3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
30 * Lock descriptions and usage:
32 * Each hash chain of both the block and index hash tables now contains
33 * a built-in lock used to serialize accesses to the hash chain.
35 * Accesses to global data structures mb_cache_list and mb_cache_lru_list
36 * are serialized via the global spinlock mb_cache_spinlock.
38 * Each mb_cache_entry contains a spinlock, e_entry_lock, to serialize
39 * accesses to its local data, such as e_used and e_queued.
43 * Each block hash chain's lock has the highest lock order, followed by an
44 * index hash chain's lock, mb_cache_bg_lock (used to implement mb_cache_entry's
45 * lock), and mb_cach_spinlock, with the lowest order. While holding
46 * either a block or index hash chain lock, a thread can acquire an
47 * mc_cache_bg_lock, which in turn can also acquire mb_cache_spinlock.
51 * Since both mb_cache_entry_get and mb_cache_entry_find scan the block and
52 * index hash chian, it needs to lock the corresponding hash chain. For each
53 * mb_cache_entry within the chain, it needs to lock the mb_cache_entry to
54 * prevent either any simultaneous release or free on the entry and also
55 * to serialize accesses to either the e_used or e_queued member of the entry.
57 * To avoid having a dangling reference to an already freed
58 * mb_cache_entry, an mb_cache_entry is only freed when it is not on a
59 * block hash chain and also no longer being referenced, both e_used,
60 * and e_queued are 0's. When an mb_cache_entry is explicitly freed it is
61 * first removed from a block hash chain.
64 #include <linux/kernel.h>
65 #include <linux/module.h>
67 #include <linux/hash.h>
70 #include <linux/slab.h>
71 #include <linux/sched.h>
72 #include <linux/list_bl.h>
73 #include <linux/mbcache.h>
74 #include <linux/init.h>
75 #include <linux/blockgroup_lock.h>
78 # define mb_debug(f...) do { \
79 printk(KERN_DEBUG f); \
82 #define mb_assert(c) do { if (!(c)) \
83 printk(KERN_ERR "assertion " #c " failed\n"); \
86 # define mb_debug(f...) do { } while(0)
87 # define mb_assert(c) do { } while(0)
89 #define mb_error(f...) do { \
94 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
96 #define MB_CACHE_ENTRY_LOCK_BITS __builtin_log2(NR_BG_LOCKS)
97 #define MB_CACHE_ENTRY_LOCK_INDEX(ce) \
98 (hash_long((unsigned long)ce, MB_CACHE_ENTRY_LOCK_BITS))
100 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
101 static struct blockgroup_lock
*mb_cache_bg_lock
;
102 static struct kmem_cache
*mb_cache_kmem_cache
;
104 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
105 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
106 MODULE_LICENSE("GPL");
108 EXPORT_SYMBOL(mb_cache_create
);
109 EXPORT_SYMBOL(mb_cache_shrink
);
110 EXPORT_SYMBOL(mb_cache_destroy
);
111 EXPORT_SYMBOL(mb_cache_entry_alloc
);
112 EXPORT_SYMBOL(mb_cache_entry_insert
);
113 EXPORT_SYMBOL(mb_cache_entry_release
);
114 EXPORT_SYMBOL(mb_cache_entry_free
);
115 EXPORT_SYMBOL(mb_cache_entry_get
);
116 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
117 EXPORT_SYMBOL(mb_cache_entry_find_first
);
118 EXPORT_SYMBOL(mb_cache_entry_find_next
);
122 * Global data: list of all mbcache's, lru list, and a spinlock for
123 * accessing cache data structures on SMP machines. The lru list is
124 * global across all mbcaches.
