]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
NFS: Fix a typo in nfs_flush_multi
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 static char *getname_flags(const char __user * filename, int flags)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
154 }
155 }
156 }
157 audit_getname(result);
158 return result;
159 }
160
161 char *getname(const char __user * filename)
162 {
163 return getname_flags(filename, 0);
164 }
165
166 #ifdef CONFIG_AUDITSYSCALL
167 void putname(const char *name)
168 {
169 if (unlikely(!audit_dummy_context()))
170 audit_putname(name);
171 else
172 __putname(name);
173 }
174 EXPORT_SYMBOL(putname);
175 #endif
176
177 static int check_acl(struct inode *inode, int mask)
178 {
179 #ifdef CONFIG_FS_POSIX_ACL
180 struct posix_acl *acl;
181
182 if (mask & MAY_NOT_BLOCK) {
183 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
184 if (!acl)
185 return -EAGAIN;
186 /* no ->get_acl() calls in RCU mode... */
187 if (acl == ACL_NOT_CACHED)
188 return -ECHILD;
189 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
190 }
191
192 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
193
194 /*
195 * A filesystem can force a ACL callback by just never filling the
196 * ACL cache. But normally you'd fill the cache either at inode
197 * instantiation time, or on the first ->get_acl call.
198 *
199 * If the filesystem doesn't have a get_acl() function at all, we'll
200 * just create the negative cache entry.
201 */
202 if (acl == ACL_NOT_CACHED) {
203 if (inode->i_op->get_acl) {
204 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
205 if (IS_ERR(acl))
206 return PTR_ERR(acl);
207 } else {
208 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
209 return -EAGAIN;
210 }
211 }
212
213 if (acl) {
214 int error = posix_acl_permission(inode, acl, mask);
215 posix_acl_release(acl);
216 return error;
217 }
218 #endif
219
220 return -EAGAIN;
221 }
222
223 /*
224 * This does basic POSIX ACL permission checking
225 */
226 static int acl_permission_check(struct inode *inode, int mask)
227 {
228 unsigned int mode = inode->i_mode;
229
230 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
231
232 if (current_user_ns() != inode_userns(inode))
233 goto other_perms;
234
235 if (likely(current_fsuid() == inode->i_uid))
236 mode >>= 6;
237 else {
238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 int error = check_acl(inode, mask);
240 if (error != -EAGAIN)
241 return error;
242 }
243
244 if (in_group_p(inode->i_gid))
245 mode >>= 3;
246 }
247
248 other_perms:
249 /*
250 * If the DACs are ok we don't need any capability check.
251 */
252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 return 0;
254 return -EACCES;
255 }
256
257 /**
258 * generic_permission - check for access rights on a Posix-like filesystem
259 * @inode: inode to check access rights for
260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
261 *
262 * Used to check for read/write/execute permissions on a file.
263 * We use "fsuid" for this, letting us set arbitrary permissions
264 * for filesystem access without changing the "normal" uids which
265 * are used for other things.
266 *
267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268 * request cannot be satisfied (eg. requires blocking or too much complexity).
269 * It would then be called again in ref-walk mode.
270 */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 int ret;
274
275 /*
276 * Do the basic POSIX ACL permission checks.
277 */
278 ret = acl_permission_check(inode, mask);
279 if (ret != -EACCES)
280 return ret;
281
282 if (S_ISDIR(inode->i_mode)) {
283 /* DACs are overridable for directories */
284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 return 0;
286 if (!(mask & MAY_WRITE))
287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 return 0;
289 return -EACCES;
290 }
291 /*
292 * Read/write DACs are always overridable.
293 * Executable DACs are overridable when there is
294 * at least one exec bit set.
295 */
296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 return 0;
299
300 /*
301 * Searching includes executable on directories, else just read.
302 */
303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 if (mask == MAY_READ)
305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 return 0;
307
308 return -EACCES;
309 }
310
311 /*
312 * We _really_ want to just do "generic_permission()" without
313 * even looking at the inode->i_op values. So we keep a cache
314 * flag in inode->i_opflags, that says "this has not special
315 * permission function, use the fast case".
316 */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 if (likely(inode->i_op->permission))
321 return inode->i_op->permission(inode, mask);
322
323 /* This gets set once for the inode lifetime */
324 spin_lock(&inode->i_lock);
325 inode->i_opflags |= IOP_FASTPERM;
326 spin_unlock(&inode->i_lock);
327 }
328 return generic_permission(inode, mask);
329 }
330
331 /**
332 * inode_permission - check for access rights to a given inode
333 * @inode: inode to check permission on
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
335 *
336 * Used to check for read/write/execute permissions on an inode.
337 * We use "fsuid" for this, letting us set arbitrary permissions
338 * for filesystem access without changing the "normal" uids which
339 * are used for other things.
340 */
341 int inode_permission(struct inode *inode, int mask)
342 {
343 int retval;
344
345 if (unlikely(mask & MAY_WRITE)) {
346 umode_t mode = inode->i_mode;
347
348 /*
349 * Nobody gets write access to a read-only fs.
350 */
351 if (IS_RDONLY(inode) &&
352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
353 return -EROFS;
354
355 /*
356 * Nobody gets write access to an immutable file.
357 */
358 if (IS_IMMUTABLE(inode))
359 return -EACCES;
360 }
361
362 retval = do_inode_permission(inode, mask);
363 if (retval)
364 return retval;
365
366 retval = devcgroup_inode_permission(inode, mask);
367 if (retval)
368 return retval;
369
370 return security_inode_permission(inode, mask);
371 }
372
373 /**
374 * path_get - get a reference to a path
375 * @path: path to get the reference to
376 *
377 * Given a path increment the reference count to the dentry and the vfsmount.
378 */
379 void path_get(struct path *path)
380 {
381 mntget(path->mnt);
382 dget(path->dentry);
383 }
384 EXPORT_SYMBOL(path_get);
385
386 /**
387 * path_put - put a reference to a path
388 * @path: path to put the reference to
389 *
390 * Given a path decrement the reference count to the dentry and the vfsmount.
391 */
392 void path_put(struct path *path)
393 {
394 dput(path->dentry);
395 mntput(path->mnt);
396 }
397 EXPORT_SYMBOL(path_put);
398
399 /*
400 * Path walking has 2 modes, rcu-walk and ref-walk (see
401 * Documentation/filesystems/path-lookup.txt). In situations when we can't
402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
404 * mode. Refcounts are grabbed at the last known good point before rcu-walk
405 * got stuck, so ref-walk may continue from there. If this is not successful
406 * (eg. a seqcount has changed), then failure is returned and it's up to caller
407 * to restart the path walk from the beginning in ref-walk mode.
408 */
409
410 /**
411 * unlazy_walk - try to switch to ref-walk mode.
412 * @nd: nameidata pathwalk data
413 * @dentry: child of nd->path.dentry or NULL
414 * Returns: 0 on success, -ECHILD on failure
415 *
416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
417 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
418 * @nd or NULL. Must be called from rcu-walk context.
419 */
420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
421 {
422 struct fs_struct *fs = current->fs;
423 struct dentry *parent = nd->path.dentry;
424 int want_root = 0;
425
426 BUG_ON(!(nd->flags & LOOKUP_RCU));
427 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
428 want_root = 1;
429 spin_lock(&fs->lock);
430 if (nd->root.mnt != fs->root.mnt ||
431 nd->root.dentry != fs->root.dentry)
432 goto err_root;
433 }
434 spin_lock(&parent->d_lock);
435 if (!dentry) {
436 if (!__d_rcu_to_refcount(parent, nd->seq))
437 goto err_parent;
438 BUG_ON(nd->inode != parent->d_inode);
439 } else {
440 if (dentry->d_parent != parent)
441 goto err_parent;
442 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
443 if (!__d_rcu_to_refcount(dentry, nd->seq))
444 goto err_child;
445 /*
446 * If the sequence check on the child dentry passed, then
447 * the child has not been removed from its parent. This
448 * means the parent dentry must be valid and able to take
449 * a reference at this point.
450 */
451 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
452 BUG_ON(!parent->d_count);
453 parent->d_count++;
454 spin_unlock(&dentry->d_lock);
455 }
456 spin_unlock(&parent->d_lock);
457 if (want_root) {
458 path_get(&nd->root);
459 spin_unlock(&fs->lock);
460 }
461 mntget(nd->path.mnt);
462
463 rcu_read_unlock();
464 br_read_unlock(vfsmount_lock);
465 nd->flags &= ~LOOKUP_RCU;
466 return 0;
467
468 err_child:
469 spin_unlock(&dentry->d_lock);
470 err_parent:
471 spin_unlock(&parent->d_lock);
472 err_root:
473 if (want_root)
474 spin_unlock(&fs->lock);
475 return -ECHILD;
476 }
477
478 /**
479 * release_open_intent - free up open intent resources
480 * @nd: pointer to nameidata
481 */
482 void release_open_intent(struct nameidata *nd)
483 {
484 struct file *file = nd->intent.open.file;
485
486 if (file && !IS_ERR(file)) {
487 if (file->f_path.dentry == NULL)
488 put_filp(file);
489 else
490 fput(file);
491 }
492 }
493
494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
495 {
496 return dentry->d_op->d_revalidate(dentry, nd);
497 }
498
499 /**
500 * complete_walk - successful completion of path walk
501 * @nd: pointer nameidata
502 *
503 * If we had been in RCU mode, drop out of it and legitimize nd->path.
504 * Revalidate the final result, unless we'd already done that during
505 * the path walk or the filesystem doesn't ask for it. Return 0 on
506 * success, -error on failure. In case of failure caller does not
507 * need to drop nd->path.
