]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
xfs-convert-dquot-cache-lru-to-list_lru-fix
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511
512 BUG_ON(!(nd->flags & LOOKUP_RCU));
513
514 /*
515 * Get a reference to the parent first: we're
516 * going to make "path_put(nd->path)" valid in
517 * non-RCU context for "terminate_walk()".
518 *
519 * If this doesn't work, return immediately with
520 * RCU walking still active (and then we will do
521 * the RCU walk cleanup in terminate_walk()).
522 */
523 if (!lockref_get_not_dead(&parent->d_lockref))
524 return -ECHILD;
525
526 /*
527 * After the mntget(), we terminate_walk() will do
528 * the right thing for non-RCU mode, and all our
529 * subsequent exit cases should unlock_rcu_walk()
530 * before returning.
531 */
532 mntget(nd->path.mnt);
533 nd->flags &= ~LOOKUP_RCU;
534
535 /*
536 * For a negative lookup, the lookup sequence point is the parents
537 * sequence point, and it only needs to revalidate the parent dentry.
538 *
539 * For a positive lookup, we need to move both the parent and the
540 * dentry from the RCU domain to be properly refcounted. And the
541 * sequence number in the dentry validates *both* dentry counters,
542 * since we checked the sequence number of the parent after we got
543 * the child sequence number. So we know the parent must still
544 * be valid if the child sequence number is still valid.
545 */
546 if (!dentry) {
547 if (read_seqcount_retry(&parent->d_seq, nd->seq))
548 goto out;
549 BUG_ON(nd->inode != parent->d_inode);
550 } else {
551 if (!lockref_get_not_dead(&dentry->d_lockref))
552 goto out;
553 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554 goto drop_dentry;
555 }
556
557 /*
558 * Sequence counts matched. Now make sure that the root is
559 * still valid and get it if required.
560 */
561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562 spin_lock(&fs->lock);
563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564 goto unlock_and_drop_dentry;
565 path_get(&nd->root);
566 spin_unlock(&fs->lock);
567 }
568
569 unlock_rcu_walk();
570 return 0;
571
572 unlock_and_drop_dentry:
573 spin_unlock(&fs->lock);
574 drop_dentry:
575 unlock_rcu_walk();
576 dput(dentry);
577 goto drop_root_mnt;
578 out:
579 unlock_rcu_walk();
580 drop_root_mnt:
581 if (!(nd->flags & LOOKUP_ROOT))
582 nd->root.mnt = NULL;
583 return -ECHILD;
584 }
585
586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
587 {
588 return dentry->d_op->d_revalidate(dentry, flags);
589 }
590
591 /**
592 * complete_walk - successful completion of path walk
593 * @nd: pointer nameidata
594 *
595 * If we had been in RCU mode, drop out of it and legitimize nd->path.
596 * Revalidate the final result, unless we'd already done that during
597 * the path walk or the filesystem doesn't ask for it. Return 0 on
598 * success, -error on failure. In case of failure caller does not
599 * need to drop nd->path.
600 */
601 static int complete_walk(struct nameidata *nd)
602 {
603 struct dentry *dentry = nd->path.dentry;
604 int status;
605
606 if (nd->flags & LOOKUP_RCU) {
607 nd->flags &= ~LOOKUP_RCU;
608 if (!(nd->flags & LOOKUP_ROOT))
609 nd->root.mnt = NULL;
610
611 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
612 unlock_rcu_walk();
613 return -ECHILD;
614 }
615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
616 unlock_rcu_walk();
617 dput(dentry);
618 return -ECHILD;
619 }
620 mntget(nd->path.mnt);
621 unlock_rcu_walk();
622 }
623
624 if (likely(!(nd->flags & LOOKUP_JUMPED)))
625 return 0;
626
627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
628 return 0;
629
630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
631 if (status > 0)
632 return 0;
633
634 if (!status)
635 status = -ESTALE;
636
637 path_put(&nd->path);
638 return status;
639 }
640
641 static __always_inline void set_root(struct nameidata *nd)
642 {
643 if (!nd->root.mnt)
644 get_fs_root(current->fs, &nd->root);
645 }
646
647 static int link_path_walk(const char *, struct nameidata *);
648
649 static __always_inline void set_root_rcu(struct nameidata *nd)
650 {
651 if (!nd->root.mnt) {
652 struct fs_struct *fs = current->fs;
653 unsigned seq;
654
655 do {
656 seq = read_seqcount_begin(&fs->seq);
657 nd->root = fs->root;
658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
659 } while (read_seqcount_retry(&fs->seq, seq));
660 }
661 }
662
663 static void path_put_conditional(struct path *path, struct nameidata *nd)
664 {
665 dput(path->dentry);
666 if (path->mnt != nd->path.mnt)
667 mntput(path->mnt);
668 }
669
670 static inline void path_to_nameidata(const struct path *path,
671 struct nameidata *nd)
672 {
673 if (!(nd->flags & LOOKUP_RCU)) {
674 dput(nd->path.dentry);
675 if (nd->path.mnt != path->mnt)
676 mntput(nd->path.mnt);
677 }
678 nd->path.mnt = path->mnt;
679 nd->path.dentry = path->dentry;
680 }
681
682 /*
683 * Helper to directly jump to a known parsed path from ->follow_link,
684 * caller must have taken a reference to path beforehand.
685 */
686 void nd_jump_link(struct nameidata *nd, struct path *path)
687 {
688 path_put(&nd->path);
689
690 nd->path = *path;
691 nd->inode = nd->path.dentry->d_inode;
692 nd->flags |= LOOKUP_JUMPED;
693 }
694
695 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
696 {
697 struct inode *inode = link->dentry->d_inode;
698 if (inode->i_op->put_link)
699 inode->i_op->put_link(link->dentry, nd, cookie);
700 path_put(link);
701 }
702
703 int sysctl_protected_symlinks __read_mostly = 0;
704 int sysctl_protected_hardlinks __read_mostly = 0;
705
706 /**
707 * may_follow_link - Check symlink following for unsafe situations
708 * @link: The path of the symlink
709 * @nd: nameidata pathwalk data
710 *
711 * In the case of the sysctl_protected_symlinks sysctl being enabled,
712 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
713 * in a sticky world-writable directory. This is to protect privileged
714 * processes from failing races against path names that may change out
715 * from under them by way of other users creating malicious symlinks.
716 * It will permit symlinks to be followed only when outside a sticky
717 * world-writable directory, or when the uid of the symlink and follower
718 * match, or when the directory owner matches the symlink's owner.
719 *
720 * Returns 0 if following the symlink is allowed, -ve on error.
721 */
722 static inline int may_follow_link(struct path *link, struct nameidata *nd)
723 {
724 const struct inode *inode;
725 const struct inode *parent;
726
727 if (!sysctl_protected_symlinks)
728 return 0;
729
730 /* Allowed if owner and follower match. */
731 inode = link->dentry->d_inode;
732 if (uid_eq(current_cred()->fsuid, inode->i_uid))
733 return 0;
734
735 /* Allowed if parent directory not sticky and world-writable. */
736 parent = nd->path.dentry->d_inode;
737 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
738 return 0;
739
740 /* Allowed if parent directory and link owner match. */
741 if (uid_eq(parent->i_uid, inode->i_uid))
742 return 0;
743
744 audit_log_link_denied("follow_link", link);
745 path_put_conditional(link, nd);
746 path_put(&nd->path);
747 return -EACCES;
748 }
749
750 /**
751 * safe_hardlink_source - Check for safe hardlink conditions
752 * @inode: the source inode to hardlink from
753 *
754 * Return false if at least one of the following conditions:
755 * - inode is not a regular file
756 * - inode is setuid
757 * - inode is setgid and group-exec
758 * - access failure for read and write
759 *
760 * Otherwise returns true.
761 */
762 static bool safe_hardlink_source(struct inode *inode)
763 {
764 umode_t mode = inode->i_mode;
765
766 /* Special files should not get pinned to the filesystem. */
767 if (!S_ISREG(mode))
768 return false;
769
770 /* Setuid files should not get pinned to the filesystem. */
771 if (mode & S_ISUID)
772 return false;
773
774 /* Executable setgid files should not get pinned to the filesystem. */
775 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
776 return false;
777
778 /* Hardlinking to unreadable or unwritable sources is dangerous. */
779 if (inode_permission(inode, MAY_READ | MAY_WRITE))
780 return false;
781
782 return true;
783 }
784
785 /**
786 * may_linkat - Check permissions for creating a hardlink
787 * @link: the source to hardlink from
788 *
789 * Block hardlink when all of:
790 * - sysctl_protected_hardlinks enabled
791 * - fsuid does not match inode
792 * - hardlink source is unsafe (see safe_hardlink_source() above)
793 * - not CAP_FOWNER
794 *
795 * Returns 0 if successful, -ve on error.
796 */
797 static int may_linkat(struct path *link)
798 {
799 const struct cred *cred;
800 struct inode *inode;
801
802 if (!sysctl_protected_hardlinks)
803 return 0;
804
805 cred = current_cred();
806 inode = link->dentry->d_inode;
807
808 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
809 * otherwise, it must be a safe source.
810 */
811 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
812 capable(CAP_FOWNER))
813 return 0;
814
815 audit_log_link_denied("linkat", link);
816 return -EPERM;
817 }
818
819 static __always_inline int
820 follow_link(struct path *link, struct nameidata *nd, void **p)
821 {
822 struct dentry *dentry = link->dentry;
823 int error;
824 char *s;
825
826 BUG_ON(nd->flags & LOOKUP_RCU);
827
828 if (link->mnt == nd->path.mnt)
829 mntget(link->mnt);
830
831 error = -ELOOP;
832 if (unlikely(current->total_link_count >= 40))
833 goto out_put_nd_path;
834
835 cond_resched();
836 current->total_link_count++;
837
838 touch_atime(link);
839 nd_set_link(nd, NULL);
840
841 error = security_inode_follow_link(link->dentry, nd);
842 if (error)
843 goto out_put_nd_path;
844
845 nd->last_type = LAST_BIND;
846 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
847 error = PTR_ERR(*p);
848 if (IS_ERR(*p))
849 goto out_put_nd_path;
850
851 error = 0;
852 s = nd_get_link(nd);
853 if (s) {
854 if (unlikely(IS_ERR(s))) {
855 path_put(&nd->path);
856 put_link(nd, link, *p);
857 return PTR_ERR(s);
858 }
859 if (*s == '/') {
860 set_root(nd);
861 path_put(&nd->path);
862 nd->path = nd->root;
863 path_get(&nd->root);
864 nd->flags |= LOOKUP_JUMPED;
865 }
866 nd->inode = nd->path.dentry->d_inode;
867 error = link_path_walk(s, nd);
868 if (unlikely(error))
869 put_link(nd, link, *p);
870 }
871
872 return error;
873
874 out_put_nd_path:
875 *p = NULL;
876 path_put(&nd->path);
877 path_put(link);
878 return error;
879 }
880
881 static int follow_up_rcu(struct path *path)
882 {
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
886
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
889 return 0;
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
893 return 1;
894 }
895
896 /*
897 * follow_up - Find the mountpoint of path's vfsmount
898 *
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
901 * Up is towards /.
902 *
903 * Return 1 if we went up a level and 0 if we were already at the
904 * root.
905 */
906 int follow_up(struct path *path)
907 {
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
911
912 br_read_lock(&vfsmount_lock);
913 parent = mnt->mnt_parent;
914 if (parent == mnt) {
915 br_read_unlock(&vfsmount_lock);
916 return 0;
917 }
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 br_read_unlock(&vfsmount_lock);
921 dput(path->dentry);
922 path->dentry = mountpoint;
923 mntput(path->mnt);
924 path->mnt = &parent->mnt;
925 return 1;
926 }
927
928 /*
929 * Perform an automount
930 * - return -EISDIR to tell follow_managed() to stop and return the path we
931 * were called with.
932 */
933 static int follow_automount(struct path *path, unsigned flags,
934 bool *need_mntput)
935 {
936 struct vfsmount *mnt;
937 int err;
938
939 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
940 return -EREMOTE;
941
942 /* We don't want to mount if someone's just doing a stat -
943 * unless they're stat'ing a directory and appended a '/' to
944 * the name.
945 *
946 * We do, however, want to mount if someone wants to open or
947 * create a file of any type under the mountpoint, wants to
948 * traverse through the mountpoint or wants to open the
949 * mounted directory. Also, autofs may mark negative dentries
950 * as being automount points. These will need the attentions
951 * of the daemon to instantiate them before they can be used.
952 */
953 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
954 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
955 path->dentry->d_inode)
956 return -EISDIR;
957
958 current->total_link_count++;
959 if (current->total_link_count >= 40)
960 return -ELOOP;
961
962 mnt = path->dentry->d_op->d_automount(path);
963 if (IS_ERR(mnt)) {
964 /*
965 * The filesystem is allowed to return -EISDIR here to indicate
966 * it doesn't want to automount. For instance, autofs would do
967 * this so that its userspace daemon can mount on this dentry.
968 *
969 * However, we can only permit this if it's a terminal point in
970 * the path being looked up; if it wasn't then the remainder of
971 * the path is inaccessible and we should say so.
972 */
973 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
974 return -EREMOTE;
975 return PTR_ERR(mnt);
976 }
977
978 if (!mnt) /* mount collision */
979 return 0;
980
981 if (!*need_mntput) {
982 /* lock_mount() may release path->mnt on error */
983 mntget(path->mnt);
984 *need_mntput = true;
985 }
986 err = finish_automount(mnt, path);
987
988 switch (err) {
989 case -EBUSY:
990 /* Someone else made a mount here whilst we were busy */
991 return 0;
992 case 0:
993 path_put(path);
994 path->mnt = mnt;
995 path->dentry = dget(mnt->mnt_root);
996 return 0;
997 default:
998 return err;
999 }
1000
1001 }
1002
1003 /*
1004 * Handle a dentry that is managed in some way.
1005 * - Flagged for transit management (autofs)
1006 * - Flagged as mountpoint
1007 * - Flagged as automount point
1008 *
1009 * This may only be called in refwalk mode.
