]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/libfs.c
Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / fs / libfs.c
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/cred.h>
11 #include <linux/mount.h>
12 #include <linux/vfs.h>
13 #include <linux/quotaops.h>
14 #include <linux/mutex.h>
15 #include <linux/namei.h>
16 #include <linux/exportfs.h>
17 #include <linux/writeback.h>
18 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19
20 #include <linux/uaccess.h>
21
22 #include "internal.h"
23
24 int simple_getattr(const struct path *path, struct kstat *stat,
25 u32 request_mask, unsigned int query_flags)
26 {
27 struct inode *inode = d_inode(path->dentry);
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
30 return 0;
31 }
32 EXPORT_SYMBOL(simple_getattr);
33
34 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 {
36 buf->f_type = dentry->d_sb->s_magic;
37 buf->f_bsize = PAGE_SIZE;
38 buf->f_namelen = NAME_MAX;
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_statfs);
42
43 /*
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
46 */
47 int always_delete_dentry(const struct dentry *dentry)
48 {
49 return 1;
50 }
51 EXPORT_SYMBOL(always_delete_dentry);
52
53 const struct dentry_operations simple_dentry_operations = {
54 .d_delete = always_delete_dentry,
55 };
56 EXPORT_SYMBOL(simple_dentry_operations);
57
58 /*
59 * Lookup the data. This is trivial - if the dentry didn't already
60 * exist, we know it is negative. Set d_op to delete negative dentries.
61 */
62 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 {
64 if (dentry->d_name.len > NAME_MAX)
65 return ERR_PTR(-ENAMETOOLONG);
66 if (!dentry->d_sb->s_d_op)
67 d_set_d_op(dentry, &simple_dentry_operations);
68 d_add(dentry, NULL);
69 return NULL;
70 }
71 EXPORT_SYMBOL(simple_lookup);
72
73 int dcache_dir_open(struct inode *inode, struct file *file)
74 {
75 file->private_data = d_alloc_cursor(file->f_path.dentry);
76
77 return file->private_data ? 0 : -ENOMEM;
78 }
79 EXPORT_SYMBOL(dcache_dir_open);
80
81 int dcache_dir_close(struct inode *inode, struct file *file)
82 {
83 dput(file->private_data);
84 return 0;
85 }
86 EXPORT_SYMBOL(dcache_dir_close);
87
88 /* parent is locked at least shared */
89 static struct dentry *next_positive(struct dentry *parent,
90 struct list_head *from,
91 int count)
92 {
93 unsigned *seq = &parent->d_inode->i_dir_seq, n;
94 struct dentry *res;
95 struct list_head *p;
96 bool skipped;
97 int i;
98
99 retry:
100 i = count;
101 skipped = false;
102 n = smp_load_acquire(seq) & ~1;
103 res = NULL;
104 rcu_read_lock();
105 for (p = from->next; p != &parent->d_subdirs; p = p->next) {
106 struct dentry *d = list_entry(p, struct dentry, d_child);
107 if (!simple_positive(d)) {
108 skipped = true;
109 } else if (!--i) {
110 res = d;
111 break;
112 }
113 }
114 rcu_read_unlock();
115 if (skipped) {
116 smp_rmb();
117 if (unlikely(*seq != n))
118 goto retry;
119 }
120 return res;
121 }
122
123 static void move_cursor(struct dentry *cursor, struct list_head *after)
124 {
125 struct dentry *parent = cursor->d_parent;
126 unsigned n, *seq = &parent->d_inode->i_dir_seq;
127 spin_lock(&parent->d_lock);
128 for (;;) {
129 n = *seq;
130 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
131 break;
132 cpu_relax();
133 }
134 __list_del(cursor->d_child.prev, cursor->d_child.next);
135 if (after)
136 list_add(&cursor->d_child, after);
137 else
138 list_add_tail(&cursor->d_child, &parent->d_subdirs);
139 smp_store_release(seq, n + 2);
140 spin_unlock(&parent->d_lock);
141 }
142
143 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
144 {
145 struct dentry *dentry = file->f_path.dentry;
146 switch (whence) {
147 case 1:
148 offset += file->f_pos;
149 /* fall through */
150 case 0:
151 if (offset >= 0)
152 break;
153 /* fall through */
154 default:
155 return -EINVAL;
156 }
157 if (offset != file->f_pos) {
158 file->f_pos = offset;
159 if (file->f_pos >= 2) {
160 struct dentry *cursor = file->private_data;
161 struct dentry *to;
162 loff_t n = file->f_pos - 2;
163
164 inode_lock_shared(dentry->d_inode);
165 to = next_positive(dentry, &dentry->d_subdirs, n);
166 move_cursor(cursor, to ? &to->d_child : NULL);
167 inode_unlock_shared(dentry->d_inode);
168 }
169 }
170 return offset;
171 }
172 EXPORT_SYMBOL(dcache_dir_lseek);
173
174 /* Relationship between i_mode and the DT_xxx types */
175 static inline unsigned char dt_type(struct inode *inode)
176 {
177 return (inode->i_mode >> 12) & 15;
178 }
179
180 /*
181 * Directory is locked and all positive dentries in it are safe, since
182 * for ramfs-type trees they can't go away without unlink() or rmdir(),
183 * both impossible due to the lock on directory.