508 */
509 static int complete_walk(struct nameidata *nd)
510 {
511 struct dentry *dentry = nd->path.dentry;
512 int status;
513
514 if (nd->flags & LOOKUP_RCU) {
515 nd->flags &= ~LOOKUP_RCU;
516 if (!(nd->flags & LOOKUP_ROOT))
517 nd->root.mnt = NULL;
518 spin_lock(&dentry->d_lock);
519 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
520 spin_unlock(&dentry->d_lock);
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
524 }
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
527 mntget(nd->path.mnt);
528 rcu_read_unlock();
529 br_read_unlock(vfsmount_lock);
530 }
531
532 if (likely(!(nd->flags & LOOKUP_JUMPED)))
533 return 0;
534
535 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
536 return 0;
537
538 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
539 return 0;
540
541 /* Note: we do not d_invalidate() */
542 status = d_revalidate(dentry, nd);
543 if (status > 0)
544 return 0;
545
546 if (!status)
547 status = -ESTALE;
548
549 path_put(&nd->path);
550 return status;
551 }
552
553 static __always_inline void set_root(struct nameidata *nd)
554 {
555 if (!nd->root.mnt)
556 get_fs_root(current->fs, &nd->root);
557 }
558
559 static int link_path_walk(const char *, struct nameidata *);
560
561 static __always_inline void set_root_rcu(struct nameidata *nd)
562 {
563 if (!nd->root.mnt) {
564 struct fs_struct *fs = current->fs;
565 unsigned seq;
566
567 do {
568 seq = read_seqcount_begin(&fs->seq);
569 nd->root = fs->root;
570 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
571 } while (read_seqcount_retry(&fs->seq, seq));
572 }
573 }
574
575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
576 {
577 int ret;
578
579 if (IS_ERR(link))
580 goto fail;
581
582 if (*link == '/') {
583 set_root(nd);
584 path_put(&nd->path);
585 nd->path = nd->root;
586 path_get(&nd->root);
587 nd->flags |= LOOKUP_JUMPED;
588 }
589 nd->inode = nd->path.dentry->d_inode;
590
591 ret = link_path_walk(link, nd);
592 return ret;
593 fail:
594 path_put(&nd->path);
595 return PTR_ERR(link);
596 }
597
598 static void path_put_conditional(struct path *path, struct nameidata *nd)
599 {
600 dput(path->dentry);
601 if (path->mnt != nd->path.mnt)
602 mntput(path->mnt);
603 }
604
605 static inline void path_to_nameidata(const struct path *path,
606 struct nameidata *nd)
607 {
608 if (!(nd->flags & LOOKUP_RCU)) {
609 dput(nd->path.dentry);
610 if (nd->path.mnt != path->mnt)
611 mntput(nd->path.mnt);
612 }
613 nd->path.mnt = path->mnt;
614 nd->path.dentry = path->dentry;
615 }
616
617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
618 {
619 struct inode *inode = link->dentry->d_inode;
620 if (!IS_ERR(cookie) && inode->i_op->put_link)
621 inode->i_op->put_link(link->dentry, nd, cookie);
622 path_put(link);
623 }
624
625 static __always_inline int
626 follow_link(struct path *link, struct nameidata *nd, void **p)
627 {
628 int error;
629 struct dentry *dentry = link->dentry;
630
631 BUG_ON(nd->flags & LOOKUP_RCU);
632
633 if (link->mnt == nd->path.mnt)
634 mntget(link->mnt);
635
636 if (unlikely(current->total_link_count >= 40)) {
637 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
638 path_put(&nd->path);
639 return -ELOOP;
640 }
641 cond_resched();
642 current->total_link_count++;
643
644 touch_atime(link->mnt, dentry);
645 nd_set_link(nd, NULL);
646
647 error = security_inode_follow_link(link->dentry, nd);
648 if (error) {
649 *p = ERR_PTR(error); /* no ->put_link(), please */
650 path_put(&nd->path);
651 return error;
652 }
653
654 nd->last_type = LAST_BIND;
655 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
656 error = PTR_ERR(*p);
657 if (!IS_ERR(*p)) {
658 char *s = nd_get_link(nd);
659 error = 0;
660 if (s)
661 error = __vfs_follow_link(nd, s);
662 else if (nd->last_type == LAST_BIND) {
663 nd->flags |= LOOKUP_JUMPED;
664 nd->inode = nd->path.dentry->d_inode;
665 if (nd->inode->i_op->follow_link) {
666 /* stepped on a _really_ weird one */
667 path_put(&nd->path);
668 error = -ELOOP;
669 }
670 }
671 }
672 return error;
673 }
674
675 static int follow_up_rcu(struct path *path)
676 {
677 struct vfsmount *parent;
678 struct dentry *mountpoint;
679
680 parent = path->mnt->mnt_parent;
681 if (parent == path->mnt)
682 return 0;
683 mountpoint = path->mnt->mnt_mountpoint;
684 path->dentry = mountpoint;
685 path->mnt = parent;
686 return 1;
687 }
688
689 int follow_up(struct path *path)
690 {
691 struct vfsmount *parent;
692 struct dentry *mountpoint;
693
694 br_read_lock(vfsmount_lock);
695 parent = path->mnt->mnt_parent;
696 if (parent == path->mnt) {
697 br_read_unlock(vfsmount_lock);
698 return 0;
699 }
700 mntget(parent);
701 mountpoint = dget(path->mnt->mnt_mountpoint);
702 br_read_unlock(vfsmount_lock);
703 dput(path->dentry);
704 path->dentry = mountpoint;
705 mntput(path->mnt);
706 path->mnt = parent;
707 return 1;
708 }
709
710 /*
711 * Perform an automount
712 * - return -EISDIR to tell follow_managed() to stop and return the path we
713 * were called with.
714 */
715 static int follow_automount(struct path *path, unsigned flags,
716 bool *need_mntput)
717 {
718 struct vfsmount *mnt;
719 int err;
720
721 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
722 return -EREMOTE;
723
724 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
725 * and this is the terminal part of the path.
726 */
727 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT))
728 return -EISDIR; /* we actually want to stop here */
729
730 /*
731 * We don't want to mount if someone's just doing a stat and they've
732 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
733 * appended a '/' to the name.
734 */
735 if (!(flags & LOOKUP_FOLLOW)) {
736 /* We do, however, want to mount if someone wants to open or
737 * create a file of any type under the mountpoint, wants to
738 * traverse through the mountpoint or wants to open the mounted
739 * directory.
740 * Also, autofs may mark negative dentries as being automount
741 * points. These will need the attentions of the daemon to
742 * instantiate them before they can be used.
743 */
744 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
745 LOOKUP_OPEN | LOOKUP_CREATE)) &&
746 path->dentry->d_inode)
747 return -EISDIR;
748 }
749 current->total_link_count++;
750 if (current->total_link_count >= 40)
751 return -ELOOP;
752
753 mnt = path->dentry->d_op->d_automount(path);
754 if (IS_ERR(mnt)) {
755 /*
756 * The filesystem is allowed to return -EISDIR here to indicate
757 * it doesn't want to automount. For instance, autofs would do
758 * this so that its userspace daemon can mount on this dentry.
759 *
760 * However, we can only permit this if it's a terminal point in
761 * the path being looked up; if it wasn't then the remainder of
762 * the path is inaccessible and we should say so.
763 */
764 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
765 return -EREMOTE;
766 return PTR_ERR(mnt);
767 }
768
769 if (!mnt) /* mount collision */
770 return 0;
771
772 if (!*need_mntput) {
773 /* lock_mount() may release path->mnt on error */
774 mntget(path->mnt);
775 *need_mntput = true;
776 }
777 err = finish_automount(mnt, path);
778
779 switch (err) {
780 case -EBUSY:
781 /* Someone else made a mount here whilst we were busy */
782 return 0;
783 case 0:
784 path_put(path);
785 path->mnt = mnt;
786 path->dentry = dget(mnt->mnt_root);
787 return 0;
788 default:
789 return err;
790 }
791
792 }
793
794 /*
795 * Handle a dentry that is managed in some way.
796 * - Flagged for transit management (autofs)
797 * - Flagged as mountpoint
798 * - Flagged as automount point
799 *
800 * This may only be called in refwalk mode.
