]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
UBUNTU: [Config] arm64: snapdragon: DRM_MSM=m
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
385
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
390 }
391 return generic_permission(inode, mask);
392 }
393
394 /**
395 * __inode_permission - Check for access rights to a given inode
396 * @inode: Inode to check permission on
397 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398 *
399 * Check for read/write/execute permissions on an inode.
400 *
401 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402 *
403 * This does not check for a read-only file system. You probably want
404 * inode_permission().
405 */
406 int __inode_permission(struct inode *inode, int mask)
407 {
408 int retval;
409
410 if (unlikely(mask & MAY_WRITE)) {
411 /*
412 * Nobody gets write access to an immutable file.
413 */
414 if (IS_IMMUTABLE(inode))
415 return -EPERM;
416
417 /*
418 * Updating mtime will likely cause i_uid and i_gid to be
419 * written back improperly if their true value is unknown
420 * to the vfs.
421 */
422 if (HAS_UNMAPPED_ID(inode))
423 return -EACCES;
424 }
425
426 retval = do_inode_permission(inode, mask);
427 if (retval)
428 return retval;
429
430 retval = devcgroup_inode_permission(inode, mask);
431 if (retval)
432 return retval;
433
434 return security_inode_permission(inode, mask);
435 }
436 EXPORT_SYMBOL(__inode_permission);
437
438 /**
439 * sb_permission - Check superblock-level permissions
440 * @sb: Superblock of inode to check permission on
441 * @inode: Inode to check permission on
442 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443 *
444 * Separate out file-system wide checks from inode-specific permission checks.
445 */
446 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 {
448 if (unlikely(mask & MAY_WRITE)) {
449 umode_t mode = inode->i_mode;
450
451 /* Nobody gets write access to a read-only fs. */
452 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453 return -EROFS;
454 }
455 return 0;
456 }
457
458 /**
459 * inode_permission - Check for access rights to a given inode
460 * @inode: Inode to check permission on
461 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462 *
463 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
464 * this, letting us set arbitrary permissions for filesystem access without
465 * changing the "normal" UIDs which are used for other things.
466 *
467 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468 */
469 int inode_permission(struct inode *inode, int mask)
470 {
471 int retval;
472
473 retval = sb_permission(inode->i_sb, inode, mask);
474 if (retval)
475 return retval;
476 return __inode_permission(inode, mask);
477 }
478 EXPORT_SYMBOL(inode_permission);
479
480 /**
481 * path_get - get a reference to a path
482 * @path: path to get the reference to
483 *
484 * Given a path increment the reference count to the dentry and the vfsmount.
485 */
486 void path_get(const struct path *path)
487 {
488 mntget(path->mnt);
489 dget(path->dentry);
490 }
491 EXPORT_SYMBOL(path_get);
492
493 /**
494 * path_put - put a reference to a path
495 * @path: path to put the reference to
496 *
497 * Given a path decrement the reference count to the dentry and the vfsmount.
498 */
499 void path_put(const struct path *path)
500 {
501 dput(path->dentry);
502 mntput(path->mnt);
503 }
504 EXPORT_SYMBOL(path_put);
505
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508 struct path path;
509 struct qstr last;
510 struct path root;
511 struct inode *inode; /* path.dentry.d_inode */
512 unsigned int flags;
513 unsigned seq, m_seq;
514 int last_type;
515 unsigned depth;
516 int total_link_count;
517 struct saved {
518 struct path link;
519 struct delayed_call done;
520 const char *name;
521 unsigned seq;
522 } *stack, internal[EMBEDDED_LEVELS];
523 struct filename *name;
524 struct nameidata *saved;
525 struct inode *link_inode;
526 unsigned root_seq;
527 int dfd;
528 } __randomize_layout;
529
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532 struct nameidata *old = current->nameidata;
533 p->stack = p->internal;
534 p->dfd = dfd;
535 p->name = name;
536 p->total_link_count = old ? old->total_link_count : 0;
537 p->saved = old;
538 current->nameidata = p;
539 }
540
541 static void restore_nameidata(void)
542 {
543 struct nameidata *now = current->nameidata, *old = now->saved;
544
545 current->nameidata = old;
546 if (old)
547 old->total_link_count = now->total_link_count;
548 if (now->stack != now->internal)
549 kfree(now->stack);
550 }
551
552 static int __nd_alloc_stack(struct nameidata *nd)
553 {
554 struct saved *p;
555
556 if (nd->flags & LOOKUP_RCU) {
557 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558 GFP_ATOMIC);
559 if (unlikely(!p))
560 return -ECHILD;
561 } else {
562 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563 GFP_KERNEL);
564 if (unlikely(!p))
565 return -ENOMEM;
566 }
567 memcpy(p, nd->internal, sizeof(nd->internal));
568 nd->stack = p;
569 return 0;
570 }
571
572 /**
573 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574 * @path: nameidate to verify
575 *
576 * Rename can sometimes move a file or directory outside of a bind
577 * mount, path_connected allows those cases to be detected.
578 */
579 static bool path_connected(const struct path *path)
580 {
581 struct vfsmount *mnt = path->mnt;
582 struct super_block *sb = mnt->mnt_sb;
583
584 /* Bind mounts and multi-root filesystems can have disconnected paths */
585 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586 return true;
587
588 return is_subdir(path->dentry, mnt->mnt_root);
589 }
590
591 static inline int nd_alloc_stack(struct nameidata *nd)
592 {
593 if (likely(nd->depth != EMBEDDED_LEVELS))
594 return 0;
595 if (likely(nd->stack != nd->internal))
596 return 0;
597 return __nd_alloc_stack(nd);
598 }
599
600 static void drop_links(struct nameidata *nd)
601 {
602 int i = nd->depth;
603 while (i--) {
604 struct saved *last = nd->stack + i;
605 do_delayed_call(&last->done);
606 clear_delayed_call(&last->done);
607 }
608 }
609
610 static void terminate_walk(struct nameidata *nd)
611 {
612 drop_links(nd);
613 if (!(nd->flags & LOOKUP_RCU)) {
614 int i;
615 path_put(&nd->path);
616 for (i = 0; i < nd->depth; i++)
617 path_put(&nd->stack[i].link);
618 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619 path_put(&nd->root);
620 nd->root.mnt = NULL;
621 }
622 } else {
623 nd->flags &= ~LOOKUP_RCU;
624 if (!(nd->flags & LOOKUP_ROOT))
625 nd->root.mnt = NULL;
626 rcu_read_unlock();
627 }
628 nd->depth = 0;
629 }
630
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633 struct path *path, unsigned seq)
634 {
635 int res = __legitimize_mnt(path->mnt, nd->m_seq);
636 if (unlikely(res)) {
637 if (res > 0)
638 path->mnt = NULL;
639 path->dentry = NULL;
640 return false;
641 }
642 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643 path->dentry = NULL;
644 return false;
645 }
646 return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 }
648
649 static bool legitimize_links(struct nameidata *nd)
650 {
651 int i;
652 for (i = 0; i < nd->depth; i++) {
653 struct saved *last = nd->stack + i;
654 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655 drop_links(nd);
656 nd->depth = i + 1;
657 return false;
658 }
659 }
660 return true;
661 }
662
663 /*
664 * Path walking has 2 modes, rcu-walk and ref-walk (see
665 * Documentation/filesystems/path-lookup.txt). In situations when we can't
666 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667 * normal reference counts on dentries and vfsmounts to transition to ref-walk
668 * mode. Refcounts are grabbed at the last known good point before rcu-walk
669 * got stuck, so ref-walk may continue from there. If this is not successful
670 * (eg. a seqcount has changed), then failure is returned and it's up to caller
671 * to restart the path walk from the beginning in ref-walk mode.
672 */
673
674 /**
675 * unlazy_walk - try to switch to ref-walk mode.
676 * @nd: nameidata pathwalk data
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path and nd->root
680 * for ref-walk mode.
681 * Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
685 static int unlazy_walk(struct nameidata *nd)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695 goto out1;
696 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
697 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698 goto out;
699 }
700 rcu_read_unlock();
701 BUG_ON(nd->inode != parent->d_inode);
702 return 0;
703
704 out2:
705 nd->path.mnt = NULL;
706 nd->path.dentry = NULL;
707 out1:
708 if (!(nd->flags & LOOKUP_ROOT))
709 nd->root.mnt = NULL;
710 out:
711 rcu_read_unlock();
712 return -ECHILD;
713 }
714
715 /**
716 * unlazy_child - try to switch to ref-walk mode.
717 * @nd: nameidata pathwalk data
718 * @dentry: child of nd->path.dentry
719 * @seq: seq number to check dentry against
720 * Returns: 0 on success, -ECHILD on failure
721 *
722 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
723 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
724 * @nd. Must be called from rcu-walk context.
725 * Nothing should touch nameidata between unlazy_child() failure and
726 * terminate_walk().
727 */
728 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
729 {
730 BUG_ON(!(nd->flags & LOOKUP_RCU));
731
732 nd->flags &= ~LOOKUP_RCU;
733 if (unlikely(!legitimize_links(nd)))
734 goto out2;
735 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
736 goto out2;
737 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738 goto out1;
739
740 /*
741 * We need to move both the parent and the dentry from the RCU domain
742 * to be properly refcounted. And the sequence number in the dentry
743 * validates *both* dentry counters, since we checked the sequence
744 * number of the parent after we got the child sequence number. So we
745 * know the parent must still be valid if the child sequence number is
746 */
747 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
748 goto out;
749 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
750 rcu_read_unlock();
751 dput(dentry);
752 goto drop_root_mnt;
753 }
754 /*
755 * Sequence counts matched. Now make sure that the root is
756 * still valid and get it if required.
757 */
758 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
759 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764 }
765
766 rcu_read_unlock();
767 return 0;
768
769 out2:
770 nd->path.mnt = NULL;
771 out1:
772 nd->path.dentry = NULL;
773 out:
774 rcu_read_unlock();
775 drop_root_mnt:
776 if (!(nd->flags & LOOKUP_ROOT))
777 nd->root.mnt = NULL;
778 return -ECHILD;
779 }
780
781 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
782 {
783 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
784 return dentry->d_op->d_revalidate(dentry, flags);
785 else
786 return 1;
787 }
788
789 /**
790 * complete_walk - successful completion of path walk
791 * @nd: pointer nameidata
792 *
793 * If we had been in RCU mode, drop out of it and legitimize nd->path.
794 * Revalidate the final result, unless we'd already done that during
795 * the path walk or the filesystem doesn't ask for it. Return 0 on
796 * success, -error on failure. In case of failure caller does not
797 * need to drop nd->path.
798 */
799 static int complete_walk(struct nameidata *nd)
800 {
801 struct dentry *dentry = nd->path.dentry;
802 int status;
803
804 if (nd->flags & LOOKUP_RCU) {
805 if (!(nd->flags & LOOKUP_ROOT))
806 nd->root.mnt = NULL;
807 if (unlikely(unlazy_walk(nd)))
808 return -ECHILD;
809 }
810
811 if (likely(!(nd->flags & LOOKUP_JUMPED)))
812 return 0;
813
814 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
815 return 0;
816
817 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
818 if (status > 0)
819 return 0;
820
821 if (!status)
822 status = -ESTALE;
823
824 return status;
825 }
826
827 static void set_root(struct nameidata *nd)
828 {
829 struct fs_struct *fs = current->fs;
830
831 if (nd->flags & LOOKUP_RCU) {
832 unsigned seq;
833
834 do {
835 seq = read_seqcount_begin(&fs->seq);
836 nd->root = fs->root;
837 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
838 } while (read_seqcount_retry(&fs->seq, seq));
839 } else {
840 get_fs_root(fs, &nd->root);
841 }
842 }
843
844 static void path_put_conditional(struct path *path, struct nameidata *nd)
845 {
846 dput(path->dentry);
847 if (path->mnt != nd->path.mnt)
848 mntput(path->mnt);
849 }
850
851 static inline void path_to_nameidata(const struct path *path,
852 struct nameidata *nd)
853 {
854 if (!(nd->flags & LOOKUP_RCU)) {
855 dput(nd->path.dentry);
856 if (nd->path.mnt != path->mnt)
857 mntput(nd->path.mnt);
858 }
859 nd->path.mnt = path->mnt;
860 nd->path.dentry = path->dentry;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (nd->flags & LOOKUP_RCU) {
866 struct dentry *d;
867 nd->path = nd->root;
868 d = nd->path.dentry;
869 nd->inode = d->d_inode;
870 nd->seq = nd->root_seq;
871 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
872 return -ECHILD;
873 } else {
874 path_put(&nd->path);
875 nd->path = nd->root;
876 path_get(&nd->path);
877 nd->inode = nd->path.dentry->d_inode;
878 }
879 nd->flags |= LOOKUP_JUMPED;
880 return 0;
881 }
882
883 /*
884 * Helper to directly jump to a known parsed path from ->get_link,
885 * caller must have taken a reference to path beforehand.
886 */
887 void nd_jump_link(struct path *path)
888 {
889 struct nameidata *nd = current->nameidata;
890 path_put(&nd->path);
891
892 nd->path = *path;
893 nd->inode = nd->path.dentry->d_inode;
894 nd->flags |= LOOKUP_JUMPED;
895 }
896
897 static inline void put_link(struct nameidata *nd)
898 {
899 struct saved *last = nd->stack + --nd->depth;
900 do_delayed_call(&last->done);
901 if (!(nd->flags & LOOKUP_RCU))
902 path_put(&last->link);
903 }
904
905 int sysctl_protected_symlinks __read_mostly = 1;
906 int sysctl_protected_hardlinks __read_mostly = 1;
907
908 /**
909 * may_follow_link - Check symlink following for unsafe situations
910 * @nd: nameidata pathwalk data
911 *
912 * In the case of the sysctl_protected_symlinks sysctl being enabled,
913 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
914 * in a sticky world-writable directory. This is to protect privileged
915 * processes from failing races against path names that may change out
916 * from under them by way of other users creating malicious symlinks.
917 * It will permit symlinks to be followed only when outside a sticky
918 * world-writable directory, or when the uid of the symlink and follower
919 * match, or when the directory owner matches the symlink's owner.
920 *
921 * Returns 0 if following the symlink is allowed, -ve on error.
922 */
923 static inline int may_follow_link(struct nameidata *nd)
924 {
925 const struct inode *inode;
926 const struct inode *parent;
927 kuid_t puid;
928
929 if (!sysctl_protected_symlinks)
930 return 0;
931
932 /* Allowed if owner and follower match. */
933 inode = nd->link_inode;
934 if (uid_eq(current_cred()->fsuid, inode->i_uid))
935 return 0;
936
937 /* Allowed if parent directory not sticky and world-writable. */
938 parent = nd->inode;
939 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
940 return 0;
941
942 /* Allowed if parent directory and link owner match. */
943 puid = parent->i_uid;
944 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
945 return 0;
946
947 if (nd->flags & LOOKUP_RCU)
948 return -ECHILD;
949
950 audit_log_link_denied("follow_link", &nd->stack[0].link);
951 return -EACCES;
952 }
953
954 /**
955 * safe_hardlink_source - Check for safe hardlink conditions
956 * @inode: the source inode to hardlink from
957 *
958 * Return false if at least one of the following conditions:
959 * - inode is not a regular file
960 * - inode is setuid
961 * - inode is setgid and group-exec
962 * - access failure for read and write
963 *
964 * Otherwise returns true.
965 */
966 static bool safe_hardlink_source(struct inode *inode)
967 {
968 umode_t mode = inode->i_mode;
969
970 /* Special files should not get pinned to the filesystem. */
971 if (!S_ISREG(mode))
972 return false;
973
974 /* Setuid files should not get pinned to the filesystem. */
975 if (mode & S_ISUID)
976 return false;
977
978 /* Executable setgid files should not get pinned to the filesystem. */
979 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
980 return false;
981
982 /* Hardlinking to unreadable or unwritable sources is dangerous. */
983 if (inode_permission(inode, MAY_READ | MAY_WRITE))
984 return false;
985
986 return true;
987 }
988
989 /**
990 * may_linkat - Check permissions for creating a hardlink
991 * @link: the source to hardlink from
992 *
993 * Block hardlink when all of:
994 * - sysctl_protected_hardlinks enabled
995 * - fsuid does not match inode
996 * - hardlink source is unsafe (see safe_hardlink_source() above)
997 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
998 *
999 * Returns 0 if successful, -ve on error.
