]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namei.c
tunnels: do not assume mac header is set in skb_tunnel_check_pmtu()
[mirror_ubuntu-jammy-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname_uflags(const char __user *filename, int uflags)
208 {
209 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
210
211 return getname_flags(filename, flags, NULL);
212 }
213
214 struct filename *
215 getname(const char __user * filename)
216 {
217 return getname_flags(filename, 0, NULL);
218 }
219
220 struct filename *
221 getname_kernel(const char * filename)
222 {
223 struct filename *result;
224 int len = strlen(filename) + 1;
225
226 result = __getname();
227 if (unlikely(!result))
228 return ERR_PTR(-ENOMEM);
229
230 if (len <= EMBEDDED_NAME_MAX) {
231 result->name = (char *)result->iname;
232 } else if (len <= PATH_MAX) {
233 const size_t size = offsetof(struct filename, iname[1]);
234 struct filename *tmp;
235
236 tmp = kmalloc(size, GFP_KERNEL);
237 if (unlikely(!tmp)) {
238 __putname(result);
239 return ERR_PTR(-ENOMEM);
240 }
241 tmp->name = (char *)result;
242 result = tmp;
243 } else {
244 __putname(result);
245 return ERR_PTR(-ENAMETOOLONG);
246 }
247 memcpy((char *)result->name, filename, len);
248 result->uptr = NULL;
249 result->aname = NULL;
250 result->refcnt = 1;
251 audit_getname(result);
252
253 return result;
254 }
255
256 void putname(struct filename *name)
257 {
258 if (IS_ERR(name))
259 return;
260
261 BUG_ON(name->refcnt <= 0);
262
263 if (--name->refcnt > 0)
264 return;
265
266 if (name->name != name->iname) {
267 __putname(name->name);
268 kfree(name);
269 } else
270 __putname(name);
271 }
272
273 /**
274 * check_acl - perform ACL permission checking
275 * @mnt_userns: user namespace of the mount the inode was found from
276 * @inode: inode to check permissions on
277 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
278 *
279 * This function performs the ACL permission checking. Since this function
280 * retrieve POSIX acls it needs to know whether it is called from a blocking or
281 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
282 *
283 * If the inode has been found through an idmapped mount the user namespace of
284 * the vfsmount must be passed through @mnt_userns. This function will then take
285 * care to map the inode according to @mnt_userns before checking permissions.
286 * On non-idmapped mounts or if permission checking is to be performed on the
287 * raw inode simply passs init_user_ns.
288 */
289 static int check_acl(struct user_namespace *mnt_userns,
290 struct inode *inode, int mask)
291 {
292 #ifdef CONFIG_FS_POSIX_ACL
293 struct posix_acl *acl;
294
295 if (mask & MAY_NOT_BLOCK) {
296 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
297 if (!acl)
298 return -EAGAIN;
299 /* no ->get_acl() calls in RCU mode... */
300 if (is_uncached_acl(acl))
301 return -ECHILD;
302 return posix_acl_permission(mnt_userns, inode, acl, mask);
303 }
304
305 acl = get_acl(inode, ACL_TYPE_ACCESS);
306 if (IS_ERR(acl))
307 return PTR_ERR(acl);
308 if (acl) {
309 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
310 posix_acl_release(acl);
311 return error;
312 }
313 #endif
314
315 return -EAGAIN;
316 }
317
318 /**
319 * acl_permission_check - perform basic UNIX permission checking
320 * @mnt_userns: user namespace of the mount the inode was found from
321 * @inode: inode to check permissions on
322 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
323 *
324 * This function performs the basic UNIX permission checking. Since this
325 * function may retrieve POSIX acls it needs to know whether it is called from a
326 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
327 *
328 * If the inode has been found through an idmapped mount the user namespace of
329 * the vfsmount must be passed through @mnt_userns. This function will then take
330 * care to map the inode according to @mnt_userns before checking permissions.
331 * On non-idmapped mounts or if permission checking is to be performed on the
332 * raw inode simply passs init_user_ns.
333 */
334 static int acl_permission_check(struct user_namespace *mnt_userns,
335 struct inode *inode, int mask)
336 {
337 unsigned int mode = inode->i_mode;
338 kuid_t i_uid;
339
340 /* Are we the owner? If so, ACL's don't matter */
341 i_uid = i_uid_into_mnt(mnt_userns, inode);
342 if (likely(uid_eq(current_fsuid(), i_uid))) {
343 mask &= 7;
344 mode >>= 6;
345 return (mask & ~mode) ? -EACCES : 0;
346 }
347
348 /* Do we have ACL's? */
349 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
350 int error = check_acl(mnt_userns, inode, mask);
351 if (error != -EAGAIN)
352 return error;
353 }
354
355 /* Only RWX matters for group/other mode bits */
356 mask &= 7;
357
358 /*
359 * Are the group permissions different from
360 * the other permissions in the bits we care
361 * about? Need to check group ownership if so.
362 */
363 if (mask & (mode ^ (mode >> 3))) {
364 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
365 if (in_group_p(kgid))
366 mode >>= 3;
367 }
368
369 /* Bits in 'mode' clear that we require? */
370 return (mask & ~mode) ? -EACCES : 0;
371 }
372
373 /**
374 * generic_permission - check for access rights on a Posix-like filesystem
375 * @mnt_userns: user namespace of the mount the inode was found from
376 * @inode: inode to check access rights for
377 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
378 * %MAY_NOT_BLOCK ...)
379 *
380 * Used to check for read/write/execute permissions on a file.
381 * We use "fsuid" for this, letting us set arbitrary permissions
382 * for filesystem access without changing the "normal" uids which
383 * are used for other things.
384 *
385 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
386 * request cannot be satisfied (eg. requires blocking or too much complexity).
387 * It would then be called again in ref-walk mode.
388 *
389 * If the inode has been found through an idmapped mount the user namespace of
390 * the vfsmount must be passed through @mnt_userns. This function will then take
391 * care to map the inode according to @mnt_userns before checking permissions.
392 * On non-idmapped mounts or if permission checking is to be performed on the
393 * raw inode simply passs init_user_ns.
394 */
395 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
396 int mask)
397 {
398 int ret;
399
400 /*
401 * Do the basic permission checks.
402 */
403 ret = acl_permission_check(mnt_userns, inode, mask);
404 if (ret != -EACCES)
405 return ret;
406
407 if (S_ISDIR(inode->i_mode)) {
408 /* DACs are overridable for directories */
409 if (!(mask & MAY_WRITE))
410 if (capable_wrt_inode_uidgid(mnt_userns, inode,
411 CAP_DAC_READ_SEARCH))
412 return 0;
413 if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 CAP_DAC_OVERRIDE))
415 return 0;
416 return -EACCES;
417 }
418
419 /*
420 * Searching includes executable on directories, else just read.
421 */
422 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
423 if (mask == MAY_READ)
424 if (capable_wrt_inode_uidgid(mnt_userns, inode,
425 CAP_DAC_READ_SEARCH))
426 return 0;
427 /*
428 * Read/write DACs are always overridable.
429 * Executable DACs are overridable when there is
430 * at least one exec bit set.
431 */
432 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
433 if (capable_wrt_inode_uidgid(mnt_userns, inode,
434 CAP_DAC_OVERRIDE))
435 return 0;
436
437 return -EACCES;
438 }
439 EXPORT_SYMBOL(generic_permission);
440
441 /**
442 * do_inode_permission - UNIX permission checking
443 * @mnt_userns: user namespace of the mount the inode was found from
444 * @inode: inode to check permissions on
445 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
446 *
447 * We _really_ want to just do "generic_permission()" without
448 * even looking at the inode->i_op values. So we keep a cache
449 * flag in inode->i_opflags, that says "this has not special
450 * permission function, use the fast case".
451 */
452 static inline int do_inode_permission(struct user_namespace *mnt_userns,
453 struct inode *inode, int mask)
454 {
455 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
456 if (likely(inode->i_op->permission))
457 return inode->i_op->permission(mnt_userns, inode, mask);
458
459 /* This gets set once for the inode lifetime */
460 spin_lock(&inode->i_lock);
461 inode->i_opflags |= IOP_FASTPERM;
462 spin_unlock(&inode->i_lock);
463 }
464 return generic_permission(mnt_userns, inode, mask);
465 }
466
467 /**
468 * sb_permission - Check superblock-level permissions
469 * @sb: Superblock of inode to check permission on
470 * @inode: Inode to check permission on
471 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
472 *
473 * Separate out file-system wide checks from inode-specific permission checks.
474 */
475 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
476 {
477 if (unlikely(mask & MAY_WRITE)) {
478 umode_t mode = inode->i_mode;
479
480 /* Nobody gets write access to a read-only fs. */
481 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
482 return -EROFS;
483 }
484 return 0;
485 }
486
487 /**
488 * inode_permission - Check for access rights to a given inode
489 * @mnt_userns: User namespace of the mount the inode was found from
490 * @inode: Inode to check permission on
491 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
492 *
493 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
494 * this, letting us set arbitrary permissions for filesystem access without
495 * changing the "normal" UIDs which are used for other things.
496 *
497 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
498 */
499 int inode_permission(struct user_namespace *mnt_userns,
500 struct inode *inode, int mask)
501 {
502 int retval;
503
504 retval = sb_permission(inode->i_sb, inode, mask);
505 if (retval)
506 return retval;
507
508 if (unlikely(mask & MAY_WRITE)) {
509 /*
510 * Nobody gets write access to an immutable file.
511 */
512 if (IS_IMMUTABLE(inode))
513 return -EPERM;
514
515 /*
516 * Updating mtime will likely cause i_uid and i_gid to be
517 * written back improperly if their true value is unknown
518 * to the vfs.
519 */
520 if (HAS_UNMAPPED_ID(mnt_userns, inode))
521 return -EACCES;
522 }
523
524 retval = do_inode_permission(mnt_userns, inode, mask);
525 if (retval)
526 return retval;
527
528 retval = devcgroup_inode_permission(inode, mask);
529 if (retval)
530 return retval;
531
532 return security_inode_permission(inode, mask);
533 }
534 EXPORT_SYMBOL(inode_permission);
535
536 /**
537 * path_get - get a reference to a path
538 * @path: path to get the reference to
539 *
540 * Given a path increment the reference count to the dentry and the vfsmount.
541 */
542 void path_get(const struct path *path)
543 {
544 mntget(path->mnt);
545 dget(path->dentry);
546 }
547 EXPORT_SYMBOL(path_get);
548
549 /**
550 * path_put - put a reference to a path
551 * @path: path to put the reference to
552 *
553 * Given a path decrement the reference count to the dentry and the vfsmount.
554 */
555 void path_put(const struct path *path)
556 {
557 dput(path->dentry);
558 mntput(path->mnt);
559 }
560 EXPORT_SYMBOL(path_put);
561
562 #define EMBEDDED_LEVELS 2
563 struct nameidata {
564 struct path path;
565 struct qstr last;
566 struct path root;
567 struct inode *inode; /* path.dentry.d_inode */
568 unsigned int flags, state;
569 unsigned seq, m_seq, r_seq;
570 int last_type;
571 unsigned depth;
572 int total_link_count;
573 struct saved {
574 struct path link;
575 struct delayed_call done;
576 const char *name;
577 unsigned seq;
578 } *stack, internal[EMBEDDED_LEVELS];
579 struct filename *name;
580 struct nameidata *saved;
581 unsigned root_seq;
582 int dfd;
583 kuid_t dir_uid;
584 umode_t dir_mode;
585 } __randomize_layout;
586
587 #define ND_ROOT_PRESET 1
588 #define ND_ROOT_GRABBED 2
589 #define ND_JUMPED 4
590
591 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
592 {
593 struct nameidata *old = current->nameidata;
594 p->stack = p->internal;
595 p->depth = 0;
596 p->dfd = dfd;
597 p->name = name;
598 p->path.mnt = NULL;
599 p->path.dentry = NULL;
600 p->total_link_count = old ? old->total_link_count : 0;
601 p->saved = old;
602 current->nameidata = p;
603 }
604
605 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
606 const struct path *root)
607 {
608 __set_nameidata(p, dfd, name);
609 p->state = 0;
610 if (unlikely(root)) {
611 p->state = ND_ROOT_PRESET;
612 p->root = *root;
613 }
614 }
615
616 static void restore_nameidata(void)
617 {
618 struct nameidata *now = current->nameidata, *old = now->saved;
619
620 current->nameidata = old;
621 if (old)
622 old->total_link_count = now->total_link_count;
623 if (now->stack != now->internal)
624 kfree(now->stack);
625 }
626
627 static bool nd_alloc_stack(struct nameidata *nd)
628 {
629 struct saved *p;
630
631 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
632 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
633 if (unlikely(!p))
634 return false;
635 memcpy(p, nd->internal, sizeof(nd->internal));
636 nd->stack = p;
637 return true;
638 }
639
640 /**
641 * path_connected - Verify that a dentry is below mnt.mnt_root
642 *
643 * Rename can sometimes move a file or directory outside of a bind
644 * mount, path_connected allows those cases to be detected.
645 */
646 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
647 {
648 struct super_block *sb = mnt->mnt_sb;
649
650 /* Bind mounts can have disconnected paths */
651 if (mnt->mnt_root == sb->s_root)
652 return true;
653
654 return is_subdir(dentry, mnt->mnt_root);
655 }
656
657 static void drop_links(struct nameidata *nd)
658 {
659 int i = nd->depth;
660 while (i--) {
661 struct saved *last = nd->stack + i;
662 do_delayed_call(&last->done);
663 clear_delayed_call(&last->done);
664 }
665 }
666
667 static void terminate_walk(struct nameidata *nd)
668 {
669 drop_links(nd);
670 if (!(nd->flags & LOOKUP_RCU)) {
671 int i;
672 path_put(&nd->path);
673 for (i = 0; i < nd->depth; i++)
674 path_put(&nd->stack[i].link);
675 if (nd->state & ND_ROOT_GRABBED) {
676 path_put(&nd->root);
677 nd->state &= ~ND_ROOT_GRABBED;
678 }
679 } else {
680 nd->flags &= ~LOOKUP_RCU;
681 rcu_read_unlock();
682 }
683 nd->depth = 0;
684 nd->path.mnt = NULL;
685 nd->path.dentry = NULL;
686 }
687
688 /* path_put is needed afterwards regardless of success or failure */
689 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
690 {
691 int res = __legitimize_mnt(path->mnt, mseq);
692 if (unlikely(res)) {
693 if (res > 0)
694 path->mnt = NULL;
695 path->dentry = NULL;
696 return false;
697 }
698 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
699 path->dentry = NULL;
700 return false;
701 }
702 return !read_seqcount_retry(&path->dentry->d_seq, seq);
703 }
704
705 static inline bool legitimize_path(struct nameidata *nd,
706 struct path *path, unsigned seq)
707 {
708 return __legitimize_path(path, seq, nd->m_seq);
709 }
710
711 static bool legitimize_links(struct nameidata *nd)
712 {
713 int i;
714 if (unlikely(nd->flags & LOOKUP_CACHED)) {
715 drop_links(nd);
716 nd->depth = 0;
717 return false;
718 }
719 for (i = 0; i < nd->depth; i++) {
720 struct saved *last = nd->stack + i;
721 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
722 drop_links(nd);
723 nd->depth = i + 1;
724 return false;
725 }
726 }
727 return true;
728 }
729
730 static bool legitimize_root(struct nameidata *nd)
731 {
732 /*
733 * For scoped-lookups (where nd->root has been zeroed), we need to
734 * restart the whole lookup from scratch -- because set_root() is wrong
735 * for these lookups (nd->dfd is the root, not the filesystem root).
736 */
737 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
738 return false;
739 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
740 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
741 return true;
742 nd->state |= ND_ROOT_GRABBED;
743 return legitimize_path(nd, &nd->root, nd->root_seq);
744 }
745
746 /*
747 * Path walking has 2 modes, rcu-walk and ref-walk (see
748 * Documentation/filesystems/path-lookup.txt). In situations when we can't
749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
750 * normal reference counts on dentries and vfsmounts to transition to ref-walk
751 * mode. Refcounts are grabbed at the last known good point before rcu-walk
752 * got stuck, so ref-walk may continue from there. If this is not successful
753 * (eg. a seqcount has changed), then failure is returned and it's up to caller
754 * to restart the path walk from the beginning in ref-walk mode.
755 */
756
757 /**
758 * try_to_unlazy - try to switch to ref-walk mode.
759 * @nd: nameidata pathwalk data
760 * Returns: true on success, false on failure
761 *
762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
763 * for ref-walk mode.
764 * Must be called from rcu-walk context.
765 * Nothing should touch nameidata between try_to_unlazy() failure and
766 * terminate_walk().
767 */
768 static bool try_to_unlazy(struct nameidata *nd)
769 {
770 struct dentry *parent = nd->path.dentry;
771
772 BUG_ON(!(nd->flags & LOOKUP_RCU));
773
774 nd->flags &= ~LOOKUP_RCU;
775 if (unlikely(!legitimize_links(nd)))
776 goto out1;
777 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
778 goto out;
779 if (unlikely(!legitimize_root(nd)))
780 goto out;
781 rcu_read_unlock();
782 BUG_ON(nd->inode != parent->d_inode);
783 return true;
784
785 out1:
786 nd->path.mnt = NULL;
787 nd->path.dentry = NULL;
788 out:
789 rcu_read_unlock();
790 return false;
791 }
792
793 /**
794 * try_to_unlazy_next - try to switch to ref-walk mode.
795 * @nd: nameidata pathwalk data
796 * @dentry: next dentry to step into
797 * @seq: seq number to check @dentry against
798 * Returns: true on success, false on failure
799 *
800 * Similar to to try_to_unlazy(), but here we have the next dentry already
801 * picked by rcu-walk and want to legitimize that in addition to the current
802 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
803 * Nothing should touch nameidata between try_to_unlazy_next() failure and
804 * terminate_walk().
805 */
806 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
807 {
808 BUG_ON(!(nd->flags & LOOKUP_RCU));
809
810 nd->flags &= ~LOOKUP_RCU;
811 if (unlikely(!legitimize_links(nd)))
812 goto out2;
813 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
814 goto out2;
815 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
816 goto out1;
817
818 /*
819 * We need to move both the parent and the dentry from the RCU domain
820 * to be properly refcounted. And the sequence number in the dentry
821 * validates *both* dentry counters, since we checked the sequence
822 * number of the parent after we got the child sequence number. So we
823 * know the parent must still be valid if the child sequence number is
824 */
825 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
826 goto out;
827 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
828 goto out_dput;
829 /*
830 * Sequence counts matched. Now make sure that the root is
831 * still valid and get it if required.
