]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namei.c
UBUNTU: SAUCE: shiftfs: let userns root destroy subvolumes from other users
[mirror_ubuntu-hirsute-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic UNIX permission checking.
292 *
293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294 * for RCU walking.
295 */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 /* Are we the owner? If so, ACL's don't matter */
301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 mask &= 7;
303 mode >>= 6;
304 return (mask & ~mode) ? -EACCES : 0;
305 }
306
307 /* Do we have ACL's? */
308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 int error = check_acl(inode, mask);
310 if (error != -EAGAIN)
311 return error;
312 }
313
314 /* Only RWX matters for group/other mode bits */
315 mask &= 7;
316
317 /*
318 * Are the group permissions different from
319 * the other permissions in the bits we care
320 * about? Need to check group ownership if so.
321 */
322 if (mask & (mode ^ (mode >> 3))) {
323 if (in_group_p(inode->i_gid))
324 mode >>= 3;
325 }
326
327 /* Bits in 'mode' clear that we require? */
328 return (mask & ~mode) ? -EACCES : 0;
329 }
330
331 /**
332 * generic_permission - check for access rights on a Posix-like filesystem
333 * @inode: inode to check access rights for
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335 * %MAY_NOT_BLOCK ...)
336 *
337 * Used to check for read/write/execute permissions on a file.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
341 *
342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343 * request cannot be satisfied (eg. requires blocking or too much complexity).
344 * It would then be called again in ref-walk mode.
345 */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 int ret;
349
350 /*
351 * Do the basic permission checks.
352 */
353 ret = acl_permission_check(inode, mask);
354 if (ret != -EACCES)
355 return ret;
356
357 if (S_ISDIR(inode->i_mode)) {
358 /* DACs are overridable for directories */
359 if (!(mask & MAY_WRITE))
360 if (capable_wrt_inode_uidgid(inode,
361 CAP_DAC_READ_SEARCH))
362 return 0;
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 return 0;
365 return -EACCES;
366 }
367
368 /*
369 * Searching includes executable on directories, else just read.
370 */
371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 if (mask == MAY_READ)
373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 return 0;
375 /*
376 * Read/write DACs are always overridable.
377 * Executable DACs are overridable when there is
378 * at least one exec bit set.
379 */
380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 return 0;
383
384 return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387
388 /*
389 * We _really_ want to just do "generic_permission()" without
390 * even looking at the inode->i_op values. So we keep a cache
391 * flag in inode->i_opflags, that says "this has not special
392 * permission function, use the fast case".
393 */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 if (likely(inode->i_op->permission))
398 return inode->i_op->permission(inode, mask);
399
400 /* This gets set once for the inode lifetime */
401 spin_lock(&inode->i_lock);
402 inode->i_opflags |= IOP_FASTPERM;
403 spin_unlock(&inode->i_lock);
404 }
405 return generic_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 return -EROFS;
424 }
425 return 0;
426 }
427
428 /**
429 * inode_permission - Check for access rights to a given inode
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
434 * this, letting us set arbitrary permissions for filesystem access without
435 * changing the "normal" UIDs which are used for other things.
436 *
437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 int retval;
442
443 retval = sb_permission(inode->i_sb, inode, mask);
444 if (retval)
445 return retval;
446
447 if (unlikely(mask & MAY_WRITE)) {
448 /*
449 * Nobody gets write access to an immutable file.
450 */
451 if (IS_IMMUTABLE(inode))
452 return -EPERM;
453
454 /*
455 * Updating mtime will likely cause i_uid and i_gid to be
456 * written back improperly if their true value is unknown
457 * to the vfs.
458 */
459 if (HAS_UNMAPPED_ID(inode))
460 return -EACCES;
461 }
462
463 retval = do_inode_permission(inode, mask);
464 if (retval)
465 return retval;
466
467 retval = devcgroup_inode_permission(inode, mask);
468 if (retval)
469 return retval;
470
471 return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474
475 /**
476 * path_get - get a reference to a path
477 * @path: path to get the reference to
478 *
479 * Given a path increment the reference count to the dentry and the vfsmount.
480 */
481 void path_get(const struct path *path)
482 {
483 mntget(path->mnt);
484 dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487
488 /**
489 * path_put - put a reference to a path
490 * @path: path to put the reference to
491 *
492 * Given a path decrement the reference count to the dentry and the vfsmount.
493 */
494 void path_put(const struct path *path)
495 {
496 dput(path->dentry);
497 mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 struct path path;
504 struct qstr last;
505 struct path root;
506 struct inode *inode; /* path.dentry.d_inode */
507 unsigned int flags;
508 unsigned seq, m_seq, r_seq;
509 int last_type;
510 unsigned depth;
511 int total_link_count;
512 struct saved {
513 struct path link;
514 struct delayed_call done;
515 const char *name;
516 unsigned seq;
517 } *stack, internal[EMBEDDED_LEVELS];
518 struct filename *name;
519 struct nameidata *saved;
520 unsigned root_seq;
521 int dfd;
522 kuid_t dir_uid;
523 umode_t dir_mode;
524 } __randomize_layout;
525
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 struct nameidata *old = current->nameidata;
529 p->stack = p->internal;
530 p->dfd = dfd;
531 p->name = name;
532 p->total_link_count = old ? old->total_link_count : 0;
533 p->saved = old;
534 current->nameidata = p;
535 }
536
537 static void restore_nameidata(void)
538 {
539 struct nameidata *now = current->nameidata, *old = now->saved;
540
541 current->nameidata = old;
542 if (old)
543 old->total_link_count = now->total_link_count;
544 if (now->stack != now->internal)
545 kfree(now->stack);
546 }
547
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 struct saved *p;
551
552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 if (unlikely(!p))
555 return false;
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return true;
559 }
560
561 /**
562 * path_connected - Verify that a dentry is below mnt.mnt_root
563 *
564 * Rename can sometimes move a file or directory outside of a bind
565 * mount, path_connected allows those cases to be detected.
566 */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 struct super_block *sb = mnt->mnt_sb;
570
571 /* Bind mounts can have disconnected paths */
572 if (mnt->mnt_root == sb->s_root)
573 return true;
574
575 return is_subdir(dentry, mnt->mnt_root);
576 }
577
578 static void drop_links(struct nameidata *nd)
579 {
580 int i = nd->depth;
581 while (i--) {
582 struct saved *last = nd->stack + i;
583 do_delayed_call(&last->done);
584 clear_delayed_call(&last->done);
585 }
586 }
587
588 static void terminate_walk(struct nameidata *nd)
589 {
590 drop_links(nd);
591 if (!(nd->flags & LOOKUP_RCU)) {
592 int i;
593 path_put(&nd->path);
594 for (i = 0; i < nd->depth; i++)
595 path_put(&nd->stack[i].link);
596 if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 path_put(&nd->root);
598 nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 }
600 } else {
601 nd->flags &= ~LOOKUP_RCU;
602 rcu_read_unlock();
603 }
604 nd->depth = 0;
605 }
606
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 int res = __legitimize_mnt(path->mnt, mseq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static inline bool legitimize_path(struct nameidata *nd,
625 struct path *path, unsigned seq)
626 {
627 return __legitimize_path(path, seq, nd->m_seq);
628 }
629
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 int i;
633 for (i = 0; i < nd->depth; i++) {
634 struct saved *last = nd->stack + i;
635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 drop_links(nd);
637 nd->depth = i + 1;
638 return false;
639 }
640 }
641 return true;
642 }
643
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 /*
647 * For scoped-lookups (where nd->root has been zeroed), we need to
648 * restart the whole lookup from scratch -- because set_root() is wrong
649 * for these lookups (nd->dfd is the root, not the filesystem root).
650 */
651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 return false;
653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 return true;
656 nd->flags |= LOOKUP_ROOT_GRABBED;
657 return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659
660 /*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671 /**
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
675 *
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
677 * for ref-walk mode.
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
680 * terminate_walk().
681 */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 struct dentry *parent = nd->path.dentry;
685
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
687
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
690 goto out1;
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 goto out;
693 if (unlikely(!legitimize_root(nd)))
694 goto out;
695 rcu_read_unlock();
696 BUG_ON(nd->inode != parent->d_inode);
697 return 0;
698
699 out1:
700 nd->path.mnt = NULL;
701 nd->path.dentry = NULL;
702 out:
703 rcu_read_unlock();
704 return -ECHILD;
705 }
706
707 /**
708 * unlazy_child - try to switch to ref-walk mode.
709 * @nd: nameidata pathwalk data
710 * @dentry: child of nd->path.dentry
711 * @seq: seq number to check dentry against
712 * Returns: 0 on success, -ECHILD on failure
713 *
714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
716 * @nd. Must be called from rcu-walk context.
717 * Nothing should touch nameidata between unlazy_child() failure and
718 * terminate_walk().
719 */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 BUG_ON(!(nd->flags & LOOKUP_RCU));
723
724 nd->flags &= ~LOOKUP_RCU;
725 if (unlikely(!legitimize_links(nd)))
726 goto out2;
727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 goto out2;
729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 goto out1;
731
732 /*
733 * We need to move both the parent and the dentry from the RCU domain
734 * to be properly refcounted. And the sequence number in the dentry
735 * validates *both* dentry counters, since we checked the sequence
736 * number of the parent after we got the child sequence number. So we
737 * know the parent must still be valid if the child sequence number is
738 */
739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 goto out;
741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 goto out_dput;
743 /*
744 * Sequence counts matched. Now make sure that the root is
745 * still valid and get it if required.
746 */
747 if (unlikely(!legitimize_root(nd)))
748 goto out_dput;
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 return -ECHILD;
759 out_dput:
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 return dentry->d_op->d_revalidate(dentry, flags);
769 else
770 return 1;
771 }
772
773 /**
774 * complete_walk - successful completion of path walk
775 * @nd: pointer nameidata
776 *
777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
778 * Revalidate the final result, unless we'd already done that during
779 * the path walk or the filesystem doesn't ask for it. Return 0 on
780 * success, -error on failure. In case of failure caller does not
781 * need to drop nd->path.
782 */
783 static int complete_walk(struct nameidata *nd)
784 {
785 struct dentry *dentry = nd->path.dentry;
786 int status;
787
788 if (nd->flags & LOOKUP_RCU) {
789 /*
790 * We don't want to zero nd->root for scoped-lookups or
791 * externally-managed nd->root.
792 */
793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 nd->root.mnt = NULL;
795 if (unlikely(unlazy_walk(nd)))
796 return -ECHILD;
797 }
798
799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 /*
801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 * ever step outside the root during lookup" and should already
803 * be guaranteed by the rest of namei, we want to avoid a namei
804 * BUG resulting in userspace being given a path that was not
805 * scoped within the root at some point during the lookup.
806 *
807 * So, do a final sanity-check to make sure that in the
808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 * we won't silently return an fd completely outside of the
810 * requested root to userspace.
811 *
812 * Userspace could move the path outside the root after this
813 * check, but as discussed elsewhere this is not a concern (the
814 * resolved file was inside the root at some point).
815 */
816 if (!path_is_under(&nd->path, &nd->root))
817 return -EXDEV;
818 }
819
820 if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 return 0;
822
823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 return 0;
825
826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 if (status > 0)
828 return 0;
829
830 if (!status)
831 status = -ESTALE;
832
833 return status;
834 }
835
836 static int set_root(struct nameidata *nd)
837 {
838 struct fs_struct *fs = current->fs;
839
840 /*
841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 * still have to ensure it doesn't happen because it will cause a breakout
843 * from the dirfd.
844 */
845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 return -ENOTRECOVERABLE;
847
848 if (nd->flags & LOOKUP_RCU) {
849 unsigned seq;
850
851 do {
852 seq = read_seqcount_begin(&fs->seq);
853 nd->root = fs->root;
854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 } while (read_seqcount_retry(&fs->seq, seq));
856 } else {
857 get_fs_root(fs, &nd->root);
858 nd->flags |= LOOKUP_ROOT_GRABBED;
859 }
860 return 0;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (unlikely(nd->flags & LOOKUP_BENEATH))
866 return -EXDEV;
867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 /* Absolute path arguments to path_init() are allowed. */
869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 return -EXDEV;
871 }
872 if (!nd->root.mnt) {
873 int error = set_root(nd);
874 if (error)
875 return error;
876 }
877 if (nd->flags & LOOKUP_RCU) {
878 struct dentry *d;
879 nd->path = nd->root;
880 d = nd->path.dentry;
881 nd->inode = d->d_inode;
882 nd->seq = nd->root_seq;
883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 return -ECHILD;
885 } else {
886 path_put(&nd->path);
887 nd->path = nd->root;
888 path_get(&nd->path);
889 nd->inode = nd->path.dentry->d_inode;
890 }
891 nd->flags |= LOOKUP_JUMPED;
892 return 0;
893 }
894
895 /*
896 * Helper to directly jump to a known parsed path from ->get_link,
897 * caller must have taken a reference to path beforehand.
898 */
899 int nd_jump_link(struct path *path)
900 {
901 int error = -ELOOP;
902 struct nameidata *nd = current->nameidata;
903
904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 goto err;
906
907 error = -EXDEV;
908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 if (nd->path.mnt != path->mnt)
910 goto err;
911 }
912 /* Not currently safe for scoped-lookups. */
913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 goto err;
915
916 path_put(&nd->path);
917 nd->path = *path;
918 nd->inode = nd->path.dentry->d_inode;
919 nd->flags |= LOOKUP_JUMPED;
920 return 0;
921
922 err:
923 path_put(path);
924 return error;
925 }
926
927 static inline void put_link(struct nameidata *nd)
928 {
929 struct saved *last = nd->stack + --nd->depth;
930 do_delayed_call(&last->done);
931 if (!(nd->flags & LOOKUP_RCU))
932 path_put(&last->link);
933 }
934
935 int sysctl_protected_symlinks __read_mostly = 1;
936 int sysctl_protected_hardlinks __read_mostly = 1;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939
940 /**
941 * may_follow_link - Check symlink following for unsafe situations
942 * @nd: nameidata pathwalk data
943 *
944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946 * in a sticky world-writable directory. This is to protect privileged
947 * processes from failing races against path names that may change out
948 * from under them by way of other users creating malicious symlinks.
949 * It will permit symlinks to be followed only when outside a sticky
950 * world-writable directory, or when the uid of the symlink and follower
951 * match, or when the directory owner matches the symlink's owner.
952 *
953 * Returns 0 if following the symlink is allowed, -ve on error.
954 */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 if (!sysctl_protected_symlinks)
958 return 0;
959
960 /* Allowed if owner and follower match. */
961 if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 return 0;
963
964 /* Allowed if parent directory not sticky and world-writable. */
965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 return 0;
967
968 /* Allowed if parent directory and link owner match. */
969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 return 0;
971
972 if (nd->flags & LOOKUP_RCU)
973 return -ECHILD;
974
975 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 return -EACCES;
978 }
979
980 /**
981 * safe_hardlink_source - Check for safe hardlink conditions
982 * @inode: the source inode to hardlink from
983 *
984 * Return false if at least one of the following conditions:
985 * - inode is not a regular file
986 * - inode is setuid
987 * - inode is setgid and group-exec
988 * - access failure for read and write
989 *
990 * Otherwise returns true.