1010 *
1011 * Serialization is taken care of in namespace.c
1012 */
1013 static int follow_managed(struct path *path, unsigned flags)
1014 {
1015 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1016 unsigned managed;
1017 bool need_mntput = false;
1018 int ret = 0;
1019
1020 /* Given that we're not holding a lock here, we retain the value in a
1021 * local variable for each dentry as we look at it so that we don't see
1022 * the components of that value change under us */
1023 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1024 managed &= DCACHE_MANAGED_DENTRY,
1025 unlikely(managed != 0)) {
1026 /* Allow the filesystem to manage the transit without i_mutex
1027 * being held. */
1028 if (managed & DCACHE_MANAGE_TRANSIT) {
1029 BUG_ON(!path->dentry->d_op);
1030 BUG_ON(!path->dentry->d_op->d_manage);
1031 ret = path->dentry->d_op->d_manage(path->dentry, false);
1032 if (ret < 0)
1033 break;
1034 }
1035
1036 /* Transit to a mounted filesystem. */
1037 if (managed & DCACHE_MOUNTED) {
1038 struct vfsmount *mounted = lookup_mnt(path);
1039 if (mounted) {
1040 dput(path->dentry);
1041 if (need_mntput)
1042 mntput(path->mnt);
1043 path->mnt = mounted;
1044 path->dentry = dget(mounted->mnt_root);
1045 need_mntput = true;
1046 continue;
1047 }
1048
1049 /* Something is mounted on this dentry in another
1050 * namespace and/or whatever was mounted there in this
1051 * namespace got unmounted before we managed to get the
1052 * vfsmount_lock */
1053 }
1054
1055 /* Handle an automount point */
1056 if (managed & DCACHE_NEED_AUTOMOUNT) {
1057 ret = follow_automount(path, flags, &need_mntput);
1058 if (ret < 0)
1059 break;
1060 continue;
1061 }
1062
1063 /* We didn't change the current path point */
1064 break;
1065 }
1066
1067 if (need_mntput && path->mnt == mnt)
1068 mntput(path->mnt);
1069 if (ret == -EISDIR)
1070 ret = 0;
1071 return ret < 0 ? ret : need_mntput;
1072 }
1073
1074 int follow_down_one(struct path *path)
1075 {
1076 struct vfsmount *mounted;
1077
1078 mounted = lookup_mnt(path);
1079 if (mounted) {
1080 dput(path->dentry);
1081 mntput(path->mnt);
1082 path->mnt = mounted;
1083 path->dentry = dget(mounted->mnt_root);
1084 return 1;
1085 }
1086 return 0;
1087 }
1088
1089 static inline bool managed_dentry_might_block(struct dentry *dentry)
1090 {
1091 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1092 dentry->d_op->d_manage(dentry, true) < 0);
1093 }
1094
1095 /*
1096 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1097 * we meet a managed dentry that would need blocking.
1098 */
1099 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1100 struct inode **inode)
1101 {
1102 for (;;) {
1103 struct mount *mounted;
1104 /*
1105 * Don't forget we might have a non-mountpoint managed dentry
1106 * that wants to block transit.
1107 */
1108 if (unlikely(managed_dentry_might_block(path->dentry)))
1109 return false;
1110
1111 if (!d_mountpoint(path->dentry))
1112 break;
1113
1114 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1115 if (!mounted)
1116 break;
1117 path->mnt = &mounted->mnt;
1118 path->dentry = mounted->mnt.mnt_root;
1119 nd->flags |= LOOKUP_JUMPED;
1120 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1121 /*
1122 * Update the inode too. We don't need to re-check the
1123 * dentry sequence number here after this d_inode read,
1124 * because a mount-point is always pinned.
1125 */
1126 *inode = path->dentry->d_inode;
1127 }
1128 return true;
1129 }
1130
1131 static void follow_mount_rcu(struct nameidata *nd)
1132 {
1133 while (d_mountpoint(nd->path.dentry)) {
1134 struct mount *mounted;
1135 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1136 if (!mounted)
1137 break;
1138 nd->path.mnt = &mounted->mnt;
1139 nd->path.dentry = mounted->mnt.mnt_root;
1140 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1141 }
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 set_root_rcu(nd);
1147
1148 while (1) {
1149 if (nd->path.dentry == nd->root.dentry &&
1150 nd->path.mnt == nd->root.mnt) {
1151 break;
1152 }
1153 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 struct dentry *old = nd->path.dentry;
1155 struct dentry *parent = old->d_parent;
1156 unsigned seq;
1157
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1164 }
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 }
1169 follow_mount_rcu(nd);
1170 nd->inode = nd->path.dentry->d_inode;
1171 return 0;
1172
1173 failed:
1174 nd->flags &= ~LOOKUP_RCU;
1175 if (!(nd->flags & LOOKUP_ROOT))
1176 nd->root.mnt = NULL;
1177 unlock_rcu_walk();
1178 return -ECHILD;
1179 }
1180
1181 /*
1182 * Follow down to the covering mount currently visible to userspace. At each
1183 * point, the filesystem owning that dentry may be queried as to whether the
1184 * caller is permitted to proceed or not.
1185 */
1186 int follow_down(struct path *path)
1187 {
1188 unsigned managed;
1189 int ret;
1190
1191 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1192 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1193 /* Allow the filesystem to manage the transit without i_mutex
1194 * being held.
1195 *
1196 * We indicate to the filesystem if someone is trying to mount
1197 * something here. This gives autofs the chance to deny anyone
1198 * other than its daemon the right to mount on its
1199 * superstructure.
1200 *
1201 * The filesystem may sleep at this point.
1202 */
1203 if (managed & DCACHE_MANAGE_TRANSIT) {
1204 BUG_ON(!path->dentry->d_op);
1205 BUG_ON(!path->dentry->d_op->d_manage);
1206 ret = path->dentry->d_op->d_manage(
1207 path->dentry, false);
1208 if (ret < 0)
1209 return ret == -EISDIR ? 0 : ret;
1210 }
1211
1212 /* Transit to a mounted filesystem. */
1213 if (managed & DCACHE_MOUNTED) {
1214 struct vfsmount *mounted = lookup_mnt(path);
1215 if (!mounted)
1216 break;
1217 dput(path->dentry);
1218 mntput(path->mnt);
1219 path->mnt = mounted;
1220 path->dentry = dget(mounted->mnt_root);
1221 continue;
1222 }
1223
1224 /* Don't handle automount points here */
1225 break;
1226 }
1227 return 0;
1228 }
1229
1230 /*
1231 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1232 */
1233 static void follow_mount(struct path *path)
1234 {
1235 while (d_mountpoint(path->dentry)) {
1236 struct vfsmount *mounted = lookup_mnt(path);
1237 if (!mounted)
1238 break;
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 }
1244 }
1245
1246 static void follow_dotdot(struct nameidata *nd)
1247 {
1248 set_root(nd);
1249
1250 while(1) {
1251 struct dentry *old = nd->path.dentry;
1252
1253 if (nd->path.dentry == nd->root.dentry &&
1254 nd->path.mnt == nd->root.mnt) {
1255 break;
1256 }
1257 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1258 /* rare case of legitimate dget_parent()... */
1259 nd->path.dentry = dget_parent(nd->path.dentry);
1260 dput(old);
1261 break;
1262 }
1263 if (!follow_up(&nd->path))
1264 break;
1265 }
1266 follow_mount(&nd->path);
1267 nd->inode = nd->path.dentry->d_inode;
1268 }
1269
1270 /*
1271 * This looks up the name in dcache, possibly revalidates the old dentry and
1272 * allocates a new one if not found or not valid. In the need_lookup argument
1273 * returns whether i_op->lookup is necessary.
1274 *
1275 * dir->d_inode->i_mutex must be held
1276 */
1277 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1278 unsigned int flags, bool *need_lookup)
1279 {
1280 struct dentry *dentry;
1281 int error;
1282
1283 *need_lookup = false;
1284 dentry = d_lookup(dir, name);
1285 if (dentry) {
1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1287 error = d_revalidate(dentry, flags);
1288 if (unlikely(error <= 0)) {
1289 if (error < 0) {
1290 dput(dentry);
1291 return ERR_PTR(error);
1292 } else if (!d_invalidate(dentry)) {
1293 dput(dentry);
1294 dentry = NULL;
1295 }
1296 }
1297 }
1298 }
1299
1300 if (!dentry) {
1301 dentry = d_alloc(dir, name);
1302 if (unlikely(!dentry))
1303 return ERR_PTR(-ENOMEM);
1304
1305 *need_lookup = true;
1306 }
1307 return dentry;
1308 }
1309
1310 /*
1311 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1312 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1313 *
1314 * dir->d_inode->i_mutex must be held
1315 */
1316 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1317 unsigned int flags)
1318 {
1319 struct dentry *old;
1320
1321 /* Don't create child dentry for a dead directory. */
1322 if (unlikely(IS_DEADDIR(dir))) {
1323 dput(dentry);
1324 return ERR_PTR(-ENOENT);
1325 }
1326
1327 old = dir->i_op->lookup(dir, dentry, flags);
1328 if (unlikely(old)) {
1329 dput(dentry);
1330 dentry = old;
1331 }
1332 return dentry;
1333 }
1334
1335 static struct dentry *__lookup_hash(struct qstr *name,
1336 struct dentry *base, unsigned int flags)
1337 {
1338 bool need_lookup;
1339 struct dentry *dentry;
1340
1341 dentry = lookup_dcache(name, base, flags, &need_lookup);
1342 if (!need_lookup)
1343 return dentry;
1344
1345 return lookup_real(base->d_inode, dentry, flags);
1346 }
1347
1348 /*
1349 * It's more convoluted than I'd like it to be, but... it's still fairly
1350 * small and for now I'd prefer to have fast path as straight as possible.
1351 * It _is_ time-critical.
1352 */
1353 static int lookup_fast(struct nameidata *nd,
1354 struct path *path, struct inode **inode)
1355 {
1356 struct vfsmount *mnt = nd->path.mnt;
1357 struct dentry *dentry, *parent = nd->path.dentry;
1358 int need_reval = 1;
1359 int status = 1;
1360 int err;
1361
1362 /*
1363 * Rename seqlock is not required here because in the off chance
1364 * of a false negative due to a concurrent rename, we're going to
1365 * do the non-racy lookup, below.
1366 */
1367 if (nd->flags & LOOKUP_RCU) {
1368 unsigned seq;
1369 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1370 if (!dentry)
1371 goto unlazy;
1372
1373 /*
1374 * This sequence count validates that the inode matches
1375 * the dentry name information from lookup.
1376 */
1377 *inode = dentry->d_inode;
1378 if (read_seqcount_retry(&dentry->d_seq, seq))
1379 return -ECHILD;
1380
1381 /*
1382 * This sequence count validates that the parent had no
1383 * changes while we did the lookup of the dentry above.
1384 *
1385 * The memory barrier in read_seqcount_begin of child is
1386 * enough, we can use __read_seqcount_retry here.
1387 */
1388 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1389 return -ECHILD;
1390 nd->seq = seq;
1391
1392 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1393 status = d_revalidate(dentry, nd->flags);
1394 if (unlikely(status <= 0)) {
1395 if (status != -ECHILD)
1396 need_reval = 0;
1397 goto unlazy;
1398 }
1399 }
1400 path->mnt = mnt;
1401 path->dentry = dentry;
1402 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1403 goto unlazy;
1404 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1405 goto unlazy;
1406 return 0;
1407 unlazy:
1408 if (unlazy_walk(nd, dentry))
1409 return -ECHILD;
1410 } else {
1411 dentry = __d_lookup(parent, &nd->last);
1412 }
1413
1414 if (unlikely(!dentry))
1415 goto need_lookup;
1416
1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1418 status = d_revalidate(dentry, nd->flags);
1419 if (unlikely(status <= 0)) {
1420 if (status < 0) {
1421 dput(dentry);
1422 return status;
1423 }
1424 if (!d_invalidate(dentry)) {
1425 dput(dentry);
1426 goto need_lookup;
1427 }
1428 }
1429
1430 path->mnt = mnt;
1431 path->dentry = dentry;
1432 err = follow_managed(path, nd->flags);
1433 if (unlikely(err < 0)) {
1434 path_put_conditional(path, nd);
1435 return err;
1436 }
1437 if (err)
1438 nd->flags |= LOOKUP_JUMPED;
1439 *inode = path->dentry->d_inode;
1440 return 0;
1441
1442 need_lookup:
1443 return 1;
1444 }
1445
1446 /* Fast lookup failed, do it the slow way */
1447 static int lookup_slow(struct nameidata *nd, struct path *path)
1448 {
1449 struct dentry *dentry, *parent;
1450 int err;
1451
1452 parent = nd->path.dentry;
1453 BUG_ON(nd->inode != parent->d_inode);
1454
1455 mutex_lock(&parent->d_inode->i_mutex);
1456 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1457 mutex_unlock(&parent->d_inode->i_mutex);
1458 if (IS_ERR(dentry))
1459 return PTR_ERR(dentry);
1460 path->mnt = nd->path.mnt;
1461 path->dentry = dentry;
1462 err = follow_managed(path, nd->flags);
1463 if (unlikely(err < 0)) {
1464 path_put_conditional(path, nd);
1465 return err;
1466 }
1467 if (err)
1468 nd->flags |= LOOKUP_JUMPED;
1469 return 0;
1470 }
1471
1472 static inline int may_lookup(struct nameidata *nd)
1473 {
1474 if (nd->flags & LOOKUP_RCU) {
1475 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1476 if (err != -ECHILD)
1477 return err;
1478 if (unlazy_walk(nd, NULL))
1479 return -ECHILD;
1480 }
1481 return inode_permission(nd->inode, MAY_EXEC);
1482 }
1483
1484 static inline int handle_dots(struct nameidata *nd, int type)
1485 {
1486 if (type == LAST_DOTDOT) {
1487 if (nd->flags & LOOKUP_RCU) {
1488 if (follow_dotdot_rcu(nd))
1489 return -ECHILD;
1490 } else
1491 follow_dotdot(nd);
1492 }
1493 return 0;
1494 }
1495
1496 static void terminate_walk(struct nameidata *nd)
1497 {
1498 if (!(nd->flags & LOOKUP_RCU)) {
1499 path_put(&nd->path);
1500 } else {
1501 nd->flags &= ~LOOKUP_RCU;
1502 if (!(nd->flags & LOOKUP_ROOT))
1503 nd->root.mnt = NULL;
1504 unlock_rcu_walk();
1505 }
1506 }
1507
1508 /*
1509 * Do we need to follow links? We _really_ want to be able
1510 * to do this check without having to look at inode->i_op,
1511 * so we keep a cache of "no, this doesn't need follow_link"
1512 * for the common case.
