]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/libfs.c
Merge tag 'usb-v5.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/peter...
[mirror_ubuntu-jammy-kernel.git] / fs / libfs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25
26 #include <linux/uaccess.h>
27
28 #include "internal.h"
29
30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 struct kstat *stat, u32 request_mask,
32 unsigned int query_flags)
33 {
34 struct inode *inode = d_inode(path->dentry);
35 generic_fillattr(&init_user_ns, inode, stat);
36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40
41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 buf->f_type = dentry->d_sb->s_magic;
44 buf->f_bsize = PAGE_SIZE;
45 buf->f_namelen = NAME_MAX;
46 return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49
50 /*
51 * Retaining negative dentries for an in-memory filesystem just wastes
52 * memory and lookup time: arrange for them to be deleted immediately.
53 */
54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59
60 const struct dentry_operations simple_dentry_operations = {
61 .d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64
65 /*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_sb->s_d_op)
74 d_set_d_op(dentry, &simple_dentry_operations);
75 d_add(dentry, NULL);
76 return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79
80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 file->private_data = d_alloc_cursor(file->f_path.dentry);
83
84 return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87
88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 dput(file->private_data);
91 return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94
95 /* parent is locked at least shared */
96 /*
97 * Returns an element of siblings' list.
98 * We are looking for <count>th positive after <p>; if
99 * found, dentry is grabbed and returned to caller.
100 * If no such element exists, NULL is returned.
101 */
102 static struct dentry *scan_positives(struct dentry *cursor,
103 struct list_head *p,
104 loff_t count,
105 struct dentry *last)
106 {
107 struct dentry *dentry = cursor->d_parent, *found = NULL;
108
109 spin_lock(&dentry->d_lock);
110 while ((p = p->next) != &dentry->d_subdirs) {
111 struct dentry *d = list_entry(p, struct dentry, d_child);
112 // we must at least skip cursors, to avoid livelocks
113 if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 continue;
115 if (simple_positive(d) && !--count) {
116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 if (simple_positive(d))
118 found = dget_dlock(d);
119 spin_unlock(&d->d_lock);
120 if (likely(found))
121 break;
122 count = 1;
123 }
124 if (need_resched()) {
125 list_move(&cursor->d_child, p);
126 p = &cursor->d_child;
127 spin_unlock(&dentry->d_lock);
128 cond_resched();
129 spin_lock(&dentry->d_lock);
130 }
131 }
132 spin_unlock(&dentry->d_lock);
133 dput(last);
134 return found;
135 }
136
137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 struct dentry *dentry = file->f_path.dentry;
140 switch (whence) {
141 case 1:
142 offset += file->f_pos;
143 fallthrough;
144 case 0:
145 if (offset >= 0)
146 break;
147 fallthrough;
148 default:
149 return -EINVAL;
150 }
151 if (offset != file->f_pos) {
152 struct dentry *cursor = file->private_data;
153 struct dentry *to = NULL;
154
155 inode_lock_shared(dentry->d_inode);
156
157 if (offset > 2)
158 to = scan_positives(cursor, &dentry->d_subdirs,
159 offset - 2, NULL);
160 spin_lock(&dentry->d_lock);
161 if (to)
162 list_move(&cursor->d_child, &to->d_child);
163 else
164 list_del_init(&cursor->d_child);
165 spin_unlock(&dentry->d_lock);
166 dput(to);
167
168 file->f_pos = offset;
169
170 inode_unlock_shared(dentry->d_inode);
171 }
172 return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175
176 /* Relationship between i_mode and the DT_xxx types */
177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 return (inode->i_mode >> 12) & 15;
180 }
181
182 /*
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
186 */
187
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct list_head *anchor = &dentry->d_subdirs;
193 struct dentry *next = NULL;
194 struct list_head *p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = anchor;
201 else if (!list_empty(&cursor->d_child))
202 p = &cursor->d_child;
203 else
204 return 0;
205
206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 d_inode(next)->i_ino, dt_type(d_inode(next))))
209 break;
210 ctx->pos++;
211 p = &next->d_child;
212 }
213 spin_lock(&dentry->d_lock);
214 if (next)
215 list_move_tail(&cursor->d_child, &next->d_child);
216 else
217 list_del_init(&cursor->d_child);
218 spin_unlock(&dentry->d_lock);
219 dput(next);
220
221 return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230
231 const struct file_operations simple_dir_operations = {
232 .open = dcache_dir_open,
233 .release = dcache_dir_close,
234 .llseek = dcache_dir_lseek,
235 .read = generic_read_dir,
236 .iterate_shared = dcache_readdir,
237 .fsync = noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240
241 const struct inode_operations simple_dir_inode_operations = {
242 .lookup = simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245
246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 struct dentry *child = NULL;
249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250
251 spin_lock(&parent->d_lock);
252 while ((p = p->next) != &parent->d_subdirs) {
253 struct dentry *d = container_of(p, struct dentry, d_child);
254 if (simple_positive(d)) {
255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 if (simple_positive(d))
257 child = dget_dlock(d);
