]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
rename user_path_umountat() to user_path_mountpoint_at()
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /*
498 * When we move over from the RCU domain to properly refcounted
499 * long-lived dentries, we need to check the sequence numbers
500 * we got before lookup very carefully.
501 *
502 * We cannot blindly increment a dentry refcount - even if it
503 * is not locked - if it is zero, because it may have gone
504 * through the final d_kill() logic already.
505 *
506 * So for a zero refcount, we need to get the spinlock (which is
507 * safe even for a dead dentry because the de-allocation is
508 * RCU-delayed), and check the sequence count under the lock.
509 *
510 * Once we have checked the sequence count, we know it is live,
511 * and since we hold the spinlock it cannot die from under us.
512 *
513 * In contrast, if the reference count wasn't zero, we can just
514 * increment the lockref without having to take the spinlock.
515 * Even if the sequence number ends up being stale, we haven't
516 * gone through the final dput() and killed the dentry yet.
517 */
518 static inline int d_rcu_to_refcount(struct dentry *dentry, seqcount_t *validate, unsigned seq)
519 {
520 int gotref;
521
522 gotref = lockref_get_or_lock(&dentry->d_lockref);
523
524 /* Does the sequence number still match? */
525 if (read_seqcount_retry(validate, seq)) {
526 if (gotref)
527 dput(dentry);
528 else
529 spin_unlock(&dentry->d_lock);
530 return -ECHILD;
531 }
532
533 /* Get the ref now, if we couldn't get it originally */
534 if (!gotref) {
535 dentry->d_lockref.count++;
536 spin_unlock(&dentry->d_lock);
537 }
538 return 0;
539 }
540
541 /**
542 * unlazy_walk - try to switch to ref-walk mode.
543 * @nd: nameidata pathwalk data
544 * @dentry: child of nd->path.dentry or NULL
545 * Returns: 0 on success, -ECHILD on failure
546 *
547 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
548 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
549 * @nd or NULL. Must be called from rcu-walk context.
550 */
551 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
552 {
553 struct fs_struct *fs = current->fs;
554 struct dentry *parent = nd->path.dentry;
555 int want_root = 0;
556
557 BUG_ON(!(nd->flags & LOOKUP_RCU));
558 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
559 want_root = 1;
560 spin_lock(&fs->lock);
561 if (nd->root.mnt != fs->root.mnt ||
562 nd->root.dentry != fs->root.dentry)
563 goto err_root;
564 }
565
566 /*
567 * For a negative lookup, the lookup sequence point is the parents
568 * sequence point, and it only needs to revalidate the parent dentry.
569 *
570 * For a positive lookup, we need to move both the parent and the
571 * dentry from the RCU domain to be properly refcounted. And the
572 * sequence number in the dentry validates *both* dentry counters,
573 * since we checked the sequence number of the parent after we got
574 * the child sequence number. So we know the parent must still
575 * be valid if the child sequence number is still valid.
576 */
577 if (!dentry) {
578 if (d_rcu_to_refcount(parent, &parent->d_seq, nd->seq) < 0)
579 goto err_root;
580 BUG_ON(nd->inode != parent->d_inode);
581 } else {
582 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0)
583 goto err_root;
584 if (d_rcu_to_refcount(parent, &dentry->d_seq, nd->seq) < 0)
585 goto err_parent;
586 }
587 if (want_root) {
588 path_get(&nd->root);
589 spin_unlock(&fs->lock);
590 }
591 mntget(nd->path.mnt);
592
593 unlock_rcu_walk();
594 nd->flags &= ~LOOKUP_RCU;
595 return 0;
596
597 err_parent:
598 dput(dentry);
599 err_root:
600 if (want_root)
601 spin_unlock(&fs->lock);
602 return -ECHILD;
603 }
604
605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 {
607 return dentry->d_op->d_revalidate(dentry, flags);
608 }
609
610 /**
611 * complete_walk - successful completion of path walk
612 * @nd: pointer nameidata
613 *
614 * If we had been in RCU mode, drop out of it and legitimize nd->path.
615 * Revalidate the final result, unless we'd already done that during
616 * the path walk or the filesystem doesn't ask for it. Return 0 on
617 * success, -error on failure. In case of failure caller does not
618 * need to drop nd->path.
619 */
620 static int complete_walk(struct nameidata *nd)
621 {
622 struct dentry *dentry = nd->path.dentry;
623 int status;
624
625 if (nd->flags & LOOKUP_RCU) {
626 nd->flags &= ~LOOKUP_RCU;
627 if (!(nd->flags & LOOKUP_ROOT))
628 nd->root.mnt = NULL;
629
630 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0) {
631 unlock_rcu_walk();
632 return -ECHILD;
633 }
634 mntget(nd->path.mnt);
635 unlock_rcu_walk();
636 }
637
638 if (likely(!(nd->flags & LOOKUP_JUMPED)))
639 return 0;
640
641 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
642 return 0;
643
644 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
645 if (status > 0)
646 return 0;
647
648 if (!status)
649 status = -ESTALE;
650
651 path_put(&nd->path);
652 return status;
653 }
654
655 static __always_inline void set_root(struct nameidata *nd)
656 {
657 if (!nd->root.mnt)
658 get_fs_root(current->fs, &nd->root);
659 }
660
661 static int link_path_walk(const char *, struct nameidata *);
662
663 static __always_inline void set_root_rcu(struct nameidata *nd)
664 {
665 if (!nd->root.mnt) {
666 struct fs_struct *fs = current->fs;
667 unsigned seq;
668
669 do {
670 seq = read_seqcount_begin(&fs->seq);
671 nd->root = fs->root;
672 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
673 } while (read_seqcount_retry(&fs->seq, seq));
674 }
675 }
676
677 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
678 {
679 int ret;
680
681 if (IS_ERR(link))
682 goto fail;
683
684 if (*link == '/') {
685 set_root(nd);
686 path_put(&nd->path);
687 nd->path = nd->root;
688 path_get(&nd->root);
689 nd->flags |= LOOKUP_JUMPED;
690 }
691 nd->inode = nd->path.dentry->d_inode;
692
693 ret = link_path_walk(link, nd);
694 return ret;
695 fail:
696 path_put(&nd->path);
697 return PTR_ERR(link);
698 }
699
700 static void path_put_conditional(struct path *path, struct nameidata *nd)
701 {
702 dput(path->dentry);
703 if (path->mnt != nd->path.mnt)
704 mntput(path->mnt);
705 }
706
707 static inline void path_to_nameidata(const struct path *path,
708 struct nameidata *nd)
709 {
710 if (!(nd->flags & LOOKUP_RCU)) {
711 dput(nd->path.dentry);
712 if (nd->path.mnt != path->mnt)
713 mntput(nd->path.mnt);
714 }
715 nd->path.mnt = path->mnt;
716 nd->path.dentry = path->dentry;
717 }
718
719 /*
720 * Helper to directly jump to a known parsed path from ->follow_link,
721 * caller must have taken a reference to path beforehand.
722 */
723 void nd_jump_link(struct nameidata *nd, struct path *path)
724 {
725 path_put(&nd->path);
726
727 nd->path = *path;
728 nd->inode = nd->path.dentry->d_inode;
729 nd->flags |= LOOKUP_JUMPED;
730 }
731
732 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
733 {
734 struct inode *inode = link->dentry->d_inode;
735 if (inode->i_op->put_link)
736 inode->i_op->put_link(link->dentry, nd, cookie);
737 path_put(link);
738 }
739
740 int sysctl_protected_symlinks __read_mostly = 0;
741 int sysctl_protected_hardlinks __read_mostly = 0;
742
743 /**
744 * may_follow_link - Check symlink following for unsafe situations
745 * @link: The path of the symlink
746 * @nd: nameidata pathwalk data
747 *
748 * In the case of the sysctl_protected_symlinks sysctl being enabled,
749 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
750 * in a sticky world-writable directory. This is to protect privileged
751 * processes from failing races against path names that may change out
752 * from under them by way of other users creating malicious symlinks.
753 * It will permit symlinks to be followed only when outside a sticky
754 * world-writable directory, or when the uid of the symlink and follower
755 * match, or when the directory owner matches the symlink's owner.
756 *
757 * Returns 0 if following the symlink is allowed, -ve on error.
758 */
759 static inline int may_follow_link(struct path *link, struct nameidata *nd)
760 {
761 const struct inode *inode;
762 const struct inode *parent;
763
764 if (!sysctl_protected_symlinks)
765 return 0;
766
767 /* Allowed if owner and follower match. */
768 inode = link->dentry->d_inode;
769 if (uid_eq(current_cred()->fsuid, inode->i_uid))
770 return 0;
771
772 /* Allowed if parent directory not sticky and world-writable. */
773 parent = nd->path.dentry->d_inode;
774 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
775 return 0;
776
777 /* Allowed if parent directory and link owner match. */
778 if (uid_eq(parent->i_uid, inode->i_uid))
779 return 0;
780
781 audit_log_link_denied("follow_link", link);
782 path_put_conditional(link, nd);
783 path_put(&nd->path);
784 return -EACCES;
785 }
786
787 /**
788 * safe_hardlink_source - Check for safe hardlink conditions
789 * @inode: the source inode to hardlink from
790 *
791 * Return false if at least one of the following conditions:
792 * - inode is not a regular file
793 * - inode is setuid
794 * - inode is setgid and group-exec
795 * - access failure for read and write
796 *
797 * Otherwise returns true.
798 */
799 static bool safe_hardlink_source(struct inode *inode)
800 {
801 umode_t mode = inode->i_mode;
802
803 /* Special files should not get pinned to the filesystem. */
804 if (!S_ISREG(mode))
805 return false;
806
807 /* Setuid files should not get pinned to the filesystem. */
808 if (mode & S_ISUID)
809 return false;
810
811 /* Executable setgid files should not get pinned to the filesystem. */
812 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
813 return false;
814
815 /* Hardlinking to unreadable or unwritable sources is dangerous. */
816 if (inode_permission(inode, MAY_READ | MAY_WRITE))
817 return false;
818
819 return true;
820 }
821
822 /**
823 * may_linkat - Check permissions for creating a hardlink
824 * @link: the source to hardlink from
825 *
826 * Block hardlink when all of:
827 * - sysctl_protected_hardlinks enabled
828 * - fsuid does not match inode
829 * - hardlink source is unsafe (see safe_hardlink_source() above)
830 * - not CAP_FOWNER
831 *
832 * Returns 0 if successful, -ve on error.
833 */
834 static int may_linkat(struct path *link)
835 {
836 const struct cred *cred;
837 struct inode *inode;
838
839 if (!sysctl_protected_hardlinks)
840 return 0;
841
842 cred = current_cred();
843 inode = link->dentry->d_inode;
844
845 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
846 * otherwise, it must be a safe source.
847 */
848 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
849 capable(CAP_FOWNER))
850 return 0;
851
852 audit_log_link_denied("linkat", link);
853 return -EPERM;
854 }
855
856 static __always_inline int
857 follow_link(struct path *link, struct nameidata *nd, void **p)
858 {
859 struct dentry *dentry = link->dentry;
860 int error;
861 char *s;
862
863 BUG_ON(nd->flags & LOOKUP_RCU);
864
865 if (link->mnt == nd->path.mnt)
866 mntget(link->mnt);
867
868 error = -ELOOP;
869 if (unlikely(current->total_link_count >= 40))
870 goto out_put_nd_path;
871
872 cond_resched();
873 current->total_link_count++;
874
875 touch_atime(link);
876 nd_set_link(nd, NULL);
877
878 error = security_inode_follow_link(link->dentry, nd);
879 if (error)
880 goto out_put_nd_path;
881
882 nd->last_type = LAST_BIND;
883 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
884 error = PTR_ERR(*p);
885 if (IS_ERR(*p))
886 goto out_put_nd_path;
887
888 error = 0;
889 s = nd_get_link(nd);
890 if (s) {
891 error = __vfs_follow_link(nd, s);
892 if (unlikely(error))
893 put_link(nd, link, *p);
894 }
895
896 return error;
897
898 out_put_nd_path:
899 *p = NULL;
900 path_put(&nd->path);
901 path_put(link);
902 return error;
903 }
904
905 static int follow_up_rcu(struct path *path)
906 {
907 struct mount *mnt = real_mount(path->mnt);
908 struct mount *parent;
909 struct dentry *mountpoint;
910
911 parent = mnt->mnt_parent;
912 if (&parent->mnt == path->mnt)
913 return 0;
914 mountpoint = mnt->mnt_mountpoint;
915 path->dentry = mountpoint;
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * follow_up - Find the mountpoint of path's vfsmount
922 *
923 * Given a path, find the mountpoint of its source file system.
924 * Replace @path with the path of the mountpoint in the parent mount.
925 * Up is towards /.
926 *
927 * Return 1 if we went up a level and 0 if we were already at the
928 * root.
929 */
930 int follow_up(struct path *path)
931 {
932 struct mount *mnt = real_mount(path->mnt);
933 struct mount *parent;
934 struct dentry *mountpoint;
935
936 br_read_lock(&vfsmount_lock);
937 parent = mnt->mnt_parent;
938 if (parent == mnt) {
939 br_read_unlock(&vfsmount_lock);
940 return 0;
941 }
942 mntget(&parent->mnt);
943 mountpoint = dget(mnt->mnt_mountpoint);
944 br_read_unlock(&vfsmount_lock);
945 dput(path->dentry);
946 path->dentry = mountpoint;
947 mntput(path->mnt);
948 path->mnt = &parent->mnt;
949 return 1;
950 }
951
952 /*
953 * Perform an automount
954 * - return -EISDIR to tell follow_managed() to stop and return the path we
955 * were called with.
956 */
957 static int follow_automount(struct path *path, unsigned flags,
958 bool *need_mntput)
959 {
960 struct vfsmount *mnt;
961 int err;
962
963 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
964 return -EREMOTE;
965
966 /* We don't want to mount if someone's just doing a stat -
967 * unless they're stat'ing a directory and appended a '/' to
968 * the name.
969 *
970 * We do, however, want to mount if someone wants to open or
971 * create a file of any type under the mountpoint, wants to
972 * traverse through the mountpoint or wants to open the
973 * mounted directory. Also, autofs may mark negative dentries
974 * as being automount points. These will need the attentions
975 * of the daemon to instantiate them before they can be used.