1513 */
1514 static inline int should_follow_link(struct inode *inode, int follow)
1515 {
1516 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1517 if (likely(inode->i_op->follow_link))
1518 return follow;
1519
1520 /* This gets set once for the inode lifetime */
1521 spin_lock(&inode->i_lock);
1522 inode->i_opflags |= IOP_NOFOLLOW;
1523 spin_unlock(&inode->i_lock);
1524 }
1525 return 0;
1526 }
1527
1528 static inline int walk_component(struct nameidata *nd, struct path *path,
1529 int follow)
1530 {
1531 struct inode *inode;
1532 int err;
1533 /*
1534 * "." and ".." are special - ".." especially so because it has
1535 * to be able to know about the current root directory and
1536 * parent relationships.
1537 */
1538 if (unlikely(nd->last_type != LAST_NORM))
1539 return handle_dots(nd, nd->last_type);
1540 err = lookup_fast(nd, path, &inode);
1541 if (unlikely(err)) {
1542 if (err < 0)
1543 goto out_err;
1544
1545 err = lookup_slow(nd, path);
1546 if (err < 0)
1547 goto out_err;
1548
1549 inode = path->dentry->d_inode;
1550 }
1551 err = -ENOENT;
1552 if (!inode)
1553 goto out_path_put;
1554
1555 if (should_follow_link(inode, follow)) {
1556 if (nd->flags & LOOKUP_RCU) {
1557 if (unlikely(unlazy_walk(nd, path->dentry))) {
1558 err = -ECHILD;
1559 goto out_err;
1560 }
1561 }
1562 BUG_ON(inode != path->dentry->d_inode);
1563 return 1;
1564 }
1565 path_to_nameidata(path, nd);
1566 nd->inode = inode;
1567 return 0;
1568
1569 out_path_put:
1570 path_to_nameidata(path, nd);
1571 out_err:
1572 terminate_walk(nd);
1573 return err;
1574 }
1575
1576 /*
1577 * This limits recursive symlink follows to 8, while
1578 * limiting consecutive symlinks to 40.
1579 *
1580 * Without that kind of total limit, nasty chains of consecutive
1581 * symlinks can cause almost arbitrarily long lookups.
1582 */
1583 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1584 {
1585 int res;
1586
1587 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1588 path_put_conditional(path, nd);
1589 path_put(&nd->path);
1590 return -ELOOP;
1591 }
1592 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1593
1594 nd->depth++;
1595 current->link_count++;
1596
1597 do {
1598 struct path link = *path;
1599 void *cookie;
1600
1601 res = follow_link(&link, nd, &cookie);
1602 if (res)
1603 break;
1604 res = walk_component(nd, path, LOOKUP_FOLLOW);
1605 put_link(nd, &link, cookie);
1606 } while (res > 0);
1607
1608 current->link_count--;
1609 nd->depth--;
1610 return res;
1611 }
1612
1613 /*
1614 * We really don't want to look at inode->i_op->lookup
1615 * when we don't have to. So we keep a cache bit in
1616 * the inode ->i_opflags field that says "yes, we can
1617 * do lookup on this inode".
1618 */
1619 static inline int can_lookup(struct inode *inode)
1620 {
1621 if (likely(inode->i_opflags & IOP_LOOKUP))
1622 return 1;
1623 if (likely(!inode->i_op->lookup))
1624 return 0;
1625
1626 /* We do this once for the lifetime of the inode */
1627 spin_lock(&inode->i_lock);
1628 inode->i_opflags |= IOP_LOOKUP;
1629 spin_unlock(&inode->i_lock);
1630 return 1;
1631 }
1632
1633 /*
1634 * We can do the critical dentry name comparison and hashing
1635 * operations one word at a time, but we are limited to:
1636 *
1637 * - Architectures with fast unaligned word accesses. We could
1638 * do a "get_unaligned()" if this helps and is sufficiently
1639 * fast.
1640 *
1641 * - Little-endian machines (so that we can generate the mask
1642 * of low bytes efficiently). Again, we *could* do a byte
1643 * swapping load on big-endian architectures if that is not
1644 * expensive enough to make the optimization worthless.
1645 *
1646 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1647 * do not trap on the (extremely unlikely) case of a page
1648 * crossing operation.
1649 *
1650 * - Furthermore, we need an efficient 64-bit compile for the
1651 * 64-bit case in order to generate the "number of bytes in
1652 * the final mask". Again, that could be replaced with a
1653 * efficient population count instruction or similar.
1654 */
1655 #ifdef CONFIG_DCACHE_WORD_ACCESS
1656
1657 #include <asm/word-at-a-time.h>
1658
1659 #ifdef CONFIG_64BIT
1660
1661 static inline unsigned int fold_hash(unsigned long hash)
1662 {
1663 hash += hash >> (8*sizeof(int));
1664 return hash;
1665 }
1666
1667 #else /* 32-bit case */
1668
1669 #define fold_hash(x) (x)
1670
1671 #endif
1672
1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1674 {
1675 unsigned long a, mask;
1676 unsigned long hash = 0;
1677
1678 for (;;) {
1679 a = load_unaligned_zeropad(name);
1680 if (len < sizeof(unsigned long))
1681 break;
1682 hash += a;
1683 hash *= 9;
1684 name += sizeof(unsigned long);
1685 len -= sizeof(unsigned long);
1686 if (!len)
1687 goto done;
1688 }
1689 mask = ~(~0ul << len*8);
1690 hash += mask & a;
1691 done:
1692 return fold_hash(hash);
1693 }
1694 EXPORT_SYMBOL(full_name_hash);
1695
1696 /*
1697 * Calculate the length and hash of the path component, and
1698 * return the length of the component;
1699 */
1700 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1701 {
1702 unsigned long a, b, adata, bdata, mask, hash, len;
1703 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1704
1705 hash = a = 0;
1706 len = -sizeof(unsigned long);
1707 do {
1708 hash = (hash + a) * 9;
1709 len += sizeof(unsigned long);
1710 a = load_unaligned_zeropad(name+len);
1711 b = a ^ REPEAT_BYTE('/');
1712 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1713
1714 adata = prep_zero_mask(a, adata, &constants);
1715 bdata = prep_zero_mask(b, bdata, &constants);
1716
1717 mask = create_zero_mask(adata | bdata);
1718
1719 hash += a & zero_bytemask(mask);
1720 *hashp = fold_hash(hash);
1721
1722 return len + find_zero(mask);
1723 }
1724
1725 #else
1726
1727 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1728 {
1729 unsigned long hash = init_name_hash();
1730 while (len--)
1731 hash = partial_name_hash(*name++, hash);
1732 return end_name_hash(hash);
1733 }
1734 EXPORT_SYMBOL(full_name_hash);
1735
1736 /*
1737 * We know there's a real path component here of at least
1738 * one character.
1739 */
1740 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1741 {
1742 unsigned long hash = init_name_hash();
1743 unsigned long len = 0, c;
1744
1745 c = (unsigned char)*name;
1746 do {
1747 len++;
1748 hash = partial_name_hash(c, hash);
1749 c = (unsigned char)name[len];
1750 } while (c && c != '/');
1751 *hashp = end_name_hash(hash);
1752 return len;
1753 }
1754
1755 #endif
1756
1757 /*
1758 * Name resolution.
1759 * This is the basic name resolution function, turning a pathname into
1760 * the final dentry. We expect 'base' to be positive and a directory.
1761 *
1762 * Returns 0 and nd will have valid dentry and mnt on success.
1763 * Returns error and drops reference to input namei data on failure.
1764 */
1765 static int link_path_walk(const char *name, struct nameidata *nd)
1766 {
1767 struct path next;
1768 int err;
1769
1770 while (*name=='/')
1771 name++;
1772 if (!*name)
1773 return 0;
1774
1775 /* At this point we know we have a real path component. */
1776 for(;;) {
1777 struct qstr this;
1778 long len;
1779 int type;
1780
1781 err = may_lookup(nd);
1782 if (err)
1783 break;
1784
1785 len = hash_name(name, &this.hash);
1786 this.name = name;
1787 this.len = len;
1788
1789 type = LAST_NORM;
1790 if (name[0] == '.') switch (len) {
1791 case 2:
1792 if (name[1] == '.') {
1793 type = LAST_DOTDOT;
1794 nd->flags |= LOOKUP_JUMPED;
1795 }
1796 break;
1797 case 1:
1798 type = LAST_DOT;
1799 }
1800 if (likely(type == LAST_NORM)) {
1801 struct dentry *parent = nd->path.dentry;
1802 nd->flags &= ~LOOKUP_JUMPED;
1803 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1804 err = parent->d_op->d_hash(parent, &this);
1805 if (err < 0)
1806 break;
1807 }
1808 }
1809
1810 nd->last = this;
1811 nd->last_type = type;
1812
1813 if (!name[len])
1814 return 0;
1815 /*
1816 * If it wasn't NUL, we know it was '/'. Skip that
1817 * slash, and continue until no more slashes.
1818 */
1819 do {
1820 len++;
1821 } while (unlikely(name[len] == '/'));
1822 if (!name[len])
1823 return 0;
1824
1825 name += len;
1826
1827 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1828 if (err < 0)
1829 return err;
1830
1831 if (err) {
1832 err = nested_symlink(&next, nd);
1833 if (err)
1834 return err;
1835 }
1836 if (!can_lookup(nd->inode)) {
1837 err = -ENOTDIR;
1838 break;
1839 }
1840 }
1841 terminate_walk(nd);
1842 return err;
1843 }
1844
1845 static int path_init(int dfd, const char *name, unsigned int flags,
1846 struct nameidata *nd, struct file **fp)
1847 {
1848 int retval = 0;
1849
1850 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1851 nd->flags = flags | LOOKUP_JUMPED;
1852 nd->depth = 0;
1853 if (flags & LOOKUP_ROOT) {
1854 struct inode *inode = nd->root.dentry->d_inode;
1855 if (*name) {
1856 if (!can_lookup(inode))
1857 return -ENOTDIR;
1858 retval = inode_permission(inode, MAY_EXEC);
1859 if (retval)
1860 return retval;
1861 }
1862 nd->path = nd->root;
1863 nd->inode = inode;
1864 if (flags & LOOKUP_RCU) {
1865 lock_rcu_walk();
1866 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1867 } else {
1868 path_get(&nd->path);
1869 }
1870 return 0;
1871 }
1872
1873 nd->root.mnt = NULL;
1874
1875 if (*name=='/') {
1876 if (flags & LOOKUP_RCU) {
1877 lock_rcu_walk();
1878 set_root_rcu(nd);
1879 } else {
1880 set_root(nd);
1881 path_get(&nd->root);
1882 }
1883 nd->path = nd->root;
1884 } else if (dfd == AT_FDCWD) {
1885 if (flags & LOOKUP_RCU) {
1886 struct fs_struct *fs = current->fs;
1887 unsigned seq;
1888
1889 lock_rcu_walk();
1890
1891 do {
1892 seq = read_seqcount_begin(&fs->seq);
1893 nd->path = fs->pwd;
1894 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1895 } while (read_seqcount_retry(&fs->seq, seq));
1896 } else {
1897 get_fs_pwd(current->fs, &nd->path);
1898 }
1899 } else {
1900 /* Caller must check execute permissions on the starting path component */
1901 struct fd f = fdget_raw(dfd);
1902 struct dentry *dentry;
1903
1904 if (!f.file)
1905 return -EBADF;
1906
1907 dentry = f.file->f_path.dentry;
1908
1909 if (*name) {
1910 if (!can_lookup(dentry->d_inode)) {
1911 fdput(f);
1912 return -ENOTDIR;
1913 }
1914 }
1915
1916 nd->path = f.file->f_path;
1917 if (flags & LOOKUP_RCU) {
1918 if (f.need_put)
1919 *fp = f.file;
1920 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1921 lock_rcu_walk();
1922 } else {
1923 path_get(&nd->path);
1924 fdput(f);
1925 }
1926 }
1927
1928 nd->inode = nd->path.dentry->d_inode;
1929 return 0;
1930 }
1931
1932 static inline int lookup_last(struct nameidata *nd, struct path *path)
1933 {
1934 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1935 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1936
1937 nd->flags &= ~LOOKUP_PARENT;
1938 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1939 }
1940
1941 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1942 static int path_lookupat(int dfd, const char *name,
1943 unsigned int flags, struct nameidata *nd)
1944 {
1945 struct file *base = NULL;
1946 struct path path;
1947 int err;
1948
1949 /*
1950 * Path walking is largely split up into 2 different synchronisation
1951 * schemes, rcu-walk and ref-walk (explained in
1952 * Documentation/filesystems/path-lookup.txt). These share much of the
1953 * path walk code, but some things particularly setup, cleanup, and
1954 * following mounts are sufficiently divergent that functions are
1955 * duplicated. Typically there is a function foo(), and its RCU
1956 * analogue, foo_rcu().
1957 *
1958 * -ECHILD is the error number of choice (just to avoid clashes) that
1959 * is returned if some aspect of an rcu-walk fails. Such an error must
1960 * be handled by restarting a traditional ref-walk (which will always
1961 * be able to complete).
