]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/libfs.c
NFS: LOOKUP_DIRECTORY is also ok with symlinks
[mirror_ubuntu-focal-kernel.git] / fs / libfs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/io.h>
23
24 #include <linux/uaccess.h>
25
26 #include "internal.h"
27
28 int simple_getattr(const struct path *path, struct kstat *stat,
29 u32 request_mask, unsigned int query_flags)
30 {
31 struct inode *inode = d_inode(path->dentry);
32 generic_fillattr(inode, stat);
33 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
34 return 0;
35 }
36 EXPORT_SYMBOL(simple_getattr);
37
38 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39 {
40 buf->f_type = dentry->d_sb->s_magic;
41 buf->f_bsize = PAGE_SIZE;
42 buf->f_namelen = NAME_MAX;
43 return 0;
44 }
45 EXPORT_SYMBOL(simple_statfs);
46
47 /*
48 * Retaining negative dentries for an in-memory filesystem just wastes
49 * memory and lookup time: arrange for them to be deleted immediately.
50 */
51 int always_delete_dentry(const struct dentry *dentry)
52 {
53 return 1;
54 }
55 EXPORT_SYMBOL(always_delete_dentry);
56
57 const struct dentry_operations simple_dentry_operations = {
58 .d_delete = always_delete_dentry,
59 };
60 EXPORT_SYMBOL(simple_dentry_operations);
61
62 /*
63 * Lookup the data. This is trivial - if the dentry didn't already
64 * exist, we know it is negative. Set d_op to delete negative dentries.
65 */
66 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
67 {
68 if (dentry->d_name.len > NAME_MAX)
69 return ERR_PTR(-ENAMETOOLONG);
70 if (!dentry->d_sb->s_d_op)
71 d_set_d_op(dentry, &simple_dentry_operations);
72 d_add(dentry, NULL);
73 return NULL;
74 }
75 EXPORT_SYMBOL(simple_lookup);
76
77 int dcache_dir_open(struct inode *inode, struct file *file)
78 {
79 file->private_data = d_alloc_cursor(file->f_path.dentry);
80
81 return file->private_data ? 0 : -ENOMEM;
82 }
83 EXPORT_SYMBOL(dcache_dir_open);
84
85 int dcache_dir_close(struct inode *inode, struct file *file)
86 {
87 dput(file->private_data);
88 return 0;
89 }
90 EXPORT_SYMBOL(dcache_dir_close);
91
92 /* parent is locked at least shared */
93 /*
94 * Returns an element of siblings' list.
95 * We are looking for <count>th positive after <p>; if
96 * found, dentry is grabbed and returned to caller.
97 * If no such element exists, NULL is returned.
98 */
99 static struct dentry *scan_positives(struct dentry *cursor,
100 struct list_head *p,
101 loff_t count,
102 struct dentry *last)
103 {
104 struct dentry *dentry = cursor->d_parent, *found = NULL;
105
106 spin_lock(&dentry->d_lock);
107 while ((p = p->next) != &dentry->d_subdirs) {
108 struct dentry *d = list_entry(p, struct dentry, d_child);
109 // we must at least skip cursors, to avoid livelocks
110 if (d->d_flags & DCACHE_DENTRY_CURSOR)
111 continue;
112 if (simple_positive(d) && !--count) {
113 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
114 if (simple_positive(d))
115 found = dget_dlock(d);
116 spin_unlock(&d->d_lock);
117 if (likely(found))
118 break;
119 count = 1;
120 }
121 if (need_resched()) {
122 list_move(&cursor->d_child, p);
123 p = &cursor->d_child;
124 spin_unlock(&dentry->d_lock);
125 cond_resched();
126 spin_lock(&dentry->d_lock);
127 }
128 }
129 spin_unlock(&dentry->d_lock);
130 dput(last);
131 return found;
132 }
133
134 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
135 {
136 struct dentry *dentry = file->f_path.dentry;
137 switch (whence) {
138 case 1:
139 offset += file->f_pos;
140 /* fall through */
141 case 0:
142 if (offset >= 0)
143 break;
144 /* fall through */
145 default:
146 return -EINVAL;
147 }
148 if (offset != file->f_pos) {
149 struct dentry *cursor = file->private_data;
150 struct dentry *to = NULL;
151
152 inode_lock_shared(dentry->d_inode);
153
154 if (offset > 2)
155 to = scan_positives(cursor, &dentry->d_subdirs,
156 offset - 2, NULL);
157 spin_lock(&dentry->d_lock);
158 if (to)
159 list_move(&cursor->d_child, &to->d_child);
160 else
161 list_del_init(&cursor->d_child);
162 spin_unlock(&dentry->d_lock);
163 dput(to);
164
165 file->f_pos = offset;
166
167 inode_unlock_shared(dentry->d_inode);
168 }
169 return offset;
170 }
171 EXPORT_SYMBOL(dcache_dir_lseek);
172
173 /* Relationship between i_mode and the DT_xxx types */
174 static inline unsigned char dt_type(struct inode *inode)
175 {
176 return (inode->i_mode >> 12) & 15;
177 }
178
179 /*
180 * Directory is locked and all positive dentries in it are safe, since
181 * for ramfs-type trees they can't go away without unlink() or rmdir(),
182 * both impossible due to the lock on directory.