991 */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 umode_t mode = inode->i_mode;
995
996 /* Special files should not get pinned to the filesystem. */
997 if (!S_ISREG(mode))
998 return false;
999
1000 /* Setuid files should not get pinned to the filesystem. */
1001 if (mode & S_ISUID)
1002 return false;
1003
1004 /* Executable setgid files should not get pinned to the filesystem. */
1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 return false;
1007
1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /**
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1018 *
1019 * Block hardlink when all of:
1020 * - sysctl_protected_hardlinks enabled
1021 * - fsuid does not match inode
1022 * - hardlink source is unsafe (see safe_hardlink_source() above)
1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024 *
1025 * Returns 0 if successful, -ve on error.
1026 */
1027 int may_linkat(struct path *link)
1028 {
1029 struct inode *inode = link->dentry->d_inode;
1030
1031 /* Inode writeback is not safe when the uid or gid are invalid. */
1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 return -EOVERFLOW;
1034
1035 if (!sysctl_protected_hardlinks)
1036 return 0;
1037
1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 * otherwise, it must be a safe source.
1040 */
1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 return 0;
1043
1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 return -EPERM;
1046 }
1047
1048 /**
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 * should be allowed, or not, on files that already
1051 * exist.
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1055 *
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 * - the file already exists
1059 * - we are in a sticky directory
1060 * - we don't own the file
1061 * - the owner of the directory doesn't own the file
1062 * - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1065 * be enough.
1066 *
1067 * Returns 0 if the open is allowed, -ve on error.
1068 */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 struct inode * const inode)
1071 {
1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 likely(!(dir_mode & S_ISVTX)) ||
1075 uid_eq(inode->i_uid, dir_uid) ||
1076 uid_eq(current_fsuid(), inode->i_uid))
1077 return 0;
1078
1079 if (likely(dir_mode & 0002) ||
1080 (dir_mode & 0020 &&
1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 const char *operation = S_ISFIFO(inode->i_mode) ?
1084 "sticky_create_fifo" :
1085 "sticky_create_regular";
1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 return -EACCES;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * follow_up - Find the mountpoint of path's vfsmount
1094 *
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1097 * Up is towards /.
1098 *
1099 * Return 1 if we went up a level and 0 if we were already at the
1100 * root.
1101 */
1102 int follow_up(struct path *path)
1103 {
1104 struct mount *mnt = real_mount(path->mnt);
1105 struct mount *parent;
1106 struct dentry *mountpoint;
1107
1108 read_seqlock_excl(&mount_lock);
1109 parent = mnt->mnt_parent;
1110 if (parent == mnt) {
1111 read_sequnlock_excl(&mount_lock);
1112 return 0;
1113 }
1114 mntget(&parent->mnt);
1115 mountpoint = dget(mnt->mnt_mountpoint);
1116 read_sequnlock_excl(&mount_lock);
1117 dput(path->dentry);
1118 path->dentry = mountpoint;
1119 mntput(path->mnt);
1120 path->mnt = &parent->mnt;
1121 return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 struct path *path, unsigned *seqp)
1127 {
1128 while (mnt_has_parent(m)) {
1129 struct dentry *mountpoint = m->mnt_mountpoint;
1130
1131 m = m->mnt_parent;
1132 if (unlikely(root->dentry == mountpoint &&
1133 root->mnt == &m->mnt))
1134 break;
1135 if (mountpoint != m->mnt.mnt_root) {
1136 path->mnt = &m->mnt;
1137 path->dentry = mountpoint;
1138 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 struct path *path)
1147 {
1148 bool found;
1149
1150 rcu_read_lock();
1151 while (1) {
1152 unsigned seq, mseq = read_seqbegin(&mount_lock);
1153
1154 found = choose_mountpoint_rcu(m, root, path, &seq);
1155 if (unlikely(!found)) {
1156 if (!read_seqretry(&mount_lock, mseq))
1157 break;
1158 } else {
1159 if (likely(__legitimize_path(path, seq, mseq)))
1160 break;
1161 rcu_read_unlock();
1162 path_put(path);
1163 rcu_read_lock();
1164 }
1165 }
1166 rcu_read_unlock();
1167 return found;
1168 }
1169
1170 /*
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1173 * were called with.
1174 */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 struct dentry *dentry = path->dentry;
1178
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1181 * the name.
1182 *
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1189 */
1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 dentry->d_inode)
1193 return -EISDIR;
1194
1195 if (count && (*count)++ >= MAXSYMLINKS)
1196 return -ELOOP;
1197
1198 return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200
1201 /*
1202 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us. Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1206 */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 int *count, unsigned lookup_flags)
1209 {
1210 struct vfsmount *mnt = path->mnt;
1211 bool need_mntput = false;
1212 int ret = 0;
1213
1214 while (flags & DCACHE_MANAGED_DENTRY) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1216 * being held. */
1217 if (flags & DCACHE_MANAGE_TRANSIT) {
1218 ret = path->dentry->d_op->d_manage(path, false);
1219 flags = smp_load_acquire(&path->dentry->d_flags);
1220 if (ret < 0)
1221 break;
1222 }
1223
1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (mounted) { // ... in our namespace
1227 dput(path->dentry);
1228 if (need_mntput)
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 // here we know it's positive
1233 flags = path->dentry->d_flags;
1234 need_mntput = true;
1235 continue;
1236 }
1237 }
1238
1239 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 break;
1241
1242 // uncovered automount point
1243 ret = follow_automount(path, count, lookup_flags);
1244 flags = smp_load_acquire(&path->dentry->d_flags);
1245 if (ret < 0)
1246 break;
1247 }
1248
1249 if (ret == -EISDIR)
1250 ret = 0;
1251 // possible if you race with several mount --move
1252 if (need_mntput && path->mnt == mnt)
1253 mntput(path->mnt);
1254 if (!ret && unlikely(d_flags_negative(flags)))
1255 ret = -ENOENT;
1256 *jumped = need_mntput;
1257 return ret;
1258 }
1259
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 int *count, unsigned lookup_flags)
1262 {
1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264
1265 /* fastpath */
1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 *jumped = false;
1268 if (unlikely(d_flags_negative(flags)))
1269 return -ENOENT;
1270 return 0;
1271 }
1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274
1275 int follow_down_one(struct path *path)
1276 {
1277 struct vfsmount *mounted;
1278
1279 mounted = lookup_mnt(path);
1280 if (mounted) {
1281 dput(path->dentry);
1282 mntput(path->mnt);
1283 path->mnt = mounted;
1284 path->dentry = dget(mounted->mnt_root);
1285 return 1;
1286 }
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290
1291 /*
1292 * Follow down to the covering mount currently visible to userspace. At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1295 */
1296 int follow_down(struct path *path)
1297 {
1298 struct vfsmount *mnt = path->mnt;
1299 bool jumped;
1300 int ret = traverse_mounts(path, &jumped, NULL, 0);
1301
1302 if (path->mnt != mnt)
1303 mntput(mnt);
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307
1308 /*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1314 {
1315 struct dentry *dentry = path->dentry;
1316 unsigned int flags = dentry->d_flags;
1317
1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 return true;
1320
1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 return false;
1323
1324 for (;;) {
1325 /*
1326 * Don't forget we might have a non-mountpoint managed dentry
1327 * that wants to block transit.
1328 */
1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 int res = dentry->d_op->d_manage(path, true);
1331 if (res)
1332 return res == -EISDIR;
1333 flags = dentry->d_flags;
1334 }
1335
1336 if (flags & DCACHE_MOUNTED) {
1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 if (mounted) {
1339 path->mnt = &mounted->mnt;
1340 dentry = path->dentry = mounted->mnt.mnt_root;
1341 nd->flags |= LOOKUP_JUMPED;
1342 *seqp = read_seqcount_begin(&dentry->d_seq);
1343 *inode = dentry->d_inode;
1344 /*
1345 * We don't need to re-check ->d_seq after this
1346 * ->d_inode read - there will be an RCU delay
1347 * between mount hash removal and ->mnt_root
1348 * becoming unpinned.
1349 */
1350 flags = dentry->d_flags;
1351 continue;
1352 }
1353 if (read_seqretry(&mount_lock, nd->m_seq))
1354 return false;
1355 }
1356 return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 }
1358 }
1359
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 struct path *path, struct inode **inode,
1362 unsigned int *seqp)
1363 {
1364 bool jumped;
1365 int ret;
1366
1367 path->mnt = nd->path.mnt;
1368 path->dentry = dentry;
1369 if (nd->flags & LOOKUP_RCU) {
1370 unsigned int seq = *seqp;
1371 if (unlikely(!*inode))
1372 return -ENOENT;
1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 return 0;
1375 if (unlazy_child(nd, dentry, seq))
1376 return -ECHILD;
1377 // *path might've been clobbered by __follow_mount_rcu()
1378 path->mnt = nd->path.mnt;
1379 path->dentry = dentry;
1380 }
1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 if (jumped) {
1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 ret = -EXDEV;
1385 else
1386 nd->flags |= LOOKUP_JUMPED;
1387 }
1388 if (unlikely(ret)) {
1389 dput(path->dentry);
1390 if (path->mnt != nd->path.mnt)
1391 mntput(path->mnt);
1392 } else {
1393 *inode = d_backing_inode(path->dentry);
1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 }
1396 return ret;
1397 }
1398
1399 /*
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1402 */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 struct dentry *dir,
1405 unsigned int flags)
1406 {
1407 struct dentry *dentry = d_lookup(dir, name);
1408 if (dentry) {
1409 int error = d_revalidate(dentry, flags);
1410 if (unlikely(error <= 0)) {
1411 if (!error)
1412 d_invalidate(dentry);
1413 dput(dentry);
1414 return ERR_PTR(error);
1415 }
1416 }
1417 return dentry;
1418 }
1419
1420 /*
1421 * Parent directory has inode locked exclusive. This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1425 * at all.
1426 */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 struct dentry *base, unsigned int flags)
1429 {
1430 struct dentry *dentry = lookup_dcache(name, base, flags);
1431 struct dentry *old;
1432 struct inode *dir = base->d_inode;
1433
1434 if (dentry)
1435 return dentry;
1436
1437 /* Don't create child dentry for a dead directory. */
1438 if (unlikely(IS_DEADDIR(dir)))
1439 return ERR_PTR(-ENOENT);
1440
1441 dentry = d_alloc(base, name);
1442 if (unlikely(!dentry))
1443 return ERR_PTR(-ENOMEM);
1444
1445 old = dir->i_op->lookup(dir, dentry, flags);
1446 if (unlikely(old)) {
1447 dput(dentry);
1448 dentry = old;
1449 }
1450 return dentry;
1451 }
1452
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 struct inode **inode,
1455 unsigned *seqp)
1456 {
1457 struct dentry *dentry, *parent = nd->path.dentry;
1458 int status = 1;
1459
1460 /*
1461 * Rename seqlock is not required here because in the off chance
1462 * of a false negative due to a concurrent rename, the caller is
1463 * going to fall back to non-racy lookup.
1464 */
1465 if (nd->flags & LOOKUP_RCU) {
1466 unsigned seq;
1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 if (unlikely(!dentry)) {
1469 if (unlazy_walk(nd))
1470 return ERR_PTR(-ECHILD);
1471 return NULL;
1472 }
1473
1474 /*
1475 * This sequence count validates that the inode matches
1476 * the dentry name information from lookup.
1477 */
1478 *inode = d_backing_inode(dentry);
1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 return ERR_PTR(-ECHILD);
1481
1482 /*
1483 * This sequence count validates that the parent had no
1484 * changes while we did the lookup of the dentry above.
1485 *
1486 * The memory barrier in read_seqcount_begin of child is
1487 * enough, we can use __read_seqcount_retry here.
1488 */
1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 return ERR_PTR(-ECHILD);
1491
1492 *seqp = seq;
1493 status = d_revalidate(dentry, nd->flags);
1494 if (likely(status > 0))
1495 return dentry;
1496 if (unlazy_child(nd, dentry, seq))
1497 return ERR_PTR(-ECHILD);
1498 if (unlikely(status == -ECHILD))
1499 /* we'd been told to redo it in non-rcu mode */
1500 status = d_revalidate(dentry, nd->flags);
1501 } else {
1502 dentry = __d_lookup(parent, &nd->last);
1503 if (unlikely(!dentry))
1504 return NULL;
1505 status = d_revalidate(dentry, nd->flags);
1506 }
1507 if (unlikely(status <= 0)) {
1508 if (!status)
1509 d_invalidate(dentry);
1510 dput(dentry);
1511 return ERR_PTR(status);
1512 }
1513 return dentry;
1514 }
1515
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 struct dentry *dir,
1519 unsigned int flags)
1520 {
1521 struct dentry *dentry, *old;
1522 struct inode *inode = dir->d_inode;
1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524
1525 /* Don't go there if it's already dead */
1526 if (unlikely(IS_DEADDIR(inode)))
1527 return ERR_PTR(-ENOENT);
1528 again:
1529 dentry = d_alloc_parallel(dir, name, &wq);
1530 if (IS_ERR(dentry))
1531 return dentry;
1532 if (unlikely(!d_in_lookup(dentry))) {
1533 int error = d_revalidate(dentry, flags);
1534 if (unlikely(error <= 0)) {
1535 if (!error) {
1536 d_invalidate(dentry);
1537 dput(dentry);
1538 goto again;
1539 }
1540 dput(dentry);
1541 dentry = ERR_PTR(error);
1542 }
1543 } else {
1544 old = inode->i_op->lookup(inode, dentry, flags);
1545 d_lookup_done(dentry);
1546 if (unlikely(old)) {
1547 dput(dentry);
1548 dentry = old;
1549 }
1550 }
1551 return dentry;
1552 }
1553
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 struct dentry *dir,
1556 unsigned int flags)
1557 {
1558 struct inode *inode = dir->d_inode;
1559 struct dentry *res;
1560 inode_lock_shared(inode);
1561 res = __lookup_slow(name, dir, flags);
1562 inode_unlock_shared(inode);
1563 return res;
1564 }
1565
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 if (nd->flags & LOOKUP_RCU) {
1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 if (err != -ECHILD)
1571 return err;
1572 if (unlazy_walk(nd))
1573 return -ECHILD;
1574 }
1575 return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 return -ELOOP;
1582
1583 if (likely(nd->depth != EMBEDDED_LEVELS))
1584 return 0;
1585 if (likely(nd->stack != nd->internal))
1586 return 0;
1587 if (likely(nd_alloc_stack(nd)))
1588 return 0;
1589
1590 if (nd->flags & LOOKUP_RCU) {
1591 // we need to grab link before we do unlazy. And we can't skip
1592 // unlazy even if we fail to grab the link - cleanup needs it
1593 bool grabbed_link = legitimize_path(nd, link, seq);
1594
1595 if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 return -ECHILD;
1597
1598 if (nd_alloc_stack(nd))
1599 return 0;
1600 }
1601 return -ENOMEM;
1602 }
1603
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 struct inode *inode, unsigned seq, int flags)
1608 {
1609 struct saved *last;
1610 const char *res;
1611 int error = reserve_stack(nd, link, seq);
1612
1613 if (unlikely(error)) {
1614 if (!(nd->flags & LOOKUP_RCU))
1615 path_put(link);
1616 return ERR_PTR(error);
1617 }
1618 last = nd->stack + nd->depth++;
1619 last->link = *link;
1620 clear_delayed_call(&last->done);
1621 last->seq = seq;
1622
1623 if (flags & WALK_TRAILING) {
1624 error = may_follow_link(nd, inode);
1625 if (unlikely(error))
1626 return ERR_PTR(error);
1627 }
1628
1629 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1630 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1631 return ERR_PTR(-ELOOP);
1632
1633 if (!(nd->flags & LOOKUP_RCU)) {
1634 touch_atime(&last->link);
1635 cond_resched();
1636 } else if (atime_needs_update(&last->link, inode)) {
1637 if (unlikely(unlazy_walk(nd)))
1638 return ERR_PTR(-ECHILD);
1639 touch_atime(&last->link);
1640 }
1641
1642 error = security_inode_follow_link(link->dentry, inode,
1643 nd->flags & LOOKUP_RCU);
1644 if (unlikely(error))
1645 return ERR_PTR(error);
1646
1647 res = READ_ONCE(inode->i_link);
1648 if (!res) {
1649 const char * (*get)(struct dentry *, struct inode *,
1650 struct delayed_call *);
1651 get = inode->i_op->get_link;
1652 if (nd->flags & LOOKUP_RCU) {
1653 res = get(NULL, inode, &last->done);
1654 if (res == ERR_PTR(-ECHILD)) {
1655 if (unlikely(unlazy_walk(nd)))
1656 return ERR_PTR(-ECHILD);
1657 res = get(link->dentry, inode, &last->done);
1658 }
1659 } else {
1660 res = get(link->dentry, inode, &last->done);
1661 }
1662 if (!res)
1663 goto all_done;
1664 if (IS_ERR(res))
1665 return res;
1666 }
1667 if (*res == '/') {
1668 error = nd_jump_root(nd);
1669 if (unlikely(error))
1670 return ERR_PTR(error);
1671 while (unlikely(*++res == '/'))
1672 ;
1673 }
1674 if (*res)
1675 return res;
1676 all_done: // pure jump
1677 put_link(nd);
1678 return NULL;
1679 }
1680
1681 /*
1682 * Do we need to follow links? We _really_ want to be able
1683 * to do this check without having to look at inode->i_op,
1684 * so we keep a cache of "no, this doesn't need follow_link"
1685 * for the common case.