258 spin_unlock(&d->d_lock);
259 if (likely(child))
260 break;
261 }
262 }
263 spin_unlock(&parent->d_lock);
264 dput(prev);
265 return child;
266 }
267
268 void simple_recursive_removal(struct dentry *dentry,
269 void (*callback)(struct dentry *))
270 {
271 struct dentry *this = dget(dentry);
272 while (true) {
273 struct dentry *victim = NULL, *child;
274 struct inode *inode = this->d_inode;
275
276 inode_lock(inode);
277 if (d_is_dir(this))
278 inode->i_flags |= S_DEAD;
279 while ((child = find_next_child(this, victim)) == NULL) {
280 // kill and ascend
281 // update metadata while it's still locked
282 inode->i_ctime = current_time(inode);
283 clear_nlink(inode);
284 inode_unlock(inode);
285 victim = this;
286 this = this->d_parent;
287 inode = this->d_inode;
288 inode_lock(inode);
289 if (simple_positive(victim)) {
290 d_invalidate(victim); // avoid lost mounts
291 if (d_is_dir(victim))
292 fsnotify_rmdir(inode, victim);
293 else
294 fsnotify_unlink(inode, victim);
295 if (callback)
296 callback(victim);
297 dput(victim); // unpin it
298 }
299 if (victim == dentry) {
300 inode->i_ctime = inode->i_mtime =
301 current_time(inode);
302 if (d_is_dir(dentry))
303 drop_nlink(inode);
304 inode_unlock(inode);
305 dput(dentry);
306 return;
307 }
308 }
309 inode_unlock(inode);
310 this = child;
311 }
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314
315 static const struct super_operations simple_super_operations = {
316 .statfs = simple_statfs,
317 };
318
319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 struct pseudo_fs_context *ctx = fc->fs_private;
322 struct inode *root;
323
324 s->s_maxbytes = MAX_LFS_FILESIZE;
325 s->s_blocksize = PAGE_SIZE;
326 s->s_blocksize_bits = PAGE_SHIFT;
327 s->s_magic = ctx->magic;
328 s->s_op = ctx->ops ?: &simple_super_operations;
329 s->s_xattr = ctx->xattr;
330 s->s_time_gran = 1;
331 root = new_inode(s);
332 if (!root)
333 return -ENOMEM;
334
335 /*
336 * since this is the first inode, make it number 1. New inodes created
337 * after this must take care not to collide with it (by passing
338 * max_reserved of 1 to iunique).
339 */
340 root->i_ino = 1;
341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 s->s_root = d_make_root(root);
344 if (!s->s_root)
345 return -ENOMEM;
346 s->s_d_op = ctx->dops;
347 return 0;
348 }
349
350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354
355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 kfree(fc->fs_private);
358 }
359
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 .free = pseudo_fs_free,
362 .get_tree = pseudo_fs_get_tree,
363 };
364
365 /*
366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367 * will never be mountable)
368 */
369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 unsigned long magic)
371 {
372 struct pseudo_fs_context *ctx;
373
374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 if (likely(ctx)) {
376 ctx->magic = magic;
377 fc->fs_private = ctx;
378 fc->ops = &pseudo_fs_context_ops;
379 fc->sb_flags |= SB_NOUSER;
380 fc->global = true;
381 }
382 return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385
386 int simple_open(struct inode *inode, struct file *file)
387 {
388 if (inode->i_private)
389 file->private_data = inode->i_private;
390 return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393
394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 struct inode *inode = d_inode(old_dentry);
397
398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 inc_nlink(inode);
400 ihold(inode);
401 dget(dentry);
402 d_instantiate(dentry, inode);
403 return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406
407 int simple_empty(struct dentry *dentry)
408 {
409 struct dentry *child;
410 int ret = 0;
411
412 spin_lock(&dentry->d_lock);
413 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 if (simple_positive(child)) {
416 spin_unlock(&child->d_lock);
417 goto out;
418 }
419 spin_unlock(&child->d_lock);
420 }
421 ret = 1;
422 out:
423 spin_unlock(&dentry->d_lock);
424 return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427
428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 struct inode *inode = d_inode(dentry);
431
432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 drop_nlink(inode);
434 dput(dentry);
435 return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438
439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 if (!simple_empty(dentry))
442 return -ENOTEMPTY;
443
444 drop_nlink(d_inode(dentry));
445 simple_unlink(dir, dentry);
446 drop_nlink(dir);
447 return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450
451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 struct dentry *old_dentry, struct inode *new_dir,
453 struct dentry *new_dentry, unsigned int flags)
454 {
455 struct inode *inode = d_inode(old_dentry);
456 int they_are_dirs = d_is_dir(old_dentry);
457
458 if (flags & ~RENAME_NOREPLACE)
459 return -EINVAL;
460
461 if (!simple_empty(new_dentry))
462 return -ENOTEMPTY;
463
464 if (d_really_is_positive(new_dentry)) {
465 simple_unlink(new_dir, new_dentry);
466 if (they_are_dirs) {
467 drop_nlink(d_inode(new_dentry));
468 drop_nlink(old_dir);
469 }
470 } else if (they_are_dirs) {
471 drop_nlink(old_dir);
472 inc_nlink(new_dir);
473 }
474
475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
477
478 return 0;
479 }
480 EXPORT_SYMBOL(simple_rename);
481
482 /**
483 * simple_setattr - setattr for simple filesystem
484 * @dentry: dentry
485 * @iattr: iattr structure
486 *
487 * Returns 0 on success, -error on failure.
488 *
489 * simple_setattr is a simple ->setattr implementation without a proper
490 * implementation of size changes.
