]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/libfs.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / fs / libfs.c
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18
19 #include <linux/uaccess.h>
20
21 #include "internal.h"
22
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
25 {
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41
42 /*
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
45 */
46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51
52 const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56
57 /*
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
60 */
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71
72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 file->private_data = d_alloc_cursor(file->f_path.dentry);
75
76 return file->private_data ? 0 : -ENOMEM;
77 }
78 EXPORT_SYMBOL(dcache_dir_open);
79
80 int dcache_dir_close(struct inode *inode, struct file *file)
81 {
82 dput(file->private_data);
83 return 0;
84 }
85 EXPORT_SYMBOL(dcache_dir_close);
86
87 /* parent is locked at least shared */
88 static struct dentry *next_positive(struct dentry *parent,
89 struct list_head *from,
90 int count)
91 {
92 unsigned *seq = &parent->d_inode->i_dir_seq, n;
93 struct dentry *res;
94 struct list_head *p;
95 bool skipped;
96 int i;
97
98 retry:
99 i = count;
100 skipped = false;
101 n = smp_load_acquire(seq) & ~1;
102 res = NULL;
103 rcu_read_lock();
104 for (p = from->next; p != &parent->d_subdirs; p = p->next) {
105 struct dentry *d = list_entry(p, struct dentry, d_child);
106 if (!simple_positive(d)) {
107 skipped = true;
108 } else if (!--i) {
109 res = d;
110 break;
111 }
112 }
113 rcu_read_unlock();
114 if (skipped) {
115 smp_rmb();
116 if (unlikely(*seq != n))
117 goto retry;
118 }
119 return res;
120 }
121
122 static void move_cursor(struct dentry *cursor, struct list_head *after)
123 {
124 struct dentry *parent = cursor->d_parent;
125 unsigned n, *seq = &parent->d_inode->i_dir_seq;
126 spin_lock(&parent->d_lock);
127 for (;;) {
128 n = *seq;
129 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
130 break;
131 cpu_relax();
132 }
133 __list_del(cursor->d_child.prev, cursor->d_child.next);
134 if (after)
135 list_add(&cursor->d_child, after);
136 else
137 list_add_tail(&cursor->d_child, &parent->d_subdirs);
138 smp_store_release(seq, n + 2);
139 spin_unlock(&parent->d_lock);
140 }
141
142 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 {
144 struct dentry *dentry = file->f_path.dentry;
145 switch (whence) {
146 case 1:
147 offset += file->f_pos;
148 case 0:
149 if (offset >= 0)
150 break;
151 default:
152 return -EINVAL;
153 }
154 if (offset != file->f_pos) {
155 file->f_pos = offset;
156 if (file->f_pos >= 2) {
157 struct dentry *cursor = file->private_data;
158 struct dentry *to;
159 loff_t n = file->f_pos - 2;
160
161 inode_lock_shared(dentry->d_inode);
162 to = next_positive(dentry, &dentry->d_subdirs, n);
163 move_cursor(cursor, to ? &to->d_child : NULL);
164 inode_unlock_shared(dentry->d_inode);
165 }
166 }
167 return offset;
168 }
169 EXPORT_SYMBOL(dcache_dir_lseek);
170
171 /* Relationship between i_mode and the DT_xxx types */
172 static inline unsigned char dt_type(struct inode *inode)
173 {
174 return (inode->i_mode >> 12) & 15;
175 }
176
177 /*
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
181 */
182
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *p = &cursor->d_child;
188 struct dentry *next;
189 bool moved = false;
190
191 if (!dir_emit_dots(file, ctx))
192 return 0;
193
194 if (ctx->pos == 2)
195 p = &dentry->d_subdirs;
196 while ((next = next_positive(dentry, p, 1)) != NULL) {
197 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
198 d_inode(next)->i_ino, dt_type(d_inode(next))))
199 break;
200 moved = true;
201 p = &next->d_child;
202 ctx->pos++;
203 }
204 if (moved)
205 move_cursor(cursor, p);
206 return 0;
207 }
208 EXPORT_SYMBOL(dcache_readdir);
209
210 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
211 {
212 return -EISDIR;
213 }
214 EXPORT_SYMBOL(generic_read_dir);
215
216 const struct file_operations simple_dir_operations = {
217 .open = dcache_dir_open,
218 .release = dcache_dir_close,
219 .llseek = dcache_dir_lseek,
220 .read = generic_read_dir,
221 .iterate_shared = dcache_readdir,
222 .fsync = noop_fsync,
223 };