832 */
833 if (unlikely(!legitimize_root(nd)))
834 goto out_dput;
835 rcu_read_unlock();
836 return true;
837
838 out2:
839 nd->path.mnt = NULL;
840 out1:
841 nd->path.dentry = NULL;
842 out:
843 rcu_read_unlock();
844 return false;
845 out_dput:
846 rcu_read_unlock();
847 dput(dentry);
848 return false;
849 }
850
851 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
852 {
853 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
854 return dentry->d_op->d_revalidate(dentry, flags);
855 else
856 return 1;
857 }
858
859 /**
860 * complete_walk - successful completion of path walk
861 * @nd: pointer nameidata
862 *
863 * If we had been in RCU mode, drop out of it and legitimize nd->path.
864 * Revalidate the final result, unless we'd already done that during
865 * the path walk or the filesystem doesn't ask for it. Return 0 on
866 * success, -error on failure. In case of failure caller does not
867 * need to drop nd->path.
868 */
869 static int complete_walk(struct nameidata *nd)
870 {
871 struct dentry *dentry = nd->path.dentry;
872 int status;
873
874 if (nd->flags & LOOKUP_RCU) {
875 /*
876 * We don't want to zero nd->root for scoped-lookups or
877 * externally-managed nd->root.
878 */
879 if (!(nd->state & ND_ROOT_PRESET))
880 if (!(nd->flags & LOOKUP_IS_SCOPED))
881 nd->root.mnt = NULL;
882 nd->flags &= ~LOOKUP_CACHED;
883 if (!try_to_unlazy(nd))
884 return -ECHILD;
885 }
886
887 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
888 /*
889 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
890 * ever step outside the root during lookup" and should already
891 * be guaranteed by the rest of namei, we want to avoid a namei
892 * BUG resulting in userspace being given a path that was not
893 * scoped within the root at some point during the lookup.
894 *
895 * So, do a final sanity-check to make sure that in the
896 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
897 * we won't silently return an fd completely outside of the
898 * requested root to userspace.
899 *
900 * Userspace could move the path outside the root after this
901 * check, but as discussed elsewhere this is not a concern (the
902 * resolved file was inside the root at some point).
903 */
904 if (!path_is_under(&nd->path, &nd->root))
905 return -EXDEV;
906 }
907
908 if (likely(!(nd->state & ND_JUMPED)))
909 return 0;
910
911 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
912 return 0;
913
914 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
915 if (status > 0)
916 return 0;
917
918 if (!status)
919 status = -ESTALE;
920
921 return status;
922 }
923
924 static int set_root(struct nameidata *nd)
925 {
926 struct fs_struct *fs = current->fs;
927
928 /*
929 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
930 * still have to ensure it doesn't happen because it will cause a breakout
931 * from the dirfd.
932 */
933 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
934 return -ENOTRECOVERABLE;
935
936 if (nd->flags & LOOKUP_RCU) {
937 unsigned seq;
938
939 do {
940 seq = read_seqcount_begin(&fs->seq);
941 nd->root = fs->root;
942 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
943 } while (read_seqcount_retry(&fs->seq, seq));
944 } else {
945 get_fs_root(fs, &nd->root);
946 nd->state |= ND_ROOT_GRABBED;
947 }
948 return 0;
949 }
950
951 static int nd_jump_root(struct nameidata *nd)
952 {
953 if (unlikely(nd->flags & LOOKUP_BENEATH))
954 return -EXDEV;
955 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
956 /* Absolute path arguments to path_init() are allowed. */
957 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
958 return -EXDEV;
959 }
960 if (!nd->root.mnt) {
961 int error = set_root(nd);
962 if (error)
963 return error;
964 }
965 if (nd->flags & LOOKUP_RCU) {
966 struct dentry *d;
967 nd->path = nd->root;
968 d = nd->path.dentry;
969 nd->inode = d->d_inode;
970 nd->seq = nd->root_seq;
971 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
972 return -ECHILD;
973 } else {
974 path_put(&nd->path);
975 nd->path = nd->root;
976 path_get(&nd->path);
977 nd->inode = nd->path.dentry->d_inode;
978 }
979 nd->state |= ND_JUMPED;
980 return 0;
981 }
982
983 /*
984 * Helper to directly jump to a known parsed path from ->get_link,
985 * caller must have taken a reference to path beforehand.
986 */
987 int nd_jump_link(struct path *path)
988 {
989 int error = -ELOOP;
990 struct nameidata *nd = current->nameidata;
991
992 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
993 goto err;
994
995 error = -EXDEV;
996 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
997 if (nd->path.mnt != path->mnt)
998 goto err;
999 }
1000 /* Not currently safe for scoped-lookups. */
1001 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1002 goto err;
1003
1004 path_put(&nd->path);
1005 nd->path = *path;
1006 nd->inode = nd->path.dentry->d_inode;
1007 nd->state |= ND_JUMPED;
1008 return 0;
1009
1010 err:
1011 path_put(path);
1012 return error;
1013 }
1014
1015 static inline void put_link(struct nameidata *nd)
1016 {
1017 struct saved *last = nd->stack + --nd->depth;
1018 do_delayed_call(&last->done);
1019 if (!(nd->flags & LOOKUP_RCU))
1020 path_put(&last->link);
1021 }
1022
1023 int sysctl_protected_symlinks __read_mostly = 1;
1024 int sysctl_protected_hardlinks __read_mostly = 1;
1025 int sysctl_protected_fifos __read_mostly;
1026 int sysctl_protected_regular __read_mostly;
1027
1028 /**
1029 * may_follow_link - Check symlink following for unsafe situations
1030 * @nd: nameidata pathwalk data
1031 *
1032 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1033 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1034 * in a sticky world-writable directory. This is to protect privileged
1035 * processes from failing races against path names that may change out
1036 * from under them by way of other users creating malicious symlinks.
1037 * It will permit symlinks to be followed only when outside a sticky
1038 * world-writable directory, or when the uid of the symlink and follower
1039 * match, or when the directory owner matches the symlink's owner.
1040 *
1041 * Returns 0 if following the symlink is allowed, -ve on error.
1042 */
1043 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1044 {
1045 struct user_namespace *mnt_userns;
1046 kuid_t i_uid;
1047
1048 if (!sysctl_protected_symlinks)
1049 return 0;
1050
1051 mnt_userns = mnt_user_ns(nd->path.mnt);
1052 i_uid = i_uid_into_mnt(mnt_userns, inode);
1053 /* Allowed if owner and follower match. */
1054 if (uid_eq(current_cred()->fsuid, i_uid))
1055 return 0;
1056
1057 /* Allowed if parent directory not sticky and world-writable. */
1058 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1059 return 0;
1060
1061 /* Allowed if parent directory and link owner match. */
1062 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1063 return 0;
1064
1065 if (nd->flags & LOOKUP_RCU)
1066 return -ECHILD;
1067
1068 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1069 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1070 return -EACCES;
1071 }
1072
1073 /**
1074 * safe_hardlink_source - Check for safe hardlink conditions
1075 * @mnt_userns: user namespace of the mount the inode was found from
1076 * @inode: the source inode to hardlink from
1077 *
1078 * Return false if at least one of the following conditions:
1079 * - inode is not a regular file
1080 * - inode is setuid
1081 * - inode is setgid and group-exec
1082 * - access failure for read and write
1083 *
1084 * Otherwise returns true.
1085 */
1086 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1087 struct inode *inode)
1088 {
1089 umode_t mode = inode->i_mode;
1090
1091 /* Special files should not get pinned to the filesystem. */
1092 if (!S_ISREG(mode))
1093 return false;
1094
1095 /* Setuid files should not get pinned to the filesystem. */
1096 if (mode & S_ISUID)
1097 return false;
1098
1099 /* Executable setgid files should not get pinned to the filesystem. */
1100 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1101 return false;
1102
1103 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1104 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1105 return false;
1106
1107 return true;
1108 }
1109
1110 /**
1111 * may_linkat - Check permissions for creating a hardlink
1112 * @mnt_userns: user namespace of the mount the inode was found from
1113 * @link: the source to hardlink from
1114 *
1115 * Block hardlink when all of:
1116 * - sysctl_protected_hardlinks enabled
1117 * - fsuid does not match inode
1118 * - hardlink source is unsafe (see safe_hardlink_source() above)
1119 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1120 *
1121 * If the inode has been found through an idmapped mount the user namespace of
1122 * the vfsmount must be passed through @mnt_userns. This function will then take
1123 * care to map the inode according to @mnt_userns before checking permissions.
1124 * On non-idmapped mounts or if permission checking is to be performed on the
1125 * raw inode simply passs init_user_ns.
1126 *
1127 * Returns 0 if successful, -ve on error.
1128 */
1129 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1130 {
1131 struct inode *inode = link->dentry->d_inode;
1132
1133 /* Inode writeback is not safe when the uid or gid are invalid. */
1134 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1135 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1136 return -EOVERFLOW;
1137
1138 if (!sysctl_protected_hardlinks)
1139 return 0;
1140
1141 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1142 * otherwise, it must be a safe source.
1143 */
1144 if (safe_hardlink_source(mnt_userns, inode) ||
1145 inode_owner_or_capable(mnt_userns, inode))
1146 return 0;
1147
1148 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1149 return -EPERM;
1150 }
1151
1152 /**
1153 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1154 * should be allowed, or not, on files that already
1155 * exist.
1156 * @mnt_userns: user namespace of the mount the inode was found from
1157 * @nd: nameidata pathwalk data
1158 * @inode: the inode of the file to open
1159 *
1160 * Block an O_CREAT open of a FIFO (or a regular file) when:
1161 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1162 * - the file already exists
1163 * - we are in a sticky directory
1164 * - we don't own the file
1165 * - the owner of the directory doesn't own the file
1166 * - the directory is world writable
1167 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1168 * the directory doesn't have to be world writable: being group writable will
1169 * be enough.
1170 *
1171 * If the inode has been found through an idmapped mount the user namespace of
1172 * the vfsmount must be passed through @mnt_userns. This function will then take
1173 * care to map the inode according to @mnt_userns before checking permissions.
1174 * On non-idmapped mounts or if permission checking is to be performed on the
1175 * raw inode simply passs init_user_ns.
1176 *
1177 * Returns 0 if the open is allowed, -ve on error.
1178 */
1179 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1180 struct nameidata *nd, struct inode *const inode)
1181 {
1182 umode_t dir_mode = nd->dir_mode;
1183 kuid_t dir_uid = nd->dir_uid;
1184
1185 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1186 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1187 likely(!(dir_mode & S_ISVTX)) ||
1188 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1189 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1190 return 0;
1191
1192 if (likely(dir_mode & 0002) ||
1193 (dir_mode & 0020 &&
1194 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1195 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1196 const char *operation = S_ISFIFO(inode->i_mode) ?
1197 "sticky_create_fifo" :
1198 "sticky_create_regular";
1199 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1200 return -EACCES;
1201 }
1202 return 0;
1203 }
1204
1205 /*
1206 * follow_up - Find the mountpoint of path's vfsmount
1207 *
1208 * Given a path, find the mountpoint of its source file system.
1209 * Replace @path with the path of the mountpoint in the parent mount.
1210 * Up is towards /.
1211 *
1212 * Return 1 if we went up a level and 0 if we were already at the
1213 * root.
1214 */
1215 int follow_up(struct path *path)
1216 {
1217 struct mount *mnt = real_mount(path->mnt);
1218 struct mount *parent;
1219 struct dentry *mountpoint;
1220
1221 read_seqlock_excl(&mount_lock);
1222 parent = mnt->mnt_parent;
1223 if (parent == mnt) {
1224 read_sequnlock_excl(&mount_lock);
1225 return 0;
1226 }
1227 mntget(&parent->mnt);
1228 mountpoint = dget(mnt->mnt_mountpoint);
1229 read_sequnlock_excl(&mount_lock);
1230 dput(path->dentry);
1231 path->dentry = mountpoint;
1232 mntput(path->mnt);
1233 path->mnt = &parent->mnt;
1234 return 1;
1235 }
1236 EXPORT_SYMBOL(follow_up);
1237
1238 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1239 struct path *path, unsigned *seqp)
1240 {
1241 while (mnt_has_parent(m)) {
1242 struct dentry *mountpoint = m->mnt_mountpoint;
1243
1244 m = m->mnt_parent;
1245 if (unlikely(root->dentry == mountpoint &&
1246 root->mnt == &m->mnt))
1247 break;
1248 if (mountpoint != m->mnt.mnt_root) {
1249 path->mnt = &m->mnt;
1250 path->dentry = mountpoint;
1251 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1252 return true;
1253 }
1254 }
1255 return false;
1256 }
1257
1258 static bool choose_mountpoint(struct mount *m, const struct path *root,
1259 struct path *path)
1260 {
1261 bool found;
1262
1263 rcu_read_lock();
1264 while (1) {
1265 unsigned seq, mseq = read_seqbegin(&mount_lock);
1266
1267 found = choose_mountpoint_rcu(m, root, path, &seq);
1268 if (unlikely(!found)) {
1269 if (!read_seqretry(&mount_lock, mseq))
1270 break;
1271 } else {
1272 if (likely(__legitimize_path(path, seq, mseq)))
1273 break;
1274 rcu_read_unlock();
1275 path_put(path);
1276 rcu_read_lock();
1277 }
1278 }
1279 rcu_read_unlock();
1280 return found;
1281 }
1282
1283 /*
1284 * Perform an automount
1285 * - return -EISDIR to tell follow_managed() to stop and return the path we
1286 * were called with.
1287 */
1288 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1289 {
1290 struct dentry *dentry = path->dentry;
1291
1292 /* We don't want to mount if someone's just doing a stat -
1293 * unless they're stat'ing a directory and appended a '/' to
1294 * the name.
1295 *
1296 * We do, however, want to mount if someone wants to open or
1297 * create a file of any type under the mountpoint, wants to
1298 * traverse through the mountpoint or wants to open the
1299 * mounted directory. Also, autofs may mark negative dentries
1300 * as being automount points. These will need the attentions
1301 * of the daemon to instantiate them before they can be used.
1302 */
1303 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1304 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1305 dentry->d_inode)
1306 return -EISDIR;
1307
1308 if (count && (*count)++ >= MAXSYMLINKS)
1309 return -ELOOP;
1310
1311 return finish_automount(dentry->d_op->d_automount(path), path);
1312 }
1313
1314 /*
1315 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1316 * dentries are pinned but not locked here, so negative dentry can go
1317 * positive right under us. Use of smp_load_acquire() provides a barrier
1318 * sufficient for ->d_inode and ->d_flags consistency.
1319 */
1320 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1321 int *count, unsigned lookup_flags)
1322 {
1323 struct vfsmount *mnt = path->mnt;
1324 bool need_mntput = false;
1325 int ret = 0;
1326
1327 while (flags & DCACHE_MANAGED_DENTRY) {
1328 /* Allow the filesystem to manage the transit without i_mutex
1329 * being held. */
1330 if (flags & DCACHE_MANAGE_TRANSIT) {
1331 ret = path->dentry->d_op->d_manage(path, false);
1332 flags = smp_load_acquire(&path->dentry->d_flags);
1333 if (ret < 0)
1334 break;
1335 }
1336
1337 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1338 struct vfsmount *mounted = lookup_mnt(path);
1339 if (mounted) { // ... in our namespace
1340 dput(path->dentry);
1341 if (need_mntput)
1342 mntput(path->mnt);
1343 path->mnt = mounted;
1344 path->dentry = dget(mounted->mnt_root);
1345 // here we know it's positive
1346 flags = path->dentry->d_flags;
1347 need_mntput = true;
1348 continue;
1349 }
1350 }
1351
1352 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1353 break;
1354
1355 // uncovered automount point
1356 ret = follow_automount(path, count, lookup_flags);
1357 flags = smp_load_acquire(&path->dentry->d_flags);
1358 if (ret < 0)
1359 break;
1360 }
1361
1362 if (ret == -EISDIR)
1363 ret = 0;
1364 // possible if you race with several mount --move
1365 if (need_mntput && path->mnt == mnt)
1366 mntput(path->mnt);
1367 if (!ret && unlikely(d_flags_negative(flags)))
1368 ret = -ENOENT;
1369 *jumped = need_mntput;
1370 return ret;
1371 }
1372
1373 static inline int traverse_mounts(struct path *path, bool *jumped,
1374 int *count, unsigned lookup_flags)
1375 {
1376 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1377
1378 /* fastpath */
1379 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1380 *jumped = false;
1381 if (unlikely(d_flags_negative(flags)))
1382 return -ENOENT;
1383 return 0;
1384 }
1385 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1386 }
1387
1388 int follow_down_one(struct path *path)
1389 {
1390 struct vfsmount *mounted;
1391
1392 mounted = lookup_mnt(path);
1393 if (mounted) {
1394 dput(path->dentry);
1395 mntput(path->mnt);
1396 path->mnt = mounted;
1397 path->dentry = dget(mounted->mnt_root);
1398 return 1;
1399 }
1400 return 0;
1401 }
1402 EXPORT_SYMBOL(follow_down_one);
1403
1404 /*
1405 * Follow down to the covering mount currently visible to userspace. At each
1406 * point, the filesystem owning that dentry may be queried as to whether the
1407 * caller is permitted to proceed or not.
1408 */
1409 int follow_down(struct path *path)
1410 {
1411 struct vfsmount *mnt = path->mnt;
1412 bool jumped;
1413 int ret = traverse_mounts(path, &jumped, NULL, 0);
1414
1415 if (path->mnt != mnt)
1416 mntput(mnt);
1417 return ret;
1418 }
1419 EXPORT_SYMBOL(follow_down);
1420
1421 /*
1422 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1423 * we meet a managed dentry that would need blocking.
1424 */
1425 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1426 struct inode **inode, unsigned *seqp)
1427 {
1428 struct dentry *dentry = path->dentry;
1429 unsigned int flags = dentry->d_flags;
1430
1431 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1432 return true;
1433
1434 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1435 return false;
1436
1437 for (;;) {
1438 /*
1439 * Don't forget we might have a non-mountpoint managed dentry
1440 * that wants to block transit.