491 *
492 * It can either be used for in-memory filesystems or special files
493 * on simple regular filesystems. Anything that needs to change on-disk
494 * or wire state on size changes needs its own setattr method.
495 */
496 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
497 struct iattr *iattr)
498 {
499 struct inode *inode = d_inode(dentry);
500 int error;
501
502 error = setattr_prepare(mnt_userns, dentry, iattr);
503 if (error)
504 return error;
505
506 if (iattr->ia_valid & ATTR_SIZE)
507 truncate_setsize(inode, iattr->ia_size);
508 setattr_copy(mnt_userns, inode, iattr);
509 mark_inode_dirty(inode);
510 return 0;
511 }
512 EXPORT_SYMBOL(simple_setattr);
513
514 int simple_readpage(struct file *file, struct page *page)
515 {
516 clear_highpage(page);
517 flush_dcache_page(page);
518 SetPageUptodate(page);
519 unlock_page(page);
520 return 0;
521 }
522 EXPORT_SYMBOL(simple_readpage);
523
524 int simple_write_begin(struct file *file, struct address_space *mapping,
525 loff_t pos, unsigned len, unsigned flags,
526 struct page **pagep, void **fsdata)
527 {
528 struct page *page;
529 pgoff_t index;
530
531 index = pos >> PAGE_SHIFT;
532
533 page = grab_cache_page_write_begin(mapping, index, flags);
534 if (!page)
535 return -ENOMEM;
536
537 *pagep = page;
538
539 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
540 unsigned from = pos & (PAGE_SIZE - 1);
541
542 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
543 }
544 return 0;
545 }
546 EXPORT_SYMBOL(simple_write_begin);
547
548 /**
549 * simple_write_end - .write_end helper for non-block-device FSes
550 * @file: See .write_end of address_space_operations
551 * @mapping: "
552 * @pos: "
553 * @len: "
554 * @copied: "
555 * @page: "
556 * @fsdata: "
557 *
558 * simple_write_end does the minimum needed for updating a page after writing is
559 * done. It has the same API signature as the .write_end of
560 * address_space_operations vector. So it can just be set onto .write_end for
561 * FSes that don't need any other processing. i_mutex is assumed to be held.
562 * Block based filesystems should use generic_write_end().
563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
564 * is not called, so a filesystem that actually does store data in .write_inode
565 * should extend on what's done here with a call to mark_inode_dirty() in the
566 * case that i_size has changed.
567 *
568 * Use *ONLY* with simple_readpage()
569 */
570 int simple_write_end(struct file *file, struct address_space *mapping,
571 loff_t pos, unsigned len, unsigned copied,
572 struct page *page, void *fsdata)
573 {
574 struct inode *inode = page->mapping->host;
575 loff_t last_pos = pos + copied;
576
577 /* zero the stale part of the page if we did a short copy */
578 if (!PageUptodate(page)) {
579 if (copied < len) {
580 unsigned from = pos & (PAGE_SIZE - 1);
581
582 zero_user(page, from + copied, len - copied);
583 }
584 SetPageUptodate(page);
585 }
586 /*
587 * No need to use i_size_read() here, the i_size
588 * cannot change under us because we hold the i_mutex.
589 */
590 if (last_pos > inode->i_size)
591 i_size_write(inode, last_pos);
592
593 set_page_dirty(page);
594 unlock_page(page);
595 put_page(page);
596
597 return copied;
598 }
599 EXPORT_SYMBOL(simple_write_end);
600
601 /*
602 * the inodes created here are not hashed. If you use iunique to generate
603 * unique inode values later for this filesystem, then you must take care
604 * to pass it an appropriate max_reserved value to avoid collisions.
605 */
606 int simple_fill_super(struct super_block *s, unsigned long magic,
607 const struct tree_descr *files)
608 {
609 struct inode *inode;
610 struct dentry *root;
611 struct dentry *dentry;
612 int i;
613
614 s->s_blocksize = PAGE_SIZE;
615 s->s_blocksize_bits = PAGE_SHIFT;
616 s->s_magic = magic;
617 s->s_op = &simple_super_operations;
618 s->s_time_gran = 1;
619
620 inode = new_inode(s);
621 if (!inode)
622 return -ENOMEM;
623 /*
624 * because the root inode is 1, the files array must not contain an
625 * entry at index 1
626 */
627 inode->i_ino = 1;
628 inode->i_mode = S_IFDIR | 0755;
629 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
630 inode->i_op = &simple_dir_inode_operations;
631 inode->i_fop = &simple_dir_operations;
632 set_nlink(inode, 2);
633 root = d_make_root(inode);
634 if (!root)
635 return -ENOMEM;
636 for (i = 0; !files->name || files->name[0]; i++, files++) {
637 if (!files->name)
638 continue;
639
640 /* warn if it tries to conflict with the root inode */
641 if (unlikely(i == 1))
642 printk(KERN_WARNING "%s: %s passed in a files array"
643 "with an index of 1!\n", __func__,
644 s->s_type->name);
645
646 dentry = d_alloc_name(root, files->name);
647 if (!dentry)
648 goto out;
649 inode = new_inode(s);
650 if (!inode) {
651 dput(dentry);
652 goto out;
653 }
654 inode->i_mode = S_IFREG | files->mode;
655 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