1962 */
1963 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1964
1965 if (unlikely(err))
1966 return err;
1967
1968 current->total_link_count = 0;
1969 err = link_path_walk(name, nd);
1970
1971 if (!err && !(flags & LOOKUP_PARENT)) {
1972 err = lookup_last(nd, &path);
1973 while (err > 0) {
1974 void *cookie;
1975 struct path link = path;
1976 err = may_follow_link(&link, nd);
1977 if (unlikely(err))
1978 break;
1979 nd->flags |= LOOKUP_PARENT;
1980 err = follow_link(&link, nd, &cookie);
1981 if (err)
1982 break;
1983 err = lookup_last(nd, &path);
1984 put_link(nd, &link, cookie);
1985 }
1986 }
1987
1988 if (!err)
1989 err = complete_walk(nd);
1990
1991 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1992 if (!can_lookup(nd->inode)) {
1993 path_put(&nd->path);
1994 err = -ENOTDIR;
1995 }
1996 }
1997
1998 if (base)
1999 fput(base);
2000
2001 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2002 path_put(&nd->root);
2003 nd->root.mnt = NULL;
2004 }
2005 return err;
2006 }
2007
2008 static int filename_lookup(int dfd, struct filename *name,
2009 unsigned int flags, struct nameidata *nd)
2010 {
2011 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2012 if (unlikely(retval == -ECHILD))
2013 retval = path_lookupat(dfd, name->name, flags, nd);
2014 if (unlikely(retval == -ESTALE))
2015 retval = path_lookupat(dfd, name->name,
2016 flags | LOOKUP_REVAL, nd);
2017
2018 if (likely(!retval))
2019 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2020 return retval;
2021 }
2022
2023 static int do_path_lookup(int dfd, const char *name,
2024 unsigned int flags, struct nameidata *nd)
2025 {
2026 struct filename filename = { .name = name };
2027
2028 return filename_lookup(dfd, &filename, flags, nd);
2029 }
2030
2031 /* does lookup, returns the object with parent locked */
2032 struct dentry *kern_path_locked(const char *name, struct path *path)
2033 {
2034 struct nameidata nd;
2035 struct dentry *d;
2036 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2037 if (err)
2038 return ERR_PTR(err);
2039 if (nd.last_type != LAST_NORM) {
2040 path_put(&nd.path);
2041 return ERR_PTR(-EINVAL);
2042 }
2043 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2044 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2045 if (IS_ERR(d)) {
2046 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2047 path_put(&nd.path);
2048 return d;
2049 }
2050 *path = nd.path;
2051 return d;
2052 }
2053
2054 int kern_path(const char *name, unsigned int flags, struct path *path)
2055 {
2056 struct nameidata nd;
2057 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2058 if (!res)
2059 *path = nd.path;
2060 return res;
2061 }
2062
2063 /**
2064 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2065 * @dentry: pointer to dentry of the base directory
2066 * @mnt: pointer to vfs mount of the base directory
2067 * @name: pointer to file name
2068 * @flags: lookup flags
2069 * @path: pointer to struct path to fill
2070 */
2071 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2072 const char *name, unsigned int flags,
2073 struct path *path)
2074 {
2075 struct nameidata nd;
2076 int err;
2077 nd.root.dentry = dentry;
2078 nd.root.mnt = mnt;
2079 BUG_ON(flags & LOOKUP_PARENT);
2080 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2081 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2082 if (!err)
2083 *path = nd.path;
2084 return err;
2085 }
2086
2087 /*
2088 * Restricted form of lookup. Doesn't follow links, single-component only,
2089 * needs parent already locked. Doesn't follow mounts.
2090 * SMP-safe.
2091 */
2092 static struct dentry *lookup_hash(struct nameidata *nd)
2093 {
2094 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2095 }
2096
2097 /**
2098 * lookup_one_len - filesystem helper to lookup single pathname component
2099 * @name: pathname component to lookup
2100 * @base: base directory to lookup from
2101 * @len: maximum length @len should be interpreted to
2102 *
2103 * Note that this routine is purely a helper for filesystem usage and should
2104 * not be called by generic code. Also note that by using this function the
2105 * nameidata argument is passed to the filesystem methods and a filesystem
2106 * using this helper needs to be prepared for that.
2107 */
2108 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2109 {
2110 struct qstr this;
2111 unsigned int c;
2112 int err;
2113
2114 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2115
2116 this.name = name;
2117 this.len = len;
2118 this.hash = full_name_hash(name, len);
2119 if (!len)
2120 return ERR_PTR(-EACCES);
2121
2122 if (unlikely(name[0] == '.')) {
2123 if (len < 2 || (len == 2 && name[1] == '.'))
2124 return ERR_PTR(-EACCES);
2125 }
2126
2127 while (len--) {
2128 c = *(const unsigned char *)name++;
2129 if (c == '/' || c == '\0')
2130 return ERR_PTR(-EACCES);
2131 }
2132 /*
2133 * See if the low-level filesystem might want
2134 * to use its own hash..
2135 */
2136 if (base->d_flags & DCACHE_OP_HASH) {
2137 int err = base->d_op->d_hash(base, &this);
2138 if (err < 0)
2139 return ERR_PTR(err);
2140 }
2141
2142 err = inode_permission(base->d_inode, MAY_EXEC);
2143 if (err)
2144 return ERR_PTR(err);
2145
2146 return __lookup_hash(&this, base, 0);
2147 }
2148
2149 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2150 struct path *path, int *empty)
2151 {
2152 struct nameidata nd;
2153 struct filename *tmp = getname_flags(name, flags, empty);
2154 int err = PTR_ERR(tmp);
2155 if (!IS_ERR(tmp)) {
2156
2157 BUG_ON(flags & LOOKUP_PARENT);
2158
2159 err = filename_lookup(dfd, tmp, flags, &nd);
2160 putname(tmp);
2161 if (!err)
2162 *path = nd.path;
2163 }
2164 return err;
2165 }
2166
2167 int user_path_at(int dfd, const char __user *name, unsigned flags,
2168 struct path *path)
2169 {
2170 return user_path_at_empty(dfd, name, flags, path, NULL);
2171 }
2172
2173 /*
2174 * NB: most callers don't do anything directly with the reference to the
2175 * to struct filename, but the nd->last pointer points into the name string
2176 * allocated by getname. So we must hold the reference to it until all
2177 * path-walking is complete.
2178 */
2179 static struct filename *
2180 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2181 unsigned int flags)
2182 {
2183 struct filename *s = getname(path);
2184 int error;
2185
2186 /* only LOOKUP_REVAL is allowed in extra flags */
2187 flags &= LOOKUP_REVAL;
2188
2189 if (IS_ERR(s))
2190 return s;
2191
2192 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2193 if (error) {
2194 putname(s);
2195 return ERR_PTR(error);
2196 }
2197
2198 return s;
2199 }
2200
2201 /**
2202 * mountpoint_last - look up last component for umount
2203 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2204 * @path: pointer to container for result
2205 *
2206 * This is a special lookup_last function just for umount. In this case, we
2207 * need to resolve the path without doing any revalidation.
2208 *
2209 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2210 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2211 * in almost all cases, this lookup will be served out of the dcache. The only
2212 * cases where it won't are if nd->last refers to a symlink or the path is
2213 * bogus and it doesn't exist.
2214 *
2215 * Returns:
2216 * -error: if there was an error during lookup. This includes -ENOENT if the
2217 * lookup found a negative dentry. The nd->path reference will also be
2218 * put in this case.
2219 *
2220 * 0: if we successfully resolved nd->path and found it to not to be a
2221 * symlink that needs to be followed. "path" will also be populated.
2222 * The nd->path reference will also be put.
2223 *
2224 * 1: if we successfully resolved nd->last and found it to be a symlink
2225 * that needs to be followed. "path" will be populated with the path
2226 * to the link, and nd->path will *not* be put.
2227 */
2228 static int
2229 mountpoint_last(struct nameidata *nd, struct path *path)
2230 {
2231 int error = 0;
2232 struct dentry *dentry;
2233 struct dentry *dir = nd->path.dentry;
2234
2235 /* If we're in rcuwalk, drop out of it to handle last component */
2236 if (nd->flags & LOOKUP_RCU) {
2237 if (unlazy_walk(nd, NULL)) {
2238 error = -ECHILD;
2239 goto out;
2240 }
2241 }
2242
2243 nd->flags &= ~LOOKUP_PARENT;
2244
2245 if (unlikely(nd->last_type != LAST_NORM)) {
2246 error = handle_dots(nd, nd->last_type);
2247 if (error)
2248 goto out;
2249 dentry = dget(nd->path.dentry);
2250 goto done;
2251 }
2252
2253 mutex_lock(&dir->d_inode->i_mutex);
2254 dentry = d_lookup(dir, &nd->last);
2255 if (!dentry) {
2256 /*
2257 * No cached dentry. Mounted dentries are pinned in the cache,
2258 * so that means that this dentry is probably a symlink or the
2259 * path doesn't actually point to a mounted dentry.
2260 */
2261 dentry = d_alloc(dir, &nd->last);
2262 if (!dentry) {
2263 error = -ENOMEM;
2264 mutex_unlock(&dir->d_inode->i_mutex);
2265 goto out;
2266 }
2267 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2268 error = PTR_ERR(dentry);
2269 if (IS_ERR(dentry)) {
2270 mutex_unlock(&dir->d_inode->i_mutex);
2271 goto out;
2272 }
2273 }
2274 mutex_unlock(&dir->d_inode->i_mutex);
2275
2276 done:
2277 if (!dentry->d_inode) {
2278 error = -ENOENT;
2279 dput(dentry);
2280 goto out;
2281 }
2282 path->dentry = dentry;
2283 path->mnt = mntget(nd->path.mnt);
2284 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW))
2285 return 1;
2286 follow_mount(path);
2287 error = 0;
2288 out:
2289 terminate_walk(nd);
2290 return error;
2291 }
2292
2293 /**
2294 * path_mountpoint - look up a path to be umounted
2295 * @dfd: directory file descriptor to start walk from
2296 * @name: full pathname to walk
2297 * @flags: lookup flags
2298 *
2299 * Look up the given name, but don't attempt to revalidate the last component.
2300 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2301 */
2302 static int
2303 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2304 {
2305 struct file *base = NULL;
2306 struct nameidata nd;
2307 int err;
2308
2309 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2310 if (unlikely(err))
2311 return err;
2312
2313 current->total_link_count = 0;
2314 err = link_path_walk(name, &nd);
2315 if (err)
2316 goto out;
2317
2318 err = mountpoint_last(&nd, path);
2319 while (err > 0) {
2320 void *cookie;
2321 struct path link = *path;
2322 err = may_follow_link(&link, &nd);
2323 if (unlikely(err))
2324 break;
2325 nd.flags |= LOOKUP_PARENT;
2326 err = follow_link(&link, &nd, &cookie);
2327 if (err)
2328 break;
2329 err = mountpoint_last(&nd, path);
2330 put_link(&nd, &link, cookie);
2331 }
2332 out:
2333 if (base)
2334 fput(base);
2335
2336 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2337 path_put(&nd.root);
2338
2339 return err;
2340 }
2341
2342 static int
2343 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2344 unsigned int flags)
2345 {
2346 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2347 if (unlikely(error == -ECHILD))
2348 error = path_mountpoint(dfd, s->name, path, flags);
2349 if (unlikely(error == -ESTALE))
2350 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2351 if (likely(!error))
2352 audit_inode(s, path->dentry, 0);
2353 return error;
2354 }
2355
2356 /**
2357 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2358 * @dfd: directory file descriptor
2359 * @name: pathname from userland
2360 * @flags: lookup flags
2361 * @path: pointer to container to hold result
2362 *
2363 * A umount is a special case for path walking. We're not actually interested
2364 * in the inode in this situation, and ESTALE errors can be a problem. We
2365 * simply want track down the dentry and vfsmount attached at the mountpoint
2366 * and avoid revalidating the last component.
2367 *
2368 * Returns 0 and populates "path" on success.
2369 */
2370 int
2371 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2372 struct path *path)
2373 {
2374 struct filename *s = getname(name);
2375 int error;
2376 if (IS_ERR(s))
2377 return PTR_ERR(s);
2378 error = filename_mountpoint(dfd, s, path, flags);
2379 putname(s);
2380 return error;
2381 }
2382
2383 int
2384 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2385 unsigned int flags)
2386 {
2387 struct filename s = {.name = name};
2388 return filename_mountpoint(dfd, &s, path, flags);
2389 }
2390 EXPORT_SYMBOL(kern_path_mountpoint);
2391
2392 /*
2393 * It's inline, so penalty for filesystems that don't use sticky bit is
2394 * minimal.
2395 */
2396 static inline int check_sticky(struct inode *dir, struct inode *inode)
2397 {
2398 kuid_t fsuid = current_fsuid();
2399
2400 if (!(dir->i_mode & S_ISVTX))
2401 return 0;
2402 if (uid_eq(inode->i_uid, fsuid))
2403 return 0;
2404 if (uid_eq(dir->i_uid, fsuid))
2405 return 0;
2406 return !inode_capable(inode, CAP_FOWNER);
2407 }
2408
2409 /*
2410 * Check whether we can remove a link victim from directory dir, check
2411 * whether the type of victim is right.
2412 * 1. We can't do it if dir is read-only (done in permission())
2413 * 2. We should have write and exec permissions on dir
2414 * 3. We can't remove anything from append-only dir
2415 * 4. We can't do anything with immutable dir (done in permission())
2416 * 5. If the sticky bit on dir is set we should either
2417 * a. be owner of dir, or
2418 * b. be owner of victim, or
2419 * c. have CAP_FOWNER capability
2420 * 6. If the victim is append-only or immutable we can't do antyhing with
2421 * links pointing to it.
2422 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2423 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2424 * 9. We can't remove a root or mountpoint.
2425 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2426 * nfs_async_unlink().
