]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/kernfs/dir.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[mirror_ubuntu-bionic-kernel.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49 {
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69 }
70
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92 }
93
94 /**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116
117 /**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134
135 /**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157
158 /**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176 }
177
178 /**
179 * kernfs_name_hash
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 if (hash < 2)
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199 }
200
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
203 {
204 if (hash != kn->hash)
205 return hash - kn->hash;
206 if (ns != kn->ns)
207 return ns - kn->ns;
208 return strcmp(name, kn->name);
209 }
210
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 const struct kernfs_node *right)
213 {
214 return kernfs_name_compare(left->hash, left->name, left->ns, right);
215 }
216
217 /**
218 * kernfs_link_sibling - link kernfs_node into sibling rbtree
219 * @kn: kernfs_node of interest
220 *
221 * Link @kn into its sibling rbtree which starts from
222 * @kn->parent->dir.children.
223 *
224 * Locking:
225 * mutex_lock(kernfs_mutex)
226 *
227 * RETURNS:
228 * 0 on susccess -EEXIST on failure.
229 */
230 static int kernfs_link_sibling(struct kernfs_node *kn)
231 {
232 struct rb_node **node = &kn->parent->dir.children.rb_node;
233 struct rb_node *parent = NULL;
234
235 if (kernfs_type(kn) == KERNFS_DIR)
236 kn->parent->dir.subdirs++;
237
238 while (*node) {
239 struct kernfs_node *pos;
240 int result;
241
242 pos = rb_to_kn(*node);
243 parent = *node;
244 result = kernfs_sd_compare(kn, pos);
245 if (result < 0)
246 node = &pos->rb.rb_left;
247 else if (result > 0)
248 node = &pos->rb.rb_right;
249 else
250 return -EEXIST;
251 }
252 /* add new node and rebalance the tree */
253 rb_link_node(&kn->rb, parent, node);
254 rb_insert_color(&kn->rb, &kn->parent->dir.children);
255 return 0;
256 }
257
258 /**
259 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
260 * @kn: kernfs_node of interest
261 *
262 * Try to unlink @kn from its sibling rbtree which starts from
263 * kn->parent->dir.children. Returns %true if @kn was actually
264 * removed, %false if @kn wasn't on the rbtree.
265 *
266 * Locking:
267 * mutex_lock(kernfs_mutex)
268 */
269 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
270 {
271 if (RB_EMPTY_NODE(&kn->rb))
272 return false;
273
274 if (kernfs_type(kn) == KERNFS_DIR)
275 kn->parent->dir.subdirs--;
276
277 rb_erase(&kn->rb, &kn->parent->dir.children);
278 RB_CLEAR_NODE(&kn->rb);
279 return true;
280 }
281
282 /**
283 * kernfs_get_active - get an active reference to kernfs_node
284 * @kn: kernfs_node to get an active reference to
285 *
286 * Get an active reference of @kn. This function is noop if @kn
287 * is NULL.
288 *
289 * RETURNS:
290 * Pointer to @kn on success, NULL on failure.
291 */
292 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
293 {
294 if (unlikely(!kn))
295 return NULL;
296
297 if (!atomic_inc_unless_negative(&kn->active))
298 return NULL;
299
300 if (kernfs_lockdep(kn))
301 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
302 return kn;
303 }
304
305 /**
306 * kernfs_put_active - put an active reference to kernfs_node
307 * @kn: kernfs_node to put an active reference to
308 *
309 * Put an active reference to @kn. This function is noop if @kn
310 * is NULL.
311 */
312 void kernfs_put_active(struct kernfs_node *kn)
313 {
314 struct kernfs_root *root = kernfs_root(kn);
315 int v;
316
317 if (unlikely(!kn))
318 return;
319
320 if (kernfs_lockdep(kn))
321 rwsem_release(&kn->dep_map, 1, _RET_IP_);
322 v = atomic_dec_return(&kn->active);
323 if (likely(v != KN_DEACTIVATED_BIAS))
324 return;
325
326 wake_up_all(&root->deactivate_waitq);
327 }
328
329 /**
330 * kernfs_drain - drain kernfs_node
331 * @kn: kernfs_node to drain
332 *
333 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
334 * removers may invoke this function concurrently on @kn and all will
335 * return after draining is complete.