184 */
185
186 int dcache_readdir(struct file *file, struct dir_context *ctx)
187 {
188 struct dentry *dentry = file->f_path.dentry;
189 struct dentry *cursor = file->private_data;
190 struct list_head *p = &cursor->d_child;
191 struct dentry *next;
192 bool moved = false;
193
194 if (!dir_emit_dots(file, ctx))
195 return 0;
196
197 if (ctx->pos == 2)
198 p = &dentry->d_subdirs;
199 while ((next = next_positive(dentry, p, 1)) != NULL) {
200 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
201 d_inode(next)->i_ino, dt_type(d_inode(next))))
202 break;
203 moved = true;
204 p = &next->d_child;
205 ctx->pos++;
206 }
207 if (moved)
208 move_cursor(cursor, p);
209 return 0;
210 }
211 EXPORT_SYMBOL(dcache_readdir);
212
213 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
214 {
215 return -EISDIR;
216 }
217 EXPORT_SYMBOL(generic_read_dir);
218
219 const struct file_operations simple_dir_operations = {
220 .open = dcache_dir_open,
221 .release = dcache_dir_close,
222 .llseek = dcache_dir_lseek,
223 .read = generic_read_dir,
224 .iterate_shared = dcache_readdir,
225 .fsync = noop_fsync,
226 };
227 EXPORT_SYMBOL(simple_dir_operations);
228
229 const struct inode_operations simple_dir_inode_operations = {
230 .lookup = simple_lookup,
231 };
232 EXPORT_SYMBOL(simple_dir_inode_operations);
233
234 static const struct super_operations simple_super_operations = {
235 .statfs = simple_statfs,
236 };
237
238 /*
239 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
240 * will never be mountable)
241 */
242 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
243 const struct super_operations *ops, const struct xattr_handler **xattr,
244 const struct dentry_operations *dops, unsigned long magic)
245 {
246 struct super_block *s;
247 struct dentry *dentry;
248 struct inode *root;
249 struct qstr d_name = QSTR_INIT(name, strlen(name));
250
251 s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
252 &init_user_ns, NULL);
253 if (IS_ERR(s))
254 return ERR_CAST(s);
255
256 s->s_maxbytes = MAX_LFS_FILESIZE;
257 s->s_blocksize = PAGE_SIZE;
258 s->s_blocksize_bits = PAGE_SHIFT;
259 s->s_magic = magic;
260 s->s_op = ops ? ops : &simple_super_operations;
261 s->s_xattr = xattr;
262 s->s_time_gran = 1;
263 root = new_inode(s);
264 if (!root)
265 goto Enomem;
266 /*
267 * since this is the first inode, make it number 1. New inodes created
268 * after this must take care not to collide with it (by passing
269 * max_reserved of 1 to iunique).
270 */
271 root->i_ino = 1;
272 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
273 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
274 dentry = __d_alloc(s, &d_name);
275 if (!dentry) {
276 iput(root);
277 goto Enomem;
278 }
279 d_instantiate(dentry, root);
280 s->s_root = dentry;
281 s->s_d_op = dops;
282 s->s_flags |= SB_ACTIVE;
283 return dget(s->s_root);
284
285 Enomem:
286 deactivate_locked_super(s);
287 return ERR_PTR(-ENOMEM);
288 }
289 EXPORT_SYMBOL(mount_pseudo_xattr);
290
291 int simple_open(struct inode *inode, struct file *file)
292 {
293 if (inode->i_private)
294 file->private_data = inode->i_private;
295 return 0;
296 }
297 EXPORT_SYMBOL(simple_open);
298
299 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
300 {
301 struct inode *inode = d_inode(old_dentry);
302
303 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
304 inc_nlink(inode);
305 ihold(inode);
306 dget(dentry);
307 d_instantiate(dentry, inode);
308 return 0;
309 }
310 EXPORT_SYMBOL(simple_link);
311
312 int simple_empty(struct dentry *dentry)
313 {
314 struct dentry *child;
315 int ret = 0;
316
317 spin_lock(&dentry->d_lock);
318 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
319 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
320 if (simple_positive(child)) {
321 spin_unlock(&child->d_lock);
322 goto out;
323 }
324 spin_unlock(&child->d_lock);
325 }
326 ret = 1;
327 out:
328 spin_unlock(&dentry->d_lock);
329 return ret;
330 }
331 EXPORT_SYMBOL(simple_empty);
332
333 int simple_unlink(struct inode *dir, struct dentry *dentry)
334 {
335 struct inode *inode = d_inode(dentry);
336
337 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
338 drop_nlink(inode);
339 dput(dentry);
340 return 0;
341 }
342 EXPORT_SYMBOL(simple_unlink);
343
344 int simple_rmdir(struct inode *dir, struct dentry *dentry)
345 {