801 *
802 * Serialization is taken care of in namespace.c
803 */
804 static int follow_managed(struct path *path, unsigned flags)
805 {
806 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
807 unsigned managed;
808 bool need_mntput = false;
809 int ret = 0;
810
811 /* Given that we're not holding a lock here, we retain the value in a
812 * local variable for each dentry as we look at it so that we don't see
813 * the components of that value change under us */
814 while (managed = ACCESS_ONCE(path->dentry->d_flags),
815 managed &= DCACHE_MANAGED_DENTRY,
816 unlikely(managed != 0)) {
817 /* Allow the filesystem to manage the transit without i_mutex
818 * being held. */
819 if (managed & DCACHE_MANAGE_TRANSIT) {
820 BUG_ON(!path->dentry->d_op);
821 BUG_ON(!path->dentry->d_op->d_manage);
822 ret = path->dentry->d_op->d_manage(path->dentry, false);
823 if (ret < 0)
824 break;
825 }
826
827 /* Transit to a mounted filesystem. */
828 if (managed & DCACHE_MOUNTED) {
829 struct vfsmount *mounted = lookup_mnt(path);
830 if (mounted) {
831 dput(path->dentry);
832 if (need_mntput)
833 mntput(path->mnt);
834 path->mnt = mounted;
835 path->dentry = dget(mounted->mnt_root);
836 need_mntput = true;
837 continue;
838 }
839
840 /* Something is mounted on this dentry in another
841 * namespace and/or whatever was mounted there in this
842 * namespace got unmounted before we managed to get the
843 * vfsmount_lock */
844 }
845
846 /* Handle an automount point */
847 if (managed & DCACHE_NEED_AUTOMOUNT) {
848 ret = follow_automount(path, flags, &need_mntput);
849 if (ret < 0)
850 break;
851 continue;
852 }
853
854 /* We didn't change the current path point */
855 break;
856 }
857
858 if (need_mntput && path->mnt == mnt)
859 mntput(path->mnt);
860 if (ret == -EISDIR)
861 ret = 0;
862 return ret;
863 }
864
865 int follow_down_one(struct path *path)
866 {
867 struct vfsmount *mounted;
868
869 mounted = lookup_mnt(path);
870 if (mounted) {
871 dput(path->dentry);
872 mntput(path->mnt);
873 path->mnt = mounted;
874 path->dentry = dget(mounted->mnt_root);
875 return 1;
876 }
877 return 0;
878 }
879
880 static inline bool managed_dentry_might_block(struct dentry *dentry)
881 {
882 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
883 dentry->d_op->d_manage(dentry, true) < 0);
884 }
885
886 /*
887 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
888 * we meet a managed dentry that would need blocking.
889 */
890 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
891 struct inode **inode)
892 {
893 for (;;) {
894 struct vfsmount *mounted;
895 /*
896 * Don't forget we might have a non-mountpoint managed dentry
897 * that wants to block transit.
898 */
899 if (unlikely(managed_dentry_might_block(path->dentry)))
900 return false;
901
902 if (!d_mountpoint(path->dentry))
903 break;
904
905 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
906 if (!mounted)
907 break;
908 path->mnt = mounted;
909 path->dentry = mounted->mnt_root;
910 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
911 /*
912 * Update the inode too. We don't need to re-check the
913 * dentry sequence number here after this d_inode read,
914 * because a mount-point is always pinned.
915 */
916 *inode = path->dentry->d_inode;
917 }
918 return true;
919 }
920
921 static void follow_mount_rcu(struct nameidata *nd)
922 {
923 while (d_mountpoint(nd->path.dentry)) {
924 struct vfsmount *mounted;
925 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
926 if (!mounted)
927 break;
928 nd->path.mnt = mounted;
929 nd->path.dentry = mounted->mnt_root;
930 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
931 }
932 }
933
934 static int follow_dotdot_rcu(struct nameidata *nd)
935 {
936 set_root_rcu(nd);
937
938 while (1) {
939 if (nd->path.dentry == nd->root.dentry &&
940 nd->path.mnt == nd->root.mnt) {
941 break;
942 }
943 if (nd->path.dentry != nd->path.mnt->mnt_root) {
944 struct dentry *old = nd->path.dentry;
945 struct dentry *parent = old->d_parent;
946 unsigned seq;
947
948 seq = read_seqcount_begin(&parent->d_seq);
949 if (read_seqcount_retry(&old->d_seq, nd->seq))
950 goto failed;
951 nd->path.dentry = parent;
952 nd->seq = seq;
953 break;
954 }
955 if (!follow_up_rcu(&nd->path))
956 break;
957 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
958 }
959 follow_mount_rcu(nd);
960 nd->inode = nd->path.dentry->d_inode;
961 return 0;
962
963 failed:
964 nd->flags &= ~LOOKUP_RCU;
965 if (!(nd->flags & LOOKUP_ROOT))
966 nd->root.mnt = NULL;
967 rcu_read_unlock();
968 br_read_unlock(vfsmount_lock);
969 return -ECHILD;
970 }
971
972 /*
973 * Follow down to the covering mount currently visible to userspace. At each
974 * point, the filesystem owning that dentry may be queried as to whether the
975 * caller is permitted to proceed or not.
976 */
977 int follow_down(struct path *path)
978 {
979 unsigned managed;
980 int ret;
981
982 while (managed = ACCESS_ONCE(path->dentry->d_flags),
983 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
984 /* Allow the filesystem to manage the transit without i_mutex
985 * being held.
986 *
987 * We indicate to the filesystem if someone is trying to mount
988 * something here. This gives autofs the chance to deny anyone
989 * other than its daemon the right to mount on its
990 * superstructure.
991 *
992 * The filesystem may sleep at this point.
993 */
994 if (managed & DCACHE_MANAGE_TRANSIT) {
995 BUG_ON(!path->dentry->d_op);
996 BUG_ON(!path->dentry->d_op->d_manage);
997 ret = path->dentry->d_op->d_manage(
998 path->dentry, false);
999 if (ret < 0)
1000 return ret == -EISDIR ? 0 : ret;
1001 }
1002
1003 /* Transit to a mounted filesystem. */
1004 if (managed & DCACHE_MOUNTED) {
1005 struct vfsmount *mounted = lookup_mnt(path);
1006 if (!mounted)
1007 break;
1008 dput(path->dentry);
1009 mntput(path->mnt);
1010 path->mnt = mounted;
1011 path->dentry = dget(mounted->mnt_root);
1012 continue;
1013 }
1014
1015 /* Don't handle automount points here */
1016 break;
1017 }
1018 return 0;
1019 }
1020
1021 /*
1022 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1023 */
1024 static void follow_mount(struct path *path)
1025 {
1026 while (d_mountpoint(path->dentry)) {
1027 struct vfsmount *mounted = lookup_mnt(path);
1028 if (!mounted)
1029 break;
1030 dput(path->dentry);
1031 mntput(path->mnt);
1032 path->mnt = mounted;
1033 path->dentry = dget(mounted->mnt_root);
1034 }
1035 }
1036
1037 static void follow_dotdot(struct nameidata *nd)
1038 {
1039 set_root(nd);
1040
1041 while(1) {
1042 struct dentry *old = nd->path.dentry;
1043
1044 if (nd->path.dentry == nd->root.dentry &&
1045 nd->path.mnt == nd->root.mnt) {
1046 break;
1047 }
1048 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1049 /* rare case of legitimate dget_parent()... */
1050 nd->path.dentry = dget_parent(nd->path.dentry);
1051 dput(old);
1052 break;
1053 }
1054 if (!follow_up(&nd->path))
1055 break;
1056 }
1057 follow_mount(&nd->path);
1058 nd->inode = nd->path.dentry->d_inode;
1059 }
1060
1061 /*
1062 * Allocate a dentry with name and parent, and perform a parent
1063 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1064 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1065 * have verified that no child exists while under i_mutex.
1066 */
1067 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1068 struct qstr *name, struct nameidata *nd)
1069 {
1070 struct inode *inode = parent->d_inode;
1071 struct dentry *dentry;
1072 struct dentry *old;
1073
1074 /* Don't create child dentry for a dead directory. */
1075 if (unlikely(IS_DEADDIR(inode)))
1076 return ERR_PTR(-ENOENT);
1077
1078 dentry = d_alloc(parent, name);
1079 if (unlikely(!dentry))
1080 return ERR_PTR(-ENOMEM);
1081
1082 old = inode->i_op->lookup(inode, dentry, nd);
1083 if (unlikely(old)) {
1084 dput(dentry);
1085 dentry = old;
1086 }
1087 return dentry;
1088 }
1089
1090 /*
1091 * We already have a dentry, but require a lookup to be performed on the parent
1092 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1093 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1094 * child exists while under i_mutex.
1095 */
1096 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1097 struct nameidata *nd)
1098 {
1099 struct inode *inode = parent->d_inode;
1100 struct dentry *old;
1101
1102 /* Don't create child dentry for a dead directory. */
1103 if (unlikely(IS_DEADDIR(inode)))
1104 return ERR_PTR(-ENOENT);
1105
1106 old = inode->i_op->lookup(inode, dentry, nd);
1107 if (unlikely(old)) {
1108 dput(dentry);
1109 dentry = old;
1110 }
1111 return dentry;
1112 }
1113
1114 /*
1115 * It's more convoluted than I'd like it to be, but... it's still fairly
1116 * small and for now I'd prefer to have fast path as straight as possible.
1117 * It _is_ time-critical.
1118 */
1119 static int do_lookup(struct nameidata *nd, struct qstr *name,
1120 struct path *path, struct inode **inode)
1121 {
1122 struct vfsmount *mnt = nd->path.mnt;
1123 struct dentry *dentry, *parent = nd->path.dentry;
1124 int need_reval = 1;
1125 int status = 1;
1126 int err;
1127
1128 /*
1129 * Rename seqlock is not required here because in the off chance
1130 * of a false negative due to a concurrent rename, we're going to
1131 * do the non-racy lookup, below.