976 */
977 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
978 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
979 path->dentry->d_inode)
980 return -EISDIR;
981
982 current->total_link_count++;
983 if (current->total_link_count >= 40)
984 return -ELOOP;
985
986 mnt = path->dentry->d_op->d_automount(path);
987 if (IS_ERR(mnt)) {
988 /*
989 * The filesystem is allowed to return -EISDIR here to indicate
990 * it doesn't want to automount. For instance, autofs would do
991 * this so that its userspace daemon can mount on this dentry.
992 *
993 * However, we can only permit this if it's a terminal point in
994 * the path being looked up; if it wasn't then the remainder of
995 * the path is inaccessible and we should say so.
996 */
997 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
998 return -EREMOTE;
999 return PTR_ERR(mnt);
1000 }
1001
1002 if (!mnt) /* mount collision */
1003 return 0;
1004
1005 if (!*need_mntput) {
1006 /* lock_mount() may release path->mnt on error */
1007 mntget(path->mnt);
1008 *need_mntput = true;
1009 }
1010 err = finish_automount(mnt, path);
1011
1012 switch (err) {
1013 case -EBUSY:
1014 /* Someone else made a mount here whilst we were busy */
1015 return 0;
1016 case 0:
1017 path_put(path);
1018 path->mnt = mnt;
1019 path->dentry = dget(mnt->mnt_root);
1020 return 0;
1021 default:
1022 return err;
1023 }
1024
1025 }
1026
1027 /*
1028 * Handle a dentry that is managed in some way.
1029 * - Flagged for transit management (autofs)
1030 * - Flagged as mountpoint
1031 * - Flagged as automount point
1032 *
1033 * This may only be called in refwalk mode.
1034 *
1035 * Serialization is taken care of in namespace.c
1036 */
1037 static int follow_managed(struct path *path, unsigned flags)
1038 {
1039 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1040 unsigned managed;
1041 bool need_mntput = false;
1042 int ret = 0;
1043
1044 /* Given that we're not holding a lock here, we retain the value in a
1045 * local variable for each dentry as we look at it so that we don't see
1046 * the components of that value change under us */
1047 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1048 managed &= DCACHE_MANAGED_DENTRY,
1049 unlikely(managed != 0)) {
1050 /* Allow the filesystem to manage the transit without i_mutex
1051 * being held. */
1052 if (managed & DCACHE_MANAGE_TRANSIT) {
1053 BUG_ON(!path->dentry->d_op);
1054 BUG_ON(!path->dentry->d_op->d_manage);
1055 ret = path->dentry->d_op->d_manage(path->dentry, false);
1056 if (ret < 0)
1057 break;
1058 }
1059
1060 /* Transit to a mounted filesystem. */
1061 if (managed & DCACHE_MOUNTED) {
1062 struct vfsmount *mounted = lookup_mnt(path);
1063 if (mounted) {
1064 dput(path->dentry);
1065 if (need_mntput)
1066 mntput(path->mnt);
1067 path->mnt = mounted;
1068 path->dentry = dget(mounted->mnt_root);
1069 need_mntput = true;
1070 continue;
1071 }
1072
1073 /* Something is mounted on this dentry in another
1074 * namespace and/or whatever was mounted there in this
1075 * namespace got unmounted before we managed to get the
1076 * vfsmount_lock */
1077 }
1078
1079 /* Handle an automount point */
1080 if (managed & DCACHE_NEED_AUTOMOUNT) {
1081 ret = follow_automount(path, flags, &need_mntput);
1082 if (ret < 0)
1083 break;
1084 continue;
1085 }
1086
1087 /* We didn't change the current path point */
1088 break;
1089 }
1090
1091 if (need_mntput && path->mnt == mnt)
1092 mntput(path->mnt);
1093 if (ret == -EISDIR)
1094 ret = 0;
1095 return ret < 0 ? ret : need_mntput;
1096 }
1097
1098 int follow_down_one(struct path *path)
1099 {
1100 struct vfsmount *mounted;
1101
1102 mounted = lookup_mnt(path);
1103 if (mounted) {
1104 dput(path->dentry);
1105 mntput(path->mnt);
1106 path->mnt = mounted;
1107 path->dentry = dget(mounted->mnt_root);
1108 return 1;
1109 }
1110 return 0;
1111 }
1112
1113 static inline bool managed_dentry_might_block(struct dentry *dentry)
1114 {
1115 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1116 dentry->d_op->d_manage(dentry, true) < 0);
1117 }
1118
1119 /*
1120 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1121 * we meet a managed dentry that would need blocking.
1122 */
1123 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1124 struct inode **inode)
1125 {
1126 for (;;) {
1127 struct mount *mounted;
1128 /*
1129 * Don't forget we might have a non-mountpoint managed dentry
1130 * that wants to block transit.
1131 */
1132 if (unlikely(managed_dentry_might_block(path->dentry)))
1133 return false;
1134
1135 if (!d_mountpoint(path->dentry))
1136 break;
1137
1138 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1139 if (!mounted)
1140 break;
1141 path->mnt = &mounted->mnt;
1142 path->dentry = mounted->mnt.mnt_root;
1143 nd->flags |= LOOKUP_JUMPED;
1144 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1145 /*
1146 * Update the inode too. We don't need to re-check the
1147 * dentry sequence number here after this d_inode read,
1148 * because a mount-point is always pinned.
1149 */
1150 *inode = path->dentry->d_inode;
1151 }
1152 return true;
1153 }
1154
1155 static void follow_mount_rcu(struct nameidata *nd)
1156 {
1157 while (d_mountpoint(nd->path.dentry)) {
1158 struct mount *mounted;
1159 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1160 if (!mounted)
1161 break;
1162 nd->path.mnt = &mounted->mnt;
1163 nd->path.dentry = mounted->mnt.mnt_root;
1164 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1165 }
1166 }
1167
1168 static int follow_dotdot_rcu(struct nameidata *nd)
1169 {
1170 set_root_rcu(nd);
1171
1172 while (1) {
1173 if (nd->path.dentry == nd->root.dentry &&
1174 nd->path.mnt == nd->root.mnt) {
1175 break;
1176 }
1177 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1178 struct dentry *old = nd->path.dentry;
1179 struct dentry *parent = old->d_parent;
1180 unsigned seq;
1181
1182 seq = read_seqcount_begin(&parent->d_seq);
1183 if (read_seqcount_retry(&old->d_seq, nd->seq))
1184 goto failed;
1185 nd->path.dentry = parent;
1186 nd->seq = seq;
1187 break;
1188 }
1189 if (!follow_up_rcu(&nd->path))
1190 break;
1191 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1192 }
1193 follow_mount_rcu(nd);
1194 nd->inode = nd->path.dentry->d_inode;
1195 return 0;
1196
1197 failed:
1198 nd->flags &= ~LOOKUP_RCU;
1199 if (!(nd->flags & LOOKUP_ROOT))
1200 nd->root.mnt = NULL;
1201 unlock_rcu_walk();
1202 return -ECHILD;
1203 }
1204
1205 /*
1206 * Follow down to the covering mount currently visible to userspace. At each
1207 * point, the filesystem owning that dentry may be queried as to whether the
1208 * caller is permitted to proceed or not.
1209 */
1210 int follow_down(struct path *path)
1211 {
1212 unsigned managed;
1213 int ret;
1214
1215 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1216 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1217 /* Allow the filesystem to manage the transit without i_mutex
1218 * being held.
1219 *
1220 * We indicate to the filesystem if someone is trying to mount
1221 * something here. This gives autofs the chance to deny anyone
1222 * other than its daemon the right to mount on its
1223 * superstructure.
1224 *
1225 * The filesystem may sleep at this point.
1226 */
1227 if (managed & DCACHE_MANAGE_TRANSIT) {
1228 BUG_ON(!path->dentry->d_op);
1229 BUG_ON(!path->dentry->d_op->d_manage);
1230 ret = path->dentry->d_op->d_manage(
1231 path->dentry, false);
1232 if (ret < 0)
1233 return ret == -EISDIR ? 0 : ret;
1234 }
1235
1236 /* Transit to a mounted filesystem. */
1237 if (managed & DCACHE_MOUNTED) {
1238 struct vfsmount *mounted = lookup_mnt(path);
1239 if (!mounted)
1240 break;
1241 dput(path->dentry);
1242 mntput(path->mnt);
1243 path->mnt = mounted;
1244 path->dentry = dget(mounted->mnt_root);
1245 continue;
1246 }
1247
1248 /* Don't handle automount points here */
1249 break;
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1256 */
1257 static void follow_mount(struct path *path)
1258 {
1259 while (d_mountpoint(path->dentry)) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 }
1268 }
1269
1270 static void follow_dotdot(struct nameidata *nd)
1271 {
1272 set_root(nd);
1273
1274 while(1) {
1275 struct dentry *old = nd->path.dentry;
1276
1277 if (nd->path.dentry == nd->root.dentry &&
1278 nd->path.mnt == nd->root.mnt) {
1279 break;
1280 }
1281 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1282 /* rare case of legitimate dget_parent()... */
1283 nd->path.dentry = dget_parent(nd->path.dentry);
1284 dput(old);
1285 break;
1286 }
1287 if (!follow_up(&nd->path))
1288 break;
1289 }
1290 follow_mount(&nd->path);
1291 nd->inode = nd->path.dentry->d_inode;
1292 }
1293
1294 /*
1295 * This looks up the name in dcache, possibly revalidates the old dentry and
1296 * allocates a new one if not found or not valid. In the need_lookup argument
1297 * returns whether i_op->lookup is necessary.
1298 *
1299 * dir->d_inode->i_mutex must be held
1300 */
1301 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1302 unsigned int flags, bool *need_lookup)
1303 {
1304 struct dentry *dentry;
1305 int error;
1306
1307 *need_lookup = false;
1308 dentry = d_lookup(dir, name);
1309 if (dentry) {
1310 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1311 error = d_revalidate(dentry, flags);
1312 if (unlikely(error <= 0)) {
1313 if (error < 0) {
1314 dput(dentry);
1315 return ERR_PTR(error);
1316 } else if (!d_invalidate(dentry)) {
1317 dput(dentry);
1318 dentry = NULL;
1319 }
1320 }
1321 }
1322 }
1323
1324 if (!dentry) {
1325 dentry = d_alloc(dir, name);
1326 if (unlikely(!dentry))
1327 return ERR_PTR(-ENOMEM);
1328
1329 *need_lookup = true;
1330 }
1331 return dentry;
1332 }
1333
1334 /*
1335 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1336 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1337 *
1338 * dir->d_inode->i_mutex must be held
1339 */
1340 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1341 unsigned int flags)
1342 {
1343 struct dentry *old;
1344
1345 /* Don't create child dentry for a dead directory. */
1346 if (unlikely(IS_DEADDIR(dir))) {
1347 dput(dentry);
1348 return ERR_PTR(-ENOENT);
1349 }
1350
1351 old = dir->i_op->lookup(dir, dentry, flags);
1352 if (unlikely(old)) {
1353 dput(dentry);
1354 dentry = old;
1355 }
1356 return dentry;
1357 }
1358
1359 static struct dentry *__lookup_hash(struct qstr *name,
1360 struct dentry *base, unsigned int flags)
1361 {
1362 bool need_lookup;
1363 struct dentry *dentry;
1364
1365 dentry = lookup_dcache(name, base, flags, &need_lookup);
1366 if (!need_lookup)
1367 return dentry;
1368
1369 return lookup_real(base->d_inode, dentry, flags);
1370 }
1371
1372 /*
1373 * It's more convoluted than I'd like it to be, but... it's still fairly
1374 * small and for now I'd prefer to have fast path as straight as possible.
1375 * It _is_ time-critical.
1376 */
1377 static int lookup_fast(struct nameidata *nd,
1378 struct path *path, struct inode **inode)
1379 {
1380 struct vfsmount *mnt = nd->path.mnt;
1381 struct dentry *dentry, *parent = nd->path.dentry;
1382 int need_reval = 1;
1383 int status = 1;
1384 int err;
1385
1386 /*
1387 * Rename seqlock is not required here because in the off chance
1388 * of a false negative due to a concurrent rename, we're going to
1389 * do the non-racy lookup, below.
1390 */
1391 if (nd->flags & LOOKUP_RCU) {
1392 unsigned seq;
1393 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1394 if (!dentry)
1395 goto unlazy;
1396
1397 /*
1398 * This sequence count validates that the inode matches
1399 * the dentry name information from lookup.
1400 */
1401 *inode = dentry->d_inode;
1402 if (read_seqcount_retry(&dentry->d_seq, seq))
1403 return -ECHILD;
1404
1405 /*
1406 * This sequence count validates that the parent had no
1407 * changes while we did the lookup of the dentry above.
1408 *
1409 * The memory barrier in read_seqcount_begin of child is
1410 * enough, we can use __read_seqcount_retry here.