346 if (!simple_empty(dentry))
347 return -ENOTEMPTY;
348
349 drop_nlink(d_inode(dentry));
350 simple_unlink(dir, dentry);
351 drop_nlink(dir);
352 return 0;
353 }
354 EXPORT_SYMBOL(simple_rmdir);
355
356 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
357 struct inode *new_dir, struct dentry *new_dentry,
358 unsigned int flags)
359 {
360 struct inode *inode = d_inode(old_dentry);
361 int they_are_dirs = d_is_dir(old_dentry);
362
363 if (flags & ~RENAME_NOREPLACE)
364 return -EINVAL;
365
366 if (!simple_empty(new_dentry))
367 return -ENOTEMPTY;
368
369 if (d_really_is_positive(new_dentry)) {
370 simple_unlink(new_dir, new_dentry);
371 if (they_are_dirs) {
372 drop_nlink(d_inode(new_dentry));
373 drop_nlink(old_dir);
374 }
375 } else if (they_are_dirs) {
376 drop_nlink(old_dir);
377 inc_nlink(new_dir);
378 }
379
380 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
381 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
382
383 return 0;
384 }
385 EXPORT_SYMBOL(simple_rename);
386
387 /**
388 * simple_setattr - setattr for simple filesystem
389 * @dentry: dentry
390 * @iattr: iattr structure
391 *
392 * Returns 0 on success, -error on failure.
393 *
394 * simple_setattr is a simple ->setattr implementation without a proper
395 * implementation of size changes.
396 *
397 * It can either be used for in-memory filesystems or special files
398 * on simple regular filesystems. Anything that needs to change on-disk
399 * or wire state on size changes needs its own setattr method.
400 */
401 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
402 {
403 struct inode *inode = d_inode(dentry);
404 int error;
405
406 error = setattr_prepare(dentry, iattr);
407 if (error)
408 return error;
409
410 if (iattr->ia_valid & ATTR_SIZE)
411 truncate_setsize(inode, iattr->ia_size);
412 setattr_copy(inode, iattr);
413 mark_inode_dirty(inode);
414 return 0;
415 }
416 EXPORT_SYMBOL(simple_setattr);
417
418 int simple_readpage(struct file *file, struct page *page)
419 {
420 clear_highpage(page);
421 flush_dcache_page(page);
422 SetPageUptodate(page);
423 unlock_page(page);
424 return 0;
425 }
426 EXPORT_SYMBOL(simple_readpage);
427
428 int simple_write_begin(struct file *file, struct address_space *mapping,
429 loff_t pos, unsigned len, unsigned flags,
430 struct page **pagep, void **fsdata)
431 {
432 struct page *page;
433 pgoff_t index;
434
435 index = pos >> PAGE_SHIFT;
436
437 page = grab_cache_page_write_begin(mapping, index, flags);
438 if (!page)
439 return -ENOMEM;
440
441 *pagep = page;
442
443 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
444 unsigned from = pos & (PAGE_SIZE - 1);
445
446 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
447 }
448 return 0;
449 }
450 EXPORT_SYMBOL(simple_write_begin);
451
452 /**
453 * simple_write_end - .write_end helper for non-block-device FSes
454 * @available: See .write_end of address_space_operations
455 * @file: "
456 * @mapping: "
457 * @pos: "
458 * @len: "
459 * @copied: "
460 * @page: "
461 * @fsdata: "
462 *
463 * simple_write_end does the minimum needed for updating a page after writing is
464 * done. It has the same API signature as the .write_end of
465 * address_space_operations vector. So it can just be set onto .write_end for
466 * FSes that don't need any other processing. i_mutex is assumed to be held.
467 * Block based filesystems should use generic_write_end().
468 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
469 * is not called, so a filesystem that actually does store data in .write_inode
470 * should extend on what's done here with a call to mark_inode_dirty() in the
471 * case that i_size has changed.
472 *
473 * Use *ONLY* with simple_readpage()
474 */
475 int simple_write_end(struct file *file, struct address_space *mapping,
476 loff_t pos, unsigned len, unsigned copied,
477 struct page *page, void *fsdata)
478 {
479 struct inode *inode = page->mapping->host;
480 loff_t last_pos = pos + copied;
481
482 /* zero the stale part of the page if we did a short copy */
483 if (!PageUptodate(page)) {
484 if (copied < len) {
485 unsigned from = pos & (PAGE_SIZE - 1);
486
487 zero_user(page, from + copied, len - copied);
488 }
489 SetPageUptodate(page);
490 }
491 /*
492 * No need to use i_size_read() here, the i_size
493 * cannot change under us because we hold the i_mutex.