1132 */
1133 if (nd->flags & LOOKUP_RCU) {
1134 unsigned seq;
1135 *inode = nd->inode;
1136 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1137 if (!dentry)
1138 goto unlazy;
1139
1140 /* Memory barrier in read_seqcount_begin of child is enough */
1141 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1142 return -ECHILD;
1143 nd->seq = seq;
1144
1145 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1146 status = d_revalidate(dentry, nd);
1147 if (unlikely(status <= 0)) {
1148 if (status != -ECHILD)
1149 need_reval = 0;
1150 goto unlazy;
1151 }
1152 }
1153 if (unlikely(d_need_lookup(dentry)))
1154 goto unlazy;
1155 path->mnt = mnt;
1156 path->dentry = dentry;
1157 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1158 goto unlazy;
1159 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1160 goto unlazy;
1161 return 0;
1162 unlazy:
1163 if (unlazy_walk(nd, dentry))
1164 return -ECHILD;
1165 } else {
1166 dentry = __d_lookup(parent, name);
1167 }
1168
1169 if (dentry && unlikely(d_need_lookup(dentry))) {
1170 dput(dentry);
1171 dentry = NULL;
1172 }
1173 retry:
1174 if (unlikely(!dentry)) {
1175 struct inode *dir = parent->d_inode;
1176 BUG_ON(nd->inode != dir);
1177
1178 mutex_lock(&dir->i_mutex);
1179 dentry = d_lookup(parent, name);
1180 if (likely(!dentry)) {
1181 dentry = d_alloc_and_lookup(parent, name, nd);
1182 if (IS_ERR(dentry)) {
1183 mutex_unlock(&dir->i_mutex);
1184 return PTR_ERR(dentry);
1185 }
1186 /* known good */
1187 need_reval = 0;
1188 status = 1;
1189 } else if (unlikely(d_need_lookup(dentry))) {
1190 dentry = d_inode_lookup(parent, dentry, nd);
1191 if (IS_ERR(dentry)) {
1192 mutex_unlock(&dir->i_mutex);
1193 return PTR_ERR(dentry);
1194 }
1195 /* known good */
1196 need_reval = 0;
1197 status = 1;
1198 }
1199 mutex_unlock(&dir->i_mutex);
1200 }
1201 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1202 status = d_revalidate(dentry, nd);
1203 if (unlikely(status <= 0)) {
1204 if (status < 0) {
1205 dput(dentry);
1206 return status;
1207 }
1208 if (!d_invalidate(dentry)) {
1209 dput(dentry);
1210 dentry = NULL;
1211 need_reval = 1;
1212 goto retry;
1213 }
1214 }
1215
1216 path->mnt = mnt;
1217 path->dentry = dentry;
1218 err = follow_managed(path, nd->flags);
1219 if (unlikely(err < 0)) {
1220 path_put_conditional(path, nd);
1221 return err;
1222 }
1223 *inode = path->dentry->d_inode;
1224 return 0;
1225 }
1226
1227 static inline int may_lookup(struct nameidata *nd)
1228 {
1229 if (nd->flags & LOOKUP_RCU) {
1230 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1231 if (err != -ECHILD)
1232 return err;
1233 if (unlazy_walk(nd, NULL))
1234 return -ECHILD;
1235 }
1236 return inode_permission(nd->inode, MAY_EXEC);
1237 }
1238
1239 static inline int handle_dots(struct nameidata *nd, int type)
1240 {
1241 if (type == LAST_DOTDOT) {
1242 if (nd->flags & LOOKUP_RCU) {
1243 if (follow_dotdot_rcu(nd))
1244 return -ECHILD;
1245 } else
1246 follow_dotdot(nd);
1247 }
1248 return 0;
1249 }
1250
1251 static void terminate_walk(struct nameidata *nd)
1252 {
1253 if (!(nd->flags & LOOKUP_RCU)) {
1254 path_put(&nd->path);
1255 } else {
1256 nd->flags &= ~LOOKUP_RCU;
1257 if (!(nd->flags & LOOKUP_ROOT))
1258 nd->root.mnt = NULL;
1259 rcu_read_unlock();
1260 br_read_unlock(vfsmount_lock);
1261 }
1262 }
1263
1264 /*
1265 * Do we need to follow links? We _really_ want to be able
1266 * to do this check without having to look at inode->i_op,
1267 * so we keep a cache of "no, this doesn't need follow_link"
1268 * for the common case.
1269 */
1270 static inline int should_follow_link(struct inode *inode, int follow)
1271 {
1272 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1273 if (likely(inode->i_op->follow_link))
1274 return follow;
1275
1276 /* This gets set once for the inode lifetime */
1277 spin_lock(&inode->i_lock);
1278 inode->i_opflags |= IOP_NOFOLLOW;
1279 spin_unlock(&inode->i_lock);
1280 }
1281 return 0;
1282 }
1283
1284 static inline int walk_component(struct nameidata *nd, struct path *path,
1285 struct qstr *name, int type, int follow)
1286 {
1287 struct inode *inode;
1288 int err;
1289 /*
1290 * "." and ".." are special - ".." especially so because it has
1291 * to be able to know about the current root directory and
1292 * parent relationships.
1293 */
1294 if (unlikely(type != LAST_NORM))
1295 return handle_dots(nd, type);
1296 err = do_lookup(nd, name, path, &inode);
1297 if (unlikely(err)) {
1298 terminate_walk(nd);
1299 return err;
1300 }
1301 if (!inode) {
1302 path_to_nameidata(path, nd);
1303 terminate_walk(nd);
1304 return -ENOENT;
1305 }
1306 if (should_follow_link(inode, follow)) {
1307 if (nd->flags & LOOKUP_RCU) {
1308 if (unlikely(unlazy_walk(nd, path->dentry))) {
1309 terminate_walk(nd);
1310 return -ECHILD;
1311 }
1312 }
1313 BUG_ON(inode != path->dentry->d_inode);
1314 return 1;
1315 }
1316 path_to_nameidata(path, nd);
1317 nd->inode = inode;
1318 return 0;
1319 }
1320
1321 /*
1322 * This limits recursive symlink follows to 8, while
1323 * limiting consecutive symlinks to 40.
1324 *
1325 * Without that kind of total limit, nasty chains of consecutive
1326 * symlinks can cause almost arbitrarily long lookups.
1327 */
1328 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1329 {
1330 int res;
1331
1332 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1333 path_put_conditional(path, nd);
1334 path_put(&nd->path);
1335 return -ELOOP;
1336 }
1337 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1338
1339 nd->depth++;
1340 current->link_count++;
1341
1342 do {
1343 struct path link = *path;
1344 void *cookie;
1345
1346 res = follow_link(&link, nd, &cookie);
1347 if (!res)
1348 res = walk_component(nd, path, &nd->last,
1349 nd->last_type, LOOKUP_FOLLOW);
1350 put_link(nd, &link, cookie);
1351 } while (res > 0);
1352
1353 current->link_count--;
1354 nd->depth--;
1355 return res;
1356 }
1357
1358 /*
1359 * We really don't want to look at inode->i_op->lookup
1360 * when we don't have to. So we keep a cache bit in
1361 * the inode ->i_opflags field that says "yes, we can
1362 * do lookup on this inode".
1363 */
1364 static inline int can_lookup(struct inode *inode)
1365 {
1366 if (likely(inode->i_opflags & IOP_LOOKUP))
1367 return 1;
1368 if (likely(!inode->i_op->lookup))
1369 return 0;
1370
1371 /* We do this once for the lifetime of the inode */
1372 spin_lock(&inode->i_lock);
1373 inode->i_opflags |= IOP_LOOKUP;
1374 spin_unlock(&inode->i_lock);
1375 return 1;
1376 }
1377
1378 /*
1379 * Name resolution.
1380 * This is the basic name resolution function, turning a pathname into
1381 * the final dentry. We expect 'base' to be positive and a directory.
1382 *
1383 * Returns 0 and nd will have valid dentry and mnt on success.
1384 * Returns error and drops reference to input namei data on failure.