127 static LIST_HEAD(mb_cache_list
);
128 static LIST_HEAD(mb_cache_lru_list
);
129 static DEFINE_SPINLOCK(mb_cache_spinlock
);
132 __spin_lock_mb_cache_entry(struct mb_cache_entry
*ce
)
134 spin_lock(bgl_lock_ptr(mb_cache_bg_lock
,
135 MB_CACHE_ENTRY_LOCK_INDEX(ce
)));
139 __spin_unlock_mb_cache_entry(struct mb_cache_entry
*ce
)
141 spin_unlock(bgl_lock_ptr(mb_cache_bg_lock
,
142 MB_CACHE_ENTRY_LOCK_INDEX(ce
)));
146 __mb_cache_entry_is_block_hashed(struct mb_cache_entry
*ce
)
148 return !hlist_bl_unhashed(&ce
->e_block_list
);
153 __mb_cache_entry_unhash_block(struct mb_cache_entry
*ce
)
155 if (__mb_cache_entry_is_block_hashed(ce
))
156 hlist_bl_del_init(&ce
->e_block_list
);
160 __mb_cache_entry_is_index_hashed(struct mb_cache_entry
*ce
)
162 return !hlist_bl_unhashed(&ce
->e_index
.o_list
);
166 __mb_cache_entry_unhash_index(struct mb_cache_entry
*ce
)
168 if (__mb_cache_entry_is_index_hashed(ce
))
169 hlist_bl_del_init(&ce
->e_index
.o_list
);
173 * __mb_cache_entry_unhash_unlock()
175 * This function is called to unhash both the block and index hash
177 * It assumes both the block and index hash chain is locked upon entry.
178 * It also unlock both hash chains both exit
181 __mb_cache_entry_unhash_unlock(struct mb_cache_entry
*ce
)
183 __mb_cache_entry_unhash_index(ce
);
184 hlist_bl_unlock(ce
->e_index_hash_p
);
185 __mb_cache_entry_unhash_block(ce
);
186 hlist_bl_unlock(ce
->e_block_hash_p
);
190 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
192 struct mb_cache
*cache
= ce
->e_cache
;
194 mb_assert(!(ce
->e_used
|| ce
->e_queued
|| atomic_read(&ce
->e_refcnt
)));
195 kmem_cache_free(cache
->c_entry_cache
, ce
);
196 atomic_dec(&cache
->c_entry_count
);
200 __mb_cache_entry_release(struct mb_cache_entry
*ce
)
202 /* First lock the entry to serialize access to its local data. */
203 __spin_lock_mb_cache_entry(ce
);
204 /* Wake up all processes queuing for this cache entry. */
206 wake_up_all(&mb_cache_queue
);
207 if (ce
->e_used
>= MB_CACHE_WRITER
)
208 ce
->e_used
-= MB_CACHE_WRITER
;
210 * Make sure that all cache entries on lru_list have
211 * both e_used and e_qued of 0s.
214 if (!(ce
->e_used
|| ce
->e_queued
|| atomic_read(&ce
->e_refcnt
))) {
215 if (!__mb_cache_entry_is_block_hashed(ce
)) {
216 __spin_unlock_mb_cache_entry(ce
);
220 * Need access to lru list, first drop entry lock,
221 * then reacquire the lock in the proper order.
223 spin_lock(&mb_cache_spinlock
);
224 if (list_empty(&ce
->e_lru_list
))
225 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
226 spin_unlock(&mb_cache_spinlock
);
228 __spin_unlock_mb_cache_entry(ce
);
231 mb_assert(list_empty(&ce
->e_lru_list
));
232 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
236 * mb_cache_shrink_scan() memory pressure callback
238 * This function is called by the kernel memory management when memory
242 * @sc: shrink_control passed from reclaim
244 * Returns the number of objects freed.