1686 */
1687 static const char *step_into(struct nameidata *nd, int flags,
1688 struct dentry *dentry, struct inode *inode, unsigned seq)
1689 {
1690 struct path path;
1691 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1692
1693 if (err < 0)
1694 return ERR_PTR(err);
1695 if (likely(!d_is_symlink(path.dentry)) ||
1696 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1697 (flags & WALK_NOFOLLOW)) {
1698 /* not a symlink or should not follow */
1699 if (!(nd->flags & LOOKUP_RCU)) {
1700 dput(nd->path.dentry);
1701 if (nd->path.mnt != path.mnt)
1702 mntput(nd->path.mnt);
1703 }
1704 nd->path = path;
1705 nd->inode = inode;
1706 nd->seq = seq;
1707 return NULL;
1708 }
1709 if (nd->flags & LOOKUP_RCU) {
1710 /* make sure that d_is_symlink above matches inode */
1711 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1712 return ERR_PTR(-ECHILD);
1713 } else {
1714 if (path.mnt == nd->path.mnt)
1715 mntget(path.mnt);
1716 }
1717 return pick_link(nd, &path, inode, seq, flags);
1718 }
1719
1720 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1721 struct inode **inodep,
1722 unsigned *seqp)
1723 {
1724 struct dentry *parent, *old;
1725
1726 if (path_equal(&nd->path, &nd->root))
1727 goto in_root;
1728 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1729 struct path path;
1730 unsigned seq;
1731 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1732 &nd->root, &path, &seq))
1733 goto in_root;
1734 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1735 return ERR_PTR(-ECHILD);
1736 nd->path = path;
1737 nd->inode = path.dentry->d_inode;
1738 nd->seq = seq;
1739 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1740 return ERR_PTR(-ECHILD);
1741 /* we know that mountpoint was pinned */
1742 }
1743 old = nd->path.dentry;
1744 parent = old->d_parent;
1745 *inodep = parent->d_inode;
1746 *seqp = read_seqcount_begin(&parent->d_seq);
1747 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1748 return ERR_PTR(-ECHILD);
1749 if (unlikely(!path_connected(nd->path.mnt, parent)))
1750 return ERR_PTR(-ECHILD);
1751 return parent;
1752 in_root:
1753 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1754 return ERR_PTR(-ECHILD);
1755 if (unlikely(nd->flags & LOOKUP_BENEATH))
1756 return ERR_PTR(-ECHILD);
1757 return NULL;
1758 }
1759
1760 static struct dentry *follow_dotdot(struct nameidata *nd,
1761 struct inode **inodep,
1762 unsigned *seqp)
1763 {
1764 struct dentry *parent;
1765
1766 if (path_equal(&nd->path, &nd->root))
1767 goto in_root;
1768 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1769 struct path path;
1770
1771 if (!choose_mountpoint(real_mount(nd->path.mnt),
1772 &nd->root, &path))
1773 goto in_root;
1774 path_put(&nd->path);
1775 nd->path = path;
1776 nd->inode = path.dentry->d_inode;
1777 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1778 return ERR_PTR(-EXDEV);
1779 }
1780 /* rare case of legitimate dget_parent()... */
1781 parent = dget_parent(nd->path.dentry);
1782 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1783 dput(parent);
1784 return ERR_PTR(-ENOENT);
1785 }
1786 *seqp = 0;
1787 *inodep = parent->d_inode;
1788 return parent;
1789
1790 in_root:
1791 if (unlikely(nd->flags & LOOKUP_BENEATH))
1792 return ERR_PTR(-EXDEV);
1793 dget(nd->path.dentry);
1794 return NULL;
1795 }
1796
1797 static const char *handle_dots(struct nameidata *nd, int type)
1798 {
1799 if (type == LAST_DOTDOT) {
1800 const char *error = NULL;
1801 struct dentry *parent;
1802 struct inode *inode;
1803 unsigned seq;
1804
1805 if (!nd->root.mnt) {
1806 error = ERR_PTR(set_root(nd));
1807 if (error)
1808 return error;
1809 }
1810 if (nd->flags & LOOKUP_RCU)
1811 parent = follow_dotdot_rcu(nd, &inode, &seq);
1812 else
1813 parent = follow_dotdot(nd, &inode, &seq);
1814 if (IS_ERR(parent))
1815 return ERR_CAST(parent);
1816 if (unlikely(!parent))
1817 error = step_into(nd, WALK_NOFOLLOW,
1818 nd->path.dentry, nd->inode, nd->seq);
1819 else
1820 error = step_into(nd, WALK_NOFOLLOW,
1821 parent, inode, seq);
1822 if (unlikely(error))
1823 return error;
1824
1825 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1826 /*
1827 * If there was a racing rename or mount along our
1828 * path, then we can't be sure that ".." hasn't jumped
1829 * above nd->root (and so userspace should retry or use
1830 * some fallback).
1831 */
1832 smp_rmb();
1833 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1834 return ERR_PTR(-EAGAIN);
1835 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1836 return ERR_PTR(-EAGAIN);
1837 }
1838 }
1839 return NULL;
1840 }
1841
1842 static const char *walk_component(struct nameidata *nd, int flags)
1843 {
1844 struct dentry *dentry;
1845 struct inode *inode;
1846 unsigned seq;
1847 /*
1848 * "." and ".." are special - ".." especially so because it has
1849 * to be able to know about the current root directory and
1850 * parent relationships.
1851 */
1852 if (unlikely(nd->last_type != LAST_NORM)) {
1853 if (!(flags & WALK_MORE) && nd->depth)
1854 put_link(nd);
1855 return handle_dots(nd, nd->last_type);
1856 }
1857 dentry = lookup_fast(nd, &inode, &seq);
1858 if (IS_ERR(dentry))
1859 return ERR_CAST(dentry);
1860 if (unlikely(!dentry)) {
1861 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1862 if (IS_ERR(dentry))
1863 return ERR_CAST(dentry);
1864 }
1865 if (!(flags & WALK_MORE) && nd->depth)
1866 put_link(nd);
1867 return step_into(nd, flags, dentry, inode, seq);
1868 }
1869
1870 /*
1871 * We can do the critical dentry name comparison and hashing
1872 * operations one word at a time, but we are limited to:
1873 *
1874 * - Architectures with fast unaligned word accesses. We could
1875 * do a "get_unaligned()" if this helps and is sufficiently
1876 * fast.
1877 *
1878 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1879 * do not trap on the (extremely unlikely) case of a page
1880 * crossing operation.
1881 *
1882 * - Furthermore, we need an efficient 64-bit compile for the
1883 * 64-bit case in order to generate the "number of bytes in
1884 * the final mask". Again, that could be replaced with a
1885 * efficient population count instruction or similar.
1886 */
1887 #ifdef CONFIG_DCACHE_WORD_ACCESS
1888
1889 #include <asm/word-at-a-time.h>
1890
1891 #ifdef HASH_MIX
1892
1893 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1894
1895 #elif defined(CONFIG_64BIT)
1896 /*
1897 * Register pressure in the mixing function is an issue, particularly
1898 * on 32-bit x86, but almost any function requires one state value and
1899 * one temporary. Instead, use a function designed for two state values
1900 * and no temporaries.
1901 *
1902 * This function cannot create a collision in only two iterations, so
1903 * we have two iterations to achieve avalanche. In those two iterations,
1904 * we have six layers of mixing, which is enough to spread one bit's
1905 * influence out to 2^6 = 64 state bits.
1906 *
1907 * Rotate constants are scored by considering either 64 one-bit input
1908 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1909 * probability of that delta causing a change to each of the 128 output
1910 * bits, using a sample of random initial states.
1911 *
1912 * The Shannon entropy of the computed probabilities is then summed
1913 * to produce a score. Ideally, any input change has a 50% chance of
1914 * toggling any given output bit.
1915 *
1916 * Mixing scores (in bits) for (12,45):
1917 * Input delta: 1-bit 2-bit
1918 * 1 round: 713.3 42542.6
1919 * 2 rounds: 2753.7 140389.8
1920 * 3 rounds: 5954.1 233458.2
1921 * 4 rounds: 7862.6 256672.2
1922 * Perfect: 8192 258048
1923 * (64*128) (64*63/2 * 128)
1924 */
1925 #define HASH_MIX(x, y, a) \
1926 ( x ^= (a), \
1927 y ^= x, x = rol64(x,12),\
1928 x += y, y = rol64(y,45),\
1929 y *= 9 )
1930
1931 /*
1932 * Fold two longs into one 32-bit hash value. This must be fast, but
1933 * latency isn't quite as critical, as there is a fair bit of additional
1934 * work done before the hash value is used.
1935 */
1936 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1937 {
1938 y ^= x * GOLDEN_RATIO_64;
1939 y *= GOLDEN_RATIO_64;
1940 return y >> 32;
1941 }
1942
1943 #else /* 32-bit case */
1944
1945 /*
1946 * Mixing scores (in bits) for (7,20):
1947 * Input delta: 1-bit 2-bit
1948 * 1 round: 330.3 9201.6
1949 * 2 rounds: 1246.4 25475.4
1950 * 3 rounds: 1907.1 31295.1
1951 * 4 rounds: 2042.3 31718.6
1952 * Perfect: 2048 31744
1953 * (32*64) (32*31/2 * 64)
1954 */
1955 #define HASH_MIX(x, y, a) \
1956 ( x ^= (a), \
1957 y ^= x, x = rol32(x, 7),\
1958 x += y, y = rol32(y,20),\
1959 y *= 9 )
1960
1961 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1962 {
1963 /* Use arch-optimized multiply if one exists */
1964 return __hash_32(y ^ __hash_32(x));
1965 }
1966
1967 #endif
1968
1969 /*
1970 * Return the hash of a string of known length. This is carfully
1971 * designed to match hash_name(), which is the more critical function.
1972 * In particular, we must end by hashing a final word containing 0..7
1973 * payload bytes, to match the way that hash_name() iterates until it
1974 * finds the delimiter after the name.
1975 */
1976 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1977 {
1978 unsigned long a, x = 0, y = (unsigned long)salt;
1979
1980 for (;;) {
1981 if (!len)
1982 goto done;
1983 a = load_unaligned_zeropad(name);
1984 if (len < sizeof(unsigned long))
1985 break;
1986 HASH_MIX(x, y, a);
1987 name += sizeof(unsigned long);
1988 len -= sizeof(unsigned long);
1989 }
1990 x ^= a & bytemask_from_count(len);
1991 done:
1992 return fold_hash(x, y);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2000 unsigned long adata, mask, len;
2001 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2002
2003 len = 0;
2004 goto inside;
2005
2006 do {
2007 HASH_MIX(x, y, a);
2008 len += sizeof(unsigned long);
2009 inside:
2010 a = load_unaligned_zeropad(name+len);
2011 } while (!has_zero(a, &adata, &constants));
2012
2013 adata = prep_zero_mask(a, adata, &constants);
2014 mask = create_zero_mask(adata);
2015 x ^= a & zero_bytemask(mask);
2016
2017 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2018 }
2019 EXPORT_SYMBOL(hashlen_string);
2020
2021 /*
2022 * Calculate the length and hash of the path component, and
2023 * return the "hash_len" as the result.
2024 */
2025 static inline u64 hash_name(const void *salt, const char *name)
2026 {
2027 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2028 unsigned long adata, bdata, mask, len;
2029 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2030
2031 len = 0;
2032 goto inside;
2033
2034 do {
2035 HASH_MIX(x, y, a);
2036 len += sizeof(unsigned long);
2037 inside:
2038 a = load_unaligned_zeropad(name+len);
2039 b = a ^ REPEAT_BYTE('/');
2040 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2041
2042 adata = prep_zero_mask(a, adata, &constants);
2043 bdata = prep_zero_mask(b, bdata, &constants);
2044 mask = create_zero_mask(adata | bdata);
2045 x ^= a & zero_bytemask(mask);
2046
2047 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2048 }
2049
2050 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2051
2052 /* Return the hash of a string of known length */
2053 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2054 {
2055 unsigned long hash = init_name_hash(salt);
2056 while (len--)
2057 hash = partial_name_hash((unsigned char)*name++, hash);
2058 return end_name_hash(hash);
2059 }
2060 EXPORT_SYMBOL(full_name_hash);
2061
2062 /* Return the "hash_len" (hash and length) of a null-terminated string */
2063 u64 hashlen_string(const void *salt, const char *name)
2064 {
2065 unsigned long hash = init_name_hash(salt);
2066 unsigned long len = 0, c;
2067
2068 c = (unsigned char)*name;
2069 while (c) {
2070 len++;
2071 hash = partial_name_hash(c, hash);
2072 c = (unsigned char)name[len];
2073 }
2074 return hashlen_create(end_name_hash(hash), len);
2075 }
2076 EXPORT_SYMBOL(hashlen_string);
2077
2078 /*
2079 * We know there's a real path component here of at least
2080 * one character.
2081 */
2082 static inline u64 hash_name(const void *salt, const char *name)
2083 {
2084 unsigned long hash = init_name_hash(salt);
2085 unsigned long len = 0, c;
2086
2087 c = (unsigned char)*name;
2088 do {
2089 len++;
2090 hash = partial_name_hash(c, hash);
2091 c = (unsigned char)name[len];
2092 } while (c && c != '/');
2093 return hashlen_create(end_name_hash(hash), len);
2094 }
2095
2096 #endif
2097
2098 /*
2099 * Name resolution.
2100 * This is the basic name resolution function, turning a pathname into
2101 * the final dentry. We expect 'base' to be positive and a directory.
2102 *
2103 * Returns 0 and nd will have valid dentry and mnt on success.