1385 */
1386 static int link_path_walk(const char *name, struct nameidata *nd)
1387 {
1388 struct path next;
1389 int err;
1390
1391 while (*name=='/')
1392 name++;
1393 if (!*name)
1394 return 0;
1395
1396 /* At this point we know we have a real path component. */
1397 for(;;) {
1398 unsigned long hash;
1399 struct qstr this;
1400 unsigned int c;
1401 int type;
1402
1403 err = may_lookup(nd);
1404 if (err)
1405 break;
1406
1407 this.name = name;
1408 c = *(const unsigned char *)name;
1409
1410 hash = init_name_hash();
1411 do {
1412 name++;
1413 hash = partial_name_hash(c, hash);
1414 c = *(const unsigned char *)name;
1415 } while (c && (c != '/'));
1416 this.len = name - (const char *) this.name;
1417 this.hash = end_name_hash(hash);
1418
1419 type = LAST_NORM;
1420 if (this.name[0] == '.') switch (this.len) {
1421 case 2:
1422 if (this.name[1] == '.') {
1423 type = LAST_DOTDOT;
1424 nd->flags |= LOOKUP_JUMPED;
1425 }
1426 break;
1427 case 1:
1428 type = LAST_DOT;
1429 }
1430 if (likely(type == LAST_NORM)) {
1431 struct dentry *parent = nd->path.dentry;
1432 nd->flags &= ~LOOKUP_JUMPED;
1433 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1434 err = parent->d_op->d_hash(parent, nd->inode,
1435 &this);
1436 if (err < 0)
1437 break;
1438 }
1439 }
1440
1441 /* remove trailing slashes? */
1442 if (!c)
1443 goto last_component;
1444 while (*++name == '/');
1445 if (!*name)
1446 goto last_component;
1447
1448 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1449 if (err < 0)
1450 return err;
1451
1452 if (err) {
1453 err = nested_symlink(&next, nd);
1454 if (err)
1455 return err;
1456 }
1457 if (can_lookup(nd->inode))
1458 continue;
1459 err = -ENOTDIR;
1460 break;
1461 /* here ends the main loop */
1462
1463 last_component:
1464 nd->last = this;
1465 nd->last_type = type;
1466 return 0;
1467 }
1468 terminate_walk(nd);
1469 return err;
1470 }
1471
1472 static int path_init(int dfd, const char *name, unsigned int flags,
1473 struct nameidata *nd, struct file **fp)
1474 {
1475 int retval = 0;
1476 int fput_needed;
1477 struct file *file;
1478
1479 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1480 nd->flags = flags | LOOKUP_JUMPED;
1481 nd->depth = 0;
1482 if (flags & LOOKUP_ROOT) {
1483 struct inode *inode = nd->root.dentry->d_inode;
1484 if (*name) {
1485 if (!inode->i_op->lookup)
1486 return -ENOTDIR;
1487 retval = inode_permission(inode, MAY_EXEC);
1488 if (retval)
1489 return retval;
1490 }
1491 nd->path = nd->root;
1492 nd->inode = inode;
1493 if (flags & LOOKUP_RCU) {
1494 br_read_lock(vfsmount_lock);
1495 rcu_read_lock();
1496 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1497 } else {
1498 path_get(&nd->path);
1499 }
1500 return 0;
1501 }
1502
1503 nd->root.mnt = NULL;
1504
1505 if (*name=='/') {
1506 if (flags & LOOKUP_RCU) {
1507 br_read_lock(vfsmount_lock);
1508 rcu_read_lock();
1509 set_root_rcu(nd);
1510 } else {
1511 set_root(nd);
1512 path_get(&nd->root);
1513 }
1514 nd->path = nd->root;
1515 } else if (dfd == AT_FDCWD) {
1516 if (flags & LOOKUP_RCU) {
1517 struct fs_struct *fs = current->fs;
1518 unsigned seq;
1519
1520 br_read_lock(vfsmount_lock);
1521 rcu_read_lock();
1522
1523 do {
1524 seq = read_seqcount_begin(&fs->seq);
1525 nd->path = fs->pwd;
1526 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1527 } while (read_seqcount_retry(&fs->seq, seq));
1528 } else {
1529 get_fs_pwd(current->fs, &nd->path);
1530 }
1531 } else {
1532 struct dentry *dentry;
1533
1534 file = fget_raw_light(dfd, &fput_needed);
1535 retval = -EBADF;
1536 if (!file)
1537 goto out_fail;
1538
1539 dentry = file->f_path.dentry;
1540
1541 if (*name) {
1542 retval = -ENOTDIR;
1543 if (!S_ISDIR(dentry->d_inode->i_mode))
1544 goto fput_fail;
1545
1546 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1547 if (retval)
1548 goto fput_fail;
1549 }
1550
1551 nd->path = file->f_path;
1552 if (flags & LOOKUP_RCU) {
1553 if (fput_needed)
1554 *fp = file;
1555 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1556 br_read_lock(vfsmount_lock);
1557 rcu_read_lock();
1558 } else {
1559 path_get(&file->f_path);
1560 fput_light(file, fput_needed);
1561 }
1562 }
1563
1564 nd->inode = nd->path.dentry->d_inode;
1565 return 0;
1566
1567 fput_fail:
1568 fput_light(file, fput_needed);
1569 out_fail:
1570 return retval;
1571 }
1572
1573 static inline int lookup_last(struct nameidata *nd, struct path *path)
1574 {
1575 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1576 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1577
1578 nd->flags &= ~LOOKUP_PARENT;
1579 return walk_component(nd, path, &nd->last, nd->last_type,
1580 nd->flags & LOOKUP_FOLLOW);
1581 }
1582
1583 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1584 static int path_lookupat(int dfd, const char *name,
1585 unsigned int flags, struct nameidata *nd)
1586 {
1587 struct file *base = NULL;
1588 struct path path;
1589 int err;
1590
1591 /*
1592 * Path walking is largely split up into 2 different synchronisation
1593 * schemes, rcu-walk and ref-walk (explained in
1594 * Documentation/filesystems/path-lookup.txt). These share much of the
1595 * path walk code, but some things particularly setup, cleanup, and
1596 * following mounts are sufficiently divergent that functions are
1597 * duplicated. Typically there is a function foo(), and its RCU
1598 * analogue, foo_rcu().
1599 *
1600 * -ECHILD is the error number of choice (just to avoid clashes) that
1601 * is returned if some aspect of an rcu-walk fails. Such an error must
1602 * be handled by restarting a traditional ref-walk (which will always
1603 * be able to complete).
1604 */
1605 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1606
1607 if (unlikely(err))
1608 return err;
1609
1610 current->total_link_count = 0;
1611 err = link_path_walk(name, nd);
1612
1613 if (!err && !(flags & LOOKUP_PARENT)) {
1614 err = lookup_last(nd, &path);
1615 while (err > 0) {
1616 void *cookie;
1617 struct path link = path;
1618 nd->flags |= LOOKUP_PARENT;
1619 err = follow_link(&link, nd, &cookie);
1620 if (!err)
1621 err = lookup_last(nd, &path);
1622 put_link(nd, &link, cookie);
1623 }
1624 }
1625
1626 if (!err)
1627 err = complete_walk(nd);
1628
1629 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1630 if (!nd->inode->i_op->lookup) {
1631 path_put(&nd->path);
1632 err = -ENOTDIR;
1633 }
1634 }
1635
1636 if (base)
1637 fput(base);
1638
1639 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1640 path_put(&nd->root);
1641 nd->root.mnt = NULL;
1642 }
1643 return err;
1644 }
1645
1646 static int do_path_lookup(int dfd, const char *name,
1647 unsigned int flags, struct nameidata *nd)
1648 {
1649 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1650 if (unlikely(retval == -ECHILD))
1651 retval = path_lookupat(dfd, name, flags, nd);
1652 if (unlikely(retval == -ESTALE))
1653 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1654
1655 if (likely(!retval)) {
1656 if (unlikely(!audit_dummy_context())) {
1657 if (nd->path.dentry && nd->inode)
1658 audit_inode(name, nd->path.dentry);
1659 }
1660 }
1661 return retval;
1662 }
1663
1664 int kern_path_parent(const char *name, struct nameidata *nd)
1665 {
1666 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1667 }
1668
1669 int kern_path(const char *name, unsigned int flags, struct path *path)
1670 {
1671 struct nameidata nd;
1672 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1673 if (!res)
1674 *path = nd.path;
1675 return res;
1676 }
1677
1678 /**
1679 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1680 * @dentry: pointer to dentry of the base directory
1681 * @mnt: pointer to vfs mount of the base directory
1682 * @name: pointer to file name
1683 * @flags: lookup flags
1684 * @path: pointer to struct path to fill
1685 */
1686 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1687 const char *name, unsigned int flags,
1688 struct path *path)
1689 {
1690 struct nameidata nd;
1691 int err;
1692 nd.root.dentry = dentry;
1693 nd.root.mnt = mnt;
1694 BUG_ON(flags & LOOKUP_PARENT);
1695 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1696 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1697 if (!err)
1698 *path = nd.path;
1699 return err;
1700 }
1701
1702 static struct dentry *__lookup_hash(struct qstr *name,
1703 struct dentry *base, struct nameidata *nd)
1704 {
1705 struct inode *inode = base->d_inode;
1706 struct dentry *dentry;
1707 int err;
1708
1709 err = inode_permission(inode, MAY_EXEC);
1710 if (err)
1711 return ERR_PTR(err);
1712
1713 /*
1714 * Don't bother with __d_lookup: callers are for creat as
1715 * well as unlink, so a lot of the time it would cost
1716 * a double lookup.
1717 */
1718 dentry = d_lookup(base, name);
1719
1720 if (dentry && d_need_lookup(dentry)) {
1721 /*
1722 * __lookup_hash is called with the parent dir's i_mutex already
1723 * held, so we are good to go here.
1724 */
1725 dentry = d_inode_lookup(base, dentry, nd);
1726 if (IS_ERR(dentry))
1727 return dentry;
1728 }
1729
1730 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1731 int status = d_revalidate(dentry, nd);
1732 if (unlikely(status <= 0)) {
1733 /*
1734 * The dentry failed validation.
1735 * If d_revalidate returned 0 attempt to invalidate
1736 * the dentry otherwise d_revalidate is asking us
1737 * to return a fail status.
1738 */
1739 if (status < 0) {
1740 dput(dentry);
1741 return ERR_PTR(status);
1742 } else if (!d_invalidate(dentry)) {
1743 dput(dentry);
1744 dentry = NULL;
1745 }
1746 }
1747 }
1748
1749 if (!dentry)
1750 dentry = d_alloc_and_lookup(base, name, nd);
1751
1752 return dentry;
1753 }
1754
1755 /*
1756 * Restricted form of lookup. Doesn't follow links, single-component only,
1757 * needs parent already locked. Doesn't follow mounts.
1758 * SMP-safe.
1759 */
1760 static struct dentry *lookup_hash(struct nameidata *nd)
1761 {
1762 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1763 }
1764
1765 /**
1766 * lookup_one_len - filesystem helper to lookup single pathname component
1767 * @name: pathname component to lookup
1768 * @base: base directory to lookup from
1769 * @len: maximum length @len should be interpreted to
1770 *
1771 * Note that this routine is purely a helper for filesystem usage and should
1772 * not be called by generic code. Also note that by using this function the
1773 * nameidata argument is passed to the filesystem methods and a filesystem
1774 * using this helper needs to be prepared for that.
1775 */
1776 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1777 {
1778 struct qstr this;
1779 unsigned long hash;
1780 unsigned int c;
1781
1782 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1783
1784 this.name = name;
1785 this.len = len;
1786 if (!len)
1787 return ERR_PTR(-EACCES);
1788
1789 hash = init_name_hash();
1790 while (len--) {
1791 c = *(const unsigned char *)name++;
1792 if (c == '/' || c == '\0')
1793 return ERR_PTR(-EACCES);
1794 hash = partial_name_hash(c, hash);
1795 }
1796 this.hash = end_name_hash(hash);
1797 /*
1798 * See if the low-level filesystem might want
1799 * to use its own hash..