336 */
337 static void kernfs_drain(struct kernfs_node *kn)
338 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
339 {
340 struct kernfs_root *root = kernfs_root(kn);
341
342 lockdep_assert_held(&kernfs_mutex);
343 WARN_ON_ONCE(kernfs_active(kn));
344
345 mutex_unlock(&kernfs_mutex);
346
347 if (kernfs_lockdep(kn)) {
348 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
349 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
350 lock_contended(&kn->dep_map, _RET_IP_);
351 }
352
353 /* but everyone should wait for draining */
354 wait_event(root->deactivate_waitq,
355 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
356
357 if (kernfs_lockdep(kn)) {
358 lock_acquired(&kn->dep_map, _RET_IP_);
359 rwsem_release(&kn->dep_map, 1, _RET_IP_);
360 }
361
362 kernfs_unmap_bin_file(kn);
363
364 mutex_lock(&kernfs_mutex);
365 }
366
367 /**
368 * kernfs_get - get a reference count on a kernfs_node
369 * @kn: the target kernfs_node
370 */
371 void kernfs_get(struct kernfs_node *kn)
372 {
373 if (kn) {
374 WARN_ON(!atomic_read(&kn->count));
375 atomic_inc(&kn->count);
376 }
377 }
378 EXPORT_SYMBOL_GPL(kernfs_get);
379
380 /**
381 * kernfs_put - put a reference count on a kernfs_node
382 * @kn: the target kernfs_node
383 *
384 * Put a reference count of @kn and destroy it if it reached zero.
385 */
386 void kernfs_put(struct kernfs_node *kn)
387 {
388 struct kernfs_node *parent;
389 struct kernfs_root *root;
390
391 if (!kn || !atomic_dec_and_test(&kn->count))
392 return;
393 root = kernfs_root(kn);
394 repeat:
395 /*
396 * Moving/renaming is always done while holding reference.
397 * kn->parent won't change beneath us.
398 */
399 parent = kn->parent;
400
401 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
402 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
403 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
404
405 if (kernfs_type(kn) == KERNFS_LINK)
406 kernfs_put(kn->symlink.target_kn);
407 if (!(kn->flags & KERNFS_STATIC_NAME))
408 kfree(kn->name);
409 if (kn->iattr) {
410 if (kn->iattr->ia_secdata)
411 security_release_secctx(kn->iattr->ia_secdata,
412 kn->iattr->ia_secdata_len);
413 simple_xattrs_free(&kn->iattr->xattrs);
414 }
415 kfree(kn->iattr);
416 ida_simple_remove(&root->ino_ida, kn->ino);
417 kmem_cache_free(kernfs_node_cache, kn);
418
419 kn = parent;
420 if (kn) {
421 if (atomic_dec_and_test(&kn->count))
422 goto repeat;
423 } else {
424 /* just released the root kn, free @root too */
425 ida_destroy(&root->ino_ida);
426 kfree(root);
427 }
428 }
429 EXPORT_SYMBOL_GPL(kernfs_put);
430
431 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
432 {
433 struct kernfs_node *kn;
434
435 if (flags & LOOKUP_RCU)
436 return -ECHILD;
437
438 /* Always perform fresh lookup for negatives */
439 if (!dentry->d_inode)
440 goto out_bad_unlocked;
441
442 kn = dentry->d_fsdata;
443 mutex_lock(&kernfs_mutex);
444
445 /* The kernfs node has been deactivated */
446 if (!kernfs_active(kn))
447 goto out_bad;
448
449 /* The kernfs node has been moved? */
450 if (dentry->d_parent->d_fsdata != kn->parent)
451 goto out_bad;
452
453 /* The kernfs node has been renamed */
454 if (strcmp(dentry->d_name.name, kn->name) != 0)
455 goto out_bad;
456
457 /* The kernfs node has been moved to a different namespace */
458 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
459 kernfs_info(dentry->d_sb)->ns != kn->ns)
460 goto out_bad;
461
462 mutex_unlock(&kernfs_mutex);
463 out_valid:
464 return 1;
465 out_bad:
466 mutex_unlock(&kernfs_mutex);
467 out_bad_unlocked:
468 /*
469 * @dentry doesn't match the underlying kernfs node, drop the
470 * dentry and force lookup. If we have submounts we must allow the
471 * vfs caches to lie about the state of the filesystem to prevent
472 * leaks and other nasty things, so use check_submounts_and_drop()
473 * instead of d_drop().
474 */
475 if (check_submounts_and_drop(dentry) != 0)
476 goto out_valid;
477
478 return 0;
479 }
480
481 static void kernfs_dop_release(struct dentry *dentry)
482 {
483 kernfs_put(dentry->d_fsdata);
484 }
485
486 const struct dentry_operations kernfs_dops = {
487 .d_revalidate = kernfs_dop_revalidate,
488 .d_release = kernfs_dop_release,
489 };
490
491 /**
492 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
493 * @dentry: the dentry in question
494 *
495 * Return the kernfs_node associated with @dentry. If @dentry is not a
496 * kernfs one, %NULL is returned.