656 inode->i_fop = files->ops;
657 inode->i_ino = i;
658 d_add(dentry, inode);
659 }
660 s->s_root = root;
661 return 0;
662 out:
663 d_genocide(root);
664 shrink_dcache_parent(root);
665 dput(root);
666 return -ENOMEM;
667 }
668 EXPORT_SYMBOL(simple_fill_super);
669
670 static DEFINE_SPINLOCK(pin_fs_lock);
671
672 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
673 {
674 struct vfsmount *mnt = NULL;
675 spin_lock(&pin_fs_lock);
676 if (unlikely(!*mount)) {
677 spin_unlock(&pin_fs_lock);
678 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
679 if (IS_ERR(mnt))
680 return PTR_ERR(mnt);
681 spin_lock(&pin_fs_lock);
682 if (!*mount)
683 *mount = mnt;
684 }
685 mntget(*mount);
686 ++*count;
687 spin_unlock(&pin_fs_lock);
688 mntput(mnt);
689 return 0;
690 }
691 EXPORT_SYMBOL(simple_pin_fs);
692
693 void simple_release_fs(struct vfsmount **mount, int *count)
694 {
695 struct vfsmount *mnt;
696 spin_lock(&pin_fs_lock);
697 mnt = *mount;
698 if (!--*count)
699 *mount = NULL;
700 spin_unlock(&pin_fs_lock);
701 mntput(mnt);
702 }
703 EXPORT_SYMBOL(simple_release_fs);
704
705 /**
706 * simple_read_from_buffer - copy data from the buffer to user space
707 * @to: the user space buffer to read to
708 * @count: the maximum number of bytes to read
709 * @ppos: the current position in the buffer
710 * @from: the buffer to read from
711 * @available: the size of the buffer
712 *
713 * The simple_read_from_buffer() function reads up to @count bytes from the
714 * buffer @from at offset @ppos into the user space address starting at @to.
715 *
716 * On success, the number of bytes read is returned and the offset @ppos is
717 * advanced by this number, or negative value is returned on error.
718 **/
719 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
720 const void *from, size_t available)
721 {
722 loff_t pos = *ppos;
723 size_t ret;
724
725 if (pos < 0)
726 return -EINVAL;
727 if (pos >= available || !count)
728 return 0;
729 if (count > available - pos)
730 count = available - pos;
731 ret = copy_to_user(to, from + pos, count);
732 if (ret == count)
733 return -EFAULT;
734 count -= ret;
735 *ppos = pos + count;
736 return count;
737 }
738 EXPORT_SYMBOL(simple_read_from_buffer);
739
740 /**
741 * simple_write_to_buffer - copy data from user space to the buffer
742 * @to: the buffer to write to
743 * @available: the size of the buffer
744 * @ppos: the current position in the buffer
745 * @from: the user space buffer to read from
746 * @count: the maximum number of bytes to read
747 *
748 * The simple_write_to_buffer() function reads up to @count bytes from the user
749 * space address starting at @from into the buffer @to at offset @ppos.
750 *
751 * On success, the number of bytes written is returned and the offset @ppos is
752 * advanced by this number, or negative value is returned on error.
753 **/
754 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
755 const void __user *from, size_t count)
756 {
757 loff_t pos = *ppos;
758 size_t res;
759
760 if (pos < 0)
761 return -EINVAL;
762 if (pos >= available || !count)
763 return 0;
764 if (count > available - pos)
765 count = available - pos;
766 res = copy_from_user(to + pos, from, count);
767 if (res == count)
768 return -EFAULT;
769 count -= res;
770 *ppos = pos + count;
771 return count;
772 }
773 EXPORT_SYMBOL(simple_write_to_buffer);
774
775 /**
776 * memory_read_from_buffer - copy data from the buffer
777 * @to: the kernel space buffer to read to
778 * @count: the maximum number of bytes to read
779 * @ppos: the current position in the buffer
780 * @from: the buffer to read from
781 * @available: the size of the buffer
782 *
783 * The memory_read_from_buffer() function reads up to @count bytes from the
784 * buffer @from at offset @ppos into the kernel space address starting at @to.
785 *
786 * On success, the number of bytes read is returned and the offset @ppos is
787 * advanced by this number, or negative value is returned on error.
788 **/
789 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
790 const void *from, size_t available)
791 {
792 loff_t pos = *ppos;
793
794 if (pos < 0)
795 return -EINVAL;
796 if (pos >= available)
797 return 0;
798 if (count > available - pos)
799 count = available - pos;
800 memcpy(to, from + pos, count);
801 *ppos = pos + count;
802
803 return count;
804 }
805 EXPORT_SYMBOL(memory_read_from_buffer);
806
807 /*
808 * Transaction based IO.
809 * The file expects a single write which triggers the transaction, and then
810 * possibly a read which collects the result - which is stored in a
811 * file-local buffer.
812 */
813
814 void simple_transaction_set(struct file *file, size_t n)
815 {
816 struct simple_transaction_argresp *ar = file->private_data;
817
818 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
819
820 /*
821 * The barrier ensures that ar->size will really remain zero until
822 * ar->data is ready for reading.