1411 */
1412 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1413 return -ECHILD;
1414 nd->seq = seq;
1415
1416 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1417 status = d_revalidate(dentry, nd->flags);
1418 if (unlikely(status <= 0)) {
1419 if (status != -ECHILD)
1420 need_reval = 0;
1421 goto unlazy;
1422 }
1423 }
1424 path->mnt = mnt;
1425 path->dentry = dentry;
1426 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1427 goto unlazy;
1428 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1429 goto unlazy;
1430 return 0;
1431 unlazy:
1432 if (unlazy_walk(nd, dentry))
1433 return -ECHILD;
1434 } else {
1435 dentry = __d_lookup(parent, &nd->last);
1436 }
1437
1438 if (unlikely(!dentry))
1439 goto need_lookup;
1440
1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1442 status = d_revalidate(dentry, nd->flags);
1443 if (unlikely(status <= 0)) {
1444 if (status < 0) {
1445 dput(dentry);
1446 return status;
1447 }
1448 if (!d_invalidate(dentry)) {
1449 dput(dentry);
1450 goto need_lookup;
1451 }
1452 }
1453
1454 path->mnt = mnt;
1455 path->dentry = dentry;
1456 err = follow_managed(path, nd->flags);
1457 if (unlikely(err < 0)) {
1458 path_put_conditional(path, nd);
1459 return err;
1460 }
1461 if (err)
1462 nd->flags |= LOOKUP_JUMPED;
1463 *inode = path->dentry->d_inode;
1464 return 0;
1465
1466 need_lookup:
1467 return 1;
1468 }
1469
1470 /* Fast lookup failed, do it the slow way */
1471 static int lookup_slow(struct nameidata *nd, struct path *path)
1472 {
1473 struct dentry *dentry, *parent;
1474 int err;
1475
1476 parent = nd->path.dentry;
1477 BUG_ON(nd->inode != parent->d_inode);
1478
1479 mutex_lock(&parent->d_inode->i_mutex);
1480 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1481 mutex_unlock(&parent->d_inode->i_mutex);
1482 if (IS_ERR(dentry))
1483 return PTR_ERR(dentry);
1484 path->mnt = nd->path.mnt;
1485 path->dentry = dentry;
1486 err = follow_managed(path, nd->flags);
1487 if (unlikely(err < 0)) {
1488 path_put_conditional(path, nd);
1489 return err;
1490 }
1491 if (err)
1492 nd->flags |= LOOKUP_JUMPED;
1493 return 0;
1494 }
1495
1496 static inline int may_lookup(struct nameidata *nd)
1497 {
1498 if (nd->flags & LOOKUP_RCU) {
1499 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1500 if (err != -ECHILD)
1501 return err;
1502 if (unlazy_walk(nd, NULL))
1503 return -ECHILD;
1504 }
1505 return inode_permission(nd->inode, MAY_EXEC);
1506 }
1507
1508 static inline int handle_dots(struct nameidata *nd, int type)
1509 {
1510 if (type == LAST_DOTDOT) {
1511 if (nd->flags & LOOKUP_RCU) {
1512 if (follow_dotdot_rcu(nd))
1513 return -ECHILD;
1514 } else
1515 follow_dotdot(nd);
1516 }
1517 return 0;
1518 }
1519
1520 static void terminate_walk(struct nameidata *nd)
1521 {
1522 if (!(nd->flags & LOOKUP_RCU)) {
1523 path_put(&nd->path);
1524 } else {
1525 nd->flags &= ~LOOKUP_RCU;
1526 if (!(nd->flags & LOOKUP_ROOT))
1527 nd->root.mnt = NULL;
1528 unlock_rcu_walk();
1529 }
1530 }
1531
1532 /*
1533 * Do we need to follow links? We _really_ want to be able
1534 * to do this check without having to look at inode->i_op,
1535 * so we keep a cache of "no, this doesn't need follow_link"
1536 * for the common case.
1537 */
1538 static inline int should_follow_link(struct inode *inode, int follow)
1539 {
1540 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1541 if (likely(inode->i_op->follow_link))
1542 return follow;
1543
1544 /* This gets set once for the inode lifetime */
1545 spin_lock(&inode->i_lock);
1546 inode->i_opflags |= IOP_NOFOLLOW;
1547 spin_unlock(&inode->i_lock);
1548 }
1549 return 0;
1550 }
1551
1552 static inline int walk_component(struct nameidata *nd, struct path *path,
1553 int follow)
1554 {
1555 struct inode *inode;
1556 int err;
1557 /*
1558 * "." and ".." are special - ".." especially so because it has
1559 * to be able to know about the current root directory and
1560 * parent relationships.
1561 */
1562 if (unlikely(nd->last_type != LAST_NORM))
1563 return handle_dots(nd, nd->last_type);
1564 err = lookup_fast(nd, path, &inode);
1565 if (unlikely(err)) {
1566 if (err < 0)
1567 goto out_err;
1568
1569 err = lookup_slow(nd, path);
1570 if (err < 0)
1571 goto out_err;
1572
1573 inode = path->dentry->d_inode;
1574 }
1575 err = -ENOENT;
1576 if (!inode)
1577 goto out_path_put;
1578
1579 if (should_follow_link(inode, follow)) {
1580 if (nd->flags & LOOKUP_RCU) {
1581 if (unlikely(unlazy_walk(nd, path->dentry))) {
1582 err = -ECHILD;
1583 goto out_err;
1584 }
1585 }
1586 BUG_ON(inode != path->dentry->d_inode);
1587 return 1;
1588 }
1589 path_to_nameidata(path, nd);
1590 nd->inode = inode;
1591 return 0;
1592
1593 out_path_put:
1594 path_to_nameidata(path, nd);
1595 out_err:
1596 terminate_walk(nd);
1597 return err;
1598 }
1599
1600 /*
1601 * This limits recursive symlink follows to 8, while
1602 * limiting consecutive symlinks to 40.
1603 *
1604 * Without that kind of total limit, nasty chains of consecutive
1605 * symlinks can cause almost arbitrarily long lookups.
1606 */
1607 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1608 {
1609 int res;
1610
1611 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1612 path_put_conditional(path, nd);
1613 path_put(&nd->path);
1614 return -ELOOP;
1615 }
1616 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1617
1618 nd->depth++;
1619 current->link_count++;
1620
1621 do {
1622 struct path link = *path;
1623 void *cookie;
1624
1625 res = follow_link(&link, nd, &cookie);
1626 if (res)
1627 break;
1628 res = walk_component(nd, path, LOOKUP_FOLLOW);
1629 put_link(nd, &link, cookie);
1630 } while (res > 0);
1631
1632 current->link_count--;
1633 nd->depth--;
1634 return res;
1635 }
1636
1637 /*
1638 * We really don't want to look at inode->i_op->lookup
1639 * when we don't have to. So we keep a cache bit in
1640 * the inode ->i_opflags field that says "yes, we can
1641 * do lookup on this inode".
1642 */
1643 static inline int can_lookup(struct inode *inode)
1644 {
1645 if (likely(inode->i_opflags & IOP_LOOKUP))
1646 return 1;
1647 if (likely(!inode->i_op->lookup))
1648 return 0;
1649
1650 /* We do this once for the lifetime of the inode */
1651 spin_lock(&inode->i_lock);
1652 inode->i_opflags |= IOP_LOOKUP;
1653 spin_unlock(&inode->i_lock);
1654 return 1;
1655 }
1656
1657 /*
1658 * We can do the critical dentry name comparison and hashing
1659 * operations one word at a time, but we are limited to:
1660 *
1661 * - Architectures with fast unaligned word accesses. We could
1662 * do a "get_unaligned()" if this helps and is sufficiently
1663 * fast.
1664 *
1665 * - Little-endian machines (so that we can generate the mask
1666 * of low bytes efficiently). Again, we *could* do a byte
1667 * swapping load on big-endian architectures if that is not
1668 * expensive enough to make the optimization worthless.
1669 *
1670 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1671 * do not trap on the (extremely unlikely) case of a page
1672 * crossing operation.
1673 *
1674 * - Furthermore, we need an efficient 64-bit compile for the
1675 * 64-bit case in order to generate the "number of bytes in
1676 * the final mask". Again, that could be replaced with a
1677 * efficient population count instruction or similar.
1678 */
1679 #ifdef CONFIG_DCACHE_WORD_ACCESS
1680
1681 #include <asm/word-at-a-time.h>
1682
1683 #ifdef CONFIG_64BIT
1684
1685 static inline unsigned int fold_hash(unsigned long hash)
1686 {
1687 hash += hash >> (8*sizeof(int));
1688 return hash;
1689 }
1690
1691 #else /* 32-bit case */
1692
1693 #define fold_hash(x) (x)
1694
1695 #endif
1696
1697 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1698 {
1699 unsigned long a, mask;
1700 unsigned long hash = 0;
1701
1702 for (;;) {
1703 a = load_unaligned_zeropad(name);
1704 if (len < sizeof(unsigned long))
1705 break;
1706 hash += a;
1707 hash *= 9;
1708 name += sizeof(unsigned long);
1709 len -= sizeof(unsigned long);
1710 if (!len)
1711 goto done;
1712 }
1713 mask = ~(~0ul << len*8);
1714 hash += mask & a;
1715 done:
1716 return fold_hash(hash);
1717 }
1718 EXPORT_SYMBOL(full_name_hash);
1719
1720 /*
1721 * Calculate the length and hash of the path component, and
1722 * return the length of the component;
1723 */
1724 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1725 {
1726 unsigned long a, b, adata, bdata, mask, hash, len;
1727 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1728
1729 hash = a = 0;
1730 len = -sizeof(unsigned long);
1731 do {
1732 hash = (hash + a) * 9;
1733 len += sizeof(unsigned long);
1734 a = load_unaligned_zeropad(name+len);
1735 b = a ^ REPEAT_BYTE('/');
1736 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1737
1738 adata = prep_zero_mask(a, adata, &constants);
1739 bdata = prep_zero_mask(b, bdata, &constants);
1740
1741 mask = create_zero_mask(adata | bdata);
1742
1743 hash += a & zero_bytemask(mask);
1744 *hashp = fold_hash(hash);
1745
1746 return len + find_zero(mask);
1747 }
1748
1749 #else
1750
1751 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1752 {
1753 unsigned long hash = init_name_hash();
1754 while (len--)
1755 hash = partial_name_hash(*name++, hash);
1756 return end_name_hash(hash);
1757 }
1758 EXPORT_SYMBOL(full_name_hash);
1759
1760 /*
1761 * We know there's a real path component here of at least
1762 * one character.
1763 */
1764 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1765 {
1766 unsigned long hash = init_name_hash();
1767 unsigned long len = 0, c;
1768
1769 c = (unsigned char)*name;
1770 do {
1771 len++;
1772 hash = partial_name_hash(c, hash);
1773 c = (unsigned char)name[len];
1774 } while (c && c != '/');
1775 *hashp = end_name_hash(hash);
1776 return len;
1777 }
1778
1779 #endif
1780
1781 /*
1782 * Name resolution.
1783 * This is the basic name resolution function, turning a pathname into
1784 * the final dentry. We expect 'base' to be positive and a directory.
1785 *
1786 * Returns 0 and nd will have valid dentry and mnt on success.
1787 * Returns error and drops reference to input namei data on failure.
1788 */
1789 static int link_path_walk(const char *name, struct nameidata *nd)
1790 {
1791 struct path next;
1792 int err;
1793
1794 while (*name=='/')
1795 name++;
1796 if (!*name)
1797 return 0;
1798
1799 /* At this point we know we have a real path component. */
1800 for(;;) {
1801 struct qstr this;
1802 long len;
1803 int type;
1804
1805 err = may_lookup(nd);
1806 if (err)
1807 break;
1808
1809 len = hash_name(name, &this.hash);
1810 this.name = name;
1811 this.len = len;
1812
1813 type = LAST_NORM;
1814 if (name[0] == '.') switch (len) {
1815 case 2:
1816 if (name[1] == '.') {
1817 type = LAST_DOTDOT;
1818 nd->flags |= LOOKUP_JUMPED;
1819 }
1820 break;
1821 case 1:
1822 type = LAST_DOT;
1823 }
1824 if (likely(type == LAST_NORM)) {
1825 struct dentry *parent = nd->path.dentry;
1826 nd->flags &= ~LOOKUP_JUMPED;
1827 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1828 err = parent->d_op->d_hash(parent, &this);
1829 if (err < 0)
1830 break;
1831 }
1832 }
1833
1834 nd->last = this;
1835 nd->last_type = type;
1836
1837 if (!name[len])
1838 return 0;
1839 /*
1840 * If it wasn't NUL, we know it was '/'. Skip that
1841 * slash, and continue until no more slashes.
1842 */
1843 do {
1844 len++;
1845 } while (unlikely(name[len] == '/'));
1846 if (!name[len])
1847 return 0;
1848
1849 name += len;
1850
1851 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1852 if (err < 0)
1853 return err;
1854
1855 if (err) {
1856 err = nested_symlink(&next, nd);
1857 if (err)
1858 return err;
1859 }
1860 if (!can_lookup(nd->inode)) {
1861 err = -ENOTDIR;
1862 break;
1863 }
1864 }
1865 terminate_walk(nd);
1866 return err;
1867 }
1868
1869 static int path_init(int dfd, const char *name, unsigned int flags,
1870 struct nameidata *nd, struct file **fp)
1871 {
1872 int retval = 0;
1873
1874 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1875 nd->flags = flags | LOOKUP_JUMPED;
1876 nd->depth = 0;
1877 if (flags & LOOKUP_ROOT) {
1878 struct inode *inode = nd->root.dentry->d_inode;
1879 if (*name) {
1880 if (!can_lookup(inode))
1881 return -ENOTDIR;
1882 retval = inode_permission(inode, MAY_EXEC);
1883 if (retval)
1884 return retval;
1885 }
1886 nd->path = nd->root;
1887 nd->inode = inode;
1888 if (flags & LOOKUP_RCU) {
1889 lock_rcu_walk();
1890 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1891 } else {
1892 path_get(&nd->path);
1893 }
1894 return 0;
1895 }
1896
1897 nd->root.mnt = NULL;
1898
1899 if (*name=='/') {
1900 if (flags & LOOKUP_RCU) {
1901 lock_rcu_walk();
1902 set_root_rcu(nd);
1903 } else {
1904 set_root(nd);
1905 path_get(&nd->root);
1906 }
1907 nd->path = nd->root;
1908 } else if (dfd == AT_FDCWD) {
1909 if (flags & LOOKUP_RCU) {
1910 struct fs_struct *fs = current->fs;
1911 unsigned seq;
1912
1913 lock_rcu_walk();
1914
1915 do {
1916 seq = read_seqcount_begin(&fs->seq);
1917 nd->path = fs->pwd;
1918 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1919 } while (read_seqcount_retry(&fs->seq, seq));
1920 } else {
1921 get_fs_pwd(current->fs, &nd->path);
1922 }
1923 } else {
1924 /* Caller must check execute permissions on the starting path component */
1925 struct fd f = fdget_raw(dfd);
1926 struct dentry *dentry;
1927
1928 if (!f.file)
1929 return -EBADF;
1930
1931 dentry = f.file->f_path.dentry;
1932
1933 if (*name) {
1934 if (!can_lookup(dentry->d_inode)) {
1935 fdput(f);
1936 return -ENOTDIR;
1937 }
1938 }
1939
1940 nd->path = f.file->f_path;
1941 if (flags & LOOKUP_RCU) {
1942 if (f.need_put)
1943 *fp = f.file;
1944 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1945 lock_rcu_walk();
1946 } else {
1947 path_get(&nd->path);
1948 fdput(f);
1949 }
1950 }
1951
1952 nd->inode = nd->path.dentry->d_inode;
1953 return 0;
1954 }
1955
1956 static inline int lookup_last(struct nameidata *nd, struct path *path)
1957 {
1958 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1959 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1960
1961 nd->flags &= ~LOOKUP_PARENT;
1962 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1963 }
1964
1965 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1966 static int path_lookupat(int dfd, const char *name,
1967 unsigned int flags, struct nameidata *nd)
1968 {
1969 struct file *base = NULL;
1970 struct path path;
1971 int err;
1972
1973 /*
1974 * Path walking is largely split up into 2 different synchronisation
1975 * schemes, rcu-walk and ref-walk (explained in
1976 * Documentation/filesystems/path-lookup.txt). These share much of the
1977 * path walk code, but some things particularly setup, cleanup, and
1978 * following mounts are sufficiently divergent that functions are
1979 * duplicated. Typically there is a function foo(), and its RCU
1980 * analogue, foo_rcu().