224 EXPORT_SYMBOL(simple_dir_operations);
225
226 const struct inode_operations simple_dir_inode_operations = {
227 .lookup = simple_lookup,
228 };
229 EXPORT_SYMBOL(simple_dir_inode_operations);
230
231 static const struct super_operations simple_super_operations = {
232 .statfs = simple_statfs,
233 };
234
235 /*
236 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
237 * will never be mountable)
238 */
239 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
240 const struct super_operations *ops, const struct xattr_handler **xattr,
241 const struct dentry_operations *dops, unsigned long magic)
242 {
243 struct super_block *s;
244 struct dentry *dentry;
245 struct inode *root;
246 struct qstr d_name = QSTR_INIT(name, strlen(name));
247
248 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
249 if (IS_ERR(s))
250 return ERR_CAST(s);
251
252 s->s_maxbytes = MAX_LFS_FILESIZE;
253 s->s_blocksize = PAGE_SIZE;
254 s->s_blocksize_bits = PAGE_SHIFT;
255 s->s_magic = magic;
256 s->s_op = ops ? ops : &simple_super_operations;
257 s->s_xattr = xattr;
258 s->s_time_gran = 1;
259 root = new_inode(s);
260 if (!root)
261 goto Enomem;
262 /*
263 * since this is the first inode, make it number 1. New inodes created
264 * after this must take care not to collide with it (by passing
265 * max_reserved of 1 to iunique).
266 */
267 root->i_ino = 1;
268 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
269 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
270 dentry = __d_alloc(s, &d_name);
271 if (!dentry) {
272 iput(root);
273 goto Enomem;
274 }
275 d_instantiate(dentry, root);
276 s->s_root = dentry;
277 s->s_d_op = dops;
278 s->s_flags |= MS_ACTIVE;
279 return dget(s->s_root);
280
281 Enomem:
282 deactivate_locked_super(s);
283 return ERR_PTR(-ENOMEM);
284 }
285 EXPORT_SYMBOL(mount_pseudo_xattr);
286
287 int simple_open(struct inode *inode, struct file *file)
288 {
289 if (inode->i_private)
290 file->private_data = inode->i_private;
291 return 0;
292 }
293 EXPORT_SYMBOL(simple_open);
294
295 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
296 {
297 struct inode *inode = d_inode(old_dentry);
298
299 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
300 inc_nlink(inode);
301 ihold(inode);
302 dget(dentry);
303 d_instantiate(dentry, inode);
304 return 0;
305 }
306 EXPORT_SYMBOL(simple_link);
307
308 int simple_empty(struct dentry *dentry)
309 {
310 struct dentry *child;
311 int ret = 0;
312
313 spin_lock(&dentry->d_lock);
314 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
315 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
316 if (simple_positive(child)) {
317 spin_unlock(&child->d_lock);
318 goto out;
319 }
320 spin_unlock(&child->d_lock);
321 }
322 ret = 1;
323 out:
324 spin_unlock(&dentry->d_lock);
325 return ret;
326 }
327 EXPORT_SYMBOL(simple_empty);
328
329 int simple_unlink(struct inode *dir, struct dentry *dentry)
330 {
331 struct inode *inode = d_inode(dentry);
332
333 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
334 drop_nlink(inode);
335 dput(dentry);
336 return 0;
337 }
338 EXPORT_SYMBOL(simple_unlink);
339
340 int simple_rmdir(struct inode *dir, struct dentry *dentry)
341 {
342 if (!simple_empty(dentry))
343 return -ENOTEMPTY;
344
345 drop_nlink(d_inode(dentry));
346 simple_unlink(dir, dentry);
347 drop_nlink(dir);
348 return 0;
349 }
350 EXPORT_SYMBOL(simple_rmdir);
351
352 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
353 struct inode *new_dir, struct dentry *new_dentry,
354 unsigned int flags)
355 {
356 struct inode *inode = d_inode(old_dentry);
357 int they_are_dirs = d_is_dir(old_dentry);
358
359 if (flags & ~RENAME_NOREPLACE)
360 return -EINVAL;
361
362 if (!simple_empty(new_dentry))
363 return -ENOTEMPTY;
364
365 if (d_really_is_positive(new_dentry)) {
366 simple_unlink(new_dir, new_dentry);
367 if (they_are_dirs) {
368 drop_nlink(d_inode(new_dentry));
369 drop_nlink(old_dir);
370 }
371 } else if (they_are_dirs) {
372 drop_nlink(old_dir);
373 inc_nlink(new_dir);
374 }
375
376 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
377 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
378
379 return 0;
380 }
381 EXPORT_SYMBOL(simple_rename);
382
383 /**
384 * simple_setattr - setattr for simple filesystem
385 * @dentry: dentry
386 * @iattr: iattr structure
387 *
388 * Returns 0 on success, -error on failure.