183 */
184
185 int dcache_readdir(struct file *file, struct dir_context *ctx)
186 {
187 struct dentry *dentry = file->f_path.dentry;
188 struct dentry *cursor = file->private_data;
189 struct list_head *anchor = &dentry->d_subdirs;
190 struct dentry *next = NULL;
191 struct list_head *p;
192
193 if (!dir_emit_dots(file, ctx))
194 return 0;
195
196 if (ctx->pos == 2)
197 p = anchor;
198 else if (!list_empty(&cursor->d_child))
199 p = &cursor->d_child;
200 else
201 return 0;
202
203 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
204 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
205 d_inode(next)->i_ino, dt_type(d_inode(next))))
206 break;
207 ctx->pos++;
208 p = &next->d_child;
209 }
210 spin_lock(&dentry->d_lock);
211 if (next)
212 list_move_tail(&cursor->d_child, &next->d_child);
213 else
214 list_del_init(&cursor->d_child);
215 spin_unlock(&dentry->d_lock);
216 dput(next);
217
218 return 0;
219 }
220 EXPORT_SYMBOL(dcache_readdir);
221
222 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223 {
224 return -EISDIR;
225 }
226 EXPORT_SYMBOL(generic_read_dir);
227
228 const struct file_operations simple_dir_operations = {
229 .open = dcache_dir_open,
230 .release = dcache_dir_close,
231 .llseek = dcache_dir_lseek,
232 .read = generic_read_dir,
233 .iterate_shared = dcache_readdir,
234 .fsync = noop_fsync,
235 };
236 EXPORT_SYMBOL(simple_dir_operations);
237
238 const struct inode_operations simple_dir_inode_operations = {
239 .lookup = simple_lookup,
240 };
241 EXPORT_SYMBOL(simple_dir_inode_operations);
242
243 static const struct super_operations simple_super_operations = {
244 .statfs = simple_statfs,
245 };
246
247 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
248 {
249 struct pseudo_fs_context *ctx = fc->fs_private;
250 struct inode *root;
251
252 s->s_maxbytes = MAX_LFS_FILESIZE;
253 s->s_blocksize = PAGE_SIZE;
254 s->s_blocksize_bits = PAGE_SHIFT;
255 s->s_magic = ctx->magic;
256 s->s_op = ctx->ops ?: &simple_super_operations;
257 s->s_xattr = ctx->xattr;
258 s->s_time_gran = 1;
259 root = new_inode(s);
260 if (!root)
261 return -ENOMEM;
262
263 /*
264 * since this is the first inode, make it number 1. New inodes created
265 * after this must take care not to collide with it (by passing
266 * max_reserved of 1 to iunique).
267 */
268 root->i_ino = 1;
269 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
270 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
271 s->s_root = d_make_root(root);
272 if (!s->s_root)
273 return -ENOMEM;
274 s->s_d_op = ctx->dops;
275 return 0;
276 }
277
278 static int pseudo_fs_get_tree(struct fs_context *fc)
279 {
280 return get_tree_nodev(fc, pseudo_fs_fill_super);
281 }
282
283 static void pseudo_fs_free(struct fs_context *fc)
284 {
285 kfree(fc->fs_private);
286 }
287
288 static const struct fs_context_operations pseudo_fs_context_ops = {
289 .free = pseudo_fs_free,
290 .get_tree = pseudo_fs_get_tree,
291 };
292
293 /*
294 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
295 * will never be mountable)
296 */
297 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
298 unsigned long magic)
299 {
300 struct pseudo_fs_context *ctx;
301
302 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
303 if (likely(ctx)) {
304 ctx->magic = magic;
305 fc->fs_private = ctx;
306 fc->ops = &pseudo_fs_context_ops;
307 fc->sb_flags |= SB_NOUSER;
308 fc->global = true;
309 }
310 return ctx;
311 }
312 EXPORT_SYMBOL(init_pseudo);
313
314 int simple_open(struct inode *inode, struct file *file)
315 {
316 if (inode->i_private)
317 file->private_data = inode->i_private;
318 return 0;
319 }
320 EXPORT_SYMBOL(simple_open);
321
322 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
323 {
324 struct inode *inode = d_inode(old_dentry);
325
326 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
327 inc_nlink(inode);
328 ihold(inode);
329 dget(dentry);
330 d_instantiate(dentry, inode);
331 return 0;
332 }
333 EXPORT_SYMBOL(simple_link);
334
335 int simple_empty(struct dentry *dentry)
336 {
337 struct dentry *child;
338 int ret = 0;
339
340 spin_lock(&dentry->d_lock);
341 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
342 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
343 if (simple_positive(child)) {
344 spin_unlock(&child->d_lock);
345 goto out;
346 }
347 spin_unlock(&child->d_lock);
348 }
349 ret = 1;
350 out:
351 spin_unlock(&dentry->d_lock);
352 return ret;
353 }
354 EXPORT_SYMBOL(simple_empty);
355
356 int simple_unlink(struct inode *dir, struct dentry *dentry)
357 {
358 struct inode *inode = d_inode(dentry);