1000 */
1001 static int may_linkat(struct path *link)
1002 {
1003 struct inode *inode;
1004
1005 if (!sysctl_protected_hardlinks)
1006 return 0;
1007
1008 inode = link->dentry->d_inode;
1009
1010 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1011 * otherwise, it must be a safe source.
1012 */
1013 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1014 return 0;
1015
1016 audit_log_link_denied("linkat", link);
1017 return -EPERM;
1018 }
1019
1020 static __always_inline
1021 const char *get_link(struct nameidata *nd)
1022 {
1023 struct saved *last = nd->stack + nd->depth - 1;
1024 struct dentry *dentry = last->link.dentry;
1025 struct inode *inode = nd->link_inode;
1026 int error;
1027 const char *res;
1028
1029 if (!(nd->flags & LOOKUP_RCU)) {
1030 touch_atime(&last->link);
1031 cond_resched();
1032 } else if (atime_needs_update_rcu(&last->link, inode)) {
1033 if (unlikely(unlazy_walk(nd)))
1034 return ERR_PTR(-ECHILD);
1035 touch_atime(&last->link);
1036 }
1037
1038 error = security_inode_follow_link(dentry, inode,
1039 nd->flags & LOOKUP_RCU);
1040 if (unlikely(error))
1041 return ERR_PTR(error);
1042
1043 nd->last_type = LAST_BIND;
1044 res = inode->i_link;
1045 if (!res) {
1046 const char * (*get)(struct dentry *, struct inode *,
1047 struct delayed_call *);
1048 get = inode->i_op->get_link;
1049 if (nd->flags & LOOKUP_RCU) {
1050 res = get(NULL, inode, &last->done);
1051 if (res == ERR_PTR(-ECHILD)) {
1052 if (unlikely(unlazy_walk(nd)))
1053 return ERR_PTR(-ECHILD);
1054 res = get(dentry, inode, &last->done);
1055 }
1056 } else {
1057 res = get(dentry, inode, &last->done);
1058 }
1059 if (IS_ERR_OR_NULL(res))
1060 return res;
1061 }
1062 if (*res == '/') {
1063 if (!nd->root.mnt)
1064 set_root(nd);
1065 if (unlikely(nd_jump_root(nd)))
1066 return ERR_PTR(-ECHILD);
1067 while (unlikely(*++res == '/'))
1068 ;
1069 }
1070 if (!*res)
1071 res = NULL;
1072 return res;
1073 }
1074
1075 /*
1076 * follow_up - Find the mountpoint of path's vfsmount
1077 *
1078 * Given a path, find the mountpoint of its source file system.
1079 * Replace @path with the path of the mountpoint in the parent mount.
1080 * Up is towards /.
1081 *
1082 * Return 1 if we went up a level and 0 if we were already at the
1083 * root.
1084 */
1085 int follow_up(struct path *path)
1086 {
1087 struct mount *mnt = real_mount(path->mnt);
1088 struct mount *parent;
1089 struct dentry *mountpoint;
1090
1091 read_seqlock_excl(&mount_lock);
1092 parent = mnt->mnt_parent;
1093 if (parent == mnt) {
1094 read_sequnlock_excl(&mount_lock);
1095 return 0;
1096 }
1097 mntget(&parent->mnt);
1098 mountpoint = dget(mnt->mnt_mountpoint);
1099 read_sequnlock_excl(&mount_lock);
1100 dput(path->dentry);
1101 path->dentry = mountpoint;
1102 mntput(path->mnt);
1103 path->mnt = &parent->mnt;
1104 return 1;
1105 }
1106 EXPORT_SYMBOL(follow_up);
1107
1108 /*
1109 * Perform an automount
1110 * - return -EISDIR to tell follow_managed() to stop and return the path we
1111 * were called with.
1112 */
1113 static int follow_automount(struct path *path, struct nameidata *nd,
1114 bool *need_mntput)
1115 {
1116 struct vfsmount *mnt;
1117 int err;
1118
1119 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1120 return -EREMOTE;
1121
1122 /* We don't want to mount if someone's just doing a stat -
1123 * unless they're stat'ing a directory and appended a '/' to
1124 * the name.
1125 *
1126 * We do, however, want to mount if someone wants to open or
1127 * create a file of any type under the mountpoint, wants to
1128 * traverse through the mountpoint or wants to open the
1129 * mounted directory. Also, autofs may mark negative dentries
1130 * as being automount points. These will need the attentions
1131 * of the daemon to instantiate them before they can be used.
1132 */
1133 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1134 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1135 path->dentry->d_inode)
1136 return -EISDIR;
1137
1138 nd->total_link_count++;
1139 if (nd->total_link_count >= 40)
1140 return -ELOOP;
1141
1142 mnt = path->dentry->d_op->d_automount(path);
1143 if (IS_ERR(mnt)) {
1144 /*
1145 * The filesystem is allowed to return -EISDIR here to indicate
1146 * it doesn't want to automount. For instance, autofs would do
1147 * this so that its userspace daemon can mount on this dentry.
1148 *
1149 * However, we can only permit this if it's a terminal point in
1150 * the path being looked up; if it wasn't then the remainder of
1151 * the path is inaccessible and we should say so.
1152 */
1153 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1154 return -EREMOTE;
1155 return PTR_ERR(mnt);
1156 }
1157
1158 if (!mnt) /* mount collision */
1159 return 0;
1160
1161 if (!*need_mntput) {
1162 /* lock_mount() may release path->mnt on error */
1163 mntget(path->mnt);
1164 *need_mntput = true;
1165 }
1166 err = finish_automount(mnt, path);
1167
1168 switch (err) {
1169 case -EBUSY:
1170 /* Someone else made a mount here whilst we were busy */
1171 return 0;
1172 case 0:
1173 path_put(path);
1174 path->mnt = mnt;
1175 path->dentry = dget(mnt->mnt_root);
1176 return 0;
1177 default:
1178 return err;
1179 }
1180
1181 }
1182
1183 /*
1184 * Handle a dentry that is managed in some way.
1185 * - Flagged for transit management (autofs)
1186 * - Flagged as mountpoint
1187 * - Flagged as automount point
1188 *
1189 * This may only be called in refwalk mode.
1190 *
1191 * Serialization is taken care of in namespace.c
1192 */
1193 static int follow_managed(struct path *path, struct nameidata *nd)
1194 {
1195 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1196 unsigned managed;
1197 bool need_mntput = false;
1198 int ret = 0;
1199
1200 /* Given that we're not holding a lock here, we retain the value in a
1201 * local variable for each dentry as we look at it so that we don't see
1202 * the components of that value change under us */
1203 while (managed = READ_ONCE(path->dentry->d_flags),
1204 managed &= DCACHE_MANAGED_DENTRY,
1205 unlikely(managed != 0)) {
1206 /* Allow the filesystem to manage the transit without i_mutex
1207 * being held. */
1208 if (managed & DCACHE_MANAGE_TRANSIT) {
1209 BUG_ON(!path->dentry->d_op);
1210 BUG_ON(!path->dentry->d_op->d_manage);
1211 ret = path->dentry->d_op->d_manage(path, false);
1212 if (ret < 0)
1213 break;
1214 }
1215
1216 /* Transit to a mounted filesystem. */
1217 if (managed & DCACHE_MOUNTED) {
1218 struct vfsmount *mounted = lookup_mnt(path);
1219 if (mounted) {
1220 dput(path->dentry);
1221 if (need_mntput)
1222 mntput(path->mnt);
1223 path->mnt = mounted;
1224 path->dentry = dget(mounted->mnt_root);
1225 need_mntput = true;
1226 continue;
1227 }
1228
1229 /* Something is mounted on this dentry in another
1230 * namespace and/or whatever was mounted there in this
1231 * namespace got unmounted before lookup_mnt() could
1232 * get it */
1233 }
1234
1235 /* Handle an automount point */
1236 if (managed & DCACHE_NEED_AUTOMOUNT) {
1237 ret = follow_automount(path, nd, &need_mntput);
1238 if (ret < 0)
1239 break;
1240 continue;
1241 }
1242
1243 /* We didn't change the current path point */
1244 break;
1245 }
1246
1247 if (need_mntput && path->mnt == mnt)
1248 mntput(path->mnt);
1249 if (ret == -EISDIR || !ret)
1250 ret = 1;
1251 if (need_mntput)
1252 nd->flags |= LOOKUP_JUMPED;
1253 if (unlikely(ret < 0))
1254 path_put_conditional(path, nd);
1255 return ret;
1256 }
1257
1258 int follow_down_one(struct path *path)
1259 {
1260 struct vfsmount *mounted;
1261
1262 mounted = lookup_mnt(path);
1263 if (mounted) {
1264 dput(path->dentry);
1265 mntput(path->mnt);
1266 path->mnt = mounted;
1267 path->dentry = dget(mounted->mnt_root);
1268 return 1;
1269 }
1270 return 0;
1271 }
1272 EXPORT_SYMBOL(follow_down_one);
1273
1274 static inline int managed_dentry_rcu(const struct path *path)
1275 {
1276 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1277 path->dentry->d_op->d_manage(path, true) : 0;
1278 }
1279
1280 /*
1281 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1282 * we meet a managed dentry that would need blocking.
1283 */
1284 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1285 struct inode **inode, unsigned *seqp)
1286 {
1287 for (;;) {
1288 struct mount *mounted;
1289 /*
1290 * Don't forget we might have a non-mountpoint managed dentry
1291 * that wants to block transit.
1292 */
1293 switch (managed_dentry_rcu(path)) {
1294 case -ECHILD:
1295 default:
1296 return false;
1297 case -EISDIR:
1298 return true;
1299 case 0:
1300 break;
1301 }
1302
1303 if (!d_mountpoint(path->dentry))
1304 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1305
1306 mounted = __lookup_mnt(path->mnt, path->dentry);
1307 if (!mounted)
1308 break;
1309 path->mnt = &mounted->mnt;
1310 path->dentry = mounted->mnt.mnt_root;
1311 nd->flags |= LOOKUP_JUMPED;
1312 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1313 /*
1314 * Update the inode too. We don't need to re-check the
1315 * dentry sequence number here after this d_inode read,
1316 * because a mount-point is always pinned.
1317 */
1318 *inode = path->dentry->d_inode;
1319 }
1320 return !read_seqretry(&mount_lock, nd->m_seq) &&
1321 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1322 }
1323
1324 static int follow_dotdot_rcu(struct nameidata *nd)
1325 {
1326 struct inode *inode = nd->inode;
1327
1328 while (1) {
1329 if (path_equal(&nd->path, &nd->root))
1330 break;
1331 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1332 struct dentry *old = nd->path.dentry;
1333 struct dentry *parent = old->d_parent;
1334 unsigned seq;
1335
1336 inode = parent->d_inode;
1337 seq = read_seqcount_begin(&parent->d_seq);
1338 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1339 return -ECHILD;
1340 nd->path.dentry = parent;
1341 nd->seq = seq;
1342 if (unlikely(!path_connected(&nd->path)))
1343 return -ENOENT;
1344 break;
1345 } else {
1346 struct mount *mnt = real_mount(nd->path.mnt);
1347 struct mount *mparent = mnt->mnt_parent;
1348 struct dentry *mountpoint = mnt->mnt_mountpoint;
1349 struct inode *inode2 = mountpoint->d_inode;
1350 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1351 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352 return -ECHILD;
1353 if (&mparent->mnt == nd->path.mnt)
1354 break;
1355 /* we know that mountpoint was pinned */
1356 nd->path.dentry = mountpoint;
1357 nd->path.mnt = &mparent->mnt;
1358 inode = inode2;
1359 nd->seq = seq;
1360 }
1361 }
1362 while (unlikely(d_mountpoint(nd->path.dentry))) {
1363 struct mount *mounted;
1364 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1365 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1366 return -ECHILD;
1367 if (!mounted)
1368 break;
1369 nd->path.mnt = &mounted->mnt;
1370 nd->path.dentry = mounted->mnt.mnt_root;
1371 inode = nd->path.dentry->d_inode;
1372 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1373 }
1374 nd->inode = inode;
1375 return 0;
1376 }
1377
1378 /*
1379 * Follow down to the covering mount currently visible to userspace. At each
1380 * point, the filesystem owning that dentry may be queried as to whether the
1381 * caller is permitted to proceed or not.
1382 */
1383 int follow_down(struct path *path)
1384 {
1385 unsigned managed;
1386 int ret;
1387
1388 while (managed = READ_ONCE(path->dentry->d_flags),
1389 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1390 /* Allow the filesystem to manage the transit without i_mutex
1391 * being held.
1392 *
1393 * We indicate to the filesystem if someone is trying to mount
1394 * something here. This gives autofs the chance to deny anyone
1395 * other than its daemon the right to mount on its
1396 * superstructure.
1397 *
1398 * The filesystem may sleep at this point.
1399 */
1400 if (managed & DCACHE_MANAGE_TRANSIT) {
1401 BUG_ON(!path->dentry->d_op);
1402 BUG_ON(!path->dentry->d_op->d_manage);
1403 ret = path->dentry->d_op->d_manage(path, false);
1404 if (ret < 0)
1405 return ret == -EISDIR ? 0 : ret;
1406 }
1407
1408 /* Transit to a mounted filesystem. */
1409 if (managed & DCACHE_MOUNTED) {
1410 struct vfsmount *mounted = lookup_mnt(path);
1411 if (!mounted)
1412 break;
1413 dput(path->dentry);
1414 mntput(path->mnt);
1415 path->mnt = mounted;
1416 path->dentry = dget(mounted->mnt_root);
1417 continue;
1418 }
1419
1420 /* Don't handle automount points here */
1421 break;
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(follow_down);
1426
1427 /*
1428 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1429 */
1430 static void follow_mount(struct path *path)
1431 {
1432 while (d_mountpoint(path->dentry)) {
1433 struct vfsmount *mounted = lookup_mnt(path);
1434 if (!mounted)
1435 break;
1436 dput(path->dentry);
1437 mntput(path->mnt);
1438 path->mnt = mounted;
1439 path->dentry = dget(mounted->mnt_root);
1440 }
1441 }
1442
1443 static int path_parent_directory(struct path *path)
1444 {
1445 struct dentry *old = path->dentry;
1446 /* rare case of legitimate dget_parent()... */
1447 path->dentry = dget_parent(path->dentry);
1448 dput(old);
1449 if (unlikely(!path_connected(path)))
1450 return -ENOENT;
1451 return 0;
1452 }
1453
1454 static int follow_dotdot(struct nameidata *nd)
1455 {
1456 while(1) {
1457 if (nd->path.dentry == nd->root.dentry &&
1458 nd->path.mnt == nd->root.mnt) {
1459 break;
1460 }
1461 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1462 int ret = path_parent_directory(&nd->path);
1463 if (ret)
1464 return ret;
1465 break;
1466 }
1467 if (!follow_up(&nd->path))
1468 break;
1469 }
1470 follow_mount(&nd->path);
1471 nd->inode = nd->path.dentry->d_inode;
1472 return 0;
1473 }
1474
1475 /*
1476 * This looks up the name in dcache and possibly revalidates the found dentry.
1477 * NULL is returned if the dentry does not exist in the cache.
1478 */
1479 static struct dentry *lookup_dcache(const struct qstr *name,
1480 struct dentry *dir,
1481 unsigned int flags)
1482 {
1483 struct dentry *dentry = d_lookup(dir, name);
1484 if (dentry) {
1485 int error = d_revalidate(dentry, flags);
1486 if (unlikely(error <= 0)) {
1487 if (!error)
1488 d_invalidate(dentry);
1489 dput(dentry);
1490 return ERR_PTR(error);
1491 }
1492 }
1493 return dentry;
1494 }
1495
1496 /*
1497 * Call i_op->lookup on the dentry. The dentry must be negative and
1498 * unhashed.
1499 *
1500 * dir->d_inode->i_mutex must be held
1501 */
1502 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1503 unsigned int flags)
1504 {
1505 struct dentry *old;
1506
1507 /* Don't create child dentry for a dead directory. */
1508 if (unlikely(IS_DEADDIR(dir))) {
1509 dput(dentry);
1510 return ERR_PTR(-ENOENT);
1511 }
1512
1513 old = dir->i_op->lookup(dir, dentry, flags);
1514 if (unlikely(old)) {
1515 dput(dentry);
1516 dentry = old;
1517 }
1518 return dentry;
1519 }
1520
1521 static struct dentry *__lookup_hash(const struct qstr *name,
1522 struct dentry *base, unsigned int flags)
1523 {
1524 struct dentry *dentry = lookup_dcache(name, base, flags);
1525
1526 if (dentry)
1527 return dentry;
1528
1529 dentry = d_alloc(base, name);
1530 if (unlikely(!dentry))
1531 return ERR_PTR(-ENOMEM);
1532
1533 return lookup_real(base->d_inode, dentry, flags);
1534 }
1535
1536 static int lookup_fast(struct nameidata *nd,
1537 struct path *path, struct inode **inode,
1538 unsigned *seqp)
1539 {
1540 struct vfsmount *mnt = nd->path.mnt;
1541 struct dentry *dentry, *parent = nd->path.dentry;
1542 int status = 1;
1543 int err;
1544
1545 /*
1546 * Rename seqlock is not required here because in the off chance
1547 * of a false negative due to a concurrent rename, the caller is
1548 * going to fall back to non-racy lookup.