2427 */
2428 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2429 {
2430 int error;
2431
2432 if (!victim->d_inode)
2433 return -ENOENT;
2434
2435 BUG_ON(victim->d_parent->d_inode != dir);
2436 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2437
2438 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2439 if (error)
2440 return error;
2441 if (IS_APPEND(dir))
2442 return -EPERM;
2443 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2444 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2445 return -EPERM;
2446 if (isdir) {
2447 if (!S_ISDIR(victim->d_inode->i_mode))
2448 return -ENOTDIR;
2449 if (IS_ROOT(victim))
2450 return -EBUSY;
2451 } else if (S_ISDIR(victim->d_inode->i_mode))
2452 return -EISDIR;
2453 if (IS_DEADDIR(dir))
2454 return -ENOENT;
2455 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2456 return -EBUSY;
2457 return 0;
2458 }
2459
2460 /* Check whether we can create an object with dentry child in directory
2461 * dir.
2462 * 1. We can't do it if child already exists (open has special treatment for
2463 * this case, but since we are inlined it's OK)
2464 * 2. We can't do it if dir is read-only (done in permission())
2465 * 3. We should have write and exec permissions on dir
2466 * 4. We can't do it if dir is immutable (done in permission())
2467 */
2468 static inline int may_create(struct inode *dir, struct dentry *child)
2469 {
2470 if (child->d_inode)
2471 return -EEXIST;
2472 if (IS_DEADDIR(dir))
2473 return -ENOENT;
2474 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2475 }
2476
2477 /*
2478 * p1 and p2 should be directories on the same fs.
2479 */
2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2481 {
2482 struct dentry *p;
2483
2484 if (p1 == p2) {
2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 return NULL;
2487 }
2488
2489 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2490
2491 p = d_ancestor(p2, p1);
2492 if (p) {
2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2495 return p;
2496 }
2497
2498 p = d_ancestor(p1, p2);
2499 if (p) {
2500 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2502 return p;
2503 }
2504
2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2506 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2507 return NULL;
2508 }
2509
2510 void unlock_rename(struct dentry *p1, struct dentry *p2)
2511 {
2512 mutex_unlock(&p1->d_inode->i_mutex);
2513 if (p1 != p2) {
2514 mutex_unlock(&p2->d_inode->i_mutex);
2515 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2516 }
2517 }
2518
2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2520 bool want_excl)
2521 {
2522 int error = may_create(dir, dentry);
2523 if (error)
2524 return error;
2525
2526 if (!dir->i_op->create)
2527 return -EACCES; /* shouldn't it be ENOSYS? */
2528 mode &= S_IALLUGO;
2529 mode |= S_IFREG;
2530 error = security_inode_create(dir, dentry, mode);
2531 if (error)
2532 return error;
2533 error = dir->i_op->create(dir, dentry, mode, want_excl);
2534 if (!error)
2535 fsnotify_create(dir, dentry);
2536 return error;
2537 }
2538
2539 static int may_open(struct path *path, int acc_mode, int flag)
2540 {
2541 struct dentry *dentry = path->dentry;
2542 struct inode *inode = dentry->d_inode;
2543 int error;
2544
2545 /* O_PATH? */
2546 if (!acc_mode)
2547 return 0;
2548
2549 if (!inode)
2550 return -ENOENT;
2551
2552 switch (inode->i_mode & S_IFMT) {
2553 case S_IFLNK:
2554 return -ELOOP;
2555 case S_IFDIR:
2556 if (acc_mode & MAY_WRITE)
2557 return -EISDIR;
2558 break;
2559 case S_IFBLK:
2560 case S_IFCHR:
2561 if (path->mnt->mnt_flags & MNT_NODEV)
2562 return -EACCES;
2563 /*FALLTHRU*/
2564 case S_IFIFO:
2565 case S_IFSOCK:
2566 flag &= ~O_TRUNC;
2567 break;
2568 }
2569
2570 error = inode_permission(inode, acc_mode);
2571 if (error)
2572 return error;
2573
2574 /*
2575 * An append-only file must be opened in append mode for writing.
2576 */
2577 if (IS_APPEND(inode)) {
2578 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2579 return -EPERM;
2580 if (flag & O_TRUNC)
2581 return -EPERM;
2582 }
2583
2584 /* O_NOATIME can only be set by the owner or superuser */
2585 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2586 return -EPERM;
2587
2588 return 0;
2589 }
2590
2591 static int handle_truncate(struct file *filp)
2592 {
2593 struct path *path = &filp->f_path;
2594 struct inode *inode = path->dentry->d_inode;
2595 int error = get_write_access(inode);
2596 if (error)
2597 return error;
2598 /*
2599 * Refuse to truncate files with mandatory locks held on them.
2600 */
2601 error = locks_verify_locked(inode);
2602 if (!error)
2603 error = security_path_truncate(path);
2604 if (!error) {
2605 error = do_truncate(path->dentry, 0,
2606 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2607 filp);
2608 }
2609 put_write_access(inode);
2610 return error;
2611 }
2612
2613 static inline int open_to_namei_flags(int flag)
2614 {
2615 if ((flag & O_ACCMODE) == 3)
2616 flag--;
2617 return flag;
2618 }
2619
2620 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2621 {
2622 int error = security_path_mknod(dir, dentry, mode, 0);
2623 if (error)
2624 return error;
2625
2626 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2627 if (error)
2628 return error;
2629
2630 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2631 }
2632
2633 /*
2634 * Attempt to atomically look up, create and open a file from a negative
2635 * dentry.
2636 *
2637 * Returns 0 if successful. The file will have been created and attached to
2638 * @file by the filesystem calling finish_open().
2639 *
2640 * Returns 1 if the file was looked up only or didn't need creating. The
2641 * caller will need to perform the open themselves. @path will have been
2642 * updated to point to the new dentry. This may be negative.
2643 *
2644 * Returns an error code otherwise.
2645 */
2646 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2647 struct path *path, struct file *file,
2648 const struct open_flags *op,
2649 bool got_write, bool need_lookup,
2650 int *opened)
2651 {
2652 struct inode *dir = nd->path.dentry->d_inode;
2653 unsigned open_flag = open_to_namei_flags(op->open_flag);
2654 umode_t mode;
2655 int error;
2656 int acc_mode;
2657 int create_error = 0;
2658 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2659
2660 BUG_ON(dentry->d_inode);
2661
2662 /* Don't create child dentry for a dead directory. */
2663 if (unlikely(IS_DEADDIR(dir))) {
2664 error = -ENOENT;
2665 goto out;
2666 }
2667
2668 mode = op->mode;
2669 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2670 mode &= ~current_umask();
2671
2672 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2673 open_flag &= ~O_TRUNC;
2674 *opened |= FILE_CREATED;
2675 }
2676
2677 /*
2678 * Checking write permission is tricky, bacuse we don't know if we are
2679 * going to actually need it: O_CREAT opens should work as long as the
2680 * file exists. But checking existence breaks atomicity. The trick is
2681 * to check access and if not granted clear O_CREAT from the flags.
2682 *
2683 * Another problem is returing the "right" error value (e.g. for an
2684 * O_EXCL open we want to return EEXIST not EROFS).
2685 */
2686 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2687 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2688 if (!(open_flag & O_CREAT)) {
2689 /*
2690 * No O_CREATE -> atomicity not a requirement -> fall
2691 * back to lookup + open
2692 */
2693 goto no_open;
2694 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2695 /* Fall back and fail with the right error */
2696 create_error = -EROFS;
2697 goto no_open;
2698 } else {
2699 /* No side effects, safe to clear O_CREAT */
2700 create_error = -EROFS;
2701 open_flag &= ~O_CREAT;
2702 }
2703 }
2704
2705 if (open_flag & O_CREAT) {
2706 error = may_o_create(&nd->path, dentry, mode);
2707 if (error) {
2708 create_error = error;
2709 if (open_flag & O_EXCL)
2710 goto no_open;
2711 open_flag &= ~O_CREAT;
2712 }
2713 }
2714
2715 if (nd->flags & LOOKUP_DIRECTORY)
2716 open_flag |= O_DIRECTORY;
2717
2718 file->f_path.dentry = DENTRY_NOT_SET;
2719 file->f_path.mnt = nd->path.mnt;
2720 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2721 opened);
2722 if (error < 0) {
2723 if (create_error && error == -ENOENT)
2724 error = create_error;
2725 goto out;
2726 }
2727
2728 acc_mode = op->acc_mode;
2729 if (*opened & FILE_CREATED) {
2730 fsnotify_create(dir, dentry);
2731 acc_mode = MAY_OPEN;
2732 }
2733
2734 if (error) { /* returned 1, that is */
2735 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2736 error = -EIO;
2737 goto out;
2738 }
2739 if (file->f_path.dentry) {
2740 dput(dentry);
2741 dentry = file->f_path.dentry;
2742 }
2743 if (create_error && dentry->d_inode == NULL) {
2744 error = create_error;
2745 goto out;
2746 }
2747 goto looked_up;
2748 }
2749
2750 /*
2751 * We didn't have the inode before the open, so check open permission
2752 * here.
2753 */
2754 error = may_open(&file->f_path, acc_mode, open_flag);
2755 if (error)
2756 fput(file);
2757
2758 out:
2759 dput(dentry);
2760 return error;
2761
2762 no_open:
2763 if (need_lookup) {
2764 dentry = lookup_real(dir, dentry, nd->flags);
2765 if (IS_ERR(dentry))
2766 return PTR_ERR(dentry);
2767
2768 if (create_error) {
2769 int open_flag = op->open_flag;
2770
2771 error = create_error;
2772 if ((open_flag & O_EXCL)) {
2773 if (!dentry->d_inode)
2774 goto out;
2775 } else if (!dentry->d_inode) {
2776 goto out;
2777 } else if ((open_flag & O_TRUNC) &&
2778 S_ISREG(dentry->d_inode->i_mode)) {
2779 goto out;
2780 }
2781 /* will fail later, go on to get the right error */
2782 }
2783 }
2784 looked_up:
2785 path->dentry = dentry;
2786 path->mnt = nd->path.mnt;
2787 return 1;
2788 }
2789
2790 /*
2791 * Look up and maybe create and open the last component.
2792 *
2793 * Must be called with i_mutex held on parent.
2794 *
2795 * Returns 0 if the file was successfully atomically created (if necessary) and
2796 * opened. In this case the file will be returned attached to @file.
2797 *
2798 * Returns 1 if the file was not completely opened at this time, though lookups
2799 * and creations will have been performed and the dentry returned in @path will
2800 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2801 * specified then a negative dentry may be returned.
2802 *
2803 * An error code is returned otherwise.
2804 *
2805 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2806 * cleared otherwise prior to returning.
2807 */
2808 static int lookup_open(struct nameidata *nd, struct path *path,
2809 struct file *file,
2810 const struct open_flags *op,
2811 bool got_write, int *opened)
2812 {
2813 struct dentry *dir = nd->path.dentry;
2814 struct inode *dir_inode = dir->d_inode;
2815 struct dentry *dentry;
2816 int error;
2817 bool need_lookup;
2818
2819 *opened &= ~FILE_CREATED;
2820 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2821 if (IS_ERR(dentry))
2822 return PTR_ERR(dentry);
2823
2824 /* Cached positive dentry: will open in f_op->open */
2825 if (!need_lookup && dentry->d_inode)
2826 goto out_no_open;
2827
2828 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2829 return atomic_open(nd, dentry, path, file, op, got_write,
2830 need_lookup, opened);
2831 }
2832
2833 if (need_lookup) {
2834 BUG_ON(dentry->d_inode);
2835
2836 dentry = lookup_real(dir_inode, dentry, nd->flags);
2837 if (IS_ERR(dentry))
2838 return PTR_ERR(dentry);
2839 }
2840
2841 /* Negative dentry, just create the file */
2842 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2843 umode_t mode = op->mode;
2844 if (!IS_POSIXACL(dir->d_inode))
2845 mode &= ~current_umask();
2846 /*
2847 * This write is needed to ensure that a
2848 * rw->ro transition does not occur between
2849 * the time when the file is created and when
2850 * a permanent write count is taken through
2851 * the 'struct file' in finish_open().
2852 */
2853 if (!got_write) {
2854 error = -EROFS;
2855 goto out_dput;
2856 }
2857 *opened |= FILE_CREATED;
2858 error = security_path_mknod(&nd->path, dentry, mode, 0);
2859 if (error)
2860 goto out_dput;
2861 error = vfs_create(dir->d_inode, dentry, mode,
2862 nd->flags & LOOKUP_EXCL);
2863 if (error)
2864 goto out_dput;
2865 }
2866 out_no_open:
2867 path->dentry = dentry;
2868 path->mnt = nd->path.mnt;
2869 return 1;
2870
2871 out_dput:
2872 dput(dentry);
2873 return error;
2874 }
2875
2876 /*
2877 * Handle the last step of open()
2878 */
2879 static int do_last(struct nameidata *nd, struct path *path,
2880 struct file *file, const struct open_flags *op,
2881 int *opened, struct filename *name)
2882 {
2883 struct dentry *dir = nd->path.dentry;
2884 int open_flag = op->open_flag;
2885 bool will_truncate = (open_flag & O_TRUNC) != 0;
2886 bool got_write = false;
2887 int acc_mode = op->acc_mode;
2888 struct inode *inode;
2889 bool symlink_ok = false;
2890 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2891 bool retried = false;
2892 int error;
2893
2894 nd->flags &= ~LOOKUP_PARENT;
2895 nd->flags |= op->intent;
2896
2897 if (nd->last_type != LAST_NORM) {
2898 error = handle_dots(nd, nd->last_type);
2899 if (error)
2900 return error;
2901 goto finish_open;
2902 }
2903
2904 if (!(open_flag & O_CREAT)) {
2905 if (nd->last.name[nd->last.len])
2906 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2907 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2908 symlink_ok = true;
2909 /* we _can_ be in RCU mode here */
2910 error = lookup_fast(nd, path, &inode);
2911 if (likely(!error))
2912 goto finish_lookup;
2913
2914 if (error < 0)
2915 goto out;
2916
2917 BUG_ON(nd->inode != dir->d_inode);
2918 } else {
2919 /* create side of things */
2920 /*
2921 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2922 * has been cleared when we got to the last component we are
2923 * about to look up
2924 */
2925 error = complete_walk(nd);
2926 if (error)
2927 return error;
2928
2929 audit_inode(name, dir, LOOKUP_PARENT);
2930 error = -EISDIR;
2931 /* trailing slashes? */
2932 if (nd->last.name[nd->last.len])
2933 goto out;
2934 }
2935
2936 retry_lookup:
2937 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2938 error = mnt_want_write(nd->path.mnt);
2939 if (!error)
2940 got_write = true;
2941 /*
2942 * do _not_ fail yet - we might not need that or fail with
2943 * a different error; let lookup_open() decide; we'll be
2944 * dropping this one anyway.