359
360 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
361 drop_nlink(inode);
362 dput(dentry);
363 return 0;
364 }
365 EXPORT_SYMBOL(simple_unlink);
366
367 int simple_rmdir(struct inode *dir, struct dentry *dentry)
368 {
369 if (!simple_empty(dentry))
370 return -ENOTEMPTY;
371
372 drop_nlink(d_inode(dentry));
373 simple_unlink(dir, dentry);
374 drop_nlink(dir);
375 return 0;
376 }
377 EXPORT_SYMBOL(simple_rmdir);
378
379 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
380 struct inode *new_dir, struct dentry *new_dentry,
381 unsigned int flags)
382 {
383 struct inode *inode = d_inode(old_dentry);
384 int they_are_dirs = d_is_dir(old_dentry);
385
386 if (flags & ~RENAME_NOREPLACE)
387 return -EINVAL;
388
389 if (!simple_empty(new_dentry))
390 return -ENOTEMPTY;
391
392 if (d_really_is_positive(new_dentry)) {
393 simple_unlink(new_dir, new_dentry);
394 if (they_are_dirs) {
395 drop_nlink(d_inode(new_dentry));
396 drop_nlink(old_dir);
397 }
398 } else if (they_are_dirs) {
399 drop_nlink(old_dir);
400 inc_nlink(new_dir);
401 }
402
403 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
404 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
405
406 return 0;
407 }
408 EXPORT_SYMBOL(simple_rename);
409
410 /**
411 * simple_setattr - setattr for simple filesystem
412 * @dentry: dentry
413 * @iattr: iattr structure
414 *
415 * Returns 0 on success, -error on failure.
416 *
417 * simple_setattr is a simple ->setattr implementation without a proper
418 * implementation of size changes.
419 *
420 * It can either be used for in-memory filesystems or special files
421 * on simple regular filesystems. Anything that needs to change on-disk
422 * or wire state on size changes needs its own setattr method.
423 */
424 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
425 {
426 struct inode *inode = d_inode(dentry);
427 int error;
428
429 error = setattr_prepare(dentry, iattr);
430 if (error)
431 return error;
432
433 if (iattr->ia_valid & ATTR_SIZE)
434 truncate_setsize(inode, iattr->ia_size);
435 setattr_copy(inode, iattr);
436 mark_inode_dirty(inode);
437 return 0;
438 }
439 EXPORT_SYMBOL(simple_setattr);
440
441 int simple_readpage(struct file *file, struct page *page)
442 {
443 clear_highpage(page);
444 flush_dcache_page(page);
445 SetPageUptodate(page);
446 unlock_page(page);
447 return 0;
448 }
449 EXPORT_SYMBOL(simple_readpage);
450
451 int simple_write_begin(struct file *file, struct address_space *mapping,
452 loff_t pos, unsigned len, unsigned flags,
453 struct page **pagep, void **fsdata)
454 {
455 struct page *page;
456 pgoff_t index;
457
458 index = pos >> PAGE_SHIFT;
459
460 page = grab_cache_page_write_begin(mapping, index, flags);
461 if (!page)
462 return -ENOMEM;
463
464 *pagep = page;
465
466 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
467 unsigned from = pos & (PAGE_SIZE - 1);
468
469 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
470 }
471 return 0;
472 }
473 EXPORT_SYMBOL(simple_write_begin);
474
475 /**
476 * simple_write_end - .write_end helper for non-block-device FSes
477 * @file: See .write_end of address_space_operations
478 * @mapping: "
479 * @pos: "
480 * @len: "
481 * @copied: "
482 * @page: "
483 * @fsdata: "
484 *
485 * simple_write_end does the minimum needed for updating a page after writing is
486 * done. It has the same API signature as the .write_end of
487 * address_space_operations vector. So it can just be set onto .write_end for
488 * FSes that don't need any other processing. i_mutex is assumed to be held.
489 * Block based filesystems should use generic_write_end().
490 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
491 * is not called, so a filesystem that actually does store data in .write_inode
492 * should extend on what's done here with a call to mark_inode_dirty() in the
493 * case that i_size has changed.
494 *
495 * Use *ONLY* with simple_readpage()
496 */
497 int simple_write_end(struct file *file, struct address_space *mapping,
498 loff_t pos, unsigned len, unsigned copied,
499 struct page *page, void *fsdata)
500 {
501 struct inode *inode = page->mapping->host;
502 loff_t last_pos = pos + copied;
503
504 /* zero the stale part of the page if we did a short copy */
505 if (!PageUptodate(page)) {
506 if (copied < len) {
507 unsigned from = pos & (PAGE_SIZE - 1);
508
509 zero_user(page, from + copied, len - copied);
510 }
511 SetPageUptodate(page);
512 }
513 /*
514 * No need to use i_size_read() here, the i_size
515 * cannot change under us because we hold the i_mutex.