2104 * Returns error and drops reference to input namei data on failure.
2105 */
2106 static int link_path_walk(const char *name, struct nameidata *nd)
2107 {
2108 int depth = 0; // depth <= nd->depth
2109 int err;
2110
2111 nd->last_type = LAST_ROOT;
2112 nd->flags |= LOOKUP_PARENT;
2113 if (IS_ERR(name))
2114 return PTR_ERR(name);
2115 while (*name=='/')
2116 name++;
2117 if (!*name) {
2118 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2119 return 0;
2120 }
2121
2122 /* At this point we know we have a real path component. */
2123 for(;;) {
2124 const char *link;
2125 u64 hash_len;
2126 int type;
2127
2128 err = may_lookup(nd);
2129 if (err)
2130 return err;
2131
2132 hash_len = hash_name(nd->path.dentry, name);
2133
2134 type = LAST_NORM;
2135 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2136 case 2:
2137 if (name[1] == '.') {
2138 type = LAST_DOTDOT;
2139 nd->flags |= LOOKUP_JUMPED;
2140 }
2141 break;
2142 case 1:
2143 type = LAST_DOT;
2144 }
2145 if (likely(type == LAST_NORM)) {
2146 struct dentry *parent = nd->path.dentry;
2147 nd->flags &= ~LOOKUP_JUMPED;
2148 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2149 struct qstr this = { { .hash_len = hash_len }, .name = name };
2150 err = parent->d_op->d_hash(parent, &this);
2151 if (err < 0)
2152 return err;
2153 hash_len = this.hash_len;
2154 name = this.name;
2155 }
2156 }
2157
2158 nd->last.hash_len = hash_len;
2159 nd->last.name = name;
2160 nd->last_type = type;
2161
2162 name += hashlen_len(hash_len);
2163 if (!*name)
2164 goto OK;
2165 /*
2166 * If it wasn't NUL, we know it was '/'. Skip that
2167 * slash, and continue until no more slashes.
2168 */
2169 do {
2170 name++;
2171 } while (unlikely(*name == '/'));
2172 if (unlikely(!*name)) {
2173 OK:
2174 /* pathname or trailing symlink, done */
2175 if (!depth) {
2176 nd->dir_uid = nd->inode->i_uid;
2177 nd->dir_mode = nd->inode->i_mode;
2178 nd->flags &= ~LOOKUP_PARENT;
2179 return 0;
2180 }
2181 /* last component of nested symlink */
2182 name = nd->stack[--depth].name;
2183 link = walk_component(nd, 0);
2184 } else {
2185 /* not the last component */
2186 link = walk_component(nd, WALK_MORE);
2187 }
2188 if (unlikely(link)) {
2189 if (IS_ERR(link))
2190 return PTR_ERR(link);
2191 /* a symlink to follow */
2192 nd->stack[depth++].name = name;
2193 name = link;
2194 continue;
2195 }
2196 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2197 if (nd->flags & LOOKUP_RCU) {
2198 if (unlazy_walk(nd))
2199 return -ECHILD;
2200 }
2201 return -ENOTDIR;
2202 }
2203 }
2204 }
2205
2206 /* must be paired with terminate_walk() */
2207 static const char *path_init(struct nameidata *nd, unsigned flags)
2208 {
2209 int error;
2210 const char *s = nd->name->name;
2211
2212 if (!*s)
2213 flags &= ~LOOKUP_RCU;
2214 if (flags & LOOKUP_RCU)
2215 rcu_read_lock();
2216
2217 nd->flags = flags | LOOKUP_JUMPED;
2218 nd->depth = 0;
2219
2220 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2221 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2222 smp_rmb();
2223
2224 if (flags & LOOKUP_ROOT) {
2225 struct dentry *root = nd->root.dentry;
2226 struct inode *inode = root->d_inode;
2227 if (*s && unlikely(!d_can_lookup(root)))
2228 return ERR_PTR(-ENOTDIR);
2229 nd->path = nd->root;
2230 nd->inode = inode;
2231 if (flags & LOOKUP_RCU) {
2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 nd->root_seq = nd->seq;
2234 } else {
2235 path_get(&nd->path);
2236 }
2237 return s;
2238 }
2239
2240 nd->root.mnt = NULL;
2241 nd->path.mnt = NULL;
2242 nd->path.dentry = NULL;
2243
2244 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2245 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2246 error = nd_jump_root(nd);
2247 if (unlikely(error))
2248 return ERR_PTR(error);
2249 return s;
2250 }
2251
2252 /* Relative pathname -- get the starting-point it is relative to. */
2253 if (nd->dfd == AT_FDCWD) {
2254 if (flags & LOOKUP_RCU) {
2255 struct fs_struct *fs = current->fs;
2256 unsigned seq;
2257
2258 do {
2259 seq = read_seqcount_begin(&fs->seq);
2260 nd->path = fs->pwd;
2261 nd->inode = nd->path.dentry->d_inode;
2262 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2263 } while (read_seqcount_retry(&fs->seq, seq));
2264 } else {
2265 get_fs_pwd(current->fs, &nd->path);
2266 nd->inode = nd->path.dentry->d_inode;
2267 }
2268 } else {
2269 /* Caller must check execute permissions on the starting path component */
2270 struct fd f = fdget_raw(nd->dfd);
2271 struct dentry *dentry;
2272
2273 if (!f.file)
2274 return ERR_PTR(-EBADF);
2275
2276 dentry = f.file->f_path.dentry;
2277
2278 if (*s && unlikely(!d_can_lookup(dentry))) {
2279 fdput(f);
2280 return ERR_PTR(-ENOTDIR);
2281 }
2282
2283 nd->path = f.file->f_path;
2284 if (flags & LOOKUP_RCU) {
2285 nd->inode = nd->path.dentry->d_inode;
2286 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2287 } else {
2288 path_get(&nd->path);
2289 nd->inode = nd->path.dentry->d_inode;
2290 }
2291 fdput(f);
2292 }
2293
2294 /* For scoped-lookups we need to set the root to the dirfd as well. */
2295 if (flags & LOOKUP_IS_SCOPED) {
2296 nd->root = nd->path;
2297 if (flags & LOOKUP_RCU) {
2298 nd->root_seq = nd->seq;
2299 } else {
2300 path_get(&nd->root);
2301 nd->flags |= LOOKUP_ROOT_GRABBED;
2302 }
2303 }
2304 return s;
2305 }
2306
2307 static inline const char *lookup_last(struct nameidata *nd)
2308 {
2309 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2310 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2311
2312 return walk_component(nd, WALK_TRAILING);
2313 }
2314
2315 static int handle_lookup_down(struct nameidata *nd)
2316 {
2317 if (!(nd->flags & LOOKUP_RCU))
2318 dget(nd->path.dentry);
2319 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2320 nd->path.dentry, nd->inode, nd->seq));
2321 }
2322
2323 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2324 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2325 {
2326 const char *s = path_init(nd, flags);
2327 int err;
2328
2329 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2330 err = handle_lookup_down(nd);
2331 if (unlikely(err < 0))
2332 s = ERR_PTR(err);
2333 }
2334
2335 while (!(err = link_path_walk(s, nd)) &&
2336 (s = lookup_last(nd)) != NULL)
2337 ;
2338 if (!err)
2339 err = complete_walk(nd);
2340
2341 if (!err && nd->flags & LOOKUP_DIRECTORY)
2342 if (!d_can_lookup(nd->path.dentry))
2343 err = -ENOTDIR;
2344 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2345 err = handle_lookup_down(nd);
2346 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2347 }
2348 if (!err) {
2349 *path = nd->path;
2350 nd->path.mnt = NULL;
2351 nd->path.dentry = NULL;
2352 }
2353 terminate_walk(nd);
2354 return err;
2355 }
2356
2357 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2358 struct path *path, struct path *root)
2359 {
2360 int retval;
2361 struct nameidata nd;
2362 if (IS_ERR(name))
2363 return PTR_ERR(name);
2364 if (unlikely(root)) {
2365 nd.root = *root;
2366 flags |= LOOKUP_ROOT;
2367 }
2368 set_nameidata(&nd, dfd, name);
2369 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2370 if (unlikely(retval == -ECHILD))
2371 retval = path_lookupat(&nd, flags, path);
2372 if (unlikely(retval == -ESTALE))
2373 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2374
2375 if (likely(!retval))
2376 audit_inode(name, path->dentry,
2377 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2378 restore_nameidata();
2379 putname(name);
2380 return retval;
2381 }
2382
2383 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2384 static int path_parentat(struct nameidata *nd, unsigned flags,
2385 struct path *parent)
2386 {
2387 const char *s = path_init(nd, flags);
2388 int err = link_path_walk(s, nd);
2389 if (!err)
2390 err = complete_walk(nd);
2391 if (!err) {
2392 *parent = nd->path;
2393 nd->path.mnt = NULL;
2394 nd->path.dentry = NULL;
2395 }
2396 terminate_walk(nd);
2397 return err;
2398 }
2399
2400 static struct filename *filename_parentat(int dfd, struct filename *name,
2401 unsigned int flags, struct path *parent,
2402 struct qstr *last, int *type)
2403 {
2404 int retval;
2405 struct nameidata nd;
2406
2407 if (IS_ERR(name))
2408 return name;
2409 set_nameidata(&nd, dfd, name);
2410 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2411 if (unlikely(retval == -ECHILD))
2412 retval = path_parentat(&nd, flags, parent);
2413 if (unlikely(retval == -ESTALE))
2414 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2415 if (likely(!retval)) {
2416 *last = nd.last;
2417 *type = nd.last_type;
2418 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2419 } else {
2420 putname(name);
2421 name = ERR_PTR(retval);
2422 }
2423 restore_nameidata();
2424 return name;
2425 }
2426
2427 /* does lookup, returns the object with parent locked */
2428 struct dentry *kern_path_locked(const char *name, struct path *path)
2429 {
2430 struct filename *filename;
2431 struct dentry *d;
2432 struct qstr last;
2433 int type;
2434
2435 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2436 &last, &type);
2437 if (IS_ERR(filename))
2438 return ERR_CAST(filename);
2439 if (unlikely(type != LAST_NORM)) {
2440 path_put(path);
2441 putname(filename);
2442 return ERR_PTR(-EINVAL);
2443 }
2444 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2445 d = __lookup_hash(&last, path->dentry, 0);
2446 if (IS_ERR(d)) {
2447 inode_unlock(path->dentry->d_inode);
2448 path_put(path);
2449 }
2450 putname(filename);
2451 return d;
2452 }
2453
2454 int kern_path(const char *name, unsigned int flags, struct path *path)
2455 {
2456 return filename_lookup(AT_FDCWD, getname_kernel(name),
2457 flags, path, NULL);
2458 }
2459 EXPORT_SYMBOL(kern_path);
2460
2461 /**
2462 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2463 * @dentry: pointer to dentry of the base directory
2464 * @mnt: pointer to vfs mount of the base directory
2465 * @name: pointer to file name
2466 * @flags: lookup flags
2467 * @path: pointer to struct path to fill
2468 */
2469 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2470 const char *name, unsigned int flags,
2471 struct path *path)
2472 {
2473 struct path root = {.mnt = mnt, .dentry = dentry};
2474 /* the first argument of filename_lookup() is ignored with root */
2475 return filename_lookup(AT_FDCWD, getname_kernel(name),
2476 flags , path, &root);
2477 }
2478 EXPORT_SYMBOL(vfs_path_lookup);
2479
2480 static int lookup_one_len_common(const char *name, struct dentry *base,
2481 int len, struct qstr *this)
2482 {
2483 this->name = name;
2484 this->len = len;
2485 this->hash = full_name_hash(base, name, len);
2486 if (!len)
2487 return -EACCES;
2488
2489 if (unlikely(name[0] == '.')) {
2490 if (len < 2 || (len == 2 && name[1] == '.'))
2491 return -EACCES;
2492 }
2493
2494 while (len--) {
2495 unsigned int c = *(const unsigned char *)name++;
2496 if (c == '/' || c == '\0')
2497 return -EACCES;
2498 }
2499 /*
2500 * See if the low-level filesystem might want
2501 * to use its own hash..
2502 */
2503 if (base->d_flags & DCACHE_OP_HASH) {
2504 int err = base->d_op->d_hash(base, this);
2505 if (err < 0)
2506 return err;
2507 }
2508
2509 return inode_permission(base->d_inode, MAY_EXEC);
2510 }
2511
2512 /**
2513 * try_lookup_one_len - filesystem helper to lookup single pathname component
2514 * @name: pathname component to lookup
2515 * @base: base directory to lookup from
2516 * @len: maximum length @len should be interpreted to
2517 *
2518 * Look up a dentry by name in the dcache, returning NULL if it does not
2519 * currently exist. The function does not try to create a dentry.
2520 *
2521 * Note that this routine is purely a helper for filesystem usage and should
2522 * not be called by generic code.
2523 *
2524 * The caller must hold base->i_mutex.
2525 */
2526 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2527 {
2528 struct qstr this;
2529 int err;
2530
2531 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2532
2533 err = lookup_one_len_common(name, base, len, &this);
2534 if (err)
2535 return ERR_PTR(err);
2536
2537 return lookup_dcache(&this, base, 0);
2538 }
2539 EXPORT_SYMBOL(try_lookup_one_len);
2540
2541 /**
2542 * lookup_one_len - filesystem helper to lookup single pathname component
2543 * @name: pathname component to lookup
2544 * @base: base directory to lookup from
2545 * @len: maximum length @len should be interpreted to
2546 *
2547 * Note that this routine is purely a helper for filesystem usage and should
2548 * not be called by generic code.
2549 *
2550 * The caller must hold base->i_mutex.
2551 */
2552 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2553 {
2554 struct dentry *dentry;
2555 struct qstr this;
2556 int err;
2557
2558 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2559
2560 err = lookup_one_len_common(name, base, len, &this);
2561 if (err)
2562 return ERR_PTR(err);
2563
2564 dentry = lookup_dcache(&this, base, 0);
2565 return dentry ? dentry : __lookup_slow(&this, base, 0);
2566 }
2567 EXPORT_SYMBOL(lookup_one_len);
2568
2569 /**
2570 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2571 * @name: pathname component to lookup
2572 * @base: base directory to lookup from
2573 * @len: maximum length @len should be interpreted to
2574 *
2575 * Note that this routine is purely a helper for filesystem usage and should
2576 * not be called by generic code.
2577 *
2578 * Unlike lookup_one_len, it should be called without the parent
2579 * i_mutex held, and will take the i_mutex itself if necessary.
2580 */
2581 struct dentry *lookup_one_len_unlocked(const char *name,
2582 struct dentry *base, int len)
2583 {
2584 struct qstr this;
2585 int err;
2586 struct dentry *ret;
2587
2588 err = lookup_one_len_common(name, base, len, &this);
2589 if (err)
2590 return ERR_PTR(err);
2591
2592 ret = lookup_dcache(&this, base, 0);
2593 if (!ret)
2594 ret = lookup_slow(&this, base, 0);
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(lookup_one_len_unlocked);
2598
2599 /*
2600 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2601 * on negatives. Returns known positive or ERR_PTR(); that's what
2602 * most of the users want. Note that pinned negative with unlocked parent
2603 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2604 * need to be very careful; pinned positives have ->d_inode stable, so
2605 * this one avoids such problems.