247 mb_cache_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
249 LIST_HEAD(free_list
);
250 struct mb_cache_entry
*entry
, *tmp
;
251 int nr_to_scan
= sc
->nr_to_scan
;
252 gfp_t gfp_mask
= sc
->gfp_mask
;
253 unsigned long freed
= 0;
255 mb_debug("trying to free %d entries", nr_to_scan
);
256 spin_lock(&mb_cache_spinlock
);
257 while ((nr_to_scan
-- > 0) && !list_empty(&mb_cache_lru_list
)) {
258 struct mb_cache_entry
*ce
=
259 list_entry(mb_cache_lru_list
.next
,
260 struct mb_cache_entry
, e_lru_list
);
261 list_del_init(&ce
->e_lru_list
);
262 if (ce
->e_used
|| ce
->e_queued
|| atomic_read(&ce
->e_refcnt
))
264 spin_unlock(&mb_cache_spinlock
);
265 /* Prevent any find or get operation on the entry */
266 hlist_bl_lock(ce
->e_block_hash_p
);
267 hlist_bl_lock(ce
->e_index_hash_p
);
268 /* Ignore if it is touched by a find/get */
269 if (ce
->e_used
|| ce
->e_queued
|| atomic_read(&ce
->e_refcnt
) ||
270 !list_empty(&ce
->e_lru_list
)) {
271 hlist_bl_unlock(ce
->e_index_hash_p
);
272 hlist_bl_unlock(ce
->e_block_hash_p
);
273 spin_lock(&mb_cache_spinlock
);
276 __mb_cache_entry_unhash_unlock(ce
);
277 list_add_tail(&ce
->e_lru_list
, &free_list
);
278 spin_lock(&mb_cache_spinlock
);
280 spin_unlock(&mb_cache_spinlock
);
282 list_for_each_entry_safe(entry
, tmp
, &free_list
, e_lru_list
) {
283 __mb_cache_entry_forget(entry
, gfp_mask
);
290 mb_cache_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
292 struct mb_cache
*cache
;
293 unsigned long count
= 0;
295 spin_lock(&mb_cache_spinlock
);
296 list_for_each_entry(cache
, &mb_cache_list
, c_cache_list
) {
297 mb_debug("cache %s (%d)", cache
->c_name
,
298 atomic_read(&cache
->c_entry_count
));
299 count
+= atomic_read(&cache
->c_entry_count
);
301 spin_unlock(&mb_cache_spinlock
);
303 return vfs_pressure_ratio(count
);
306 static struct shrinker mb_cache_shrinker
= {
307 .count_objects
= mb_cache_shrink_count
,
308 .scan_objects
= mb_cache_shrink_scan
,
309 .seeks
= DEFAULT_SEEKS
,
313 * mb_cache_create() create a new cache
315 * All entries in one cache are equal size. Cache entries may be from
316 * multiple devices. If this is the first mbcache created, registers
317 * the cache with kernel memory management. Returns NULL if no more
318 * memory was available.
320 * @name: name of the cache (informal)
321 * @bucket_bits: log2(number of hash buckets)
324 mb_cache_create(const char *name
, int bucket_bits
)
326 int n
, bucket_count
= 1 << bucket_bits
;
327 struct mb_cache
*cache
= NULL
;
329 if (!mb_cache_bg_lock
) {
330 mb_cache_bg_lock
= kmalloc(sizeof(struct blockgroup_lock
),
332 if (!mb_cache_bg_lock
)
334 bgl_lock_init(mb_cache_bg_lock
);
337 cache
= kmalloc(sizeof(struct mb_cache
), GFP_KERNEL
);
340 cache
->c_name
= name
;
341 atomic_set(&cache
->c_entry_count
, 0);
342 cache
->c_bucket_bits
= bucket_bits
;
343 cache
->c_block_hash
= kmalloc(bucket_count
*
344 sizeof(struct hlist_bl_head
), GFP_KERNEL
);
345 if (!cache
->c_block_hash
)
347 for (n
=0; n
<bucket_count
; n
++)
348 INIT_HLIST_BL_HEAD(&cache
->c_block_hash
[n
]);
349 cache
->c_index_hash
= kmalloc(bucket_count
*
350 sizeof(struct hlist_bl_head
), GFP_KERNEL
);
351 if (!cache
->c_index_hash
)
353 for (n
=0; n
<bucket_count
; n
++)
354 INIT_HLIST_BL_HEAD(&cache
->c_index_hash
[n
]);
355 if (!mb_cache_kmem_cache
) {
356 mb_cache_kmem_cache
= kmem_cache_create(name
,
357 sizeof(struct mb_cache_entry
), 0,
358 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
);
359 if (!mb_cache_kmem_cache
)
362 cache
->c_entry_cache
= mb_cache_kmem_cache
;
365 * Set an upper limit on the number of cache entries so that the hash
366 * chains won't grow too long.