516 */
517 if (last_pos > inode->i_size)
518 i_size_write(inode, last_pos);
519
520 set_page_dirty(page);
521 unlock_page(page);
522 put_page(page);
523
524 return copied;
525 }
526 EXPORT_SYMBOL(simple_write_end);
527
528 /*
529 * the inodes created here are not hashed. If you use iunique to generate
530 * unique inode values later for this filesystem, then you must take care
531 * to pass it an appropriate max_reserved value to avoid collisions.
532 */
533 int simple_fill_super(struct super_block *s, unsigned long magic,
534 const struct tree_descr *files)
535 {
536 struct inode *inode;
537 struct dentry *root;
538 struct dentry *dentry;
539 int i;
540
541 s->s_blocksize = PAGE_SIZE;
542 s->s_blocksize_bits = PAGE_SHIFT;
543 s->s_magic = magic;
544 s->s_op = &simple_super_operations;
545 s->s_time_gran = 1;
546
547 inode = new_inode(s);
548 if (!inode)
549 return -ENOMEM;
550 /*
551 * because the root inode is 1, the files array must not contain an
552 * entry at index 1
553 */
554 inode->i_ino = 1;
555 inode->i_mode = S_IFDIR | 0755;
556 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
557 inode->i_op = &simple_dir_inode_operations;
558 inode->i_fop = &simple_dir_operations;
559 set_nlink(inode, 2);
560 root = d_make_root(inode);
561 if (!root)
562 return -ENOMEM;
563 for (i = 0; !files->name || files->name[0]; i++, files++) {
564 if (!files->name)
565 continue;
566
567 /* warn if it tries to conflict with the root inode */
568 if (unlikely(i == 1))
569 printk(KERN_WARNING "%s: %s passed in a files array"
570 "with an index of 1!\n", __func__,
571 s->s_type->name);
572
573 dentry = d_alloc_name(root, files->name);
574 if (!dentry)
575 goto out;
576 inode = new_inode(s);
577 if (!inode) {
578 dput(dentry);
579 goto out;
580 }
581 inode->i_mode = S_IFREG | files->mode;
582 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
583 inode->i_fop = files->ops;
584 inode->i_ino = i;
585 d_add(dentry, inode);
586 }
587 s->s_root = root;
588 return 0;
589 out:
590 d_genocide(root);
591 shrink_dcache_parent(root);
592 dput(root);
593 return -ENOMEM;
594 }
595 EXPORT_SYMBOL(simple_fill_super);
596
597 static DEFINE_SPINLOCK(pin_fs_lock);
598
599 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
600 {
601 struct vfsmount *mnt = NULL;
602 spin_lock(&pin_fs_lock);
603 if (unlikely(!*mount)) {
604 spin_unlock(&pin_fs_lock);
605 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
606 if (IS_ERR(mnt))
607 return PTR_ERR(mnt);
608 spin_lock(&pin_fs_lock);
609 if (!*mount)
610 *mount = mnt;
611 }
612 mntget(*mount);
613 ++*count;
614 spin_unlock(&pin_fs_lock);
615 mntput(mnt);
616 return 0;
617 }
618 EXPORT_SYMBOL(simple_pin_fs);
619
620 void simple_release_fs(struct vfsmount **mount, int *count)
621 {
622 struct vfsmount *mnt;
623 spin_lock(&pin_fs_lock);
624 mnt = *mount;
625 if (!--*count)
626 *mount = NULL;
627 spin_unlock(&pin_fs_lock);
628 mntput(mnt);
629 }
630 EXPORT_SYMBOL(simple_release_fs);
631
632 /**
633 * simple_read_from_buffer - copy data from the buffer to user space
634 * @to: the user space buffer to read to
635 * @count: the maximum number of bytes to read
636 * @ppos: the current position in the buffer
637 * @from: the buffer to read from
638 * @available: the size of the buffer
639 *
640 * The simple_read_from_buffer() function reads up to @count bytes from the
641 * buffer @from at offset @ppos into the user space address starting at @to.
642 *
643 * On success, the number of bytes read is returned and the offset @ppos is
644 * advanced by this number, or negative value is returned on error.
645 **/
646 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
647 const void *from, size_t available)
648 {
649 loff_t pos = *ppos;
650 size_t ret;
651
652 if (pos < 0)
653 return -EINVAL;
654 if (pos >= available || !count)
655 return 0;
656 if (count > available - pos)
657 count = available - pos;
658 ret = copy_to_user(to, from + pos, count);
659 if (ret == count)
660 return -EFAULT;
661 count -= ret;
662 *ppos = pos + count;
663 return count;
664 }
665 EXPORT_SYMBOL(simple_read_from_buffer);
666
667 /**
668 * simple_write_to_buffer - copy data from user space to the buffer
669 * @to: the buffer to write to
670 * @available: the size of the buffer
671 * @ppos: the current position in the buffer
672 * @from: the user space buffer to read from
673 * @count: the maximum number of bytes to read
674 *
675 * The simple_write_to_buffer() function reads up to @count bytes from the user
676 * space address starting at @from into the buffer @to at offset @ppos.