497 *
498 * While the returned kernfs_node will stay accessible as long as @dentry
499 * is accessible, the returned node can be in any state and the caller is
500 * fully responsible for determining what's accessible.
501 */
502 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
503 {
504 if (dentry->d_sb->s_op == &kernfs_sops)
505 return dentry->d_fsdata;
506 return NULL;
507 }
508
509 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
510 const char *name, umode_t mode,
511 unsigned flags)
512 {
513 char *dup_name = NULL;
514 struct kernfs_node *kn;
515 int ret;
516
517 if (!(flags & KERNFS_STATIC_NAME)) {
518 name = dup_name = kstrdup(name, GFP_KERNEL);
519 if (!name)
520 return NULL;
521 }
522
523 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
524 if (!kn)
525 goto err_out1;
526
527 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
528 if (ret < 0)
529 goto err_out2;
530 kn->ino = ret;
531
532 atomic_set(&kn->count, 1);
533 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
534 RB_CLEAR_NODE(&kn->rb);
535
536 kn->name = name;
537 kn->mode = mode;
538 kn->flags = flags;
539
540 return kn;
541
542 err_out2:
543 kmem_cache_free(kernfs_node_cache, kn);
544 err_out1:
545 kfree(dup_name);
546 return NULL;
547 }
548
549 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
550 const char *name, umode_t mode,
551 unsigned flags)
552 {
553 struct kernfs_node *kn;
554
555 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
556 if (kn) {
557 kernfs_get(parent);
558 kn->parent = parent;
559 }
560 return kn;
561 }
562
563 /**
564 * kernfs_add_one - add kernfs_node to parent without warning
565 * @kn: kernfs_node to be added
566 *
567 * The caller must already have initialized @kn->parent. This
568 * function increments nlink of the parent's inode if @kn is a
569 * directory and link into the children list of the parent.
570 *
571 * RETURNS:
572 * 0 on success, -EEXIST if entry with the given name already
573 * exists.
574 */
575 int kernfs_add_one(struct kernfs_node *kn)
576 {
577 struct kernfs_node *parent = kn->parent;
578 struct kernfs_iattrs *ps_iattr;
579 bool has_ns;
580 int ret;
581
582 mutex_lock(&kernfs_mutex);
583
584 ret = -EINVAL;
585 has_ns = kernfs_ns_enabled(parent);
586 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
587 has_ns ? "required" : "invalid", parent->name, kn->name))
588 goto out_unlock;
589
590 if (kernfs_type(parent) != KERNFS_DIR)
591 goto out_unlock;
592
593 ret = -ENOENT;
594 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
595 goto out_unlock;
596
597 kn->hash = kernfs_name_hash(kn->name, kn->ns);
598
599 ret = kernfs_link_sibling(kn);
600 if (ret)
601 goto out_unlock;
602
603 /* Update timestamps on the parent */
604 ps_iattr = parent->iattr;
605 if (ps_iattr) {
606 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
607 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
608 }
609
610 mutex_unlock(&kernfs_mutex);
611
612 /*
613 * Activate the new node unless CREATE_DEACTIVATED is requested.
614 * If not activated here, the kernfs user is responsible for
615 * activating the node with kernfs_activate(). A node which hasn't
616 * been activated is not visible to userland and its removal won't
617 * trigger deactivation.
618 */
619 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
620 kernfs_activate(kn);
621 return 0;
622
623 out_unlock:
624 mutex_unlock(&kernfs_mutex);
625 return ret;
626 }
627
628 /**
629 * kernfs_find_ns - find kernfs_node with the given name
630 * @parent: kernfs_node to search under
631 * @name: name to look for
632 * @ns: the namespace tag to use
633 *
634 * Look for kernfs_node with name @name under @parent. Returns pointer to
635 * the found kernfs_node on success, %NULL on failure.
636 */
637 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
638 const unsigned char *name,
639 const void *ns)
640 {
641 struct rb_node *node = parent->dir.children.rb_node;
642 bool has_ns = kernfs_ns_enabled(parent);
643 unsigned int hash;
644
645 lockdep_assert_held(&kernfs_mutex);
646
647 if (has_ns != (bool)ns) {
648 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
649 has_ns ? "required" : "invalid", parent->name, name);
650 return NULL;
651 }
652
653 hash = kernfs_name_hash(name, ns);
654 while (node) {
655 struct kernfs_node *kn;
656 int result;
657
658 kn = rb_to_kn(node);
659 result = kernfs_name_compare(hash, name, ns, kn);
660 if (result < 0)
661 node = node->rb_left;
662 else if (result > 0)
663 node = node->rb_right;
664 else
665 return kn;
666 }
667 return NULL;
668 }
669
670 /**
671 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
672 * @parent: kernfs_node to search under
673 * @name: name to look for
674 * @ns: the namespace tag to use
675 *
676 * Look for kernfs_node with name @name under @parent and get a reference
677 * if found. This function may sleep and returns pointer to the found
678 * kernfs_node on success, %NULL on failure.