2606 */
2607 struct dentry *lookup_positive_unlocked(const char *name,
2608 struct dentry *base, int len)
2609 {
2610 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2611 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2612 dput(ret);
2613 ret = ERR_PTR(-ENOENT);
2614 }
2615 return ret;
2616 }
2617 EXPORT_SYMBOL(lookup_positive_unlocked);
2618
2619 #ifdef CONFIG_UNIX98_PTYS
2620 int path_pts(struct path *path)
2621 {
2622 /* Find something mounted on "pts" in the same directory as
2623 * the input path.
2624 */
2625 struct dentry *parent = dget_parent(path->dentry);
2626 struct dentry *child;
2627 struct qstr this = QSTR_INIT("pts", 3);
2628
2629 if (unlikely(!path_connected(path->mnt, parent))) {
2630 dput(parent);
2631 return -ENOENT;
2632 }
2633 dput(path->dentry);
2634 path->dentry = parent;
2635 child = d_hash_and_lookup(parent, &this);
2636 if (!child)
2637 return -ENOENT;
2638
2639 path->dentry = child;
2640 dput(parent);
2641 follow_down(path);
2642 return 0;
2643 }
2644 #endif
2645
2646 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2647 struct path *path, int *empty)
2648 {
2649 return filename_lookup(dfd, getname_flags(name, flags, empty),
2650 flags, path, NULL);
2651 }
2652 EXPORT_SYMBOL(user_path_at_empty);
2653
2654 int __check_sticky(struct inode *dir, struct inode *inode)
2655 {
2656 kuid_t fsuid = current_fsuid();
2657
2658 if (uid_eq(inode->i_uid, fsuid))
2659 return 0;
2660 if (uid_eq(dir->i_uid, fsuid))
2661 return 0;
2662 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2663 }
2664 EXPORT_SYMBOL(__check_sticky);
2665
2666 /*
2667 * Check whether we can remove a link victim from directory dir, check
2668 * whether the type of victim is right.
2669 * 1. We can't do it if dir is read-only (done in permission())
2670 * 2. We should have write and exec permissions on dir
2671 * 3. We can't remove anything from append-only dir
2672 * 4. We can't do anything with immutable dir (done in permission())
2673 * 5. If the sticky bit on dir is set we should either
2674 * a. be owner of dir, or
2675 * b. be owner of victim, or
2676 * c. have CAP_FOWNER capability
2677 * 6. If the victim is append-only or immutable we can't do antyhing with
2678 * links pointing to it.
2679 * 7. If the victim has an unknown uid or gid we can't change the inode.
2680 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2681 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2682 * 10. We can't remove a root or mountpoint.
2683 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2684 * nfs_async_unlink().
2685 */
2686 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2687 {
2688 struct inode *inode = d_backing_inode(victim);
2689 int error;
2690
2691 if (d_is_negative(victim))
2692 return -ENOENT;
2693 BUG_ON(!inode);
2694
2695 BUG_ON(victim->d_parent->d_inode != dir);
2696
2697 /* Inode writeback is not safe when the uid or gid are invalid. */
2698 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2699 return -EOVERFLOW;
2700
2701 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2702
2703 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2704 if (error)
2705 return error;
2706 if (IS_APPEND(dir))
2707 return -EPERM;
2708
2709 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2710 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2711 return -EPERM;
2712 if (isdir) {
2713 if (!d_is_dir(victim))
2714 return -ENOTDIR;
2715 if (IS_ROOT(victim))
2716 return -EBUSY;
2717 } else if (d_is_dir(victim))
2718 return -EISDIR;
2719 if (IS_DEADDIR(dir))
2720 return -ENOENT;
2721 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2722 return -EBUSY;
2723 return 0;
2724 }
2725
2726 /* Check whether we can create an object with dentry child in directory
2727 * dir.
2728 * 1. We can't do it if child already exists (open has special treatment for
2729 * this case, but since we are inlined it's OK)
2730 * 2. We can't do it if dir is read-only (done in permission())
2731 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2732 * 4. We should have write and exec permissions on dir
2733 * 5. We can't do it if dir is immutable (done in permission())
2734 */
2735 static inline int may_create(struct inode *dir, struct dentry *child)
2736 {
2737 struct user_namespace *s_user_ns;
2738 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2739 if (child->d_inode)
2740 return -EEXIST;
2741 if (IS_DEADDIR(dir))
2742 return -ENOENT;
2743 s_user_ns = dir->i_sb->s_user_ns;
2744 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2745 !kgid_has_mapping(s_user_ns, current_fsgid()))
2746 return -EOVERFLOW;
2747 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748 }
2749
2750 /*
2751 * p1 and p2 should be directories on the same fs.
2752 */
2753 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2754 {
2755 struct dentry *p;
2756
2757 if (p1 == p2) {
2758 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2759 return NULL;
2760 }
2761
2762 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2763
2764 p = d_ancestor(p2, p1);
2765 if (p) {
2766 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2767 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2768 return p;
2769 }
2770
2771 p = d_ancestor(p1, p2);
2772 if (p) {
2773 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2774 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2775 return p;
2776 }
2777
2778 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2780 return NULL;
2781 }
2782 EXPORT_SYMBOL(lock_rename);
2783
2784 void unlock_rename(struct dentry *p1, struct dentry *p2)
2785 {
2786 inode_unlock(p1->d_inode);
2787 if (p1 != p2) {
2788 inode_unlock(p2->d_inode);
2789 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2790 }
2791 }
2792 EXPORT_SYMBOL(unlock_rename);
2793
2794 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2795 bool want_excl)
2796 {
2797 int error = may_create(dir, dentry);
2798 if (error)
2799 return error;
2800
2801 if (!dir->i_op->create)
2802 return -EACCES; /* shouldn't it be ENOSYS? */
2803 mode &= S_IALLUGO;
2804 mode |= S_IFREG;
2805 error = security_inode_create(dir, dentry, mode);
2806 if (error)
2807 return error;
2808 error = dir->i_op->create(dir, dentry, mode, want_excl);
2809 if (!error)
2810 fsnotify_create(dir, dentry);
2811 return error;
2812 }
2813 EXPORT_SYMBOL(vfs_create);
2814
2815 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2816 int (*f)(struct dentry *, umode_t, void *),
2817 void *arg)
2818 {
2819 struct inode *dir = dentry->d_parent->d_inode;
2820 int error = may_create(dir, dentry);
2821 if (error)
2822 return error;
2823
2824 mode &= S_IALLUGO;
2825 mode |= S_IFREG;
2826 error = security_inode_create(dir, dentry, mode);
2827 if (error)
2828 return error;
2829 error = f(dentry, mode, arg);
2830 if (!error)
2831 fsnotify_create(dir, dentry);
2832 return error;
2833 }
2834 EXPORT_SYMBOL(vfs_mkobj);
2835
2836 bool may_open_dev(const struct path *path)
2837 {
2838 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2839 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2840 }
2841
2842 static int may_open(const struct path *path, int acc_mode, int flag)
2843 {
2844 struct dentry *dentry = path->dentry;
2845 struct inode *inode = dentry->d_inode;
2846 int error;
2847
2848 if (!inode)
2849 return -ENOENT;
2850
2851 switch (inode->i_mode & S_IFMT) {
2852 case S_IFLNK:
2853 return -ELOOP;
2854 case S_IFDIR:
2855 if (acc_mode & MAY_WRITE)
2856 return -EISDIR;
2857 if (acc_mode & MAY_EXEC)
2858 return -EACCES;
2859 break;
2860 case S_IFBLK:
2861 case S_IFCHR:
2862 if (!may_open_dev(path))
2863 return -EACCES;
2864 fallthrough;
2865 case S_IFIFO:
2866 case S_IFSOCK:
2867 if (acc_mode & MAY_EXEC)
2868 return -EACCES;
2869 flag &= ~O_TRUNC;
2870 break;
2871 case S_IFREG:
2872 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2873 return -EACCES;
2874 break;
2875 }
2876
2877 error = inode_permission(inode, MAY_OPEN | acc_mode);
2878 if (error)
2879 return error;
2880
2881 /*
2882 * An append-only file must be opened in append mode for writing.
2883 */
2884 if (IS_APPEND(inode)) {
2885 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2886 return -EPERM;
2887 if (flag & O_TRUNC)
2888 return -EPERM;
2889 }
2890
2891 /* O_NOATIME can only be set by the owner or superuser */
2892 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2893 return -EPERM;
2894
2895 return 0;
2896 }
2897
2898 static int handle_truncate(struct file *filp)
2899 {
2900 const struct path *path = &filp->f_path;
2901 struct inode *inode = path->dentry->d_inode;
2902 int error = get_write_access(inode);
2903 if (error)
2904 return error;
2905 /*
2906 * Refuse to truncate files with mandatory locks held on them.
2907 */
2908 error = locks_verify_locked(filp);
2909 if (!error)
2910 error = security_path_truncate(path);
2911 if (!error) {
2912 error = do_truncate(path->dentry, 0,
2913 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2914 filp);
2915 }
2916 put_write_access(inode);
2917 return error;
2918 }
2919
2920 static inline int open_to_namei_flags(int flag)
2921 {
2922 if ((flag & O_ACCMODE) == 3)
2923 flag--;
2924 return flag;
2925 }
2926
2927 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2928 {
2929 struct user_namespace *s_user_ns;
2930 int error = security_path_mknod(dir, dentry, mode, 0);
2931 if (error)
2932 return error;
2933
2934 s_user_ns = dir->dentry->d_sb->s_user_ns;
2935 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2936 !kgid_has_mapping(s_user_ns, current_fsgid()))
2937 return -EOVERFLOW;
2938
2939 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2940 if (error)
2941 return error;
2942
2943 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2944 }
2945
2946 /*
2947 * Attempt to atomically look up, create and open a file from a negative
2948 * dentry.
2949 *
2950 * Returns 0 if successful. The file will have been created and attached to
2951 * @file by the filesystem calling finish_open().
2952 *
2953 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2954 * be set. The caller will need to perform the open themselves. @path will
2955 * have been updated to point to the new dentry. This may be negative.
2956 *
2957 * Returns an error code otherwise.
2958 */
2959 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2960 struct file *file,
2961 int open_flag, umode_t mode)
2962 {
2963 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2964 struct inode *dir = nd->path.dentry->d_inode;
2965 int error;
2966
2967 if (nd->flags & LOOKUP_DIRECTORY)
2968 open_flag |= O_DIRECTORY;
2969
2970 file->f_path.dentry = DENTRY_NOT_SET;
2971 file->f_path.mnt = nd->path.mnt;
2972 error = dir->i_op->atomic_open(dir, dentry, file,
2973 open_to_namei_flags(open_flag), mode);
2974 d_lookup_done(dentry);
2975 if (!error) {
2976 if (file->f_mode & FMODE_OPENED) {
2977 if (unlikely(dentry != file->f_path.dentry)) {
2978 dput(dentry);
2979 dentry = dget(file->f_path.dentry);
2980 }
2981 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2982 error = -EIO;
2983 } else {
2984 if (file->f_path.dentry) {
2985 dput(dentry);
2986 dentry = file->f_path.dentry;
2987 }
2988 if (unlikely(d_is_negative(dentry)))
2989 error = -ENOENT;
2990 }
2991 }
2992 if (error) {
2993 dput(dentry);
2994 dentry = ERR_PTR(error);
2995 }
2996 return dentry;
2997 }
2998
2999 /*
3000 * Look up and maybe create and open the last component.
3001 *
3002 * Must be called with parent locked (exclusive in O_CREAT case).
3003 *
3004 * Returns 0 on success, that is, if
3005 * the file was successfully atomically created (if necessary) and opened, or
3006 * the file was not completely opened at this time, though lookups and
3007 * creations were performed.
3008 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3009 * In the latter case dentry returned in @path might be negative if O_CREAT
3010 * hadn't been specified.
3011 *
3012 * An error code is returned on failure.
3013 */
3014 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3015 const struct open_flags *op,
3016 bool got_write)
3017 {
3018 struct dentry *dir = nd->path.dentry;
3019 struct inode *dir_inode = dir->d_inode;
3020 int open_flag = op->open_flag;
3021 struct dentry *dentry;
3022 int error, create_error = 0;
3023 umode_t mode = op->mode;
3024 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3025
3026 if (unlikely(IS_DEADDIR(dir_inode)))
3027 return ERR_PTR(-ENOENT);
3028
3029 file->f_mode &= ~FMODE_CREATED;
3030 dentry = d_lookup(dir, &nd->last);
3031 for (;;) {
3032 if (!dentry) {
3033 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3034 if (IS_ERR(dentry))
3035 return dentry;
3036 }
3037 if (d_in_lookup(dentry))
3038 break;
3039
3040 error = d_revalidate(dentry, nd->flags);
3041 if (likely(error > 0))
3042 break;
3043 if (error)
3044 goto out_dput;
3045 d_invalidate(dentry);
3046 dput(dentry);
3047 dentry = NULL;
3048 }
3049 if (dentry->d_inode) {
3050 /* Cached positive dentry: will open in f_op->open */
3051 return dentry;
3052 }
3053
3054 /*
3055 * Checking write permission is tricky, bacuse we don't know if we are
3056 * going to actually need it: O_CREAT opens should work as long as the
3057 * file exists. But checking existence breaks atomicity. The trick is
3058 * to check access and if not granted clear O_CREAT from the flags.
3059 *
3060 * Another problem is returing the "right" error value (e.g. for an
3061 * O_EXCL open we want to return EEXIST not EROFS).
3062 */
3063 if (unlikely(!got_write))
3064 open_flag &= ~O_TRUNC;
3065 if (open_flag & O_CREAT) {
3066 if (open_flag & O_EXCL)
3067 open_flag &= ~O_TRUNC;
3068 if (!IS_POSIXACL(dir->d_inode))
3069 mode &= ~current_umask();
3070 if (likely(got_write))
3071 create_error = may_o_create(&nd->path, dentry, mode);
3072 else
3073 create_error = -EROFS;
3074 }
3075 if (create_error)
3076 open_flag &= ~O_CREAT;
3077 if (dir_inode->i_op->atomic_open) {
3078 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3079 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3080 dentry = ERR_PTR(create_error);
3081 return dentry;
3082 }
3083
3084 if (d_in_lookup(dentry)) {
3085 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3086 nd->flags);
3087 d_lookup_done(dentry);
3088 if (unlikely(res)) {
3089 if (IS_ERR(res)) {
3090 error = PTR_ERR(res);
3091 goto out_dput;
3092 }
3093 dput(dentry);
3094 dentry = res;
3095 }
3096 }
3097
3098 /* Negative dentry, just create the file */
3099 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3100 file->f_mode |= FMODE_CREATED;
3101 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3102 if (!dir_inode->i_op->create) {
3103 error = -EACCES;
3104 goto out_dput;
3105 }
3106 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3107 open_flag & O_EXCL);
3108 if (error)
3109 goto out_dput;
3110 }
3111 if (unlikely(create_error) && !dentry->d_inode) {
3112 error = create_error;
3113 goto out_dput;
3114 }
3115 return dentry;
3116
3117 out_dput:
3118 dput(dentry);
3119 return ERR_PTR(error);
3120 }
3121
3122 static const char *open_last_lookups(struct nameidata *nd,
3123 struct file *file, const struct open_flags *op)
3124 {
3125 struct dentry *dir = nd->path.dentry;
3126 int open_flag = op->open_flag;
3127 bool got_write = false;
3128 unsigned seq;
3129 struct inode *inode;
3130 struct dentry *dentry;
3131 const char *res;
3132 int error;
3133
3134 nd->flags |= op->intent;
3135
3136 if (nd->last_type != LAST_NORM) {
3137 if (nd->depth)
3138 put_link(nd);
3139 return handle_dots(nd, nd->last_type);
3140 }
3141
3142 if (!(open_flag & O_CREAT)) {
3143 if (nd->last.name[nd->last.len])
3144 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3145 /* we _can_ be in RCU mode here */
3146 dentry = lookup_fast(nd, &inode, &seq);
3147 if (IS_ERR(dentry))
3148 return ERR_CAST(dentry);
3149 if (likely(dentry))
3150 goto finish_lookup;
3151
3152 BUG_ON(nd->flags & LOOKUP_RCU);
3153 } else {
3154 /* create side of things */
3155 if (nd->flags & LOOKUP_RCU) {
3156 error = unlazy_walk(nd);
3157 if (unlikely(error))
3158 return ERR_PTR(error);
3159 }
3160 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3161 /* trailing slashes? */
3162 if (unlikely(nd->last.name[nd->last.len]))
3163 return ERR_PTR(-EISDIR);
3164 }
3165
3166 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3167 error = mnt_want_write(nd->path.mnt);
3168 if (!error)
3169 got_write = true;
3170 /*
3171 * do _not_ fail yet - we might not need that or fail with
3172 * a different error; let lookup_open() decide; we'll be
3173 * dropping this one anyway.