1441 */
1442 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1443 int res = dentry->d_op->d_manage(path, true);
1444 if (res)
1445 return res == -EISDIR;
1446 flags = dentry->d_flags;
1447 }
1448
1449 if (flags & DCACHE_MOUNTED) {
1450 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1451 if (mounted) {
1452 path->mnt = &mounted->mnt;
1453 dentry = path->dentry = mounted->mnt.mnt_root;
1454 nd->state |= ND_JUMPED;
1455 *seqp = read_seqcount_begin(&dentry->d_seq);
1456 *inode = dentry->d_inode;
1457 /*
1458 * We don't need to re-check ->d_seq after this
1459 * ->d_inode read - there will be an RCU delay
1460 * between mount hash removal and ->mnt_root
1461 * becoming unpinned.
1462 */
1463 flags = dentry->d_flags;
1464 continue;
1465 }
1466 if (read_seqretry(&mount_lock, nd->m_seq))
1467 return false;
1468 }
1469 return !(flags & DCACHE_NEED_AUTOMOUNT);
1470 }
1471 }
1472
1473 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1474 struct path *path, struct inode **inode,
1475 unsigned int *seqp)
1476 {
1477 bool jumped;
1478 int ret;
1479
1480 path->mnt = nd->path.mnt;
1481 path->dentry = dentry;
1482 if (nd->flags & LOOKUP_RCU) {
1483 unsigned int seq = *seqp;
1484 if (unlikely(!*inode))
1485 return -ENOENT;
1486 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1487 return 0;
1488 if (!try_to_unlazy_next(nd, dentry, seq))
1489 return -ECHILD;
1490 // *path might've been clobbered by __follow_mount_rcu()
1491 path->mnt = nd->path.mnt;
1492 path->dentry = dentry;
1493 }
1494 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1495 if (jumped) {
1496 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1497 ret = -EXDEV;
1498 else
1499 nd->state |= ND_JUMPED;
1500 }
1501 if (unlikely(ret)) {
1502 dput(path->dentry);
1503 if (path->mnt != nd->path.mnt)
1504 mntput(path->mnt);
1505 } else {
1506 *inode = d_backing_inode(path->dentry);
1507 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1508 }
1509 return ret;
1510 }
1511
1512 /*
1513 * This looks up the name in dcache and possibly revalidates the found dentry.
1514 * NULL is returned if the dentry does not exist in the cache.
1515 */
1516 static struct dentry *lookup_dcache(const struct qstr *name,
1517 struct dentry *dir,
1518 unsigned int flags)
1519 {
1520 struct dentry *dentry = d_lookup(dir, name);
1521 if (dentry) {
1522 int error = d_revalidate(dentry, flags);
1523 if (unlikely(error <= 0)) {
1524 if (!error)
1525 d_invalidate(dentry);
1526 dput(dentry);
1527 return ERR_PTR(error);
1528 }
1529 }
1530 return dentry;
1531 }
1532
1533 /*
1534 * Parent directory has inode locked exclusive. This is one
1535 * and only case when ->lookup() gets called on non in-lookup
1536 * dentries - as the matter of fact, this only gets called
1537 * when directory is guaranteed to have no in-lookup children
1538 * at all.
1539 */
1540 static struct dentry *__lookup_hash(const struct qstr *name,
1541 struct dentry *base, unsigned int flags)
1542 {
1543 struct dentry *dentry = lookup_dcache(name, base, flags);
1544 struct dentry *old;
1545 struct inode *dir = base->d_inode;
1546
1547 if (dentry)
1548 return dentry;
1549
1550 /* Don't create child dentry for a dead directory. */
1551 if (unlikely(IS_DEADDIR(dir)))
1552 return ERR_PTR(-ENOENT);
1553
1554 dentry = d_alloc(base, name);
1555 if (unlikely(!dentry))
1556 return ERR_PTR(-ENOMEM);
1557
1558 old = dir->i_op->lookup(dir, dentry, flags);
1559 if (unlikely(old)) {
1560 dput(dentry);
1561 dentry = old;
1562 }
1563 return dentry;
1564 }
1565
1566 static struct dentry *lookup_fast(struct nameidata *nd,
1567 struct inode **inode,
1568 unsigned *seqp)
1569 {
1570 struct dentry *dentry, *parent = nd->path.dentry;
1571 int status = 1;
1572
1573 /*
1574 * Rename seqlock is not required here because in the off chance
1575 * of a false negative due to a concurrent rename, the caller is
1576 * going to fall back to non-racy lookup.
1577 */
1578 if (nd->flags & LOOKUP_RCU) {
1579 unsigned seq;
1580 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1581 if (unlikely(!dentry)) {
1582 if (!try_to_unlazy(nd))
1583 return ERR_PTR(-ECHILD);
1584 return NULL;
1585 }
1586
1587 /*
1588 * This sequence count validates that the inode matches
1589 * the dentry name information from lookup.
1590 */
1591 *inode = d_backing_inode(dentry);
1592 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1593 return ERR_PTR(-ECHILD);
1594
1595 /*
1596 * This sequence count validates that the parent had no
1597 * changes while we did the lookup of the dentry above.
1598 *
1599 * The memory barrier in read_seqcount_begin of child is
1600 * enough, we can use __read_seqcount_retry here.
1601 */
1602 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1603 return ERR_PTR(-ECHILD);
1604
1605 *seqp = seq;
1606 status = d_revalidate(dentry, nd->flags);
1607 if (likely(status > 0))
1608 return dentry;
1609 if (!try_to_unlazy_next(nd, dentry, seq))
1610 return ERR_PTR(-ECHILD);
1611 if (status == -ECHILD)
1612 /* we'd been told to redo it in non-rcu mode */
1613 status = d_revalidate(dentry, nd->flags);
1614 } else {
1615 dentry = __d_lookup(parent, &nd->last);
1616 if (unlikely(!dentry))
1617 return NULL;
1618 status = d_revalidate(dentry, nd->flags);
1619 }
1620 if (unlikely(status <= 0)) {
1621 if (!status)
1622 d_invalidate(dentry);
1623 dput(dentry);
1624 return ERR_PTR(status);
1625 }
1626 return dentry;
1627 }
1628
1629 /* Fast lookup failed, do it the slow way */
1630 static struct dentry *__lookup_slow(const struct qstr *name,
1631 struct dentry *dir,
1632 unsigned int flags)
1633 {
1634 struct dentry *dentry, *old;
1635 struct inode *inode = dir->d_inode;
1636 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1637
1638 /* Don't go there if it's already dead */
1639 if (unlikely(IS_DEADDIR(inode)))
1640 return ERR_PTR(-ENOENT);
1641 again:
1642 dentry = d_alloc_parallel(dir, name, &wq);
1643 if (IS_ERR(dentry))
1644 return dentry;
1645 if (unlikely(!d_in_lookup(dentry))) {
1646 int error = d_revalidate(dentry, flags);
1647 if (unlikely(error <= 0)) {
1648 if (!error) {
1649 d_invalidate(dentry);
1650 dput(dentry);
1651 goto again;
1652 }
1653 dput(dentry);
1654 dentry = ERR_PTR(error);
1655 }
1656 } else {
1657 old = inode->i_op->lookup(inode, dentry, flags);
1658 d_lookup_done(dentry);
1659 if (unlikely(old)) {
1660 dput(dentry);
1661 dentry = old;
1662 }
1663 }
1664 return dentry;
1665 }
1666
1667 static struct dentry *lookup_slow(const struct qstr *name,
1668 struct dentry *dir,
1669 unsigned int flags)
1670 {
1671 struct inode *inode = dir->d_inode;
1672 struct dentry *res;
1673 inode_lock_shared(inode);
1674 res = __lookup_slow(name, dir, flags);
1675 inode_unlock_shared(inode);
1676 return res;
1677 }
1678
1679 static inline int may_lookup(struct user_namespace *mnt_userns,
1680 struct nameidata *nd)
1681 {
1682 if (nd->flags & LOOKUP_RCU) {
1683 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1684 if (err != -ECHILD || !try_to_unlazy(nd))
1685 return err;
1686 }
1687 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1688 }
1689
1690 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1691 {
1692 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1693 return -ELOOP;
1694
1695 if (likely(nd->depth != EMBEDDED_LEVELS))
1696 return 0;
1697 if (likely(nd->stack != nd->internal))
1698 return 0;
1699 if (likely(nd_alloc_stack(nd)))
1700 return 0;
1701
1702 if (nd->flags & LOOKUP_RCU) {
1703 // we need to grab link before we do unlazy. And we can't skip
1704 // unlazy even if we fail to grab the link - cleanup needs it
1705 bool grabbed_link = legitimize_path(nd, link, seq);
1706
1707 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1708 return -ECHILD;
1709
1710 if (nd_alloc_stack(nd))
1711 return 0;
1712 }
1713 return -ENOMEM;
1714 }
1715
1716 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1717
1718 static const char *pick_link(struct nameidata *nd, struct path *link,
1719 struct inode *inode, unsigned seq, int flags)
1720 {
1721 struct saved *last;
1722 const char *res;
1723 int error = reserve_stack(nd, link, seq);
1724
1725 if (unlikely(error)) {
1726 if (!(nd->flags & LOOKUP_RCU))
1727 path_put(link);
1728 return ERR_PTR(error);
1729 }
1730 last = nd->stack + nd->depth++;
1731 last->link = *link;
1732 clear_delayed_call(&last->done);
1733 last->seq = seq;
1734
1735 if (flags & WALK_TRAILING) {
1736 error = may_follow_link(nd, inode);
1737 if (unlikely(error))
1738 return ERR_PTR(error);
1739 }
1740
1741 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1742 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1743 return ERR_PTR(-ELOOP);
1744
1745 if (!(nd->flags & LOOKUP_RCU)) {
1746 touch_atime(&last->link);
1747 cond_resched();
1748 } else if (atime_needs_update(&last->link, inode)) {
1749 if (!try_to_unlazy(nd))
1750 return ERR_PTR(-ECHILD);
1751 touch_atime(&last->link);
1752 }
1753
1754 error = security_inode_follow_link(link->dentry, inode,
1755 nd->flags & LOOKUP_RCU);
1756 if (unlikely(error))
1757 return ERR_PTR(error);
1758
1759 res = READ_ONCE(inode->i_link);
1760 if (!res) {
1761 const char * (*get)(struct dentry *, struct inode *,
1762 struct delayed_call *);
1763 get = inode->i_op->get_link;
1764 if (nd->flags & LOOKUP_RCU) {
1765 res = get(NULL, inode, &last->done);
1766 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1767 res = get(link->dentry, inode, &last->done);
1768 } else {
1769 res = get(link->dentry, inode, &last->done);
1770 }
1771 if (!res)
1772 goto all_done;
1773 if (IS_ERR(res))
1774 return res;
1775 }
1776 if (*res == '/') {
1777 error = nd_jump_root(nd);
1778 if (unlikely(error))
1779 return ERR_PTR(error);
1780 while (unlikely(*++res == '/'))
1781 ;
1782 }
1783 if (*res)
1784 return res;
1785 all_done: // pure jump
1786 put_link(nd);
1787 return NULL;
1788 }
1789
1790 /*
1791 * Do we need to follow links? We _really_ want to be able
1792 * to do this check without having to look at inode->i_op,
1793 * so we keep a cache of "no, this doesn't need follow_link"
1794 * for the common case.
1795 */
1796 static const char *step_into(struct nameidata *nd, int flags,
1797 struct dentry *dentry, struct inode *inode, unsigned seq)
1798 {
1799 struct path path;
1800 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1801
1802 if (err < 0)
1803 return ERR_PTR(err);
1804 if (likely(!d_is_symlink(path.dentry)) ||
1805 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1806 (flags & WALK_NOFOLLOW)) {
1807 /* not a symlink or should not follow */
1808 if (!(nd->flags & LOOKUP_RCU)) {
1809 dput(nd->path.dentry);
1810 if (nd->path.mnt != path.mnt)
1811 mntput(nd->path.mnt);
1812 }
1813 nd->path = path;
1814 nd->inode = inode;
1815 nd->seq = seq;
1816 return NULL;
1817 }
1818 if (nd->flags & LOOKUP_RCU) {
1819 /* make sure that d_is_symlink above matches inode */
1820 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1821 return ERR_PTR(-ECHILD);
1822 } else {
1823 if (path.mnt == nd->path.mnt)
1824 mntget(path.mnt);
1825 }
1826 return pick_link(nd, &path, inode, seq, flags);
1827 }
1828
1829 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1830 struct inode **inodep,
1831 unsigned *seqp)
1832 {
1833 struct dentry *parent, *old;
1834
1835 if (path_equal(&nd->path, &nd->root))
1836 goto in_root;
1837 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1838 struct path path;
1839 unsigned seq;
1840 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1841 &nd->root, &path, &seq))
1842 goto in_root;
1843 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1844 return ERR_PTR(-ECHILD);
1845 nd->path = path;
1846 nd->inode = path.dentry->d_inode;
1847 nd->seq = seq;
1848 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1849 return ERR_PTR(-ECHILD);
1850 /* we know that mountpoint was pinned */
1851 }
1852 old = nd->path.dentry;
1853 parent = old->d_parent;
1854 *inodep = parent->d_inode;
1855 *seqp = read_seqcount_begin(&parent->d_seq);
1856 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1857 return ERR_PTR(-ECHILD);
1858 if (unlikely(!path_connected(nd->path.mnt, parent)))
1859 return ERR_PTR(-ECHILD);
1860 return parent;
1861 in_root:
1862 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1863 return ERR_PTR(-ECHILD);
1864 if (unlikely(nd->flags & LOOKUP_BENEATH))
1865 return ERR_PTR(-ECHILD);
1866 return NULL;
1867 }
1868
1869 static struct dentry *follow_dotdot(struct nameidata *nd,
1870 struct inode **inodep,
1871 unsigned *seqp)
1872 {
1873 struct dentry *parent;
1874
1875 if (path_equal(&nd->path, &nd->root))
1876 goto in_root;
1877 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1878 struct path path;
1879
1880 if (!choose_mountpoint(real_mount(nd->path.mnt),
1881 &nd->root, &path))
1882 goto in_root;
1883 path_put(&nd->path);
1884 nd->path = path;
1885 nd->inode = path.dentry->d_inode;
1886 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1887 return ERR_PTR(-EXDEV);
1888 }
1889 /* rare case of legitimate dget_parent()... */
1890 parent = dget_parent(nd->path.dentry);
1891 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1892 dput(parent);
1893 return ERR_PTR(-ENOENT);
1894 }
1895 *seqp = 0;
1896 *inodep = parent->d_inode;
1897 return parent;
1898
1899 in_root:
1900 if (unlikely(nd->flags & LOOKUP_BENEATH))
1901 return ERR_PTR(-EXDEV);
1902 dget(nd->path.dentry);
1903 return NULL;
1904 }
1905
1906 static const char *handle_dots(struct nameidata *nd, int type)
1907 {
1908 if (type == LAST_DOTDOT) {
1909 const char *error = NULL;
1910 struct dentry *parent;
1911 struct inode *inode;
1912 unsigned seq;
1913
1914 if (!nd->root.mnt) {
1915 error = ERR_PTR(set_root(nd));
1916 if (error)
1917 return error;
1918 }
1919 if (nd->flags & LOOKUP_RCU)
1920 parent = follow_dotdot_rcu(nd, &inode, &seq);
1921 else
1922 parent = follow_dotdot(nd, &inode, &seq);
1923 if (IS_ERR(parent))
1924 return ERR_CAST(parent);
1925 if (unlikely(!parent))
1926 error = step_into(nd, WALK_NOFOLLOW,
1927 nd->path.dentry, nd->inode, nd->seq);
1928 else
1929 error = step_into(nd, WALK_NOFOLLOW,
1930 parent, inode, seq);
1931 if (unlikely(error))
1932 return error;
1933
1934 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1935 /*
1936 * If there was a racing rename or mount along our
1937 * path, then we can't be sure that ".." hasn't jumped
1938 * above nd->root (and so userspace should retry or use
1939 * some fallback).
1940 */
1941 smp_rmb();
1942 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1943 return ERR_PTR(-EAGAIN);
1944 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1945 return ERR_PTR(-EAGAIN);
1946 }
1947 }
1948 return NULL;
1949 }
1950
1951 static const char *walk_component(struct nameidata *nd, int flags)
1952 {
1953 struct dentry *dentry;
1954 struct inode *inode;
1955 unsigned seq;
1956 /*
1957 * "." and ".." are special - ".." especially so because it has
1958 * to be able to know about the current root directory and
1959 * parent relationships.
1960 */
1961 if (unlikely(nd->last_type != LAST_NORM)) {
1962 if (!(flags & WALK_MORE) && nd->depth)
1963 put_link(nd);
1964 return handle_dots(nd, nd->last_type);
1965 }
1966 dentry = lookup_fast(nd, &inode, &seq);
1967 if (IS_ERR(dentry))
1968 return ERR_CAST(dentry);
1969 if (unlikely(!dentry)) {
1970 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1971 if (IS_ERR(dentry))
1972 return ERR_CAST(dentry);
1973 }
1974 if (!(flags & WALK_MORE) && nd->depth)
1975 put_link(nd);
1976 return step_into(nd, flags, dentry, inode, seq);
1977 }
1978
1979 /*
1980 * We can do the critical dentry name comparison and hashing
1981 * operations one word at a time, but we are limited to:
1982 *
1983 * - Architectures with fast unaligned word accesses. We could
1984 * do a "get_unaligned()" if this helps and is sufficiently
1985 * fast.
1986 *
1987 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1988 * do not trap on the (extremely unlikely) case of a page
1989 * crossing operation.
1990 *
1991 * - Furthermore, we need an efficient 64-bit compile for the
1992 * 64-bit case in order to generate the "number of bytes in
1993 * the final mask". Again, that could be replaced with a
1994 * efficient population count instruction or similar.
1995 */
1996 #ifdef CONFIG_DCACHE_WORD_ACCESS
1997
1998 #include <asm/word-at-a-time.h>
1999
2000 #ifdef HASH_MIX
2001
2002 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2003
2004 #elif defined(CONFIG_64BIT)
2005 /*
2006 * Register pressure in the mixing function is an issue, particularly
2007 * on 32-bit x86, but almost any function requires one state value and
2008 * one temporary. Instead, use a function designed for two state values
2009 * and no temporaries.
2010 *
2011 * This function cannot create a collision in only two iterations, so
2012 * we have two iterations to achieve avalanche. In those two iterations,
2013 * we have six layers of mixing, which is enough to spread one bit's
2014 * influence out to 2^6 = 64 state bits.