679 */
680 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
681 const char *name, const void *ns)
682 {
683 struct kernfs_node *kn;
684
685 mutex_lock(&kernfs_mutex);
686 kn = kernfs_find_ns(parent, name, ns);
687 kernfs_get(kn);
688 mutex_unlock(&kernfs_mutex);
689
690 return kn;
691 }
692 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
693
694 /**
695 * kernfs_create_root - create a new kernfs hierarchy
696 * @scops: optional syscall operations for the hierarchy
697 * @flags: KERNFS_ROOT_* flags
698 * @priv: opaque data associated with the new directory
699 *
700 * Returns the root of the new hierarchy on success, ERR_PTR() value on
701 * failure.
702 */
703 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
704 unsigned int flags, void *priv)
705 {
706 struct kernfs_root *root;
707 struct kernfs_node *kn;
708
709 root = kzalloc(sizeof(*root), GFP_KERNEL);
710 if (!root)
711 return ERR_PTR(-ENOMEM);
712
713 ida_init(&root->ino_ida);
714
715 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
716 KERNFS_DIR);
717 if (!kn) {
718 ida_destroy(&root->ino_ida);
719 kfree(root);
720 return ERR_PTR(-ENOMEM);
721 }
722
723 kn->priv = priv;
724 kn->dir.root = root;
725
726 root->syscall_ops = scops;
727 root->flags = flags;
728 root->kn = kn;
729 init_waitqueue_head(&root->deactivate_waitq);
730
731 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
732 kernfs_activate(kn);
733
734 return root;
735 }
736
737 /**
738 * kernfs_destroy_root - destroy a kernfs hierarchy
739 * @root: root of the hierarchy to destroy
740 *
741 * Destroy the hierarchy anchored at @root by removing all existing
742 * directories and destroying @root.
743 */
744 void kernfs_destroy_root(struct kernfs_root *root)
745 {
746 kernfs_remove(root->kn); /* will also free @root */
747 }
748
749 /**
750 * kernfs_create_dir_ns - create a directory
751 * @parent: parent in which to create a new directory
752 * @name: name of the new directory
753 * @mode: mode of the new directory
754 * @priv: opaque data associated with the new directory
755 * @ns: optional namespace tag of the directory
756 *
757 * Returns the created node on success, ERR_PTR() value on failure.
758 */
759 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
760 const char *name, umode_t mode,
761 void *priv, const void *ns)
762 {
763 struct kernfs_node *kn;
764 int rc;
765
766 /* allocate */
767 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
768 if (!kn)
769 return ERR_PTR(-ENOMEM);
770
771 kn->dir.root = parent->dir.root;
772 kn->ns = ns;
773 kn->priv = priv;
774
775 /* link in */
776 rc = kernfs_add_one(kn);
777 if (!rc)
778 return kn;
779
780 kernfs_put(kn);
781 return ERR_PTR(rc);
782 }
783
784 static struct dentry *kernfs_iop_lookup(struct inode *dir,
785 struct dentry *dentry,
786 unsigned int flags)
787 {
788 struct dentry *ret;
789 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
790 struct kernfs_node *kn;
791 struct inode *inode;
792 const void *ns = NULL;
793
794 mutex_lock(&kernfs_mutex);
795
796 if (kernfs_ns_enabled(parent))
797 ns = kernfs_info(dir->i_sb)->ns;
798
799 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
800
801 /* no such entry */
802 if (!kn || !kernfs_active(kn)) {
803 ret = NULL;
804 goto out_unlock;
805 }
806 kernfs_get(kn);
807 dentry->d_fsdata = kn;
808
809 /* attach dentry and inode */
810 inode = kernfs_get_inode(dir->i_sb, kn);
811 if (!inode) {
812 ret = ERR_PTR(-ENOMEM);
813 goto out_unlock;
814 }
815
816 /* instantiate and hash dentry */
817 ret = d_materialise_unique(dentry, inode);
818 out_unlock:
819 mutex_unlock(&kernfs_mutex);
820 return ret;
821 }
822
823 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
824 umode_t mode)
825 {
826 struct kernfs_node *parent = dir->i_private;
827 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
828 int ret;
829
830 if (!scops || !scops->mkdir)
831 return -EPERM;
832
833 if (!kernfs_get_active(parent))
834 return -ENODEV;
835
836 ret = scops->mkdir(parent, dentry->d_name.name, mode);
837
838 kernfs_put_active(parent);
839 return ret;
840 }
841
842 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
843 {
844 struct kernfs_node *kn = dentry->d_fsdata;