1549 */
1550 if (nd->flags & LOOKUP_RCU) {
1551 unsigned seq;
1552 bool negative;
1553 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1554 if (unlikely(!dentry)) {
1555 if (unlazy_walk(nd))
1556 return -ECHILD;
1557 return 0;
1558 }
1559
1560 /*
1561 * This sequence count validates that the inode matches
1562 * the dentry name information from lookup.
1563 */
1564 *inode = d_backing_inode(dentry);
1565 negative = d_is_negative(dentry);
1566 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1567 return -ECHILD;
1568
1569 /*
1570 * This sequence count validates that the parent had no
1571 * changes while we did the lookup of the dentry above.
1572 *
1573 * The memory barrier in read_seqcount_begin of child is
1574 * enough, we can use __read_seqcount_retry here.
1575 */
1576 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1577 return -ECHILD;
1578
1579 *seqp = seq;
1580 status = d_revalidate(dentry, nd->flags);
1581 if (likely(status > 0)) {
1582 /*
1583 * Note: do negative dentry check after revalidation in
1584 * case that drops it.
1585 */
1586 if (unlikely(negative))
1587 return -ENOENT;
1588 path->mnt = mnt;
1589 path->dentry = dentry;
1590 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1591 return 1;
1592 }
1593 if (unlazy_child(nd, dentry, seq))
1594 return -ECHILD;
1595 if (unlikely(status == -ECHILD))
1596 /* we'd been told to redo it in non-rcu mode */
1597 status = d_revalidate(dentry, nd->flags);
1598 } else {
1599 dentry = __d_lookup(parent, &nd->last);
1600 if (unlikely(!dentry))
1601 return 0;
1602 status = d_revalidate(dentry, nd->flags);
1603 }
1604 if (unlikely(status <= 0)) {
1605 if (!status)
1606 d_invalidate(dentry);
1607 dput(dentry);
1608 return status;
1609 }
1610 if (unlikely(d_is_negative(dentry))) {
1611 dput(dentry);
1612 return -ENOENT;
1613 }
1614
1615 path->mnt = mnt;
1616 path->dentry = dentry;
1617 err = follow_managed(path, nd);
1618 if (likely(err > 0))
1619 *inode = d_backing_inode(path->dentry);
1620 return err;
1621 }
1622
1623 /* Fast lookup failed, do it the slow way */
1624 static struct dentry *lookup_slow(const struct qstr *name,
1625 struct dentry *dir,
1626 unsigned int flags)
1627 {
1628 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1629 struct inode *inode = dir->d_inode;
1630 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1631
1632 inode_lock_shared(inode);
1633 /* Don't go there if it's already dead */
1634 if (unlikely(IS_DEADDIR(inode)))
1635 goto out;
1636 again:
1637 dentry = d_alloc_parallel(dir, name, &wq);
1638 if (IS_ERR(dentry))
1639 goto out;
1640 if (unlikely(!d_in_lookup(dentry))) {
1641 if (!(flags & LOOKUP_NO_REVAL)) {
1642 int error = d_revalidate(dentry, flags);
1643 if (unlikely(error <= 0)) {
1644 if (!error) {
1645 d_invalidate(dentry);
1646 dput(dentry);
1647 goto again;
1648 }
1649 dput(dentry);
1650 dentry = ERR_PTR(error);
1651 }
1652 }
1653 } else {
1654 old = inode->i_op->lookup(inode, dentry, flags);
1655 d_lookup_done(dentry);
1656 if (unlikely(old)) {
1657 dput(dentry);
1658 dentry = old;
1659 }
1660 }
1661 out:
1662 inode_unlock_shared(inode);
1663 return dentry;
1664 }
1665
1666 static inline int may_lookup(struct nameidata *nd)
1667 {
1668 if (nd->flags & LOOKUP_RCU) {
1669 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1670 if (err != -ECHILD)
1671 return err;
1672 if (unlazy_walk(nd))
1673 return -ECHILD;
1674 }
1675 return inode_permission(nd->inode, MAY_EXEC);
1676 }
1677
1678 static inline int handle_dots(struct nameidata *nd, int type)
1679 {
1680 if (type == LAST_DOTDOT) {
1681 if (!nd->root.mnt)
1682 set_root(nd);
1683 if (nd->flags & LOOKUP_RCU) {
1684 return follow_dotdot_rcu(nd);
1685 } else
1686 return follow_dotdot(nd);
1687 }
1688 return 0;
1689 }
1690
1691 static int pick_link(struct nameidata *nd, struct path *link,
1692 struct inode *inode, unsigned seq)
1693 {
1694 int error;
1695 struct saved *last;
1696 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1697 path_to_nameidata(link, nd);
1698 return -ELOOP;
1699 }
1700 if (!(nd->flags & LOOKUP_RCU)) {
1701 if (link->mnt == nd->path.mnt)
1702 mntget(link->mnt);
1703 }
1704 error = nd_alloc_stack(nd);
1705 if (unlikely(error)) {
1706 if (error == -ECHILD) {
1707 if (unlikely(!legitimize_path(nd, link, seq))) {
1708 drop_links(nd);
1709 nd->depth = 0;
1710 nd->flags &= ~LOOKUP_RCU;
1711 nd->path.mnt = NULL;
1712 nd->path.dentry = NULL;
1713 if (!(nd->flags & LOOKUP_ROOT))
1714 nd->root.mnt = NULL;
1715 rcu_read_unlock();
1716 } else if (likely(unlazy_walk(nd)) == 0)
1717 error = nd_alloc_stack(nd);
1718 }
1719 if (error) {
1720 path_put(link);
1721 return error;
1722 }
1723 }
1724
1725 last = nd->stack + nd->depth++;
1726 last->link = *link;
1727 clear_delayed_call(&last->done);
1728 nd->link_inode = inode;
1729 last->seq = seq;
1730 return 1;
1731 }
1732
1733 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1734
1735 /*
1736 * Do we need to follow links? We _really_ want to be able
1737 * to do this check without having to look at inode->i_op,
1738 * so we keep a cache of "no, this doesn't need follow_link"
1739 * for the common case.
1740 */
1741 static inline int step_into(struct nameidata *nd, struct path *path,
1742 int flags, struct inode *inode, unsigned seq)
1743 {
1744 if (!(flags & WALK_MORE) && nd->depth)
1745 put_link(nd);
1746 if (likely(!d_is_symlink(path->dentry)) ||
1747 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1748 /* not a symlink or should not follow */
1749 path_to_nameidata(path, nd);
1750 nd->inode = inode;
1751 nd->seq = seq;
1752 return 0;
1753 }
1754 /* make sure that d_is_symlink above matches inode */
1755 if (nd->flags & LOOKUP_RCU) {
1756 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1757 return -ECHILD;
1758 }
1759 return pick_link(nd, path, inode, seq);
1760 }
1761
1762 static int walk_component(struct nameidata *nd, int flags)
1763 {
1764 struct path path;
1765 struct inode *inode;
1766 unsigned seq;
1767 int err;
1768 /*
1769 * "." and ".." are special - ".." especially so because it has
1770 * to be able to know about the current root directory and
1771 * parent relationships.
1772 */
1773 if (unlikely(nd->last_type != LAST_NORM)) {
1774 err = handle_dots(nd, nd->last_type);
1775 if (!(flags & WALK_MORE) && nd->depth)
1776 put_link(nd);
1777 return err;
1778 }
1779 err = lookup_fast(nd, &path, &inode, &seq);
1780 if (unlikely(err <= 0)) {
1781 if (err < 0)
1782 return err;
1783 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1784 nd->flags);
1785 if (IS_ERR(path.dentry))
1786 return PTR_ERR(path.dentry);
1787
1788 path.mnt = nd->path.mnt;
1789 err = follow_managed(&path, nd);
1790 if (unlikely(err < 0))
1791 return err;
1792
1793 if (unlikely(d_is_negative(path.dentry))) {
1794 path_to_nameidata(&path, nd);
1795 return -ENOENT;
1796 }
1797
1798 seq = 0; /* we are already out of RCU mode */
1799 inode = d_backing_inode(path.dentry);
1800 }
1801
1802 return step_into(nd, &path, flags, inode, seq);
1803 }
1804
1805 /*
1806 * We can do the critical dentry name comparison and hashing
1807 * operations one word at a time, but we are limited to:
1808 *
1809 * - Architectures with fast unaligned word accesses. We could
1810 * do a "get_unaligned()" if this helps and is sufficiently
1811 * fast.
1812 *
1813 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1814 * do not trap on the (extremely unlikely) case of a page
1815 * crossing operation.
1816 *
1817 * - Furthermore, we need an efficient 64-bit compile for the
1818 * 64-bit case in order to generate the "number of bytes in
1819 * the final mask". Again, that could be replaced with a
1820 * efficient population count instruction or similar.
1821 */
1822 #ifdef CONFIG_DCACHE_WORD_ACCESS
1823
1824 #include <asm/word-at-a-time.h>
1825
1826 #ifdef HASH_MIX
1827
1828 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1829
1830 #elif defined(CONFIG_64BIT)
1831 /*
1832 * Register pressure in the mixing function is an issue, particularly
1833 * on 32-bit x86, but almost any function requires one state value and
1834 * one temporary. Instead, use a function designed for two state values
1835 * and no temporaries.
1836 *
1837 * This function cannot create a collision in only two iterations, so
1838 * we have two iterations to achieve avalanche. In those two iterations,
1839 * we have six layers of mixing, which is enough to spread one bit's
1840 * influence out to 2^6 = 64 state bits.
1841 *
1842 * Rotate constants are scored by considering either 64 one-bit input
1843 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1844 * probability of that delta causing a change to each of the 128 output
1845 * bits, using a sample of random initial states.
1846 *
1847 * The Shannon entropy of the computed probabilities is then summed
1848 * to produce a score. Ideally, any input change has a 50% chance of
1849 * toggling any given output bit.
1850 *
1851 * Mixing scores (in bits) for (12,45):
1852 * Input delta: 1-bit 2-bit
1853 * 1 round: 713.3 42542.6
1854 * 2 rounds: 2753.7 140389.8
1855 * 3 rounds: 5954.1 233458.2
1856 * 4 rounds: 7862.6 256672.2
1857 * Perfect: 8192 258048
1858 * (64*128) (64*63/2 * 128)
1859 */
1860 #define HASH_MIX(x, y, a) \
1861 ( x ^= (a), \
1862 y ^= x, x = rol64(x,12),\
1863 x += y, y = rol64(y,45),\
1864 y *= 9 )
1865
1866 /*
1867 * Fold two longs into one 32-bit hash value. This must be fast, but
1868 * latency isn't quite as critical, as there is a fair bit of additional
1869 * work done before the hash value is used.
1870 */
1871 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1872 {
1873 y ^= x * GOLDEN_RATIO_64;
1874 y *= GOLDEN_RATIO_64;
1875 return y >> 32;
1876 }
1877
1878 #else /* 32-bit case */
1879
1880 /*
1881 * Mixing scores (in bits) for (7,20):
1882 * Input delta: 1-bit 2-bit
1883 * 1 round: 330.3 9201.6
1884 * 2 rounds: 1246.4 25475.4
1885 * 3 rounds: 1907.1 31295.1
1886 * 4 rounds: 2042.3 31718.6
1887 * Perfect: 2048 31744
1888 * (32*64) (32*31/2 * 64)
1889 */
1890 #define HASH_MIX(x, y, a) \
1891 ( x ^= (a), \
1892 y ^= x, x = rol32(x, 7),\
1893 x += y, y = rol32(y,20),\
1894 y *= 9 )
1895
1896 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1897 {
1898 /* Use arch-optimized multiply if one exists */
1899 return __hash_32(y ^ __hash_32(x));
1900 }
1901
1902 #endif
1903
1904 /*
1905 * Return the hash of a string of known length. This is carfully
1906 * designed to match hash_name(), which is the more critical function.
1907 * In particular, we must end by hashing a final word containing 0..7
1908 * payload bytes, to match the way that hash_name() iterates until it
1909 * finds the delimiter after the name.
1910 */
1911 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1912 {
1913 unsigned long a, x = 0, y = (unsigned long)salt;
1914
1915 for (;;) {
1916 if (!len)
1917 goto done;
1918 a = load_unaligned_zeropad(name);
1919 if (len < sizeof(unsigned long))
1920 break;
1921 HASH_MIX(x, y, a);
1922 name += sizeof(unsigned long);
1923 len -= sizeof(unsigned long);
1924 }
1925 x ^= a & bytemask_from_count(len);
1926 done:
1927 return fold_hash(x, y);
1928 }
1929 EXPORT_SYMBOL(full_name_hash);
1930
1931 /* Return the "hash_len" (hash and length) of a null-terminated string */
1932 u64 hashlen_string(const void *salt, const char *name)
1933 {
1934 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1935 unsigned long adata, mask, len;
1936 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1937
1938 len = 0;
1939 goto inside;
1940
1941 do {
1942 HASH_MIX(x, y, a);
1943 len += sizeof(unsigned long);
1944 inside:
1945 a = load_unaligned_zeropad(name+len);
1946 } while (!has_zero(a, &adata, &constants));
1947
1948 adata = prep_zero_mask(a, adata, &constants);
1949 mask = create_zero_mask(adata);
1950 x ^= a & zero_bytemask(mask);
1951
1952 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1953 }
1954 EXPORT_SYMBOL(hashlen_string);
1955
1956 /*
1957 * Calculate the length and hash of the path component, and
1958 * return the "hash_len" as the result.
1959 */
1960 static inline u64 hash_name(const void *salt, const char *name)
1961 {
1962 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1963 unsigned long adata, bdata, mask, len;
1964 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1965
1966 len = 0;
1967 goto inside;
1968
1969 do {
1970 HASH_MIX(x, y, a);
1971 len += sizeof(unsigned long);
1972 inside:
1973 a = load_unaligned_zeropad(name+len);
1974 b = a ^ REPEAT_BYTE('/');
1975 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1976
1977 adata = prep_zero_mask(a, adata, &constants);
1978 bdata = prep_zero_mask(b, bdata, &constants);
1979 mask = create_zero_mask(adata | bdata);
1980 x ^= a & zero_bytemask(mask);
1981
1982 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1983 }
1984
1985 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1986
1987 /* Return the hash of a string of known length */
1988 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1989 {
1990 unsigned long hash = init_name_hash(salt);
1991 while (len--)
1992 hash = partial_name_hash((unsigned char)*name++, hash);
1993 return end_name_hash(hash);
1994 }
1995 EXPORT_SYMBOL(full_name_hash);
1996
1997 /* Return the "hash_len" (hash and length) of a null-terminated string */
1998 u64 hashlen_string(const void *salt, const char *name)
1999 {
2000 unsigned long hash = init_name_hash(salt);
2001 unsigned long len = 0, c;
2002
2003 c = (unsigned char)*name;
2004 while (c) {
2005 len++;
2006 hash = partial_name_hash(c, hash);
2007 c = (unsigned char)name[len];
2008 }
2009 return hashlen_create(end_name_hash(hash), len);
2010 }
2011 EXPORT_SYMBOL(hashlen_string);
2012
2013 /*
2014 * We know there's a real path component here of at least
2015 * one character.
2016 */
2017 static inline u64 hash_name(const void *salt, const char *name)
2018 {
2019 unsigned long hash = init_name_hash(salt);
2020 unsigned long len = 0, c;
2021
2022 c = (unsigned char)*name;
2023 do {
2024 len++;
2025 hash = partial_name_hash(c, hash);
2026 c = (unsigned char)name[len];
2027 } while (c && c != '/');
2028 return hashlen_create(end_name_hash(hash), len);
2029 }
2030
2031 #endif
2032
2033 /*
2034 * Name resolution.
2035 * This is the basic name resolution function, turning a pathname into
2036 * the final dentry. We expect 'base' to be positive and a directory.