389 *
390 * simple_setattr is a simple ->setattr implementation without a proper
391 * implementation of size changes.
392 *
393 * It can either be used for in-memory filesystems or special files
394 * on simple regular filesystems. Anything that needs to change on-disk
395 * or wire state on size changes needs its own setattr method.
396 */
397 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
398 {
399 struct inode *inode = d_inode(dentry);
400 int error;
401
402 error = setattr_prepare(dentry, iattr);
403 if (error)
404 return error;
405
406 if (iattr->ia_valid & ATTR_SIZE)
407 truncate_setsize(inode, iattr->ia_size);
408 setattr_copy(inode, iattr);
409 mark_inode_dirty(inode);
410 return 0;
411 }
412 EXPORT_SYMBOL(simple_setattr);
413
414 int simple_readpage(struct file *file, struct page *page)
415 {
416 clear_highpage(page);
417 flush_dcache_page(page);
418 SetPageUptodate(page);
419 unlock_page(page);
420 return 0;
421 }
422 EXPORT_SYMBOL(simple_readpage);
423
424 int simple_write_begin(struct file *file, struct address_space *mapping,
425 loff_t pos, unsigned len, unsigned flags,
426 struct page **pagep, void **fsdata)
427 {
428 struct page *page;
429 pgoff_t index;
430
431 index = pos >> PAGE_SHIFT;
432
433 page = grab_cache_page_write_begin(mapping, index, flags);
434 if (!page)
435 return -ENOMEM;
436
437 *pagep = page;
438
439 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
440 unsigned from = pos & (PAGE_SIZE - 1);
441
442 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
443 }
444 return 0;
445 }
446 EXPORT_SYMBOL(simple_write_begin);
447
448 /**
449 * simple_write_end - .write_end helper for non-block-device FSes
450 * @available: See .write_end of address_space_operations
451 * @file: "
452 * @mapping: "
453 * @pos: "
454 * @len: "
455 * @copied: "
456 * @page: "
457 * @fsdata: "
458 *
459 * simple_write_end does the minimum needed for updating a page after writing is
460 * done. It has the same API signature as the .write_end of
461 * address_space_operations vector. So it can just be set onto .write_end for
462 * FSes that don't need any other processing. i_mutex is assumed to be held.
463 * Block based filesystems should use generic_write_end().
464 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
465 * is not called, so a filesystem that actually does store data in .write_inode
466 * should extend on what's done here with a call to mark_inode_dirty() in the
467 * case that i_size has changed.
468 *
469 * Use *ONLY* with simple_readpage()
470 */
471 int simple_write_end(struct file *file, struct address_space *mapping,
472 loff_t pos, unsigned len, unsigned copied,
473 struct page *page, void *fsdata)
474 {
475 struct inode *inode = page->mapping->host;
476 loff_t last_pos = pos + copied;
477
478 /* zero the stale part of the page if we did a short copy */
479 if (!PageUptodate(page)) {
480 if (copied < len) {
481 unsigned from = pos & (PAGE_SIZE - 1);
482
483 zero_user(page, from + copied, len - copied);
484 }
485 SetPageUptodate(page);
486 }
487 /*
488 * No need to use i_size_read() here, the i_size
489 * cannot change under us because we hold the i_mutex.
490 */
491 if (last_pos > inode->i_size)
492 i_size_write(inode, last_pos);
493
494 set_page_dirty(page);
495 unlock_page(page);
496 put_page(page);
497
498 return copied;
499 }
500 EXPORT_SYMBOL(simple_write_end);
501
502 /*
503 * the inodes created here are not hashed. If you use iunique to generate
504 * unique inode values later for this filesystem, then you must take care
505 * to pass it an appropriate max_reserved value to avoid collisions.