368 cache
->c_max_entries
= bucket_count
<< 4;
370 spin_lock(&mb_cache_spinlock
);
371 list_add(&cache
->c_cache_list
, &mb_cache_list
);
372 spin_unlock(&mb_cache_spinlock
);
376 kfree(cache
->c_index_hash
);
379 kfree(cache
->c_block_hash
);
388 * Removes all cache entries of a device from the cache. All cache entries
389 * currently in use cannot be freed, and thus remain in the cache. All others
392 * @bdev: which device's cache entries to shrink
395 mb_cache_shrink(struct block_device
*bdev
)
397 LIST_HEAD(free_list
);
399 struct mb_cache_entry
*ce
, *tmp
;
401 l
= &mb_cache_lru_list
;
402 spin_lock(&mb_cache_spinlock
);
403 while (!list_is_last(l
, &mb_cache_lru_list
)) {
405 ce
= list_entry(l
, struct mb_cache_entry
, e_lru_list
);
406 if (ce
->e_bdev
== bdev
) {
407 list_del_init(&ce
->e_lru_list
);
408 if (ce
->e_used
|| ce
->e_queued
||
409 atomic_read(&ce
->e_refcnt
))
411 spin_unlock(&mb_cache_spinlock
);
413 * Prevent any find or get operation on the entry.
415 hlist_bl_lock(ce
->e_block_hash_p
);
416 hlist_bl_lock(ce
->e_index_hash_p
);
417 /* Ignore if it is touched by a find/get */
418 if (ce
->e_used
|| ce
->e_queued
||
419 atomic_read(&ce
->e_refcnt
) ||
420 !list_empty(&ce
->e_lru_list
)) {
421 hlist_bl_unlock(ce
->e_index_hash_p
);
422 hlist_bl_unlock(ce
->e_block_hash_p
);
423 l
= &mb_cache_lru_list
;
424 spin_lock(&mb_cache_spinlock
);
427 __mb_cache_entry_unhash_unlock(ce
);
428 mb_assert(!(ce
->e_used
|| ce
->e_queued
||
429 atomic_read(&ce
->e_refcnt
)));
430 list_add_tail(&ce
->e_lru_list
, &free_list
);
431 l
= &mb_cache_lru_list
;
432 spin_lock(&mb_cache_spinlock
);
435 spin_unlock(&mb_cache_spinlock
);
437 list_for_each_entry_safe(ce
, tmp
, &free_list
, e_lru_list
) {
438 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
446 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
447 * and then destroys it. If this was the last mbcache, un-registers the
448 * mbcache from kernel memory management.
451 mb_cache_destroy(struct mb_cache
*cache
)
453 LIST_HEAD(free_list
);
454 struct mb_cache_entry
*ce
, *tmp
;
456 spin_lock(&mb_cache_spinlock
);
457 list_for_each_entry_safe(ce
, tmp
, &mb_cache_lru_list
, e_lru_list
) {
458 if (ce
->e_cache
== cache
)
459 list_move_tail(&ce
->e_lru_list
, &free_list
);
461 list_del(&cache
->c_cache_list
);
462 spin_unlock(&mb_cache_spinlock
);
464 list_for_each_entry_safe(ce
, tmp
, &free_list
, e_lru_list
) {
465 list_del_init(&ce
->e_lru_list
);
467 * Prevent any find or get operation on the entry.
469 hlist_bl_lock(ce
->e_block_hash_p
);
470 hlist_bl_lock(ce
->e_index_hash_p
);
471 mb_assert(!(ce
->e_used
|| ce
->e_queued
||
472 atomic_read(&ce
->e_refcnt
)));
473 __mb_cache_entry_unhash_unlock(ce
);
474 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
477 if (atomic_read(&cache
->c_entry_count
) > 0) {
478 mb_error("cache %s: %d orphaned entries",
480 atomic_read(&cache
->c_entry_count
));
483 if (list_empty(&mb_cache_list
)) {
484 kmem_cache_destroy(mb_cache_kmem_cache
);
485 mb_cache_kmem_cache
= NULL
;
487 kfree(cache
->c_index_hash
);
488 kfree(cache
->c_block_hash
);
493 * mb_cache_entry_alloc()
495 * Allocates a new cache entry. The new entry will not be valid initially,
496 * and thus cannot be looked up yet. It should be filled with data, and
497 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
498 * if no more memory was available.