2037 *
2038 * Returns 0 and nd will have valid dentry and mnt on success.
2039 * Returns error and drops reference to input namei data on failure.
2040 */
2041 static int link_path_walk(const char *name, struct nameidata *nd)
2042 {
2043 int err;
2044
2045 while (*name=='/')
2046 name++;
2047 if (!*name)
2048 return 0;
2049
2050 /* At this point we know we have a real path component. */
2051 for(;;) {
2052 u64 hash_len;
2053 int type;
2054
2055 err = may_lookup(nd);
2056 if (err)
2057 return err;
2058
2059 hash_len = hash_name(nd->path.dentry, name);
2060
2061 type = LAST_NORM;
2062 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2063 case 2:
2064 if (name[1] == '.') {
2065 type = LAST_DOTDOT;
2066 nd->flags |= LOOKUP_JUMPED;
2067 }
2068 break;
2069 case 1:
2070 type = LAST_DOT;
2071 }
2072 if (likely(type == LAST_NORM)) {
2073 struct dentry *parent = nd->path.dentry;
2074 nd->flags &= ~LOOKUP_JUMPED;
2075 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2076 struct qstr this = { { .hash_len = hash_len }, .name = name };
2077 err = parent->d_op->d_hash(parent, &this);
2078 if (err < 0)
2079 return err;
2080 hash_len = this.hash_len;
2081 name = this.name;
2082 }
2083 }
2084
2085 nd->last.hash_len = hash_len;
2086 nd->last.name = name;
2087 nd->last_type = type;
2088
2089 name += hashlen_len(hash_len);
2090 if (!*name)
2091 goto OK;
2092 /*
2093 * If it wasn't NUL, we know it was '/'. Skip that
2094 * slash, and continue until no more slashes.
2095 */
2096 do {
2097 name++;
2098 } while (unlikely(*name == '/'));
2099 if (unlikely(!*name)) {
2100 OK:
2101 /* pathname body, done */
2102 if (!nd->depth)
2103 return 0;
2104 name = nd->stack[nd->depth - 1].name;
2105 /* trailing symlink, done */
2106 if (!name)
2107 return 0;
2108 /* last component of nested symlink */
2109 err = walk_component(nd, WALK_FOLLOW);
2110 } else {
2111 /* not the last component */
2112 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2113 }
2114 if (err < 0)
2115 return err;
2116
2117 if (err) {
2118 const char *s = get_link(nd);
2119
2120 if (IS_ERR(s))
2121 return PTR_ERR(s);
2122 err = 0;
2123 if (unlikely(!s)) {
2124 /* jumped */
2125 put_link(nd);
2126 } else {
2127 nd->stack[nd->depth - 1].name = name;
2128 name = s;
2129 continue;
2130 }
2131 }
2132 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2133 if (nd->flags & LOOKUP_RCU) {
2134 if (unlazy_walk(nd))
2135 return -ECHILD;
2136 }
2137 return -ENOTDIR;
2138 }
2139 }
2140 }
2141
2142 static const char *path_init(struct nameidata *nd, unsigned flags)
2143 {
2144 const char *s = nd->name->name;
2145
2146 if (!*s)
2147 flags &= ~LOOKUP_RCU;
2148
2149 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2150 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2151 nd->depth = 0;
2152 if (flags & LOOKUP_ROOT) {
2153 struct dentry *root = nd->root.dentry;
2154 struct inode *inode = root->d_inode;
2155 if (*s && unlikely(!d_can_lookup(root)))
2156 return ERR_PTR(-ENOTDIR);
2157 nd->path = nd->root;
2158 nd->inode = inode;
2159 if (flags & LOOKUP_RCU) {
2160 rcu_read_lock();
2161 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2162 nd->root_seq = nd->seq;
2163 nd->m_seq = read_seqbegin(&mount_lock);
2164 } else {
2165 path_get(&nd->path);
2166 }
2167 return s;
2168 }
2169
2170 nd->root.mnt = NULL;
2171 nd->path.mnt = NULL;
2172 nd->path.dentry = NULL;
2173
2174 nd->m_seq = read_seqbegin(&mount_lock);
2175 if (*s == '/') {
2176 if (flags & LOOKUP_RCU)
2177 rcu_read_lock();
2178 set_root(nd);
2179 if (likely(!nd_jump_root(nd)))
2180 return s;
2181 nd->root.mnt = NULL;
2182 rcu_read_unlock();
2183 return ERR_PTR(-ECHILD);
2184 } else if (nd->dfd == AT_FDCWD) {
2185 if (flags & LOOKUP_RCU) {
2186 struct fs_struct *fs = current->fs;
2187 unsigned seq;
2188
2189 rcu_read_lock();
2190
2191 do {
2192 seq = read_seqcount_begin(&fs->seq);
2193 nd->path = fs->pwd;
2194 nd->inode = nd->path.dentry->d_inode;
2195 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2196 } while (read_seqcount_retry(&fs->seq, seq));
2197 } else {
2198 get_fs_pwd(current->fs, &nd->path);
2199 nd->inode = nd->path.dentry->d_inode;
2200 }
2201 return s;
2202 } else {
2203 /* Caller must check execute permissions on the starting path component */
2204 struct fd f = fdget_raw(nd->dfd);
2205 struct dentry *dentry;
2206
2207 if (!f.file)
2208 return ERR_PTR(-EBADF);
2209
2210 dentry = f.file->f_path.dentry;
2211
2212 if (*s) {
2213 if (!d_can_lookup(dentry)) {
2214 fdput(f);
2215 return ERR_PTR(-ENOTDIR);
2216 }
2217 }
2218
2219 nd->path = f.file->f_path;
2220 if (flags & LOOKUP_RCU) {
2221 rcu_read_lock();
2222 nd->inode = nd->path.dentry->d_inode;
2223 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2224 } else {
2225 path_get(&nd->path);
2226 nd->inode = nd->path.dentry->d_inode;
2227 }
2228 fdput(f);
2229 return s;
2230 }
2231 }
2232
2233 static const char *trailing_symlink(struct nameidata *nd)
2234 {
2235 const char *s;
2236 int error = may_follow_link(nd);
2237 if (unlikely(error))
2238 return ERR_PTR(error);
2239 nd->flags |= LOOKUP_PARENT;
2240 nd->stack[0].name = NULL;
2241 s = get_link(nd);
2242 return s ? s : "";
2243 }
2244
2245 static inline int lookup_last(struct nameidata *nd)
2246 {
2247 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2249
2250 nd->flags &= ~LOOKUP_PARENT;
2251 return walk_component(nd, 0);
2252 }
2253
2254 static int handle_lookup_down(struct nameidata *nd)
2255 {
2256 struct path path = nd->path;
2257 struct inode *inode = nd->inode;
2258 unsigned seq = nd->seq;
2259 int err;
2260
2261 if (nd->flags & LOOKUP_RCU) {
2262 /*
2263 * don't bother with unlazy_walk on failure - we are
2264 * at the very beginning of walk, so we lose nothing
2265 * if we simply redo everything in non-RCU mode
2266 */
2267 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2268 return -ECHILD;
2269 } else {
2270 dget(path.dentry);
2271 err = follow_managed(&path, nd);
2272 if (unlikely(err < 0))
2273 return err;
2274 inode = d_backing_inode(path.dentry);
2275 seq = 0;
2276 }
2277 path_to_nameidata(&path, nd);
2278 nd->inode = inode;
2279 nd->seq = seq;
2280 return 0;
2281 }
2282
2283 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2284 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2285 {
2286 const char *s = path_init(nd, flags);
2287 int err;
2288
2289 if (IS_ERR(s))
2290 return PTR_ERR(s);
2291
2292 if (unlikely(flags & LOOKUP_DOWN)) {
2293 err = handle_lookup_down(nd);
2294 if (unlikely(err < 0)) {
2295 terminate_walk(nd);
2296 return err;
2297 }
2298 }
2299
2300 while (!(err = link_path_walk(s, nd))
2301 && ((err = lookup_last(nd)) > 0)) {
2302 s = trailing_symlink(nd);
2303 if (IS_ERR(s)) {
2304 err = PTR_ERR(s);
2305 break;
2306 }
2307 }
2308 if (!err)
2309 err = complete_walk(nd);
2310
2311 if (!err && nd->flags & LOOKUP_DIRECTORY)
2312 if (!d_can_lookup(nd->path.dentry))
2313 err = -ENOTDIR;
2314 if (!err) {
2315 *path = nd->path;
2316 nd->path.mnt = NULL;
2317 nd->path.dentry = NULL;
2318 }
2319 terminate_walk(nd);
2320 return err;
2321 }
2322
2323 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324 struct path *path, struct path *root)
2325 {
2326 int retval;
2327 struct nameidata nd;
2328 if (IS_ERR(name))
2329 return PTR_ERR(name);
2330 if (unlikely(root)) {
2331 nd.root = *root;
2332 flags |= LOOKUP_ROOT;
2333 }
2334 set_nameidata(&nd, dfd, name);
2335 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336 if (unlikely(retval == -ECHILD))
2337 retval = path_lookupat(&nd, flags, path);
2338 if (unlikely(retval == -ESTALE))
2339 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2340
2341 if (likely(!retval))
2342 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2343 restore_nameidata();
2344 putname(name);
2345 return retval;
2346 }
2347
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350 struct path *parent)
2351 {
2352 const char *s = path_init(nd, flags);
2353 int err;
2354 if (IS_ERR(s))
2355 return PTR_ERR(s);
2356 err = link_path_walk(s, nd);
2357 if (!err)
2358 err = complete_walk(nd);
2359 if (!err) {
2360 *parent = nd->path;
2361 nd->path.mnt = NULL;
2362 nd->path.dentry = NULL;
2363 }
2364 terminate_walk(nd);
2365 return err;
2366 }
2367
2368 static struct filename *filename_parentat(int dfd, struct filename *name,
2369 unsigned int flags, struct path *parent,
2370 struct qstr *last, int *type)
2371 {
2372 int retval;
2373 struct nameidata nd;
2374
2375 if (IS_ERR(name))
2376 return name;
2377 set_nameidata(&nd, dfd, name);
2378 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379 if (unlikely(retval == -ECHILD))
2380 retval = path_parentat(&nd, flags, parent);
2381 if (unlikely(retval == -ESTALE))
2382 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383 if (likely(!retval)) {
2384 *last = nd.last;
2385 *type = nd.last_type;
2386 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2387 } else {
2388 putname(name);
2389 name = ERR_PTR(retval);
2390 }
2391 restore_nameidata();
2392 return name;
2393 }
2394
2395 /* does lookup, returns the object with parent locked */
2396 struct dentry *kern_path_locked(const char *name, struct path *path)
2397 {
2398 struct filename *filename;
2399 struct dentry *d;
2400 struct qstr last;
2401 int type;
2402
2403 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404 &last, &type);
2405 if (IS_ERR(filename))
2406 return ERR_CAST(filename);
2407 if (unlikely(type != LAST_NORM)) {
2408 path_put(path);
2409 putname(filename);
2410 return ERR_PTR(-EINVAL);
2411 }
2412 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413 d = __lookup_hash(&last, path->dentry, 0);
2414 if (IS_ERR(d)) {
2415 inode_unlock(path->dentry->d_inode);
2416 path_put(path);
2417 }
2418 putname(filename);
2419 return d;
2420 }
2421
2422 int kern_path(const char *name, unsigned int flags, struct path *path)
2423 {
2424 return filename_lookup(AT_FDCWD, getname_kernel(name),
2425 flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(kern_path);
2428
2429 /**
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry: pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438 const char *name, unsigned int flags,
2439 struct path *path)
2440 {
2441 struct path root = {.mnt = mnt, .dentry = dentry};
2442 /* the first argument of filename_lookup() is ignored with root */
2443 return filename_lookup(AT_FDCWD, getname_kernel(name),
2444 flags , path, &root);
2445 }
2446 EXPORT_SYMBOL(vfs_path_lookup);
2447
2448 /**
2449 * lookup_one_len - filesystem helper to lookup single pathname component
2450 * @name: pathname component to lookup
2451 * @base: base directory to lookup from
2452 * @len: maximum length @len should be interpreted to
2453 *
2454 * Note that this routine is purely a helper for filesystem usage and should
2455 * not be called by generic code.
2456 *
2457 * The caller must hold base->i_mutex.
2458 */
2459 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2460 {
2461 struct qstr this;
2462 unsigned int c;
2463 int err;
2464
2465 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2466
2467 this.name = name;
2468 this.len = len;
2469 this.hash = full_name_hash(base, name, len);
2470 if (!len)
2471 return ERR_PTR(-EACCES);
2472
2473 if (unlikely(name[0] == '.')) {
2474 if (len < 2 || (len == 2 && name[1] == '.'))
2475 return ERR_PTR(-EACCES);
2476 }
2477
2478 while (len--) {
2479 c = *(const unsigned char *)name++;
2480 if (c == '/' || c == '\0')
2481 return ERR_PTR(-EACCES);
2482 }
2483 /*
2484 * See if the low-level filesystem might want
2485 * to use its own hash..
2486 */
2487 if (base->d_flags & DCACHE_OP_HASH) {
2488 int err = base->d_op->d_hash(base, &this);
2489 if (err < 0)
2490 return ERR_PTR(err);
2491 }
2492
2493 err = inode_permission(base->d_inode, MAY_EXEC);
2494 if (err)
2495 return ERR_PTR(err);
2496
2497 return __lookup_hash(&this, base, 0);
2498 }
2499 EXPORT_SYMBOL(lookup_one_len);
2500
2501 /**
2502 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2503 * @name: pathname component to lookup
2504 * @base: base directory to lookup from
2505 * @len: maximum length @len should be interpreted to
2506 *
2507 * Note that this routine is purely a helper for filesystem usage and should
2508 * not be called by generic code.
2509 *
2510 * Unlike lookup_one_len, it should be called without the parent
2511 * i_mutex held, and will take the i_mutex itself if necessary.
2512 */
2513 struct dentry *lookup_one_len_unlocked(const char *name,
2514 struct dentry *base, int len)
2515 {
2516 struct qstr this;
2517 unsigned int c;
2518 int err;
2519 struct dentry *ret;
2520
2521 this.name = name;
2522 this.len = len;
2523 this.hash = full_name_hash(base, name, len);
2524 if (!len)
2525 return ERR_PTR(-EACCES);
2526
2527 if (unlikely(name[0] == '.')) {
2528 if (len < 2 || (len == 2 && name[1] == '.'))
2529 return ERR_PTR(-EACCES);
2530 }
2531
2532 while (len--) {
2533 c = *(const unsigned char *)name++;
2534 if (c == '/' || c == '\0')
2535 return ERR_PTR(-EACCES);
2536 }
2537 /*
2538 * See if the low-level filesystem might want
2539 * to use its own hash..
2540 */
2541 if (base->d_flags & DCACHE_OP_HASH) {
2542 int err = base->d_op->d_hash(base, &this);
2543 if (err < 0)
2544 return ERR_PTR(err);
2545 }
2546
2547 err = inode_permission(base->d_inode, MAY_EXEC);
2548 if (err)
2549 return ERR_PTR(err);
2550
2551 ret = lookup_dcache(&this, base, 0);
2552 if (!ret)
2553 ret = lookup_slow(&this, base, 0);
2554 return ret;
2555 }
2556 EXPORT_SYMBOL(lookup_one_len_unlocked);
2557
2558 #ifdef CONFIG_UNIX98_PTYS
2559 int path_pts(struct path *path)
2560 {
2561 /* Find something mounted on "pts" in the same directory as
2562 * the input path.
2563 */
2564 struct dentry *child, *parent;
2565 struct qstr this;
2566 int ret;
2567
2568 ret = path_parent_directory(path);
2569 if (ret)
2570 return ret;
2571
2572 parent = path->dentry;
2573 this.name = "pts";
2574 this.len = 3;
2575 child = d_hash_and_lookup(parent, &this);
2576 if (!child)
2577 return -ENOENT;
2578
2579 path->dentry = child;
2580 dput(parent);
2581 follow_mount(path);
2582 return 0;
2583 }
2584 #endif
2585
2586 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2587 struct path *path, int *empty)
2588 {
2589 return filename_lookup(dfd, getname_flags(name, flags, empty),
2590 flags, path, NULL);
2591 }
2592 EXPORT_SYMBOL(user_path_at_empty);
2593
2594 /**
2595 * mountpoint_last - look up last component for umount
2596 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2597 *
2598 * This is a special lookup_last function just for umount. In this case, we
2599 * need to resolve the path without doing any revalidation.