2015 *
2016 * Rotate constants are scored by considering either 64 one-bit input
2017 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2018 * probability of that delta causing a change to each of the 128 output
2019 * bits, using a sample of random initial states.
2020 *
2021 * The Shannon entropy of the computed probabilities is then summed
2022 * to produce a score. Ideally, any input change has a 50% chance of
2023 * toggling any given output bit.
2024 *
2025 * Mixing scores (in bits) for (12,45):
2026 * Input delta: 1-bit 2-bit
2027 * 1 round: 713.3 42542.6
2028 * 2 rounds: 2753.7 140389.8
2029 * 3 rounds: 5954.1 233458.2
2030 * 4 rounds: 7862.6 256672.2
2031 * Perfect: 8192 258048
2032 * (64*128) (64*63/2 * 128)
2033 */
2034 #define HASH_MIX(x, y, a) \
2035 ( x ^= (a), \
2036 y ^= x, x = rol64(x,12),\
2037 x += y, y = rol64(y,45),\
2038 y *= 9 )
2039
2040 /*
2041 * Fold two longs into one 32-bit hash value. This must be fast, but
2042 * latency isn't quite as critical, as there is a fair bit of additional
2043 * work done before the hash value is used.
2044 */
2045 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2046 {
2047 y ^= x * GOLDEN_RATIO_64;
2048 y *= GOLDEN_RATIO_64;
2049 return y >> 32;
2050 }
2051
2052 #else /* 32-bit case */
2053
2054 /*
2055 * Mixing scores (in bits) for (7,20):
2056 * Input delta: 1-bit 2-bit
2057 * 1 round: 330.3 9201.6
2058 * 2 rounds: 1246.4 25475.4
2059 * 3 rounds: 1907.1 31295.1
2060 * 4 rounds: 2042.3 31718.6
2061 * Perfect: 2048 31744
2062 * (32*64) (32*31/2 * 64)
2063 */
2064 #define HASH_MIX(x, y, a) \
2065 ( x ^= (a), \
2066 y ^= x, x = rol32(x, 7),\
2067 x += y, y = rol32(y,20),\
2068 y *= 9 )
2069
2070 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2071 {
2072 /* Use arch-optimized multiply if one exists */
2073 return __hash_32(y ^ __hash_32(x));
2074 }
2075
2076 #endif
2077
2078 /*
2079 * Return the hash of a string of known length. This is carfully
2080 * designed to match hash_name(), which is the more critical function.
2081 * In particular, we must end by hashing a final word containing 0..7
2082 * payload bytes, to match the way that hash_name() iterates until it
2083 * finds the delimiter after the name.
2084 */
2085 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2086 {
2087 unsigned long a, x = 0, y = (unsigned long)salt;
2088
2089 for (;;) {
2090 if (!len)
2091 goto done;
2092 a = load_unaligned_zeropad(name);
2093 if (len < sizeof(unsigned long))
2094 break;
2095 HASH_MIX(x, y, a);
2096 name += sizeof(unsigned long);
2097 len -= sizeof(unsigned long);
2098 }
2099 x ^= a & bytemask_from_count(len);
2100 done:
2101 return fold_hash(x, y);
2102 }
2103 EXPORT_SYMBOL(full_name_hash);
2104
2105 /* Return the "hash_len" (hash and length) of a null-terminated string */
2106 u64 hashlen_string(const void *salt, const char *name)
2107 {
2108 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2109 unsigned long adata, mask, len;
2110 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2111
2112 len = 0;
2113 goto inside;
2114
2115 do {
2116 HASH_MIX(x, y, a);
2117 len += sizeof(unsigned long);
2118 inside:
2119 a = load_unaligned_zeropad(name+len);
2120 } while (!has_zero(a, &adata, &constants));
2121
2122 adata = prep_zero_mask(a, adata, &constants);
2123 mask = create_zero_mask(adata);
2124 x ^= a & zero_bytemask(mask);
2125
2126 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2127 }
2128 EXPORT_SYMBOL(hashlen_string);
2129
2130 /*
2131 * Calculate the length and hash of the path component, and
2132 * return the "hash_len" as the result.
2133 */
2134 static inline u64 hash_name(const void *salt, const char *name)
2135 {
2136 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2137 unsigned long adata, bdata, mask, len;
2138 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2139
2140 len = 0;
2141 goto inside;
2142
2143 do {
2144 HASH_MIX(x, y, a);
2145 len += sizeof(unsigned long);
2146 inside:
2147 a = load_unaligned_zeropad(name+len);
2148 b = a ^ REPEAT_BYTE('/');
2149 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2150
2151 adata = prep_zero_mask(a, adata, &constants);
2152 bdata = prep_zero_mask(b, bdata, &constants);
2153 mask = create_zero_mask(adata | bdata);
2154 x ^= a & zero_bytemask(mask);
2155
2156 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2157 }
2158
2159 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2160
2161 /* Return the hash of a string of known length */
2162 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2163 {
2164 unsigned long hash = init_name_hash(salt);
2165 while (len--)
2166 hash = partial_name_hash((unsigned char)*name++, hash);
2167 return end_name_hash(hash);
2168 }
2169 EXPORT_SYMBOL(full_name_hash);
2170
2171 /* Return the "hash_len" (hash and length) of a null-terminated string */
2172 u64 hashlen_string(const void *salt, const char *name)
2173 {
2174 unsigned long hash = init_name_hash(salt);
2175 unsigned long len = 0, c;
2176
2177 c = (unsigned char)*name;
2178 while (c) {
2179 len++;
2180 hash = partial_name_hash(c, hash);
2181 c = (unsigned char)name[len];
2182 }
2183 return hashlen_create(end_name_hash(hash), len);
2184 }
2185 EXPORT_SYMBOL(hashlen_string);
2186
2187 /*
2188 * We know there's a real path component here of at least
2189 * one character.
2190 */
2191 static inline u64 hash_name(const void *salt, const char *name)
2192 {
2193 unsigned long hash = init_name_hash(salt);
2194 unsigned long len = 0, c;
2195
2196 c = (unsigned char)*name;
2197 do {
2198 len++;
2199 hash = partial_name_hash(c, hash);
2200 c = (unsigned char)name[len];
2201 } while (c && c != '/');
2202 return hashlen_create(end_name_hash(hash), len);
2203 }
2204
2205 #endif
2206
2207 /*
2208 * Name resolution.
2209 * This is the basic name resolution function, turning a pathname into
2210 * the final dentry. We expect 'base' to be positive and a directory.
2211 *
2212 * Returns 0 and nd will have valid dentry and mnt on success.
2213 * Returns error and drops reference to input namei data on failure.
2214 */
2215 static int link_path_walk(const char *name, struct nameidata *nd)
2216 {
2217 int depth = 0; // depth <= nd->depth
2218 int err;
2219
2220 nd->last_type = LAST_ROOT;
2221 nd->flags |= LOOKUP_PARENT;
2222 if (IS_ERR(name))
2223 return PTR_ERR(name);
2224 while (*name=='/')
2225 name++;
2226 if (!*name) {
2227 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2228 return 0;
2229 }
2230
2231 /* At this point we know we have a real path component. */
2232 for(;;) {
2233 struct user_namespace *mnt_userns;
2234 const char *link;
2235 u64 hash_len;
2236 int type;
2237
2238 mnt_userns = mnt_user_ns(nd->path.mnt);
2239 err = may_lookup(mnt_userns, nd);
2240 if (err)
2241 return err;
2242
2243 hash_len = hash_name(nd->path.dentry, name);
2244
2245 type = LAST_NORM;
2246 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2247 case 2:
2248 if (name[1] == '.') {
2249 type = LAST_DOTDOT;
2250 nd->state |= ND_JUMPED;
2251 }
2252 break;
2253 case 1:
2254 type = LAST_DOT;
2255 }
2256 if (likely(type == LAST_NORM)) {
2257 struct dentry *parent = nd->path.dentry;
2258 nd->state &= ~ND_JUMPED;
2259 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2260 struct qstr this = { { .hash_len = hash_len }, .name = name };
2261 err = parent->d_op->d_hash(parent, &this);
2262 if (err < 0)
2263 return err;
2264 hash_len = this.hash_len;
2265 name = this.name;
2266 }
2267 }
2268
2269 nd->last.hash_len = hash_len;
2270 nd->last.name = name;
2271 nd->last_type = type;
2272
2273 name += hashlen_len(hash_len);
2274 if (!*name)
2275 goto OK;
2276 /*
2277 * If it wasn't NUL, we know it was '/'. Skip that
2278 * slash, and continue until no more slashes.
2279 */
2280 do {
2281 name++;
2282 } while (unlikely(*name == '/'));
2283 if (unlikely(!*name)) {
2284 OK:
2285 /* pathname or trailing symlink, done */
2286 if (!depth) {
2287 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2288 nd->dir_mode = nd->inode->i_mode;
2289 nd->flags &= ~LOOKUP_PARENT;
2290 return 0;
2291 }
2292 /* last component of nested symlink */
2293 name = nd->stack[--depth].name;
2294 link = walk_component(nd, 0);
2295 } else {
2296 /* not the last component */
2297 link = walk_component(nd, WALK_MORE);
2298 }
2299 if (unlikely(link)) {
2300 if (IS_ERR(link))
2301 return PTR_ERR(link);
2302 /* a symlink to follow */
2303 nd->stack[depth++].name = name;
2304 name = link;
2305 continue;
2306 }
2307 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2308 if (nd->flags & LOOKUP_RCU) {
2309 if (!try_to_unlazy(nd))
2310 return -ECHILD;
2311 }
2312 return -ENOTDIR;
2313 }
2314 }
2315 }
2316
2317 /* must be paired with terminate_walk() */
2318 static const char *path_init(struct nameidata *nd, unsigned flags)
2319 {
2320 int error;
2321 const char *s = nd->name->name;
2322
2323 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2324 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2325 return ERR_PTR(-EAGAIN);
2326
2327 if (!*s)
2328 flags &= ~LOOKUP_RCU;
2329 if (flags & LOOKUP_RCU)
2330 rcu_read_lock();
2331
2332 nd->flags = flags;
2333 nd->state |= ND_JUMPED;
2334
2335 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2336 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2337 smp_rmb();
2338
2339 if (nd->state & ND_ROOT_PRESET) {
2340 struct dentry *root = nd->root.dentry;
2341 struct inode *inode = root->d_inode;
2342 if (*s && unlikely(!d_can_lookup(root)))
2343 return ERR_PTR(-ENOTDIR);
2344 nd->path = nd->root;
2345 nd->inode = inode;
2346 if (flags & LOOKUP_RCU) {
2347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2348 nd->root_seq = nd->seq;
2349 } else {
2350 path_get(&nd->path);
2351 }
2352 return s;
2353 }
2354
2355 nd->root.mnt = NULL;
2356
2357 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2358 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2359 error = nd_jump_root(nd);
2360 if (unlikely(error))
2361 return ERR_PTR(error);
2362 return s;
2363 }
2364
2365 /* Relative pathname -- get the starting-point it is relative to. */
2366 if (nd->dfd == AT_FDCWD) {
2367 if (flags & LOOKUP_RCU) {
2368 struct fs_struct *fs = current->fs;
2369 unsigned seq;
2370
2371 do {
2372 seq = read_seqcount_begin(&fs->seq);
2373 nd->path = fs->pwd;
2374 nd->inode = nd->path.dentry->d_inode;
2375 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2376 } while (read_seqcount_retry(&fs->seq, seq));
2377 } else {
2378 get_fs_pwd(current->fs, &nd->path);
2379 nd->inode = nd->path.dentry->d_inode;
2380 }
2381 } else {
2382 /* Caller must check execute permissions on the starting path component */
2383 struct fd f = fdget_raw(nd->dfd);
2384 struct dentry *dentry;
2385
2386 if (!f.file)
2387 return ERR_PTR(-EBADF);
2388
2389 dentry = f.file->f_path.dentry;
2390
2391 if (*s && unlikely(!d_can_lookup(dentry))) {
2392 fdput(f);
2393 return ERR_PTR(-ENOTDIR);
2394 }
2395
2396 nd->path = f.file->f_path;
2397 if (flags & LOOKUP_RCU) {
2398 nd->inode = nd->path.dentry->d_inode;
2399 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2400 } else {
2401 path_get(&nd->path);
2402 nd->inode = nd->path.dentry->d_inode;
2403 }
2404 fdput(f);
2405 }
2406
2407 /* For scoped-lookups we need to set the root to the dirfd as well. */
2408 if (flags & LOOKUP_IS_SCOPED) {
2409 nd->root = nd->path;
2410 if (flags & LOOKUP_RCU) {
2411 nd->root_seq = nd->seq;
2412 } else {
2413 path_get(&nd->root);
2414 nd->state |= ND_ROOT_GRABBED;
2415 }
2416 }
2417 return s;
2418 }
2419
2420 static inline const char *lookup_last(struct nameidata *nd)
2421 {
2422 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2423 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2424
2425 return walk_component(nd, WALK_TRAILING);
2426 }
2427
2428 static int handle_lookup_down(struct nameidata *nd)
2429 {
2430 if (!(nd->flags & LOOKUP_RCU))
2431 dget(nd->path.dentry);
2432 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2433 nd->path.dentry, nd->inode, nd->seq));
2434 }
2435
2436 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2437 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2438 {
2439 const char *s = path_init(nd, flags);
2440 int err;
2441
2442 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2443 err = handle_lookup_down(nd);
2444 if (unlikely(err < 0))
2445 s = ERR_PTR(err);
2446 }
2447
2448 while (!(err = link_path_walk(s, nd)) &&
2449 (s = lookup_last(nd)) != NULL)
2450 ;
2451 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2452 err = handle_lookup_down(nd);
2453 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2454 }
2455 if (!err)
2456 err = complete_walk(nd);
2457
2458 if (!err && nd->flags & LOOKUP_DIRECTORY)
2459 if (!d_can_lookup(nd->path.dentry))
2460 err = -ENOTDIR;
2461 if (!err) {
2462 *path = nd->path;
2463 nd->path.mnt = NULL;
2464 nd->path.dentry = NULL;
2465 }
2466 terminate_walk(nd);
2467 return err;
2468 }
2469
2470 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2471 struct path *path, struct path *root)
2472 {
2473 int retval;
2474 struct nameidata nd;
2475 if (IS_ERR(name))
2476 return PTR_ERR(name);
2477 set_nameidata(&nd, dfd, name, root);
2478 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2479 if (unlikely(retval == -ECHILD))
2480 retval = path_lookupat(&nd, flags, path);
2481 if (unlikely(retval == -ESTALE))
2482 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2483
2484 if (likely(!retval))
2485 audit_inode(name, path->dentry,
2486 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2487 restore_nameidata();
2488 return retval;
2489 }
2490
2491 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2492 static int path_parentat(struct nameidata *nd, unsigned flags,
2493 struct path *parent)
2494 {
2495 const char *s = path_init(nd, flags);
2496 int err = link_path_walk(s, nd);
2497 if (!err)
2498 err = complete_walk(nd);
2499 if (!err) {
2500 *parent = nd->path;
2501 nd->path.mnt = NULL;
2502 nd->path.dentry = NULL;
2503 }
2504 terminate_walk(nd);
2505 return err;
2506 }
2507
2508 /* Note: this does not consume "name" */
2509 static int filename_parentat(int dfd, struct filename *name,
2510 unsigned int flags, struct path *parent,
2511 struct qstr *last, int *type)
2512 {
2513 int retval;
2514 struct nameidata nd;
2515
2516 if (IS_ERR(name))
2517 return PTR_ERR(name);
2518 set_nameidata(&nd, dfd, name, NULL);
2519 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2520 if (unlikely(retval == -ECHILD))
2521 retval = path_parentat(&nd, flags, parent);
2522 if (unlikely(retval == -ESTALE))
2523 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2524 if (likely(!retval)) {
2525 *last = nd.last;
2526 *type = nd.last_type;
2527 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2528 }
2529 restore_nameidata();
2530 return retval;
2531 }
2532
2533 /* does lookup, returns the object with parent locked */
2534 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2535 {
2536 struct dentry *d;
2537 struct qstr last;
2538 int type, error;
2539
2540 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2541 if (error)
2542 return ERR_PTR(error);
2543 if (unlikely(type != LAST_NORM)) {
2544 path_put(path);
2545 return ERR_PTR(-EINVAL);
2546 }
2547 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2548 d = __lookup_hash(&last, path->dentry, 0);
2549 if (IS_ERR(d)) {
2550 inode_unlock(path->dentry->d_inode);
2551 path_put(path);
2552 }
2553 return d;
2554 }
2555
2556 struct dentry *kern_path_locked(const char *name, struct path *path)
2557 {
2558 struct filename *filename = getname_kernel(name);
2559 struct dentry *res = __kern_path_locked(filename, path);
2560
2561 putname(filename);
2562 return res;
2563 }
2564
2565 int kern_path(const char *name, unsigned int flags, struct path *path)
2566 {
2567 struct filename *filename = getname_kernel(name);
2568 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2569
2570 putname(filename);
2571 return ret;
2572
2573 }
2574 EXPORT_SYMBOL(kern_path);
2575
2576 /**
2577 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2578 * @dentry: pointer to dentry of the base directory
2579 * @mnt: pointer to vfs mount of the base directory
2580 * @name: pointer to file name
2581 * @flags: lookup flags
2582 * @path: pointer to struct path to fill
2583 */
2584 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2585 const char *name, unsigned int flags,
2586 struct path *path)
2587 {
2588 struct filename *filename;
2589 struct path root = {.mnt = mnt, .dentry = dentry};
2590 int ret;
2591
2592 filename = getname_kernel(name);
2593 /* the first argument of filename_lookup() is ignored with root */
2594 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2595 putname(filename);
2596 return ret;
2597 }
2598 EXPORT_SYMBOL(vfs_path_lookup);
2599
2600 static int lookup_one_common(struct user_namespace *mnt_userns,
2601 const char *name, struct dentry *base, int len,
2602 struct qstr *this)
2603 {
2604 this->name = name;
2605 this->len = len;
2606 this->hash = full_name_hash(base, name, len);
2607 if (!len)
2608 return -EACCES;
2609
2610 if (unlikely(name[0] == '.')) {
2611 if (len < 2 || (len == 2 && name[1] == '.'))