1981 *
1982 * -ECHILD is the error number of choice (just to avoid clashes) that
1983 * is returned if some aspect of an rcu-walk fails. Such an error must
1984 * be handled by restarting a traditional ref-walk (which will always
1985 * be able to complete).
1986 */
1987 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1988
1989 if (unlikely(err))
1990 return err;
1991
1992 current->total_link_count = 0;
1993 err = link_path_walk(name, nd);
1994
1995 if (!err && !(flags & LOOKUP_PARENT)) {
1996 err = lookup_last(nd, &path);
1997 while (err > 0) {
1998 void *cookie;
1999 struct path link = path;
2000 err = may_follow_link(&link, nd);
2001 if (unlikely(err))
2002 break;
2003 nd->flags |= LOOKUP_PARENT;
2004 err = follow_link(&link, nd, &cookie);
2005 if (err)
2006 break;
2007 err = lookup_last(nd, &path);
2008 put_link(nd, &link, cookie);
2009 }
2010 }
2011
2012 if (!err)
2013 err = complete_walk(nd);
2014
2015 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2016 if (!can_lookup(nd->inode)) {
2017 path_put(&nd->path);
2018 err = -ENOTDIR;
2019 }
2020 }
2021
2022 if (base)
2023 fput(base);
2024
2025 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2026 path_put(&nd->root);
2027 nd->root.mnt = NULL;
2028 }
2029 return err;
2030 }
2031
2032 static int filename_lookup(int dfd, struct filename *name,
2033 unsigned int flags, struct nameidata *nd)
2034 {
2035 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2036 if (unlikely(retval == -ECHILD))
2037 retval = path_lookupat(dfd, name->name, flags, nd);
2038 if (unlikely(retval == -ESTALE))
2039 retval = path_lookupat(dfd, name->name,
2040 flags | LOOKUP_REVAL, nd);
2041
2042 if (likely(!retval))
2043 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2044 return retval;
2045 }
2046
2047 static int do_path_lookup(int dfd, const char *name,
2048 unsigned int flags, struct nameidata *nd)
2049 {
2050 struct filename filename = { .name = name };
2051
2052 return filename_lookup(dfd, &filename, flags, nd);
2053 }
2054
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 struct nameidata nd;
2059 struct dentry *d;
2060 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2061 if (err)
2062 return ERR_PTR(err);
2063 if (nd.last_type != LAST_NORM) {
2064 path_put(&nd.path);
2065 return ERR_PTR(-EINVAL);
2066 }
2067 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2068 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2069 if (IS_ERR(d)) {
2070 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2071 path_put(&nd.path);
2072 return d;
2073 }
2074 *path = nd.path;
2075 return d;
2076 }
2077
2078 int kern_path(const char *name, unsigned int flags, struct path *path)
2079 {
2080 struct nameidata nd;
2081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2082 if (!res)
2083 *path = nd.path;
2084 return res;
2085 }
2086
2087 /**
2088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2089 * @dentry: pointer to dentry of the base directory
2090 * @mnt: pointer to vfs mount of the base directory
2091 * @name: pointer to file name
2092 * @flags: lookup flags
2093 * @path: pointer to struct path to fill
2094 */
2095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2096 const char *name, unsigned int flags,
2097 struct path *path)
2098 {
2099 struct nameidata nd;
2100 int err;
2101 nd.root.dentry = dentry;
2102 nd.root.mnt = mnt;
2103 BUG_ON(flags & LOOKUP_PARENT);
2104 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2105 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2106 if (!err)
2107 *path = nd.path;
2108 return err;
2109 }
2110
2111 /*
2112 * Restricted form of lookup. Doesn't follow links, single-component only,
2113 * needs parent already locked. Doesn't follow mounts.
2114 * SMP-safe.
2115 */
2116 static struct dentry *lookup_hash(struct nameidata *nd)
2117 {
2118 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2119 }
2120
2121 /**
2122 * lookup_one_len - filesystem helper to lookup single pathname component
2123 * @name: pathname component to lookup
2124 * @base: base directory to lookup from
2125 * @len: maximum length @len should be interpreted to
2126 *
2127 * Note that this routine is purely a helper for filesystem usage and should
2128 * not be called by generic code. Also note that by using this function the
2129 * nameidata argument is passed to the filesystem methods and a filesystem
2130 * using this helper needs to be prepared for that.
2131 */
2132 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2133 {
2134 struct qstr this;
2135 unsigned int c;
2136 int err;
2137
2138 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2139
2140 this.name = name;
2141 this.len = len;
2142 this.hash = full_name_hash(name, len);
2143 if (!len)
2144 return ERR_PTR(-EACCES);
2145
2146 if (unlikely(name[0] == '.')) {
2147 if (len < 2 || (len == 2 && name[1] == '.'))
2148 return ERR_PTR(-EACCES);
2149 }
2150
2151 while (len--) {
2152 c = *(const unsigned char *)name++;
2153 if (c == '/' || c == '\0')
2154 return ERR_PTR(-EACCES);
2155 }
2156 /*
2157 * See if the low-level filesystem might want
2158 * to use its own hash..
2159 */
2160 if (base->d_flags & DCACHE_OP_HASH) {
2161 int err = base->d_op->d_hash(base, &this);
2162 if (err < 0)
2163 return ERR_PTR(err);
2164 }
2165
2166 err = inode_permission(base->d_inode, MAY_EXEC);
2167 if (err)
2168 return ERR_PTR(err);
2169
2170 return __lookup_hash(&this, base, 0);
2171 }
2172
2173 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2174 struct path *path, int *empty)
2175 {
2176 struct nameidata nd;
2177 struct filename *tmp = getname_flags(name, flags, empty);
2178 int err = PTR_ERR(tmp);
2179 if (!IS_ERR(tmp)) {
2180
2181 BUG_ON(flags & LOOKUP_PARENT);
2182
2183 err = filename_lookup(dfd, tmp, flags, &nd);
2184 putname(tmp);
2185 if (!err)
2186 *path = nd.path;
2187 }
2188 return err;
2189 }
2190
2191 int user_path_at(int dfd, const char __user *name, unsigned flags,
2192 struct path *path)
2193 {
2194 return user_path_at_empty(dfd, name, flags, path, NULL);
2195 }
2196
2197 /*
2198 * NB: most callers don't do anything directly with the reference to the
2199 * to struct filename, but the nd->last pointer points into the name string
2200 * allocated by getname. So we must hold the reference to it until all
2201 * path-walking is complete.
2202 */
2203 static struct filename *
2204 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2205 unsigned int flags)
2206 {
2207 struct filename *s = getname(path);
2208 int error;
2209
2210 /* only LOOKUP_REVAL is allowed in extra flags */
2211 flags &= LOOKUP_REVAL;
2212
2213 if (IS_ERR(s))
2214 return s;
2215
2216 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2217 if (error) {
2218 putname(s);
2219 return ERR_PTR(error);
2220 }
2221
2222 return s;
2223 }
2224
2225 /**
2226 * mountpoint_last - look up last component for umount
2227 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2228 * @path: pointer to container for result
2229 *
2230 * This is a special lookup_last function just for umount. In this case, we
2231 * need to resolve the path without doing any revalidation.
2232 *
2233 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2234 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2235 * in almost all cases, this lookup will be served out of the dcache. The only
2236 * cases where it won't are if nd->last refers to a symlink or the path is
2237 * bogus and it doesn't exist.
2238 *
2239 * Returns:
2240 * -error: if there was an error during lookup. This includes -ENOENT if the
2241 * lookup found a negative dentry. The nd->path reference will also be
2242 * put in this case.
2243 *
2244 * 0: if we successfully resolved nd->path and found it to not to be a
2245 * symlink that needs to be followed. "path" will also be populated.
2246 * The nd->path reference will also be put.
2247 *
2248 * 1: if we successfully resolved nd->last and found it to be a symlink
2249 * that needs to be followed. "path" will be populated with the path
2250 * to the link, and nd->path will *not* be put.
2251 */
2252 static int
2253 mountpoint_last(struct nameidata *nd, struct path *path)
2254 {
2255 int error = 0;
2256 struct dentry *dentry;
2257 struct dentry *dir = nd->path.dentry;
2258
2259 /* If we're in rcuwalk, drop out of it to handle last component */
2260 if (nd->flags & LOOKUP_RCU) {
2261 if (unlazy_walk(nd, NULL)) {
2262 error = -ECHILD;
2263 goto out;
2264 }
2265 }
2266
2267 nd->flags &= ~LOOKUP_PARENT;
2268
2269 if (unlikely(nd->last_type != LAST_NORM)) {
2270 error = handle_dots(nd, nd->last_type);
2271 if (error)
2272 goto out;
2273 dentry = dget(nd->path.dentry);
2274 goto done;
2275 }
2276
2277 mutex_lock(&dir->d_inode->i_mutex);
2278 dentry = d_lookup(dir, &nd->last);
2279 if (!dentry) {
2280 /*
2281 * No cached dentry. Mounted dentries are pinned in the cache,
2282 * so that means that this dentry is probably a symlink or the
2283 * path doesn't actually point to a mounted dentry.
2284 */
2285 dentry = d_alloc(dir, &nd->last);
2286 if (!dentry) {
2287 error = -ENOMEM;
2288 goto out;
2289 }
2290 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2291 error = PTR_ERR(dentry);
2292 if (IS_ERR(dentry))
2293 goto out;
2294 }
2295 mutex_unlock(&dir->d_inode->i_mutex);
2296
2297 done:
2298 if (!dentry->d_inode) {
2299 error = -ENOENT;
2300 dput(dentry);
2301 goto out;
2302 }
2303 path->dentry = dentry;
2304 path->mnt = mntget(nd->path.mnt);
2305 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW))
2306 return 1;
2307 follow_mount(path);
2308 error = 0;
2309 out:
2310 terminate_walk(nd);
2311 return error;
2312 }
2313
2314 /**
2315 * path_mountpoint - look up a path to be umounted
2316 * @dfd: directory file descriptor to start walk from
2317 * @name: full pathname to walk
2318 * @flags: lookup flags
2319 *
2320 * Look up the given name, but don't attempt to revalidate the last component.
2321 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2322 */
2323 static int
2324 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2325 {
2326 struct file *base = NULL;
2327 struct nameidata nd;
2328 int err;
2329
2330 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2331 if (unlikely(err))
2332 return err;
2333
2334 current->total_link_count = 0;
2335 err = link_path_walk(name, &nd);
2336 if (err)
2337 goto out;
2338
2339 err = mountpoint_last(&nd, path);
2340 while (err > 0) {
2341 void *cookie;
2342 struct path link = *path;
2343 err = may_follow_link(&link, &nd);
2344 if (unlikely(err))
2345 break;
2346 nd.flags |= LOOKUP_PARENT;
2347 err = follow_link(&link, &nd, &cookie);
2348 if (err)
2349 break;
2350 err = mountpoint_last(&nd, path);
2351 put_link(&nd, &link, cookie);
2352 }
2353 out:
2354 if (base)
2355 fput(base);
2356
2357 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2358 path_put(&nd.root);
2359
2360 return err;
2361 }
2362
2363 /**
2364 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2365 * @dfd: directory file descriptor
2366 * @name: pathname from userland
2367 * @flags: lookup flags
2368 * @path: pointer to container to hold result
2369 *
2370 * A umount is a special case for path walking. We're not actually interested
2371 * in the inode in this situation, and ESTALE errors can be a problem. We
2372 * simply want track down the dentry and vfsmount attached at the mountpoint
2373 * and avoid revalidating the last component.
2374 *
2375 * Returns 0 and populates "path" on success.
2376 */
2377 int
2378 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2379 struct path *path)
2380 {
2381 struct filename *s = getname(name);
2382 int error;
2383
2384 if (IS_ERR(s))
2385 return PTR_ERR(s);
2386
2387 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2388 if (unlikely(error == -ECHILD))
2389 error = path_mountpoint(dfd, s->name, path, flags);
2390 if (unlikely(error == -ESTALE))
2391 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2392
2393 if (likely(!error))
2394 audit_inode(s, path->dentry, 0);
2395
2396 putname(s);
2397 return error;
2398 }
2399
2400 /*
2401 * It's inline, so penalty for filesystems that don't use sticky bit is
2402 * minimal.
2403 */
2404 static inline int check_sticky(struct inode *dir, struct inode *inode)
2405 {
2406 kuid_t fsuid = current_fsuid();
2407
2408 if (!(dir->i_mode & S_ISVTX))
2409 return 0;
2410 if (uid_eq(inode->i_uid, fsuid))
2411 return 0;
2412 if (uid_eq(dir->i_uid, fsuid))
2413 return 0;
2414 return !inode_capable(inode, CAP_FOWNER);
2415 }
2416
2417 /*
2418 * Check whether we can remove a link victim from directory dir, check
2419 * whether the type of victim is right.
2420 * 1. We can't do it if dir is read-only (done in permission())
2421 * 2. We should have write and exec permissions on dir
2422 * 3. We can't remove anything from append-only dir
2423 * 4. We can't do anything with immutable dir (done in permission())
2424 * 5. If the sticky bit on dir is set we should either
2425 * a. be owner of dir, or
2426 * b. be owner of victim, or
2427 * c. have CAP_FOWNER capability
2428 * 6. If the victim is append-only or immutable we can't do antyhing with
2429 * links pointing to it.