494 */
495 if (last_pos > inode->i_size)
496 i_size_write(inode, last_pos);
497
498 set_page_dirty(page);
499 unlock_page(page);
500 put_page(page);
501
502 return copied;
503 }
504 EXPORT_SYMBOL(simple_write_end);
505
506 /*
507 * the inodes created here are not hashed. If you use iunique to generate
508 * unique inode values later for this filesystem, then you must take care
509 * to pass it an appropriate max_reserved value to avoid collisions.
510 */
511 int simple_fill_super(struct super_block *s, unsigned long magic,
512 const struct tree_descr *files)
513 {
514 struct inode *inode;
515 struct dentry *root;
516 struct dentry *dentry;
517 int i;
518
519 s->s_blocksize = PAGE_SIZE;
520 s->s_blocksize_bits = PAGE_SHIFT;
521 s->s_magic = magic;
522 s->s_op = &simple_super_operations;
523 s->s_time_gran = 1;
524
525 inode = new_inode(s);
526 if (!inode)
527 return -ENOMEM;
528 /*
529 * because the root inode is 1, the files array must not contain an
530 * entry at index 1
531 */
532 inode->i_ino = 1;
533 inode->i_mode = S_IFDIR | 0755;
534 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
535 inode->i_op = &simple_dir_inode_operations;
536 inode->i_fop = &simple_dir_operations;
537 set_nlink(inode, 2);
538 root = d_make_root(inode);
539 if (!root)
540 return -ENOMEM;
541 for (i = 0; !files->name || files->name[0]; i++, files++) {
542 if (!files->name)
543 continue;
544
545 /* warn if it tries to conflict with the root inode */
546 if (unlikely(i == 1))
547 printk(KERN_WARNING "%s: %s passed in a files array"
548 "with an index of 1!\n", __func__,
549 s->s_type->name);
550
551 dentry = d_alloc_name(root, files->name);
552 if (!dentry)
553 goto out;
554 inode = new_inode(s);
555 if (!inode) {
556 dput(dentry);
557 goto out;
558 }
559 inode->i_mode = S_IFREG | files->mode;
560 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
561 inode->i_fop = files->ops;
562 inode->i_ino = i;
563 d_add(dentry, inode);
564 }
565 s->s_root = root;
566 return 0;
567 out:
568 d_genocide(root);
569 shrink_dcache_parent(root);
570 dput(root);
571 return -ENOMEM;
572 }
573 EXPORT_SYMBOL(simple_fill_super);
574
575 static DEFINE_SPINLOCK(pin_fs_lock);
576
577 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
578 {
579 struct vfsmount *mnt = NULL;
580 spin_lock(&pin_fs_lock);
581 if (unlikely(!*mount)) {
582 spin_unlock(&pin_fs_lock);
583 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
584 if (IS_ERR(mnt))
585 return PTR_ERR(mnt);
586 spin_lock(&pin_fs_lock);
587 if (!*mount)
588 *mount = mnt;
589 }
590 mntget(*mount);
591 ++*count;
592 spin_unlock(&pin_fs_lock);
593 mntput(mnt);
594 return 0;
595 }
596 EXPORT_SYMBOL(simple_pin_fs);
597
598 void simple_release_fs(struct vfsmount **mount, int *count)
599 {
600 struct vfsmount *mnt;
601 spin_lock(&pin_fs_lock);
602 mnt = *mount;
603 if (!--*count)
604 *mount = NULL;
605 spin_unlock(&pin_fs_lock);
606 mntput(mnt);
607 }
608 EXPORT_SYMBOL(simple_release_fs);
609
610 /**
611 * simple_read_from_buffer - copy data from the buffer to user space
612 * @to: the user space buffer to read to
613 * @count: the maximum number of bytes to read
614 * @ppos: the current position in the buffer
615 * @from: the buffer to read from
616 * @available: the size of the buffer
617 *
618 * The simple_read_from_buffer() function reads up to @count bytes from the
619 * buffer @from at offset @ppos into the user space address starting at @to.
620 *
621 * On success, the number of bytes read is returned and the offset @ppos is
622 * advanced by this number, or negative value is returned on error.