2612 return -EACCES;
2613 }
2614
2615 while (len--) {
2616 unsigned int c = *(const unsigned char *)name++;
2617 if (c == '/' || c == '\0')
2618 return -EACCES;
2619 }
2620 /*
2621 * See if the low-level filesystem might want
2622 * to use its own hash..
2623 */
2624 if (base->d_flags & DCACHE_OP_HASH) {
2625 int err = base->d_op->d_hash(base, this);
2626 if (err < 0)
2627 return err;
2628 }
2629
2630 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2631 }
2632
2633 /**
2634 * try_lookup_one_len - filesystem helper to lookup single pathname component
2635 * @name: pathname component to lookup
2636 * @base: base directory to lookup from
2637 * @len: maximum length @len should be interpreted to
2638 *
2639 * Look up a dentry by name in the dcache, returning NULL if it does not
2640 * currently exist. The function does not try to create a dentry.
2641 *
2642 * Note that this routine is purely a helper for filesystem usage and should
2643 * not be called by generic code.
2644 *
2645 * The caller must hold base->i_mutex.
2646 */
2647 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2648 {
2649 struct qstr this;
2650 int err;
2651
2652 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2653
2654 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2655 if (err)
2656 return ERR_PTR(err);
2657
2658 return lookup_dcache(&this, base, 0);
2659 }
2660 EXPORT_SYMBOL(try_lookup_one_len);
2661
2662 /**
2663 * lookup_one_len - filesystem helper to lookup single pathname component
2664 * @name: pathname component to lookup
2665 * @base: base directory to lookup from
2666 * @len: maximum length @len should be interpreted to
2667 *
2668 * Note that this routine is purely a helper for filesystem usage and should
2669 * not be called by generic code.
2670 *
2671 * The caller must hold base->i_mutex.
2672 */
2673 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2674 {
2675 struct dentry *dentry;
2676 struct qstr this;
2677 int err;
2678
2679 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2680
2681 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2682 if (err)
2683 return ERR_PTR(err);
2684
2685 dentry = lookup_dcache(&this, base, 0);
2686 return dentry ? dentry : __lookup_slow(&this, base, 0);
2687 }
2688 EXPORT_SYMBOL(lookup_one_len);
2689
2690 /**
2691 * lookup_one - filesystem helper to lookup single pathname component
2692 * @mnt_userns: user namespace of the mount the lookup is performed from
2693 * @name: pathname component to lookup
2694 * @base: base directory to lookup from
2695 * @len: maximum length @len should be interpreted to
2696 *
2697 * Note that this routine is purely a helper for filesystem usage and should
2698 * not be called by generic code.
2699 *
2700 * The caller must hold base->i_mutex.
2701 */
2702 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2703 struct dentry *base, int len)
2704 {
2705 struct dentry *dentry;
2706 struct qstr this;
2707 int err;
2708
2709 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2710
2711 err = lookup_one_common(mnt_userns, name, base, len, &this);
2712 if (err)
2713 return ERR_PTR(err);
2714
2715 dentry = lookup_dcache(&this, base, 0);
2716 return dentry ? dentry : __lookup_slow(&this, base, 0);
2717 }
2718 EXPORT_SYMBOL(lookup_one);
2719
2720 /**
2721 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2722 * @mnt_userns: idmapping of the mount the lookup is performed from
2723 * @name: pathname component to lookup
2724 * @base: base directory to lookup from
2725 * @len: maximum length @len should be interpreted to
2726 *
2727 * Note that this routine is purely a helper for filesystem usage and should
2728 * not be called by generic code.
2729 *
2730 * Unlike lookup_one_len, it should be called without the parent
2731 * i_mutex held, and will take the i_mutex itself if necessary.
2732 */
2733 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2734 const char *name, struct dentry *base,
2735 int len)
2736 {
2737 struct qstr this;
2738 int err;
2739 struct dentry *ret;
2740
2741 err = lookup_one_common(mnt_userns, name, base, len, &this);
2742 if (err)
2743 return ERR_PTR(err);
2744
2745 ret = lookup_dcache(&this, base, 0);
2746 if (!ret)
2747 ret = lookup_slow(&this, base, 0);
2748 return ret;
2749 }
2750 EXPORT_SYMBOL(lookup_one_unlocked);
2751
2752 /**
2753 * lookup_one_positive_unlocked - filesystem helper to lookup single
2754 * pathname component
2755 * @mnt_userns: idmapping of the mount the lookup is performed from
2756 * @name: pathname component to lookup
2757 * @base: base directory to lookup from
2758 * @len: maximum length @len should be interpreted to
2759 *
2760 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2761 * known positive or ERR_PTR(). This is what most of the users want.
2762 *
2763 * Note that pinned negative with unlocked parent _can_ become positive at any
2764 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2765 * positives have >d_inode stable, so this one avoids such problems.
2766 *
2767 * Note that this routine is purely a helper for filesystem usage and should
2768 * not be called by generic code.
2769 *
2770 * The helper should be called without i_mutex held.
2771 */
2772 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2773 const char *name,
2774 struct dentry *base, int len)
2775 {
2776 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2777
2778 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2779 dput(ret);
2780 ret = ERR_PTR(-ENOENT);
2781 }
2782 return ret;
2783 }
2784 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2785
2786 /**
2787 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2788 * @name: pathname component to lookup
2789 * @base: base directory to lookup from
2790 * @len: maximum length @len should be interpreted to
2791 *
2792 * Note that this routine is purely a helper for filesystem usage and should
2793 * not be called by generic code.
2794 *
2795 * Unlike lookup_one_len, it should be called without the parent
2796 * i_mutex held, and will take the i_mutex itself if necessary.
2797 */
2798 struct dentry *lookup_one_len_unlocked(const char *name,
2799 struct dentry *base, int len)
2800 {
2801 return lookup_one_unlocked(&init_user_ns, name, base, len);
2802 }
2803 EXPORT_SYMBOL(lookup_one_len_unlocked);
2804
2805 /*
2806 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2807 * on negatives. Returns known positive or ERR_PTR(); that's what
2808 * most of the users want. Note that pinned negative with unlocked parent
2809 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2810 * need to be very careful; pinned positives have ->d_inode stable, so
2811 * this one avoids such problems.
2812 */
2813 struct dentry *lookup_positive_unlocked(const char *name,
2814 struct dentry *base, int len)
2815 {
2816 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2817 }
2818 EXPORT_SYMBOL(lookup_positive_unlocked);
2819
2820 #ifdef CONFIG_UNIX98_PTYS
2821 int path_pts(struct path *path)
2822 {
2823 /* Find something mounted on "pts" in the same directory as
2824 * the input path.
2825 */
2826 struct dentry *parent = dget_parent(path->dentry);
2827 struct dentry *child;
2828 struct qstr this = QSTR_INIT("pts", 3);
2829
2830 if (unlikely(!path_connected(path->mnt, parent))) {
2831 dput(parent);
2832 return -ENOENT;
2833 }
2834 dput(path->dentry);
2835 path->dentry = parent;
2836 child = d_hash_and_lookup(parent, &this);
2837 if (!child)
2838 return -ENOENT;
2839
2840 path->dentry = child;
2841 dput(parent);
2842 follow_down(path);
2843 return 0;
2844 }
2845 #endif
2846
2847 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2848 struct path *path, int *empty)
2849 {
2850 struct filename *filename = getname_flags(name, flags, empty);
2851 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2852
2853 putname(filename);
2854 return ret;
2855 }
2856 EXPORT_SYMBOL(user_path_at_empty);
2857
2858 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2859 struct inode *inode)
2860 {
2861 kuid_t fsuid = current_fsuid();
2862
2863 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2864 return 0;
2865 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2866 return 0;
2867 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2868 }
2869 EXPORT_SYMBOL(__check_sticky);
2870
2871 /*
2872 * Check whether we can remove a link victim from directory dir, check
2873 * whether the type of victim is right.
2874 * 1. We can't do it if dir is read-only (done in permission())
2875 * 2. We should have write and exec permissions on dir
2876 * 3. We can't remove anything from append-only dir
2877 * 4. We can't do anything with immutable dir (done in permission())
2878 * 5. If the sticky bit on dir is set we should either
2879 * a. be owner of dir, or
2880 * b. be owner of victim, or
2881 * c. have CAP_FOWNER capability
2882 * 6. If the victim is append-only or immutable we can't do antyhing with
2883 * links pointing to it.
2884 * 7. If the victim has an unknown uid or gid we can't change the inode.
2885 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2886 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2887 * 10. We can't remove a root or mountpoint.
2888 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2889 * nfs_async_unlink().
2890 */
2891 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2892 struct dentry *victim, bool isdir)
2893 {
2894 struct inode *inode = d_backing_inode(victim);
2895 int error;
2896
2897 if (d_is_negative(victim))
2898 return -ENOENT;
2899 BUG_ON(!inode);
2900
2901 BUG_ON(victim->d_parent->d_inode != dir);
2902
2903 /* Inode writeback is not safe when the uid or gid are invalid. */
2904 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2905 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2906 return -EOVERFLOW;
2907
2908 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2909
2910 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2911 if (error)
2912 return error;
2913 if (IS_APPEND(dir))
2914 return -EPERM;
2915
2916 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2917 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2918 HAS_UNMAPPED_ID(mnt_userns, inode))
2919 return -EPERM;
2920 if (isdir) {
2921 if (!d_is_dir(victim))
2922 return -ENOTDIR;
2923 if (IS_ROOT(victim))
2924 return -EBUSY;
2925 } else if (d_is_dir(victim))
2926 return -EISDIR;
2927 if (IS_DEADDIR(dir))
2928 return -ENOENT;
2929 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2930 return -EBUSY;
2931 return 0;
2932 }
2933
2934 /* Check whether we can create an object with dentry child in directory
2935 * dir.
2936 * 1. We can't do it if child already exists (open has special treatment for
2937 * this case, but since we are inlined it's OK)
2938 * 2. We can't do it if dir is read-only (done in permission())
2939 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2940 * 4. We should have write and exec permissions on dir
2941 * 5. We can't do it if dir is immutable (done in permission())
2942 */
2943 static inline int may_create(struct user_namespace *mnt_userns,
2944 struct inode *dir, struct dentry *child)
2945 {
2946 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2947 if (child->d_inode)
2948 return -EEXIST;
2949 if (IS_DEADDIR(dir))
2950 return -ENOENT;
2951 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2952 return -EOVERFLOW;
2953
2954 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2955 }
2956
2957 /*
2958 * p1 and p2 should be directories on the same fs.
2959 */
2960 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2961 {
2962 struct dentry *p;
2963
2964 if (p1 == p2) {
2965 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2966 return NULL;
2967 }
2968
2969 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2970
2971 p = d_ancestor(p2, p1);
2972 if (p) {
2973 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2974 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2975 return p;
2976 }
2977
2978 p = d_ancestor(p1, p2);
2979 if (p) {
2980 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2981 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2982 return p;
2983 }
2984
2985 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2986 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2987 return NULL;
2988 }
2989 EXPORT_SYMBOL(lock_rename);
2990
2991 void unlock_rename(struct dentry *p1, struct dentry *p2)
2992 {
2993 inode_unlock(p1->d_inode);
2994 if (p1 != p2) {
2995 inode_unlock(p2->d_inode);
2996 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2997 }
2998 }
2999 EXPORT_SYMBOL(unlock_rename);
3000
3001 /**
3002 * vfs_create - create new file
3003 * @mnt_userns: user namespace of the mount the inode was found from
3004 * @dir: inode of @dentry
3005 * @dentry: pointer to dentry of the base directory
3006 * @mode: mode of the new file
3007 * @want_excl: whether the file must not yet exist
3008 *
3009 * Create a new file.
3010 *
3011 * If the inode has been found through an idmapped mount the user namespace of
3012 * the vfsmount must be passed through @mnt_userns. This function will then take
3013 * care to map the inode according to @mnt_userns before checking permissions.
3014 * On non-idmapped mounts or if permission checking is to be performed on the
3015 * raw inode simply passs init_user_ns.
3016 */
3017 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3018 struct dentry *dentry, umode_t mode, bool want_excl)
3019 {
3020 int error = may_create(mnt_userns, dir, dentry);
3021 if (error)
3022 return error;
3023
3024 if (!dir->i_op->create)
3025 return -EACCES; /* shouldn't it be ENOSYS? */
3026 mode &= S_IALLUGO;
3027 mode |= S_IFREG;
3028 error = security_inode_create(dir, dentry, mode);
3029 if (error)
3030 return error;
3031 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3032 if (!error)
3033 fsnotify_create(dir, dentry);
3034 return error;
3035 }
3036 EXPORT_SYMBOL(vfs_create);
3037
3038 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3039 int (*f)(struct dentry *, umode_t, void *),
3040 void *arg)
3041 {
3042 struct inode *dir = dentry->d_parent->d_inode;
3043 int error = may_create(&init_user_ns, dir, dentry);
3044 if (error)
3045 return error;
3046
3047 mode &= S_IALLUGO;
3048 mode |= S_IFREG;
3049 error = security_inode_create(dir, dentry, mode);
3050 if (error)
3051 return error;
3052 error = f(dentry, mode, arg);
3053 if (!error)
3054 fsnotify_create(dir, dentry);
3055 return error;
3056 }
3057 EXPORT_SYMBOL(vfs_mkobj);
3058
3059 bool may_open_dev(const struct path *path)
3060 {
3061 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3062 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3063 }
3064
3065 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3066 int acc_mode, int flag)
3067 {
3068 struct dentry *dentry = path->dentry;
3069 struct inode *inode = dentry->d_inode;
3070 int error;
3071
3072 if (!inode)
3073 return -ENOENT;
3074
3075 switch (inode->i_mode & S_IFMT) {
3076 case S_IFLNK:
3077 return -ELOOP;
3078 case S_IFDIR:
3079 if (acc_mode & MAY_WRITE)
3080 return -EISDIR;
3081 if (acc_mode & MAY_EXEC)
3082 return -EACCES;
3083 break;
3084 case S_IFBLK:
3085 case S_IFCHR:
3086 if (!may_open_dev(path))
3087 return -EACCES;
3088 fallthrough;
3089 case S_IFIFO:
3090 case S_IFSOCK:
3091 if (acc_mode & MAY_EXEC)
3092 return -EACCES;
3093 flag &= ~O_TRUNC;
3094 break;
3095 case S_IFREG:
3096 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3097 return -EACCES;
3098 break;
3099 }
3100
3101 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3102 if (error)
3103 return error;
3104
3105 /*
3106 * An append-only file must be opened in append mode for writing.
3107 */
3108 if (IS_APPEND(inode)) {
3109 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3110 return -EPERM;
3111 if (flag & O_TRUNC)
3112 return -EPERM;
3113 }
3114
3115 /* O_NOATIME can only be set by the owner or superuser */
3116 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3117 return -EPERM;
3118
3119 return 0;
3120 }
3121
3122 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3123 {
3124 const struct path *path = &filp->f_path;
3125 struct inode *inode = path->dentry->d_inode;
3126 int error = get_write_access(inode);
3127 if (error)
3128 return error;
3129 /*
3130 * Refuse to truncate files with mandatory locks held on them.
3131 */
3132 error = security_path_truncate(path);
3133 if (!error) {
3134 error = do_truncate(mnt_userns, path->dentry, 0,
3135 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3136 filp);
3137 }
3138 put_write_access(inode);
3139 return error;
3140 }
3141
3142 static inline int open_to_namei_flags(int flag)
3143 {
3144 if ((flag & O_ACCMODE) == 3)
3145 flag--;
3146 return flag;
3147 }
3148
3149 static int may_o_create(struct user_namespace *mnt_userns,
3150 const struct path *dir, struct dentry *dentry,
3151 umode_t mode)
3152 {
3153 int error = security_path_mknod(dir, dentry, mode, 0);
3154 if (error)
3155 return error;
3156
3157 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3158 return -EOVERFLOW;
3159
3160 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3161 MAY_WRITE | MAY_EXEC);
3162 if (error)
3163 return error;
3164
3165 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3166 }
3167
3168 /*
3169 * Attempt to atomically look up, create and open a file from a negative
3170 * dentry.
3171 *
3172 * Returns 0 if successful. The file will have been created and attached to
3173 * @file by the filesystem calling finish_open().
3174 *
3175 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3176 * be set. The caller will need to perform the open themselves. @path will
3177 * have been updated to point to the new dentry. This may be negative.
3178 *
3179 * Returns an error code otherwise.
3180 */
3181 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3182 struct file *file,
3183 int open_flag, umode_t mode)
3184 {
3185 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3186 struct inode *dir = nd->path.dentry->d_inode;
3187 int error;
3188
3189 if (nd->flags & LOOKUP_DIRECTORY)
3190 open_flag |= O_DIRECTORY;
3191
3192 file->f_path.dentry = DENTRY_NOT_SET;
3193 file->f_path.mnt = nd->path.mnt;
3194 error = dir->i_op->atomic_open(dir, dentry, file,
3195 open_to_namei_flags(open_flag), mode);
3196 d_lookup_done(dentry);
3197 if (!error) {
3198 if (file->f_mode & FMODE_OPENED) {
3199 if (unlikely(dentry != file->f_path.dentry)) {
3200 dput(dentry);
3201 dentry = dget(file->f_path.dentry);
3202 }
3203 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3204 error = -EIO;
3205 } else {
3206 if (file->f_path.dentry) {
3207 dput(dentry);
3208 dentry = file->f_path.dentry;
3209 }
3210 if (unlikely(d_is_negative(dentry)))
3211 error = -ENOENT;
3212 }
3213 }
3214 if (error) {
3215 dput(dentry);
3216 dentry = ERR_PTR(error);
3217 }
3218 return dentry;
3219 }
3220
3221 /*
3222 * Look up and maybe create and open the last component.
3223 *
3224 * Must be called with parent locked (exclusive in O_CREAT case).
3225 *
3226 * Returns 0 on success, that is, if
3227 * the file was successfully atomically created (if necessary) and opened, or
3228 * the file was not completely opened at this time, though lookups and
3229 * creations were performed.
3230 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3231 * In the latter case dentry returned in @path might be negative if O_CREAT
3232 * hadn't been specified.
3233 *
3234 * An error code is returned on failure.