506 */
507 int simple_fill_super(struct super_block *s, unsigned long magic,
508 struct tree_descr *files)
509 {
510 struct inode *inode;
511 struct dentry *root;
512 struct dentry *dentry;
513 int i;
514
515 s->s_blocksize = PAGE_SIZE;
516 s->s_blocksize_bits = PAGE_SHIFT;
517 s->s_magic = magic;
518 s->s_op = &simple_super_operations;
519 s->s_time_gran = 1;
520
521 inode = new_inode(s);
522 if (!inode)
523 return -ENOMEM;
524 /*
525 * because the root inode is 1, the files array must not contain an
526 * entry at index 1
527 */
528 inode->i_ino = 1;
529 inode->i_mode = S_IFDIR | 0755;
530 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
531 inode->i_op = &simple_dir_inode_operations;
532 inode->i_fop = &simple_dir_operations;
533 set_nlink(inode, 2);
534 root = d_make_root(inode);
535 if (!root)
536 return -ENOMEM;
537 for (i = 0; !files->name || files->name[0]; i++, files++) {
538 if (!files->name)
539 continue;
540
541 /* warn if it tries to conflict with the root inode */
542 if (unlikely(i == 1))
543 printk(KERN_WARNING "%s: %s passed in a files array"
544 "with an index of 1!\n", __func__,
545 s->s_type->name);
546
547 dentry = d_alloc_name(root, files->name);
548 if (!dentry)
549 goto out;
550 inode = new_inode(s);
551 if (!inode) {
552 dput(dentry);
553 goto out;
554 }
555 inode->i_mode = S_IFREG | files->mode;
556 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
557 inode->i_fop = files->ops;
558 inode->i_ino = i;
559 d_add(dentry, inode);
560 }
561 s->s_root = root;
562 return 0;
563 out:
564 d_genocide(root);
565 shrink_dcache_parent(root);
566 dput(root);
567 return -ENOMEM;
568 }
569 EXPORT_SYMBOL(simple_fill_super);
570
571 static DEFINE_SPINLOCK(pin_fs_lock);
572
573 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
574 {
575 struct vfsmount *mnt = NULL;
576 spin_lock(&pin_fs_lock);
577 if (unlikely(!*mount)) {
578 spin_unlock(&pin_fs_lock);
579 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
580 if (IS_ERR(mnt))
581 return PTR_ERR(mnt);
582 spin_lock(&pin_fs_lock);
583 if (!*mount)
584 *mount = mnt;
585 }
586 mntget(*mount);
587 ++*count;
588 spin_unlock(&pin_fs_lock);
589 mntput(mnt);
590 return 0;
591 }
592 EXPORT_SYMBOL(simple_pin_fs);
593
594 void simple_release_fs(struct vfsmount **mount, int *count)
595 {
596 struct vfsmount *mnt;
597 spin_lock(&pin_fs_lock);
598 mnt = *mount;
599 if (!--*count)
600 *mount = NULL;
601 spin_unlock(&pin_fs_lock);
602 mntput(mnt);
603 }
604 EXPORT_SYMBOL(simple_release_fs);
605
606 /**
607 * simple_read_from_buffer - copy data from the buffer to user space
608 * @to: the user space buffer to read to
609 * @count: the maximum number of bytes to read
610 * @ppos: the current position in the buffer
611 * @from: the buffer to read from
612 * @available: the size of the buffer
613 *
614 * The simple_read_from_buffer() function reads up to @count bytes from the
615 * buffer @from at offset @ppos into the user space address starting at @to.
616 *
617 * On success, the number of bytes read is returned and the offset @ppos is
618 * advanced by this number, or negative value is returned on error.