623 **/
624 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
625 const void *from, size_t available)
626 {
627 loff_t pos = *ppos;
628 size_t ret;
629
630 if (pos < 0)
631 return -EINVAL;
632 if (pos >= available || !count)
633 return 0;
634 if (count > available - pos)
635 count = available - pos;
636 ret = copy_to_user(to, from + pos, count);
637 if (ret == count)
638 return -EFAULT;
639 count -= ret;
640 *ppos = pos + count;
641 return count;
642 }
643 EXPORT_SYMBOL(simple_read_from_buffer);
644
645 /**
646 * simple_write_to_buffer - copy data from user space to the buffer
647 * @to: the buffer to write to
648 * @available: the size of the buffer
649 * @ppos: the current position in the buffer
650 * @from: the user space buffer to read from
651 * @count: the maximum number of bytes to read
652 *
653 * The simple_write_to_buffer() function reads up to @count bytes from the user
654 * space address starting at @from into the buffer @to at offset @ppos.
655 *
656 * On success, the number of bytes written is returned and the offset @ppos is
657 * advanced by this number, or negative value is returned on error.
658 **/
659 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
660 const void __user *from, size_t count)
661 {
662 loff_t pos = *ppos;
663 size_t res;
664
665 if (pos < 0)
666 return -EINVAL;
667 if (pos >= available || !count)
668 return 0;
669 if (count > available - pos)
670 count = available - pos;
671 res = copy_from_user(to + pos, from, count);
672 if (res == count)
673 return -EFAULT;
674 count -= res;
675 *ppos = pos + count;
676 return count;
677 }
678 EXPORT_SYMBOL(simple_write_to_buffer);
679
680 /**
681 * memory_read_from_buffer - copy data from the buffer
682 * @to: the kernel space buffer to read to
683 * @count: the maximum number of bytes to read
684 * @ppos: the current position in the buffer
685 * @from: the buffer to read from
686 * @available: the size of the buffer
687 *
688 * The memory_read_from_buffer() function reads up to @count bytes from the
689 * buffer @from at offset @ppos into the kernel space address starting at @to.
690 *
691 * On success, the number of bytes read is returned and the offset @ppos is
692 * advanced by this number, or negative value is returned on error.
693 **/
694 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
695 const void *from, size_t available)
696 {
697 loff_t pos = *ppos;
698
699 if (pos < 0)
700 return -EINVAL;
701 if (pos >= available)
702 return 0;
703 if (count > available - pos)
704 count = available - pos;
705 memcpy(to, from + pos, count);
706 *ppos = pos + count;
707
708 return count;
709 }
710 EXPORT_SYMBOL(memory_read_from_buffer);
711
712 /*
713 * Transaction based IO.
714 * The file expects a single write which triggers the transaction, and then
715 * possibly a read which collects the result - which is stored in a
716 * file-local buffer.
717 */
718
719 void simple_transaction_set(struct file *file, size_t n)
720 {
721 struct simple_transaction_argresp *ar = file->private_data;
722
723 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
724
725 /*
726 * The barrier ensures that ar->size will really remain zero until
727 * ar->data is ready for reading.
728 */
729 smp_mb();
730 ar->size = n;
731 }
732 EXPORT_SYMBOL(simple_transaction_set);
733
734 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
735 {
736 struct simple_transaction_argresp *ar;
737 static DEFINE_SPINLOCK(simple_transaction_lock);
738
739 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
740 return ERR_PTR(-EFBIG);
741
742 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
743 if (!ar)
744 return ERR_PTR(-ENOMEM);
745
746 spin_lock(&simple_transaction_lock);
747
748 /* only one write allowed per open */
749 if (file->private_data) {
750 spin_unlock(&simple_transaction_lock);
751 free_page((unsigned long)ar);
752 return ERR_PTR(-EBUSY);
753 }
754
755 file->private_data = ar;
756
757 spin_unlock(&simple_transaction_lock);
758
759 if (copy_from_user(ar->data, buf, size))
760 return ERR_PTR(-EFAULT);
761
762 return ar->data;
763 }
764 EXPORT_SYMBOL(simple_transaction_get);
765
766 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
767 {
768 struct simple_transaction_argresp *ar = file->private_data;
769
770 if (!ar)
771 return 0;
772 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
773 }
774 EXPORT_SYMBOL(simple_transaction_read);
775
776 int simple_transaction_release(struct inode *inode, struct file *file)
777 {
778 free_page((unsigned long)file->private_data);
779 return 0;
780 }
781 EXPORT_SYMBOL(simple_transaction_release);
782
783 /* Simple attribute files */
784
785 struct simple_attr {
786 int (*get)(void *, u64 *);
787 int (*set)(void *, u64);
788 char get_buf[24]; /* enough to store a u64 and "\n\0" */
789 char set_buf[24];
790 void *data;
791 const char *fmt; /* format for read operation */
792 struct mutex mutex; /* protects access to these buffers */
793 };
794
795 /* simple_attr_open is called by an actual attribute open file operation
796 * to set the attribute specific access operations. */