823 */
824 smp_mb();
825 ar->size = n;
826 }
827 EXPORT_SYMBOL(simple_transaction_set);
828
829 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
830 {
831 struct simple_transaction_argresp *ar;
832 static DEFINE_SPINLOCK(simple_transaction_lock);
833
834 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
835 return ERR_PTR(-EFBIG);
836
837 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
838 if (!ar)
839 return ERR_PTR(-ENOMEM);
840
841 spin_lock(&simple_transaction_lock);
842
843 /* only one write allowed per open */
844 if (file->private_data) {
845 spin_unlock(&simple_transaction_lock);
846 free_page((unsigned long)ar);
847 return ERR_PTR(-EBUSY);
848 }
849
850 file->private_data = ar;
851
852 spin_unlock(&simple_transaction_lock);
853
854 if (copy_from_user(ar->data, buf, size))
855 return ERR_PTR(-EFAULT);
856
857 return ar->data;
858 }
859 EXPORT_SYMBOL(simple_transaction_get);
860
861 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
862 {
863 struct simple_transaction_argresp *ar = file->private_data;
864
865 if (!ar)
866 return 0;
867 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
868 }
869 EXPORT_SYMBOL(simple_transaction_read);
870
871 int simple_transaction_release(struct inode *inode, struct file *file)
872 {
873 free_page((unsigned long)file->private_data);
874 return 0;
875 }
876 EXPORT_SYMBOL(simple_transaction_release);
877
878 /* Simple attribute files */
879
880 struct simple_attr {
881 int (*get)(void *, u64 *);
882 int (*set)(void *, u64);
883 char get_buf[24]; /* enough to store a u64 and "\n\0" */
884 char set_buf[24];
885 void *data;
886 const char *fmt; /* format for read operation */
887 struct mutex mutex; /* protects access to these buffers */
888 };
889
890 /* simple_attr_open is called by an actual attribute open file operation
891 * to set the attribute specific access operations. */
892 int simple_attr_open(struct inode *inode, struct file *file,
893 int (*get)(void *, u64 *), int (*set)(void *, u64),
894 const char *fmt)
895 {
896 struct simple_attr *attr;
897
898 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
899 if (!attr)
900 return -ENOMEM;
901
902 attr->get = get;
903 attr->set = set;
904 attr->data = inode->i_private;
905 attr->fmt = fmt;
906 mutex_init(&attr->mutex);
907
908 file->private_data = attr;
909
910 return nonseekable_open(inode, file);
911 }
912 EXPORT_SYMBOL_GPL(simple_attr_open);
913
914 int simple_attr_release(struct inode *inode, struct file *file)
915 {
916 kfree(file->private_data);
917 return 0;
918 }
919 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
920
921 /* read from the buffer that is filled with the get function */
922 ssize_t simple_attr_read(struct file *file, char __user *buf,
923 size_t len, loff_t *ppos)
924 {
925 struct simple_attr *attr;
926 size_t size;
927 ssize_t ret;
928
929 attr = file->private_data;
930
931 if (!attr->get)
932 return -EACCES;
933
934 ret = mutex_lock_interruptible(&attr->mutex);
935 if (ret)
936 return ret;
937
938 if (*ppos && attr->get_buf[0]) {
939 /* continued read */
940 size = strlen(attr->get_buf);
941 } else {
942 /* first read */
943 u64 val;
944 ret = attr->get(attr->data, &val);
945 if (ret)
946 goto out;
947
948 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
949 attr->fmt, (unsigned long long)val);
950 }
951
952 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
953 out:
954 mutex_unlock(&attr->mutex);
955 return ret;
956 }
957 EXPORT_SYMBOL_GPL(simple_attr_read);
958
959 /* interpret the buffer as a number to call the set function with */
960 ssize_t simple_attr_write(struct file *file, const char __user *buf,
961 size_t len, loff_t *ppos)
962 {
963 struct simple_attr *attr;
964 unsigned long long val;
965 size_t size;
966 ssize_t ret;
967
968 attr = file->private_data;
969 if (!attr->set)
970 return -EACCES;
971
972 ret = mutex_lock_interruptible(&attr->mutex);
973 if (ret)
974 return ret;
975
976 ret = -EFAULT;
977 size = min(sizeof(attr->set_buf) - 1, len);
978 if (copy_from_user(attr->set_buf, buf, size))
979 goto out;
980
981 attr->set_buf[size] = '\0';
982 ret = kstrtoull(attr->set_buf, 0, &val);
983 if (ret)
984 goto out;
985 ret = attr->set(attr->data, val);
986 if (ret == 0)
987 ret = len; /* on success, claim we got the whole input */
988 out:
989 mutex_unlock(&attr->mutex);
990 return ret;
991 }
992 EXPORT_SYMBOL_GPL(simple_attr_write);
993
994 /**
995 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
996 * @sb: filesystem to do the file handle conversion on
997 * @fid: file handle to convert
998 * @fh_len: length of the file handle in bytes
999 * @fh_type: type of file handle
1000 * @get_inode: filesystem callback to retrieve inode
1001 *
1002 * This function decodes @fid as long as it has one of the well-known
1003 * Linux filehandle types and calls @get_inode on it to retrieve the
1004 * inode for the object specified in the file handle.