1800 */
1801 if (base->d_flags & DCACHE_OP_HASH) {
1802 int err = base->d_op->d_hash(base, base->d_inode, &this);
1803 if (err < 0)
1804 return ERR_PTR(err);
1805 }
1806
1807 return __lookup_hash(&this, base, NULL);
1808 }
1809
1810 int user_path_at(int dfd, const char __user *name, unsigned flags,
1811 struct path *path)
1812 {
1813 struct nameidata nd;
1814 char *tmp = getname_flags(name, flags);
1815 int err = PTR_ERR(tmp);
1816 if (!IS_ERR(tmp)) {
1817
1818 BUG_ON(flags & LOOKUP_PARENT);
1819
1820 err = do_path_lookup(dfd, tmp, flags, &nd);
1821 putname(tmp);
1822 if (!err)
1823 *path = nd.path;
1824 }
1825 return err;
1826 }
1827
1828 static int user_path_parent(int dfd, const char __user *path,
1829 struct nameidata *nd, char **name)
1830 {
1831 char *s = getname(path);
1832 int error;
1833
1834 if (IS_ERR(s))
1835 return PTR_ERR(s);
1836
1837 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1838 if (error)
1839 putname(s);
1840 else
1841 *name = s;
1842
1843 return error;
1844 }
1845
1846 /*
1847 * It's inline, so penalty for filesystems that don't use sticky bit is
1848 * minimal.
1849 */
1850 static inline int check_sticky(struct inode *dir, struct inode *inode)
1851 {
1852 uid_t fsuid = current_fsuid();
1853
1854 if (!(dir->i_mode & S_ISVTX))
1855 return 0;
1856 if (current_user_ns() != inode_userns(inode))
1857 goto other_userns;
1858 if (inode->i_uid == fsuid)
1859 return 0;
1860 if (dir->i_uid == fsuid)
1861 return 0;
1862
1863 other_userns:
1864 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1865 }
1866
1867 /*
1868 * Check whether we can remove a link victim from directory dir, check
1869 * whether the type of victim is right.
1870 * 1. We can't do it if dir is read-only (done in permission())
1871 * 2. We should have write and exec permissions on dir
1872 * 3. We can't remove anything from append-only dir
1873 * 4. We can't do anything with immutable dir (done in permission())
1874 * 5. If the sticky bit on dir is set we should either
1875 * a. be owner of dir, or
1876 * b. be owner of victim, or
1877 * c. have CAP_FOWNER capability
1878 * 6. If the victim is append-only or immutable we can't do antyhing with
1879 * links pointing to it.
1880 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1881 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1882 * 9. We can't remove a root or mountpoint.
1883 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1884 * nfs_async_unlink().
1885 */
1886 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1887 {
1888 int error;
1889
1890 if (!victim->d_inode)
1891 return -ENOENT;
1892
1893 BUG_ON(victim->d_parent->d_inode != dir);
1894 audit_inode_child(victim, dir);
1895
1896 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1897 if (error)
1898 return error;
1899 if (IS_APPEND(dir))
1900 return -EPERM;
1901 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1902 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1903 return -EPERM;
1904 if (isdir) {
1905 if (!S_ISDIR(victim->d_inode->i_mode))
1906 return -ENOTDIR;
1907 if (IS_ROOT(victim))
1908 return -EBUSY;
1909 } else if (S_ISDIR(victim->d_inode->i_mode))
1910 return -EISDIR;
1911 if (IS_DEADDIR(dir))
1912 return -ENOENT;
1913 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1914 return -EBUSY;
1915 return 0;
1916 }
1917
1918 /* Check whether we can create an object with dentry child in directory
1919 * dir.
1920 * 1. We can't do it if child already exists (open has special treatment for
1921 * this case, but since we are inlined it's OK)
1922 * 2. We can't do it if dir is read-only (done in permission())
1923 * 3. We should have write and exec permissions on dir
1924 * 4. We can't do it if dir is immutable (done in permission())
1925 */
1926 static inline int may_create(struct inode *dir, struct dentry *child)
1927 {
1928 if (child->d_inode)
1929 return -EEXIST;
1930 if (IS_DEADDIR(dir))
1931 return -ENOENT;
1932 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1933 }
1934
1935 /*
1936 * p1 and p2 should be directories on the same fs.
1937 */
1938 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1939 {
1940 struct dentry *p;
1941
1942 if (p1 == p2) {
1943 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1944 return NULL;
1945 }
1946
1947 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1948
1949 p = d_ancestor(p2, p1);
1950 if (p) {
1951 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1952 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1953 return p;
1954 }
1955
1956 p = d_ancestor(p1, p2);
1957 if (p) {
1958 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1959 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1960 return p;
1961 }
1962
1963 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1964 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1965 return NULL;
1966 }
1967
1968 void unlock_rename(struct dentry *p1, struct dentry *p2)
1969 {
1970 mutex_unlock(&p1->d_inode->i_mutex);
1971 if (p1 != p2) {
1972 mutex_unlock(&p2->d_inode->i_mutex);
1973 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1974 }
1975 }
1976
1977 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1978 struct nameidata *nd)
1979 {
1980 int error = may_create(dir, dentry);
1981
1982 if (error)
1983 return error;
1984
1985 if (!dir->i_op->create)
1986 return -EACCES; /* shouldn't it be ENOSYS? */
1987 mode &= S_IALLUGO;
1988 mode |= S_IFREG;
1989 error = security_inode_create(dir, dentry, mode);
1990 if (error)
1991 return error;
1992 error = dir->i_op->create(dir, dentry, mode, nd);
1993 if (!error)
1994 fsnotify_create(dir, dentry);
1995 return error;
1996 }
1997
1998 static int may_open(struct path *path, int acc_mode, int flag)
1999 {
2000 struct dentry *dentry = path->dentry;
2001 struct inode *inode = dentry->d_inode;
2002 int error;
2003
2004 /* O_PATH? */
2005 if (!acc_mode)
2006 return 0;
2007
2008 if (!inode)
2009 return -ENOENT;
2010
2011 switch (inode->i_mode & S_IFMT) {
2012 case S_IFLNK:
2013 return -ELOOP;
2014 case S_IFDIR:
2015 if (acc_mode & MAY_WRITE)
2016 return -EISDIR;
2017 break;
2018 case S_IFBLK:
2019 case S_IFCHR:
2020 if (path->mnt->mnt_flags & MNT_NODEV)
2021 return -EACCES;
2022 /*FALLTHRU*/
2023 case S_IFIFO:
2024 case S_IFSOCK:
2025 flag &= ~O_TRUNC;
2026 break;
2027 }
2028
2029 error = inode_permission(inode, acc_mode);
2030 if (error)
2031 return error;
2032
2033 /*
2034 * An append-only file must be opened in append mode for writing.
2035 */
2036 if (IS_APPEND(inode)) {
2037 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2038 return -EPERM;
2039 if (flag & O_TRUNC)
2040 return -EPERM;
2041 }
2042
2043 /* O_NOATIME can only be set by the owner or superuser */
2044 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2045 return -EPERM;
2046
2047 /*
2048 * Ensure there are no outstanding leases on the file.
2049 */
2050 return break_lease(inode, flag);
2051 }
2052
2053 static int handle_truncate(struct file *filp)
2054 {
2055 struct path *path = &filp->f_path;
2056 struct inode *inode = path->dentry->d_inode;
2057 int error = get_write_access(inode);
2058 if (error)
2059 return error;
2060 /*
2061 * Refuse to truncate files with mandatory locks held on them.