797 int simple_attr_open(struct inode *inode, struct file *file,
798 int (*get)(void *, u64 *), int (*set)(void *, u64),
799 const char *fmt)
800 {
801 struct simple_attr *attr;
802
803 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
804 if (!attr)
805 return -ENOMEM;
806
807 attr->get = get;
808 attr->set = set;
809 attr->data = inode->i_private;
810 attr->fmt = fmt;
811 mutex_init(&attr->mutex);
812
813 file->private_data = attr;
814
815 return nonseekable_open(inode, file);
816 }
817 EXPORT_SYMBOL_GPL(simple_attr_open);
818
819 int simple_attr_release(struct inode *inode, struct file *file)
820 {
821 kfree(file->private_data);
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
825
826 /* read from the buffer that is filled with the get function */
827 ssize_t simple_attr_read(struct file *file, char __user *buf,
828 size_t len, loff_t *ppos)
829 {
830 struct simple_attr *attr;
831 size_t size;
832 ssize_t ret;
833
834 attr = file->private_data;
835
836 if (!attr->get)
837 return -EACCES;
838
839 ret = mutex_lock_interruptible(&attr->mutex);
840 if (ret)
841 return ret;
842
843 if (*ppos) { /* continued read */
844 size = strlen(attr->get_buf);
845 } else { /* first read */
846 u64 val;
847 ret = attr->get(attr->data, &val);
848 if (ret)
849 goto out;
850
851 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
852 attr->fmt, (unsigned long long)val);
853 }
854
855 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
856 out:
857 mutex_unlock(&attr->mutex);
858 return ret;
859 }
860 EXPORT_SYMBOL_GPL(simple_attr_read);
861
862 /* interpret the buffer as a number to call the set function with */
863 ssize_t simple_attr_write(struct file *file, const char __user *buf,
864 size_t len, loff_t *ppos)
865 {
866 struct simple_attr *attr;
867 u64 val;
868 size_t size;
869 ssize_t ret;
870
871 attr = file->private_data;
872 if (!attr->set)
873 return -EACCES;
874
875 ret = mutex_lock_interruptible(&attr->mutex);
876 if (ret)
877 return ret;
878
879 ret = -EFAULT;
880 size = min(sizeof(attr->set_buf) - 1, len);
881 if (copy_from_user(attr->set_buf, buf, size))
882 goto out;
883
884 attr->set_buf[size] = '\0';
885 val = simple_strtoll(attr->set_buf, NULL, 0);
886 ret = attr->set(attr->data, val);
887 if (ret == 0)
888 ret = len; /* on success, claim we got the whole input */
889 out:
890 mutex_unlock(&attr->mutex);
891 return ret;
892 }
893 EXPORT_SYMBOL_GPL(simple_attr_write);
894
895 /**
896 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
897 * @sb: filesystem to do the file handle conversion on
898 * @fid: file handle to convert
899 * @fh_len: length of the file handle in bytes
900 * @fh_type: type of file handle
901 * @get_inode: filesystem callback to retrieve inode
902 *
903 * This function decodes @fid as long as it has one of the well-known
904 * Linux filehandle types and calls @get_inode on it to retrieve the
905 * inode for the object specified in the file handle.
906 */
907 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
908 int fh_len, int fh_type, struct inode *(*get_inode)
909 (struct super_block *sb, u64 ino, u32 gen))
910 {
911 struct inode *inode = NULL;
912
913 if (fh_len < 2)
914 return NULL;
915
916 switch (fh_type) {
917 case FILEID_INO32_GEN:
918 case FILEID_INO32_GEN_PARENT:
919 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
920 break;
921 }
922
923 return d_obtain_alias(inode);
924 }
925 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
926
927 /**
928 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
929 * @sb: filesystem to do the file handle conversion on
930 * @fid: file handle to convert
931 * @fh_len: length of the file handle in bytes
932 * @fh_type: type of file handle
933 * @get_inode: filesystem callback to retrieve inode
934 *
935 * This function decodes @fid as long as it has one of the well-known
936 * Linux filehandle types and calls @get_inode on it to retrieve the
937 * inode for the _parent_ object specified in the file handle if it
938 * is specified in the file handle, or NULL otherwise.
939 */
940 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
941 int fh_len, int fh_type, struct inode *(*get_inode)
942 (struct super_block *sb, u64 ino, u32 gen))
943 {
944 struct inode *inode = NULL;
945
946 if (fh_len <= 2)
947 return NULL;
948
949 switch (fh_type) {
950 case FILEID_INO32_GEN_PARENT:
951 inode = get_inode(sb, fid->i32.parent_ino,
952 (fh_len > 3 ? fid->i32.parent_gen : 0));
953 break;
954 }
955
956 return d_obtain_alias(inode);
957 }
958 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
959
960 /**
961 * __generic_file_fsync - generic fsync implementation for simple filesystems
962 *
963 * @file: file to synchronize
964 * @start: start offset in bytes
965 * @end: end offset in bytes (inclusive)
966 * @datasync: only synchronize essential metadata if true
967 *
968 * This is a generic implementation of the fsync method for simple
969 * filesystems which track all non-inode metadata in the buffers list
970 * hanging off the address_space structure.