677 *
678 * On success, the number of bytes written is returned and the offset @ppos is
679 * advanced by this number, or negative value is returned on error.
680 **/
681 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
682 const void __user *from, size_t count)
683 {
684 loff_t pos = *ppos;
685 size_t res;
686
687 if (pos < 0)
688 return -EINVAL;
689 if (pos >= available || !count)
690 return 0;
691 if (count > available - pos)
692 count = available - pos;
693 res = copy_from_user(to + pos, from, count);
694 if (res == count)
695 return -EFAULT;
696 count -= res;
697 *ppos = pos + count;
698 return count;
699 }
700 EXPORT_SYMBOL(simple_write_to_buffer);
701
702 /**
703 * memory_read_from_buffer - copy data from the buffer
704 * @to: the kernel space buffer to read to
705 * @count: the maximum number of bytes to read
706 * @ppos: the current position in the buffer
707 * @from: the buffer to read from
708 * @available: the size of the buffer
709 *
710 * The memory_read_from_buffer() function reads up to @count bytes from the
711 * buffer @from at offset @ppos into the kernel space address starting at @to.
712 *
713 * On success, the number of bytes read is returned and the offset @ppos is
714 * advanced by this number, or negative value is returned on error.
715 **/
716 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
717 const void *from, size_t available)
718 {
719 loff_t pos = *ppos;
720
721 if (pos < 0)
722 return -EINVAL;
723 if (pos >= available)
724 return 0;
725 if (count > available - pos)
726 count = available - pos;
727 memcpy(to, from + pos, count);
728 *ppos = pos + count;
729
730 return count;
731 }
732 EXPORT_SYMBOL(memory_read_from_buffer);
733
734 /**
735 * memory_read_from_io_buffer - copy data from a io memory mapped buffer
736 * @to: the kernel space buffer to read to
737 * @count: the maximum number of bytes to read
738 * @ppos: the current position in the buffer
739 * @from: the buffer to read from
740 * @available: the size of the buffer
741 *
742 * The memory_read_from_buffer() function reads up to @count bytes from the
743 * io memory mappy buffer @from at offset @ppos into the kernel space address
744 * starting at @to.
745 *
746 * On success, the number of bytes read is returned and the offset @ppos is
747 * advanced by this number, or negative value is returned on error.
748 **/
749 ssize_t memory_read_from_io_buffer(void *to, size_t count, loff_t *ppos,
750 const void *from, size_t available)
751 {
752 loff_t pos = *ppos;
753
754 if (pos < 0)
755 return -EINVAL;
756 if (pos >= available)
757 return 0;
758 if (count > available - pos)
759 count = available - pos;
760 memcpy_fromio(to, from + pos, count);
761 *ppos = pos + count;
762
763 return count;
764 }
765 EXPORT_SYMBOL(memory_read_from_io_buffer);
766
767 /*
768 * Transaction based IO.
769 * The file expects a single write which triggers the transaction, and then
770 * possibly a read which collects the result - which is stored in a
771 * file-local buffer.
772 */
773
774 void simple_transaction_set(struct file *file, size_t n)
775 {
776 struct simple_transaction_argresp *ar = file->private_data;
777
778 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
779
780 /*
781 * The barrier ensures that ar->size will really remain zero until
782 * ar->data is ready for reading.
783 */
784 smp_mb();
785 ar->size = n;
786 }
787 EXPORT_SYMBOL(simple_transaction_set);
788
789 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
790 {
791 struct simple_transaction_argresp *ar;
792 static DEFINE_SPINLOCK(simple_transaction_lock);
793
794 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
795 return ERR_PTR(-EFBIG);
796
797 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
798 if (!ar)
799 return ERR_PTR(-ENOMEM);
800
801 spin_lock(&simple_transaction_lock);
802
803 /* only one write allowed per open */
804 if (file->private_data) {
805 spin_unlock(&simple_transaction_lock);
806 free_page((unsigned long)ar);
807 return ERR_PTR(-EBUSY);
808 }
809
810 file->private_data = ar;
811
812 spin_unlock(&simple_transaction_lock);
813
814 if (copy_from_user(ar->data, buf, size))
815 return ERR_PTR(-EFAULT);
816
817 return ar->data;
818 }
819 EXPORT_SYMBOL(simple_transaction_get);
820
821 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
822 {
823 struct simple_transaction_argresp *ar = file->private_data;
824
825 if (!ar)
826 return 0;
827 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
828 }
829 EXPORT_SYMBOL(simple_transaction_read);
830
831 int simple_transaction_release(struct inode *inode, struct file *file)
832 {
833 free_page((unsigned long)file->private_data);
834 return 0;
835 }