2945 */
2946 }
2947 mutex_lock(&dir->d_inode->i_mutex);
2948 error = lookup_open(nd, path, file, op, got_write, opened);
2949 mutex_unlock(&dir->d_inode->i_mutex);
2950
2951 if (error <= 0) {
2952 if (error)
2953 goto out;
2954
2955 if ((*opened & FILE_CREATED) ||
2956 !S_ISREG(file_inode(file)->i_mode))
2957 will_truncate = false;
2958
2959 audit_inode(name, file->f_path.dentry, 0);
2960 goto opened;
2961 }
2962
2963 if (*opened & FILE_CREATED) {
2964 /* Don't check for write permission, don't truncate */
2965 open_flag &= ~O_TRUNC;
2966 will_truncate = false;
2967 acc_mode = MAY_OPEN;
2968 path_to_nameidata(path, nd);
2969 goto finish_open_created;
2970 }
2971
2972 /*
2973 * create/update audit record if it already exists.
2974 */
2975 if (path->dentry->d_inode)
2976 audit_inode(name, path->dentry, 0);
2977
2978 /*
2979 * If atomic_open() acquired write access it is dropped now due to
2980 * possible mount and symlink following (this might be optimized away if
2981 * necessary...)
2982 */
2983 if (got_write) {
2984 mnt_drop_write(nd->path.mnt);
2985 got_write = false;
2986 }
2987
2988 error = -EEXIST;
2989 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2990 goto exit_dput;
2991
2992 error = follow_managed(path, nd->flags);
2993 if (error < 0)
2994 goto exit_dput;
2995
2996 if (error)
2997 nd->flags |= LOOKUP_JUMPED;
2998
2999 BUG_ON(nd->flags & LOOKUP_RCU);
3000 inode = path->dentry->d_inode;
3001 finish_lookup:
3002 /* we _can_ be in RCU mode here */
3003 error = -ENOENT;
3004 if (!inode) {
3005 path_to_nameidata(path, nd);
3006 goto out;
3007 }
3008
3009 if (should_follow_link(inode, !symlink_ok)) {
3010 if (nd->flags & LOOKUP_RCU) {
3011 if (unlikely(unlazy_walk(nd, path->dentry))) {
3012 error = -ECHILD;
3013 goto out;
3014 }
3015 }
3016 BUG_ON(inode != path->dentry->d_inode);
3017 return 1;
3018 }
3019
3020 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3021 path_to_nameidata(path, nd);
3022 } else {
3023 save_parent.dentry = nd->path.dentry;
3024 save_parent.mnt = mntget(path->mnt);
3025 nd->path.dentry = path->dentry;
3026
3027 }
3028 nd->inode = inode;
3029 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3030 finish_open:
3031 error = complete_walk(nd);
3032 if (error) {
3033 path_put(&save_parent);
3034 return error;
3035 }
3036 audit_inode(name, nd->path.dentry, 0);
3037 error = -EISDIR;
3038 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3039 goto out;
3040 error = -ENOTDIR;
3041 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3042 goto out;
3043 if (!S_ISREG(nd->inode->i_mode))
3044 will_truncate = false;
3045
3046 if (will_truncate) {
3047 error = mnt_want_write(nd->path.mnt);
3048 if (error)
3049 goto out;
3050 got_write = true;
3051 }
3052 finish_open_created:
3053 error = may_open(&nd->path, acc_mode, open_flag);
3054 if (error)
3055 goto out;
3056 file->f_path.mnt = nd->path.mnt;
3057 error = finish_open(file, nd->path.dentry, NULL, opened);
3058 if (error) {
3059 if (error == -EOPENSTALE)
3060 goto stale_open;
3061 goto out;
3062 }
3063 opened:
3064 error = open_check_o_direct(file);
3065 if (error)
3066 goto exit_fput;
3067 error = ima_file_check(file, op->acc_mode);
3068 if (error)
3069 goto exit_fput;
3070
3071 if (will_truncate) {
3072 error = handle_truncate(file);
3073 if (error)
3074 goto exit_fput;
3075 }
3076 out:
3077 if (got_write)
3078 mnt_drop_write(nd->path.mnt);
3079 path_put(&save_parent);
3080 terminate_walk(nd);
3081 return error;
3082
3083 exit_dput:
3084 path_put_conditional(path, nd);
3085 goto out;
3086 exit_fput:
3087 fput(file);
3088 goto out;
3089
3090 stale_open:
3091 /* If no saved parent or already retried then can't retry */
3092 if (!save_parent.dentry || retried)
3093 goto out;
3094
3095 BUG_ON(save_parent.dentry != dir);
3096 path_put(&nd->path);
3097 nd->path = save_parent;
3098 nd->inode = dir->d_inode;
3099 save_parent.mnt = NULL;
3100 save_parent.dentry = NULL;
3101 if (got_write) {
3102 mnt_drop_write(nd->path.mnt);
3103 got_write = false;
3104 }
3105 retried = true;
3106 goto retry_lookup;
3107 }
3108
3109 static int do_tmpfile(int dfd, struct filename *pathname,
3110 struct nameidata *nd, int flags,
3111 const struct open_flags *op,
3112 struct file *file, int *opened)
3113 {
3114 static const struct qstr name = QSTR_INIT("/", 1);
3115 struct dentry *dentry, *child;
3116 struct inode *dir;
3117 int error = path_lookupat(dfd, pathname->name,
3118 flags | LOOKUP_DIRECTORY, nd);
3119 if (unlikely(error))
3120 return error;
3121 error = mnt_want_write(nd->path.mnt);
3122 if (unlikely(error))
3123 goto out;
3124 /* we want directory to be writable */
3125 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3126 if (error)
3127 goto out2;
3128 dentry = nd->path.dentry;
3129 dir = dentry->d_inode;
3130 if (!dir->i_op->tmpfile) {
3131 error = -EOPNOTSUPP;
3132 goto out2;
3133 }
3134 child = d_alloc(dentry, &name);
3135 if (unlikely(!child)) {
3136 error = -ENOMEM;
3137 goto out2;
3138 }
3139 nd->flags &= ~LOOKUP_DIRECTORY;
3140 nd->flags |= op->intent;
3141 dput(nd->path.dentry);
3142 nd->path.dentry = child;
3143 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3144 if (error)
3145 goto out2;
3146 audit_inode(pathname, nd->path.dentry, 0);
3147 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3148 if (error)
3149 goto out2;
3150 file->f_path.mnt = nd->path.mnt;
3151 error = finish_open(file, nd->path.dentry, NULL, opened);
3152 if (error)
3153 goto out2;
3154 error = open_check_o_direct(file);
3155 if (error) {
3156 fput(file);
3157 } else if (!(op->open_flag & O_EXCL)) {
3158 struct inode *inode = file_inode(file);
3159 spin_lock(&inode->i_lock);
3160 inode->i_state |= I_LINKABLE;
3161 spin_unlock(&inode->i_lock);
3162 }
3163 out2:
3164 mnt_drop_write(nd->path.mnt);
3165 out:
3166 path_put(&nd->path);
3167 return error;
3168 }
3169
3170 static struct file *path_openat(int dfd, struct filename *pathname,
3171 struct nameidata *nd, const struct open_flags *op, int flags)
3172 {
3173 struct file *base = NULL;
3174 struct file *file;
3175 struct path path;
3176 int opened = 0;
3177 int error;
3178
3179 file = get_empty_filp();
3180 if (IS_ERR(file))
3181 return file;
3182
3183 file->f_flags = op->open_flag;
3184
3185 if (unlikely(file->f_flags & __O_TMPFILE)) {
3186 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3187 goto out;
3188 }
3189
3190 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3191 if (unlikely(error))
3192 goto out;
3193
3194 current->total_link_count = 0;
3195 error = link_path_walk(pathname->name, nd);
3196 if (unlikely(error))
3197 goto out;
3198
3199 error = do_last(nd, &path, file, op, &opened, pathname);
3200 while (unlikely(error > 0)) { /* trailing symlink */
3201 struct path link = path;
3202 void *cookie;
3203 if (!(nd->flags & LOOKUP_FOLLOW)) {
3204 path_put_conditional(&path, nd);
3205 path_put(&nd->path);
3206 error = -ELOOP;
3207 break;
3208 }
3209 error = may_follow_link(&link, nd);
3210 if (unlikely(error))
3211 break;
3212 nd->flags |= LOOKUP_PARENT;
3213 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3214 error = follow_link(&link, nd, &cookie);
3215 if (unlikely(error))
3216 break;
3217 error = do_last(nd, &path, file, op, &opened, pathname);
3218 put_link(nd, &link, cookie);
3219 }
3220 out:
3221 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3222 path_put(&nd->root);
3223 if (base)
3224 fput(base);
3225 if (!(opened & FILE_OPENED)) {
3226 BUG_ON(!error);
3227 put_filp(file);
3228 }
3229 if (unlikely(error)) {
3230 if (error == -EOPENSTALE) {
3231 if (flags & LOOKUP_RCU)
3232 error = -ECHILD;
3233 else
3234 error = -ESTALE;
3235 }
3236 file = ERR_PTR(error);
3237 }
3238 return file;
3239 }
3240
3241 struct file *do_filp_open(int dfd, struct filename *pathname,
3242 const struct open_flags *op)
3243 {
3244 struct nameidata nd;
3245 int flags = op->lookup_flags;
3246 struct file *filp;
3247
3248 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3249 if (unlikely(filp == ERR_PTR(-ECHILD)))
3250 filp = path_openat(dfd, pathname, &nd, op, flags);
3251 if (unlikely(filp == ERR_PTR(-ESTALE)))
3252 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3253 return filp;
3254 }
3255
3256 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3257 const char *name, const struct open_flags *op)
3258 {
3259 struct nameidata nd;
3260 struct file *file;
3261 struct filename filename = { .name = name };
3262 int flags = op->lookup_flags | LOOKUP_ROOT;
3263
3264 nd.root.mnt = mnt;
3265 nd.root.dentry = dentry;
3266
3267 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3268 return ERR_PTR(-ELOOP);
3269
3270 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3271 if (unlikely(file == ERR_PTR(-ECHILD)))
3272 file = path_openat(-1, &filename, &nd, op, flags);
3273 if (unlikely(file == ERR_PTR(-ESTALE)))
3274 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3275 return file;
3276 }
3277
3278 struct dentry *kern_path_create(int dfd, const char *pathname,
3279 struct path *path, unsigned int lookup_flags)
3280 {
3281 struct dentry *dentry = ERR_PTR(-EEXIST);
3282 struct nameidata nd;
3283 int err2;
3284 int error;
3285 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3286
3287 /*
3288 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3289 * other flags passed in are ignored!
3290 */
3291 lookup_flags &= LOOKUP_REVAL;
3292
3293 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3294 if (error)
3295 return ERR_PTR(error);
3296
3297 /*
3298 * Yucky last component or no last component at all?
3299 * (foo/., foo/.., /////)
3300 */
3301 if (nd.last_type != LAST_NORM)
3302 goto out;
3303 nd.flags &= ~LOOKUP_PARENT;
3304 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3305
3306 /* don't fail immediately if it's r/o, at least try to report other errors */
3307 err2 = mnt_want_write(nd.path.mnt);
3308 /*
3309 * Do the final lookup.
3310 */
3311 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3312 dentry = lookup_hash(&nd);
3313 if (IS_ERR(dentry))
3314 goto unlock;
3315
3316 error = -EEXIST;
3317 if (dentry->d_inode)
3318 goto fail;
3319 /*
3320 * Special case - lookup gave negative, but... we had foo/bar/
3321 * From the vfs_mknod() POV we just have a negative dentry -
3322 * all is fine. Let's be bastards - you had / on the end, you've
3323 * been asking for (non-existent) directory. -ENOENT for you.