619 **/
620 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
621 const void *from, size_t available)
622 {
623 loff_t pos = *ppos;
624 size_t ret;
625
626 if (pos < 0)
627 return -EINVAL;
628 if (pos >= available || !count)
629 return 0;
630 if (count > available - pos)
631 count = available - pos;
632 ret = copy_to_user(to, from + pos, count);
633 if (ret == count)
634 return -EFAULT;
635 count -= ret;
636 *ppos = pos + count;
637 return count;
638 }
639 EXPORT_SYMBOL(simple_read_from_buffer);
640
641 /**
642 * simple_write_to_buffer - copy data from user space to the buffer
643 * @to: the buffer to write to
644 * @available: the size of the buffer
645 * @ppos: the current position in the buffer
646 * @from: the user space buffer to read from
647 * @count: the maximum number of bytes to read
648 *
649 * The simple_write_to_buffer() function reads up to @count bytes from the user
650 * space address starting at @from into the buffer @to at offset @ppos.
651 *
652 * On success, the number of bytes written is returned and the offset @ppos is
653 * advanced by this number, or negative value is returned on error.
654 **/
655 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
656 const void __user *from, size_t count)
657 {
658 loff_t pos = *ppos;
659 size_t res;
660
661 if (pos < 0)
662 return -EINVAL;
663 if (pos >= available || !count)
664 return 0;
665 if (count > available - pos)
666 count = available - pos;
667 res = copy_from_user(to + pos, from, count);
668 if (res == count)
669 return -EFAULT;
670 count -= res;
671 *ppos = pos + count;
672 return count;
673 }
674 EXPORT_SYMBOL(simple_write_to_buffer);
675
676 /**
677 * memory_read_from_buffer - copy data from the buffer
678 * @to: the kernel space buffer to read to
679 * @count: the maximum number of bytes to read
680 * @ppos: the current position in the buffer
681 * @from: the buffer to read from
682 * @available: the size of the buffer
683 *
684 * The memory_read_from_buffer() function reads up to @count bytes from the
685 * buffer @from at offset @ppos into the kernel space address starting at @to.
686 *
687 * On success, the number of bytes read is returned and the offset @ppos is
688 * advanced by this number, or negative value is returned on error.
689 **/
690 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
691 const void *from, size_t available)
692 {
693 loff_t pos = *ppos;
694
695 if (pos < 0)
696 return -EINVAL;
697 if (pos >= available)
698 return 0;
699 if (count > available - pos)
700 count = available - pos;
701 memcpy(to, from + pos, count);
702 *ppos = pos + count;
703
704 return count;
705 }
706 EXPORT_SYMBOL(memory_read_from_buffer);
707
708 /*
709 * Transaction based IO.
710 * The file expects a single write which triggers the transaction, and then
711 * possibly a read which collects the result - which is stored in a
712 * file-local buffer.
713 */
714
715 void simple_transaction_set(struct file *file, size_t n)
716 {
717 struct simple_transaction_argresp *ar = file->private_data;
718
719 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
720
721 /*
722 * The barrier ensures that ar->size will really remain zero until
723 * ar->data is ready for reading.
724 */
725 smp_mb();
726 ar->size = n;
727 }
728 EXPORT_SYMBOL(simple_transaction_set);
729
730 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
731 {
732 struct simple_transaction_argresp *ar;
733 static DEFINE_SPINLOCK(simple_transaction_lock);
734
735 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
736 return ERR_PTR(-EFBIG);
737
738 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
739 if (!ar)
740 return ERR_PTR(-ENOMEM);
741
742 spin_lock(&simple_transaction_lock);
743
744 /* only one write allowed per open */
745 if (file->private_data) {
746 spin_unlock(&simple_transaction_lock);
747 free_page((unsigned long)ar);
748 return ERR_PTR(-EBUSY);
749 }
750
751 file->private_data = ar;
752
753 spin_unlock(&simple_transaction_lock);
754
755 if (copy_from_user(ar->data, buf, size))
756 return ERR_PTR(-EFAULT);
757
758 return ar->data;
759 }
760 EXPORT_SYMBOL(simple_transaction_get);
761
762 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
763 {
764 struct simple_transaction_argresp *ar = file->private_data;
765
766 if (!ar)
767 return 0;
768 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
769 }
770 EXPORT_SYMBOL(simple_transaction_read);
771
772 int simple_transaction_release(struct inode *inode, struct file *file)
773 {
774 free_page((unsigned long)file->private_data);
775 return 0;
776 }
777 EXPORT_SYMBOL(simple_transaction_release);