2600 *
2601 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2602 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2603 * in almost all cases, this lookup will be served out of the dcache. The only
2604 * cases where it won't are if nd->last refers to a symlink or the path is
2605 * bogus and it doesn't exist.
2606 *
2607 * Returns:
2608 * -error: if there was an error during lookup. This includes -ENOENT if the
2609 * lookup found a negative dentry.
2610 *
2611 * 0: if we successfully resolved nd->last and found it to not to be a
2612 * symlink that needs to be followed.
2613 *
2614 * 1: if we successfully resolved nd->last and found it to be a symlink
2615 * that needs to be followed.
2616 */
2617 static int
2618 mountpoint_last(struct nameidata *nd)
2619 {
2620 int error = 0;
2621 struct dentry *dir = nd->path.dentry;
2622 struct path path;
2623
2624 /* If we're in rcuwalk, drop out of it to handle last component */
2625 if (nd->flags & LOOKUP_RCU) {
2626 if (unlazy_walk(nd))
2627 return -ECHILD;
2628 }
2629
2630 nd->flags &= ~LOOKUP_PARENT;
2631
2632 if (unlikely(nd->last_type != LAST_NORM)) {
2633 error = handle_dots(nd, nd->last_type);
2634 if (error)
2635 return error;
2636 path.dentry = dget(nd->path.dentry);
2637 } else {
2638 path.dentry = d_lookup(dir, &nd->last);
2639 if (!path.dentry) {
2640 /*
2641 * No cached dentry. Mounted dentries are pinned in the
2642 * cache, so that means that this dentry is probably
2643 * a symlink or the path doesn't actually point
2644 * to a mounted dentry.
2645 */
2646 path.dentry = lookup_slow(&nd->last, dir,
2647 nd->flags | LOOKUP_NO_REVAL);
2648 if (IS_ERR(path.dentry))
2649 return PTR_ERR(path.dentry);
2650 }
2651 }
2652 if (d_is_negative(path.dentry)) {
2653 dput(path.dentry);
2654 return -ENOENT;
2655 }
2656 path.mnt = nd->path.mnt;
2657 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2658 }
2659
2660 /**
2661 * path_mountpoint - look up a path to be umounted
2662 * @nd: lookup context
2663 * @flags: lookup flags
2664 * @path: pointer to container for result
2665 *
2666 * Look up the given name, but don't attempt to revalidate the last component.
2667 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2668 */
2669 static int
2670 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2671 {
2672 const char *s = path_init(nd, flags);
2673 int err;
2674 if (IS_ERR(s))
2675 return PTR_ERR(s);
2676 while (!(err = link_path_walk(s, nd)) &&
2677 (err = mountpoint_last(nd)) > 0) {
2678 s = trailing_symlink(nd);
2679 if (IS_ERR(s)) {
2680 err = PTR_ERR(s);
2681 break;
2682 }
2683 }
2684 if (!err) {
2685 *path = nd->path;
2686 nd->path.mnt = NULL;
2687 nd->path.dentry = NULL;
2688 follow_mount(path);
2689 }
2690 terminate_walk(nd);
2691 return err;
2692 }
2693
2694 static int
2695 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2696 unsigned int flags)
2697 {
2698 struct nameidata nd;
2699 int error;
2700 if (IS_ERR(name))
2701 return PTR_ERR(name);
2702 set_nameidata(&nd, dfd, name);
2703 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2704 if (unlikely(error == -ECHILD))
2705 error = path_mountpoint(&nd, flags, path);
2706 if (unlikely(error == -ESTALE))
2707 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2708 if (likely(!error))
2709 audit_inode(name, path->dentry, 0);
2710 restore_nameidata();
2711 putname(name);
2712 return error;
2713 }
2714
2715 /**
2716 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2717 * @dfd: directory file descriptor
2718 * @name: pathname from userland
2719 * @flags: lookup flags
2720 * @path: pointer to container to hold result
2721 *
2722 * A umount is a special case for path walking. We're not actually interested
2723 * in the inode in this situation, and ESTALE errors can be a problem. We
2724 * simply want track down the dentry and vfsmount attached at the mountpoint
2725 * and avoid revalidating the last component.
2726 *
2727 * Returns 0 and populates "path" on success.
2728 */
2729 int
2730 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2731 struct path *path)
2732 {
2733 return filename_mountpoint(dfd, getname(name), path, flags);
2734 }
2735
2736 int
2737 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2738 unsigned int flags)
2739 {
2740 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2741 }
2742 EXPORT_SYMBOL(kern_path_mountpoint);
2743
2744 int __check_sticky(struct inode *dir, struct inode *inode)
2745 {
2746 kuid_t fsuid = current_fsuid();
2747
2748 if (uid_eq(inode->i_uid, fsuid))
2749 return 0;
2750 if (uid_eq(dir->i_uid, fsuid))
2751 return 0;
2752 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2753 }
2754 EXPORT_SYMBOL(__check_sticky);
2755
2756 /*
2757 * Check whether we can remove a link victim from directory dir, check
2758 * whether the type of victim is right.
2759 * 1. We can't do it if dir is read-only (done in permission())
2760 * 2. We should have write and exec permissions on dir
2761 * 3. We can't remove anything from append-only dir
2762 * 4. We can't do anything with immutable dir (done in permission())
2763 * 5. If the sticky bit on dir is set we should either
2764 * a. be owner of dir, or
2765 * b. be owner of victim, or
2766 * c. have CAP_FOWNER capability
2767 * 6. If the victim is append-only or immutable we can't do antyhing with
2768 * links pointing to it.
2769 * 7. If the victim has an unknown uid or gid we can't change the inode.
2770 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2771 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2772 * 10. We can't remove a root or mountpoint.
2773 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2774 * nfs_async_unlink().
2775 */
2776 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2777 {
2778 struct inode *inode = d_backing_inode(victim);
2779 int error;
2780
2781 if (d_is_negative(victim))
2782 return -ENOENT;
2783 BUG_ON(!inode);
2784
2785 BUG_ON(victim->d_parent->d_inode != dir);
2786 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787
2788 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789 if (error)
2790 return error;
2791 if (IS_APPEND(dir))
2792 return -EPERM;
2793
2794 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796 return -EPERM;
2797 if (isdir) {
2798 if (!d_is_dir(victim))
2799 return -ENOTDIR;
2800 if (IS_ROOT(victim))
2801 return -EBUSY;
2802 } else if (d_is_dir(victim))
2803 return -EISDIR;
2804 if (IS_DEADDIR(dir))
2805 return -ENOENT;
2806 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807 return -EBUSY;
2808 return 0;
2809 }
2810
2811 /* Check whether we can create an object with dentry child in directory
2812 * dir.
2813 * 1. We can't do it if child already exists (open has special treatment for
2814 * this case, but since we are inlined it's OK)
2815 * 2. We can't do it if dir is read-only (done in permission())
2816 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2817 * 4. We should have write and exec permissions on dir
2818 * 5. We can't do it if dir is immutable (done in permission())
2819 */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822 struct user_namespace *s_user_ns;
2823 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824 if (child->d_inode)
2825 return -EEXIST;
2826 if (IS_DEADDIR(dir))
2827 return -ENOENT;
2828 s_user_ns = dir->i_sb->s_user_ns;
2829 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830 !kgid_has_mapping(s_user_ns, current_fsgid()))
2831 return -EOVERFLOW;
2832 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833 }
2834
2835 /*
2836 * p1 and p2 should be directories on the same fs.
2837 */
2838 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840 struct dentry *p;
2841
2842 if (p1 == p2) {
2843 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844 return NULL;
2845 }
2846
2847 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848
2849 p = d_ancestor(p2, p1);
2850 if (p) {
2851 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853 return p;
2854 }
2855
2856 p = d_ancestor(p1, p2);
2857 if (p) {
2858 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860 return p;
2861 }
2862
2863 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865 return NULL;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868
2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871 inode_unlock(p1->d_inode);
2872 if (p1 != p2) {
2873 inode_unlock(p2->d_inode);
2874 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875 }
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878
2879 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880 bool want_excl)
2881 {
2882 int error = may_create(dir, dentry);
2883 if (error)
2884 return error;
2885
2886 if (!dir->i_op->create)
2887 return -EACCES; /* shouldn't it be ENOSYS? */
2888 mode &= S_IALLUGO;
2889 mode |= S_IFREG;
2890 error = security_inode_create(dir, dentry, mode);
2891 if (error)
2892 return error;
2893 error = dir->i_op->create(dir, dentry, mode, want_excl);
2894 if (!error)
2895 fsnotify_create(dir, dentry);
2896 return error;
2897 }
2898 EXPORT_SYMBOL(vfs_create);
2899
2900 bool may_open_dev(const struct path *path)
2901 {
2902 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2903 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2904 }
2905
2906 static int may_open(const struct path *path, int acc_mode, int flag)
2907 {
2908 struct dentry *dentry = path->dentry;
2909 struct inode *inode = dentry->d_inode;
2910 int error;
2911
2912 if (!inode)
2913 return -ENOENT;
2914
2915 switch (inode->i_mode & S_IFMT) {
2916 case S_IFLNK:
2917 return -ELOOP;
2918 case S_IFDIR:
2919 if (acc_mode & MAY_WRITE)
2920 return -EISDIR;
2921 break;
2922 case S_IFBLK:
2923 case S_IFCHR:
2924 if (!may_open_dev(path))
2925 return -EACCES;
2926 /*FALLTHRU*/
2927 case S_IFIFO:
2928 case S_IFSOCK:
2929 flag &= ~O_TRUNC;
2930 break;
2931 }
2932
2933 error = inode_permission(inode, MAY_OPEN | acc_mode);
2934 if (error)
2935 return error;
2936
2937 /*
2938 * An append-only file must be opened in append mode for writing.
2939 */
2940 if (IS_APPEND(inode)) {
2941 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2942 return -EPERM;
2943 if (flag & O_TRUNC)
2944 return -EPERM;
2945 }
2946
2947 /* O_NOATIME can only be set by the owner or superuser */
2948 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2949 return -EPERM;
2950
2951 return 0;
2952 }
2953
2954 static int handle_truncate(struct file *filp)
2955 {
2956 const struct path *path = &filp->f_path;
2957 struct inode *inode = path->dentry->d_inode;
2958 int error = get_write_access(inode);
2959 if (error)
2960 return error;
2961 /*
2962 * Refuse to truncate files with mandatory locks held on them.
2963 */
2964 error = locks_verify_locked(filp);
2965 if (!error)
2966 error = security_path_truncate(path);
2967 if (!error) {
2968 error = do_truncate(path->dentry, 0,
2969 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2970 filp);
2971 }
2972 put_write_access(inode);
2973 return error;
2974 }
2975
2976 static inline int open_to_namei_flags(int flag)
2977 {
2978 if ((flag & O_ACCMODE) == 3)
2979 flag--;
2980 return flag;
2981 }
2982
2983 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2984 {
2985 struct user_namespace *s_user_ns;
2986 int error = security_path_mknod(dir, dentry, mode, 0);
2987 if (error)
2988 return error;
2989
2990 s_user_ns = dir->dentry->d_sb->s_user_ns;
2991 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2992 !kgid_has_mapping(s_user_ns, current_fsgid()))
2993 return -EOVERFLOW;
2994
2995 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2996 if (error)
2997 return error;
2998
2999 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3000 }
3001
3002 /*
3003 * Attempt to atomically look up, create and open a file from a negative
3004 * dentry.
3005 *
3006 * Returns 0 if successful. The file will have been created and attached to
3007 * @file by the filesystem calling finish_open().
3008 *
3009 * Returns 1 if the file was looked up only or didn't need creating. The
3010 * caller will need to perform the open themselves. @path will have been
3011 * updated to point to the new dentry. This may be negative.
3012 *
3013 * Returns an error code otherwise.
3014 */
3015 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3016 struct path *path, struct file *file,
3017 const struct open_flags *op,
3018 int open_flag, umode_t mode,
3019 int *opened)
3020 {
3021 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3022 struct inode *dir = nd->path.dentry->d_inode;
3023 int error;
3024
3025 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3026 open_flag &= ~O_TRUNC;
3027
3028 if (nd->flags & LOOKUP_DIRECTORY)
3029 open_flag |= O_DIRECTORY;
3030
3031 file->f_path.dentry = DENTRY_NOT_SET;
3032 file->f_path.mnt = nd->path.mnt;
3033 error = dir->i_op->atomic_open(dir, dentry, file,
3034 open_to_namei_flags(open_flag),
3035 mode, opened);
3036 d_lookup_done(dentry);
3037 if (!error) {
3038 /*
3039 * We didn't have the inode before the open, so check open
3040 * permission here.
3041 */
3042 int acc_mode = op->acc_mode;
3043 if (*opened & FILE_CREATED) {
3044 WARN_ON(!(open_flag & O_CREAT));
3045 fsnotify_create(dir, dentry);
3046 acc_mode = 0;
3047 }
3048 error = may_open(&file->f_path, acc_mode, open_flag);
3049 if (WARN_ON(error > 0))
3050 error = -EINVAL;
3051 } else if (error > 0) {
3052 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3053 error = -EIO;
3054 } else {
3055 if (file->f_path.dentry) {
3056 dput(dentry);
3057 dentry = file->f_path.dentry;
3058 }
3059 if (*opened & FILE_CREATED)
3060 fsnotify_create(dir, dentry);
3061 if (unlikely(d_is_negative(dentry))) {
3062 error = -ENOENT;
3063 } else {
3064 path->dentry = dentry;
3065 path->mnt = nd->path.mnt;
3066 return 1;
3067 }
3068 }
3069 }
3070 dput(dentry);
3071 return error;
3072 }
3073
3074 /*
3075 * Look up and maybe create and open the last component.
3076 *
3077 * Must be called with i_mutex held on parent.
3078 *
3079 * Returns 0 if the file was successfully atomically created (if necessary) and
3080 * opened. In this case the file will be returned attached to @file.
3081 *
3082 * Returns 1 if the file was not completely opened at this time, though lookups
3083 * and creations will have been performed and the dentry returned in @path will
3084 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3085 * specified then a negative dentry may be returned.
3086 *
3087 * An error code is returned otherwise.
3088 *
3089 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3090 * cleared otherwise prior to returning.
3091 */
3092 static int lookup_open(struct nameidata *nd, struct path *path,
3093 struct file *file,
3094 const struct open_flags *op,
3095 bool got_write, int *opened)
3096 {
3097 struct dentry *dir = nd->path.dentry;
3098 struct inode *dir_inode = dir->d_inode;
3099 int open_flag = op->open_flag;
3100 struct dentry *dentry;
3101 int error, create_error = 0;
3102 umode_t mode = op->mode;
3103 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3104
3105 if (unlikely(IS_DEADDIR(dir_inode)))
3106 return -ENOENT;
3107
3108 *opened &= ~FILE_CREATED;
3109 dentry = d_lookup(dir, &nd->last);
3110 for (;;) {
3111 if (!dentry) {
3112 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3113 if (IS_ERR(dentry))
3114 return PTR_ERR(dentry);
3115 }
3116 if (d_in_lookup(dentry))
3117 break;
3118
3119 error = d_revalidate(dentry, nd->flags);
3120 if (likely(error > 0))
3121 break;
3122 if (error)
3123 goto out_dput;
3124 d_invalidate(dentry);
3125 dput(dentry);
3126 dentry = NULL;
3127 }
3128 if (dentry->d_inode) {
3129 /* Cached positive dentry: will open in f_op->open */
3130 goto out_no_open;
3131 }
3132
3133 /*
3134 * Checking write permission is tricky, bacuse we don't know if we are
3135 * going to actually need it: O_CREAT opens should work as long as the
3136 * file exists. But checking existence breaks atomicity. The trick is
3137 * to check access and if not granted clear O_CREAT from the flags.
3138 *
3139 * Another problem is returing the "right" error value (e.g. for an
3140 * O_EXCL open we want to return EEXIST not EROFS).