971 */
972 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
973 int datasync)
974 {
975 struct inode *inode = file->f_mapping->host;
976 int err;
977 int ret;
978
979 err = file_write_and_wait_range(file, start, end);
980 if (err)
981 return err;
982
983 inode_lock(inode);
984 ret = sync_mapping_buffers(inode->i_mapping);
985 if (!(inode->i_state & I_DIRTY_ALL))
986 goto out;
987 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
988 goto out;
989
990 err = sync_inode_metadata(inode, 1);
991 if (ret == 0)
992 ret = err;
993
994 out:
995 inode_unlock(inode);
996 /* check and advance again to catch errors after syncing out buffers */
997 err = file_check_and_advance_wb_err(file);
998 if (ret == 0)
999 ret = err;
1000 return ret;
1001 }
1002 EXPORT_SYMBOL(__generic_file_fsync);
1003
1004 /**
1005 * generic_file_fsync - generic fsync implementation for simple filesystems
1006 * with flush
1007 * @file: file to synchronize
1008 * @start: start offset in bytes
1009 * @end: end offset in bytes (inclusive)
1010 * @datasync: only synchronize essential metadata if true
1011 *
1012 */
1013
1014 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1015 int datasync)
1016 {
1017 struct inode *inode = file->f_mapping->host;
1018 int err;
1019
1020 err = __generic_file_fsync(file, start, end, datasync);
1021 if (err)
1022 return err;
1023 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1024 }
1025 EXPORT_SYMBOL(generic_file_fsync);
1026
1027 /**
1028 * generic_check_addressable - Check addressability of file system
1029 * @blocksize_bits: log of file system block size
1030 * @num_blocks: number of blocks in file system
1031 *
1032 * Determine whether a file system with @num_blocks blocks (and a
1033 * block size of 2**@blocksize_bits) is addressable by the sector_t
1034 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1035 */
1036 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1037 {
1038 u64 last_fs_block = num_blocks - 1;
1039 u64 last_fs_page =
1040 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1041
1042 if (unlikely(num_blocks == 0))
1043 return 0;
1044
1045 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1046 return -EINVAL;
1047
1048 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1049 (last_fs_page > (pgoff_t)(~0ULL))) {
1050 return -EFBIG;
1051 }
1052 return 0;
1053 }
1054 EXPORT_SYMBOL(generic_check_addressable);
1055
1056 /*
1057 * No-op implementation of ->fsync for in-memory filesystems.
1058 */
1059 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1060 {
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(noop_fsync);
1064
1065 int noop_set_page_dirty(struct page *page)
1066 {
1067 /*
1068 * Unlike __set_page_dirty_no_writeback that handles dirty page
1069 * tracking in the page object, dax does all dirty tracking in
1070 * the inode address_space in response to mkwrite faults. In the
1071 * dax case we only need to worry about potentially dirty CPU
1072 * caches, not dirty page cache pages to write back.
1073 *
1074 * This callback is defined to prevent fallback to
1075 * __set_page_dirty_buffers() in set_page_dirty().
1076 */
1077 return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1080
1081 void noop_invalidatepage(struct page *page, unsigned int offset,
1082 unsigned int length)
1083 {
1084 /*
1085 * There is no page cache to invalidate in the dax case, however
1086 * we need this callback defined to prevent falling back to
1087 * block_invalidatepage() in do_invalidatepage().
1088 */
1089 }
1090 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1091
1092 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1093 {
1094 /*
1095 * iomap based filesystems support direct I/O without need for
1096 * this callback. However, it still needs to be set in
1097 * inode->a_ops so that open/fcntl know that direct I/O is
1098 * generally supported.
1099 */
1100 return -EINVAL;
1101 }
1102 EXPORT_SYMBOL_GPL(noop_direct_IO);
1103
1104 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1105 void kfree_link(void *p)
1106 {
1107 kfree(p);
1108 }
1109 EXPORT_SYMBOL(kfree_link);
1110
1111 /*
1112 * nop .set_page_dirty method so that people can use .page_mkwrite on
1113 * anon inodes.
1114 */
1115 static int anon_set_page_dirty(struct page *page)
1116 {
1117 return 0;
1118 };
1119
1120 /*
1121 * A single inode exists for all anon_inode files. Contrary to pipes,
1122 * anon_inode inodes have no associated per-instance data, so we need
1123 * only allocate one of them.