3174 */
3175 }
3176 if (open_flag & O_CREAT)
3177 inode_lock(dir->d_inode);
3178 else
3179 inode_lock_shared(dir->d_inode);
3180 dentry = lookup_open(nd, file, op, got_write);
3181 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3182 fsnotify_create(dir->d_inode, dentry);
3183 if (open_flag & O_CREAT)
3184 inode_unlock(dir->d_inode);
3185 else
3186 inode_unlock_shared(dir->d_inode);
3187
3188 if (got_write)
3189 mnt_drop_write(nd->path.mnt);
3190
3191 if (IS_ERR(dentry))
3192 return ERR_CAST(dentry);
3193
3194 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3195 dput(nd->path.dentry);
3196 nd->path.dentry = dentry;
3197 return NULL;
3198 }
3199
3200 finish_lookup:
3201 if (nd->depth)
3202 put_link(nd);
3203 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3204 if (unlikely(res))
3205 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3206 return res;
3207 }
3208
3209 /*
3210 * Handle the last step of open()
3211 */
3212 static int do_open(struct nameidata *nd,
3213 struct file *file, const struct open_flags *op)
3214 {
3215 int open_flag = op->open_flag;
3216 bool do_truncate;
3217 int acc_mode;
3218 int error;
3219
3220 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3221 error = complete_walk(nd);
3222 if (error)
3223 return error;
3224 }
3225 if (!(file->f_mode & FMODE_CREATED))
3226 audit_inode(nd->name, nd->path.dentry, 0);
3227 if (open_flag & O_CREAT) {
3228 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3229 return -EEXIST;
3230 if (d_is_dir(nd->path.dentry))
3231 return -EISDIR;
3232 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3233 d_backing_inode(nd->path.dentry));
3234 if (unlikely(error))
3235 return error;
3236 }
3237 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3238 return -ENOTDIR;
3239
3240 do_truncate = false;
3241 acc_mode = op->acc_mode;
3242 if (file->f_mode & FMODE_CREATED) {
3243 /* Don't check for write permission, don't truncate */
3244 open_flag &= ~O_TRUNC;
3245 acc_mode = 0;
3246 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3247 error = mnt_want_write(nd->path.mnt);
3248 if (error)
3249 return error;
3250 do_truncate = true;
3251 }
3252 error = may_open(&nd->path, acc_mode, open_flag);
3253 if (!error && !(file->f_mode & FMODE_OPENED))
3254 error = vfs_open(&nd->path, file);
3255 if (!error)
3256 error = ima_file_check(file, op->acc_mode);
3257 if (!error && do_truncate)
3258 error = handle_truncate(file);
3259 if (unlikely(error > 0)) {
3260 WARN_ON(1);
3261 error = -EINVAL;
3262 }
3263 if (do_truncate)
3264 mnt_drop_write(nd->path.mnt);
3265 return error;
3266 }
3267
3268 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3269 {
3270 struct dentry *child = NULL;
3271 struct inode *dir = dentry->d_inode;
3272 struct inode *inode;
3273 int error;
3274
3275 /* we want directory to be writable */
3276 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3277 if (error)
3278 goto out_err;
3279 error = -EOPNOTSUPP;
3280 if (!dir->i_op->tmpfile)
3281 goto out_err;
3282 error = -ENOMEM;
3283 child = d_alloc(dentry, &slash_name);
3284 if (unlikely(!child))
3285 goto out_err;
3286 error = dir->i_op->tmpfile(dir, child, mode);
3287 if (error)
3288 goto out_err;
3289 error = -ENOENT;
3290 inode = child->d_inode;
3291 if (unlikely(!inode))
3292 goto out_err;
3293 if (!(open_flag & O_EXCL)) {
3294 spin_lock(&inode->i_lock);
3295 inode->i_state |= I_LINKABLE;
3296 spin_unlock(&inode->i_lock);
3297 }
3298 ima_post_create_tmpfile(inode);
3299 return child;
3300
3301 out_err:
3302 dput(child);
3303 return ERR_PTR(error);
3304 }
3305 EXPORT_SYMBOL(vfs_tmpfile);
3306
3307 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3308 const struct open_flags *op,
3309 struct file *file)
3310 {
3311 struct dentry *child;
3312 struct path path;
3313 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3314 if (unlikely(error))
3315 return error;
3316 error = mnt_want_write(path.mnt);
3317 if (unlikely(error))
3318 goto out;
3319 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3320 error = PTR_ERR(child);
3321 if (IS_ERR(child))
3322 goto out2;
3323 dput(path.dentry);
3324 path.dentry = child;
3325 audit_inode(nd->name, child, 0);
3326 /* Don't check for other permissions, the inode was just created */
3327 error = may_open(&path, 0, op->open_flag);
3328 if (error)
3329 goto out2;
3330 file->f_path.mnt = path.mnt;
3331 error = finish_open(file, child, NULL);
3332 out2:
3333 mnt_drop_write(path.mnt);
3334 out:
3335 path_put(&path);
3336 return error;
3337 }
3338
3339 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3340 {
3341 struct path path;
3342 int error = path_lookupat(nd, flags, &path);
3343 if (!error) {
3344 audit_inode(nd->name, path.dentry, 0);
3345 error = vfs_open(&path, file);
3346 path_put(&path);
3347 }
3348 return error;
3349 }
3350
3351 static struct file *path_openat(struct nameidata *nd,
3352 const struct open_flags *op, unsigned flags)
3353 {
3354 struct file *file;
3355 int error;
3356
3357 file = alloc_empty_file(op->open_flag, current_cred());
3358 if (IS_ERR(file))
3359 return file;
3360
3361 if (unlikely(file->f_flags & __O_TMPFILE)) {
3362 error = do_tmpfile(nd, flags, op, file);
3363 } else if (unlikely(file->f_flags & O_PATH)) {
3364 error = do_o_path(nd, flags, file);
3365 } else {
3366 const char *s = path_init(nd, flags);
3367 while (!(error = link_path_walk(s, nd)) &&
3368 (s = open_last_lookups(nd, file, op)) != NULL)
3369 ;
3370 if (!error)
3371 error = do_open(nd, file, op);
3372 terminate_walk(nd);
3373 }
3374 if (likely(!error)) {
3375 if (likely(file->f_mode & FMODE_OPENED))
3376 return file;
3377 WARN_ON(1);
3378 error = -EINVAL;
3379 }
3380 fput(file);
3381 if (error == -EOPENSTALE) {
3382 if (flags & LOOKUP_RCU)
3383 error = -ECHILD;
3384 else
3385 error = -ESTALE;
3386 }
3387 return ERR_PTR(error);
3388 }
3389
3390 struct file *do_filp_open(int dfd, struct filename *pathname,
3391 const struct open_flags *op)
3392 {
3393 struct nameidata nd;
3394 int flags = op->lookup_flags;
3395 struct file *filp;
3396
3397 set_nameidata(&nd, dfd, pathname);
3398 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3399 if (unlikely(filp == ERR_PTR(-ECHILD)))
3400 filp = path_openat(&nd, op, flags);
3401 if (unlikely(filp == ERR_PTR(-ESTALE)))
3402 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3403 restore_nameidata();
3404 return filp;
3405 }
3406
3407 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3408 const char *name, const struct open_flags *op)
3409 {
3410 struct nameidata nd;
3411 struct file *file;
3412 struct filename *filename;
3413 int flags = op->lookup_flags | LOOKUP_ROOT;
3414
3415 nd.root.mnt = mnt;
3416 nd.root.dentry = dentry;
3417
3418 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3419 return ERR_PTR(-ELOOP);
3420
3421 filename = getname_kernel(name);
3422 if (IS_ERR(filename))
3423 return ERR_CAST(filename);
3424
3425 set_nameidata(&nd, -1, filename);
3426 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3427 if (unlikely(file == ERR_PTR(-ECHILD)))
3428 file = path_openat(&nd, op, flags);
3429 if (unlikely(file == ERR_PTR(-ESTALE)))
3430 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3431 restore_nameidata();
3432 putname(filename);
3433 return file;
3434 }
3435
3436 static struct dentry *filename_create(int dfd, struct filename *name,
3437 struct path *path, unsigned int lookup_flags)
3438 {
3439 struct dentry *dentry = ERR_PTR(-EEXIST);
3440 struct qstr last;
3441 int type;
3442 int err2;
3443 int error;
3444 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3445
3446 /*
3447 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3448 * other flags passed in are ignored!
3449 */
3450 lookup_flags &= LOOKUP_REVAL;
3451
3452 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3453 if (IS_ERR(name))
3454 return ERR_CAST(name);
3455
3456 /*
3457 * Yucky last component or no last component at all?
3458 * (foo/., foo/.., /////)
3459 */
3460 if (unlikely(type != LAST_NORM))
3461 goto out;
3462
3463 /* don't fail immediately if it's r/o, at least try to report other errors */
3464 err2 = mnt_want_write(path->mnt);
3465 /*
3466 * Do the final lookup.
3467 */
3468 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3469 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3470 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3471 if (IS_ERR(dentry))
3472 goto unlock;
3473
3474 error = -EEXIST;
3475 if (d_is_positive(dentry))
3476 goto fail;
3477
3478 /*
3479 * Special case - lookup gave negative, but... we had foo/bar/
3480 * From the vfs_mknod() POV we just have a negative dentry -
3481 * all is fine. Let's be bastards - you had / on the end, you've
3482 * been asking for (non-existent) directory. -ENOENT for you.
3483 */
3484 if (unlikely(!is_dir && last.name[last.len])) {
3485 error = -ENOENT;
3486 goto fail;
3487 }
3488 if (unlikely(err2)) {
3489 error = err2;
3490 goto fail;
3491 }
3492 putname(name);
3493 return dentry;
3494 fail:
3495 dput(dentry);
3496 dentry = ERR_PTR(error);
3497 unlock:
3498 inode_unlock(path->dentry->d_inode);
3499 if (!err2)
3500 mnt_drop_write(path->mnt);
3501 out:
3502 path_put(path);
3503 putname(name);
3504 return dentry;
3505 }
3506
3507 struct dentry *kern_path_create(int dfd, const char *pathname,
3508 struct path *path, unsigned int lookup_flags)
3509 {
3510 return filename_create(dfd, getname_kernel(pathname),
3511 path, lookup_flags);
3512 }
3513 EXPORT_SYMBOL(kern_path_create);
3514
3515 void done_path_create(struct path *path, struct dentry *dentry)
3516 {
3517 dput(dentry);
3518 inode_unlock(path->dentry->d_inode);
3519 mnt_drop_write(path->mnt);
3520 path_put(path);
3521 }
3522 EXPORT_SYMBOL(done_path_create);
3523
3524 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3525 struct path *path, unsigned int lookup_flags)
3526 {
3527 return filename_create(dfd, getname(pathname), path, lookup_flags);
3528 }
3529 EXPORT_SYMBOL(user_path_create);
3530
3531 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3532 {
3533 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3534 int error = may_create(dir, dentry);
3535
3536 if (error)
3537 return error;
3538
3539 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3540 !capable(CAP_MKNOD))
3541 return -EPERM;
3542
3543 if (!dir->i_op->mknod)
3544 return -EPERM;
3545
3546 error = devcgroup_inode_mknod(mode, dev);
3547 if (error)
3548 return error;
3549
3550 error = security_inode_mknod(dir, dentry, mode, dev);
3551 if (error)
3552 return error;
3553
3554 error = dir->i_op->mknod(dir, dentry, mode, dev);
3555 if (!error)
3556 fsnotify_create(dir, dentry);
3557 return error;
3558 }
3559 EXPORT_SYMBOL(vfs_mknod);
3560
3561 static int may_mknod(umode_t mode)
3562 {
3563 switch (mode & S_IFMT) {
3564 case S_IFREG:
3565 case S_IFCHR:
3566 case S_IFBLK:
3567 case S_IFIFO:
3568 case S_IFSOCK:
3569 case 0: /* zero mode translates to S_IFREG */
3570 return 0;
3571 case S_IFDIR:
3572 return -EPERM;
3573 default:
3574 return -EINVAL;
3575 }
3576 }
3577
3578 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3579 unsigned int dev)
3580 {
3581 struct dentry *dentry;
3582 struct path path;
3583 int error;
3584 unsigned int lookup_flags = 0;
3585
3586 error = may_mknod(mode);
3587 if (error)
3588 return error;
3589 retry:
3590 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3591 if (IS_ERR(dentry))
3592 return PTR_ERR(dentry);
3593
3594 if (!IS_POSIXACL(path.dentry->d_inode))
3595 mode &= ~current_umask();
3596 error = security_path_mknod(&path, dentry, mode, dev);
3597 if (error)
3598 goto out;
3599 switch (mode & S_IFMT) {
3600 case 0: case S_IFREG:
3601 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3602 if (!error)
3603 ima_post_path_mknod(dentry);
3604 break;
3605 case S_IFCHR: case S_IFBLK:
3606 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3607 new_decode_dev(dev));
3608 break;
3609 case S_IFIFO: case S_IFSOCK:
3610 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3611 break;
3612 }
3613 out:
3614 done_path_create(&path, dentry);
3615 if (retry_estale(error, lookup_flags)) {
3616 lookup_flags |= LOOKUP_REVAL;
3617 goto retry;
3618 }
3619 return error;
3620 }
3621
3622 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3623 unsigned int, dev)
3624 {
3625 return do_mknodat(dfd, filename, mode, dev);
3626 }
3627
3628 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3629 {
3630 return do_mknodat(AT_FDCWD, filename, mode, dev);
3631 }
3632
3633 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3634 {
3635 int error = may_create(dir, dentry);
3636 unsigned max_links = dir->i_sb->s_max_links;
3637
3638 if (error)
3639 return error;
3640
3641 if (!dir->i_op->mkdir)
3642 return -EPERM;
3643
3644 mode &= (S_IRWXUGO|S_ISVTX);
3645 error = security_inode_mkdir(dir, dentry, mode);
3646 if (error)
3647 return error;
3648
3649 if (max_links && dir->i_nlink >= max_links)
3650 return -EMLINK;
3651
3652 error = dir->i_op->mkdir(dir, dentry, mode);
3653 if (!error)
3654 fsnotify_mkdir(dir, dentry);
3655 return error;
3656 }
3657 EXPORT_SYMBOL(vfs_mkdir);
3658
3659 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3660 {
3661 struct dentry *dentry;
3662 struct path path;
3663 int error;
3664 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3665
3666 retry:
3667 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3668 if (IS_ERR(dentry))
3669 return PTR_ERR(dentry);
3670
3671 if (!IS_POSIXACL(path.dentry->d_inode))
3672 mode &= ~current_umask();
3673 error = security_path_mkdir(&path, dentry, mode);
3674 if (!error)
3675 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3676 done_path_create(&path, dentry);
3677 if (retry_estale(error, lookup_flags)) {
3678 lookup_flags |= LOOKUP_REVAL;
3679 goto retry;
3680 }
3681 return error;
3682 }
3683
3684 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3685 {
3686 return do_mkdirat(dfd, pathname, mode);
3687 }
3688
3689 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3690 {
3691 return do_mkdirat(AT_FDCWD, pathname, mode);
3692 }
3693
3694 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3695 {
3696 int error = may_delete(dir, dentry, 1);
3697
3698 if (error)
3699 return error;
3700
3701 if (!dir->i_op->rmdir)
3702 return -EPERM;
3703
3704 dget(dentry);
3705 inode_lock(dentry->d_inode);
3706
3707 error = -EBUSY;
3708 if (is_local_mountpoint(dentry))
3709 goto out;
3710
3711 error = security_inode_rmdir(dir, dentry);
3712 if (error)
3713 goto out;
3714
3715 error = dir->i_op->rmdir(dir, dentry);
3716 if (error)
3717 goto out;
3718
3719 shrink_dcache_parent(dentry);
3720 dentry->d_inode->i_flags |= S_DEAD;
3721 dont_mount(dentry);
3722 detach_mounts(dentry);
3723 fsnotify_rmdir(dir, dentry);
3724
3725 out:
3726 inode_unlock(dentry->d_inode);
3727 dput(dentry);
3728 if (!error)
3729 d_delete(dentry);
3730 return error;
3731 }
3732 EXPORT_SYMBOL(vfs_rmdir);
3733
3734 long do_rmdir(int dfd, struct filename *name)
3735 {
3736 int error = 0;
3737 struct dentry *dentry;
3738 struct path path;
3739 struct qstr last;
3740 int type;
3741 unsigned int lookup_flags = 0;
3742 retry:
3743 name = filename_parentat(dfd, name, lookup_flags,
3744 &path, &last, &type);
3745 if (IS_ERR(name))
3746 return PTR_ERR(name);
3747
3748 switch (type) {
3749 case LAST_DOTDOT:
3750 error = -ENOTEMPTY;
3751 goto exit1;
3752 case LAST_DOT:
3753 error = -EINVAL;
3754 goto exit1;
3755 case LAST_ROOT:
3756 error = -EBUSY;
3757 goto exit1;
3758 }
3759
3760 error = mnt_want_write(path.mnt);
3761 if (error)
3762 goto exit1;
3763
3764 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3765 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3766 error = PTR_ERR(dentry);
3767 if (IS_ERR(dentry))
3768 goto exit2;
3769 if (!dentry->d_inode) {
3770 error = -ENOENT;
3771 goto exit3;
3772 }
3773 error = security_path_rmdir(&path, dentry);
3774 if (error)
3775 goto exit3;
3776 error = vfs_rmdir(path.dentry->d_inode, dentry);
3777 exit3:
3778 dput(dentry);
3779 exit2:
3780 inode_unlock(path.dentry->d_inode);
3781 mnt_drop_write(path.mnt);
3782 exit1:
3783 path_put(&path);
3784 if (retry_estale(error, lookup_flags)) {
3785 lookup_flags |= LOOKUP_REVAL;
3786 goto retry;
3787 }
3788 putname(name);
3789 return error;
3790 }
3791
3792 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3793 {
3794 return do_rmdir(AT_FDCWD, getname(pathname));
3795 }
3796
3797 /**
3798 * vfs_unlink - unlink a filesystem object
3799 * @dir: parent directory
3800 * @dentry: victim
3801 * @delegated_inode: returns victim inode, if the inode is delegated.