3141 */
3142 if (open_flag & O_CREAT) {
3143 if (!IS_POSIXACL(dir->d_inode))
3144 mode &= ~current_umask();
3145 if (unlikely(!got_write)) {
3146 create_error = -EROFS;
3147 open_flag &= ~O_CREAT;
3148 if (open_flag & (O_EXCL | O_TRUNC))
3149 goto no_open;
3150 /* No side effects, safe to clear O_CREAT */
3151 } else {
3152 create_error = may_o_create(&nd->path, dentry, mode);
3153 if (create_error) {
3154 open_flag &= ~O_CREAT;
3155 if (open_flag & O_EXCL)
3156 goto no_open;
3157 }
3158 }
3159 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3160 unlikely(!got_write)) {
3161 /*
3162 * No O_CREATE -> atomicity not a requirement -> fall
3163 * back to lookup + open
3164 */
3165 goto no_open;
3166 }
3167
3168 if (dir_inode->i_op->atomic_open) {
3169 error = atomic_open(nd, dentry, path, file, op, open_flag,
3170 mode, opened);
3171 if (unlikely(error == -ENOENT) && create_error)
3172 error = create_error;
3173 return error;
3174 }
3175
3176 no_open:
3177 if (d_in_lookup(dentry)) {
3178 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3179 nd->flags);
3180 d_lookup_done(dentry);
3181 if (unlikely(res)) {
3182 if (IS_ERR(res)) {
3183 error = PTR_ERR(res);
3184 goto out_dput;
3185 }
3186 dput(dentry);
3187 dentry = res;
3188 }
3189 }
3190
3191 /* Negative dentry, just create the file */
3192 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3193 *opened |= FILE_CREATED;
3194 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3195 if (!dir_inode->i_op->create) {
3196 error = -EACCES;
3197 goto out_dput;
3198 }
3199 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3200 open_flag & O_EXCL);
3201 if (error)
3202 goto out_dput;
3203 fsnotify_create(dir_inode, dentry);
3204 }
3205 if (unlikely(create_error) && !dentry->d_inode) {
3206 error = create_error;
3207 goto out_dput;
3208 }
3209 out_no_open:
3210 path->dentry = dentry;
3211 path->mnt = nd->path.mnt;
3212 return 1;
3213
3214 out_dput:
3215 dput(dentry);
3216 return error;
3217 }
3218
3219 /*
3220 * Handle the last step of open()
3221 */
3222 static int do_last(struct nameidata *nd,
3223 struct file *file, const struct open_flags *op,
3224 int *opened)
3225 {
3226 struct dentry *dir = nd->path.dentry;
3227 int open_flag = op->open_flag;
3228 bool will_truncate = (open_flag & O_TRUNC) != 0;
3229 bool got_write = false;
3230 int acc_mode = op->acc_mode;
3231 unsigned seq;
3232 struct inode *inode;
3233 struct path path;
3234 int error;
3235
3236 nd->flags &= ~LOOKUP_PARENT;
3237 nd->flags |= op->intent;
3238
3239 if (nd->last_type != LAST_NORM) {
3240 error = handle_dots(nd, nd->last_type);
3241 if (unlikely(error))
3242 return error;
3243 goto finish_open;
3244 }
3245
3246 if (!(open_flag & O_CREAT)) {
3247 if (nd->last.name[nd->last.len])
3248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3249 /* we _can_ be in RCU mode here */
3250 error = lookup_fast(nd, &path, &inode, &seq);
3251 if (likely(error > 0))
3252 goto finish_lookup;
3253
3254 if (error < 0)
3255 return error;
3256
3257 BUG_ON(nd->inode != dir->d_inode);
3258 BUG_ON(nd->flags & LOOKUP_RCU);
3259 } else {
3260 /* create side of things */
3261 /*
3262 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3263 * has been cleared when we got to the last component we are
3264 * about to look up
3265 */
3266 error = complete_walk(nd);
3267 if (error)
3268 return error;
3269
3270 audit_inode(nd->name, dir, LOOKUP_PARENT);
3271 /* trailing slashes? */
3272 if (unlikely(nd->last.name[nd->last.len]))
3273 return -EISDIR;
3274 }
3275
3276 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3277 error = mnt_want_write(nd->path.mnt);
3278 if (!error)
3279 got_write = true;
3280 /*
3281 * do _not_ fail yet - we might not need that or fail with
3282 * a different error; let lookup_open() decide; we'll be
3283 * dropping this one anyway.
3284 */
3285 }
3286 if (open_flag & O_CREAT)
3287 inode_lock(dir->d_inode);
3288 else
3289 inode_lock_shared(dir->d_inode);
3290 error = lookup_open(nd, &path, file, op, got_write, opened);
3291 if (open_flag & O_CREAT)
3292 inode_unlock(dir->d_inode);
3293 else
3294 inode_unlock_shared(dir->d_inode);
3295
3296 if (error <= 0) {
3297 if (error)
3298 goto out;
3299
3300 if ((*opened & FILE_CREATED) ||
3301 !S_ISREG(file_inode(file)->i_mode))
3302 will_truncate = false;
3303
3304 audit_inode(nd->name, file->f_path.dentry, 0);
3305 goto opened;
3306 }
3307
3308 if (*opened & FILE_CREATED) {
3309 /* Don't check for write permission, don't truncate */
3310 open_flag &= ~O_TRUNC;
3311 will_truncate = false;
3312 acc_mode = 0;
3313 path_to_nameidata(&path, nd);
3314 goto finish_open_created;
3315 }
3316
3317 /*
3318 * If atomic_open() acquired write access it is dropped now due to
3319 * possible mount and symlink following (this might be optimized away if
3320 * necessary...)
3321 */
3322 if (got_write) {
3323 mnt_drop_write(nd->path.mnt);
3324 got_write = false;
3325 }
3326
3327 error = follow_managed(&path, nd);
3328 if (unlikely(error < 0))
3329 return error;
3330
3331 if (unlikely(d_is_negative(path.dentry))) {
3332 path_to_nameidata(&path, nd);
3333 return -ENOENT;
3334 }
3335
3336 /*
3337 * create/update audit record if it already exists.
3338 */
3339 audit_inode(nd->name, path.dentry, 0);
3340
3341 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3342 path_to_nameidata(&path, nd);
3343 return -EEXIST;
3344 }
3345
3346 seq = 0; /* out of RCU mode, so the value doesn't matter */
3347 inode = d_backing_inode(path.dentry);
3348 finish_lookup:
3349 error = step_into(nd, &path, 0, inode, seq);
3350 if (unlikely(error))
3351 return error;
3352 finish_open:
3353 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3354 error = complete_walk(nd);
3355 if (error)
3356 return error;
3357 audit_inode(nd->name, nd->path.dentry, 0);
3358 error = -EISDIR;
3359 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3360 goto out;
3361 error = -ENOTDIR;
3362 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3363 goto out;
3364 if (!d_is_reg(nd->path.dentry))
3365 will_truncate = false;
3366
3367 if (will_truncate) {
3368 error = mnt_want_write(nd->path.mnt);
3369 if (error)
3370 goto out;
3371 got_write = true;
3372 }
3373 finish_open_created:
3374 error = may_open(&nd->path, acc_mode, open_flag);
3375 if (error)
3376 goto out;
3377 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3378 error = vfs_open(&nd->path, file, current_cred());
3379 if (error)
3380 goto out;
3381 *opened |= FILE_OPENED;
3382 opened:
3383 error = open_check_o_direct(file);
3384 if (!error)
3385 error = ima_file_check(file, op->acc_mode, *opened);
3386 if (!error && will_truncate)
3387 error = handle_truncate(file);
3388 out:
3389 if (unlikely(error) && (*opened & FILE_OPENED))
3390 fput(file);
3391 if (unlikely(error > 0)) {
3392 WARN_ON(1);
3393 error = -EINVAL;
3394 }
3395 if (got_write)
3396 mnt_drop_write(nd->path.mnt);
3397 return error;
3398 }
3399
3400 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3401 {
3402 struct dentry *child = NULL;
3403 struct inode *dir = dentry->d_inode;
3404 struct inode *inode;
3405 int error;
3406
3407 /* we want directory to be writable */
3408 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3409 if (error)
3410 goto out_err;
3411 error = -EOPNOTSUPP;
3412 if (!dir->i_op->tmpfile)
3413 goto out_err;
3414 error = -ENOMEM;
3415 child = d_alloc(dentry, &slash_name);
3416 if (unlikely(!child))
3417 goto out_err;
3418 error = dir->i_op->tmpfile(dir, child, mode);
3419 if (error)
3420 goto out_err;
3421 error = -ENOENT;
3422 inode = child->d_inode;
3423 if (unlikely(!inode))
3424 goto out_err;
3425 if (!(open_flag & O_EXCL)) {
3426 spin_lock(&inode->i_lock);
3427 inode->i_state |= I_LINKABLE;
3428 spin_unlock(&inode->i_lock);
3429 }
3430 return child;
3431
3432 out_err:
3433 dput(child);
3434 return ERR_PTR(error);
3435 }
3436 EXPORT_SYMBOL(vfs_tmpfile);
3437
3438 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3439 const struct open_flags *op,
3440 struct file *file, int *opened)
3441 {
3442 struct dentry *child;
3443 struct path path;
3444 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3445 if (unlikely(error))
3446 return error;
3447 error = mnt_want_write(path.mnt);
3448 if (unlikely(error))
3449 goto out;
3450 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3451 error = PTR_ERR(child);
3452 if (IS_ERR(child))
3453 goto out2;
3454 dput(path.dentry);
3455 path.dentry = child;
3456 audit_inode(nd->name, child, 0);
3457 /* Don't check for other permissions, the inode was just created */
3458 error = may_open(&path, 0, op->open_flag);
3459 if (error)
3460 goto out2;
3461 file->f_path.mnt = path.mnt;
3462 error = finish_open(file, child, NULL, opened);
3463 if (error)
3464 goto out2;
3465 error = open_check_o_direct(file);
3466 if (error)
3467 fput(file);
3468 out2:
3469 mnt_drop_write(path.mnt);
3470 out:
3471 path_put(&path);
3472 return error;
3473 }
3474
3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3476 {
3477 struct path path;
3478 int error = path_lookupat(nd, flags, &path);
3479 if (!error) {
3480 audit_inode(nd->name, path.dentry, 0);
3481 error = vfs_open(&path, file, current_cred());
3482 path_put(&path);
3483 }
3484 return error;
3485 }
3486
3487 static struct file *path_openat(struct nameidata *nd,
3488 const struct open_flags *op, unsigned flags)
3489 {
3490 const char *s;
3491 struct file *file;
3492 int opened = 0;
3493 int error;
3494
3495 file = get_empty_filp();
3496 if (IS_ERR(file))
3497 return file;
3498
3499 file->f_flags = op->open_flag;
3500
3501 if (unlikely(file->f_flags & __O_TMPFILE)) {
3502 error = do_tmpfile(nd, flags, op, file, &opened);
3503 goto out2;
3504 }
3505
3506 if (unlikely(file->f_flags & O_PATH)) {
3507 error = do_o_path(nd, flags, file);
3508 if (!error)
3509 opened |= FILE_OPENED;
3510 goto out2;
3511 }
3512
3513 s = path_init(nd, flags);
3514 if (IS_ERR(s)) {
3515 put_filp(file);
3516 return ERR_CAST(s);
3517 }
3518 while (!(error = link_path_walk(s, nd)) &&
3519 (error = do_last(nd, file, op, &opened)) > 0) {
3520 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3521 s = trailing_symlink(nd);
3522 if (IS_ERR(s)) {
3523 error = PTR_ERR(s);
3524 break;
3525 }
3526 }
3527 terminate_walk(nd);
3528 out2:
3529 if (!(opened & FILE_OPENED)) {
3530 BUG_ON(!error);
3531 put_filp(file);
3532 }
3533 if (unlikely(error)) {
3534 if (error == -EOPENSTALE) {
3535 if (flags & LOOKUP_RCU)
3536 error = -ECHILD;
3537 else
3538 error = -ESTALE;
3539 }
3540 file = ERR_PTR(error);
3541 }
3542 return file;
3543 }
3544
3545 struct file *do_filp_open(int dfd, struct filename *pathname,
3546 const struct open_flags *op)
3547 {
3548 struct nameidata nd;
3549 int flags = op->lookup_flags;
3550 struct file *filp;
3551
3552 set_nameidata(&nd, dfd, pathname);
3553 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3554 if (unlikely(filp == ERR_PTR(-ECHILD)))
3555 filp = path_openat(&nd, op, flags);
3556 if (unlikely(filp == ERR_PTR(-ESTALE)))
3557 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3558 restore_nameidata();
3559 return filp;
3560 }
3561
3562 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3563 const char *name, const struct open_flags *op)
3564 {
3565 struct nameidata nd;
3566 struct file *file;
3567 struct filename *filename;
3568 int flags = op->lookup_flags | LOOKUP_ROOT;
3569
3570 nd.root.mnt = mnt;
3571 nd.root.dentry = dentry;
3572
3573 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3574 return ERR_PTR(-ELOOP);
3575
3576 filename = getname_kernel(name);
3577 if (IS_ERR(filename))
3578 return ERR_CAST(filename);
3579
3580 set_nameidata(&nd, -1, filename);
3581 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3582 if (unlikely(file == ERR_PTR(-ECHILD)))
3583 file = path_openat(&nd, op, flags);
3584 if (unlikely(file == ERR_PTR(-ESTALE)))
3585 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3586 restore_nameidata();
3587 putname(filename);
3588 return file;
3589 }
3590
3591 static struct dentry *filename_create(int dfd, struct filename *name,
3592 struct path *path, unsigned int lookup_flags)
3593 {
3594 struct dentry *dentry = ERR_PTR(-EEXIST);
3595 struct qstr last;
3596 int type;
3597 int err2;
3598 int error;
3599 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3600
3601 /*
3602 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3603 * other flags passed in are ignored!
3604 */
3605 lookup_flags &= LOOKUP_REVAL;
3606
3607 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3608 if (IS_ERR(name))
3609 return ERR_CAST(name);
3610
3611 /*
3612 * Yucky last component or no last component at all?
3613 * (foo/., foo/.., /////)
3614 */
3615 if (unlikely(type != LAST_NORM))
3616 goto out;
3617
3618 /* don't fail immediately if it's r/o, at least try to report other errors */
3619 err2 = mnt_want_write(path->mnt);
3620 /*
3621 * Do the final lookup.
3622 */
3623 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3624 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3625 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3626 if (IS_ERR(dentry))
3627 goto unlock;
3628
3629 error = -EEXIST;
3630 if (d_is_positive(dentry))
3631 goto fail;
3632
3633 /*
3634 * Special case - lookup gave negative, but... we had foo/bar/
3635 * From the vfs_mknod() POV we just have a negative dentry -
3636 * all is fine. Let's be bastards - you had / on the end, you've
3637 * been asking for (non-existent) directory. -ENOENT for you.