836 EXPORT_SYMBOL(simple_transaction_release);
837
838 /* Simple attribute files */
839
840 struct simple_attr {
841 int (*get)(void *, u64 *);
842 int (*set)(void *, u64);
843 char get_buf[24]; /* enough to store a u64 and "\n\0" */
844 char set_buf[24];
845 void *data;
846 const char *fmt; /* format for read operation */
847 struct mutex mutex; /* protects access to these buffers */
848 };
849
850 /* simple_attr_open is called by an actual attribute open file operation
851 * to set the attribute specific access operations. */
852 int simple_attr_open(struct inode *inode, struct file *file,
853 int (*get)(void *, u64 *), int (*set)(void *, u64),
854 const char *fmt)
855 {
856 struct simple_attr *attr;
857
858 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
859 if (!attr)
860 return -ENOMEM;
861
862 attr->get = get;
863 attr->set = set;
864 attr->data = inode->i_private;
865 attr->fmt = fmt;
866 mutex_init(&attr->mutex);
867
868 file->private_data = attr;
869
870 return nonseekable_open(inode, file);
871 }
872 EXPORT_SYMBOL_GPL(simple_attr_open);
873
874 int simple_attr_release(struct inode *inode, struct file *file)
875 {
876 kfree(file->private_data);
877 return 0;
878 }
879 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
880
881 /* read from the buffer that is filled with the get function */
882 ssize_t simple_attr_read(struct file *file, char __user *buf,
883 size_t len, loff_t *ppos)
884 {
885 struct simple_attr *attr;
886 size_t size;
887 ssize_t ret;
888
889 attr = file->private_data;
890
891 if (!attr->get)
892 return -EACCES;
893
894 ret = mutex_lock_interruptible(&attr->mutex);
895 if (ret)
896 return ret;
897
898 if (*ppos && attr->get_buf[0]) {
899 /* continued read */
900 size = strlen(attr->get_buf);
901 } else {
902 /* first read */
903 u64 val;
904 ret = attr->get(attr->data, &val);
905 if (ret)
906 goto out;
907
908 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
909 attr->fmt, (unsigned long long)val);
910 }
911
912 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
913 out:
914 mutex_unlock(&attr->mutex);
915 return ret;
916 }
917 EXPORT_SYMBOL_GPL(simple_attr_read);
918
919 /* interpret the buffer as a number to call the set function with */
920 ssize_t simple_attr_write(struct file *file, const char __user *buf,
921 size_t len, loff_t *ppos)
922 {
923 struct simple_attr *attr;
924 unsigned long long val;
925 size_t size;
926 ssize_t ret;
927
928 attr = file->private_data;
929 if (!attr->set)
930 return -EACCES;
931
932 ret = mutex_lock_interruptible(&attr->mutex);
933 if (ret)
934 return ret;
935
936 ret = -EFAULT;
937 size = min(sizeof(attr->set_buf) - 1, len);
938 if (copy_from_user(attr->set_buf, buf, size))
939 goto out;
940
941 attr->set_buf[size] = '\0';
942 ret = kstrtoull(attr->set_buf, 0, &val);
943 if (ret)
944 goto out;
945 ret = attr->set(attr->data, val);
946 if (ret == 0)
947 ret = len; /* on success, claim we got the whole input */
948 out:
949 mutex_unlock(&attr->mutex);
950 return ret;
951 }
952 EXPORT_SYMBOL_GPL(simple_attr_write);
953
954 /**
955 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
956 * @sb: filesystem to do the file handle conversion on
957 * @fid: file handle to convert
958 * @fh_len: length of the file handle in bytes
959 * @fh_type: type of file handle
960 * @get_inode: filesystem callback to retrieve inode
961 *
962 * This function decodes @fid as long as it has one of the well-known
963 * Linux filehandle types and calls @get_inode on it to retrieve the
964 * inode for the object specified in the file handle.
965 */
966 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
967 int fh_len, int fh_type, struct inode *(*get_inode)
968 (struct super_block *sb, u64 ino, u32 gen))
969 {
970 struct inode *inode = NULL;
971
972 if (fh_len < 2)
973 return NULL;
974
975 switch (fh_type) {
976 case FILEID_INO32_GEN:
977 case FILEID_INO32_GEN_PARENT:
978 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
979 break;
980 }
981
982 return d_obtain_alias(inode);
983 }
984 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
985
986 /**
987 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
988 * @sb: filesystem to do the file handle conversion on
989 * @fid: file handle to convert
990 * @fh_len: length of the file handle in bytes
991 * @fh_type: type of file handle
992 * @get_inode: filesystem callback to retrieve inode
993 *
994 * This function decodes @fid as long as it has one of the well-known
995 * Linux filehandle types and calls @get_inode on it to retrieve the
996 * inode for the _parent_ object specified in the file handle if it
997 * is specified in the file handle, or NULL otherwise.