1005 */
1006 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1007 int fh_len, int fh_type, struct inode *(*get_inode)
1008 (struct super_block *sb, u64 ino, u32 gen))
1009 {
1010 struct inode *inode = NULL;
1011
1012 if (fh_len < 2)
1013 return NULL;
1014
1015 switch (fh_type) {
1016 case FILEID_INO32_GEN:
1017 case FILEID_INO32_GEN_PARENT:
1018 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1019 break;
1020 }
1021
1022 return d_obtain_alias(inode);
1023 }
1024 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1025
1026 /**
1027 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1028 * @sb: filesystem to do the file handle conversion on
1029 * @fid: file handle to convert
1030 * @fh_len: length of the file handle in bytes
1031 * @fh_type: type of file handle
1032 * @get_inode: filesystem callback to retrieve inode
1033 *
1034 * This function decodes @fid as long as it has one of the well-known
1035 * Linux filehandle types and calls @get_inode on it to retrieve the
1036 * inode for the _parent_ object specified in the file handle if it
1037 * is specified in the file handle, or NULL otherwise.
1038 */
1039 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1040 int fh_len, int fh_type, struct inode *(*get_inode)
1041 (struct super_block *sb, u64 ino, u32 gen))
1042 {
1043 struct inode *inode = NULL;
1044
1045 if (fh_len <= 2)
1046 return NULL;
1047
1048 switch (fh_type) {
1049 case FILEID_INO32_GEN_PARENT:
1050 inode = get_inode(sb, fid->i32.parent_ino,
1051 (fh_len > 3 ? fid->i32.parent_gen : 0));
1052 break;
1053 }
1054
1055 return d_obtain_alias(inode);
1056 }
1057 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1058
1059 /**
1060 * __generic_file_fsync - generic fsync implementation for simple filesystems
1061 *
1062 * @file: file to synchronize
1063 * @start: start offset in bytes
1064 * @end: end offset in bytes (inclusive)
1065 * @datasync: only synchronize essential metadata if true
1066 *
1067 * This is a generic implementation of the fsync method for simple
1068 * filesystems which track all non-inode metadata in the buffers list
1069 * hanging off the address_space structure.
1070 */
1071 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1072 int datasync)
1073 {
1074 struct inode *inode = file->f_mapping->host;
1075 int err;
1076 int ret;
1077
1078 err = file_write_and_wait_range(file, start, end);
1079 if (err)
1080 return err;
1081
1082 inode_lock(inode);
1083 ret = sync_mapping_buffers(inode->i_mapping);
1084 if (!(inode->i_state & I_DIRTY_ALL))
1085 goto out;
1086 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1087 goto out;
1088
1089 err = sync_inode_metadata(inode, 1);
1090 if (ret == 0)
1091 ret = err;
1092
1093 out:
1094 inode_unlock(inode);
1095 /* check and advance again to catch errors after syncing out buffers */
1096 err = file_check_and_advance_wb_err(file);
1097 if (ret == 0)
1098 ret = err;
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(__generic_file_fsync);
1102
1103 /**
1104 * generic_file_fsync - generic fsync implementation for simple filesystems
1105 * with flush
1106 * @file: file to synchronize
1107 * @start: start offset in bytes
1108 * @end: end offset in bytes (inclusive)
1109 * @datasync: only synchronize essential metadata if true
1110 *
1111 */
1112
1113 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1114 int datasync)
1115 {
1116 struct inode *inode = file->f_mapping->host;
1117 int err;
1118
1119 err = __generic_file_fsync(file, start, end, datasync);
1120 if (err)
1121 return err;
1122 return blkdev_issue_flush(inode->i_sb->s_bdev);
1123 }
1124 EXPORT_SYMBOL(generic_file_fsync);
1125
1126 /**
1127 * generic_check_addressable - Check addressability of file system
1128 * @blocksize_bits: log of file system block size
1129 * @num_blocks: number of blocks in file system
1130 *
1131 * Determine whether a file system with @num_blocks blocks (and a
1132 * block size of 2**@blocksize_bits) is addressable by the sector_t
1133 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1134 */
1135 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1136 {
1137 u64 last_fs_block = num_blocks - 1;
1138 u64 last_fs_page =
1139 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1140
1141 if (unlikely(num_blocks == 0))
1142 return 0;
1143
1144 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1145 return -EINVAL;
1146
1147 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1148 (last_fs_page > (pgoff_t)(~0ULL))) {
1149 return -EFBIG;
1150 }
1151 return 0;
1152 }
1153 EXPORT_SYMBOL(generic_check_addressable);
1154
1155 /*
1156 * No-op implementation of ->fsync for in-memory filesystems.
1157 */
1158 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1159 {
1160 return 0;
1161 }
1162 EXPORT_SYMBOL(noop_fsync);
1163
1164 int noop_set_page_dirty(struct page *page)
1165 {
1166 /*
1167 * Unlike __set_page_dirty_no_writeback that handles dirty page
1168 * tracking in the page object, dax does all dirty tracking in
1169 * the inode address_space in response to mkwrite faults. In the
1170 * dax case we only need to worry about potentially dirty CPU
1171 * caches, not dirty page cache pages to write back.
1172 *
1173 * This callback is defined to prevent fallback to
1174 * __set_page_dirty_buffers() in set_page_dirty().
1175 */
1176 return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1179
1180 void noop_invalidatepage(struct page *page, unsigned int offset,
1181 unsigned int length)
1182 {
1183 /*
1184 * There is no page cache to invalidate in the dax case, however
1185 * we need this callback defined to prevent falling back to
1186 * block_invalidatepage() in do_invalidatepage().
1187 */
1188 }
1189 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1190
1191 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1192 {
1193 /*
1194 * iomap based filesystems support direct I/O without need for
1195 * this callback. However, it still needs to be set in
1196 * inode->a_ops so that open/fcntl know that direct I/O is
1197 * generally supported.