3638 */
3639 if (unlikely(!is_dir && last.name[last.len])) {
3640 error = -ENOENT;
3641 goto fail;
3642 }
3643 if (unlikely(err2)) {
3644 error = err2;
3645 goto fail;
3646 }
3647 putname(name);
3648 return dentry;
3649 fail:
3650 dput(dentry);
3651 dentry = ERR_PTR(error);
3652 unlock:
3653 inode_unlock(path->dentry->d_inode);
3654 if (!err2)
3655 mnt_drop_write(path->mnt);
3656 out:
3657 path_put(path);
3658 putname(name);
3659 return dentry;
3660 }
3661
3662 struct dentry *kern_path_create(int dfd, const char *pathname,
3663 struct path *path, unsigned int lookup_flags)
3664 {
3665 return filename_create(dfd, getname_kernel(pathname),
3666 path, lookup_flags);
3667 }
3668 EXPORT_SYMBOL(kern_path_create);
3669
3670 void done_path_create(struct path *path, struct dentry *dentry)
3671 {
3672 dput(dentry);
3673 inode_unlock(path->dentry->d_inode);
3674 mnt_drop_write(path->mnt);
3675 path_put(path);
3676 }
3677 EXPORT_SYMBOL(done_path_create);
3678
3679 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3680 struct path *path, unsigned int lookup_flags)
3681 {
3682 return filename_create(dfd, getname(pathname), path, lookup_flags);
3683 }
3684 EXPORT_SYMBOL(user_path_create);
3685
3686 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3687 {
3688 int error = may_create(dir, dentry);
3689
3690 if (error)
3691 return error;
3692
3693 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3694 return -EPERM;
3695
3696 if (!dir->i_op->mknod)
3697 return -EPERM;
3698
3699 error = devcgroup_inode_mknod(mode, dev);
3700 if (error)
3701 return error;
3702
3703 error = security_inode_mknod(dir, dentry, mode, dev);
3704 if (error)
3705 return error;
3706
3707 error = dir->i_op->mknod(dir, dentry, mode, dev);
3708 if (!error)
3709 fsnotify_create(dir, dentry);
3710 return error;
3711 }
3712 EXPORT_SYMBOL(vfs_mknod);
3713
3714 static int may_mknod(umode_t mode)
3715 {
3716 switch (mode & S_IFMT) {
3717 case S_IFREG:
3718 case S_IFCHR:
3719 case S_IFBLK:
3720 case S_IFIFO:
3721 case S_IFSOCK:
3722 case 0: /* zero mode translates to S_IFREG */
3723 return 0;
3724 case S_IFDIR:
3725 return -EPERM;
3726 default:
3727 return -EINVAL;
3728 }
3729 }
3730
3731 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3732 unsigned, dev)
3733 {
3734 struct dentry *dentry;
3735 struct path path;
3736 int error;
3737 unsigned int lookup_flags = 0;
3738
3739 error = may_mknod(mode);
3740 if (error)
3741 return error;
3742 retry:
3743 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3744 if (IS_ERR(dentry))
3745 return PTR_ERR(dentry);
3746
3747 if (!IS_POSIXACL(path.dentry->d_inode))
3748 mode &= ~current_umask();
3749 error = security_path_mknod(&path, dentry, mode, dev);
3750 if (error)
3751 goto out;
3752 switch (mode & S_IFMT) {
3753 case 0: case S_IFREG:
3754 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3755 if (!error)
3756 ima_post_path_mknod(dentry);
3757 break;
3758 case S_IFCHR: case S_IFBLK:
3759 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3760 new_decode_dev(dev));
3761 break;
3762 case S_IFIFO: case S_IFSOCK:
3763 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3764 break;
3765 }
3766 out:
3767 done_path_create(&path, dentry);
3768 if (retry_estale(error, lookup_flags)) {
3769 lookup_flags |= LOOKUP_REVAL;
3770 goto retry;
3771 }
3772 return error;
3773 }
3774
3775 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3776 {
3777 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3778 }
3779
3780 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3781 {
3782 int error = may_create(dir, dentry);
3783 unsigned max_links = dir->i_sb->s_max_links;
3784
3785 if (error)
3786 return error;
3787
3788 if (!dir->i_op->mkdir)
3789 return -EPERM;
3790
3791 mode &= (S_IRWXUGO|S_ISVTX);
3792 error = security_inode_mkdir(dir, dentry, mode);
3793 if (error)
3794 return error;
3795
3796 if (max_links && dir->i_nlink >= max_links)
3797 return -EMLINK;
3798
3799 error = dir->i_op->mkdir(dir, dentry, mode);
3800 if (!error)
3801 fsnotify_mkdir(dir, dentry);
3802 return error;
3803 }
3804 EXPORT_SYMBOL(vfs_mkdir);
3805
3806 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3807 {
3808 struct dentry *dentry;
3809 struct path path;
3810 int error;
3811 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3812
3813 retry:
3814 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3815 if (IS_ERR(dentry))
3816 return PTR_ERR(dentry);
3817
3818 if (!IS_POSIXACL(path.dentry->d_inode))
3819 mode &= ~current_umask();
3820 error = security_path_mkdir(&path, dentry, mode);
3821 if (!error)
3822 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3823 done_path_create(&path, dentry);
3824 if (retry_estale(error, lookup_flags)) {
3825 lookup_flags |= LOOKUP_REVAL;
3826 goto retry;
3827 }
3828 return error;
3829 }
3830
3831 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3832 {
3833 return sys_mkdirat(AT_FDCWD, pathname, mode);
3834 }
3835
3836 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3837 {
3838 int error = may_delete(dir, dentry, 1);
3839
3840 if (error)
3841 return error;
3842
3843 if (!dir->i_op->rmdir)
3844 return -EPERM;
3845
3846 dget(dentry);
3847 inode_lock(dentry->d_inode);
3848
3849 error = -EBUSY;
3850 if (is_local_mountpoint(dentry))
3851 goto out;
3852
3853 error = security_inode_rmdir(dir, dentry);
3854 if (error)
3855 goto out;
3856
3857 shrink_dcache_parent(dentry);
3858 error = dir->i_op->rmdir(dir, dentry);
3859 if (error)
3860 goto out;
3861
3862 dentry->d_inode->i_flags |= S_DEAD;
3863 dont_mount(dentry);
3864 detach_mounts(dentry);
3865
3866 out:
3867 inode_unlock(dentry->d_inode);
3868 dput(dentry);
3869 if (!error)
3870 d_delete(dentry);
3871 return error;
3872 }
3873 EXPORT_SYMBOL(vfs_rmdir);
3874
3875 static long do_rmdir(int dfd, const char __user *pathname)
3876 {
3877 int error = 0;
3878 struct filename *name;
3879 struct dentry *dentry;
3880 struct path path;
3881 struct qstr last;
3882 int type;
3883 unsigned int lookup_flags = 0;
3884 retry:
3885 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3886 &path, &last, &type);
3887 if (IS_ERR(name))
3888 return PTR_ERR(name);
3889
3890 switch (type) {
3891 case LAST_DOTDOT:
3892 error = -ENOTEMPTY;
3893 goto exit1;
3894 case LAST_DOT:
3895 error = -EINVAL;
3896 goto exit1;
3897 case LAST_ROOT:
3898 error = -EBUSY;
3899 goto exit1;
3900 }
3901
3902 error = mnt_want_write(path.mnt);
3903 if (error)
3904 goto exit1;
3905
3906 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3907 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3908 error = PTR_ERR(dentry);
3909 if (IS_ERR(dentry))
3910 goto exit2;
3911 if (!dentry->d_inode) {
3912 error = -ENOENT;
3913 goto exit3;
3914 }
3915 error = security_path_rmdir(&path, dentry);
3916 if (error)
3917 goto exit3;
3918 error = vfs_rmdir(path.dentry->d_inode, dentry);
3919 exit3:
3920 dput(dentry);
3921 exit2:
3922 inode_unlock(path.dentry->d_inode);
3923 mnt_drop_write(path.mnt);
3924 exit1:
3925 path_put(&path);
3926 putname(name);
3927 if (retry_estale(error, lookup_flags)) {
3928 lookup_flags |= LOOKUP_REVAL;
3929 goto retry;
3930 }
3931 return error;
3932 }
3933
3934 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3935 {
3936 return do_rmdir(AT_FDCWD, pathname);
3937 }
3938
3939 /**
3940 * vfs_unlink - unlink a filesystem object
3941 * @dir: parent directory
3942 * @dentry: victim
3943 * @delegated_inode: returns victim inode, if the inode is delegated.
3944 *
3945 * The caller must hold dir->i_mutex.
3946 *
3947 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3948 * return a reference to the inode in delegated_inode. The caller
3949 * should then break the delegation on that inode and retry. Because
3950 * breaking a delegation may take a long time, the caller should drop
3951 * dir->i_mutex before doing so.
3952 *
3953 * Alternatively, a caller may pass NULL for delegated_inode. This may
3954 * be appropriate for callers that expect the underlying filesystem not
3955 * to be NFS exported.
3956 */
3957 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3958 {
3959 struct inode *target = dentry->d_inode;
3960 int error = may_delete(dir, dentry, 0);
3961
3962 if (error)
3963 return error;
3964
3965 if (!dir->i_op->unlink)
3966 return -EPERM;
3967
3968 inode_lock(target);
3969 if (is_local_mountpoint(dentry))
3970 error = -EBUSY;
3971 else {
3972 error = security_inode_unlink(dir, dentry);
3973 if (!error) {
3974 error = try_break_deleg(target, delegated_inode);
3975 if (error)
3976 goto out;
3977 error = dir->i_op->unlink(dir, dentry);
3978 if (!error) {
3979 dont_mount(dentry);
3980 detach_mounts(dentry);
3981 }
3982 }
3983 }
3984 out:
3985 inode_unlock(target);
3986
3987 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3988 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3989 fsnotify_link_count(target);
3990 d_delete(dentry);
3991 }
3992
3993 return error;
3994 }
3995 EXPORT_SYMBOL(vfs_unlink);
3996
3997 /*
3998 * Make sure that the actual truncation of the file will occur outside its
3999 * directory's i_mutex. Truncate can take a long time if there is a lot of
4000 * writeout happening, and we don't want to prevent access to the directory
4001 * while waiting on the I/O.
4002 */
4003 long do_unlinkat(int dfd, struct filename *name)
4004 {
4005 int error;
4006 struct dentry *dentry;
4007 struct path path;
4008 struct qstr last;
4009 int type;
4010 struct inode *inode = NULL;
4011 struct inode *delegated_inode = NULL;
4012 unsigned int lookup_flags = 0;
4013 retry:
4014 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4015 if (IS_ERR(name))
4016 return PTR_ERR(name);
4017
4018 error = -EISDIR;
4019 if (type != LAST_NORM)
4020 goto exit1;
4021
4022 error = mnt_want_write(path.mnt);
4023 if (error)
4024 goto exit1;
4025 retry_deleg:
4026 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4027 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4028 error = PTR_ERR(dentry);
4029 if (!IS_ERR(dentry)) {
4030 /* Why not before? Because we want correct error value */
4031 if (last.name[last.len])
4032 goto slashes;
4033 inode = dentry->d_inode;
4034 if (d_is_negative(dentry))
4035 goto slashes;
4036 ihold(inode);
4037 error = security_path_unlink(&path, dentry);
4038 if (error)
4039 goto exit2;
4040 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4041 exit2:
4042 dput(dentry);
4043 }
4044 inode_unlock(path.dentry->d_inode);
4045 if (inode)
4046 iput(inode); /* truncate the inode here */
4047 inode = NULL;
4048 if (delegated_inode) {
4049 error = break_deleg_wait(&delegated_inode);
4050 if (!error)
4051 goto retry_deleg;
4052 }
4053 mnt_drop_write(path.mnt);
4054 exit1:
4055 path_put(&path);
4056 if (retry_estale(error, lookup_flags)) {
4057 lookup_flags |= LOOKUP_REVAL;
4058 inode = NULL;
4059 goto retry;
4060 }
4061 putname(name);
4062 return error;
4063
4064 slashes:
4065 if (d_is_negative(dentry))
4066 error = -ENOENT;
4067 else if (d_is_dir(dentry))
4068 error = -EISDIR;
4069 else
4070 error = -ENOTDIR;
4071 goto exit2;
4072 }
4073
4074 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4075 {
4076 if ((flag & ~AT_REMOVEDIR) != 0)
4077 return -EINVAL;
4078
4079 if (flag & AT_REMOVEDIR)
4080 return do_rmdir(dfd, pathname);
4081
4082 return do_unlinkat(dfd, getname(pathname));
4083 }
4084
4085 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4086 {
4087 return do_unlinkat(AT_FDCWD, getname(pathname));
4088 }
4089
4090 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4091 {
4092 int error = may_create(dir, dentry);
4093
4094 if (error)
4095 return error;
4096
4097 if (!dir->i_op->symlink)
4098 return -EPERM;
4099
4100 error = security_inode_symlink(dir, dentry, oldname);
4101 if (error)
4102 return error;
4103
4104 error = dir->i_op->symlink(dir, dentry, oldname);
4105 if (!error)
4106 fsnotify_create(dir, dentry);
4107 return error;
4108 }
4109 EXPORT_SYMBOL(vfs_symlink);
4110
4111 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4112 int, newdfd, const char __user *, newname)
4113 {
4114 int error;
4115 struct filename *from;
4116 struct dentry *dentry;
4117 struct path path;
4118 unsigned int lookup_flags = 0;
4119
4120 from = getname(oldname);
4121 if (IS_ERR(from))
4122 return PTR_ERR(from);
4123 retry:
4124 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4125 error = PTR_ERR(dentry);
4126 if (IS_ERR(dentry))
4127 goto out_putname;
4128
4129 error = security_path_symlink(&path, dentry, from->name);
4130 if (!error)
4131 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4132 done_path_create(&path, dentry);
4133 if (retry_estale(error, lookup_flags)) {
4134 lookup_flags |= LOOKUP_REVAL;
4135 goto retry;
4136 }
4137 out_putname:
4138 putname(from);
4139 return error;
4140 }
4141
4142 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4143 {
4144 return sys_symlinkat(oldname, AT_FDCWD, newname);
4145 }
4146
4147 /**
4148 * vfs_link - create a new link
4149 * @old_dentry: object to be linked
4150 * @dir: new parent
4151 * @new_dentry: where to create the new link
4152 * @delegated_inode: returns inode needing a delegation break
4153 *
4154 * The caller must hold dir->i_mutex
4155 *
4156 * If vfs_link discovers a delegation on the to-be-linked file in need
4157 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4158 * inode in delegated_inode. The caller should then break the delegation
4159 * and retry. Because breaking a delegation may take a long time, the
4160 * caller should drop the i_mutex before doing so.
4161 *
4162 * Alternatively, a caller may pass NULL for delegated_inode. This may
4163 * be appropriate for callers that expect the underlying filesystem not
4164 * to be NFS exported.
4165 */
4166 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4167 {
4168 struct inode *inode = old_dentry->d_inode;
4169 unsigned max_links = dir->i_sb->s_max_links;
4170 int error;
4171
4172 if (!inode)
4173 return -ENOENT;
4174
4175 error = may_create(dir, new_dentry);
4176 if (error)
4177 return error;
4178
4179 if (dir->i_sb != inode->i_sb)
4180 return -EXDEV;
4181
4182 /*
4183 * A link to an append-only or immutable file cannot be created.
4184 */
4185 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4186 return -EPERM;
4187 /*
4188 * Updating the link count will likely cause i_uid and i_gid to
4189 * be writen back improperly if their true value is unknown to
4190 * the vfs.
4191 */
4192 if (HAS_UNMAPPED_ID(inode))
4193 return -EPERM;
4194 if (!dir->i_op->link)
4195 return -EPERM;
4196 if (S_ISDIR(inode->i_mode))
4197 return -EPERM;
4198
4199 error = security_inode_link(old_dentry, dir, new_dentry);
4200 if (error)
4201 return error;
4202
4203 inode_lock(inode);
4204 /* Make sure we don't allow creating hardlink to an unlinked file */
4205 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4206 error = -ENOENT;
4207 else if (max_links && inode->i_nlink >= max_links)
4208 error = -EMLINK;
4209 else {
4210 error = try_break_deleg(inode, delegated_inode);
4211 if (!error)
4212 error = dir->i_op->link(old_dentry, dir, new_dentry);
4213 }
4214
4215 if (!error && (inode->i_state & I_LINKABLE)) {
4216 spin_lock(&inode->i_lock);
4217 inode->i_state &= ~I_LINKABLE;
4218 spin_unlock(&inode->i_lock);
4219 }
4220 inode_unlock(inode);
4221 if (!error)
4222 fsnotify_link(dir, inode, new_dentry);
4223 return error;
4224 }
4225 EXPORT_SYMBOL(vfs_link);
4226
4227 /*
4228 * Hardlinks are often used in delicate situations. We avoid
4229 * security-related surprises by not following symlinks on the
4230 * newname. --KAB
4231 *
4232 * We don't follow them on the oldname either to be compatible
4233 * with linux 2.0, and to avoid hard-linking to directories
4234 * and other special files. --ADM
4235 */
4236 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4237 int, newdfd, const char __user *, newname, int, flags)
4238 {
4239 struct dentry *new_dentry;
4240 struct path old_path, new_path;
4241 struct inode *delegated_inode = NULL;
4242 int how = 0;
4243 int error;
4244
4245 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4246 return -EINVAL;
4247 /*
4248 * To use null names we require CAP_DAC_READ_SEARCH
4249 * This ensures that not everyone will be able to create
4250 * handlink using the passed filedescriptor.
4251 */
4252 if (flags & AT_EMPTY_PATH) {
4253 if (!capable(CAP_DAC_READ_SEARCH))
4254 return -ENOENT;
4255 how = LOOKUP_EMPTY;
4256 }
4257
4258 if (flags & AT_SYMLINK_FOLLOW)
4259 how |= LOOKUP_FOLLOW;
4260 retry:
4261 error = user_path_at(olddfd, oldname, how, &old_path);
4262 if (error)
4263 return error;
4264
4265 new_dentry = user_path_create(newdfd, newname, &new_path,
4266 (how & LOOKUP_REVAL));
4267 error = PTR_ERR(new_dentry);
4268 if (IS_ERR(new_dentry))
4269 goto out;
4270
4271 error = -EXDEV;
4272 if (old_path.mnt != new_path.mnt)
4273 goto out_dput;
4274 error = may_linkat(&old_path);
4275 if (unlikely(error))
4276 goto out_dput;
4277 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4278 if (error)
4279 goto out_dput;
4280 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4281 out_dput:
4282 done_path_create(&new_path, new_dentry);
4283 if (delegated_inode) {
4284 error = break_deleg_wait(&delegated_inode);
4285 if (!error) {
4286 path_put(&old_path);
4287 goto retry;
4288 }
4289 }
4290 if (retry_estale(error, how)) {
4291 path_put(&old_path);
4292 how |= LOOKUP_REVAL;
4293 goto retry;
4294 }
4295 out:
4296 path_put(&old_path);
4297
4298 return error;
4299 }
4300
4301 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4302 {
4303 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4304 }
4305
4306 /**
4307 * vfs_rename - rename a filesystem object
4308 * @old_dir: parent of source
4309 * @old_dentry: source
4310 * @new_dir: parent of destination
4311 * @new_dentry: destination
4312 * @delegated_inode: returns an inode needing a delegation break
4313 * @flags: rename flags
4314 *
4315 * The caller must hold multiple mutexes--see lock_rename()).