500 struct mb_cache_entry
*
501 mb_cache_entry_alloc(struct mb_cache
*cache
, gfp_t gfp_flags
)
503 struct mb_cache_entry
*ce
;
505 if (atomic_read(&cache
->c_entry_count
) >= cache
->c_max_entries
) {
508 l
= &mb_cache_lru_list
;
509 spin_lock(&mb_cache_spinlock
);
510 while (!list_is_last(l
, &mb_cache_lru_list
)) {
512 ce
= list_entry(l
, struct mb_cache_entry
, e_lru_list
);
513 if (ce
->e_cache
== cache
) {
514 list_del_init(&ce
->e_lru_list
);
515 if (ce
->e_used
|| ce
->e_queued
||
516 atomic_read(&ce
->e_refcnt
))
518 spin_unlock(&mb_cache_spinlock
);
520 * Prevent any find or get operation on the
523 hlist_bl_lock(ce
->e_block_hash_p
);
524 hlist_bl_lock(ce
->e_index_hash_p
);
525 /* Ignore if it is touched by a find/get */
526 if (ce
->e_used
|| ce
->e_queued
||
527 atomic_read(&ce
->e_refcnt
) ||
528 !list_empty(&ce
->e_lru_list
)) {
529 hlist_bl_unlock(ce
->e_index_hash_p
);
530 hlist_bl_unlock(ce
->e_block_hash_p
);
531 l
= &mb_cache_lru_list
;
532 spin_lock(&mb_cache_spinlock
);
535 mb_assert(list_empty(&ce
->e_lru_list
));
536 mb_assert(!(ce
->e_used
|| ce
->e_queued
||
537 atomic_read(&ce
->e_refcnt
)));
538 __mb_cache_entry_unhash_unlock(ce
);
542 spin_unlock(&mb_cache_spinlock
);
545 ce
= kmem_cache_alloc(cache
->c_entry_cache
, gfp_flags
);
548 atomic_inc(&cache
->c_entry_count
);
549 INIT_LIST_HEAD(&ce
->e_lru_list
);
550 INIT_HLIST_BL_NODE(&ce
->e_block_list
);
551 INIT_HLIST_BL_NODE(&ce
->e_index
.o_list
);
554 atomic_set(&ce
->e_refcnt
, 0);
556 ce
->e_block_hash_p
= &cache
->c_block_hash
[0];
557 ce
->e_index_hash_p
= &cache
->c_index_hash
[0];
558 ce
->e_used
= 1 + MB_CACHE_WRITER
;
564 * mb_cache_entry_insert()
566 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
567 * the cache. After this, the cache entry can be looked up, but is not yet
568 * in the lru list as the caller still holds a handle to it. Returns 0 on
569 * success, or -EBUSY if a cache entry for that device + inode exists
570 * already (this may happen after a failed lookup, but when another process
571 * has inserted the same cache entry in the meantime).
573 * @bdev: device the cache entry belongs to
574 * @block: block number
578 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
579 sector_t block
, unsigned int key
)
581 struct mb_cache
*cache
= ce
->e_cache
;
583 struct hlist_bl_node
*l
;
584 struct hlist_bl_head
*block_hash_p
;
585 struct hlist_bl_head
*index_hash_p
;
586 struct mb_cache_entry
*lce
;
589 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
590 cache
->c_bucket_bits
);
591 block_hash_p
= &cache
->c_block_hash
[bucket
];
592 hlist_bl_lock(block_hash_p
);
593 hlist_bl_for_each_entry(lce
, l
, block_hash_p
, e_block_list
) {
594 if (lce
->e_bdev
== bdev
&& lce
->e_block
== block
) {
595 hlist_bl_unlock(block_hash_p
);
599 mb_assert(!__mb_cache_entry_is_block_hashed(ce
));
600 __mb_cache_entry_unhash_block(ce
);
601 __mb_cache_entry_unhash_index(ce
);
604 ce
->e_block_hash_p
= block_hash_p
;
605 ce
->e_index
.o_key
= key
;
606 hlist_bl_add_head(&ce
->e_block_list
, block_hash_p
);
607 hlist_bl_unlock(block_hash_p
);
608 bucket
= hash_long(key
, cache
->c_bucket_bits
);
609 index_hash_p
= &cache
->c_index_hash
[bucket
];
610 hlist_bl_lock(index_hash_p
);
611 ce
->e_index_hash_p
= index_hash_p
;
612 hlist_bl_add_head(&ce
->e_index
.o_list
, index_hash_p
);
613 hlist_bl_unlock(index_hash_p
);
619 * mb_cache_entry_release()
621 * Release a handle to a cache entry. When the last handle to a cache entry
622 * is released it is either freed (if it is invalid) or otherwise inserted
623 * in to the lru list.