2062 */
2063 error = locks_verify_locked(inode);
2064 if (!error)
2065 error = security_path_truncate(path);
2066 if (!error) {
2067 error = do_truncate(path->dentry, 0,
2068 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2069 filp);
2070 }
2071 put_write_access(inode);
2072 return error;
2073 }
2074
2075 static inline int open_to_namei_flags(int flag)
2076 {
2077 if ((flag & O_ACCMODE) == 3)
2078 flag--;
2079 return flag;
2080 }
2081
2082 /*
2083 * Handle the last step of open()
2084 */
2085 static struct file *do_last(struct nameidata *nd, struct path *path,
2086 const struct open_flags *op, const char *pathname)
2087 {
2088 struct dentry *dir = nd->path.dentry;
2089 struct dentry *dentry;
2090 int open_flag = op->open_flag;
2091 int will_truncate = open_flag & O_TRUNC;
2092 int want_write = 0;
2093 int acc_mode = op->acc_mode;
2094 struct file *filp;
2095 int error;
2096
2097 nd->flags &= ~LOOKUP_PARENT;
2098 nd->flags |= op->intent;
2099
2100 switch (nd->last_type) {
2101 case LAST_DOTDOT:
2102 case LAST_DOT:
2103 error = handle_dots(nd, nd->last_type);
2104 if (error)
2105 return ERR_PTR(error);
2106 /* fallthrough */
2107 case LAST_ROOT:
2108 error = complete_walk(nd);
2109 if (error)
2110 return ERR_PTR(error);
2111 audit_inode(pathname, nd->path.dentry);
2112 if (open_flag & O_CREAT) {
2113 error = -EISDIR;
2114 goto exit;
2115 }
2116 goto ok;
2117 case LAST_BIND:
2118 error = complete_walk(nd);
2119 if (error)
2120 return ERR_PTR(error);
2121 audit_inode(pathname, dir);
2122 goto ok;
2123 }
2124
2125 if (!(open_flag & O_CREAT)) {
2126 int symlink_ok = 0;
2127 if (nd->last.name[nd->last.len])
2128 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2129 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2130 symlink_ok = 1;
2131 /* we _can_ be in RCU mode here */
2132 error = walk_component(nd, path, &nd->last, LAST_NORM,
2133 !symlink_ok);
2134 if (error < 0)
2135 return ERR_PTR(error);
2136 if (error) /* symlink */
2137 return NULL;
2138 /* sayonara */
2139 error = complete_walk(nd);
2140 if (error)
2141 return ERR_PTR(-ECHILD);
2142
2143 error = -ENOTDIR;
2144 if (nd->flags & LOOKUP_DIRECTORY) {
2145 if (!nd->inode->i_op->lookup)
2146 goto exit;
2147 }
2148 audit_inode(pathname, nd->path.dentry);
2149 goto ok;
2150 }
2151
2152 /* create side of things */
2153 error = complete_walk(nd);
2154 if (error)
2155 return ERR_PTR(error);
2156
2157 audit_inode(pathname, dir);
2158 error = -EISDIR;
2159 /* trailing slashes? */
2160 if (nd->last.name[nd->last.len])
2161 goto exit;
2162
2163 mutex_lock(&dir->d_inode->i_mutex);
2164
2165 dentry = lookup_hash(nd);
2166 error = PTR_ERR(dentry);
2167 if (IS_ERR(dentry)) {
2168 mutex_unlock(&dir->d_inode->i_mutex);
2169 goto exit;
2170 }
2171
2172 path->dentry = dentry;
2173 path->mnt = nd->path.mnt;
2174
2175 /* Negative dentry, just create the file */
2176 if (!dentry->d_inode) {
2177 int mode = op->mode;
2178 if (!IS_POSIXACL(dir->d_inode))
2179 mode &= ~current_umask();
2180 /*
2181 * This write is needed to ensure that a
2182 * rw->ro transition does not occur between
2183 * the time when the file is created and when
2184 * a permanent write count is taken through
2185 * the 'struct file' in nameidata_to_filp().
2186 */
2187 error = mnt_want_write(nd->path.mnt);
2188 if (error)
2189 goto exit_mutex_unlock;
2190 want_write = 1;
2191 /* Don't check for write permission, don't truncate */
2192 open_flag &= ~O_TRUNC;
2193 will_truncate = 0;
2194 acc_mode = MAY_OPEN;
2195 error = security_path_mknod(&nd->path, dentry, mode, 0);
2196 if (error)
2197 goto exit_mutex_unlock;
2198 error = vfs_create(dir->d_inode, dentry, mode, nd);
2199 if (error)
2200 goto exit_mutex_unlock;
2201 mutex_unlock(&dir->d_inode->i_mutex);
2202 dput(nd->path.dentry);
2203 nd->path.dentry = dentry;
2204 goto common;
2205 }
2206
2207 /*
2208 * It already exists.
2209 */
2210 mutex_unlock(&dir->d_inode->i_mutex);
2211 audit_inode(pathname, path->dentry);
2212
2213 error = -EEXIST;
2214 if (open_flag & O_EXCL)
2215 goto exit_dput;
2216
2217 error = follow_managed(path, nd->flags);
2218 if (error < 0)
2219 goto exit_dput;
2220
2221 error = -ENOENT;
2222 if (!path->dentry->d_inode)
2223 goto exit_dput;
2224
2225 if (path->dentry->d_inode->i_op->follow_link)
2226 return NULL;
2227
2228 path_to_nameidata(path, nd);
2229 nd->inode = path->dentry->d_inode;
2230 error = -EISDIR;
2231 if (S_ISDIR(nd->inode->i_mode))
2232 goto exit;
2233 ok:
2234 if (!S_ISREG(nd->inode->i_mode))
2235 will_truncate = 0;
2236
2237 if (will_truncate) {
2238 error = mnt_want_write(nd->path.mnt);
2239 if (error)
2240 goto exit;
2241 want_write = 1;
2242 }
2243 common:
2244 error = may_open(&nd->path, acc_mode, open_flag);
2245 if (error)
2246 goto exit;
2247 filp = nameidata_to_filp(nd);
2248 if (!IS_ERR(filp)) {
2249 error = ima_file_check(filp, op->acc_mode);
2250 if (error) {
2251 fput(filp);
2252 filp = ERR_PTR(error);
2253 }
2254 }
2255 if (!IS_ERR(filp)) {
2256 if (will_truncate) {
2257 error = handle_truncate(filp);
2258 if (error) {
2259 fput(filp);
2260 filp = ERR_PTR(error);
2261 }
2262 }
2263 }
2264 out:
2265 if (want_write)
2266 mnt_drop_write(nd->path.mnt);
2267 path_put(&nd->path);
2268 return filp;
2269
2270 exit_mutex_unlock:
2271 mutex_unlock(&dir->d_inode->i_mutex);
2272 exit_dput:
2273 path_put_conditional(path, nd);
2274 exit:
2275 filp = ERR_PTR(error);
2276 goto out;
2277 }
2278
2279 static struct file *path_openat(int dfd, const char *pathname,
2280 struct nameidata *nd, const struct open_flags *op, int flags)
2281 {
2282 struct file *base = NULL;
2283 struct file *filp;
2284 struct path path;
2285 int error;
2286
2287 filp = get_empty_filp();
2288 if (!filp)
2289 return ERR_PTR(-ENFILE);
2290
2291 filp->f_flags = op->open_flag;
2292 nd->intent.open.file = filp;
2293 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2294 nd->intent.open.create_mode = op->mode;
2295
2296 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2297 if (unlikely(error))
2298 goto out_filp;
2299
2300 current->total_link_count = 0;
2301 error = link_path_walk(pathname, nd);
2302 if (unlikely(error))
2303 goto out_filp;
2304
2305 filp = do_last(nd, &path, op, pathname);
2306 while (unlikely(!filp)) { /* trailing symlink */
2307 struct path link = path;
2308 void *cookie;
2309 if (!(nd->flags & LOOKUP_FOLLOW)) {
2310 path_put_conditional(&path, nd);
2311 path_put(&nd->path);
2312 filp = ERR_PTR(-ELOOP);
2313 break;
2314 }
2315 nd->flags |= LOOKUP_PARENT;
2316 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2317 error = follow_link(&link, nd, &cookie);
2318 if (unlikely(error))
2319 filp = ERR_PTR(error);
2320 else
2321 filp = do_last(nd, &path, op, pathname);
2322 put_link(nd, &link, cookie);
2323 }
2324 out:
2325 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2326 path_put(&nd->root);
2327 if (base)
2328 fput(base);
2329 release_open_intent(nd);
2330 return filp;
2331
2332 out_filp:
2333 filp = ERR_PTR(error);
2334 goto out;
2335 }
2336
2337 struct file *do_filp_open(int dfd, const char *pathname,
2338 const struct open_flags *op, int flags)
2339 {
2340 struct nameidata nd;
2341 struct file *filp;
2342
2343 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2344 if (unlikely(filp == ERR_PTR(-ECHILD)))
2345 filp = path_openat(dfd, pathname, &nd, op, flags);
2346 if (unlikely(filp == ERR_PTR(-ESTALE)))
2347 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2348 return filp;
2349 }
2350
2351 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2352 const char *name, const struct open_flags *op, int flags)
2353 {
2354 struct nameidata nd;
2355 struct file *file;
2356
2357 nd.root.mnt = mnt;
2358 nd.root.dentry = dentry;
2359
2360 flags |= LOOKUP_ROOT;
2361
2362 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2363 return ERR_PTR(-ELOOP);
2364
2365 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2366 if (unlikely(file == ERR_PTR(-ECHILD)))
2367 file = path_openat(-1, name, &nd, op, flags);
2368 if (unlikely(file == ERR_PTR(-ESTALE)))
2369 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2370 return file;
2371 }
2372
2373 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2374 {
2375 struct dentry *dentry = ERR_PTR(-EEXIST);
2376 struct nameidata nd;
2377 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2378 if (error)
2379 return ERR_PTR(error);
2380
2381 /*
2382 * Yucky last component or no last component at all?
2383 * (foo/., foo/.., /////)
2384 */
2385 if (nd.last_type != LAST_NORM)
2386 goto out;
2387 nd.flags &= ~LOOKUP_PARENT;
2388 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2389 nd.intent.open.flags = O_EXCL;
2390
2391 /*
2392 * Do the final lookup.
2393 */
2394 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2395 dentry = lookup_hash(&nd);
2396 if (IS_ERR(dentry))
2397 goto fail;
2398
2399 if (dentry->d_inode)
2400 goto eexist;
2401 /*
2402 * Special case - lookup gave negative, but... we had foo/bar/
2403 * From the vfs_mknod() POV we just have a negative dentry -
2404 * all is fine. Let's be bastards - you had / on the end, you've
2405 * been asking for (non-existent) directory. -ENOENT for you.