4316 *
4317 * If vfs_rename discovers a delegation in need of breaking at either
4318 * the source or destination, it will return -EWOULDBLOCK and return a
4319 * reference to the inode in delegated_inode. The caller should then
4320 * break the delegation and retry. Because breaking a delegation may
4321 * take a long time, the caller should drop all locks before doing
4322 * so.
4323 *
4324 * Alternatively, a caller may pass NULL for delegated_inode. This may
4325 * be appropriate for callers that expect the underlying filesystem not
4326 * to be NFS exported.
4327 *
4328 * The worst of all namespace operations - renaming directory. "Perverted"
4329 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4330 * Problems:
4331 *
4332 * a) we can get into loop creation.
4333 * b) race potential - two innocent renames can create a loop together.
4334 * That's where 4.4 screws up. Current fix: serialization on
4335 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4336 * story.
4337 * c) we have to lock _four_ objects - parents and victim (if it exists),
4338 * and source (if it is not a directory).
4339 * And that - after we got ->i_mutex on parents (until then we don't know
4340 * whether the target exists). Solution: try to be smart with locking
4341 * order for inodes. We rely on the fact that tree topology may change
4342 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4343 * move will be locked. Thus we can rank directories by the tree
4344 * (ancestors first) and rank all non-directories after them.
4345 * That works since everybody except rename does "lock parent, lookup,
4346 * lock child" and rename is under ->s_vfs_rename_mutex.
4347 * HOWEVER, it relies on the assumption that any object with ->lookup()
4348 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4349 * we'd better make sure that there's no link(2) for them.
4350 * d) conversion from fhandle to dentry may come in the wrong moment - when
4351 * we are removing the target. Solution: we will have to grab ->i_mutex
4352 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4353 * ->i_mutex on parents, which works but leads to some truly excessive
4354 * locking].
4355 */
4356 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4357 struct inode *new_dir, struct dentry *new_dentry,
4358 struct inode **delegated_inode, unsigned int flags)
4359 {
4360 int error;
4361 bool is_dir = d_is_dir(old_dentry);
4362 struct inode *source = old_dentry->d_inode;
4363 struct inode *target = new_dentry->d_inode;
4364 bool new_is_dir = false;
4365 unsigned max_links = new_dir->i_sb->s_max_links;
4366 struct name_snapshot old_name;
4367
4368 if (source == target)
4369 return 0;
4370
4371 error = may_delete(old_dir, old_dentry, is_dir);
4372 if (error)
4373 return error;
4374
4375 if (!target) {
4376 error = may_create(new_dir, new_dentry);
4377 } else {
4378 new_is_dir = d_is_dir(new_dentry);
4379
4380 if (!(flags & RENAME_EXCHANGE))
4381 error = may_delete(new_dir, new_dentry, is_dir);
4382 else
4383 error = may_delete(new_dir, new_dentry, new_is_dir);
4384 }
4385 if (error)
4386 return error;
4387
4388 if (!old_dir->i_op->rename)
4389 return -EPERM;
4390
4391 /*
4392 * If we are going to change the parent - check write permissions,
4393 * we'll need to flip '..'.
4394 */
4395 if (new_dir != old_dir) {
4396 if (is_dir) {
4397 error = inode_permission(source, MAY_WRITE);
4398 if (error)
4399 return error;
4400 }
4401 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4402 error = inode_permission(target, MAY_WRITE);
4403 if (error)
4404 return error;
4405 }
4406 }
4407
4408 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4409 flags);
4410 if (error)
4411 return error;
4412
4413 take_dentry_name_snapshot(&old_name, old_dentry);
4414 dget(new_dentry);
4415 if (!is_dir || (flags & RENAME_EXCHANGE))
4416 lock_two_nondirectories(source, target);
4417 else if (target)
4418 inode_lock(target);
4419
4420 error = -EBUSY;
4421 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4422 goto out;
4423
4424 if (max_links && new_dir != old_dir) {
4425 error = -EMLINK;
4426 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4427 goto out;
4428 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4429 old_dir->i_nlink >= max_links)
4430 goto out;
4431 }
4432 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4433 shrink_dcache_parent(new_dentry);
4434 if (!is_dir) {
4435 error = try_break_deleg(source, delegated_inode);
4436 if (error)
4437 goto out;
4438 }
4439 if (target && !new_is_dir) {
4440 error = try_break_deleg(target, delegated_inode);
4441 if (error)
4442 goto out;
4443 }
4444 error = old_dir->i_op->rename(old_dir, old_dentry,
4445 new_dir, new_dentry, flags);
4446 if (error)
4447 goto out;
4448
4449 if (!(flags & RENAME_EXCHANGE) && target) {
4450 if (is_dir)
4451 target->i_flags |= S_DEAD;
4452 dont_mount(new_dentry);
4453 detach_mounts(new_dentry);
4454 }
4455 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4456 if (!(flags & RENAME_EXCHANGE))
4457 d_move(old_dentry, new_dentry);
4458 else
4459 d_exchange(old_dentry, new_dentry);
4460 }
4461 out:
4462 if (!is_dir || (flags & RENAME_EXCHANGE))
4463 unlock_two_nondirectories(source, target);
4464 else if (target)
4465 inode_unlock(target);
4466 dput(new_dentry);
4467 if (!error) {
4468 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4469 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4470 if (flags & RENAME_EXCHANGE) {
4471 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4472 new_is_dir, NULL, new_dentry);
4473 }
4474 }
4475 release_dentry_name_snapshot(&old_name);
4476
4477 return error;
4478 }
4479 EXPORT_SYMBOL(vfs_rename);
4480
4481 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4482 int, newdfd, const char __user *, newname, unsigned int, flags)
4483 {
4484 struct dentry *old_dentry, *new_dentry;
4485 struct dentry *trap;
4486 struct path old_path, new_path;
4487 struct qstr old_last, new_last;
4488 int old_type, new_type;
4489 struct inode *delegated_inode = NULL;
4490 struct filename *from;
4491 struct filename *to;
4492 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4493 bool should_retry = false;
4494 int error;
4495
4496 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4497 return -EINVAL;
4498
4499 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4500 (flags & RENAME_EXCHANGE))
4501 return -EINVAL;
4502
4503 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4504 return -EPERM;
4505
4506 if (flags & RENAME_EXCHANGE)
4507 target_flags = 0;
4508
4509 retry:
4510 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4511 &old_path, &old_last, &old_type);
4512 if (IS_ERR(from)) {
4513 error = PTR_ERR(from);
4514 goto exit;
4515 }
4516
4517 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4518 &new_path, &new_last, &new_type);
4519 if (IS_ERR(to)) {
4520 error = PTR_ERR(to);
4521 goto exit1;
4522 }
4523
4524 error = -EXDEV;
4525 if (old_path.mnt != new_path.mnt)
4526 goto exit2;
4527
4528 error = -EBUSY;
4529 if (old_type != LAST_NORM)
4530 goto exit2;
4531
4532 if (flags & RENAME_NOREPLACE)
4533 error = -EEXIST;
4534 if (new_type != LAST_NORM)
4535 goto exit2;
4536
4537 error = mnt_want_write(old_path.mnt);
4538 if (error)
4539 goto exit2;
4540
4541 retry_deleg:
4542 trap = lock_rename(new_path.dentry, old_path.dentry);
4543
4544 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4545 error = PTR_ERR(old_dentry);
4546 if (IS_ERR(old_dentry))
4547 goto exit3;
4548 /* source must exist */
4549 error = -ENOENT;
4550 if (d_is_negative(old_dentry))
4551 goto exit4;
4552 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4553 error = PTR_ERR(new_dentry);
4554 if (IS_ERR(new_dentry))
4555 goto exit4;
4556 error = -EEXIST;
4557 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4558 goto exit5;
4559 if (flags & RENAME_EXCHANGE) {
4560 error = -ENOENT;
4561 if (d_is_negative(new_dentry))
4562 goto exit5;
4563
4564 if (!d_is_dir(new_dentry)) {
4565 error = -ENOTDIR;
4566 if (new_last.name[new_last.len])
4567 goto exit5;
4568 }
4569 }
4570 /* unless the source is a directory trailing slashes give -ENOTDIR */
4571 if (!d_is_dir(old_dentry)) {
4572 error = -ENOTDIR;
4573 if (old_last.name[old_last.len])
4574 goto exit5;
4575 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4576 goto exit5;
4577 }
4578 /* source should not be ancestor of target */
4579 error = -EINVAL;
4580 if (old_dentry == trap)
4581 goto exit5;
4582 /* target should not be an ancestor of source */
4583 if (!(flags & RENAME_EXCHANGE))
4584 error = -ENOTEMPTY;
4585 if (new_dentry == trap)
4586 goto exit5;
4587
4588 error = security_path_rename(&old_path, old_dentry,
4589 &new_path, new_dentry, flags);
4590 if (error)
4591 goto exit5;
4592 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4593 new_path.dentry->d_inode, new_dentry,
4594 &delegated_inode, flags);
4595 exit5:
4596 dput(new_dentry);
4597 exit4:
4598 dput(old_dentry);
4599 exit3:
4600 unlock_rename(new_path.dentry, old_path.dentry);
4601 if (delegated_inode) {
4602 error = break_deleg_wait(&delegated_inode);
4603 if (!error)
4604 goto retry_deleg;
4605 }
4606 mnt_drop_write(old_path.mnt);
4607 exit2:
4608 if (retry_estale(error, lookup_flags))
4609 should_retry = true;
4610 path_put(&new_path);
4611 putname(to);
4612 exit1:
4613 path_put(&old_path);
4614 putname(from);
4615 if (should_retry) {
4616 should_retry = false;
4617 lookup_flags |= LOOKUP_REVAL;
4618 goto retry;
4619 }
4620 exit:
4621 return error;
4622 }
4623
4624 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4625 int, newdfd, const char __user *, newname)
4626 {
4627 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4628 }
4629
4630 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4631 {
4632 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4633 }
4634
4635 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4636 {
4637 int error = may_create(dir, dentry);
4638 if (error)
4639 return error;
4640
4641 if (!dir->i_op->mknod)
4642 return -EPERM;
4643
4644 return dir->i_op->mknod(dir, dentry,
4645 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4646 }
4647 EXPORT_SYMBOL(vfs_whiteout);
4648
4649 int readlink_copy(char __user *buffer, int buflen, const char *link)
4650 {
4651 int len = PTR_ERR(link);
4652 if (IS_ERR(link))
4653 goto out;
4654
4655 len = strlen(link);
4656 if (len > (unsigned) buflen)
4657 len = buflen;
4658 if (copy_to_user(buffer, link, len))
4659 len = -EFAULT;
4660 out:
4661 return len;
4662 }
4663
4664 /*
4665 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4666 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4667 * for any given inode is up to filesystem.
4668 */
4669 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4670 int buflen)
4671 {
4672 DEFINE_DELAYED_CALL(done);
4673 struct inode *inode = d_inode(dentry);
4674 const char *link = inode->i_link;
4675 int res;
4676
4677 if (!link) {
4678 link = inode->i_op->get_link(dentry, inode, &done);
4679 if (IS_ERR(link))
4680 return PTR_ERR(link);
4681 }
4682 res = readlink_copy(buffer, buflen, link);
4683 do_delayed_call(&done);
4684 return res;
4685 }
4686
4687 /**
4688 * vfs_readlink - copy symlink body into userspace buffer
4689 * @dentry: dentry on which to get symbolic link
4690 * @buffer: user memory pointer
4691 * @buflen: size of buffer
4692 *
4693 * Does not touch atime. That's up to the caller if necessary
4694 *
4695 * Does not call security hook.
4696 */
4697 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4698 {
4699 struct inode *inode = d_inode(dentry);
4700
4701 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4702 if (unlikely(inode->i_op->readlink))
4703 return inode->i_op->readlink(dentry, buffer, buflen);
4704
4705 if (!d_is_symlink(dentry))
4706 return -EINVAL;
4707
4708 spin_lock(&inode->i_lock);
4709 inode->i_opflags |= IOP_DEFAULT_READLINK;
4710 spin_unlock(&inode->i_lock);
4711 }
4712
4713 return generic_readlink(dentry, buffer, buflen);
4714 }
4715 EXPORT_SYMBOL(vfs_readlink);
4716
4717 /**
4718 * vfs_get_link - get symlink body
4719 * @dentry: dentry on which to get symbolic link
4720 * @done: caller needs to free returned data with this
4721 *
4722 * Calls security hook and i_op->get_link() on the supplied inode.
4723 *
4724 * It does not touch atime. That's up to the caller if necessary.
4725 *
4726 * Does not work on "special" symlinks like /proc/$$/fd/N
4727 */
4728 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4729 {
4730 const char *res = ERR_PTR(-EINVAL);
4731 struct inode *inode = d_inode(dentry);
4732
4733 if (d_is_symlink(dentry)) {
4734 res = ERR_PTR(security_inode_readlink(dentry));
4735 if (!res)
4736 res = inode->i_op->get_link(dentry, inode, done);
4737 }
4738 return res;
4739 }
4740 EXPORT_SYMBOL(vfs_get_link);
4741
4742 /* get the link contents into pagecache */
4743 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4744 struct delayed_call *callback)
4745 {
4746 char *kaddr;
4747 struct page *page;
4748 struct address_space *mapping = inode->i_mapping;
4749
4750 if (!dentry) {
4751 page = find_get_page(mapping, 0);
4752 if (!page)
4753 return ERR_PTR(-ECHILD);
4754 if (!PageUptodate(page)) {
4755 put_page(page);
4756 return ERR_PTR(-ECHILD);
4757 }
4758 } else {
4759 page = read_mapping_page(mapping, 0, NULL);
4760 if (IS_ERR(page))
4761 return (char*)page;
4762 }
4763 set_delayed_call(callback, page_put_link, page);
4764 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4765 kaddr = page_address(page);
4766 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4767 return kaddr;
4768 }
4769
4770 EXPORT_SYMBOL(page_get_link);
4771
4772 void page_put_link(void *arg)
4773 {
4774 put_page(arg);
4775 }
4776 EXPORT_SYMBOL(page_put_link);
4777
4778 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4779 {
4780 DEFINE_DELAYED_CALL(done);
4781 int res = readlink_copy(buffer, buflen,
4782 page_get_link(dentry, d_inode(dentry),
4783 &done));
4784 do_delayed_call(&done);
4785 return res;
4786 }
4787 EXPORT_SYMBOL(page_readlink);
4788
4789 /*
4790 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4791 */
4792 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4793 {
4794 struct address_space *mapping = inode->i_mapping;
4795 struct page *page;
4796 void *fsdata;
4797 int err;
4798 unsigned int flags = 0;
4799 if (nofs)
4800 flags |= AOP_FLAG_NOFS;
4801
4802 retry:
4803 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4804 flags, &page, &fsdata);
4805 if (err)
4806 goto fail;
4807
4808 memcpy(page_address(page), symname, len-1);
4809
4810 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4811 page, fsdata);
4812 if (err < 0)
4813 goto fail;
4814 if (err < len-1)
4815 goto retry;
4816
4817 mark_inode_dirty(inode);
4818 return 0;
4819 fail:
4820 return err;
4821 }
4822 EXPORT_SYMBOL(__page_symlink);
4823
4824 int page_symlink(struct inode *inode, const char *symname, int len)
4825 {
4826 return __page_symlink(inode, symname, len,
4827 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4828 }
4829 EXPORT_SYMBOL(page_symlink);
4830
4831 const struct inode_operations page_symlink_inode_operations = {
4832 .get_link = page_get_link,
4833 };
4834 EXPORT_SYMBOL(page_symlink_inode_operations);