1124 */
1125 struct inode *alloc_anon_inode(struct super_block *s)
1126 {
1127 static const struct address_space_operations anon_aops = {
1128 .set_page_dirty = anon_set_page_dirty,
1129 };
1130 struct inode *inode = new_inode_pseudo(s);
1131
1132 if (!inode)
1133 return ERR_PTR(-ENOMEM);
1134
1135 inode->i_ino = get_next_ino();
1136 inode->i_mapping->a_ops = &anon_aops;
1137
1138 /*
1139 * Mark the inode dirty from the very beginning,
1140 * that way it will never be moved to the dirty
1141 * list because mark_inode_dirty() will think
1142 * that it already _is_ on the dirty list.
1143 */
1144 inode->i_state = I_DIRTY;
1145 inode->i_mode = S_IRUSR | S_IWUSR;
1146 inode->i_uid = current_fsuid();
1147 inode->i_gid = current_fsgid();
1148 inode->i_flags |= S_PRIVATE;
1149 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1150 return inode;
1151 }
1152 EXPORT_SYMBOL(alloc_anon_inode);
1153
1154 /**
1155 * simple_nosetlease - generic helper for prohibiting leases
1156 * @filp: file pointer
1157 * @arg: type of lease to obtain
1158 * @flp: new lease supplied for insertion
1159 * @priv: private data for lm_setup operation
1160 *
1161 * Generic helper for filesystems that do not wish to allow leases to be set.
1162 * All arguments are ignored and it just returns -EINVAL.
1163 */
1164 int
1165 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1166 void **priv)
1167 {
1168 return -EINVAL;
1169 }
1170 EXPORT_SYMBOL(simple_nosetlease);
1171
1172 /**
1173 * simple_get_link - generic helper to get the target of "fast" symlinks
1174 * @dentry: not used here
1175 * @inode: the symlink inode
1176 * @done: not used here
1177 *
1178 * Generic helper for filesystems to use for symlink inodes where a pointer to
1179 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1180 * since as an optimization the path lookup code uses any non-NULL ->i_link
1181 * directly, without calling ->get_link(). But ->get_link() still must be set,
1182 * to mark the inode_operations as being for a symlink.
1183 *
1184 * Return: the symlink target
1185 */
1186 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1187 struct delayed_call *done)
1188 {
1189 return inode->i_link;
1190 }
1191 EXPORT_SYMBOL(simple_get_link);
1192
1193 const struct inode_operations simple_symlink_inode_operations = {
1194 .get_link = simple_get_link,
1195 };
1196 EXPORT_SYMBOL(simple_symlink_inode_operations);
1197
1198 /*
1199 * Operations for a permanently empty directory.
1200 */
1201 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1202 {
1203 return ERR_PTR(-ENOENT);
1204 }
1205
1206 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1207 u32 request_mask, unsigned int query_flags)
1208 {
1209 struct inode *inode = d_inode(path->dentry);
1210 generic_fillattr(inode, stat);
1211 return 0;
1212 }
1213
1214 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1215 {
1216 return -EPERM;
1217 }
1218
1219 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1220 {
1221 return -EOPNOTSUPP;
1222 }
1223
1224 static const struct inode_operations empty_dir_inode_operations = {
1225 .lookup = empty_dir_lookup,
1226 .permission = generic_permission,
1227 .setattr = empty_dir_setattr,
1228 .getattr = empty_dir_getattr,
1229 .listxattr = empty_dir_listxattr,
1230 };
1231
1232 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1233 {
1234 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1235 return generic_file_llseek_size(file, offset, whence, 2, 2);
1236 }
1237
1238 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1239 {
1240 dir_emit_dots(file, ctx);
1241 return 0;
1242 }
1243
1244 static const struct file_operations empty_dir_operations = {
1245 .llseek = empty_dir_llseek,
1246 .read = generic_read_dir,
1247 .iterate_shared = empty_dir_readdir,
1248 .fsync = noop_fsync,
1249 };
1250
1251
1252 void make_empty_dir_inode(struct inode *inode)
1253 {
1254 set_nlink(inode, 2);
1255 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1256 inode->i_uid = GLOBAL_ROOT_UID;
1257 inode->i_gid = GLOBAL_ROOT_GID;
1258 inode->i_rdev = 0;
1259 inode->i_size = 0;
1260 inode->i_blkbits = PAGE_SHIFT;
1261 inode->i_blocks = 0;
1262
1263 inode->i_op = &empty_dir_inode_operations;
1264 inode->i_opflags &= ~IOP_XATTR;
1265 inode->i_fop = &empty_dir_operations;
1266 }
1267
1268 bool is_empty_dir_inode(struct inode *inode)
1269 {
1270 return (inode->i_fop == &empty_dir_operations) &&
1271 (inode->i_op == &empty_dir_inode_operations);
1272 }