998 */
999 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1000 int fh_len, int fh_type, struct inode *(*get_inode)
1001 (struct super_block *sb, u64 ino, u32 gen))
1002 {
1003 struct inode *inode = NULL;
1004
1005 if (fh_len <= 2)
1006 return NULL;
1007
1008 switch (fh_type) {
1009 case FILEID_INO32_GEN_PARENT:
1010 inode = get_inode(sb, fid->i32.parent_ino,
1011 (fh_len > 3 ? fid->i32.parent_gen : 0));
1012 break;
1013 }
1014
1015 return d_obtain_alias(inode);
1016 }
1017 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1018
1019 /**
1020 * __generic_file_fsync - generic fsync implementation for simple filesystems
1021 *
1022 * @file: file to synchronize
1023 * @start: start offset in bytes
1024 * @end: end offset in bytes (inclusive)
1025 * @datasync: only synchronize essential metadata if true
1026 *
1027 * This is a generic implementation of the fsync method for simple
1028 * filesystems which track all non-inode metadata in the buffers list
1029 * hanging off the address_space structure.
1030 */
1031 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1032 int datasync)
1033 {
1034 struct inode *inode = file->f_mapping->host;
1035 int err;
1036 int ret;
1037
1038 err = file_write_and_wait_range(file, start, end);
1039 if (err)
1040 return err;
1041
1042 inode_lock(inode);
1043 ret = sync_mapping_buffers(inode->i_mapping);
1044 if (!(inode->i_state & I_DIRTY_ALL))
1045 goto out;
1046 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1047 goto out;
1048
1049 err = sync_inode_metadata(inode, 1);
1050 if (ret == 0)
1051 ret = err;
1052
1053 out:
1054 inode_unlock(inode);
1055 /* check and advance again to catch errors after syncing out buffers */
1056 err = file_check_and_advance_wb_err(file);
1057 if (ret == 0)
1058 ret = err;
1059 return ret;
1060 }
1061 EXPORT_SYMBOL(__generic_file_fsync);
1062
1063 /**
1064 * generic_file_fsync - generic fsync implementation for simple filesystems
1065 * with flush
1066 * @file: file to synchronize
1067 * @start: start offset in bytes
1068 * @end: end offset in bytes (inclusive)
1069 * @datasync: only synchronize essential metadata if true
1070 *
1071 */
1072
1073 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1074 int datasync)
1075 {
1076 struct inode *inode = file->f_mapping->host;
1077 int err;
1078
1079 err = __generic_file_fsync(file, start, end, datasync);
1080 if (err)
1081 return err;
1082 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1083 }
1084 EXPORT_SYMBOL(generic_file_fsync);
1085
1086 /**
1087 * generic_check_addressable - Check addressability of file system
1088 * @blocksize_bits: log of file system block size
1089 * @num_blocks: number of blocks in file system
1090 *
1091 * Determine whether a file system with @num_blocks blocks (and a
1092 * block size of 2**@blocksize_bits) is addressable by the sector_t
1093 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1094 */
1095 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1096 {
1097 u64 last_fs_block = num_blocks - 1;
1098 u64 last_fs_page =
1099 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1100
1101 if (unlikely(num_blocks == 0))
1102 return 0;
1103
1104 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1105 return -EINVAL;
1106
1107 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1108 (last_fs_page > (pgoff_t)(~0ULL))) {
1109 return -EFBIG;
1110 }
1111 return 0;
1112 }
1113 EXPORT_SYMBOL(generic_check_addressable);
1114
1115 /*
1116 * No-op implementation of ->fsync for in-memory filesystems.
1117 */
1118 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1119 {
1120 return 0;
1121 }
1122 EXPORT_SYMBOL(noop_fsync);
1123
1124 int noop_set_page_dirty(struct page *page)
1125 {
1126 /*
1127 * Unlike __set_page_dirty_no_writeback that handles dirty page
1128 * tracking in the page object, dax does all dirty tracking in
1129 * the inode address_space in response to mkwrite faults. In the
1130 * dax case we only need to worry about potentially dirty CPU
1131 * caches, not dirty page cache pages to write back.
1132 *
1133 * This callback is defined to prevent fallback to
1134 * __set_page_dirty_buffers() in set_page_dirty().
1135 */
1136 return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1139
1140 void noop_invalidatepage(struct page *page, unsigned int offset,
1141 unsigned int length)
1142 {
1143 /*
1144 * There is no page cache to invalidate in the dax case, however
1145 * we need this callback defined to prevent falling back to
1146 * block_invalidatepage() in do_invalidatepage().
1147 */
1148 }
1149 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1150
1151 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1152 {
1153 /*
1154 * iomap based filesystems support direct I/O without need for
1155 * this callback. However, it still needs to be set in
1156 * inode->a_ops so that open/fcntl know that direct I/O is
1157 * generally supported.
1158 */
1159 return -EINVAL;
1160 }
1161 EXPORT_SYMBOL_GPL(noop_direct_IO);
1162
1163 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1164 void kfree_link(void *p)
1165 {
1166 kfree(p);
1167 }
1168 EXPORT_SYMBOL(kfree_link);
1169
1170 /*
1171 * nop .set_page_dirty method so that people can use .page_mkwrite on
1172 * anon inodes.