3802 *
3803 * The caller must hold dir->i_mutex.
3804 *
3805 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3806 * return a reference to the inode in delegated_inode. The caller
3807 * should then break the delegation on that inode and retry. Because
3808 * breaking a delegation may take a long time, the caller should drop
3809 * dir->i_mutex before doing so.
3810 *
3811 * Alternatively, a caller may pass NULL for delegated_inode. This may
3812 * be appropriate for callers that expect the underlying filesystem not
3813 * to be NFS exported.
3814 */
3815 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3816 {
3817 struct inode *target = dentry->d_inode;
3818 int error = may_delete(dir, dentry, 0);
3819
3820 if (error)
3821 return error;
3822
3823 if (!dir->i_op->unlink)
3824 return -EPERM;
3825
3826 inode_lock(target);
3827 if (is_local_mountpoint(dentry))
3828 error = -EBUSY;
3829 else {
3830 error = security_inode_unlink(dir, dentry);
3831 if (!error) {
3832 error = try_break_deleg(target, delegated_inode);
3833 if (error)
3834 goto out;
3835 error = dir->i_op->unlink(dir, dentry);
3836 if (!error) {
3837 dont_mount(dentry);
3838 detach_mounts(dentry);
3839 fsnotify_unlink(dir, dentry);
3840 }
3841 }
3842 }
3843 out:
3844 inode_unlock(target);
3845
3846 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3847 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3848 fsnotify_link_count(target);
3849 d_delete(dentry);
3850 }
3851
3852 return error;
3853 }
3854 EXPORT_SYMBOL(vfs_unlink);
3855
3856 /*
3857 * Make sure that the actual truncation of the file will occur outside its
3858 * directory's i_mutex. Truncate can take a long time if there is a lot of
3859 * writeout happening, and we don't want to prevent access to the directory
3860 * while waiting on the I/O.
3861 */
3862 long do_unlinkat(int dfd, struct filename *name)
3863 {
3864 int error;
3865 struct dentry *dentry;
3866 struct path path;
3867 struct qstr last;
3868 int type;
3869 struct inode *inode = NULL;
3870 struct inode *delegated_inode = NULL;
3871 unsigned int lookup_flags = 0;
3872 retry:
3873 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3874 if (IS_ERR(name))
3875 return PTR_ERR(name);
3876
3877 error = -EISDIR;
3878 if (type != LAST_NORM)
3879 goto exit1;
3880
3881 error = mnt_want_write(path.mnt);
3882 if (error)
3883 goto exit1;
3884 retry_deleg:
3885 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3886 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3887 error = PTR_ERR(dentry);
3888 if (!IS_ERR(dentry)) {
3889 /* Why not before? Because we want correct error value */
3890 if (last.name[last.len])
3891 goto slashes;
3892 inode = dentry->d_inode;
3893 if (d_is_negative(dentry))
3894 goto slashes;
3895 ihold(inode);
3896 error = security_path_unlink(&path, dentry);
3897 if (error)
3898 goto exit2;
3899 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3900 exit2:
3901 dput(dentry);
3902 }
3903 inode_unlock(path.dentry->d_inode);
3904 if (inode)
3905 iput(inode); /* truncate the inode here */
3906 inode = NULL;
3907 if (delegated_inode) {
3908 error = break_deleg_wait(&delegated_inode);
3909 if (!error)
3910 goto retry_deleg;
3911 }
3912 mnt_drop_write(path.mnt);
3913 exit1:
3914 path_put(&path);
3915 if (retry_estale(error, lookup_flags)) {
3916 lookup_flags |= LOOKUP_REVAL;
3917 inode = NULL;
3918 goto retry;
3919 }
3920 putname(name);
3921 return error;
3922
3923 slashes:
3924 if (d_is_negative(dentry))
3925 error = -ENOENT;
3926 else if (d_is_dir(dentry))
3927 error = -EISDIR;
3928 else
3929 error = -ENOTDIR;
3930 goto exit2;
3931 }
3932
3933 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3934 {
3935 if ((flag & ~AT_REMOVEDIR) != 0)
3936 return -EINVAL;
3937
3938 if (flag & AT_REMOVEDIR)
3939 return do_rmdir(dfd, getname(pathname));
3940 return do_unlinkat(dfd, getname(pathname));
3941 }
3942
3943 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3944 {
3945 return do_unlinkat(AT_FDCWD, getname(pathname));
3946 }
3947
3948 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3949 {
3950 int error = may_create(dir, dentry);
3951
3952 if (error)
3953 return error;
3954
3955 if (!dir->i_op->symlink)
3956 return -EPERM;
3957
3958 error = security_inode_symlink(dir, dentry, oldname);
3959 if (error)
3960 return error;
3961
3962 error = dir->i_op->symlink(dir, dentry, oldname);
3963 if (!error)
3964 fsnotify_create(dir, dentry);
3965 return error;
3966 }
3967 EXPORT_SYMBOL(vfs_symlink);
3968
3969 static long do_symlinkat(const char __user *oldname, int newdfd,
3970 const char __user *newname)
3971 {
3972 int error;
3973 struct filename *from;
3974 struct dentry *dentry;
3975 struct path path;
3976 unsigned int lookup_flags = 0;
3977
3978 from = getname(oldname);
3979 if (IS_ERR(from))
3980 return PTR_ERR(from);
3981 retry:
3982 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3983 error = PTR_ERR(dentry);
3984 if (IS_ERR(dentry))
3985 goto out_putname;
3986
3987 error = security_path_symlink(&path, dentry, from->name);
3988 if (!error)
3989 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3990 done_path_create(&path, dentry);
3991 if (retry_estale(error, lookup_flags)) {
3992 lookup_flags |= LOOKUP_REVAL;
3993 goto retry;
3994 }
3995 out_putname:
3996 putname(from);
3997 return error;
3998 }
3999
4000 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4001 int, newdfd, const char __user *, newname)
4002 {
4003 return do_symlinkat(oldname, newdfd, newname);
4004 }
4005
4006 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4007 {
4008 return do_symlinkat(oldname, AT_FDCWD, newname);
4009 }
4010
4011 /**
4012 * vfs_link - create a new link
4013 * @old_dentry: object to be linked
4014 * @dir: new parent
4015 * @new_dentry: where to create the new link
4016 * @delegated_inode: returns inode needing a delegation break
4017 *
4018 * The caller must hold dir->i_mutex
4019 *
4020 * If vfs_link discovers a delegation on the to-be-linked file in need
4021 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4022 * inode in delegated_inode. The caller should then break the delegation
4023 * and retry. Because breaking a delegation may take a long time, the
4024 * caller should drop the i_mutex before doing so.
4025 *
4026 * Alternatively, a caller may pass NULL for delegated_inode. This may
4027 * be appropriate for callers that expect the underlying filesystem not
4028 * to be NFS exported.
4029 */
4030 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4031 {
4032 struct inode *inode = old_dentry->d_inode;
4033 unsigned max_links = dir->i_sb->s_max_links;
4034 int error;
4035
4036 if (!inode)
4037 return -ENOENT;
4038
4039 error = may_create(dir, new_dentry);
4040 if (error)
4041 return error;
4042
4043 if (dir->i_sb != inode->i_sb)
4044 return -EXDEV;
4045
4046 /*
4047 * A link to an append-only or immutable file cannot be created.
4048 */
4049 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4050 return -EPERM;
4051 /*
4052 * Updating the link count will likely cause i_uid and i_gid to
4053 * be writen back improperly if their true value is unknown to
4054 * the vfs.
4055 */
4056 if (HAS_UNMAPPED_ID(inode))
4057 return -EPERM;
4058 if (!dir->i_op->link)
4059 return -EPERM;
4060 if (S_ISDIR(inode->i_mode))
4061 return -EPERM;
4062
4063 error = security_inode_link(old_dentry, dir, new_dentry);
4064 if (error)
4065 return error;
4066
4067 inode_lock(inode);
4068 /* Make sure we don't allow creating hardlink to an unlinked file */
4069 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4070 error = -ENOENT;
4071 else if (max_links && inode->i_nlink >= max_links)
4072 error = -EMLINK;
4073 else {
4074 error = try_break_deleg(inode, delegated_inode);
4075 if (!error)
4076 error = dir->i_op->link(old_dentry, dir, new_dentry);
4077 }
4078
4079 if (!error && (inode->i_state & I_LINKABLE)) {
4080 spin_lock(&inode->i_lock);
4081 inode->i_state &= ~I_LINKABLE;
4082 spin_unlock(&inode->i_lock);
4083 }
4084 inode_unlock(inode);
4085 if (!error)
4086 fsnotify_link(dir, inode, new_dentry);
4087 return error;
4088 }
4089 EXPORT_SYMBOL(vfs_link);
4090
4091 /*
4092 * Hardlinks are often used in delicate situations. We avoid
4093 * security-related surprises by not following symlinks on the
4094 * newname. --KAB
4095 *
4096 * We don't follow them on the oldname either to be compatible
4097 * with linux 2.0, and to avoid hard-linking to directories
4098 * and other special files. --ADM
4099 */
4100 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4101 const char __user *newname, int flags)
4102 {
4103 struct dentry *new_dentry;
4104 struct path old_path, new_path;
4105 struct inode *delegated_inode = NULL;
4106 int how = 0;
4107 int error;
4108
4109 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4110 return -EINVAL;
4111 /*
4112 * To use null names we require CAP_DAC_READ_SEARCH
4113 * This ensures that not everyone will be able to create
4114 * handlink using the passed filedescriptor.
4115 */
4116 if (flags & AT_EMPTY_PATH) {
4117 if (!capable(CAP_DAC_READ_SEARCH))
4118 return -ENOENT;
4119 how = LOOKUP_EMPTY;
4120 }
4121
4122 if (flags & AT_SYMLINK_FOLLOW)
4123 how |= LOOKUP_FOLLOW;
4124 retry:
4125 error = user_path_at(olddfd, oldname, how, &old_path);
4126 if (error)
4127 return error;
4128
4129 new_dentry = user_path_create(newdfd, newname, &new_path,
4130 (how & LOOKUP_REVAL));
4131 error = PTR_ERR(new_dentry);
4132 if (IS_ERR(new_dentry))
4133 goto out;
4134
4135 error = -EXDEV;
4136 if (old_path.mnt != new_path.mnt)
4137 goto out_dput;
4138 error = may_linkat(&old_path);
4139 if (unlikely(error))
4140 goto out_dput;
4141 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4142 if (error)
4143 goto out_dput;
4144 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4145 out_dput:
4146 done_path_create(&new_path, new_dentry);
4147 if (delegated_inode) {
4148 error = break_deleg_wait(&delegated_inode);
4149 if (!error) {
4150 path_put(&old_path);
4151 goto retry;
4152 }
4153 }
4154 if (retry_estale(error, how)) {
4155 path_put(&old_path);
4156 how |= LOOKUP_REVAL;
4157 goto retry;
4158 }
4159 out:
4160 path_put(&old_path);
4161
4162 return error;
4163 }
4164
4165 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4166 int, newdfd, const char __user *, newname, int, flags)
4167 {
4168 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4169 }
4170
4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4172 {
4173 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4174 }
4175
4176 /**
4177 * vfs_rename - rename a filesystem object
4178 * @old_dir: parent of source
4179 * @old_dentry: source
4180 * @new_dir: parent of destination
4181 * @new_dentry: destination
4182 * @delegated_inode: returns an inode needing a delegation break
4183 * @flags: rename flags
4184 *
4185 * The caller must hold multiple mutexes--see lock_rename()).