2430 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2431 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2432 * 9. We can't remove a root or mountpoint.
2433 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2434 * nfs_async_unlink().
2435 */
2436 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2437 {
2438 int error;
2439
2440 if (!victim->d_inode)
2441 return -ENOENT;
2442
2443 BUG_ON(victim->d_parent->d_inode != dir);
2444 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2445
2446 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2447 if (error)
2448 return error;
2449 if (IS_APPEND(dir))
2450 return -EPERM;
2451 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2452 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2453 return -EPERM;
2454 if (isdir) {
2455 if (!S_ISDIR(victim->d_inode->i_mode))
2456 return -ENOTDIR;
2457 if (IS_ROOT(victim))
2458 return -EBUSY;
2459 } else if (S_ISDIR(victim->d_inode->i_mode))
2460 return -EISDIR;
2461 if (IS_DEADDIR(dir))
2462 return -ENOENT;
2463 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2464 return -EBUSY;
2465 return 0;
2466 }
2467
2468 /* Check whether we can create an object with dentry child in directory
2469 * dir.
2470 * 1. We can't do it if child already exists (open has special treatment for
2471 * this case, but since we are inlined it's OK)
2472 * 2. We can't do it if dir is read-only (done in permission())
2473 * 3. We should have write and exec permissions on dir
2474 * 4. We can't do it if dir is immutable (done in permission())
2475 */
2476 static inline int may_create(struct inode *dir, struct dentry *child)
2477 {
2478 if (child->d_inode)
2479 return -EEXIST;
2480 if (IS_DEADDIR(dir))
2481 return -ENOENT;
2482 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2483 }
2484
2485 /*
2486 * p1 and p2 should be directories on the same fs.
2487 */
2488 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2489 {
2490 struct dentry *p;
2491
2492 if (p1 == p2) {
2493 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2494 return NULL;
2495 }
2496
2497 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2498
2499 p = d_ancestor(p2, p1);
2500 if (p) {
2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2502 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2503 return p;
2504 }
2505
2506 p = d_ancestor(p1, p2);
2507 if (p) {
2508 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2509 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2510 return p;
2511 }
2512
2513 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2514 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2515 return NULL;
2516 }
2517
2518 void unlock_rename(struct dentry *p1, struct dentry *p2)
2519 {
2520 mutex_unlock(&p1->d_inode->i_mutex);
2521 if (p1 != p2) {
2522 mutex_unlock(&p2->d_inode->i_mutex);
2523 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2524 }
2525 }
2526
2527 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2528 bool want_excl)
2529 {
2530 int error = may_create(dir, dentry);
2531 if (error)
2532 return error;
2533
2534 if (!dir->i_op->create)
2535 return -EACCES; /* shouldn't it be ENOSYS? */
2536 mode &= S_IALLUGO;
2537 mode |= S_IFREG;
2538 error = security_inode_create(dir, dentry, mode);
2539 if (error)
2540 return error;
2541 error = dir->i_op->create(dir, dentry, mode, want_excl);
2542 if (!error)
2543 fsnotify_create(dir, dentry);
2544 return error;
2545 }
2546
2547 static int may_open(struct path *path, int acc_mode, int flag)
2548 {
2549 struct dentry *dentry = path->dentry;
2550 struct inode *inode = dentry->d_inode;
2551 int error;
2552
2553 /* O_PATH? */
2554 if (!acc_mode)
2555 return 0;
2556
2557 if (!inode)
2558 return -ENOENT;
2559
2560 switch (inode->i_mode & S_IFMT) {
2561 case S_IFLNK:
2562 return -ELOOP;
2563 case S_IFDIR:
2564 if (acc_mode & MAY_WRITE)
2565 return -EISDIR;
2566 break;
2567 case S_IFBLK:
2568 case S_IFCHR:
2569 if (path->mnt->mnt_flags & MNT_NODEV)
2570 return -EACCES;
2571 /*FALLTHRU*/
2572 case S_IFIFO:
2573 case S_IFSOCK:
2574 flag &= ~O_TRUNC;
2575 break;
2576 }
2577
2578 error = inode_permission(inode, acc_mode);
2579 if (error)
2580 return error;
2581
2582 /*
2583 * An append-only file must be opened in append mode for writing.
2584 */
2585 if (IS_APPEND(inode)) {
2586 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2587 return -EPERM;
2588 if (flag & O_TRUNC)
2589 return -EPERM;
2590 }
2591
2592 /* O_NOATIME can only be set by the owner or superuser */
2593 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2594 return -EPERM;
2595
2596 return 0;
2597 }
2598
2599 static int handle_truncate(struct file *filp)
2600 {
2601 struct path *path = &filp->f_path;
2602 struct inode *inode = path->dentry->d_inode;
2603 int error = get_write_access(inode);
2604 if (error)
2605 return error;
2606 /*
2607 * Refuse to truncate files with mandatory locks held on them.
2608 */
2609 error = locks_verify_locked(inode);
2610 if (!error)
2611 error = security_path_truncate(path);
2612 if (!error) {
2613 error = do_truncate(path->dentry, 0,
2614 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2615 filp);
2616 }
2617 put_write_access(inode);
2618 return error;
2619 }
2620
2621 static inline int open_to_namei_flags(int flag)
2622 {
2623 if ((flag & O_ACCMODE) == 3)
2624 flag--;
2625 return flag;
2626 }
2627
2628 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2629 {
2630 int error = security_path_mknod(dir, dentry, mode, 0);
2631 if (error)
2632 return error;
2633
2634 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2635 if (error)
2636 return error;
2637
2638 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2639 }
2640
2641 /*
2642 * Attempt to atomically look up, create and open a file from a negative
2643 * dentry.
2644 *
2645 * Returns 0 if successful. The file will have been created and attached to
2646 * @file by the filesystem calling finish_open().
2647 *
2648 * Returns 1 if the file was looked up only or didn't need creating. The
2649 * caller will need to perform the open themselves. @path will have been
2650 * updated to point to the new dentry. This may be negative.
2651 *
2652 * Returns an error code otherwise.
2653 */
2654 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2655 struct path *path, struct file *file,
2656 const struct open_flags *op,
2657 bool got_write, bool need_lookup,
2658 int *opened)
2659 {
2660 struct inode *dir = nd->path.dentry->d_inode;
2661 unsigned open_flag = open_to_namei_flags(op->open_flag);
2662 umode_t mode;
2663 int error;
2664 int acc_mode;
2665 int create_error = 0;
2666 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2667
2668 BUG_ON(dentry->d_inode);
2669
2670 /* Don't create child dentry for a dead directory. */
2671 if (unlikely(IS_DEADDIR(dir))) {
2672 error = -ENOENT;
2673 goto out;
2674 }
2675
2676 mode = op->mode;
2677 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2678 mode &= ~current_umask();
2679
2680 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2681 open_flag &= ~O_TRUNC;
2682 *opened |= FILE_CREATED;
2683 }
2684
2685 /*
2686 * Checking write permission is tricky, bacuse we don't know if we are
2687 * going to actually need it: O_CREAT opens should work as long as the
2688 * file exists. But checking existence breaks atomicity. The trick is
2689 * to check access and if not granted clear O_CREAT from the flags.
2690 *
2691 * Another problem is returing the "right" error value (e.g. for an
2692 * O_EXCL open we want to return EEXIST not EROFS).
2693 */
2694 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2695 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2696 if (!(open_flag & O_CREAT)) {
2697 /*
2698 * No O_CREATE -> atomicity not a requirement -> fall
2699 * back to lookup + open
2700 */
2701 goto no_open;
2702 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2703 /* Fall back and fail with the right error */
2704 create_error = -EROFS;
2705 goto no_open;
2706 } else {
2707 /* No side effects, safe to clear O_CREAT */
2708 create_error = -EROFS;
2709 open_flag &= ~O_CREAT;
2710 }
2711 }
2712
2713 if (open_flag & O_CREAT) {
2714 error = may_o_create(&nd->path, dentry, mode);
2715 if (error) {
2716 create_error = error;
2717 if (open_flag & O_EXCL)
2718 goto no_open;
2719 open_flag &= ~O_CREAT;
2720 }
2721 }
2722
2723 if (nd->flags & LOOKUP_DIRECTORY)
2724 open_flag |= O_DIRECTORY;
2725
2726 file->f_path.dentry = DENTRY_NOT_SET;
2727 file->f_path.mnt = nd->path.mnt;
2728 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2729 opened);
2730 if (error < 0) {
2731 if (create_error && error == -ENOENT)
2732 error = create_error;
2733 goto out;
2734 }
2735
2736 acc_mode = op->acc_mode;
2737 if (*opened & FILE_CREATED) {
2738 fsnotify_create(dir, dentry);
2739 acc_mode = MAY_OPEN;
2740 }
2741
2742 if (error) { /* returned 1, that is */
2743 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2744 error = -EIO;
2745 goto out;
2746 }
2747 if (file->f_path.dentry) {
2748 dput(dentry);
2749 dentry = file->f_path.dentry;
2750 }
2751 if (create_error && dentry->d_inode == NULL) {
2752 error = create_error;
2753 goto out;
2754 }
2755 goto looked_up;
2756 }
2757
2758 /*
2759 * We didn't have the inode before the open, so check open permission
2760 * here.
2761 */
2762 error = may_open(&file->f_path, acc_mode, open_flag);
2763 if (error)
2764 fput(file);
2765
2766 out:
2767 dput(dentry);
2768 return error;
2769
2770 no_open:
2771 if (need_lookup) {
2772 dentry = lookup_real(dir, dentry, nd->flags);
2773 if (IS_ERR(dentry))
2774 return PTR_ERR(dentry);
2775
2776 if (create_error) {
2777 int open_flag = op->open_flag;
2778
2779 error = create_error;
2780 if ((open_flag & O_EXCL)) {
2781 if (!dentry->d_inode)
2782 goto out;
2783 } else if (!dentry->d_inode) {
2784 goto out;
2785 } else if ((open_flag & O_TRUNC) &&
2786 S_ISREG(dentry->d_inode->i_mode)) {
2787 goto out;
2788 }
2789 /* will fail later, go on to get the right error */
2790 }
2791 }
2792 looked_up:
2793 path->dentry = dentry;
2794 path->mnt = nd->path.mnt;
2795 return 1;
2796 }
2797
2798 /*
2799 * Look up and maybe create and open the last component.
2800 *
2801 * Must be called with i_mutex held on parent.
2802 *
2803 * Returns 0 if the file was successfully atomically created (if necessary) and
2804 * opened. In this case the file will be returned attached to @file.
2805 *
2806 * Returns 1 if the file was not completely opened at this time, though lookups
2807 * and creations will have been performed and the dentry returned in @path will
2808 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2809 * specified then a negative dentry may be returned.
2810 *
2811 * An error code is returned otherwise.
2812 *
2813 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2814 * cleared otherwise prior to returning.
2815 */
2816 static int lookup_open(struct nameidata *nd, struct path *path,
2817 struct file *file,
2818 const struct open_flags *op,
2819 bool got_write, int *opened)
2820 {
2821 struct dentry *dir = nd->path.dentry;
2822 struct inode *dir_inode = dir->d_inode;
2823 struct dentry *dentry;
2824 int error;
2825 bool need_lookup;
2826
2827 *opened &= ~FILE_CREATED;
2828 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2829 if (IS_ERR(dentry))
2830 return PTR_ERR(dentry);
2831
2832 /* Cached positive dentry: will open in f_op->open */
2833 if (!need_lookup && dentry->d_inode)
2834 goto out_no_open;
2835
2836 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2837 return atomic_open(nd, dentry, path, file, op, got_write,
2838 need_lookup, opened);
2839 }
2840
2841 if (need_lookup) {
2842 BUG_ON(dentry->d_inode);
2843
2844 dentry = lookup_real(dir_inode, dentry, nd->flags);
2845 if (IS_ERR(dentry))
2846 return PTR_ERR(dentry);
2847 }
2848
2849 /* Negative dentry, just create the file */
2850 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2851 umode_t mode = op->mode;
2852 if (!IS_POSIXACL(dir->d_inode))
2853 mode &= ~current_umask();
2854 /*
2855 * This write is needed to ensure that a
2856 * rw->ro transition does not occur between
2857 * the time when the file is created and when
2858 * a permanent write count is taken through
2859 * the 'struct file' in finish_open().
2860 */
2861 if (!got_write) {
2862 error = -EROFS;
2863 goto out_dput;
2864 }
2865 *opened |= FILE_CREATED;
2866 error = security_path_mknod(&nd->path, dentry, mode, 0);
2867 if (error)
2868 goto out_dput;
2869 error = vfs_create(dir->d_inode, dentry, mode,
2870 nd->flags & LOOKUP_EXCL);
2871 if (error)
2872 goto out_dput;
2873 }
2874 out_no_open:
2875 path->dentry = dentry;
2876 path->mnt = nd->path.mnt;
2877 return 1;
2878
2879 out_dput:
2880 dput(dentry);
2881 return error;
2882 }
2883
2884 /*
2885 * Handle the last step of open()
2886 */
2887 static int do_last(struct nameidata *nd, struct path *path,
2888 struct file *file, const struct open_flags *op,
2889 int *opened, struct filename *name)
2890 {
2891 struct dentry *dir = nd->path.dentry;
2892 int open_flag = op->open_flag;
2893 bool will_truncate = (open_flag & O_TRUNC) != 0;
2894 bool got_write = false;
2895 int acc_mode = op->acc_mode;
2896 struct inode *inode;
2897 bool symlink_ok = false;
2898 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2899 bool retried = false;
2900 int error;
2901
2902 nd->flags &= ~LOOKUP_PARENT;
2903 nd->flags |= op->intent;
2904
2905 if (nd->last_type != LAST_NORM) {
2906 error = handle_dots(nd, nd->last_type);
2907 if (error)
2908 return error;
2909 goto finish_open;
2910 }
2911
2912 if (!(open_flag & O_CREAT)) {
2913 if (nd->last.name[nd->last.len])
2914 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2915 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2916 symlink_ok = true;
2917 /* we _can_ be in RCU mode here */
2918 error = lookup_fast(nd, path, &inode);
2919 if (likely(!error))
2920 goto finish_lookup;
2921
2922 if (error < 0)
2923 goto out;
2924
2925 BUG_ON(nd->inode != dir->d_inode);
2926 } else {
2927 /* create side of things */
2928 /*
2929 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2930 * has been cleared when we got to the last component we are
2931 * about to look up
2932 */
2933 error = complete_walk(nd);
2934 if (error)
2935 return error;
2936
2937 audit_inode(name, dir, LOOKUP_PARENT);
2938 error = -EISDIR;
2939 /* trailing slashes? */
2940 if (nd->last.name[nd->last.len])
2941 goto out;
2942 }
2943
2944 retry_lookup:
2945 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2946 error = mnt_want_write(nd->path.mnt);
2947 if (!error)
2948 got_write = true;
2949 /*
2950 * do _not_ fail yet - we might not need that or fail with
2951 * a different error; let lookup_open() decide; we'll be
2952 * dropping this one anyway.