3324 */
3325 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3326 error = -ENOENT;
3327 goto fail;
3328 }
3329 if (unlikely(err2)) {
3330 error = err2;
3331 goto fail;
3332 }
3333 *path = nd.path;
3334 return dentry;
3335 fail:
3336 dput(dentry);
3337 dentry = ERR_PTR(error);
3338 unlock:
3339 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3340 if (!err2)
3341 mnt_drop_write(nd.path.mnt);
3342 out:
3343 path_put(&nd.path);
3344 return dentry;
3345 }
3346 EXPORT_SYMBOL(kern_path_create);
3347
3348 void done_path_create(struct path *path, struct dentry *dentry)
3349 {
3350 dput(dentry);
3351 mutex_unlock(&path->dentry->d_inode->i_mutex);
3352 mnt_drop_write(path->mnt);
3353 path_put(path);
3354 }
3355 EXPORT_SYMBOL(done_path_create);
3356
3357 struct dentry *user_path_create(int dfd, const char __user *pathname,
3358 struct path *path, unsigned int lookup_flags)
3359 {
3360 struct filename *tmp = getname(pathname);
3361 struct dentry *res;
3362 if (IS_ERR(tmp))
3363 return ERR_CAST(tmp);
3364 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3365 putname(tmp);
3366 return res;
3367 }
3368 EXPORT_SYMBOL(user_path_create);
3369
3370 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3371 {
3372 int error = may_create(dir, dentry);
3373
3374 if (error)
3375 return error;
3376
3377 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3378 return -EPERM;
3379
3380 if (!dir->i_op->mknod)
3381 return -EPERM;
3382
3383 error = devcgroup_inode_mknod(mode, dev);
3384 if (error)
3385 return error;
3386
3387 error = security_inode_mknod(dir, dentry, mode, dev);
3388 if (error)
3389 return error;
3390
3391 error = dir->i_op->mknod(dir, dentry, mode, dev);
3392 if (!error)
3393 fsnotify_create(dir, dentry);
3394 return error;
3395 }
3396
3397 static int may_mknod(umode_t mode)
3398 {
3399 switch (mode & S_IFMT) {
3400 case S_IFREG:
3401 case S_IFCHR:
3402 case S_IFBLK:
3403 case S_IFIFO:
3404 case S_IFSOCK:
3405 case 0: /* zero mode translates to S_IFREG */
3406 return 0;
3407 case S_IFDIR:
3408 return -EPERM;
3409 default:
3410 return -EINVAL;
3411 }
3412 }
3413
3414 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3415 unsigned, dev)
3416 {
3417 struct dentry *dentry;
3418 struct path path;
3419 int error;
3420 unsigned int lookup_flags = 0;
3421
3422 error = may_mknod(mode);
3423 if (error)
3424 return error;
3425 retry:
3426 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3427 if (IS_ERR(dentry))
3428 return PTR_ERR(dentry);
3429
3430 if (!IS_POSIXACL(path.dentry->d_inode))
3431 mode &= ~current_umask();
3432 error = security_path_mknod(&path, dentry, mode, dev);
3433 if (error)
3434 goto out;
3435 switch (mode & S_IFMT) {
3436 case 0: case S_IFREG:
3437 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3438 break;
3439 case S_IFCHR: case S_IFBLK:
3440 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3441 new_decode_dev(dev));
3442 break;
3443 case S_IFIFO: case S_IFSOCK:
3444 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3445 break;
3446 }
3447 out:
3448 done_path_create(&path, dentry);
3449 if (retry_estale(error, lookup_flags)) {
3450 lookup_flags |= LOOKUP_REVAL;
3451 goto retry;
3452 }
3453 return error;
3454 }
3455
3456 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3457 {
3458 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3459 }
3460
3461 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3462 {
3463 int error = may_create(dir, dentry);
3464 unsigned max_links = dir->i_sb->s_max_links;
3465
3466 if (error)
3467 return error;
3468
3469 if (!dir->i_op->mkdir)
3470 return -EPERM;
3471
3472 mode &= (S_IRWXUGO|S_ISVTX);
3473 error = security_inode_mkdir(dir, dentry, mode);
3474 if (error)
3475 return error;
3476
3477 if (max_links && dir->i_nlink >= max_links)
3478 return -EMLINK;
3479
3480 error = dir->i_op->mkdir(dir, dentry, mode);
3481 if (!error)
3482 fsnotify_mkdir(dir, dentry);
3483 return error;
3484 }
3485
3486 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3487 {
3488 struct dentry *dentry;
3489 struct path path;
3490 int error;
3491 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3492
3493 retry:
3494 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3495 if (IS_ERR(dentry))
3496 return PTR_ERR(dentry);
3497
3498 if (!IS_POSIXACL(path.dentry->d_inode))
3499 mode &= ~current_umask();
3500 error = security_path_mkdir(&path, dentry, mode);
3501 if (!error)
3502 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3503 done_path_create(&path, dentry);
3504 if (retry_estale(error, lookup_flags)) {
3505 lookup_flags |= LOOKUP_REVAL;
3506 goto retry;
3507 }
3508 return error;
3509 }
3510
3511 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3512 {
3513 return sys_mkdirat(AT_FDCWD, pathname, mode);
3514 }
3515
3516 /*
3517 * The dentry_unhash() helper will try to drop the dentry early: we
3518 * should have a usage count of 1 if we're the only user of this
3519 * dentry, and if that is true (possibly after pruning the dcache),
3520 * then we drop the dentry now.
3521 *
3522 * A low-level filesystem can, if it choses, legally
3523 * do a
3524 *
3525 * if (!d_unhashed(dentry))
3526 * return -EBUSY;
3527 *
3528 * if it cannot handle the case of removing a directory
3529 * that is still in use by something else..
3530 */
3531 void dentry_unhash(struct dentry *dentry)
3532 {
3533 shrink_dcache_parent(dentry);
3534 spin_lock(&dentry->d_lock);
3535 if (dentry->d_lockref.count == 1)
3536 __d_drop(dentry);
3537 spin_unlock(&dentry->d_lock);
3538 }
3539
3540 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3541 {
3542 int error = may_delete(dir, dentry, 1);
3543
3544 if (error)
3545 return error;
3546
3547 if (!dir->i_op->rmdir)
3548 return -EPERM;
3549
3550 dget(dentry);
3551 mutex_lock(&dentry->d_inode->i_mutex);
3552
3553 error = -EBUSY;
3554 if (d_mountpoint(dentry))
3555 goto out;
3556
3557 error = security_inode_rmdir(dir, dentry);
3558 if (error)
3559 goto out;
3560
3561 shrink_dcache_parent(dentry);
3562 error = dir->i_op->rmdir(dir, dentry);
3563 if (error)
3564 goto out;
3565
3566 dentry->d_inode->i_flags |= S_DEAD;
3567 dont_mount(dentry);
3568
3569 out:
3570 mutex_unlock(&dentry->d_inode->i_mutex);
3571 dput(dentry);
3572 if (!error)
3573 d_delete(dentry);
3574 return error;
3575 }
3576
3577 static long do_rmdir(int dfd, const char __user *pathname)
3578 {
3579 int error = 0;
3580 struct filename *name;
3581 struct dentry *dentry;
3582 struct nameidata nd;
3583 unsigned int lookup_flags = 0;
3584 retry:
3585 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3586 if (IS_ERR(name))
3587 return PTR_ERR(name);
3588
3589 switch(nd.last_type) {
3590 case LAST_DOTDOT:
3591 error = -ENOTEMPTY;
3592 goto exit1;
3593 case LAST_DOT:
3594 error = -EINVAL;
3595 goto exit1;
3596 case LAST_ROOT:
3597 error = -EBUSY;
3598 goto exit1;
3599 }
3600
3601 nd.flags &= ~LOOKUP_PARENT;
3602 error = mnt_want_write(nd.path.mnt);
3603 if (error)
3604 goto exit1;
3605
3606 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3607 dentry = lookup_hash(&nd);
3608 error = PTR_ERR(dentry);
3609 if (IS_ERR(dentry))
3610 goto exit2;
3611 if (!dentry->d_inode) {
3612 error = -ENOENT;
3613 goto exit3;
3614 }
3615 error = security_path_rmdir(&nd.path, dentry);
3616 if (error)
3617 goto exit3;
3618 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3619 exit3:
3620 dput(dentry);
3621 exit2:
3622 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3623 mnt_drop_write(nd.path.mnt);
3624 exit1:
3625 path_put(&nd.path);
3626 putname(name);
3627 if (retry_estale(error, lookup_flags)) {
3628 lookup_flags |= LOOKUP_REVAL;
3629 goto retry;
3630 }
3631 return error;
3632 }
3633
3634 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3635 {
3636 return do_rmdir(AT_FDCWD, pathname);
3637 }
3638
3639 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3640 {
3641 int error = may_delete(dir, dentry, 0);
3642
3643 if (error)
3644 return error;
3645
3646 if (!dir->i_op->unlink)
3647 return -EPERM;
3648
3649 mutex_lock(&dentry->d_inode->i_mutex);
3650 if (d_mountpoint(dentry))
3651 error = -EBUSY;
3652 else {
3653 error = security_inode_unlink(dir, dentry);
3654 if (!error) {
3655 error = dir->i_op->unlink(dir, dentry);
3656 if (!error)
3657 dont_mount(dentry);
3658 }
3659 }
3660 mutex_unlock(&dentry->d_inode->i_mutex);
3661
3662 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3663 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3664 fsnotify_link_count(dentry->d_inode);
3665 d_delete(dentry);
3666 }
3667
3668 return error;
3669 }
3670
3671 /*
3672 * Make sure that the actual truncation of the file will occur outside its
3673 * directory's i_mutex. Truncate can take a long time if there is a lot of
3674 * writeout happening, and we don't want to prevent access to the directory
3675 * while waiting on the I/O.
3676 */
3677 static long do_unlinkat(int dfd, const char __user *pathname)
3678 {
3679 int error;
3680 struct filename *name;
3681 struct dentry *dentry;
3682 struct nameidata nd;
3683 struct inode *inode = NULL;
3684 unsigned int lookup_flags = 0;
3685 retry:
3686 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3687 if (IS_ERR(name))
3688 return PTR_ERR(name);
3689
3690 error = -EISDIR;
3691 if (nd.last_type != LAST_NORM)
3692 goto exit1;
3693
3694 nd.flags &= ~LOOKUP_PARENT;
3695 error = mnt_want_write(nd.path.mnt);
3696 if (error)
3697 goto exit1;
3698
3699 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3700 dentry = lookup_hash(&nd);
3701 error = PTR_ERR(dentry);
3702 if (!IS_ERR(dentry)) {
3703 /* Why not before? Because we want correct error value */
3704 if (nd.last.name[nd.last.len])
3705 goto slashes;
3706 inode = dentry->d_inode;
3707 if (!inode)
3708 goto slashes;
3709 ihold(inode);
3710 error = security_path_unlink(&nd.path, dentry);
3711 if (error)
3712 goto exit2;
3713 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3714 exit2:
3715 dput(dentry);
3716 }
3717 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3718 if (inode)
3719 iput(inode); /* truncate the inode here */
3720 mnt_drop_write(nd.path.mnt);
3721 exit1:
3722 path_put(&nd.path);
3723 putname(name);
3724 if (retry_estale(error, lookup_flags)) {
3725 lookup_flags |= LOOKUP_REVAL;
3726 inode = NULL;
3727 goto retry;
3728 }
3729 return error;
3730
3731 slashes:
3732 error = !dentry->d_inode ? -ENOENT :
3733 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3734 goto exit2;
3735 }
3736
3737 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3738 {
3739 if ((flag & ~AT_REMOVEDIR) != 0)
3740 return -EINVAL;
3741
3742 if (flag & AT_REMOVEDIR)
3743 return do_rmdir(dfd, pathname);
3744
3745 return do_unlinkat(dfd, pathname);
3746 }
3747
3748 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3749 {
3750 return do_unlinkat(AT_FDCWD, pathname);
3751 }
3752
3753 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3754 {
3755 int error = may_create(dir, dentry);
3756
3757 if (error)
3758 return error;
3759
3760 if (!dir->i_op->symlink)
3761 return -EPERM;
3762
3763 error = security_inode_symlink(dir, dentry, oldname);
3764 if (error)
3765 return error;
3766
3767 error = dir->i_op->symlink(dir, dentry, oldname);
3768 if (!error)
3769 fsnotify_create(dir, dentry);
3770 return error;
3771 }
3772
3773 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3774 int, newdfd, const char __user *, newname)
3775 {
3776 int error;
3777 struct filename *from;
3778 struct dentry *dentry;
3779 struct path path;
3780 unsigned int lookup_flags = 0;
3781
3782 from = getname(oldname);
3783 if (IS_ERR(from))
3784 return PTR_ERR(from);
3785 retry:
3786 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3787 error = PTR_ERR(dentry);
3788 if (IS_ERR(dentry))
3789 goto out_putname;
3790
3791 error = security_path_symlink(&path, dentry, from->name);
3792 if (!error)
3793 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3794 done_path_create(&path, dentry);
3795 if (retry_estale(error, lookup_flags)) {
3796 lookup_flags |= LOOKUP_REVAL;
3797 goto retry;
3798 }
3799 out_putname:
3800 putname(from);
3801 return error;
3802 }
3803
3804 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3805 {
3806 return sys_symlinkat(oldname, AT_FDCWD, newname);
3807 }
3808
3809 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3810 {
3811 struct inode *inode = old_dentry->d_inode;
3812 unsigned max_links = dir->i_sb->s_max_links;
3813 int error;
3814
3815 if (!inode)
3816 return -ENOENT;
3817
3818 error = may_create(dir, new_dentry);
3819 if (error)
3820 return error;
3821
3822 if (dir->i_sb != inode->i_sb)
3823 return -EXDEV;
3824
3825 /*
3826 * A link to an append-only or immutable file cannot be created.
3827 */
3828 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3829 return -EPERM;
3830 if (!dir->i_op->link)
3831 return -EPERM;
3832 if (S_ISDIR(inode->i_mode))
3833 return -EPERM;
3834
3835 error = security_inode_link(old_dentry, dir, new_dentry);
3836 if (error)
3837 return error;
3838
3839 mutex_lock(&inode->i_mutex);
3840 /* Make sure we don't allow creating hardlink to an unlinked file */
3841 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3842 error = -ENOENT;
3843 else if (max_links && inode->i_nlink >= max_links)
3844 error = -EMLINK;
3845 else
3846 error = dir->i_op->link(old_dentry, dir, new_dentry);
3847
3848 if (!error && (inode->i_state & I_LINKABLE)) {
3849 spin_lock(&inode->i_lock);
3850 inode->i_state &= ~I_LINKABLE;
3851 spin_unlock(&inode->i_lock);
3852 }
3853 mutex_unlock(&inode->i_mutex);
3854 if (!error)
3855 fsnotify_link(dir, inode, new_dentry);
3856 return error;
3857 }
3858
3859 /*
3860 * Hardlinks are often used in delicate situations. We avoid
3861 * security-related surprises by not following symlinks on the
3862 * newname. --KAB
3863 *
3864 * We don't follow them on the oldname either to be compatible
3865 * with linux 2.0, and to avoid hard-linking to directories
3866 * and other special files. --ADM
3867 */
3868 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3869 int, newdfd, const char __user *, newname, int, flags)
3870 {
3871 struct dentry *new_dentry;
3872 struct path old_path, new_path;
3873 int how = 0;
3874 int error;
3875
3876 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3877 return -EINVAL;
3878 /*
3879 * To use null names we require CAP_DAC_READ_SEARCH
3880 * This ensures that not everyone will be able to create
3881 * handlink using the passed filedescriptor.