778
779 /* Simple attribute files */
780
781 struct simple_attr {
782 int (*get)(void *, u64 *);
783 int (*set)(void *, u64);
784 char get_buf[24]; /* enough to store a u64 and "\n\0" */
785 char set_buf[24];
786 void *data;
787 const char *fmt; /* format for read operation */
788 struct mutex mutex; /* protects access to these buffers */
789 };
790
791 /* simple_attr_open is called by an actual attribute open file operation
792 * to set the attribute specific access operations. */
793 int simple_attr_open(struct inode *inode, struct file *file,
794 int (*get)(void *, u64 *), int (*set)(void *, u64),
795 const char *fmt)
796 {
797 struct simple_attr *attr;
798
799 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
800 if (!attr)
801 return -ENOMEM;
802
803 attr->get = get;
804 attr->set = set;
805 attr->data = inode->i_private;
806 attr->fmt = fmt;
807 mutex_init(&attr->mutex);
808
809 file->private_data = attr;
810
811 return nonseekable_open(inode, file);
812 }
813 EXPORT_SYMBOL_GPL(simple_attr_open);
814
815 int simple_attr_release(struct inode *inode, struct file *file)
816 {
817 kfree(file->private_data);
818 return 0;
819 }
820 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
821
822 /* read from the buffer that is filled with the get function */
823 ssize_t simple_attr_read(struct file *file, char __user *buf,
824 size_t len, loff_t *ppos)
825 {
826 struct simple_attr *attr;
827 size_t size;
828 ssize_t ret;
829
830 attr = file->private_data;
831
832 if (!attr->get)
833 return -EACCES;
834
835 ret = mutex_lock_interruptible(&attr->mutex);
836 if (ret)
837 return ret;
838
839 if (*ppos) { /* continued read */
840 size = strlen(attr->get_buf);
841 } else { /* first read */
842 u64 val;
843 ret = attr->get(attr->data, &val);
844 if (ret)
845 goto out;
846
847 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
848 attr->fmt, (unsigned long long)val);
849 }
850
851 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
852 out:
853 mutex_unlock(&attr->mutex);
854 return ret;
855 }
856 EXPORT_SYMBOL_GPL(simple_attr_read);
857
858 /* interpret the buffer as a number to call the set function with */
859 ssize_t simple_attr_write(struct file *file, const char __user *buf,
860 size_t len, loff_t *ppos)
861 {
862 struct simple_attr *attr;
863 u64 val;
864 size_t size;
865 ssize_t ret;
866
867 attr = file->private_data;
868 if (!attr->set)
869 return -EACCES;
870
871 ret = mutex_lock_interruptible(&attr->mutex);
872 if (ret)
873 return ret;
874
875 ret = -EFAULT;
876 size = min(sizeof(attr->set_buf) - 1, len);
877 if (copy_from_user(attr->set_buf, buf, size))
878 goto out;
879
880 attr->set_buf[size] = '\0';
881 val = simple_strtoll(attr->set_buf, NULL, 0);
882 ret = attr->set(attr->data, val);
883 if (ret == 0)
884 ret = len; /* on success, claim we got the whole input */
885 out:
886 mutex_unlock(&attr->mutex);
887 return ret;
888 }
889 EXPORT_SYMBOL_GPL(simple_attr_write);
890
891 /**
892 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
893 * @sb: filesystem to do the file handle conversion on
894 * @fid: file handle to convert
895 * @fh_len: length of the file handle in bytes
896 * @fh_type: type of file handle
897 * @get_inode: filesystem callback to retrieve inode
898 *
899 * This function decodes @fid as long as it has one of the well-known
900 * Linux filehandle types and calls @get_inode on it to retrieve the
901 * inode for the object specified in the file handle.
902 */
903 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
904 int fh_len, int fh_type, struct inode *(*get_inode)
905 (struct super_block *sb, u64 ino, u32 gen))
906 {
907 struct inode *inode = NULL;
908
909 if (fh_len < 2)
910 return NULL;
911
912 switch (fh_type) {
913 case FILEID_INO32_GEN:
914 case FILEID_INO32_GEN_PARENT:
915 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
916 break;
917 }
918
919 return d_obtain_alias(inode);
920 }
921 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
922
923 /**
924 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
925 * @sb: filesystem to do the file handle conversion on
926 * @fid: file handle to convert
927 * @fh_len: length of the file handle in bytes
928 * @fh_type: type of file handle
929 * @get_inode: filesystem callback to retrieve inode
930 *
931 * This function decodes @fid as long as it has one of the well-known
932 * Linux filehandle types and calls @get_inode on it to retrieve the
933 * inode for the _parent_ object specified in the file handle if it
934 * is specified in the file handle, or NULL otherwise.