1173 */
1174 static int anon_set_page_dirty(struct page *page)
1175 {
1176 return 0;
1177 };
1178
1179 /*
1180 * A single inode exists for all anon_inode files. Contrary to pipes,
1181 * anon_inode inodes have no associated per-instance data, so we need
1182 * only allocate one of them.
1183 */
1184 struct inode *alloc_anon_inode(struct super_block *s)
1185 {
1186 static const struct address_space_operations anon_aops = {
1187 .set_page_dirty = anon_set_page_dirty,
1188 };
1189 struct inode *inode = new_inode_pseudo(s);
1190
1191 if (!inode)
1192 return ERR_PTR(-ENOMEM);
1193
1194 inode->i_ino = get_next_ino();
1195 inode->i_mapping->a_ops = &anon_aops;
1196
1197 /*
1198 * Mark the inode dirty from the very beginning,
1199 * that way it will never be moved to the dirty
1200 * list because mark_inode_dirty() will think
1201 * that it already _is_ on the dirty list.
1202 */
1203 inode->i_state = I_DIRTY;
1204 inode->i_mode = S_IRUSR | S_IWUSR;
1205 inode->i_uid = current_fsuid();
1206 inode->i_gid = current_fsgid();
1207 inode->i_flags |= S_PRIVATE;
1208 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1209 return inode;
1210 }
1211 EXPORT_SYMBOL(alloc_anon_inode);
1212
1213 /**
1214 * simple_nosetlease - generic helper for prohibiting leases
1215 * @filp: file pointer
1216 * @arg: type of lease to obtain
1217 * @flp: new lease supplied for insertion
1218 * @priv: private data for lm_setup operation
1219 *
1220 * Generic helper for filesystems that do not wish to allow leases to be set.
1221 * All arguments are ignored and it just returns -EINVAL.
1222 */
1223 int
1224 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1225 void **priv)
1226 {
1227 return -EINVAL;
1228 }
1229 EXPORT_SYMBOL(simple_nosetlease);
1230
1231 /**
1232 * simple_get_link - generic helper to get the target of "fast" symlinks
1233 * @dentry: not used here
1234 * @inode: the symlink inode
1235 * @done: not used here
1236 *
1237 * Generic helper for filesystems to use for symlink inodes where a pointer to
1238 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1239 * since as an optimization the path lookup code uses any non-NULL ->i_link
1240 * directly, without calling ->get_link(). But ->get_link() still must be set,
1241 * to mark the inode_operations as being for a symlink.
1242 *
1243 * Return: the symlink target
1244 */
1245 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1246 struct delayed_call *done)
1247 {
1248 return inode->i_link;
1249 }
1250 EXPORT_SYMBOL(simple_get_link);
1251
1252 const struct inode_operations simple_symlink_inode_operations = {
1253 .get_link = simple_get_link,
1254 };
1255 EXPORT_SYMBOL(simple_symlink_inode_operations);
1256
1257 /*
1258 * Operations for a permanently empty directory.
1259 */
1260 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1261 {
1262 return ERR_PTR(-ENOENT);
1263 }
1264
1265 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1266 u32 request_mask, unsigned int query_flags)
1267 {
1268 struct inode *inode = d_inode(path->dentry);
1269 generic_fillattr(inode, stat);
1270 return 0;
1271 }
1272
1273 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1274 {
1275 return -EPERM;
1276 }
1277
1278 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1279 {
1280 return -EOPNOTSUPP;
1281 }
1282
1283 static const struct inode_operations empty_dir_inode_operations = {
1284 .lookup = empty_dir_lookup,
1285 .permission = generic_permission,
1286 .setattr = empty_dir_setattr,
1287 .getattr = empty_dir_getattr,
1288 .listxattr = empty_dir_listxattr,
1289 };
1290
1291 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1292 {
1293 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1294 return generic_file_llseek_size(file, offset, whence, 2, 2);
1295 }
1296
1297 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1298 {
1299 dir_emit_dots(file, ctx);
1300 return 0;
1301 }
1302
1303 static const struct file_operations empty_dir_operations = {
1304 .llseek = empty_dir_llseek,
1305 .read = generic_read_dir,
1306 .iterate_shared = empty_dir_readdir,
1307 .fsync = noop_fsync,
1308 };
1309
1310
1311 void make_empty_dir_inode(struct inode *inode)
1312 {
1313 set_nlink(inode, 2);
1314 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1315 inode->i_uid = GLOBAL_ROOT_UID;
1316 inode->i_gid = GLOBAL_ROOT_GID;
1317 inode->i_rdev = 0;
1318 inode->i_size = 0;
1319 inode->i_blkbits = PAGE_SHIFT;
1320 inode->i_blocks = 0;
1321
1322 inode->i_op = &empty_dir_inode_operations;
1323 inode->i_opflags &= ~IOP_XATTR;
1324 inode->i_fop = &empty_dir_operations;
1325 }
1326
1327 bool is_empty_dir_inode(struct inode *inode)
1328 {
1329 return (inode->i_fop == &empty_dir_operations) &&
1330 (inode->i_op == &empty_dir_inode_operations);
1331 }