3235 */
3236 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3237 const struct open_flags *op,
3238 bool got_write)
3239 {
3240 struct user_namespace *mnt_userns;
3241 struct dentry *dir = nd->path.dentry;
3242 struct inode *dir_inode = dir->d_inode;
3243 int open_flag = op->open_flag;
3244 struct dentry *dentry;
3245 int error, create_error = 0;
3246 umode_t mode = op->mode;
3247 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3248
3249 if (unlikely(IS_DEADDIR(dir_inode)))
3250 return ERR_PTR(-ENOENT);
3251
3252 file->f_mode &= ~FMODE_CREATED;
3253 dentry = d_lookup(dir, &nd->last);
3254 for (;;) {
3255 if (!dentry) {
3256 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3257 if (IS_ERR(dentry))
3258 return dentry;
3259 }
3260 if (d_in_lookup(dentry))
3261 break;
3262
3263 error = d_revalidate(dentry, nd->flags);
3264 if (likely(error > 0))
3265 break;
3266 if (error)
3267 goto out_dput;
3268 d_invalidate(dentry);
3269 dput(dentry);
3270 dentry = NULL;
3271 }
3272 if (dentry->d_inode) {
3273 /* Cached positive dentry: will open in f_op->open */
3274 return dentry;
3275 }
3276
3277 /*
3278 * Checking write permission is tricky, bacuse we don't know if we are
3279 * going to actually need it: O_CREAT opens should work as long as the
3280 * file exists. But checking existence breaks atomicity. The trick is
3281 * to check access and if not granted clear O_CREAT from the flags.
3282 *
3283 * Another problem is returing the "right" error value (e.g. for an
3284 * O_EXCL open we want to return EEXIST not EROFS).
3285 */
3286 if (unlikely(!got_write))
3287 open_flag &= ~O_TRUNC;
3288 mnt_userns = mnt_user_ns(nd->path.mnt);
3289 if (open_flag & O_CREAT) {
3290 if (open_flag & O_EXCL)
3291 open_flag &= ~O_TRUNC;
3292 if (!IS_POSIXACL(dir->d_inode))
3293 mode &= ~current_umask();
3294 if (likely(got_write))
3295 create_error = may_o_create(mnt_userns, &nd->path,
3296 dentry, mode);
3297 else
3298 create_error = -EROFS;
3299 }
3300 if (create_error)
3301 open_flag &= ~O_CREAT;
3302 if (dir_inode->i_op->atomic_open) {
3303 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3304 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3305 dentry = ERR_PTR(create_error);
3306 return dentry;
3307 }
3308
3309 if (d_in_lookup(dentry)) {
3310 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3311 nd->flags);
3312 d_lookup_done(dentry);
3313 if (unlikely(res)) {
3314 if (IS_ERR(res)) {
3315 error = PTR_ERR(res);
3316 goto out_dput;
3317 }
3318 dput(dentry);
3319 dentry = res;
3320 }
3321 }
3322
3323 /* Negative dentry, just create the file */
3324 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3325 file->f_mode |= FMODE_CREATED;
3326 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3327 if (!dir_inode->i_op->create) {
3328 error = -EACCES;
3329 goto out_dput;
3330 }
3331
3332 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3333 mode, open_flag & O_EXCL);
3334 if (error)
3335 goto out_dput;
3336 }
3337 if (unlikely(create_error) && !dentry->d_inode) {
3338 error = create_error;
3339 goto out_dput;
3340 }
3341 return dentry;
3342
3343 out_dput:
3344 dput(dentry);
3345 return ERR_PTR(error);
3346 }
3347
3348 static const char *open_last_lookups(struct nameidata *nd,
3349 struct file *file, const struct open_flags *op)
3350 {
3351 struct dentry *dir = nd->path.dentry;
3352 int open_flag = op->open_flag;
3353 bool got_write = false;
3354 unsigned seq;
3355 struct inode *inode;
3356 struct dentry *dentry;
3357 const char *res;
3358
3359 nd->flags |= op->intent;
3360
3361 if (nd->last_type != LAST_NORM) {
3362 if (nd->depth)
3363 put_link(nd);
3364 return handle_dots(nd, nd->last_type);
3365 }
3366
3367 if (!(open_flag & O_CREAT)) {
3368 if (nd->last.name[nd->last.len])
3369 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3370 /* we _can_ be in RCU mode here */
3371 dentry = lookup_fast(nd, &inode, &seq);
3372 if (IS_ERR(dentry))
3373 return ERR_CAST(dentry);
3374 if (likely(dentry))
3375 goto finish_lookup;
3376
3377 BUG_ON(nd->flags & LOOKUP_RCU);
3378 } else {
3379 /* create side of things */
3380 if (nd->flags & LOOKUP_RCU) {
3381 if (!try_to_unlazy(nd))
3382 return ERR_PTR(-ECHILD);
3383 }
3384 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3385 /* trailing slashes? */
3386 if (unlikely(nd->last.name[nd->last.len]))
3387 return ERR_PTR(-EISDIR);
3388 }
3389
3390 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3391 got_write = !mnt_want_write(nd->path.mnt);
3392 /*
3393 * do _not_ fail yet - we might not need that or fail with
3394 * a different error; let lookup_open() decide; we'll be
3395 * dropping this one anyway.
3396 */
3397 }
3398 if (open_flag & O_CREAT)
3399 inode_lock(dir->d_inode);
3400 else
3401 inode_lock_shared(dir->d_inode);
3402 dentry = lookup_open(nd, file, op, got_write);
3403 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3404 fsnotify_create(dir->d_inode, dentry);
3405 if (open_flag & O_CREAT)
3406 inode_unlock(dir->d_inode);
3407 else
3408 inode_unlock_shared(dir->d_inode);
3409
3410 if (got_write)
3411 mnt_drop_write(nd->path.mnt);
3412
3413 if (IS_ERR(dentry))
3414 return ERR_CAST(dentry);
3415
3416 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3417 dput(nd->path.dentry);
3418 nd->path.dentry = dentry;
3419 return NULL;
3420 }
3421
3422 finish_lookup:
3423 if (nd->depth)
3424 put_link(nd);
3425 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3426 if (unlikely(res))
3427 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3428 return res;
3429 }
3430
3431 /*
3432 * Handle the last step of open()
3433 */
3434 static int do_open(struct nameidata *nd,
3435 struct file *file, const struct open_flags *op)
3436 {
3437 struct user_namespace *mnt_userns;
3438 int open_flag = op->open_flag;
3439 bool do_truncate;
3440 int acc_mode;
3441 int error;
3442
3443 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3444 error = complete_walk(nd);
3445 if (error)
3446 return error;
3447 }
3448 if (!(file->f_mode & FMODE_CREATED))
3449 audit_inode(nd->name, nd->path.dentry, 0);
3450 mnt_userns = mnt_user_ns(nd->path.mnt);
3451 if (open_flag & O_CREAT) {
3452 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3453 return -EEXIST;
3454 if (d_is_dir(nd->path.dentry))
3455 return -EISDIR;
3456 error = may_create_in_sticky(mnt_userns, nd,
3457 d_backing_inode(nd->path.dentry));
3458 if (unlikely(error))
3459 return error;
3460 }
3461 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3462 return -ENOTDIR;
3463
3464 do_truncate = false;
3465 acc_mode = op->acc_mode;
3466 if (file->f_mode & FMODE_CREATED) {
3467 /* Don't check for write permission, don't truncate */
3468 open_flag &= ~O_TRUNC;
3469 acc_mode = 0;
3470 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3471 error = mnt_want_write(nd->path.mnt);
3472 if (error)
3473 return error;
3474 do_truncate = true;
3475 }
3476 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3477 if (!error && !(file->f_mode & FMODE_OPENED))
3478 error = vfs_open(&nd->path, file);
3479 if (!error)
3480 error = ima_file_check(file, op->acc_mode);
3481 if (!error && do_truncate)
3482 error = handle_truncate(mnt_userns, file);
3483 if (unlikely(error > 0)) {
3484 WARN_ON(1);
3485 error = -EINVAL;
3486 }
3487 if (do_truncate)
3488 mnt_drop_write(nd->path.mnt);
3489 return error;
3490 }
3491
3492 /**
3493 * vfs_tmpfile - create tmpfile
3494 * @mnt_userns: user namespace of the mount the inode was found from
3495 * @dentry: pointer to dentry of the base directory
3496 * @mode: mode of the new tmpfile
3497 * @open_flag: flags
3498 *
3499 * Create a temporary file.
3500 *
3501 * If the inode has been found through an idmapped mount the user namespace of
3502 * the vfsmount must be passed through @mnt_userns. This function will then take
3503 * care to map the inode according to @mnt_userns before checking permissions.
3504 * On non-idmapped mounts or if permission checking is to be performed on the
3505 * raw inode simply passs init_user_ns.
3506 */
3507 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3508 struct dentry *dentry, umode_t mode, int open_flag)
3509 {
3510 struct dentry *child = NULL;
3511 struct inode *dir = dentry->d_inode;
3512 struct inode *inode;
3513 int error;
3514
3515 /* we want directory to be writable */
3516 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3517 if (error)
3518 goto out_err;
3519 error = -EOPNOTSUPP;
3520 if (!dir->i_op->tmpfile)
3521 goto out_err;
3522 error = -ENOMEM;
3523 child = d_alloc(dentry, &slash_name);
3524 if (unlikely(!child))
3525 goto out_err;
3526 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3527 if (error)
3528 goto out_err;
3529 error = -ENOENT;
3530 inode = child->d_inode;
3531 if (unlikely(!inode))
3532 goto out_err;
3533 if (!(open_flag & O_EXCL)) {
3534 spin_lock(&inode->i_lock);
3535 inode->i_state |= I_LINKABLE;
3536 spin_unlock(&inode->i_lock);
3537 }
3538 ima_post_create_tmpfile(mnt_userns, inode);
3539 return child;
3540
3541 out_err:
3542 dput(child);
3543 return ERR_PTR(error);
3544 }
3545 EXPORT_SYMBOL(vfs_tmpfile);
3546
3547 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3548 const struct open_flags *op,
3549 struct file *file)
3550 {
3551 struct user_namespace *mnt_userns;
3552 struct dentry *child;
3553 struct path path;
3554 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3555 if (unlikely(error))
3556 return error;
3557 error = mnt_want_write(path.mnt);
3558 if (unlikely(error))
3559 goto out;
3560 mnt_userns = mnt_user_ns(path.mnt);
3561 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3562 error = PTR_ERR(child);
3563 if (IS_ERR(child))
3564 goto out2;
3565 dput(path.dentry);
3566 path.dentry = child;
3567 audit_inode(nd->name, child, 0);
3568 /* Don't check for other permissions, the inode was just created */
3569 error = may_open(mnt_userns, &path, 0, op->open_flag);
3570 if (!error)
3571 error = vfs_open(&path, file);
3572 out2:
3573 mnt_drop_write(path.mnt);
3574 out:
3575 path_put(&path);
3576 return error;
3577 }
3578
3579 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3580 {
3581 struct path path;
3582 int error = path_lookupat(nd, flags, &path);
3583 if (!error) {
3584 audit_inode(nd->name, path.dentry, 0);
3585 error = vfs_open(&path, file);
3586 path_put(&path);
3587 }
3588 return error;
3589 }
3590
3591 static struct file *path_openat(struct nameidata *nd,
3592 const struct open_flags *op, unsigned flags)
3593 {
3594 struct file *file;
3595 int error;
3596
3597 file = alloc_empty_file(op->open_flag, current_cred());
3598 if (IS_ERR(file))
3599 return file;
3600
3601 if (unlikely(file->f_flags & __O_TMPFILE)) {
3602 error = do_tmpfile(nd, flags, op, file);
3603 } else if (unlikely(file->f_flags & O_PATH)) {
3604 error = do_o_path(nd, flags, file);
3605 } else {
3606 const char *s = path_init(nd, flags);
3607 while (!(error = link_path_walk(s, nd)) &&
3608 (s = open_last_lookups(nd, file, op)) != NULL)
3609 ;
3610 if (!error)
3611 error = do_open(nd, file, op);
3612 terminate_walk(nd);
3613 }
3614 if (likely(!error)) {
3615 if (likely(file->f_mode & FMODE_OPENED))
3616 return file;
3617 WARN_ON(1);
3618 error = -EINVAL;
3619 }
3620 fput(file);
3621 if (error == -EOPENSTALE) {
3622 if (flags & LOOKUP_RCU)
3623 error = -ECHILD;
3624 else
3625 error = -ESTALE;
3626 }
3627 return ERR_PTR(error);
3628 }
3629
3630 struct file *do_filp_open(int dfd, struct filename *pathname,
3631 const struct open_flags *op)
3632 {
3633 struct nameidata nd;
3634 int flags = op->lookup_flags;
3635 struct file *filp;
3636
3637 set_nameidata(&nd, dfd, pathname, NULL);
3638 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3639 if (unlikely(filp == ERR_PTR(-ECHILD)))
3640 filp = path_openat(&nd, op, flags);
3641 if (unlikely(filp == ERR_PTR(-ESTALE)))
3642 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3643 restore_nameidata();
3644 return filp;
3645 }
3646
3647 struct file *do_file_open_root(const struct path *root,
3648 const char *name, const struct open_flags *op)
3649 {
3650 struct nameidata nd;
3651 struct file *file;
3652 struct filename *filename;
3653 int flags = op->lookup_flags;
3654
3655 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3656 return ERR_PTR(-ELOOP);
3657
3658 filename = getname_kernel(name);
3659 if (IS_ERR(filename))
3660 return ERR_CAST(filename);
3661
3662 set_nameidata(&nd, -1, filename, root);
3663 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3664 if (unlikely(file == ERR_PTR(-ECHILD)))
3665 file = path_openat(&nd, op, flags);
3666 if (unlikely(file == ERR_PTR(-ESTALE)))
3667 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3668 restore_nameidata();
3669 putname(filename);
3670 return file;
3671 }
3672
3673 static struct dentry *filename_create(int dfd, struct filename *name,
3674 struct path *path, unsigned int lookup_flags)
3675 {
3676 struct dentry *dentry = ERR_PTR(-EEXIST);
3677 struct qstr last;
3678 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3679 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3680 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3681 int type;
3682 int err2;
3683 int error;
3684
3685 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3686 if (error)
3687 return ERR_PTR(error);
3688
3689 /*
3690 * Yucky last component or no last component at all?
3691 * (foo/., foo/.., /////)
3692 */
3693 if (unlikely(type != LAST_NORM))
3694 goto out;
3695
3696 /* don't fail immediately if it's r/o, at least try to report other errors */
3697 err2 = mnt_want_write(path->mnt);
3698 /*
3699 * Do the final lookup. Suppress 'create' if there is a trailing
3700 * '/', and a directory wasn't requested.
3701 */
3702 if (last.name[last.len] && !want_dir)
3703 create_flags = 0;
3704 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3705 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3706 if (IS_ERR(dentry))
3707 goto unlock;
3708
3709 error = -EEXIST;
3710 if (d_is_positive(dentry))
3711 goto fail;
3712
3713 /*
3714 * Special case - lookup gave negative, but... we had foo/bar/
3715 * From the vfs_mknod() POV we just have a negative dentry -
3716 * all is fine. Let's be bastards - you had / on the end, you've
3717 * been asking for (non-existent) directory. -ENOENT for you.
3718 */
3719 if (unlikely(!create_flags)) {
3720 error = -ENOENT;
3721 goto fail;
3722 }
3723 if (unlikely(err2)) {
3724 error = err2;
3725 goto fail;
3726 }
3727 return dentry;
3728 fail:
3729 dput(dentry);
3730 dentry = ERR_PTR(error);
3731 unlock:
3732 inode_unlock(path->dentry->d_inode);
3733 if (!err2)
3734 mnt_drop_write(path->mnt);
3735 out:
3736 path_put(path);
3737 return dentry;
3738 }
3739
3740 struct dentry *kern_path_create(int dfd, const char *pathname,
3741 struct path *path, unsigned int lookup_flags)
3742 {
3743 struct filename *filename = getname_kernel(pathname);
3744 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3745
3746 putname(filename);
3747 return res;
3748 }
3749 EXPORT_SYMBOL(kern_path_create);
3750
3751 void done_path_create(struct path *path, struct dentry *dentry)
3752 {
3753 dput(dentry);
3754 inode_unlock(path->dentry->d_inode);
3755 mnt_drop_write(path->mnt);
3756 path_put(path);
3757 }
3758 EXPORT_SYMBOL(done_path_create);
3759
3760 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3761 struct path *path, unsigned int lookup_flags)
3762 {
3763 struct filename *filename = getname(pathname);
3764 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3765
3766 putname(filename);
3767 return res;
3768 }
3769 EXPORT_SYMBOL(user_path_create);
3770
3771 /**
3772 * vfs_mknod - create device node or file
3773 * @mnt_userns: user namespace of the mount the inode was found from
3774 * @dir: inode of @dentry
3775 * @dentry: pointer to dentry of the base directory
3776 * @mode: mode of the new device node or file
3777 * @dev: device number of device to create
3778 *
3779 * Create a device node or file.
3780 *
3781 * If the inode has been found through an idmapped mount the user namespace of
3782 * the vfsmount must be passed through @mnt_userns. This function will then take
3783 * care to map the inode according to @mnt_userns before checking permissions.
3784 * On non-idmapped mounts or if permission checking is to be performed on the
3785 * raw inode simply passs init_user_ns.