2953 */
2954 }
2955 mutex_lock(&dir->d_inode->i_mutex);
2956 error = lookup_open(nd, path, file, op, got_write, opened);
2957 mutex_unlock(&dir->d_inode->i_mutex);
2958
2959 if (error <= 0) {
2960 if (error)
2961 goto out;
2962
2963 if ((*opened & FILE_CREATED) ||
2964 !S_ISREG(file_inode(file)->i_mode))
2965 will_truncate = false;
2966
2967 audit_inode(name, file->f_path.dentry, 0);
2968 goto opened;
2969 }
2970
2971 if (*opened & FILE_CREATED) {
2972 /* Don't check for write permission, don't truncate */
2973 open_flag &= ~O_TRUNC;
2974 will_truncate = false;
2975 acc_mode = MAY_OPEN;
2976 path_to_nameidata(path, nd);
2977 goto finish_open_created;
2978 }
2979
2980 /*
2981 * create/update audit record if it already exists.
2982 */
2983 if (path->dentry->d_inode)
2984 audit_inode(name, path->dentry, 0);
2985
2986 /*
2987 * If atomic_open() acquired write access it is dropped now due to
2988 * possible mount and symlink following (this might be optimized away if
2989 * necessary...)
2990 */
2991 if (got_write) {
2992 mnt_drop_write(nd->path.mnt);
2993 got_write = false;
2994 }
2995
2996 error = -EEXIST;
2997 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2998 goto exit_dput;
2999
3000 error = follow_managed(path, nd->flags);
3001 if (error < 0)
3002 goto exit_dput;
3003
3004 if (error)
3005 nd->flags |= LOOKUP_JUMPED;
3006
3007 BUG_ON(nd->flags & LOOKUP_RCU);
3008 inode = path->dentry->d_inode;
3009 finish_lookup:
3010 /* we _can_ be in RCU mode here */
3011 error = -ENOENT;
3012 if (!inode) {
3013 path_to_nameidata(path, nd);
3014 goto out;
3015 }
3016
3017 if (should_follow_link(inode, !symlink_ok)) {
3018 if (nd->flags & LOOKUP_RCU) {
3019 if (unlikely(unlazy_walk(nd, path->dentry))) {
3020 error = -ECHILD;
3021 goto out;
3022 }
3023 }
3024 BUG_ON(inode != path->dentry->d_inode);
3025 return 1;
3026 }
3027
3028 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3029 path_to_nameidata(path, nd);
3030 } else {
3031 save_parent.dentry = nd->path.dentry;
3032 save_parent.mnt = mntget(path->mnt);
3033 nd->path.dentry = path->dentry;
3034
3035 }
3036 nd->inode = inode;
3037 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3038 finish_open:
3039 error = complete_walk(nd);
3040 if (error) {
3041 path_put(&save_parent);
3042 return error;
3043 }
3044 audit_inode(name, nd->path.dentry, 0);
3045 error = -EISDIR;
3046 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3047 goto out;
3048 error = -ENOTDIR;
3049 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3050 goto out;
3051 if (!S_ISREG(nd->inode->i_mode))
3052 will_truncate = false;
3053
3054 if (will_truncate) {
3055 error = mnt_want_write(nd->path.mnt);
3056 if (error)
3057 goto out;
3058 got_write = true;
3059 }
3060 finish_open_created:
3061 error = may_open(&nd->path, acc_mode, open_flag);
3062 if (error)
3063 goto out;
3064 file->f_path.mnt = nd->path.mnt;
3065 error = finish_open(file, nd->path.dentry, NULL, opened);
3066 if (error) {
3067 if (error == -EOPENSTALE)
3068 goto stale_open;
3069 goto out;
3070 }
3071 opened:
3072 error = open_check_o_direct(file);
3073 if (error)
3074 goto exit_fput;
3075 error = ima_file_check(file, op->acc_mode);
3076 if (error)
3077 goto exit_fput;
3078
3079 if (will_truncate) {
3080 error = handle_truncate(file);
3081 if (error)
3082 goto exit_fput;
3083 }
3084 out:
3085 if (got_write)
3086 mnt_drop_write(nd->path.mnt);
3087 path_put(&save_parent);
3088 terminate_walk(nd);
3089 return error;
3090
3091 exit_dput:
3092 path_put_conditional(path, nd);
3093 goto out;
3094 exit_fput:
3095 fput(file);
3096 goto out;
3097
3098 stale_open:
3099 /* If no saved parent or already retried then can't retry */
3100 if (!save_parent.dentry || retried)
3101 goto out;
3102
3103 BUG_ON(save_parent.dentry != dir);
3104 path_put(&nd->path);
3105 nd->path = save_parent;
3106 nd->inode = dir->d_inode;
3107 save_parent.mnt = NULL;
3108 save_parent.dentry = NULL;
3109 if (got_write) {
3110 mnt_drop_write(nd->path.mnt);
3111 got_write = false;
3112 }
3113 retried = true;
3114 goto retry_lookup;
3115 }
3116
3117 static int do_tmpfile(int dfd, struct filename *pathname,
3118 struct nameidata *nd, int flags,
3119 const struct open_flags *op,
3120 struct file *file, int *opened)
3121 {
3122 static const struct qstr name = QSTR_INIT("/", 1);
3123 struct dentry *dentry, *child;
3124 struct inode *dir;
3125 int error = path_lookupat(dfd, pathname->name,
3126 flags | LOOKUP_DIRECTORY, nd);
3127 if (unlikely(error))
3128 return error;
3129 error = mnt_want_write(nd->path.mnt);
3130 if (unlikely(error))
3131 goto out;
3132 /* we want directory to be writable */
3133 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3134 if (error)
3135 goto out2;
3136 dentry = nd->path.dentry;
3137 dir = dentry->d_inode;
3138 if (!dir->i_op->tmpfile) {
3139 error = -EOPNOTSUPP;
3140 goto out2;
3141 }
3142 child = d_alloc(dentry, &name);
3143 if (unlikely(!child)) {
3144 error = -ENOMEM;
3145 goto out2;
3146 }
3147 nd->flags &= ~LOOKUP_DIRECTORY;
3148 nd->flags |= op->intent;
3149 dput(nd->path.dentry);
3150 nd->path.dentry = child;
3151 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3152 if (error)
3153 goto out2;
3154 audit_inode(pathname, nd->path.dentry, 0);
3155 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3156 if (error)
3157 goto out2;
3158 file->f_path.mnt = nd->path.mnt;
3159 error = finish_open(file, nd->path.dentry, NULL, opened);
3160 if (error)
3161 goto out2;
3162 error = open_check_o_direct(file);
3163 if (error) {
3164 fput(file);
3165 } else if (!(op->open_flag & O_EXCL)) {
3166 struct inode *inode = file_inode(file);
3167 spin_lock(&inode->i_lock);
3168 inode->i_state |= I_LINKABLE;
3169 spin_unlock(&inode->i_lock);
3170 }
3171 out2:
3172 mnt_drop_write(nd->path.mnt);
3173 out:
3174 path_put(&nd->path);
3175 return error;
3176 }
3177
3178 static struct file *path_openat(int dfd, struct filename *pathname,
3179 struct nameidata *nd, const struct open_flags *op, int flags)
3180 {
3181 struct file *base = NULL;
3182 struct file *file;
3183 struct path path;
3184 int opened = 0;
3185 int error;
3186
3187 file = get_empty_filp();
3188 if (IS_ERR(file))
3189 return file;
3190
3191 file->f_flags = op->open_flag;
3192
3193 if (unlikely(file->f_flags & __O_TMPFILE)) {
3194 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3195 goto out;
3196 }
3197
3198 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3199 if (unlikely(error))
3200 goto out;
3201
3202 current->total_link_count = 0;
3203 error = link_path_walk(pathname->name, nd);
3204 if (unlikely(error))
3205 goto out;
3206
3207 error = do_last(nd, &path, file, op, &opened, pathname);
3208 while (unlikely(error > 0)) { /* trailing symlink */
3209 struct path link = path;
3210 void *cookie;
3211 if (!(nd->flags & LOOKUP_FOLLOW)) {
3212 path_put_conditional(&path, nd);
3213 path_put(&nd->path);
3214 error = -ELOOP;
3215 break;
3216 }
3217 error = may_follow_link(&link, nd);
3218 if (unlikely(error))
3219 break;
3220 nd->flags |= LOOKUP_PARENT;
3221 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3222 error = follow_link(&link, nd, &cookie);
3223 if (unlikely(error))
3224 break;
3225 error = do_last(nd, &path, file, op, &opened, pathname);
3226 put_link(nd, &link, cookie);
3227 }
3228 out:
3229 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3230 path_put(&nd->root);
3231 if (base)
3232 fput(base);
3233 if (!(opened & FILE_OPENED)) {
3234 BUG_ON(!error);
3235 put_filp(file);
3236 }
3237 if (unlikely(error)) {
3238 if (error == -EOPENSTALE) {
3239 if (flags & LOOKUP_RCU)
3240 error = -ECHILD;
3241 else
3242 error = -ESTALE;
3243 }
3244 file = ERR_PTR(error);
3245 }
3246 return file;
3247 }
3248
3249 struct file *do_filp_open(int dfd, struct filename *pathname,
3250 const struct open_flags *op)
3251 {
3252 struct nameidata nd;
3253 int flags = op->lookup_flags;
3254 struct file *filp;
3255
3256 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3257 if (unlikely(filp == ERR_PTR(-ECHILD)))
3258 filp = path_openat(dfd, pathname, &nd, op, flags);
3259 if (unlikely(filp == ERR_PTR(-ESTALE)))
3260 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3261 return filp;
3262 }
3263
3264 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3265 const char *name, const struct open_flags *op)
3266 {
3267 struct nameidata nd;
3268 struct file *file;
3269 struct filename filename = { .name = name };
3270 int flags = op->lookup_flags | LOOKUP_ROOT;
3271
3272 nd.root.mnt = mnt;
3273 nd.root.dentry = dentry;
3274
3275 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3276 return ERR_PTR(-ELOOP);
3277
3278 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3279 if (unlikely(file == ERR_PTR(-ECHILD)))
3280 file = path_openat(-1, &filename, &nd, op, flags);
3281 if (unlikely(file == ERR_PTR(-ESTALE)))
3282 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3283 return file;
3284 }
3285
3286 struct dentry *kern_path_create(int dfd, const char *pathname,
3287 struct path *path, unsigned int lookup_flags)
3288 {
3289 struct dentry *dentry = ERR_PTR(-EEXIST);
3290 struct nameidata nd;
3291 int err2;
3292 int error;
3293 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3294
3295 /*
3296 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3297 * other flags passed in are ignored!
3298 */
3299 lookup_flags &= LOOKUP_REVAL;
3300
3301 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3302 if (error)
3303 return ERR_PTR(error);
3304
3305 /*
3306 * Yucky last component or no last component at all?
3307 * (foo/., foo/.., /////)
3308 */
3309 if (nd.last_type != LAST_NORM)
3310 goto out;
3311 nd.flags &= ~LOOKUP_PARENT;
3312 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3313
3314 /* don't fail immediately if it's r/o, at least try to report other errors */
3315 err2 = mnt_want_write(nd.path.mnt);
3316 /*
3317 * Do the final lookup.
3318 */
3319 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3320 dentry = lookup_hash(&nd);
3321 if (IS_ERR(dentry))
3322 goto unlock;
3323
3324 error = -EEXIST;
3325 if (dentry->d_inode)
3326 goto fail;
3327 /*
3328 * Special case - lookup gave negative, but... we had foo/bar/
3329 * From the vfs_mknod() POV we just have a negative dentry -
3330 * all is fine. Let's be bastards - you had / on the end, you've
3331 * been asking for (non-existent) directory. -ENOENT for you.