935 */
936 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
937 int fh_len, int fh_type, struct inode *(*get_inode)
938 (struct super_block *sb, u64 ino, u32 gen))
939 {
940 struct inode *inode = NULL;
941
942 if (fh_len <= 2)
943 return NULL;
944
945 switch (fh_type) {
946 case FILEID_INO32_GEN_PARENT:
947 inode = get_inode(sb, fid->i32.parent_ino,
948 (fh_len > 3 ? fid->i32.parent_gen : 0));
949 break;
950 }
951
952 return d_obtain_alias(inode);
953 }
954 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
955
956 /**
957 * __generic_file_fsync - generic fsync implementation for simple filesystems
958 *
959 * @file: file to synchronize
960 * @start: start offset in bytes
961 * @end: end offset in bytes (inclusive)
962 * @datasync: only synchronize essential metadata if true
963 *
964 * This is a generic implementation of the fsync method for simple
965 * filesystems which track all non-inode metadata in the buffers list
966 * hanging off the address_space structure.
967 */
968 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
969 int datasync)
970 {
971 struct inode *inode = file->f_mapping->host;
972 int err;
973 int ret;
974
975 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
976 if (err)
977 return err;
978
979 inode_lock(inode);
980 ret = sync_mapping_buffers(inode->i_mapping);
981 if (!(inode->i_state & I_DIRTY_ALL))
982 goto out;
983 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
984 goto out;
985
986 err = sync_inode_metadata(inode, 1);
987 if (ret == 0)
988 ret = err;
989
990 out:
991 inode_unlock(inode);
992 return ret;
993 }
994 EXPORT_SYMBOL(__generic_file_fsync);
995
996 /**
997 * generic_file_fsync - generic fsync implementation for simple filesystems
998 * with flush
999 * @file: file to synchronize
1000 * @start: start offset in bytes
1001 * @end: end offset in bytes (inclusive)
1002 * @datasync: only synchronize essential metadata if true
1003 *
1004 */
1005
1006 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1007 int datasync)
1008 {
1009 struct inode *inode = file->f_mapping->host;
1010 int err;
1011
1012 err = __generic_file_fsync(file, start, end, datasync);
1013 if (err)
1014 return err;
1015 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1016 }
1017 EXPORT_SYMBOL(generic_file_fsync);
1018
1019 /**
1020 * generic_check_addressable - Check addressability of file system
1021 * @blocksize_bits: log of file system block size
1022 * @num_blocks: number of blocks in file system
1023 *
1024 * Determine whether a file system with @num_blocks blocks (and a
1025 * block size of 2**@blocksize_bits) is addressable by the sector_t
1026 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1027 */
1028 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1029 {
1030 u64 last_fs_block = num_blocks - 1;
1031 u64 last_fs_page =
1032 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1033
1034 if (unlikely(num_blocks == 0))
1035 return 0;
1036
1037 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1038 return -EINVAL;
1039
1040 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1041 (last_fs_page > (pgoff_t)(~0ULL))) {
1042 return -EFBIG;
1043 }
1044 return 0;
1045 }
1046 EXPORT_SYMBOL(generic_check_addressable);
1047
1048 /*
1049 * No-op implementation of ->fsync for in-memory filesystems.
1050 */
1051 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1052 {
1053 return 0;
1054 }
1055 EXPORT_SYMBOL(noop_fsync);
1056
1057 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1058 void kfree_link(void *p)
1059 {
1060 kfree(p);
1061 }
1062 EXPORT_SYMBOL(kfree_link);
1063
1064 /*
1065 * nop .set_page_dirty method so that people can use .page_mkwrite on
1066 * anon inodes.
1067 */
1068 static int anon_set_page_dirty(struct page *page)
1069 {
1070 return 0;
1071 };
1072
1073 /*
1074 * A single inode exists for all anon_inode files. Contrary to pipes,
1075 * anon_inode inodes have no associated per-instance data, so we need
1076 * only allocate one of them.