845 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
846 int ret;
847
848 if (!scops || !scops->rmdir)
849 return -EPERM;
850
851 if (!kernfs_get_active(kn))
852 return -ENODEV;
853
854 ret = scops->rmdir(kn);
855
856 kernfs_put_active(kn);
857 return ret;
858 }
859
860 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
861 struct inode *new_dir, struct dentry *new_dentry)
862 {
863 struct kernfs_node *kn = old_dentry->d_fsdata;
864 struct kernfs_node *new_parent = new_dir->i_private;
865 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
866 int ret;
867
868 if (!scops || !scops->rename)
869 return -EPERM;
870
871 if (!kernfs_get_active(kn))
872 return -ENODEV;
873
874 if (!kernfs_get_active(new_parent)) {
875 kernfs_put_active(kn);
876 return -ENODEV;
877 }
878
879 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
880
881 kernfs_put_active(new_parent);
882 kernfs_put_active(kn);
883 return ret;
884 }
885
886 const struct inode_operations kernfs_dir_iops = {
887 .lookup = kernfs_iop_lookup,
888 .permission = kernfs_iop_permission,
889 .setattr = kernfs_iop_setattr,
890 .getattr = kernfs_iop_getattr,
891 .setxattr = kernfs_iop_setxattr,
892 .removexattr = kernfs_iop_removexattr,
893 .getxattr = kernfs_iop_getxattr,
894 .listxattr = kernfs_iop_listxattr,
895
896 .mkdir = kernfs_iop_mkdir,
897 .rmdir = kernfs_iop_rmdir,
898 .rename = kernfs_iop_rename,
899 };
900
901 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
902 {
903 struct kernfs_node *last;
904
905 while (true) {
906 struct rb_node *rbn;
907
908 last = pos;
909
910 if (kernfs_type(pos) != KERNFS_DIR)
911 break;
912
913 rbn = rb_first(&pos->dir.children);
914 if (!rbn)
915 break;
916
917 pos = rb_to_kn(rbn);
918 }
919
920 return last;
921 }
922
923 /**
924 * kernfs_next_descendant_post - find the next descendant for post-order walk
925 * @pos: the current position (%NULL to initiate traversal)
926 * @root: kernfs_node whose descendants to walk
927 *
928 * Find the next descendant to visit for post-order traversal of @root's
929 * descendants. @root is included in the iteration and the last node to be
930 * visited.
931 */
932 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
933 struct kernfs_node *root)
934 {
935 struct rb_node *rbn;
936
937 lockdep_assert_held(&kernfs_mutex);
938
939 /* if first iteration, visit leftmost descendant which may be root */
940 if (!pos)
941 return kernfs_leftmost_descendant(root);
942
943 /* if we visited @root, we're done */
944 if (pos == root)
945 return NULL;
946
947 /* if there's an unvisited sibling, visit its leftmost descendant */
948 rbn = rb_next(&pos->rb);
949 if (rbn)
950 return kernfs_leftmost_descendant(rb_to_kn(rbn));
951
952 /* no sibling left, visit parent */
953 return pos->parent;
954 }
955
956 /**
957 * kernfs_activate - activate a node which started deactivated
958 * @kn: kernfs_node whose subtree is to be activated
959 *
960 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
961 * needs to be explicitly activated. A node which hasn't been activated
962 * isn't visible to userland and deactivation is skipped during its
963 * removal. This is useful to construct atomic init sequences where
964 * creation of multiple nodes should either succeed or fail atomically.
965 *
966 * The caller is responsible for ensuring that this function is not called
967 * after kernfs_remove*() is invoked on @kn.
968 */
969 void kernfs_activate(struct kernfs_node *kn)
970 {
971 struct kernfs_node *pos;
972
973 mutex_lock(&kernfs_mutex);
974
975 pos = NULL;
976 while ((pos = kernfs_next_descendant_post(pos, kn))) {
977 if (!pos || (pos->flags & KERNFS_ACTIVATED))
978 continue;
979
980 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
981 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
982
983 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
984 pos->flags |= KERNFS_ACTIVATED;
985 }
986
987 mutex_unlock(&kernfs_mutex);
988 }
989
990 static void __kernfs_remove(struct kernfs_node *kn)
991 {
992 struct kernfs_node *pos;
993
994 lockdep_assert_held(&kernfs_mutex);
995
996 /*
997 * Short-circuit if non-root @kn has already finished removal.