1198 */
1199 return -EINVAL;
1200 }
1201 EXPORT_SYMBOL_GPL(noop_direct_IO);
1202
1203 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1204 void kfree_link(void *p)
1205 {
1206 kfree(p);
1207 }
1208 EXPORT_SYMBOL(kfree_link);
1209
1210 /*
1211 * nop .set_page_dirty method so that people can use .page_mkwrite on
1212 * anon inodes.
1213 */
1214 static int anon_set_page_dirty(struct page *page)
1215 {
1216 return 0;
1217 };
1218
1219 struct inode *alloc_anon_inode(struct super_block *s)
1220 {
1221 static const struct address_space_operations anon_aops = {
1222 .set_page_dirty = anon_set_page_dirty,
1223 };
1224 struct inode *inode = new_inode_pseudo(s);
1225
1226 if (!inode)
1227 return ERR_PTR(-ENOMEM);
1228
1229 inode->i_ino = get_next_ino();
1230 inode->i_mapping->a_ops = &anon_aops;
1231
1232 /*
1233 * Mark the inode dirty from the very beginning,
1234 * that way it will never be moved to the dirty
1235 * list because mark_inode_dirty() will think
1236 * that it already _is_ on the dirty list.
1237 */
1238 inode->i_state = I_DIRTY;
1239 inode->i_mode = S_IRUSR | S_IWUSR;
1240 inode->i_uid = current_fsuid();
1241 inode->i_gid = current_fsgid();
1242 inode->i_flags |= S_PRIVATE;
1243 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1244 return inode;
1245 }
1246 EXPORT_SYMBOL(alloc_anon_inode);
1247
1248 /**
1249 * simple_nosetlease - generic helper for prohibiting leases
1250 * @filp: file pointer
1251 * @arg: type of lease to obtain
1252 * @flp: new lease supplied for insertion
1253 * @priv: private data for lm_setup operation
1254 *
1255 * Generic helper for filesystems that do not wish to allow leases to be set.
1256 * All arguments are ignored and it just returns -EINVAL.
1257 */
1258 int
1259 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1260 void **priv)
1261 {
1262 return -EINVAL;
1263 }
1264 EXPORT_SYMBOL(simple_nosetlease);
1265
1266 /**
1267 * simple_get_link - generic helper to get the target of "fast" symlinks
1268 * @dentry: not used here
1269 * @inode: the symlink inode
1270 * @done: not used here
1271 *
1272 * Generic helper for filesystems to use for symlink inodes where a pointer to
1273 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1274 * since as an optimization the path lookup code uses any non-NULL ->i_link
1275 * directly, without calling ->get_link(). But ->get_link() still must be set,
1276 * to mark the inode_operations as being for a symlink.
1277 *
1278 * Return: the symlink target
1279 */
1280 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1281 struct delayed_call *done)
1282 {
1283 return inode->i_link;
1284 }
1285 EXPORT_SYMBOL(simple_get_link);
1286
1287 const struct inode_operations simple_symlink_inode_operations = {
1288 .get_link = simple_get_link,
1289 };
1290 EXPORT_SYMBOL(simple_symlink_inode_operations);
1291
1292 /*
1293 * Operations for a permanently empty directory.
1294 */
1295 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1296 {
1297 return ERR_PTR(-ENOENT);
1298 }
1299
1300 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1301 const struct path *path, struct kstat *stat,
1302 u32 request_mask, unsigned int query_flags)
1303 {
1304 struct inode *inode = d_inode(path->dentry);
1305 generic_fillattr(&init_user_ns, inode, stat);
1306 return 0;
1307 }
1308
1309 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1310 struct dentry *dentry, struct iattr *attr)
1311 {
1312 return -EPERM;
1313 }
1314
1315 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1316 {
1317 return -EOPNOTSUPP;
1318 }
1319
1320 static const struct inode_operations empty_dir_inode_operations = {
1321 .lookup = empty_dir_lookup,
1322 .permission = generic_permission,
1323 .setattr = empty_dir_setattr,
1324 .getattr = empty_dir_getattr,
1325 .listxattr = empty_dir_listxattr,
1326 };
1327
1328 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1329 {
1330 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1331 return generic_file_llseek_size(file, offset, whence, 2, 2);
1332 }
1333
1334 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1335 {
1336 dir_emit_dots(file, ctx);
1337 return 0;
1338 }
1339
1340 static const struct file_operations empty_dir_operations = {
1341 .llseek = empty_dir_llseek,
1342 .read = generic_read_dir,
1343 .iterate_shared = empty_dir_readdir,
1344 .fsync = noop_fsync,
1345 };
1346
1347
1348 void make_empty_dir_inode(struct inode *inode)
1349 {
1350 set_nlink(inode, 2);
1351 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1352 inode->i_uid = GLOBAL_ROOT_UID;
1353 inode->i_gid = GLOBAL_ROOT_GID;
1354 inode->i_rdev = 0;
1355 inode->i_size = 0;
1356 inode->i_blkbits = PAGE_SHIFT;
1357 inode->i_blocks = 0;
1358
1359 inode->i_op = &empty_dir_inode_operations;
1360 inode->i_opflags &= ~IOP_XATTR;
1361 inode->i_fop = &empty_dir_operations;
1362 }
1363
1364 bool is_empty_dir_inode(struct inode *inode)
1365 {
1366 return (inode->i_fop == &empty_dir_operations) &&
1367 (inode->i_op == &empty_dir_inode_operations);
1368 }
1369
1370 #ifdef CONFIG_UNICODE
1371 /*
1372 * Determine if the name of a dentry should be casefolded.