3332 */
3333 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3334 error = -ENOENT;
3335 goto fail;
3336 }
3337 if (unlikely(err2)) {
3338 error = err2;
3339 goto fail;
3340 }
3341 *path = nd.path;
3342 return dentry;
3343 fail:
3344 dput(dentry);
3345 dentry = ERR_PTR(error);
3346 unlock:
3347 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3348 if (!err2)
3349 mnt_drop_write(nd.path.mnt);
3350 out:
3351 path_put(&nd.path);
3352 return dentry;
3353 }
3354 EXPORT_SYMBOL(kern_path_create);
3355
3356 void done_path_create(struct path *path, struct dentry *dentry)
3357 {
3358 dput(dentry);
3359 mutex_unlock(&path->dentry->d_inode->i_mutex);
3360 mnt_drop_write(path->mnt);
3361 path_put(path);
3362 }
3363 EXPORT_SYMBOL(done_path_create);
3364
3365 struct dentry *user_path_create(int dfd, const char __user *pathname,
3366 struct path *path, unsigned int lookup_flags)
3367 {
3368 struct filename *tmp = getname(pathname);
3369 struct dentry *res;
3370 if (IS_ERR(tmp))
3371 return ERR_CAST(tmp);
3372 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3373 putname(tmp);
3374 return res;
3375 }
3376 EXPORT_SYMBOL(user_path_create);
3377
3378 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3379 {
3380 int error = may_create(dir, dentry);
3381
3382 if (error)
3383 return error;
3384
3385 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3386 return -EPERM;
3387
3388 if (!dir->i_op->mknod)
3389 return -EPERM;
3390
3391 error = devcgroup_inode_mknod(mode, dev);
3392 if (error)
3393 return error;
3394
3395 error = security_inode_mknod(dir, dentry, mode, dev);
3396 if (error)
3397 return error;
3398
3399 error = dir->i_op->mknod(dir, dentry, mode, dev);
3400 if (!error)
3401 fsnotify_create(dir, dentry);
3402 return error;
3403 }
3404
3405 static int may_mknod(umode_t mode)
3406 {
3407 switch (mode & S_IFMT) {
3408 case S_IFREG:
3409 case S_IFCHR:
3410 case S_IFBLK:
3411 case S_IFIFO:
3412 case S_IFSOCK:
3413 case 0: /* zero mode translates to S_IFREG */
3414 return 0;
3415 case S_IFDIR:
3416 return -EPERM;
3417 default:
3418 return -EINVAL;
3419 }
3420 }
3421
3422 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3423 unsigned, dev)
3424 {
3425 struct dentry *dentry;
3426 struct path path;
3427 int error;
3428 unsigned int lookup_flags = 0;
3429
3430 error = may_mknod(mode);
3431 if (error)
3432 return error;
3433 retry:
3434 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3435 if (IS_ERR(dentry))
3436 return PTR_ERR(dentry);
3437
3438 if (!IS_POSIXACL(path.dentry->d_inode))
3439 mode &= ~current_umask();
3440 error = security_path_mknod(&path, dentry, mode, dev);
3441 if (error)
3442 goto out;
3443 switch (mode & S_IFMT) {
3444 case 0: case S_IFREG:
3445 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3446 break;
3447 case S_IFCHR: case S_IFBLK:
3448 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3449 new_decode_dev(dev));
3450 break;
3451 case S_IFIFO: case S_IFSOCK:
3452 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3453 break;
3454 }
3455 out:
3456 done_path_create(&path, dentry);
3457 if (retry_estale(error, lookup_flags)) {
3458 lookup_flags |= LOOKUP_REVAL;
3459 goto retry;
3460 }
3461 return error;
3462 }
3463
3464 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3465 {
3466 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3467 }
3468
3469 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3470 {
3471 int error = may_create(dir, dentry);
3472 unsigned max_links = dir->i_sb->s_max_links;
3473
3474 if (error)
3475 return error;
3476
3477 if (!dir->i_op->mkdir)
3478 return -EPERM;
3479
3480 mode &= (S_IRWXUGO|S_ISVTX);
3481 error = security_inode_mkdir(dir, dentry, mode);
3482 if (error)
3483 return error;
3484
3485 if (max_links && dir->i_nlink >= max_links)
3486 return -EMLINK;
3487
3488 error = dir->i_op->mkdir(dir, dentry, mode);
3489 if (!error)
3490 fsnotify_mkdir(dir, dentry);
3491 return error;
3492 }
3493
3494 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3495 {
3496 struct dentry *dentry;
3497 struct path path;
3498 int error;
3499 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3500
3501 retry:
3502 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3503 if (IS_ERR(dentry))
3504 return PTR_ERR(dentry);
3505
3506 if (!IS_POSIXACL(path.dentry->d_inode))
3507 mode &= ~current_umask();
3508 error = security_path_mkdir(&path, dentry, mode);
3509 if (!error)
3510 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3511 done_path_create(&path, dentry);
3512 if (retry_estale(error, lookup_flags)) {
3513 lookup_flags |= LOOKUP_REVAL;
3514 goto retry;
3515 }
3516 return error;
3517 }
3518
3519 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3520 {
3521 return sys_mkdirat(AT_FDCWD, pathname, mode);
3522 }
3523
3524 /*
3525 * The dentry_unhash() helper will try to drop the dentry early: we
3526 * should have a usage count of 1 if we're the only user of this
3527 * dentry, and if that is true (possibly after pruning the dcache),
3528 * then we drop the dentry now.
3529 *
3530 * A low-level filesystem can, if it choses, legally
3531 * do a
3532 *
3533 * if (!d_unhashed(dentry))
3534 * return -EBUSY;
3535 *
3536 * if it cannot handle the case of removing a directory
3537 * that is still in use by something else..
3538 */
3539 void dentry_unhash(struct dentry *dentry)
3540 {
3541 shrink_dcache_parent(dentry);
3542 spin_lock(&dentry->d_lock);
3543 if (dentry->d_lockref.count == 1)
3544 __d_drop(dentry);
3545 spin_unlock(&dentry->d_lock);
3546 }
3547
3548 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3549 {
3550 int error = may_delete(dir, dentry, 1);
3551
3552 if (error)
3553 return error;
3554
3555 if (!dir->i_op->rmdir)
3556 return -EPERM;
3557
3558 dget(dentry);
3559 mutex_lock(&dentry->d_inode->i_mutex);
3560
3561 error = -EBUSY;
3562 if (d_mountpoint(dentry))
3563 goto out;
3564
3565 error = security_inode_rmdir(dir, dentry);
3566 if (error)
3567 goto out;
3568
3569 shrink_dcache_parent(dentry);
3570 error = dir->i_op->rmdir(dir, dentry);
3571 if (error)
3572 goto out;
3573
3574 dentry->d_inode->i_flags |= S_DEAD;
3575 dont_mount(dentry);
3576
3577 out:
3578 mutex_unlock(&dentry->d_inode->i_mutex);
3579 dput(dentry);
3580 if (!error)
3581 d_delete(dentry);
3582 return error;
3583 }
3584
3585 static long do_rmdir(int dfd, const char __user *pathname)
3586 {
3587 int error = 0;
3588 struct filename *name;
3589 struct dentry *dentry;
3590 struct nameidata nd;
3591 unsigned int lookup_flags = 0;
3592 retry:
3593 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3594 if (IS_ERR(name))
3595 return PTR_ERR(name);
3596
3597 switch(nd.last_type) {
3598 case LAST_DOTDOT:
3599 error = -ENOTEMPTY;
3600 goto exit1;
3601 case LAST_DOT:
3602 error = -EINVAL;
3603 goto exit1;
3604 case LAST_ROOT:
3605 error = -EBUSY;
3606 goto exit1;
3607 }
3608
3609 nd.flags &= ~LOOKUP_PARENT;
3610 error = mnt_want_write(nd.path.mnt);
3611 if (error)
3612 goto exit1;
3613
3614 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3615 dentry = lookup_hash(&nd);
3616 error = PTR_ERR(dentry);
3617 if (IS_ERR(dentry))
3618 goto exit2;
3619 if (!dentry->d_inode) {
3620 error = -ENOENT;
3621 goto exit3;
3622 }
3623 error = security_path_rmdir(&nd.path, dentry);
3624 if (error)
3625 goto exit3;
3626 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3627 exit3:
3628 dput(dentry);
3629 exit2:
3630 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3631 mnt_drop_write(nd.path.mnt);
3632 exit1:
3633 path_put(&nd.path);
3634 putname(name);
3635 if (retry_estale(error, lookup_flags)) {
3636 lookup_flags |= LOOKUP_REVAL;
3637 goto retry;
3638 }
3639 return error;
3640 }
3641
3642 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3643 {
3644 return do_rmdir(AT_FDCWD, pathname);
3645 }
3646
3647 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3648 {
3649 int error = may_delete(dir, dentry, 0);
3650
3651 if (error)
3652 return error;
3653
3654 if (!dir->i_op->unlink)
3655 return -EPERM;
3656
3657 mutex_lock(&dentry->d_inode->i_mutex);
3658 if (d_mountpoint(dentry))
3659 error = -EBUSY;
3660 else {
3661 error = security_inode_unlink(dir, dentry);
3662 if (!error) {
3663 error = dir->i_op->unlink(dir, dentry);
3664 if (!error)
3665 dont_mount(dentry);
3666 }
3667 }
3668 mutex_unlock(&dentry->d_inode->i_mutex);
3669
3670 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3671 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3672 fsnotify_link_count(dentry->d_inode);
3673 d_delete(dentry);
3674 }
3675
3676 return error;
3677 }
3678
3679 /*
3680 * Make sure that the actual truncation of the file will occur outside its
3681 * directory's i_mutex. Truncate can take a long time if there is a lot of
3682 * writeout happening, and we don't want to prevent access to the directory
3683 * while waiting on the I/O.
3684 */
3685 static long do_unlinkat(int dfd, const char __user *pathname)
3686 {
3687 int error;
3688 struct filename *name;
3689 struct dentry *dentry;
3690 struct nameidata nd;
3691 struct inode *inode = NULL;
3692 unsigned int lookup_flags = 0;
3693 retry:
3694 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3695 if (IS_ERR(name))
3696 return PTR_ERR(name);
3697
3698 error = -EISDIR;
3699 if (nd.last_type != LAST_NORM)
3700 goto exit1;
3701
3702 nd.flags &= ~LOOKUP_PARENT;
3703 error = mnt_want_write(nd.path.mnt);
3704 if (error)
3705 goto exit1;
3706
3707 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3708 dentry = lookup_hash(&nd);
3709 error = PTR_ERR(dentry);
3710 if (!IS_ERR(dentry)) {
3711 /* Why not before? Because we want correct error value */
3712 if (nd.last.name[nd.last.len])
3713 goto slashes;
3714 inode = dentry->d_inode;
3715 if (!inode)
3716 goto slashes;
3717 ihold(inode);
3718 error = security_path_unlink(&nd.path, dentry);
3719 if (error)
3720 goto exit2;
3721 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3722 exit2:
3723 dput(dentry);
3724 }
3725 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3726 if (inode)
3727 iput(inode); /* truncate the inode here */
3728 mnt_drop_write(nd.path.mnt);
3729 exit1:
3730 path_put(&nd.path);
3731 putname(name);
3732 if (retry_estale(error, lookup_flags)) {
3733 lookup_flags |= LOOKUP_REVAL;
3734 inode = NULL;
3735 goto retry;
3736 }
3737 return error;
3738
3739 slashes:
3740 error = !dentry->d_inode ? -ENOENT :
3741 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3742 goto exit2;
3743 }
3744
3745 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3746 {
3747 if ((flag & ~AT_REMOVEDIR) != 0)
3748 return -EINVAL;
3749
3750 if (flag & AT_REMOVEDIR)
3751 return do_rmdir(dfd, pathname);
3752
3753 return do_unlinkat(dfd, pathname);
3754 }
3755
3756 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3757 {
3758 return do_unlinkat(AT_FDCWD, pathname);
3759 }
3760
3761 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3762 {
3763 int error = may_create(dir, dentry);
3764
3765 if (error)
3766 return error;
3767
3768 if (!dir->i_op->symlink)
3769 return -EPERM;
3770
3771 error = security_inode_symlink(dir, dentry, oldname);
3772 if (error)
3773 return error;
3774
3775 error = dir->i_op->symlink(dir, dentry, oldname);
3776 if (!error)
3777 fsnotify_create(dir, dentry);
3778 return error;
3779 }
3780
3781 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3782 int, newdfd, const char __user *, newname)
3783 {
3784 int error;
3785 struct filename *from;
3786 struct dentry *dentry;
3787 struct path path;
3788 unsigned int lookup_flags = 0;
3789
3790 from = getname(oldname);
3791 if (IS_ERR(from))
3792 return PTR_ERR(from);
3793 retry:
3794 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3795 error = PTR_ERR(dentry);
3796 if (IS_ERR(dentry))
3797 goto out_putname;
3798
3799 error = security_path_symlink(&path, dentry, from->name);
3800 if (!error)
3801 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3802 done_path_create(&path, dentry);
3803 if (retry_estale(error, lookup_flags)) {
3804 lookup_flags |= LOOKUP_REVAL;
3805 goto retry;
3806 }
3807 out_putname:
3808 putname(from);
3809 return error;
3810 }
3811
3812 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3813 {
3814 return sys_symlinkat(oldname, AT_FDCWD, newname);
3815 }
3816
3817 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3818 {
3819 struct inode *inode = old_dentry->d_inode;
3820 unsigned max_links = dir->i_sb->s_max_links;
3821 int error;
3822
3823 if (!inode)
3824 return -ENOENT;
3825
3826 error = may_create(dir, new_dentry);
3827 if (error)
3828 return error;
3829
3830 if (dir->i_sb != inode->i_sb)
3831 return -EXDEV;
3832
3833 /*
3834 * A link to an append-only or immutable file cannot be created.
3835 */
3836 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3837 return -EPERM;
3838 if (!dir->i_op->link)
3839 return -EPERM;
3840 if (S_ISDIR(inode->i_mode))
3841 return -EPERM;
3842
3843 error = security_inode_link(old_dentry, dir, new_dentry);
3844 if (error)
3845 return error;
3846
3847 mutex_lock(&inode->i_mutex);
3848 /* Make sure we don't allow creating hardlink to an unlinked file */
3849 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3850 error = -ENOENT;
3851 else if (max_links && inode->i_nlink >= max_links)
3852 error = -EMLINK;
3853 else
3854 error = dir->i_op->link(old_dentry, dir, new_dentry);
3855
3856 if (!error && (inode->i_state & I_LINKABLE)) {
3857 spin_lock(&inode->i_lock);
3858 inode->i_state &= ~I_LINKABLE;
3859 spin_unlock(&inode->i_lock);
3860 }
3861 mutex_unlock(&inode->i_mutex);
3862 if (!error)
3863 fsnotify_link(dir, inode, new_dentry);
3864 return error;
3865 }
3866
3867 /*
3868 * Hardlinks are often used in delicate situations. We avoid
3869 * security-related surprises by not following symlinks on the
3870 * newname. --KAB
3871 *
3872 * We don't follow them on the oldname either to be compatible
3873 * with linux 2.0, and to avoid hard-linking to directories
3874 * and other special files. --ADM
3875 */
3876 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3877 int, newdfd, const char __user *, newname, int, flags)
3878 {
3879 struct dentry *new_dentry;
3880 struct path old_path, new_path;
3881 int how = 0;
3882 int error;
3883
3884 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3885 return -EINVAL;
3886 /*
3887 * To use null names we require CAP_DAC_READ_SEARCH
3888 * This ensures that not everyone will be able to create
3889 * handlink using the passed filedescriptor.