998 * This is for kernfs_remove_self() which plays with active ref
999 * after removal.
1000 */
1001 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1002 return;
1003
1004 pr_debug("kernfs %s: removing\n", kn->name);
1005
1006 /* prevent any new usage under @kn by deactivating all nodes */
1007 pos = NULL;
1008 while ((pos = kernfs_next_descendant_post(pos, kn)))
1009 if (kernfs_active(pos))
1010 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1011
1012 /* deactivate and unlink the subtree node-by-node */
1013 do {
1014 pos = kernfs_leftmost_descendant(kn);
1015
1016 /*
1017 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1018 * base ref could have been put by someone else by the time
1019 * the function returns. Make sure it doesn't go away
1020 * underneath us.
1021 */
1022 kernfs_get(pos);
1023
1024 /*
1025 * Drain iff @kn was activated. This avoids draining and
1026 * its lockdep annotations for nodes which have never been
1027 * activated and allows embedding kernfs_remove() in create
1028 * error paths without worrying about draining.
1029 */
1030 if (kn->flags & KERNFS_ACTIVATED)
1031 kernfs_drain(pos);
1032 else
1033 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1034
1035 /*
1036 * kernfs_unlink_sibling() succeeds once per node. Use it
1037 * to decide who's responsible for cleanups.
1038 */
1039 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1040 struct kernfs_iattrs *ps_iattr =
1041 pos->parent ? pos->parent->iattr : NULL;
1042
1043 /* update timestamps on the parent */
1044 if (ps_iattr) {
1045 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1046 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1047 }
1048
1049 kernfs_put(pos);
1050 }
1051
1052 kernfs_put(pos);
1053 } while (pos != kn);
1054 }
1055
1056 /**
1057 * kernfs_remove - remove a kernfs_node recursively
1058 * @kn: the kernfs_node to remove
1059 *
1060 * Remove @kn along with all its subdirectories and files.
1061 */
1062 void kernfs_remove(struct kernfs_node *kn)
1063 {
1064 mutex_lock(&kernfs_mutex);
1065 __kernfs_remove(kn);
1066 mutex_unlock(&kernfs_mutex);
1067 }
1068
1069 /**
1070 * kernfs_break_active_protection - break out of active protection
1071 * @kn: the self kernfs_node
1072 *
1073 * The caller must be running off of a kernfs operation which is invoked
1074 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1075 * this function must also be matched with an invocation of
1076 * kernfs_unbreak_active_protection().
1077 *
1078 * This function releases the active reference of @kn the caller is
1079 * holding. Once this function is called, @kn may be removed at any point
1080 * and the caller is solely responsible for ensuring that the objects it
1081 * dereferences are accessible.
1082 */
1083 void kernfs_break_active_protection(struct kernfs_node *kn)
1084 {
1085 /*
1086 * Take out ourself out of the active ref dependency chain. If
1087 * we're called without an active ref, lockdep will complain.
1088 */
1089 kernfs_put_active(kn);
1090 }
1091
1092 /**
1093 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1094 * @kn: the self kernfs_node
1095 *
1096 * If kernfs_break_active_protection() was called, this function must be
1097 * invoked before finishing the kernfs operation. Note that while this
1098 * function restores the active reference, it doesn't and can't actually
1099 * restore the active protection - @kn may already or be in the process of
1100 * being removed. Once kernfs_break_active_protection() is invoked, that
1101 * protection is irreversibly gone for the kernfs operation instance.
1102 *
1103 * While this function may be called at any point after
1104 * kernfs_break_active_protection() is invoked, its most useful location
1105 * would be right before the enclosing kernfs operation returns.
1106 */
1107 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1108 {
1109 /*
1110 * @kn->active could be in any state; however, the increment we do
1111 * here will be undone as soon as the enclosing kernfs operation
1112 * finishes and this temporary bump can't break anything. If @kn
1113 * is alive, nothing changes. If @kn is being deactivated, the
1114 * soon-to-follow put will either finish deactivation or restore
1115 * deactivated state. If @kn is already removed, the temporary
1116 * bump is guaranteed to be gone before @kn is released.
1117 */
1118 atomic_inc(&kn->active);
1119 if (kernfs_lockdep(kn))
1120 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1121 }
1122
1123 /**
1124 * kernfs_remove_self - remove a kernfs_node from its own method
1125 * @kn: the self kernfs_node to remove
1126 *
1127 * The caller must be running off of a kernfs operation which is invoked
1128 * with an active reference - e.g. one of kernfs_ops. This can be used to
1129 * implement a file operation which deletes itself.