3786 */
3787 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3788 struct dentry *dentry, umode_t mode, dev_t dev)
3789 {
3790 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3791 int error = may_create(mnt_userns, dir, dentry);
3792
3793 if (error)
3794 return error;
3795
3796 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3797 !capable(CAP_MKNOD))
3798 return -EPERM;
3799
3800 if (!dir->i_op->mknod)
3801 return -EPERM;
3802
3803 error = devcgroup_inode_mknod(mode, dev);
3804 if (error)
3805 return error;
3806
3807 error = security_inode_mknod(dir, dentry, mode, dev);
3808 if (error)
3809 return error;
3810
3811 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3812 if (!error)
3813 fsnotify_create(dir, dentry);
3814 return error;
3815 }
3816 EXPORT_SYMBOL(vfs_mknod);
3817
3818 static int may_mknod(umode_t mode)
3819 {
3820 switch (mode & S_IFMT) {
3821 case S_IFREG:
3822 case S_IFCHR:
3823 case S_IFBLK:
3824 case S_IFIFO:
3825 case S_IFSOCK:
3826 case 0: /* zero mode translates to S_IFREG */
3827 return 0;
3828 case S_IFDIR:
3829 return -EPERM;
3830 default:
3831 return -EINVAL;
3832 }
3833 }
3834
3835 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3836 unsigned int dev)
3837 {
3838 struct user_namespace *mnt_userns;
3839 struct dentry *dentry;
3840 struct path path;
3841 int error;
3842 unsigned int lookup_flags = 0;
3843
3844 error = may_mknod(mode);
3845 if (error)
3846 goto out1;
3847 retry:
3848 dentry = filename_create(dfd, name, &path, lookup_flags);
3849 error = PTR_ERR(dentry);
3850 if (IS_ERR(dentry))
3851 goto out1;
3852
3853 if (!IS_POSIXACL(path.dentry->d_inode))
3854 mode &= ~current_umask();
3855 error = security_path_mknod(&path, dentry, mode, dev);
3856 if (error)
3857 goto out2;
3858
3859 mnt_userns = mnt_user_ns(path.mnt);
3860 switch (mode & S_IFMT) {
3861 case 0: case S_IFREG:
3862 error = vfs_create(mnt_userns, path.dentry->d_inode,
3863 dentry, mode, true);
3864 if (!error)
3865 ima_post_path_mknod(mnt_userns, dentry);
3866 break;
3867 case S_IFCHR: case S_IFBLK:
3868 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3869 dentry, mode, new_decode_dev(dev));
3870 break;
3871 case S_IFIFO: case S_IFSOCK:
3872 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3873 dentry, mode, 0);
3874 break;
3875 }
3876 out2:
3877 done_path_create(&path, dentry);
3878 if (retry_estale(error, lookup_flags)) {
3879 lookup_flags |= LOOKUP_REVAL;
3880 goto retry;
3881 }
3882 out1:
3883 putname(name);
3884 return error;
3885 }
3886
3887 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3888 unsigned int, dev)
3889 {
3890 return do_mknodat(dfd, getname(filename), mode, dev);
3891 }
3892
3893 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3894 {
3895 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3896 }
3897
3898 /**
3899 * vfs_mkdir - create directory
3900 * @mnt_userns: user namespace of the mount the inode was found from
3901 * @dir: inode of @dentry
3902 * @dentry: pointer to dentry of the base directory
3903 * @mode: mode of the new directory
3904 *
3905 * Create a directory.
3906 *
3907 * If the inode has been found through an idmapped mount the user namespace of
3908 * the vfsmount must be passed through @mnt_userns. This function will then take
3909 * care to map the inode according to @mnt_userns before checking permissions.
3910 * On non-idmapped mounts or if permission checking is to be performed on the
3911 * raw inode simply passs init_user_ns.
3912 */
3913 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3914 struct dentry *dentry, umode_t mode)
3915 {
3916 int error = may_create(mnt_userns, dir, dentry);
3917 unsigned max_links = dir->i_sb->s_max_links;
3918
3919 if (error)
3920 return error;
3921
3922 if (!dir->i_op->mkdir)
3923 return -EPERM;
3924
3925 mode &= (S_IRWXUGO|S_ISVTX);
3926 error = security_inode_mkdir(dir, dentry, mode);
3927 if (error)
3928 return error;
3929
3930 if (max_links && dir->i_nlink >= max_links)
3931 return -EMLINK;
3932
3933 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3934 if (!error)
3935 fsnotify_mkdir(dir, dentry);
3936 return error;
3937 }
3938 EXPORT_SYMBOL(vfs_mkdir);
3939
3940 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
3941 {
3942 struct dentry *dentry;
3943 struct path path;
3944 int error;
3945 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3946
3947 retry:
3948 dentry = filename_create(dfd, name, &path, lookup_flags);
3949 error = PTR_ERR(dentry);
3950 if (IS_ERR(dentry))
3951 goto out_putname;
3952
3953 if (!IS_POSIXACL(path.dentry->d_inode))
3954 mode &= ~current_umask();
3955 error = security_path_mkdir(&path, dentry, mode);
3956 if (!error) {
3957 struct user_namespace *mnt_userns;
3958 mnt_userns = mnt_user_ns(path.mnt);
3959 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3960 mode);
3961 }
3962 done_path_create(&path, dentry);
3963 if (retry_estale(error, lookup_flags)) {
3964 lookup_flags |= LOOKUP_REVAL;
3965 goto retry;
3966 }
3967 out_putname:
3968 putname(name);
3969 return error;
3970 }
3971
3972 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3973 {
3974 return do_mkdirat(dfd, getname(pathname), mode);
3975 }
3976
3977 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3978 {
3979 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
3980 }
3981
3982 /**
3983 * vfs_rmdir - remove directory
3984 * @mnt_userns: user namespace of the mount the inode was found from
3985 * @dir: inode of @dentry
3986 * @dentry: pointer to dentry of the base directory
3987 *
3988 * Remove a directory.
3989 *
3990 * If the inode has been found through an idmapped mount the user namespace of
3991 * the vfsmount must be passed through @mnt_userns. This function will then take
3992 * care to map the inode according to @mnt_userns before checking permissions.
3993 * On non-idmapped mounts or if permission checking is to be performed on the
3994 * raw inode simply passs init_user_ns.
3995 */
3996 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3997 struct dentry *dentry)
3998 {
3999 int error = may_delete(mnt_userns, dir, dentry, 1);
4000
4001 if (error)
4002 return error;
4003
4004 if (!dir->i_op->rmdir)
4005 return -EPERM;
4006
4007 dget(dentry);
4008 inode_lock(dentry->d_inode);
4009
4010 error = -EBUSY;
4011 if (is_local_mountpoint(dentry))
4012 goto out;
4013
4014 error = security_inode_rmdir(dir, dentry);
4015 if (error)
4016 goto out;
4017
4018 error = dir->i_op->rmdir(dir, dentry);
4019 if (error)
4020 goto out;
4021
4022 shrink_dcache_parent(dentry);
4023 dentry->d_inode->i_flags |= S_DEAD;
4024 dont_mount(dentry);
4025 detach_mounts(dentry);
4026
4027 out:
4028 inode_unlock(dentry->d_inode);
4029 dput(dentry);
4030 if (!error)
4031 d_delete_notify(dir, dentry);
4032 return error;
4033 }
4034 EXPORT_SYMBOL(vfs_rmdir);
4035
4036 int do_rmdir(int dfd, struct filename *name)
4037 {
4038 struct user_namespace *mnt_userns;
4039 int error;
4040 struct dentry *dentry;
4041 struct path path;
4042 struct qstr last;
4043 int type;
4044 unsigned int lookup_flags = 0;
4045 retry:
4046 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4047 if (error)
4048 goto exit1;
4049
4050 switch (type) {
4051 case LAST_DOTDOT:
4052 error = -ENOTEMPTY;
4053 goto exit2;
4054 case LAST_DOT:
4055 error = -EINVAL;
4056 goto exit2;
4057 case LAST_ROOT:
4058 error = -EBUSY;
4059 goto exit2;
4060 }
4061
4062 error = mnt_want_write(path.mnt);
4063 if (error)
4064 goto exit2;
4065
4066 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4067 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4068 error = PTR_ERR(dentry);
4069 if (IS_ERR(dentry))
4070 goto exit3;
4071 if (!dentry->d_inode) {
4072 error = -ENOENT;
4073 goto exit4;
4074 }
4075 error = security_path_rmdir(&path, dentry);
4076 if (error)
4077 goto exit4;
4078 mnt_userns = mnt_user_ns(path.mnt);
4079 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4080 exit4:
4081 dput(dentry);
4082 exit3:
4083 inode_unlock(path.dentry->d_inode);
4084 mnt_drop_write(path.mnt);
4085 exit2:
4086 path_put(&path);
4087 if (retry_estale(error, lookup_flags)) {
4088 lookup_flags |= LOOKUP_REVAL;
4089 goto retry;
4090 }
4091 exit1:
4092 putname(name);
4093 return error;
4094 }
4095
4096 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4097 {
4098 return do_rmdir(AT_FDCWD, getname(pathname));
4099 }
4100
4101 /**
4102 * vfs_unlink - unlink a filesystem object
4103 * @mnt_userns: user namespace of the mount the inode was found from
4104 * @dir: parent directory
4105 * @dentry: victim
4106 * @delegated_inode: returns victim inode, if the inode is delegated.
4107 *
4108 * The caller must hold dir->i_mutex.
4109 *
4110 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4111 * return a reference to the inode in delegated_inode. The caller
4112 * should then break the delegation on that inode and retry. Because
4113 * breaking a delegation may take a long time, the caller should drop
4114 * dir->i_mutex before doing so.
4115 *
4116 * Alternatively, a caller may pass NULL for delegated_inode. This may
4117 * be appropriate for callers that expect the underlying filesystem not
4118 * to be NFS exported.
4119 *
4120 * If the inode has been found through an idmapped mount the user namespace of
4121 * the vfsmount must be passed through @mnt_userns. This function will then take
4122 * care to map the inode according to @mnt_userns before checking permissions.
4123 * On non-idmapped mounts or if permission checking is to be performed on the
4124 * raw inode simply passs init_user_ns.
4125 */
4126 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4127 struct dentry *dentry, struct inode **delegated_inode)
4128 {
4129 struct inode *target = dentry->d_inode;
4130 int error = may_delete(mnt_userns, dir, dentry, 0);
4131
4132 if (error)
4133 return error;
4134
4135 if (!dir->i_op->unlink)
4136 return -EPERM;
4137
4138 inode_lock(target);
4139 if (IS_SWAPFILE(target))
4140 error = -EPERM;
4141 else if (is_local_mountpoint(dentry))
4142 error = -EBUSY;
4143 else {
4144 error = security_inode_unlink(dir, dentry);
4145 if (!error) {
4146 error = try_break_deleg(target, delegated_inode);
4147 if (error)
4148 goto out;
4149 error = dir->i_op->unlink(dir, dentry);
4150 if (!error) {
4151 dont_mount(dentry);
4152 detach_mounts(dentry);
4153 }
4154 }
4155 }
4156 out:
4157 inode_unlock(target);
4158
4159 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4160 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4161 fsnotify_unlink(dir, dentry);
4162 } else if (!error) {
4163 fsnotify_link_count(target);
4164 d_delete_notify(dir, dentry);
4165 }
4166
4167 return error;
4168 }
4169 EXPORT_SYMBOL(vfs_unlink);
4170
4171 /*
4172 * Make sure that the actual truncation of the file will occur outside its
4173 * directory's i_mutex. Truncate can take a long time if there is a lot of
4174 * writeout happening, and we don't want to prevent access to the directory
4175 * while waiting on the I/O.
4176 */
4177 int do_unlinkat(int dfd, struct filename *name)
4178 {
4179 int error;
4180 struct dentry *dentry;
4181 struct path path;
4182 struct qstr last;
4183 int type;
4184 struct inode *inode = NULL;
4185 struct inode *delegated_inode = NULL;
4186 unsigned int lookup_flags = 0;
4187 retry:
4188 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4189 if (error)
4190 goto exit1;
4191
4192 error = -EISDIR;
4193 if (type != LAST_NORM)
4194 goto exit2;
4195
4196 error = mnt_want_write(path.mnt);
4197 if (error)
4198 goto exit2;
4199 retry_deleg:
4200 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4201 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4202 error = PTR_ERR(dentry);
4203 if (!IS_ERR(dentry)) {
4204 struct user_namespace *mnt_userns;
4205
4206 /* Why not before? Because we want correct error value */
4207 if (last.name[last.len])
4208 goto slashes;
4209 inode = dentry->d_inode;
4210 if (d_is_negative(dentry))
4211 goto slashes;
4212 ihold(inode);
4213 error = security_path_unlink(&path, dentry);
4214 if (error)
4215 goto exit3;
4216 mnt_userns = mnt_user_ns(path.mnt);
4217 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4218 &delegated_inode);
4219 exit3:
4220 dput(dentry);
4221 }
4222 inode_unlock(path.dentry->d_inode);
4223 if (inode)
4224 iput(inode); /* truncate the inode here */
4225 inode = NULL;
4226 if (delegated_inode) {
4227 error = break_deleg_wait(&delegated_inode);
4228 if (!error)
4229 goto retry_deleg;
4230 }
4231 mnt_drop_write(path.mnt);
4232 exit2:
4233 path_put(&path);
4234 if (retry_estale(error, lookup_flags)) {
4235 lookup_flags |= LOOKUP_REVAL;
4236 inode = NULL;
4237 goto retry;
4238 }
4239 exit1:
4240 putname(name);
4241 return error;
4242
4243 slashes:
4244 if (d_is_negative(dentry))
4245 error = -ENOENT;
4246 else if (d_is_dir(dentry))
4247 error = -EISDIR;
4248 else
4249 error = -ENOTDIR;
4250 goto exit3;
4251 }
4252
4253 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4254 {
4255 if ((flag & ~AT_REMOVEDIR) != 0)
4256 return -EINVAL;
4257
4258 if (flag & AT_REMOVEDIR)
4259 return do_rmdir(dfd, getname(pathname));
4260 return do_unlinkat(dfd, getname(pathname));
4261 }
4262
4263 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4264 {
4265 return do_unlinkat(AT_FDCWD, getname(pathname));
4266 }
4267
4268 /**
4269 * vfs_symlink - create symlink
4270 * @mnt_userns: user namespace of the mount the inode was found from
4271 * @dir: inode of @dentry
4272 * @dentry: pointer to dentry of the base directory
4273 * @oldname: name of the file to link to
4274 *
4275 * Create a symlink.
4276 *
4277 * If the inode has been found through an idmapped mount the user namespace of
4278 * the vfsmount must be passed through @mnt_userns. This function will then take
4279 * care to map the inode according to @mnt_userns before checking permissions.
4280 * On non-idmapped mounts or if permission checking is to be performed on the
4281 * raw inode simply passs init_user_ns.
4282 */
4283 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4284 struct dentry *dentry, const char *oldname)
4285 {
4286 int error = may_create(mnt_userns, dir, dentry);
4287
4288 if (error)
4289 return error;
4290
4291 if (!dir->i_op->symlink)
4292 return -EPERM;
4293
4294 error = security_inode_symlink(dir, dentry, oldname);
4295 if (error)
4296 return error;
4297
4298 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4299 if (!error)
4300 fsnotify_create(dir, dentry);
4301 return error;
4302 }
4303 EXPORT_SYMBOL(vfs_symlink);
4304
4305 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4306 {
4307 int error;
4308 struct dentry *dentry;
4309 struct path path;
4310 unsigned int lookup_flags = 0;
4311
4312 if (IS_ERR(from)) {
4313 error = PTR_ERR(from);
4314 goto out_putnames;
4315 }
4316 retry:
4317 dentry = filename_create(newdfd, to, &path, lookup_flags);
4318 error = PTR_ERR(dentry);
4319 if (IS_ERR(dentry))
4320 goto out_putnames;
4321
4322 error = security_path_symlink(&path, dentry, from->name);
4323 if (!error) {
4324 struct user_namespace *mnt_userns;
4325
4326 mnt_userns = mnt_user_ns(path.mnt);
4327 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4328 from->name);
4329 }
4330 done_path_create(&path, dentry);
4331 if (retry_estale(error, lookup_flags)) {
4332 lookup_flags |= LOOKUP_REVAL;
4333 goto retry;
4334 }
4335 out_putnames:
4336 putname(to);
4337 putname(from);
4338 return error;
4339 }
4340
4341 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4342 int, newdfd, const char __user *, newname)
4343 {
4344 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4345 }
4346
4347 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4348 {
4349 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4350 }
4351
4352 /**
4353 * vfs_link - create a new link
4354 * @old_dentry: object to be linked
4355 * @mnt_userns: the user namespace of the mount
4356 * @dir: new parent
4357 * @new_dentry: where to create the new link
4358 * @delegated_inode: returns inode needing a delegation break
4359 *
4360 * The caller must hold dir->i_mutex
4361 *
4362 * If vfs_link discovers a delegation on the to-be-linked file in need
4363 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4364 * inode in delegated_inode. The caller should then break the delegation
4365 * and retry. Because breaking a delegation may take a long time, the
4366 * caller should drop the i_mutex before doing so.
4367 *
4368 * Alternatively, a caller may pass NULL for delegated_inode. This may
4369 * be appropriate for callers that expect the underlying filesystem not
4370 * to be NFS exported.
4371 *
4372 * If the inode has been found through an idmapped mount the user namespace of
4373 * the vfsmount must be passed through @mnt_userns. This function will then take
4374 * care to map the inode according to @mnt_userns before checking permissions.
4375 * On non-idmapped mounts or if permission checking is to be performed on the
4376 * raw inode simply passs init_user_ns.
4377 */
4378 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4379 struct inode *dir, struct dentry *new_dentry,
4380 struct inode **delegated_inode)
4381 {
4382 struct inode *inode = old_dentry->d_inode;
4383 unsigned max_links = dir->i_sb->s_max_links;
4384 int error;
4385
4386 if (!inode)
4387 return -ENOENT;
4388
4389 error = may_create(mnt_userns, dir, new_dentry);
4390 if (error)
4391 return error;
4392
4393 if (dir->i_sb != inode->i_sb)
4394 return -EXDEV;
4395
4396 /*
4397 * A link to an append-only or immutable file cannot be created.
4398 */
4399 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4400 return -EPERM;
4401 /*
4402 * Updating the link count will likely cause i_uid and i_gid to
4403 * be writen back improperly if their true value is unknown to
4404 * the vfs.
4405 */
4406 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4407 return -EPERM;
4408 if (!dir->i_op->link)
4409 return -EPERM;
4410 if (S_ISDIR(inode->i_mode))
4411 return -EPERM;
4412
4413 error = security_inode_link(old_dentry, dir, new_dentry);
4414 if (error)
4415 return error;
4416
4417 inode_lock(inode);
4418 /* Make sure we don't allow creating hardlink to an unlinked file */
4419 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4420 error = -ENOENT;
4421 else if (max_links && inode->i_nlink >= max_links)
4422 error = -EMLINK;
4423 else {
4424 error = try_break_deleg(inode, delegated_inode);
4425 if (!error)
4426 error = dir->i_op->link(old_dentry, dir, new_dentry);
4427 }
4428
4429 if (!error && (inode->i_state & I_LINKABLE)) {
4430 spin_lock(&inode->i_lock);
4431 inode->i_state &= ~I_LINKABLE;
4432 spin_unlock(&inode->i_lock);
4433 }
4434 inode_unlock(inode);
4435 if (!error)
4436 fsnotify_link(dir, inode, new_dentry);
4437 return error;
4438 }
4439 EXPORT_SYMBOL(vfs_link);
4440
4441 /*
4442 * Hardlinks are often used in delicate situations. We avoid
4443 * security-related surprises by not following symlinks on the
4444 * newname. --KAB
4445 *
4446 * We don't follow them on the oldname either to be compatible
4447 * with linux 2.0, and to avoid hard-linking to directories
4448 * and other special files. --ADM
4449 */
4450 int do_linkat(int olddfd, struct filename *old, int newdfd,
4451 struct filename *new, int flags)
4452 {
4453 struct user_namespace *mnt_userns;
4454 struct dentry *new_dentry;
4455 struct path old_path, new_path;
4456 struct inode *delegated_inode = NULL;
4457 int how = 0;
4458 int error;
4459
4460 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4461 error = -EINVAL;
4462 goto out_putnames;
4463 }
4464 /*
4465 * To use null names we require CAP_DAC_READ_SEARCH
4466 * This ensures that not everyone will be able to create
4467 * handlink using the passed filedescriptor.