3882 */
3883 if (flags & AT_EMPTY_PATH) {
3884 if (!capable(CAP_DAC_READ_SEARCH))
3885 return -ENOENT;
3886 how = LOOKUP_EMPTY;
3887 }
3888
3889 if (flags & AT_SYMLINK_FOLLOW)
3890 how |= LOOKUP_FOLLOW;
3891 retry:
3892 error = user_path_at(olddfd, oldname, how, &old_path);
3893 if (error)
3894 return error;
3895
3896 new_dentry = user_path_create(newdfd, newname, &new_path,
3897 (how & LOOKUP_REVAL));
3898 error = PTR_ERR(new_dentry);
3899 if (IS_ERR(new_dentry))
3900 goto out;
3901
3902 error = -EXDEV;
3903 if (old_path.mnt != new_path.mnt)
3904 goto out_dput;
3905 error = may_linkat(&old_path);
3906 if (unlikely(error))
3907 goto out_dput;
3908 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3909 if (error)
3910 goto out_dput;
3911 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3912 out_dput:
3913 done_path_create(&new_path, new_dentry);
3914 if (retry_estale(error, how)) {
3915 how |= LOOKUP_REVAL;
3916 goto retry;
3917 }
3918 out:
3919 path_put(&old_path);
3920
3921 return error;
3922 }
3923
3924 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3925 {
3926 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3927 }
3928
3929 /*
3930 * The worst of all namespace operations - renaming directory. "Perverted"
3931 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3932 * Problems:
3933 * a) we can get into loop creation. Check is done in is_subdir().
3934 * b) race potential - two innocent renames can create a loop together.
3935 * That's where 4.4 screws up. Current fix: serialization on
3936 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3937 * story.
3938 * c) we have to lock _three_ objects - parents and victim (if it exists).
3939 * And that - after we got ->i_mutex on parents (until then we don't know
3940 * whether the target exists). Solution: try to be smart with locking
3941 * order for inodes. We rely on the fact that tree topology may change
3942 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3943 * move will be locked. Thus we can rank directories by the tree
3944 * (ancestors first) and rank all non-directories after them.
3945 * That works since everybody except rename does "lock parent, lookup,
3946 * lock child" and rename is under ->s_vfs_rename_mutex.
3947 * HOWEVER, it relies on the assumption that any object with ->lookup()
3948 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3949 * we'd better make sure that there's no link(2) for them.
3950 * d) conversion from fhandle to dentry may come in the wrong moment - when
3951 * we are removing the target. Solution: we will have to grab ->i_mutex
3952 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3953 * ->i_mutex on parents, which works but leads to some truly excessive
3954 * locking].
3955 */
3956 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3957 struct inode *new_dir, struct dentry *new_dentry)
3958 {
3959 int error = 0;
3960 struct inode *target = new_dentry->d_inode;
3961 unsigned max_links = new_dir->i_sb->s_max_links;
3962
3963 /*
3964 * If we are going to change the parent - check write permissions,
3965 * we'll need to flip '..'.
3966 */
3967 if (new_dir != old_dir) {
3968 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3969 if (error)
3970 return error;
3971 }
3972
3973 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3974 if (error)
3975 return error;
3976
3977 dget(new_dentry);
3978 if (target)
3979 mutex_lock(&target->i_mutex);
3980
3981 error = -EBUSY;
3982 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3983 goto out;
3984
3985 error = -EMLINK;
3986 if (max_links && !target && new_dir != old_dir &&
3987 new_dir->i_nlink >= max_links)
3988 goto out;
3989
3990 if (target)
3991 shrink_dcache_parent(new_dentry);
3992 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3993 if (error)
3994 goto out;
3995
3996 if (target) {
3997 target->i_flags |= S_DEAD;
3998 dont_mount(new_dentry);
3999 }
4000 out:
4001 if (target)
4002 mutex_unlock(&target->i_mutex);
4003 dput(new_dentry);
4004 if (!error)
4005 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4006 d_move(old_dentry,new_dentry);
4007 return error;
4008 }
4009
4010 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4011 struct inode *new_dir, struct dentry *new_dentry)
4012 {
4013 struct inode *target = new_dentry->d_inode;
4014 int error;
4015
4016 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4017 if (error)
4018 return error;
4019
4020 dget(new_dentry);
4021 if (target)
4022 mutex_lock(&target->i_mutex);
4023
4024 error = -EBUSY;
4025 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4026 goto out;
4027
4028 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4029 if (error)
4030 goto out;
4031
4032 if (target)
4033 dont_mount(new_dentry);
4034 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4035 d_move(old_dentry, new_dentry);
4036 out:
4037 if (target)
4038 mutex_unlock(&target->i_mutex);
4039 dput(new_dentry);
4040 return error;
4041 }
4042
4043 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4044 struct inode *new_dir, struct dentry *new_dentry)
4045 {
4046 int error;
4047 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4048 const unsigned char *old_name;
4049
4050 if (old_dentry->d_inode == new_dentry->d_inode)
4051 return 0;
4052
4053 error = may_delete(old_dir, old_dentry, is_dir);
4054 if (error)
4055 return error;
4056
4057 if (!new_dentry->d_inode)
4058 error = may_create(new_dir, new_dentry);
4059 else
4060 error = may_delete(new_dir, new_dentry, is_dir);
4061 if (error)
4062 return error;
4063
4064 if (!old_dir->i_op->rename)
4065 return -EPERM;
4066
4067 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4068
4069 if (is_dir)
4070 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4071 else
4072 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4073 if (!error)
4074 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4075 new_dentry->d_inode, old_dentry);
4076 fsnotify_oldname_free(old_name);
4077
4078 return error;
4079 }
4080
4081 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4082 int, newdfd, const char __user *, newname)
4083 {
4084 struct dentry *old_dir, *new_dir;
4085 struct dentry *old_dentry, *new_dentry;
4086 struct dentry *trap;
4087 struct nameidata oldnd, newnd;
4088 struct filename *from;
4089 struct filename *to;
4090 unsigned int lookup_flags = 0;
4091 bool should_retry = false;
4092 int error;
4093 retry:
4094 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4095 if (IS_ERR(from)) {
4096 error = PTR_ERR(from);
4097 goto exit;
4098 }
4099
4100 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4101 if (IS_ERR(to)) {
4102 error = PTR_ERR(to);
4103 goto exit1;
4104 }
4105
4106 error = -EXDEV;
4107 if (oldnd.path.mnt != newnd.path.mnt)
4108 goto exit2;
4109
4110 old_dir = oldnd.path.dentry;
4111 error = -EBUSY;
4112 if (oldnd.last_type != LAST_NORM)
4113 goto exit2;
4114
4115 new_dir = newnd.path.dentry;
4116 if (newnd.last_type != LAST_NORM)
4117 goto exit2;
4118
4119 error = mnt_want_write(oldnd.path.mnt);
4120 if (error)
4121 goto exit2;
4122
4123 oldnd.flags &= ~LOOKUP_PARENT;
4124 newnd.flags &= ~LOOKUP_PARENT;
4125 newnd.flags |= LOOKUP_RENAME_TARGET;
4126
4127 trap = lock_rename(new_dir, old_dir);
4128
4129 old_dentry = lookup_hash(&oldnd);
4130 error = PTR_ERR(old_dentry);
4131 if (IS_ERR(old_dentry))
4132 goto exit3;
4133 /* source must exist */
4134 error = -ENOENT;
4135 if (!old_dentry->d_inode)
4136 goto exit4;
4137 /* unless the source is a directory trailing slashes give -ENOTDIR */
4138 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4139 error = -ENOTDIR;
4140 if (oldnd.last.name[oldnd.last.len])
4141 goto exit4;
4142 if (newnd.last.name[newnd.last.len])
4143 goto exit4;
4144 }
4145 /* source should not be ancestor of target */
4146 error = -EINVAL;
4147 if (old_dentry == trap)
4148 goto exit4;
4149 new_dentry = lookup_hash(&newnd);
4150 error = PTR_ERR(new_dentry);
4151 if (IS_ERR(new_dentry))
4152 goto exit4;
4153 /* target should not be an ancestor of source */
4154 error = -ENOTEMPTY;
4155 if (new_dentry == trap)
4156 goto exit5;
4157
4158 error = security_path_rename(&oldnd.path, old_dentry,
4159 &newnd.path, new_dentry);
4160 if (error)
4161 goto exit5;
4162 error = vfs_rename(old_dir->d_inode, old_dentry,
4163 new_dir->d_inode, new_dentry);
4164 exit5:
4165 dput(new_dentry);
4166 exit4:
4167 dput(old_dentry);
4168 exit3:
4169 unlock_rename(new_dir, old_dir);
4170 mnt_drop_write(oldnd.path.mnt);
4171 exit2:
4172 if (retry_estale(error, lookup_flags))
4173 should_retry = true;
4174 path_put(&newnd.path);
4175 putname(to);
4176 exit1:
4177 path_put(&oldnd.path);
4178 putname(from);
4179 if (should_retry) {
4180 should_retry = false;
4181 lookup_flags |= LOOKUP_REVAL;
4182 goto retry;
4183 }
4184 exit:
4185 return error;
4186 }
4187
4188 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4189 {
4190 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4191 }
4192
4193 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4194 {
4195 int len;
4196
4197 len = PTR_ERR(link);
4198 if (IS_ERR(link))
4199 goto out;
4200
4201 len = strlen(link);
4202 if (len > (unsigned) buflen)
4203 len = buflen;
4204 if (copy_to_user(buffer, link, len))
4205 len = -EFAULT;
4206 out:
4207 return len;
4208 }
4209
4210 /*
4211 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4212 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4213 * using) it for any given inode is up to filesystem.
4214 */
4215 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4216 {
4217 struct nameidata nd;
4218 void *cookie;
4219 int res;
4220
4221 nd.depth = 0;
4222 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4223 if (IS_ERR(cookie))
4224 return PTR_ERR(cookie);
4225
4226 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4227 if (dentry->d_inode->i_op->put_link)
4228 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4229 return res;
4230 }
4231
4232 /* get the link contents into pagecache */
4233 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4234 {
4235 char *kaddr;
4236 struct page *page;
4237 struct address_space *mapping = dentry->d_inode->i_mapping;
4238 page = read_mapping_page(mapping, 0, NULL);
4239 if (IS_ERR(page))
4240 return (char*)page;
4241 *ppage = page;
4242 kaddr = kmap(page);
4243 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4244 return kaddr;
4245 }
4246
4247 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4248 {
4249 struct page *page = NULL;
4250 char *s = page_getlink(dentry, &page);
4251 int res = vfs_readlink(dentry,buffer,buflen,s);
4252 if (page) {
4253 kunmap(page);
4254 page_cache_release(page);
4255 }
4256 return res;
4257 }
4258
4259 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4260 {
4261 struct page *page = NULL;
4262 nd_set_link(nd, page_getlink(dentry, &page));
4263 return page;
4264 }
4265
4266 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4267 {
4268 struct page *page = cookie;
4269
4270 if (page) {
4271 kunmap(page);
4272 page_cache_release(page);
4273 }
4274 }
4275
4276 /*
4277 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4278 */
4279 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4280 {
4281 struct address_space *mapping = inode->i_mapping;
4282 struct page *page;
4283 void *fsdata;
4284 int err;
4285 char *kaddr;
4286 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4287 if (nofs)
4288 flags |= AOP_FLAG_NOFS;
4289
4290 retry:
4291 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4292 flags, &page, &fsdata);
4293 if (err)
4294 goto fail;
4295
4296 kaddr = kmap_atomic(page);
4297 memcpy(kaddr, symname, len-1);
4298 kunmap_atomic(kaddr);
4299
4300 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4301 page, fsdata);
4302 if (err < 0)
4303 goto fail;
4304 if (err < len-1)
4305 goto retry;
4306
4307 mark_inode_dirty(inode);
4308 return 0;
4309 fail:
4310 return err;
4311 }
4312
4313 int page_symlink(struct inode *inode, const char *symname, int len)
4314 {
4315 return __page_symlink(inode, symname, len,
4316 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4317 }
4318
4319 const struct inode_operations page_symlink_inode_operations = {
4320 .readlink = generic_readlink,
4321 .follow_link = page_follow_link_light,
4322 .put_link = page_put_link,
4323 };
4324
4325 EXPORT_SYMBOL(user_path_at);
4326 EXPORT_SYMBOL(follow_down_one);
4327 EXPORT_SYMBOL(follow_down);
4328 EXPORT_SYMBOL(follow_up);
4329 EXPORT_SYMBOL(get_write_access); /* nfsd */
4330 EXPORT_SYMBOL(lock_rename);
4331 EXPORT_SYMBOL(lookup_one_len);
4332 EXPORT_SYMBOL(page_follow_link_light);
4333 EXPORT_SYMBOL(page_put_link);
4334 EXPORT_SYMBOL(page_readlink);
4335 EXPORT_SYMBOL(__page_symlink);
4336 EXPORT_SYMBOL(page_symlink);
4337 EXPORT_SYMBOL(page_symlink_inode_operations);
4338 EXPORT_SYMBOL(kern_path);
4339 EXPORT_SYMBOL(vfs_path_lookup);
4340 EXPORT_SYMBOL(inode_permission);
4341 EXPORT_SYMBOL(unlock_rename);
4342 EXPORT_SYMBOL(vfs_create);
4343 EXPORT_SYMBOL(vfs_link);
4344 EXPORT_SYMBOL(vfs_mkdir);
4345 EXPORT_SYMBOL(vfs_mknod);
4346 EXPORT_SYMBOL(generic_permission);
4347 EXPORT_SYMBOL(vfs_readlink);
4348 EXPORT_SYMBOL(vfs_rename);
4349 EXPORT_SYMBOL(vfs_rmdir);
4350 EXPORT_SYMBOL(vfs_symlink);
4351 EXPORT_SYMBOL(vfs_unlink);
4352 EXPORT_SYMBOL(dentry_unhash);
4353 EXPORT_SYMBOL(generic_readlink);