1130 *
1131 * For example, the "delete" file for a sysfs device directory can be
1132 * implemented by invoking kernfs_remove_self() on the "delete" file
1133 * itself. This function breaks the circular dependency of trying to
1134 * deactivate self while holding an active ref itself. It isn't necessary
1135 * to modify the usual removal path to use kernfs_remove_self(). The
1136 * "delete" implementation can simply invoke kernfs_remove_self() on self
1137 * before proceeding with the usual removal path. kernfs will ignore later
1138 * kernfs_remove() on self.
1139 *
1140 * kernfs_remove_self() can be called multiple times concurrently on the
1141 * same kernfs_node. Only the first one actually performs removal and
1142 * returns %true. All others will wait until the kernfs operation which
1143 * won self-removal finishes and return %false. Note that the losers wait
1144 * for the completion of not only the winning kernfs_remove_self() but also
1145 * the whole kernfs_ops which won the arbitration. This can be used to
1146 * guarantee, for example, all concurrent writes to a "delete" file to
1147 * finish only after the whole operation is complete.
1148 */
1149 bool kernfs_remove_self(struct kernfs_node *kn)
1150 {
1151 bool ret;
1152
1153 mutex_lock(&kernfs_mutex);
1154 kernfs_break_active_protection(kn);
1155
1156 /*
1157 * SUICIDAL is used to arbitrate among competing invocations. Only
1158 * the first one will actually perform removal. When the removal
1159 * is complete, SUICIDED is set and the active ref is restored
1160 * while holding kernfs_mutex. The ones which lost arbitration
1161 * waits for SUICDED && drained which can happen only after the
1162 * enclosing kernfs operation which executed the winning instance
1163 * of kernfs_remove_self() finished.
1164 */
1165 if (!(kn->flags & KERNFS_SUICIDAL)) {
1166 kn->flags |= KERNFS_SUICIDAL;
1167 __kernfs_remove(kn);
1168 kn->flags |= KERNFS_SUICIDED;
1169 ret = true;
1170 } else {
1171 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1172 DEFINE_WAIT(wait);
1173
1174 while (true) {
1175 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1176
1177 if ((kn->flags & KERNFS_SUICIDED) &&
1178 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1179 break;
1180
1181 mutex_unlock(&kernfs_mutex);
1182 schedule();
1183 mutex_lock(&kernfs_mutex);
1184 }
1185 finish_wait(waitq, &wait);
1186 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1187 ret = false;
1188 }
1189
1190 /*
1191 * This must be done while holding kernfs_mutex; otherwise, waiting
1192 * for SUICIDED && deactivated could finish prematurely.
1193 */
1194 kernfs_unbreak_active_protection(kn);
1195
1196 mutex_unlock(&kernfs_mutex);
1197 return ret;
1198 }
1199
1200 /**
1201 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1202 * @parent: parent of the target
1203 * @name: name of the kernfs_node to remove
1204 * @ns: namespace tag of the kernfs_node to remove
1205 *
1206 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1207 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1208 */
1209 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1210 const void *ns)
1211 {
1212 struct kernfs_node *kn;
1213
1214 if (!parent) {
1215 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1216 name);
1217 return -ENOENT;
1218 }
1219
1220 mutex_lock(&kernfs_mutex);
1221
1222 kn = kernfs_find_ns(parent, name, ns);
1223 if (kn)
1224 __kernfs_remove(kn);
1225
1226 mutex_unlock(&kernfs_mutex);
1227
1228 if (kn)
1229 return 0;
1230 else
1231 return -ENOENT;
1232 }
1233
1234 /**
1235 * kernfs_rename_ns - move and rename a kernfs_node
1236 * @kn: target node
1237 * @new_parent: new parent to put @sd under
1238 * @new_name: new name
1239 * @new_ns: new namespace tag
1240 */
1241 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1242 const char *new_name, const void *new_ns)
1243 {
1244 struct kernfs_node *old_parent;
1245 const char *old_name = NULL;
1246 int error;
1247
1248 /* can't move or rename root */
1249 if (!kn->parent)
1250 return -EINVAL;
1251
1252 mutex_lock(&kernfs_mutex);
1253
1254 error = -ENOENT;
1255 if (!kernfs_active(kn) || !kernfs_active(new_parent))
1256 goto out;
1257
1258 error = 0;
1259 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1260 (strcmp(kn->name, new_name) == 0))
1261 goto out; /* nothing to rename */
1262
1263 error = -EEXIST;
1264 if (kernfs_find_ns(new_parent, new_name, new_ns))
1265 goto out;
1266
1267 /* rename kernfs_node */
1268 if (strcmp(kn->name, new_name) != 0) {
1269 error = -ENOMEM;
1270 new_name = kstrdup(new_name, GFP_KERNEL);
1271 if (!new_name)
1272 goto out;
1273 } else {
1274 new_name = NULL;
1275 }
1276
1277 /*
1278 * Move to the appropriate place in the appropriate directories rbtree.