626 mb_cache_entry_release(struct mb_cache_entry
*ce
)
628 __mb_cache_entry_release(ce
);
633 * mb_cache_entry_free()
637 mb_cache_entry_free(struct mb_cache_entry
*ce
)
640 mb_assert(list_empty(&ce
->e_lru_list
));
641 hlist_bl_lock(ce
->e_index_hash_p
);
642 __mb_cache_entry_unhash_index(ce
);
643 hlist_bl_unlock(ce
->e_index_hash_p
);
644 hlist_bl_lock(ce
->e_block_hash_p
);
645 __mb_cache_entry_unhash_block(ce
);
646 hlist_bl_unlock(ce
->e_block_hash_p
);
647 __mb_cache_entry_release(ce
);
652 * mb_cache_entry_get()
654 * Get a cache entry by device / block number. (There can only be one entry
655 * in the cache per device and block.) Returns NULL if no such cache entry
656 * exists. The returned cache entry is locked for exclusive access ("single
659 struct mb_cache_entry
*
660 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
664 struct hlist_bl_node
*l
;
665 struct mb_cache_entry
*ce
;
666 struct hlist_bl_head
*block_hash_p
;
668 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
669 cache
->c_bucket_bits
);
670 block_hash_p
= &cache
->c_block_hash
[bucket
];
671 /* First serialize access to the block corresponding hash chain. */
672 hlist_bl_lock(block_hash_p
);
673 hlist_bl_for_each_entry(ce
, l
, block_hash_p
, e_block_list
) {
674 mb_assert(ce
->e_block_hash_p
== block_hash_p
);
675 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
677 * Prevent a free from removing the entry.
679 atomic_inc(&ce
->e_refcnt
);
680 hlist_bl_unlock(block_hash_p
);
681 __spin_lock_mb_cache_entry(ce
);
682 atomic_dec(&ce
->e_refcnt
);
683 if (ce
->e_used
> 0) {
685 while (ce
->e_used
> 0) {
687 prepare_to_wait(&mb_cache_queue
, &wait
,
688 TASK_UNINTERRUPTIBLE
);
689 __spin_unlock_mb_cache_entry(ce
);
691 __spin_lock_mb_cache_entry(ce
);
694 finish_wait(&mb_cache_queue
, &wait
);
696 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
697 __spin_unlock_mb_cache_entry(ce
);
699 if (!list_empty(&ce
->e_lru_list
)) {
700 spin_lock(&mb_cache_spinlock
);
701 list_del_init(&ce
->e_lru_list
);
702 spin_unlock(&mb_cache_spinlock
);
704 if (!__mb_cache_entry_is_block_hashed(ce
)) {
705 __mb_cache_entry_release(ce
);
711 hlist_bl_unlock(block_hash_p
);
715 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
717 static struct mb_cache_entry
*
718 __mb_cache_entry_find(struct hlist_bl_node
*l
, struct hlist_bl_head
*head
,
719 struct block_device
*bdev
, unsigned int key
)
722 /* The index hash chain is alredy acquire by caller. */
724 struct mb_cache_entry
*ce
=
725 hlist_bl_entry(l
, struct mb_cache_entry
,
727 mb_assert(ce
->e_index_hash_p
== head
);
728 if (ce
->e_bdev
== bdev
&& ce
->e_index
.o_key
== key
) {
730 * Prevent a free from removing the entry.