1077 */
1078 struct inode *alloc_anon_inode(struct super_block *s)
1079 {
1080 static const struct address_space_operations anon_aops = {
1081 .set_page_dirty = anon_set_page_dirty,
1082 };
1083 struct inode *inode = new_inode_pseudo(s);
1084
1085 if (!inode)
1086 return ERR_PTR(-ENOMEM);
1087
1088 inode->i_ino = get_next_ino();
1089 inode->i_mapping->a_ops = &anon_aops;
1090
1091 /*
1092 * Mark the inode dirty from the very beginning,
1093 * that way it will never be moved to the dirty
1094 * list because mark_inode_dirty() will think
1095 * that it already _is_ on the dirty list.
1096 */
1097 inode->i_state = I_DIRTY;
1098 inode->i_mode = S_IRUSR | S_IWUSR;
1099 inode->i_uid = current_fsuid();
1100 inode->i_gid = current_fsgid();
1101 inode->i_flags |= S_PRIVATE;
1102 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1103 return inode;
1104 }
1105 EXPORT_SYMBOL(alloc_anon_inode);
1106
1107 /**
1108 * simple_nosetlease - generic helper for prohibiting leases
1109 * @filp: file pointer
1110 * @arg: type of lease to obtain
1111 * @flp: new lease supplied for insertion
1112 * @priv: private data for lm_setup operation
1113 *
1114 * Generic helper for filesystems that do not wish to allow leases to be set.
1115 * All arguments are ignored and it just returns -EINVAL.
1116 */
1117 int
1118 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1119 void **priv)
1120 {
1121 return -EINVAL;
1122 }
1123 EXPORT_SYMBOL(simple_nosetlease);
1124
1125 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1126 struct delayed_call *done)
1127 {
1128 return inode->i_link;
1129 }
1130 EXPORT_SYMBOL(simple_get_link);
1131
1132 const struct inode_operations simple_symlink_inode_operations = {
1133 .get_link = simple_get_link,
1134 };
1135 EXPORT_SYMBOL(simple_symlink_inode_operations);
1136
1137 /*
1138 * Operations for a permanently empty directory.
1139 */
1140 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1141 {
1142 return ERR_PTR(-ENOENT);
1143 }
1144
1145 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1146 struct kstat *stat)
1147 {
1148 struct inode *inode = d_inode(dentry);
1149 generic_fillattr(inode, stat);
1150 return 0;
1151 }
1152
1153 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1154 {
1155 return -EPERM;
1156 }
1157
1158 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1159 {
1160 return -EOPNOTSUPP;
1161 }
1162
1163 static const struct inode_operations empty_dir_inode_operations = {
1164 .lookup = empty_dir_lookup,
1165 .permission = generic_permission,
1166 .setattr = empty_dir_setattr,
1167 .getattr = empty_dir_getattr,
1168 .listxattr = empty_dir_listxattr,
1169 };
1170
1171 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1172 {
1173 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1174 return generic_file_llseek_size(file, offset, whence, 2, 2);
1175 }
1176
1177 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1178 {
1179 dir_emit_dots(file, ctx);
1180 return 0;
1181 }
1182
1183 static const struct file_operations empty_dir_operations = {
1184 .llseek = empty_dir_llseek,
1185 .read = generic_read_dir,
1186 .iterate_shared = empty_dir_readdir,
1187 .fsync = noop_fsync,
1188 };
1189
1190
1191 void make_empty_dir_inode(struct inode *inode)
1192 {
1193 set_nlink(inode, 2);
1194 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1195 inode->i_uid = GLOBAL_ROOT_UID;
1196 inode->i_gid = GLOBAL_ROOT_GID;
1197 inode->i_rdev = 0;
1198 inode->i_size = 0;
1199 inode->i_blkbits = PAGE_SHIFT;
1200 inode->i_blocks = 0;
1201
1202 inode->i_op = &empty_dir_inode_operations;
1203 inode->i_opflags &= ~IOP_XATTR;
1204 inode->i_fop = &empty_dir_operations;
1205 }
1206
1207 bool is_empty_dir_inode(struct inode *inode)
1208 {
1209 return (inode->i_fop == &empty_dir_operations) &&
1210 (inode->i_op == &empty_dir_inode_operations);
1211 }