1279 */
1280 kernfs_unlink_sibling(kn);
1281 kernfs_get(new_parent);
1282
1283 /* rename_lock protects ->parent and ->name accessors */
1284 spin_lock_irq(&kernfs_rename_lock);
1285
1286 old_parent = kn->parent;
1287 kn->parent = new_parent;
1288
1289 kn->ns = new_ns;
1290 if (new_name) {
1291 if (!(kn->flags & KERNFS_STATIC_NAME))
1292 old_name = kn->name;
1293 kn->flags &= ~KERNFS_STATIC_NAME;
1294 kn->name = new_name;
1295 }
1296
1297 spin_unlock_irq(&kernfs_rename_lock);
1298
1299 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1300 kernfs_link_sibling(kn);
1301
1302 kernfs_put(old_parent);
1303 kfree(old_name);
1304
1305 error = 0;
1306 out:
1307 mutex_unlock(&kernfs_mutex);
1308 return error;
1309 }
1310
1311 /* Relationship between s_mode and the DT_xxx types */
1312 static inline unsigned char dt_type(struct kernfs_node *kn)
1313 {
1314 return (kn->mode >> 12) & 15;
1315 }
1316
1317 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1318 {
1319 kernfs_put(filp->private_data);
1320 return 0;
1321 }
1322
1323 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1324 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1325 {
1326 if (pos) {
1327 int valid = kernfs_active(pos) &&
1328 pos->parent == parent && hash == pos->hash;
1329 kernfs_put(pos);
1330 if (!valid)
1331 pos = NULL;
1332 }
1333 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1334 struct rb_node *node = parent->dir.children.rb_node;
1335 while (node) {
1336 pos = rb_to_kn(node);
1337
1338 if (hash < pos->hash)
1339 node = node->rb_left;
1340 else if (hash > pos->hash)
1341 node = node->rb_right;
1342 else
1343 break;
1344 }
1345 }
1346 /* Skip over entries which are dying/dead or in the wrong namespace */
1347 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1348 struct rb_node *node = rb_next(&pos->rb);
1349 if (!node)
1350 pos = NULL;
1351 else
1352 pos = rb_to_kn(node);
1353 }
1354 return pos;
1355 }
1356
1357 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1358 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1359 {
1360 pos = kernfs_dir_pos(ns, parent, ino, pos);
1361 if (pos) {
1362 do {
1363 struct rb_node *node = rb_next(&pos->rb);
1364 if (!node)
1365 pos = NULL;
1366 else
1367 pos = rb_to_kn(node);
1368 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1369 }
1370 return pos;
1371 }
1372
1373 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1374 {
1375 struct dentry *dentry = file->f_path.dentry;
1376 struct kernfs_node *parent = dentry->d_fsdata;
1377 struct kernfs_node *pos = file->private_data;
1378 const void *ns = NULL;
1379
1380 if (!dir_emit_dots(file, ctx))
1381 return 0;
1382 mutex_lock(&kernfs_mutex);
1383
1384 if (kernfs_ns_enabled(parent))
1385 ns = kernfs_info(dentry->d_sb)->ns;
1386
1387 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1388 pos;
1389 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1390 const char *name = pos->name;
1391 unsigned int type = dt_type(pos);
1392 int len = strlen(name);
1393 ino_t ino = pos->ino;
1394
1395 ctx->pos = pos->hash;
1396 file->private_data = pos;
1397 kernfs_get(pos);
1398
1399 mutex_unlock(&kernfs_mutex);
1400 if (!dir_emit(ctx, name, len, ino, type))
1401 return 0;
1402 mutex_lock(&kernfs_mutex);
1403 }
1404 mutex_unlock(&kernfs_mutex);
1405 file->private_data = NULL;
1406 ctx->pos = INT_MAX;
1407 return 0;
1408 }
1409
1410 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1411 int whence)
1412 {
1413 struct inode *inode = file_inode(file);
1414 loff_t ret;
1415
1416 mutex_lock(&inode->i_mutex);
1417 ret = generic_file_llseek(file, offset, whence);
1418 mutex_unlock(&inode->i_mutex);
1419
1420 return ret;
1421 }
1422
1423 const struct file_operations kernfs_dir_fops = {
1424 .read = generic_read_dir,
1425 .iterate = kernfs_fop_readdir,
1426 .release = kernfs_dir_fop_release,
1427 .llseek = kernfs_dir_fop_llseek,
1428 };