3890 */
3891 if (flags & AT_EMPTY_PATH) {
3892 if (!capable(CAP_DAC_READ_SEARCH))
3893 return -ENOENT;
3894 how = LOOKUP_EMPTY;
3895 }
3896
3897 if (flags & AT_SYMLINK_FOLLOW)
3898 how |= LOOKUP_FOLLOW;
3899 retry:
3900 error = user_path_at(olddfd, oldname, how, &old_path);
3901 if (error)
3902 return error;
3903
3904 new_dentry = user_path_create(newdfd, newname, &new_path,
3905 (how & LOOKUP_REVAL));
3906 error = PTR_ERR(new_dentry);
3907 if (IS_ERR(new_dentry))
3908 goto out;
3909
3910 error = -EXDEV;
3911 if (old_path.mnt != new_path.mnt)
3912 goto out_dput;
3913 error = may_linkat(&old_path);
3914 if (unlikely(error))
3915 goto out_dput;
3916 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3917 if (error)
3918 goto out_dput;
3919 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3920 out_dput:
3921 done_path_create(&new_path, new_dentry);
3922 if (retry_estale(error, how)) {
3923 how |= LOOKUP_REVAL;
3924 goto retry;
3925 }
3926 out:
3927 path_put(&old_path);
3928
3929 return error;
3930 }
3931
3932 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3933 {
3934 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3935 }
3936
3937 /*
3938 * The worst of all namespace operations - renaming directory. "Perverted"
3939 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3940 * Problems:
3941 * a) we can get into loop creation. Check is done in is_subdir().
3942 * b) race potential - two innocent renames can create a loop together.
3943 * That's where 4.4 screws up. Current fix: serialization on
3944 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3945 * story.
3946 * c) we have to lock _three_ objects - parents and victim (if it exists).
3947 * And that - after we got ->i_mutex on parents (until then we don't know
3948 * whether the target exists). Solution: try to be smart with locking
3949 * order for inodes. We rely on the fact that tree topology may change
3950 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3951 * move will be locked. Thus we can rank directories by the tree
3952 * (ancestors first) and rank all non-directories after them.
3953 * That works since everybody except rename does "lock parent, lookup,
3954 * lock child" and rename is under ->s_vfs_rename_mutex.
3955 * HOWEVER, it relies on the assumption that any object with ->lookup()
3956 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3957 * we'd better make sure that there's no link(2) for them.
3958 * d) conversion from fhandle to dentry may come in the wrong moment - when
3959 * we are removing the target. Solution: we will have to grab ->i_mutex
3960 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3961 * ->i_mutex on parents, which works but leads to some truly excessive
3962 * locking].
3963 */
3964 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3965 struct inode *new_dir, struct dentry *new_dentry)
3966 {
3967 int error = 0;
3968 struct inode *target = new_dentry->d_inode;
3969 unsigned max_links = new_dir->i_sb->s_max_links;
3970
3971 /*
3972 * If we are going to change the parent - check write permissions,
3973 * we'll need to flip '..'.
3974 */
3975 if (new_dir != old_dir) {
3976 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3977 if (error)
3978 return error;
3979 }
3980
3981 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3982 if (error)
3983 return error;
3984
3985 dget(new_dentry);
3986 if (target)
3987 mutex_lock(&target->i_mutex);
3988
3989 error = -EBUSY;
3990 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3991 goto out;
3992
3993 error = -EMLINK;
3994 if (max_links && !target && new_dir != old_dir &&
3995 new_dir->i_nlink >= max_links)
3996 goto out;
3997
3998 if (target)
3999 shrink_dcache_parent(new_dentry);
4000 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4001 if (error)
4002 goto out;
4003
4004 if (target) {
4005 target->i_flags |= S_DEAD;
4006 dont_mount(new_dentry);
4007 }
4008 out:
4009 if (target)
4010 mutex_unlock(&target->i_mutex);
4011 dput(new_dentry);
4012 if (!error)
4013 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4014 d_move(old_dentry,new_dentry);
4015 return error;
4016 }
4017
4018 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4019 struct inode *new_dir, struct dentry *new_dentry)
4020 {
4021 struct inode *target = new_dentry->d_inode;
4022 int error;
4023
4024 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4025 if (error)
4026 return error;
4027
4028 dget(new_dentry);
4029 if (target)
4030 mutex_lock(&target->i_mutex);
4031
4032 error = -EBUSY;
4033 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4034 goto out;
4035
4036 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4037 if (error)
4038 goto out;
4039
4040 if (target)
4041 dont_mount(new_dentry);
4042 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4043 d_move(old_dentry, new_dentry);
4044 out:
4045 if (target)
4046 mutex_unlock(&target->i_mutex);
4047 dput(new_dentry);
4048 return error;
4049 }
4050
4051 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4052 struct inode *new_dir, struct dentry *new_dentry)
4053 {
4054 int error;
4055 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4056 const unsigned char *old_name;
4057
4058 if (old_dentry->d_inode == new_dentry->d_inode)
4059 return 0;
4060
4061 error = may_delete(old_dir, old_dentry, is_dir);
4062 if (error)
4063 return error;
4064
4065 if (!new_dentry->d_inode)
4066 error = may_create(new_dir, new_dentry);
4067 else
4068 error = may_delete(new_dir, new_dentry, is_dir);
4069 if (error)
4070 return error;
4071
4072 if (!old_dir->i_op->rename)
4073 return -EPERM;
4074
4075 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4076
4077 if (is_dir)
4078 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4079 else
4080 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4081 if (!error)
4082 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4083 new_dentry->d_inode, old_dentry);
4084 fsnotify_oldname_free(old_name);
4085
4086 return error;
4087 }
4088
4089 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4090 int, newdfd, const char __user *, newname)
4091 {
4092 struct dentry *old_dir, *new_dir;
4093 struct dentry *old_dentry, *new_dentry;
4094 struct dentry *trap;
4095 struct nameidata oldnd, newnd;
4096 struct filename *from;
4097 struct filename *to;
4098 unsigned int lookup_flags = 0;
4099 bool should_retry = false;
4100 int error;
4101 retry:
4102 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4103 if (IS_ERR(from)) {
4104 error = PTR_ERR(from);
4105 goto exit;
4106 }
4107
4108 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4109 if (IS_ERR(to)) {
4110 error = PTR_ERR(to);
4111 goto exit1;
4112 }
4113
4114 error = -EXDEV;
4115 if (oldnd.path.mnt != newnd.path.mnt)
4116 goto exit2;
4117
4118 old_dir = oldnd.path.dentry;
4119 error = -EBUSY;
4120 if (oldnd.last_type != LAST_NORM)
4121 goto exit2;
4122
4123 new_dir = newnd.path.dentry;
4124 if (newnd.last_type != LAST_NORM)
4125 goto exit2;
4126
4127 error = mnt_want_write(oldnd.path.mnt);
4128 if (error)
4129 goto exit2;
4130
4131 oldnd.flags &= ~LOOKUP_PARENT;
4132 newnd.flags &= ~LOOKUP_PARENT;
4133 newnd.flags |= LOOKUP_RENAME_TARGET;
4134
4135 trap = lock_rename(new_dir, old_dir);
4136
4137 old_dentry = lookup_hash(&oldnd);
4138 error = PTR_ERR(old_dentry);
4139 if (IS_ERR(old_dentry))
4140 goto exit3;
4141 /* source must exist */
4142 error = -ENOENT;
4143 if (!old_dentry->d_inode)
4144 goto exit4;
4145 /* unless the source is a directory trailing slashes give -ENOTDIR */
4146 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4147 error = -ENOTDIR;
4148 if (oldnd.last.name[oldnd.last.len])
4149 goto exit4;
4150 if (newnd.last.name[newnd.last.len])
4151 goto exit4;
4152 }
4153 /* source should not be ancestor of target */
4154 error = -EINVAL;
4155 if (old_dentry == trap)
4156 goto exit4;
4157 new_dentry = lookup_hash(&newnd);
4158 error = PTR_ERR(new_dentry);
4159 if (IS_ERR(new_dentry))
4160 goto exit4;
4161 /* target should not be an ancestor of source */
4162 error = -ENOTEMPTY;
4163 if (new_dentry == trap)
4164 goto exit5;
4165
4166 error = security_path_rename(&oldnd.path, old_dentry,
4167 &newnd.path, new_dentry);
4168 if (error)
4169 goto exit5;
4170 error = vfs_rename(old_dir->d_inode, old_dentry,
4171 new_dir->d_inode, new_dentry);
4172 exit5:
4173 dput(new_dentry);
4174 exit4:
4175 dput(old_dentry);
4176 exit3:
4177 unlock_rename(new_dir, old_dir);
4178 mnt_drop_write(oldnd.path.mnt);
4179 exit2:
4180 if (retry_estale(error, lookup_flags))
4181 should_retry = true;
4182 path_put(&newnd.path);
4183 putname(to);
4184 exit1:
4185 path_put(&oldnd.path);
4186 putname(from);
4187 if (should_retry) {
4188 should_retry = false;
4189 lookup_flags |= LOOKUP_REVAL;
4190 goto retry;
4191 }
4192 exit:
4193 return error;
4194 }
4195
4196 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4197 {
4198 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4199 }
4200
4201 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4202 {
4203 int len;
4204
4205 len = PTR_ERR(link);
4206 if (IS_ERR(link))
4207 goto out;
4208
4209 len = strlen(link);
4210 if (len > (unsigned) buflen)
4211 len = buflen;
4212 if (copy_to_user(buffer, link, len))
4213 len = -EFAULT;
4214 out:
4215 return len;
4216 }
4217
4218 /*
4219 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4220 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4221 * using) it for any given inode is up to filesystem.
4222 */
4223 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4224 {
4225 struct nameidata nd;
4226 void *cookie;
4227 int res;
4228
4229 nd.depth = 0;
4230 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4231 if (IS_ERR(cookie))
4232 return PTR_ERR(cookie);
4233
4234 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4235 if (dentry->d_inode->i_op->put_link)
4236 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4237 return res;
4238 }
4239
4240 int vfs_follow_link(struct nameidata *nd, const char *link)
4241 {
4242 return __vfs_follow_link(nd, link);
4243 }
4244
4245 /* get the link contents into pagecache */
4246 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4247 {
4248 char *kaddr;
4249 struct page *page;
4250 struct address_space *mapping = dentry->d_inode->i_mapping;
4251 page = read_mapping_page(mapping, 0, NULL);
4252 if (IS_ERR(page))
4253 return (char*)page;
4254 *ppage = page;
4255 kaddr = kmap(page);
4256 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4257 return kaddr;
4258 }
4259
4260 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4261 {
4262 struct page *page = NULL;
4263 char *s = page_getlink(dentry, &page);
4264 int res = vfs_readlink(dentry,buffer,buflen,s);
4265 if (page) {
4266 kunmap(page);
4267 page_cache_release(page);
4268 }
4269 return res;
4270 }
4271
4272 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4273 {
4274 struct page *page = NULL;
4275 nd_set_link(nd, page_getlink(dentry, &page));
4276 return page;
4277 }
4278
4279 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4280 {
4281 struct page *page = cookie;
4282
4283 if (page) {
4284 kunmap(page);
4285 page_cache_release(page);
4286 }
4287 }
4288
4289 /*
4290 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4291 */
4292 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4293 {
4294 struct address_space *mapping = inode->i_mapping;
4295 struct page *page;
4296 void *fsdata;
4297 int err;
4298 char *kaddr;
4299 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4300 if (nofs)
4301 flags |= AOP_FLAG_NOFS;
4302
4303 retry:
4304 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4305 flags, &page, &fsdata);
4306 if (err)
4307 goto fail;
4308
4309 kaddr = kmap_atomic(page);
4310 memcpy(kaddr, symname, len-1);
4311 kunmap_atomic(kaddr);
4312
4313 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4314 page, fsdata);
4315 if (err < 0)
4316 goto fail;
4317 if (err < len-1)
4318 goto retry;
4319
4320 mark_inode_dirty(inode);
4321 return 0;
4322 fail:
4323 return err;
4324 }
4325
4326 int page_symlink(struct inode *inode, const char *symname, int len)
4327 {
4328 return __page_symlink(inode, symname, len,
4329 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4330 }
4331
4332 const struct inode_operations page_symlink_inode_operations = {
4333 .readlink = generic_readlink,
4334 .follow_link = page_follow_link_light,
4335 .put_link = page_put_link,
4336 };
4337
4338 EXPORT_SYMBOL(user_path_at);
4339 EXPORT_SYMBOL(follow_down_one);
4340 EXPORT_SYMBOL(follow_down);
4341 EXPORT_SYMBOL(follow_up);
4342 EXPORT_SYMBOL(get_write_access); /* nfsd */
4343 EXPORT_SYMBOL(lock_rename);
4344 EXPORT_SYMBOL(lookup_one_len);
4345 EXPORT_SYMBOL(page_follow_link_light);
4346 EXPORT_SYMBOL(page_put_link);
4347 EXPORT_SYMBOL(page_readlink);
4348 EXPORT_SYMBOL(__page_symlink);
4349 EXPORT_SYMBOL(page_symlink);
4350 EXPORT_SYMBOL(page_symlink_inode_operations);
4351 EXPORT_SYMBOL(kern_path);
4352 EXPORT_SYMBOL(vfs_path_lookup);
4353 EXPORT_SYMBOL(inode_permission);
4354 EXPORT_SYMBOL(unlock_rename);
4355 EXPORT_SYMBOL(vfs_create);
4356 EXPORT_SYMBOL(vfs_follow_link);
4357 EXPORT_SYMBOL(vfs_link);
4358 EXPORT_SYMBOL(vfs_mkdir);
4359 EXPORT_SYMBOL(vfs_mknod);
4360 EXPORT_SYMBOL(generic_permission);
4361 EXPORT_SYMBOL(vfs_readlink);
4362 EXPORT_SYMBOL(vfs_rename);
4363 EXPORT_SYMBOL(vfs_rmdir);
4364 EXPORT_SYMBOL(vfs_symlink);
4365 EXPORT_SYMBOL(vfs_unlink);
4366 EXPORT_SYMBOL(dentry_unhash);
4367 EXPORT_SYMBOL(generic_readlink);