4468 */
4469 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4470 error = -ENOENT;
4471 goto out_putnames;
4472 }
4473
4474 if (flags & AT_SYMLINK_FOLLOW)
4475 how |= LOOKUP_FOLLOW;
4476 retry:
4477 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4478 if (error)
4479 goto out_putnames;
4480
4481 new_dentry = filename_create(newdfd, new, &new_path,
4482 (how & LOOKUP_REVAL));
4483 error = PTR_ERR(new_dentry);
4484 if (IS_ERR(new_dentry))
4485 goto out_putpath;
4486
4487 error = -EXDEV;
4488 if (old_path.mnt != new_path.mnt)
4489 goto out_dput;
4490 mnt_userns = mnt_user_ns(new_path.mnt);
4491 error = may_linkat(mnt_userns, &old_path);
4492 if (unlikely(error))
4493 goto out_dput;
4494 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4495 if (error)
4496 goto out_dput;
4497 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4498 new_dentry, &delegated_inode);
4499 out_dput:
4500 done_path_create(&new_path, new_dentry);
4501 if (delegated_inode) {
4502 error = break_deleg_wait(&delegated_inode);
4503 if (!error) {
4504 path_put(&old_path);
4505 goto retry;
4506 }
4507 }
4508 if (retry_estale(error, how)) {
4509 path_put(&old_path);
4510 how |= LOOKUP_REVAL;
4511 goto retry;
4512 }
4513 out_putpath:
4514 path_put(&old_path);
4515 out_putnames:
4516 putname(old);
4517 putname(new);
4518
4519 return error;
4520 }
4521
4522 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4523 int, newdfd, const char __user *, newname, int, flags)
4524 {
4525 return do_linkat(olddfd, getname_uflags(oldname, flags),
4526 newdfd, getname(newname), flags);
4527 }
4528
4529 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4530 {
4531 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4532 }
4533
4534 /**
4535 * vfs_rename - rename a filesystem object
4536 * @rd: pointer to &struct renamedata info
4537 *
4538 * The caller must hold multiple mutexes--see lock_rename()).
4539 *
4540 * If vfs_rename discovers a delegation in need of breaking at either
4541 * the source or destination, it will return -EWOULDBLOCK and return a
4542 * reference to the inode in delegated_inode. The caller should then
4543 * break the delegation and retry. Because breaking a delegation may
4544 * take a long time, the caller should drop all locks before doing
4545 * so.
4546 *
4547 * Alternatively, a caller may pass NULL for delegated_inode. This may
4548 * be appropriate for callers that expect the underlying filesystem not
4549 * to be NFS exported.
4550 *
4551 * The worst of all namespace operations - renaming directory. "Perverted"
4552 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4553 * Problems:
4554 *
4555 * a) we can get into loop creation.
4556 * b) race potential - two innocent renames can create a loop together.
4557 * That's where 4.4 screws up. Current fix: serialization on
4558 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4559 * story.
4560 * c) we have to lock _four_ objects - parents and victim (if it exists),
4561 * and source (if it is not a directory).
4562 * And that - after we got ->i_mutex on parents (until then we don't know
4563 * whether the target exists). Solution: try to be smart with locking
4564 * order for inodes. We rely on the fact that tree topology may change
4565 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4566 * move will be locked. Thus we can rank directories by the tree
4567 * (ancestors first) and rank all non-directories after them.
4568 * That works since everybody except rename does "lock parent, lookup,
4569 * lock child" and rename is under ->s_vfs_rename_mutex.
4570 * HOWEVER, it relies on the assumption that any object with ->lookup()
4571 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4572 * we'd better make sure that there's no link(2) for them.
4573 * d) conversion from fhandle to dentry may come in the wrong moment - when
4574 * we are removing the target. Solution: we will have to grab ->i_mutex
4575 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4576 * ->i_mutex on parents, which works but leads to some truly excessive
4577 * locking].
4578 */
4579 int vfs_rename(struct renamedata *rd)
4580 {
4581 int error;
4582 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4583 struct dentry *old_dentry = rd->old_dentry;
4584 struct dentry *new_dentry = rd->new_dentry;
4585 struct inode **delegated_inode = rd->delegated_inode;
4586 unsigned int flags = rd->flags;
4587 bool is_dir = d_is_dir(old_dentry);
4588 struct inode *source = old_dentry->d_inode;
4589 struct inode *target = new_dentry->d_inode;
4590 bool new_is_dir = false;
4591 unsigned max_links = new_dir->i_sb->s_max_links;
4592 struct name_snapshot old_name;
4593
4594 if (source == target)
4595 return 0;
4596
4597 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4598 if (error)
4599 return error;
4600
4601 if (!target) {
4602 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4603 } else {
4604 new_is_dir = d_is_dir(new_dentry);
4605
4606 if (!(flags & RENAME_EXCHANGE))
4607 error = may_delete(rd->new_mnt_userns, new_dir,
4608 new_dentry, is_dir);
4609 else
4610 error = may_delete(rd->new_mnt_userns, new_dir,
4611 new_dentry, new_is_dir);
4612 }
4613 if (error)
4614 return error;
4615
4616 if (!old_dir->i_op->rename)
4617 return -EPERM;
4618
4619 /*
4620 * If we are going to change the parent - check write permissions,
4621 * we'll need to flip '..'.
4622 */
4623 if (new_dir != old_dir) {
4624 if (is_dir) {
4625 error = inode_permission(rd->old_mnt_userns, source,
4626 MAY_WRITE);
4627 if (error)
4628 return error;
4629 }
4630 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4631 error = inode_permission(rd->new_mnt_userns, target,
4632 MAY_WRITE);
4633 if (error)
4634 return error;
4635 }
4636 }
4637
4638 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4639 flags);
4640 if (error)
4641 return error;
4642
4643 take_dentry_name_snapshot(&old_name, old_dentry);
4644 dget(new_dentry);
4645 if (!is_dir || (flags & RENAME_EXCHANGE))
4646 lock_two_nondirectories(source, target);
4647 else if (target)
4648 inode_lock(target);
4649
4650 error = -EPERM;
4651 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4652 goto out;
4653
4654 error = -EBUSY;
4655 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4656 goto out;
4657
4658 if (max_links && new_dir != old_dir) {
4659 error = -EMLINK;
4660 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4661 goto out;
4662 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4663 old_dir->i_nlink >= max_links)
4664 goto out;
4665 }
4666 if (!is_dir) {
4667 error = try_break_deleg(source, delegated_inode);
4668 if (error)
4669 goto out;
4670 }
4671 if (target && !new_is_dir) {
4672 error = try_break_deleg(target, delegated_inode);
4673 if (error)
4674 goto out;
4675 }
4676 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4677 new_dir, new_dentry, flags);
4678 if (error)
4679 goto out;
4680
4681 if (!(flags & RENAME_EXCHANGE) && target) {
4682 if (is_dir) {
4683 shrink_dcache_parent(new_dentry);
4684 target->i_flags |= S_DEAD;
4685 }
4686 dont_mount(new_dentry);
4687 detach_mounts(new_dentry);
4688 }
4689 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4690 if (!(flags & RENAME_EXCHANGE))
4691 d_move(old_dentry, new_dentry);
4692 else
4693 d_exchange(old_dentry, new_dentry);
4694 }
4695 out:
4696 if (!is_dir || (flags & RENAME_EXCHANGE))
4697 unlock_two_nondirectories(source, target);
4698 else if (target)
4699 inode_unlock(target);
4700 dput(new_dentry);
4701 if (!error) {
4702 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4703 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4704 if (flags & RENAME_EXCHANGE) {
4705 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4706 new_is_dir, NULL, new_dentry);
4707 }
4708 }
4709 release_dentry_name_snapshot(&old_name);
4710
4711 return error;
4712 }
4713 EXPORT_SYMBOL(vfs_rename);
4714
4715 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4716 struct filename *to, unsigned int flags)
4717 {
4718 struct renamedata rd;
4719 struct dentry *old_dentry, *new_dentry;
4720 struct dentry *trap;
4721 struct path old_path, new_path;
4722 struct qstr old_last, new_last;
4723 int old_type, new_type;
4724 struct inode *delegated_inode = NULL;
4725 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4726 bool should_retry = false;
4727 int error = -EINVAL;
4728
4729 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4730 goto put_names;
4731
4732 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4733 (flags & RENAME_EXCHANGE))
4734 goto put_names;
4735
4736 if (flags & RENAME_EXCHANGE)
4737 target_flags = 0;
4738
4739 retry:
4740 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4741 &old_last, &old_type);
4742 if (error)
4743 goto put_names;
4744
4745 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4746 &new_type);
4747 if (error)
4748 goto exit1;
4749
4750 error = -EXDEV;
4751 if (old_path.mnt != new_path.mnt)
4752 goto exit2;
4753
4754 error = -EBUSY;
4755 if (old_type != LAST_NORM)
4756 goto exit2;
4757
4758 if (flags & RENAME_NOREPLACE)
4759 error = -EEXIST;
4760 if (new_type != LAST_NORM)
4761 goto exit2;
4762
4763 error = mnt_want_write(old_path.mnt);
4764 if (error)
4765 goto exit2;
4766
4767 retry_deleg:
4768 trap = lock_rename(new_path.dentry, old_path.dentry);
4769
4770 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4771 error = PTR_ERR(old_dentry);
4772 if (IS_ERR(old_dentry))
4773 goto exit3;
4774 /* source must exist */
4775 error = -ENOENT;
4776 if (d_is_negative(old_dentry))
4777 goto exit4;
4778 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4779 error = PTR_ERR(new_dentry);
4780 if (IS_ERR(new_dentry))
4781 goto exit4;
4782 error = -EEXIST;
4783 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4784 goto exit5;
4785 if (flags & RENAME_EXCHANGE) {
4786 error = -ENOENT;
4787 if (d_is_negative(new_dentry))
4788 goto exit5;
4789
4790 if (!d_is_dir(new_dentry)) {
4791 error = -ENOTDIR;
4792 if (new_last.name[new_last.len])
4793 goto exit5;
4794 }
4795 }
4796 /* unless the source is a directory trailing slashes give -ENOTDIR */
4797 if (!d_is_dir(old_dentry)) {
4798 error = -ENOTDIR;
4799 if (old_last.name[old_last.len])
4800 goto exit5;
4801 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4802 goto exit5;
4803 }
4804 /* source should not be ancestor of target */
4805 error = -EINVAL;
4806 if (old_dentry == trap)
4807 goto exit5;
4808 /* target should not be an ancestor of source */
4809 if (!(flags & RENAME_EXCHANGE))
4810 error = -ENOTEMPTY;
4811 if (new_dentry == trap)
4812 goto exit5;
4813
4814 error = security_path_rename(&old_path, old_dentry,
4815 &new_path, new_dentry, flags);
4816 if (error)
4817 goto exit5;
4818
4819 rd.old_dir = old_path.dentry->d_inode;
4820 rd.old_dentry = old_dentry;
4821 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4822 rd.new_dir = new_path.dentry->d_inode;
4823 rd.new_dentry = new_dentry;
4824 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4825 rd.delegated_inode = &delegated_inode;
4826 rd.flags = flags;
4827 error = vfs_rename(&rd);
4828 exit5:
4829 dput(new_dentry);
4830 exit4:
4831 dput(old_dentry);
4832 exit3:
4833 unlock_rename(new_path.dentry, old_path.dentry);
4834 if (delegated_inode) {
4835 error = break_deleg_wait(&delegated_inode);
4836 if (!error)
4837 goto retry_deleg;
4838 }
4839 mnt_drop_write(old_path.mnt);
4840 exit2:
4841 if (retry_estale(error, lookup_flags))
4842 should_retry = true;
4843 path_put(&new_path);
4844 exit1:
4845 path_put(&old_path);
4846 if (should_retry) {
4847 should_retry = false;
4848 lookup_flags |= LOOKUP_REVAL;
4849 goto retry;
4850 }
4851 put_names:
4852 putname(from);
4853 putname(to);
4854 return error;
4855 }
4856
4857 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4858 int, newdfd, const char __user *, newname, unsigned int, flags)
4859 {
4860 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4861 flags);
4862 }
4863
4864 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4865 int, newdfd, const char __user *, newname)
4866 {
4867 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4868 0);
4869 }
4870
4871 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4872 {
4873 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4874 getname(newname), 0);
4875 }
4876
4877 int readlink_copy(char __user *buffer, int buflen, const char *link)
4878 {
4879 int len = PTR_ERR(link);
4880 if (IS_ERR(link))
4881 goto out;
4882
4883 len = strlen(link);
4884 if (len > (unsigned) buflen)
4885 len = buflen;
4886 if (copy_to_user(buffer, link, len))
4887 len = -EFAULT;
4888 out:
4889 return len;
4890 }
4891
4892 /**
4893 * vfs_readlink - copy symlink body into userspace buffer
4894 * @dentry: dentry on which to get symbolic link
4895 * @buffer: user memory pointer
4896 * @buflen: size of buffer
4897 *
4898 * Does not touch atime. That's up to the caller if necessary
4899 *
4900 * Does not call security hook.
4901 */
4902 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4903 {
4904 struct inode *inode = d_inode(dentry);
4905 DEFINE_DELAYED_CALL(done);
4906 const char *link;
4907 int res;
4908
4909 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4910 if (unlikely(inode->i_op->readlink))
4911 return inode->i_op->readlink(dentry, buffer, buflen);
4912
4913 if (!d_is_symlink(dentry))
4914 return -EINVAL;
4915
4916 spin_lock(&inode->i_lock);
4917 inode->i_opflags |= IOP_DEFAULT_READLINK;
4918 spin_unlock(&inode->i_lock);
4919 }
4920
4921 link = READ_ONCE(inode->i_link);
4922 if (!link) {
4923 link = inode->i_op->get_link(dentry, inode, &done);
4924 if (IS_ERR(link))
4925 return PTR_ERR(link);
4926 }
4927 res = readlink_copy(buffer, buflen, link);
4928 do_delayed_call(&done);
4929 return res;
4930 }
4931 EXPORT_SYMBOL(vfs_readlink);
4932
4933 /**
4934 * vfs_get_link - get symlink body
4935 * @dentry: dentry on which to get symbolic link
4936 * @done: caller needs to free returned data with this
4937 *
4938 * Calls security hook and i_op->get_link() on the supplied inode.
4939 *
4940 * It does not touch atime. That's up to the caller if necessary.
4941 *
4942 * Does not work on "special" symlinks like /proc/$$/fd/N
4943 */
4944 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4945 {
4946 const char *res = ERR_PTR(-EINVAL);
4947 struct inode *inode = d_inode(dentry);
4948
4949 if (d_is_symlink(dentry)) {
4950 res = ERR_PTR(security_inode_readlink(dentry));
4951 if (!res)
4952 res = inode->i_op->get_link(dentry, inode, done);
4953 }
4954 return res;
4955 }
4956 EXPORT_SYMBOL(vfs_get_link);
4957
4958 /* get the link contents into pagecache */
4959 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4960 struct delayed_call *callback)
4961 {
4962 char *kaddr;
4963 struct page *page;
4964 struct address_space *mapping = inode->i_mapping;
4965
4966 if (!dentry) {
4967 page = find_get_page(mapping, 0);
4968 if (!page)
4969 return ERR_PTR(-ECHILD);
4970 if (!PageUptodate(page)) {
4971 put_page(page);
4972 return ERR_PTR(-ECHILD);
4973 }
4974 } else {
4975 page = read_mapping_page(mapping, 0, NULL);
4976 if (IS_ERR(page))
4977 return (char*)page;
4978 }
4979 set_delayed_call(callback, page_put_link, page);
4980 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4981 kaddr = page_address(page);
4982 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4983 return kaddr;
4984 }
4985
4986 EXPORT_SYMBOL(page_get_link);
4987
4988 void page_put_link(void *arg)
4989 {
4990 put_page(arg);
4991 }
4992 EXPORT_SYMBOL(page_put_link);
4993
4994 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4995 {
4996 DEFINE_DELAYED_CALL(done);
4997 int res = readlink_copy(buffer, buflen,
4998 page_get_link(dentry, d_inode(dentry),
4999 &done));
5000 do_delayed_call(&done);
5001 return res;
5002 }
5003 EXPORT_SYMBOL(page_readlink);
5004
5005 /*
5006 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
5007 */
5008 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
5009 {
5010 struct address_space *mapping = inode->i_mapping;
5011 struct page *page;
5012 void *fsdata;
5013 int err;
5014 unsigned int flags = 0;
5015 if (nofs)
5016 flags |= AOP_FLAG_NOFS;
5017
5018 retry:
5019 err = pagecache_write_begin(NULL, mapping, 0, len-1,
5020 flags, &page, &fsdata);
5021 if (err)
5022 goto fail;
5023
5024 memcpy(page_address(page), symname, len-1);
5025
5026 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
5027 page, fsdata);
5028 if (err < 0)
5029 goto fail;
5030 if (err < len-1)
5031 goto retry;
5032
5033 mark_inode_dirty(inode);
5034 return 0;
5035 fail:
5036 return err;
5037 }
5038 EXPORT_SYMBOL(__page_symlink);
5039
5040 int page_symlink(struct inode *inode, const char *symname, int len)
5041 {
5042 return __page_symlink(inode, symname, len,
5043 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
5044 }
5045 EXPORT_SYMBOL(page_symlink);
5046
5047 const struct inode_operations page_symlink_inode_operations = {
5048 .get_link = page_get_link,
5049 };
5050 EXPORT_SYMBOL(page_symlink_inode_operations);