1373 *
1374 * Return: if names will need casefolding
1375 */
1376 static bool needs_casefold(const struct inode *dir)
1377 {
1378 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1379 }
1380
1381 /**
1382 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1383 * @dentry: dentry whose name we are checking against
1384 * @len: len of name of dentry
1385 * @str: str pointer to name of dentry
1386 * @name: Name to compare against
1387 *
1388 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1389 */
1390 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1391 const char *str, const struct qstr *name)
1392 {
1393 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1394 const struct inode *dir = READ_ONCE(parent->d_inode);
1395 const struct super_block *sb = dentry->d_sb;
1396 const struct unicode_map *um = sb->s_encoding;
1397 struct qstr qstr = QSTR_INIT(str, len);
1398 char strbuf[DNAME_INLINE_LEN];
1399 int ret;
1400
1401 if (!dir || !needs_casefold(dir))
1402 goto fallback;
1403 /*
1404 * If the dentry name is stored in-line, then it may be concurrently
1405 * modified by a rename. If this happens, the VFS will eventually retry
1406 * the lookup, so it doesn't matter what ->d_compare() returns.
1407 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1408 * string. Therefore, we have to copy the name into a temporary buffer.
1409 */
1410 if (len <= DNAME_INLINE_LEN - 1) {
1411 memcpy(strbuf, str, len);
1412 strbuf[len] = 0;
1413 qstr.name = strbuf;
1414 /* prevent compiler from optimizing out the temporary buffer */
1415 barrier();
1416 }
1417 ret = utf8_strncasecmp(um, name, &qstr);
1418 if (ret >= 0)
1419 return ret;
1420
1421 if (sb_has_strict_encoding(sb))
1422 return -EINVAL;
1423 fallback:
1424 if (len != name->len)
1425 return 1;
1426 return !!memcmp(str, name->name, len);
1427 }
1428
1429 /**
1430 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1431 * @dentry: dentry of the parent directory
1432 * @str: qstr of name whose hash we should fill in
1433 *
1434 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1435 */
1436 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1437 {
1438 const struct inode *dir = READ_ONCE(dentry->d_inode);
1439 struct super_block *sb = dentry->d_sb;
1440 const struct unicode_map *um = sb->s_encoding;
1441 int ret = 0;
1442
1443 if (!dir || !needs_casefold(dir))
1444 return 0;
1445
1446 ret = utf8_casefold_hash(um, dentry, str);
1447 if (ret < 0 && sb_has_strict_encoding(sb))
1448 return -EINVAL;
1449 return 0;
1450 }
1451
1452 static const struct dentry_operations generic_ci_dentry_ops = {
1453 .d_hash = generic_ci_d_hash,
1454 .d_compare = generic_ci_d_compare,
1455 };
1456 #endif
1457
1458 #ifdef CONFIG_FS_ENCRYPTION
1459 static const struct dentry_operations generic_encrypted_dentry_ops = {
1460 .d_revalidate = fscrypt_d_revalidate,
1461 };
1462 #endif
1463
1464 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1465 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1466 .d_hash = generic_ci_d_hash,
1467 .d_compare = generic_ci_d_compare,
1468 .d_revalidate = fscrypt_d_revalidate,
1469 };
1470 #endif
1471
1472 /**
1473 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1474 * @dentry: dentry to set ops on
1475 *
1476 * Casefolded directories need d_hash and d_compare set, so that the dentries
1477 * contained in them are handled case-insensitively. Note that these operations
1478 * are needed on the parent directory rather than on the dentries in it, and
1479 * while the casefolding flag can be toggled on and off on an empty directory,
1480 * dentry_operations can't be changed later. As a result, if the filesystem has
1481 * casefolding support enabled at all, we have to give all dentries the
1482 * casefolding operations even if their inode doesn't have the casefolding flag
1483 * currently (and thus the casefolding ops would be no-ops for now).
1484 *
1485 * Encryption works differently in that the only dentry operation it needs is
1486 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1487 * The no-key flag can't be set "later", so we don't have to worry about that.
1488 *
1489 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1490 * with certain dentry operations) and to avoid taking an unnecessary
1491 * performance hit, we use custom dentry_operations for each possible
1492 * combination rather than always installing all operations.
1493 */
1494 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1495 {
1496 #ifdef CONFIG_FS_ENCRYPTION
1497 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1498 #endif
1499 #ifdef CONFIG_UNICODE
1500 bool needs_ci_ops = dentry->d_sb->s_encoding;
1501 #endif
1502 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1503 if (needs_encrypt_ops && needs_ci_ops) {
1504 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1505 return;
1506 }
1507 #endif
1508 #ifdef CONFIG_FS_ENCRYPTION
1509 if (needs_encrypt_ops) {
1510 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1511 return;
1512 }
1513 #endif
1514 #ifdef CONFIG_UNICODE
1515 if (needs_ci_ops) {
1516 d_set_d_op(dentry, &generic_ci_dentry_ops);
1517 return;
1518 }
1519 #endif
1520 }
1521 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);