4186 *
4187 * If vfs_rename discovers a delegation in need of breaking at either
4188 * the source or destination, it will return -EWOULDBLOCK and return a
4189 * reference to the inode in delegated_inode. The caller should then
4190 * break the delegation and retry. Because breaking a delegation may
4191 * take a long time, the caller should drop all locks before doing
4192 * so.
4193 *
4194 * Alternatively, a caller may pass NULL for delegated_inode. This may
4195 * be appropriate for callers that expect the underlying filesystem not
4196 * to be NFS exported.
4197 *
4198 * The worst of all namespace operations - renaming directory. "Perverted"
4199 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4200 * Problems:
4201 *
4202 * a) we can get into loop creation.
4203 * b) race potential - two innocent renames can create a loop together.
4204 * That's where 4.4 screws up. Current fix: serialization on
4205 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4206 * story.
4207 * c) we have to lock _four_ objects - parents and victim (if it exists),
4208 * and source (if it is not a directory).
4209 * And that - after we got ->i_mutex on parents (until then we don't know
4210 * whether the target exists). Solution: try to be smart with locking
4211 * order for inodes. We rely on the fact that tree topology may change
4212 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4213 * move will be locked. Thus we can rank directories by the tree
4214 * (ancestors first) and rank all non-directories after them.
4215 * That works since everybody except rename does "lock parent, lookup,
4216 * lock child" and rename is under ->s_vfs_rename_mutex.
4217 * HOWEVER, it relies on the assumption that any object with ->lookup()
4218 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4219 * we'd better make sure that there's no link(2) for them.
4220 * d) conversion from fhandle to dentry may come in the wrong moment - when
4221 * we are removing the target. Solution: we will have to grab ->i_mutex
4222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4223 * ->i_mutex on parents, which works but leads to some truly excessive
4224 * locking].
4225 */
4226 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4227 struct inode *new_dir, struct dentry *new_dentry,
4228 struct inode **delegated_inode, unsigned int flags)
4229 {
4230 int error;
4231 bool is_dir = d_is_dir(old_dentry);
4232 struct inode *source = old_dentry->d_inode;
4233 struct inode *target = new_dentry->d_inode;
4234 bool new_is_dir = false;
4235 unsigned max_links = new_dir->i_sb->s_max_links;
4236 struct name_snapshot old_name;
4237
4238 if (source == target)
4239 return 0;
4240
4241 error = may_delete(old_dir, old_dentry, is_dir);
4242 if (error)
4243 return error;
4244
4245 if (!target) {
4246 error = may_create(new_dir, new_dentry);
4247 } else {
4248 new_is_dir = d_is_dir(new_dentry);
4249
4250 if (!(flags & RENAME_EXCHANGE))
4251 error = may_delete(new_dir, new_dentry, is_dir);
4252 else
4253 error = may_delete(new_dir, new_dentry, new_is_dir);
4254 }
4255 if (error)
4256 return error;
4257
4258 if (!old_dir->i_op->rename)
4259 return -EPERM;
4260
4261 /*
4262 * If we are going to change the parent - check write permissions,
4263 * we'll need to flip '..'.
4264 */
4265 if (new_dir != old_dir) {
4266 if (is_dir) {
4267 error = inode_permission(source, MAY_WRITE);
4268 if (error)
4269 return error;
4270 }
4271 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4272 error = inode_permission(target, MAY_WRITE);
4273 if (error)
4274 return error;
4275 }
4276 }
4277
4278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4279 flags);
4280 if (error)
4281 return error;
4282
4283 take_dentry_name_snapshot(&old_name, old_dentry);
4284 dget(new_dentry);
4285 if (!is_dir || (flags & RENAME_EXCHANGE))
4286 lock_two_nondirectories(source, target);
4287 else if (target)
4288 inode_lock(target);
4289
4290 error = -EBUSY;
4291 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4292 goto out;
4293
4294 if (max_links && new_dir != old_dir) {
4295 error = -EMLINK;
4296 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4297 goto out;
4298 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4299 old_dir->i_nlink >= max_links)
4300 goto out;
4301 }
4302 if (!is_dir) {
4303 error = try_break_deleg(source, delegated_inode);
4304 if (error)
4305 goto out;
4306 }
4307 if (target && !new_is_dir) {
4308 error = try_break_deleg(target, delegated_inode);
4309 if (error)
4310 goto out;
4311 }
4312 error = old_dir->i_op->rename(old_dir, old_dentry,
4313 new_dir, new_dentry, flags);
4314 if (error)
4315 goto out;
4316
4317 if (!(flags & RENAME_EXCHANGE) && target) {
4318 if (is_dir) {
4319 shrink_dcache_parent(new_dentry);
4320 target->i_flags |= S_DEAD;
4321 }
4322 dont_mount(new_dentry);
4323 detach_mounts(new_dentry);
4324 }
4325 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4326 if (!(flags & RENAME_EXCHANGE))
4327 d_move(old_dentry, new_dentry);
4328 else
4329 d_exchange(old_dentry, new_dentry);
4330 }
4331 out:
4332 if (!is_dir || (flags & RENAME_EXCHANGE))
4333 unlock_two_nondirectories(source, target);
4334 else if (target)
4335 inode_unlock(target);
4336 dput(new_dentry);
4337 if (!error) {
4338 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4339 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4340 if (flags & RENAME_EXCHANGE) {
4341 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4342 new_is_dir, NULL, new_dentry);
4343 }
4344 }
4345 release_dentry_name_snapshot(&old_name);
4346
4347 return error;
4348 }
4349 EXPORT_SYMBOL(vfs_rename);
4350
4351 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4352 struct filename *to, unsigned int flags)
4353 {
4354 struct dentry *old_dentry, *new_dentry;
4355 struct dentry *trap;
4356 struct path old_path, new_path;
4357 struct qstr old_last, new_last;
4358 int old_type, new_type;
4359 struct inode *delegated_inode = NULL;
4360 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4361 bool should_retry = false;
4362 int error = -EINVAL;
4363
4364 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4365 goto put_both;
4366
4367 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4368 (flags & RENAME_EXCHANGE))
4369 goto put_both;
4370
4371 if (flags & RENAME_EXCHANGE)
4372 target_flags = 0;
4373
4374 retry:
4375 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4376 &old_last, &old_type);
4377 if (IS_ERR(from)) {
4378 error = PTR_ERR(from);
4379 goto put_new;
4380 }
4381
4382 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4383 &new_type);
4384 if (IS_ERR(to)) {
4385 error = PTR_ERR(to);
4386 goto exit1;
4387 }
4388
4389 error = -EXDEV;
4390 if (old_path.mnt != new_path.mnt)
4391 goto exit2;
4392
4393 error = -EBUSY;
4394 if (old_type != LAST_NORM)
4395 goto exit2;
4396
4397 if (flags & RENAME_NOREPLACE)
4398 error = -EEXIST;
4399 if (new_type != LAST_NORM)
4400 goto exit2;
4401
4402 error = mnt_want_write(old_path.mnt);
4403 if (error)
4404 goto exit2;
4405
4406 retry_deleg:
4407 trap = lock_rename(new_path.dentry, old_path.dentry);
4408
4409 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4410 error = PTR_ERR(old_dentry);
4411 if (IS_ERR(old_dentry))
4412 goto exit3;
4413 /* source must exist */
4414 error = -ENOENT;
4415 if (d_is_negative(old_dentry))
4416 goto exit4;
4417 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4418 error = PTR_ERR(new_dentry);
4419 if (IS_ERR(new_dentry))
4420 goto exit4;
4421 error = -EEXIST;
4422 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4423 goto exit5;
4424 if (flags & RENAME_EXCHANGE) {
4425 error = -ENOENT;
4426 if (d_is_negative(new_dentry))
4427 goto exit5;
4428
4429 if (!d_is_dir(new_dentry)) {
4430 error = -ENOTDIR;
4431 if (new_last.name[new_last.len])
4432 goto exit5;
4433 }
4434 }
4435 /* unless the source is a directory trailing slashes give -ENOTDIR */
4436 if (!d_is_dir(old_dentry)) {
4437 error = -ENOTDIR;
4438 if (old_last.name[old_last.len])
4439 goto exit5;
4440 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4441 goto exit5;
4442 }
4443 /* source should not be ancestor of target */
4444 error = -EINVAL;
4445 if (old_dentry == trap)
4446 goto exit5;
4447 /* target should not be an ancestor of source */
4448 if (!(flags & RENAME_EXCHANGE))
4449 error = -ENOTEMPTY;
4450 if (new_dentry == trap)
4451 goto exit5;
4452
4453 error = security_path_rename(&old_path, old_dentry,
4454 &new_path, new_dentry, flags);
4455 if (error)
4456 goto exit5;
4457 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4458 new_path.dentry->d_inode, new_dentry,
4459 &delegated_inode, flags);
4460 exit5:
4461 dput(new_dentry);
4462 exit4:
4463 dput(old_dentry);
4464 exit3:
4465 unlock_rename(new_path.dentry, old_path.dentry);
4466 if (delegated_inode) {
4467 error = break_deleg_wait(&delegated_inode);
4468 if (!error)
4469 goto retry_deleg;
4470 }
4471 mnt_drop_write(old_path.mnt);
4472 exit2:
4473 if (retry_estale(error, lookup_flags))
4474 should_retry = true;
4475 path_put(&new_path);
4476 exit1:
4477 path_put(&old_path);
4478 if (should_retry) {
4479 should_retry = false;
4480 lookup_flags |= LOOKUP_REVAL;
4481 goto retry;
4482 }
4483 put_both:
4484 if (!IS_ERR(from))
4485 putname(from);
4486 put_new:
4487 if (!IS_ERR(to))
4488 putname(to);
4489 return error;
4490 }
4491
4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4493 int, newdfd, const char __user *, newname, unsigned int, flags)
4494 {
4495 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4496 flags);
4497 }
4498
4499 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4500 int, newdfd, const char __user *, newname)
4501 {
4502 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4503 0);
4504 }
4505
4506 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4507 {
4508 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4509 getname(newname), 0);
4510 }
4511
4512 int readlink_copy(char __user *buffer, int buflen, const char *link)
4513 {
4514 int len = PTR_ERR(link);
4515 if (IS_ERR(link))
4516 goto out;
4517
4518 len = strlen(link);
4519 if (len > (unsigned) buflen)
4520 len = buflen;
4521 if (copy_to_user(buffer, link, len))
4522 len = -EFAULT;
4523 out:
4524 return len;
4525 }
4526
4527 /**
4528 * vfs_readlink - copy symlink body into userspace buffer
4529 * @dentry: dentry on which to get symbolic link
4530 * @buffer: user memory pointer
4531 * @buflen: size of buffer
4532 *
4533 * Does not touch atime. That's up to the caller if necessary
4534 *
4535 * Does not call security hook.
4536 */
4537 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4538 {
4539 struct inode *inode = d_inode(dentry);
4540 DEFINE_DELAYED_CALL(done);
4541 const char *link;
4542 int res;
4543
4544 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4545 if (unlikely(inode->i_op->readlink))
4546 return inode->i_op->readlink(dentry, buffer, buflen);
4547
4548 if (!d_is_symlink(dentry))
4549 return -EINVAL;
4550
4551 spin_lock(&inode->i_lock);
4552 inode->i_opflags |= IOP_DEFAULT_READLINK;
4553 spin_unlock(&inode->i_lock);
4554 }
4555
4556 link = READ_ONCE(inode->i_link);
4557 if (!link) {
4558 link = inode->i_op->get_link(dentry, inode, &done);
4559 if (IS_ERR(link))
4560 return PTR_ERR(link);
4561 }
4562 res = readlink_copy(buffer, buflen, link);
4563 do_delayed_call(&done);
4564 return res;
4565 }
4566 EXPORT_SYMBOL(vfs_readlink);
4567
4568 /**
4569 * vfs_get_link - get symlink body
4570 * @dentry: dentry on which to get symbolic link
4571 * @done: caller needs to free returned data with this
4572 *
4573 * Calls security hook and i_op->get_link() on the supplied inode.
4574 *
4575 * It does not touch atime. That's up to the caller if necessary.
4576 *
4577 * Does not work on "special" symlinks like /proc/$$/fd/N
4578 */
4579 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4580 {
4581 const char *res = ERR_PTR(-EINVAL);
4582 struct inode *inode = d_inode(dentry);
4583
4584 if (d_is_symlink(dentry)) {
4585 res = ERR_PTR(security_inode_readlink(dentry));
4586 if (!res)
4587 res = inode->i_op->get_link(dentry, inode, done);
4588 }
4589 return res;
4590 }
4591 EXPORT_SYMBOL(vfs_get_link);
4592
4593 /* get the link contents into pagecache */
4594 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4595 struct delayed_call *callback)
4596 {
4597 char *kaddr;
4598 struct page *page;
4599 struct address_space *mapping = inode->i_mapping;
4600
4601 if (!dentry) {
4602 page = find_get_page(mapping, 0);
4603 if (!page)
4604 return ERR_PTR(-ECHILD);
4605 if (!PageUptodate(page)) {
4606 put_page(page);
4607 return ERR_PTR(-ECHILD);
4608 }
4609 } else {
4610 page = read_mapping_page(mapping, 0, NULL);
4611 if (IS_ERR(page))
4612 return (char*)page;
4613 }
4614 set_delayed_call(callback, page_put_link, page);
4615 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4616 kaddr = page_address(page);
4617 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4618 return kaddr;
4619 }
4620
4621 EXPORT_SYMBOL(page_get_link);
4622
4623 void page_put_link(void *arg)
4624 {
4625 put_page(arg);
4626 }
4627 EXPORT_SYMBOL(page_put_link);
4628
4629 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4630 {
4631 DEFINE_DELAYED_CALL(done);
4632 int res = readlink_copy(buffer, buflen,
4633 page_get_link(dentry, d_inode(dentry),
4634 &done));
4635 do_delayed_call(&done);
4636 return res;
4637 }
4638 EXPORT_SYMBOL(page_readlink);
4639
4640 /*
4641 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4642 */
4643 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4644 {
4645 struct address_space *mapping = inode->i_mapping;
4646 struct page *page;
4647 void *fsdata;
4648 int err;
4649 unsigned int flags = 0;
4650 if (nofs)
4651 flags |= AOP_FLAG_NOFS;
4652
4653 retry:
4654 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4655 flags, &page, &fsdata);
4656 if (err)
4657 goto fail;
4658
4659 memcpy(page_address(page), symname, len-1);
4660
4661 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4662 page, fsdata);
4663 if (err < 0)
4664 goto fail;
4665 if (err < len-1)
4666 goto retry;
4667
4668 mark_inode_dirty(inode);
4669 return 0;
4670 fail:
4671 return err;
4672 }
4673 EXPORT_SYMBOL(__page_symlink);
4674
4675 int page_symlink(struct inode *inode, const char *symname, int len)
4676 {
4677 return __page_symlink(inode, symname, len,
4678 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4679 }
4680 EXPORT_SYMBOL(page_symlink);
4681
4682 const struct inode_operations page_symlink_inode_operations = {
4683 .get_link = page_get_link,
4684 };
4685 EXPORT_SYMBOL(page_symlink_inode_operations);