732 atomic_inc(&ce
->e_refcnt
);
733 hlist_bl_unlock(head
);
734 __spin_lock_mb_cache_entry(ce
);
735 atomic_dec(&ce
->e_refcnt
);
737 /* Incrementing before holding the lock gives readers
738 priority over writers. */
739 if (ce
->e_used
>= MB_CACHE_WRITER
) {
742 while (ce
->e_used
>= MB_CACHE_WRITER
) {
744 prepare_to_wait(&mb_cache_queue
, &wait
,
745 TASK_UNINTERRUPTIBLE
);
746 __spin_unlock_mb_cache_entry(ce
);
748 __spin_lock_mb_cache_entry(ce
);
751 finish_wait(&mb_cache_queue
, &wait
);
753 __spin_unlock_mb_cache_entry(ce
);
754 if (!list_empty(&ce
->e_lru_list
)) {
755 spin_lock(&mb_cache_spinlock
);
756 list_del_init(&ce
->e_lru_list
);
757 spin_unlock(&mb_cache_spinlock
);
759 if (!__mb_cache_entry_is_block_hashed(ce
)) {
760 __mb_cache_entry_release(ce
);
761 return ERR_PTR(-EAGAIN
);
767 hlist_bl_unlock(head
);
773 * mb_cache_entry_find_first()
775 * Find the first cache entry on a given device with a certain key in
776 * an additional index. Additional matches can be found with
777 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
778 * returned cache entry is locked for shared access ("multiple readers").
780 * @cache: the cache to search
781 * @bdev: the device the cache entry should belong to
782 * @key: the key in the index
784 struct mb_cache_entry
*
785 mb_cache_entry_find_first(struct mb_cache
*cache
, struct block_device
*bdev
,
788 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
789 struct hlist_bl_node
*l
;
790 struct mb_cache_entry
*ce
= NULL
;
791 struct hlist_bl_head
*index_hash_p
;
793 index_hash_p
= &cache
->c_index_hash
[bucket
];
794 hlist_bl_lock(index_hash_p
);
795 if (!hlist_bl_empty(index_hash_p
)) {
796 l
= hlist_bl_first(index_hash_p
);
797 ce
= __mb_cache_entry_find(l
, index_hash_p
, bdev
, key
);
799 hlist_bl_unlock(index_hash_p
);
805 * mb_cache_entry_find_next()
807 * Find the next cache entry on a given device with a certain key in an
808 * additional index. Returns NULL if no match could be found. The previous
809 * entry is atomatically released, so that mb_cache_entry_find_next() can
810 * be called like this:
812 * entry = mb_cache_entry_find_first();
815 * entry = mb_cache_entry_find_next(entry, ...);
818 * @prev: The previous match
819 * @bdev: the device the cache entry should belong to
820 * @key: the key in the index
822 struct mb_cache_entry
*
823 mb_cache_entry_find_next(struct mb_cache_entry
*prev
,
824 struct block_device
*bdev
, unsigned int key
)
826 struct mb_cache
*cache
= prev
->e_cache
;
827 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
828 struct hlist_bl_node
*l
;
829 struct mb_cache_entry
*ce
;
830 struct hlist_bl_head
*index_hash_p
;
832 index_hash_p
= &cache
->c_index_hash
[bucket
];
833 mb_assert(prev
->e_index_hash_p
== index_hash_p
);
834 hlist_bl_lock(index_hash_p
);
835 mb_assert(!hlist_bl_empty(index_hash_p
));
836 l
= prev
->e_index
.o_list
.next
;
837 ce
= __mb_cache_entry_find(l
, index_hash_p
, bdev
, key
);
838 __mb_cache_entry_release(prev
);
842 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
844 static int __init
init_mbcache(void)
846 register_shrinker(&mb_cache_shrinker
);
850 static void __exit
exit_mbcache(void)
852 unregister_shrinker(&mb_cache_shrinker
);
855 module_init(init_mbcache
)
856 module_exit(exit_mbcache
)