernfs_mutex);
1690 if (!dir_emit(ctx, name, len, ino, type))
1691 return 0;
1692 mutex_lock(&kernfs_mutex);
1693 }
1694 mutex_unlock(&kernfs_mutex);
1695 file->private_data = NULL;
1696 ctx->pos = INT_MAX;
1697 return 0;
1698 }
1699
1700 const struct file_operations kernfs_dir_fops = {
1701 .read = generic_read_dir,
1702 .iterate_shared = kernfs_fop_readdir,
1703 .release = kernfs_dir_fop_release,
1704 .llseek = generic_file_llseek,
1705 };