2406 */
2407 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2408 dput(dentry);
2409 dentry = ERR_PTR(-ENOENT);
2410 goto fail;
2411 }
2412 *path = nd.path;
2413 return dentry;
2414 eexist:
2415 dput(dentry);
2416 dentry = ERR_PTR(-EEXIST);
2417 fail:
2418 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2419 out:
2420 path_put(&nd.path);
2421 return dentry;
2422 }
2423 EXPORT_SYMBOL(kern_path_create);
2424
2425 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2426 {
2427 char *tmp = getname(pathname);
2428 struct dentry *res;
2429 if (IS_ERR(tmp))
2430 return ERR_CAST(tmp);
2431 res = kern_path_create(dfd, tmp, path, is_dir);
2432 putname(tmp);
2433 return res;
2434 }
2435 EXPORT_SYMBOL(user_path_create);
2436
2437 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2438 {
2439 int error = may_create(dir, dentry);
2440
2441 if (error)
2442 return error;
2443
2444 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2445 !ns_capable(inode_userns(dir), CAP_MKNOD))
2446 return -EPERM;
2447
2448 if (!dir->i_op->mknod)
2449 return -EPERM;
2450
2451 error = devcgroup_inode_mknod(mode, dev);
2452 if (error)
2453 return error;
2454
2455 error = security_inode_mknod(dir, dentry, mode, dev);
2456 if (error)
2457 return error;
2458
2459 error = dir->i_op->mknod(dir, dentry, mode, dev);
2460 if (!error)
2461 fsnotify_create(dir, dentry);
2462 return error;
2463 }
2464
2465 static int may_mknod(mode_t mode)
2466 {
2467 switch (mode & S_IFMT) {
2468 case S_IFREG:
2469 case S_IFCHR:
2470 case S_IFBLK:
2471 case S_IFIFO:
2472 case S_IFSOCK:
2473 case 0: /* zero mode translates to S_IFREG */
2474 return 0;
2475 case S_IFDIR:
2476 return -EPERM;
2477 default:
2478 return -EINVAL;
2479 }
2480 }
2481
2482 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2483 unsigned, dev)
2484 {
2485 struct dentry *dentry;
2486 struct path path;
2487 int error;
2488
2489 if (S_ISDIR(mode))
2490 return -EPERM;
2491
2492 dentry = user_path_create(dfd, filename, &path, 0);
2493 if (IS_ERR(dentry))
2494 return PTR_ERR(dentry);
2495
2496 if (!IS_POSIXACL(path.dentry->d_inode))
2497 mode &= ~current_umask();
2498 error = may_mknod(mode);
2499 if (error)
2500 goto out_dput;
2501 error = mnt_want_write(path.mnt);
2502 if (error)
2503 goto out_dput;
2504 error = security_path_mknod(&path, dentry, mode, dev);
2505 if (error)
2506 goto out_drop_write;
2507 switch (mode & S_IFMT) {
2508 case 0: case S_IFREG:
2509 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2510 break;
2511 case S_IFCHR: case S_IFBLK:
2512 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2513 new_decode_dev(dev));
2514 break;
2515 case S_IFIFO: case S_IFSOCK:
2516 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2517 break;
2518 }
2519 out_drop_write:
2520 mnt_drop_write(path.mnt);
2521 out_dput:
2522 dput(dentry);
2523 mutex_unlock(&path.dentry->d_inode->i_mutex);
2524 path_put(&path);
2525
2526 return error;
2527 }
2528
2529 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2530 {
2531 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2532 }
2533
2534 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2535 {
2536 int error = may_create(dir, dentry);
2537
2538 if (error)
2539 return error;
2540
2541 if (!dir->i_op->mkdir)
2542 return -EPERM;
2543
2544 mode &= (S_IRWXUGO|S_ISVTX);
2545 error = security_inode_mkdir(dir, dentry, mode);
2546 if (error)
2547 return error;
2548
2549 error = dir->i_op->mkdir(dir, dentry, mode);
2550 if (!error)
2551 fsnotify_mkdir(dir, dentry);
2552 return error;
2553 }
2554
2555 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2556 {
2557 struct dentry *dentry;
2558 struct path path;
2559 int error;
2560
2561 dentry = user_path_create(dfd, pathname, &path, 1);
2562 if (IS_ERR(dentry))
2563 return PTR_ERR(dentry);
2564
2565 if (!IS_POSIXACL(path.dentry->d_inode))
2566 mode &= ~current_umask();
2567 error = mnt_want_write(path.mnt);
2568 if (error)
2569 goto out_dput;
2570 error = security_path_mkdir(&path, dentry, mode);
2571 if (error)
2572 goto out_drop_write;
2573 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2574 out_drop_write:
2575 mnt_drop_write(path.mnt);
2576 out_dput:
2577 dput(dentry);
2578 mutex_unlock(&path.dentry->d_inode->i_mutex);
2579 path_put(&path);
2580 return error;
2581 }
2582
2583 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2584 {
2585 return sys_mkdirat(AT_FDCWD, pathname, mode);
2586 }
2587
2588 /*
2589 * The dentry_unhash() helper will try to drop the dentry early: we
2590 * should have a usage count of 2 if we're the only user of this
2591 * dentry, and if that is true (possibly after pruning the dcache),
2592 * then we drop the dentry now.
2593 *
2594 * A low-level filesystem can, if it choses, legally
2595 * do a
2596 *
2597 * if (!d_unhashed(dentry))
2598 * return -EBUSY;
2599 *
2600 * if it cannot handle the case of removing a directory
2601 * that is still in use by something else..
2602 */
2603 void dentry_unhash(struct dentry *dentry)
2604 {
2605 shrink_dcache_parent(dentry);
2606 spin_lock(&dentry->d_lock);
2607 if (dentry->d_count == 1)
2608 __d_drop(dentry);
2609 spin_unlock(&dentry->d_lock);
2610 }
2611
2612 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2613 {
2614 int error = may_delete(dir, dentry, 1);
2615
2616 if (error)
2617 return error;
2618
2619 if (!dir->i_op->rmdir)
2620 return -EPERM;
2621
2622 mutex_lock(&dentry->d_inode->i_mutex);
2623
2624 error = -EBUSY;
2625 if (d_mountpoint(dentry))
2626 goto out;
2627
2628 error = security_inode_rmdir(dir, dentry);
2629 if (error)
2630 goto out;
2631
2632 shrink_dcache_parent(dentry);
2633 error = dir->i_op->rmdir(dir, dentry);
2634 if (error)
2635 goto out;
2636
2637 dentry->d_inode->i_flags |= S_DEAD;
2638 dont_mount(dentry);
2639
2640 out:
2641 mutex_unlock(&dentry->d_inode->i_mutex);
2642 if (!error)
2643 d_delete(dentry);
2644 return error;
2645 }
2646
2647 static long do_rmdir(int dfd, const char __user *pathname)
2648 {
2649 int error = 0;
2650 char * name;
2651 struct dentry *dentry;
2652 struct nameidata nd;
2653
2654 error = user_path_parent(dfd, pathname, &nd, &name);
2655 if (error)
2656 return error;
2657
2658 switch(nd.last_type) {
2659 case LAST_DOTDOT:
2660 error = -ENOTEMPTY;
2661 goto exit1;
2662 case LAST_DOT:
2663 error = -EINVAL;
2664 goto exit1;
2665 case LAST_ROOT:
2666 error = -EBUSY;
2667 goto exit1;
2668 }
2669
2670 nd.flags &= ~LOOKUP_PARENT;
2671
2672 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2673 dentry = lookup_hash(&nd);
2674 error = PTR_ERR(dentry);
2675 if (IS_ERR(dentry))
2676 goto exit2;
2677 if (!dentry->d_inode) {
2678 error = -ENOENT;
2679 goto exit3;
2680 }
2681 error = mnt_want_write(nd.path.mnt);
2682 if (error)
2683 goto exit3;
2684 error = security_path_rmdir(&nd.path, dentry);
2685 if (error)
2686 goto exit4;
2687 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2688 exit4:
2689 mnt_drop_write(nd.path.mnt);
2690 exit3:
2691 dput(dentry);
2692 exit2:
2693 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2694 exit1:
2695 path_put(&nd.path);
2696 putname(name);
2697 return error;
2698 }
2699
2700 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2701 {
2702 return do_rmdir(AT_FDCWD, pathname);
2703 }
2704
2705 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2706 {
2707 int error = may_delete(dir, dentry, 0);
2708
2709 if (error)
2710 return error;
2711
2712 if (!dir->i_op->unlink)
2713 return -EPERM;
2714
2715 mutex_lock(&dentry->d_inode->i_mutex);
2716 if (d_mountpoint(dentry))
2717 error = -EBUSY;
2718 else {
2719 error = security_inode_unlink(dir, dentry);
2720 if (!error) {
2721 error = dir->i_op->unlink(dir, dentry);
2722 if (!error)
2723 dont_mount(dentry);
2724 }
2725 }
2726 mutex_unlock(&dentry->d_inode->i_mutex);
2727
2728 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2729 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2730 fsnotify_link_count(dentry->d_inode);
2731 d_delete(dentry);
2732 }
2733
2734 return error;
2735 }
2736
2737 /*
2738 * Make sure that the actual truncation of the file will occur outside its
2739 * directory's i_mutex. Truncate can take a long time if there is a lot of
2740 * writeout happening, and we don't want to prevent access to the directory
2741 * while waiting on the I/O.
2742 */
2743 static long do_unlinkat(int dfd, const char __user *pathname)
2744 {
2745 int error;
2746 char *name;
2747 struct dentry *dentry;
2748 struct nameidata nd;
2749 struct inode *inode = NULL;
2750
2751 error = user_path_parent(dfd, pathname, &nd, &name);
2752 if (error)
2753 return error;
2754
2755 error = -EISDIR;
2756 if (nd.last_type != LAST_NORM)
2757 goto exit1;
2758
2759 nd.flags &= ~LOOKUP_PARENT;
2760
2761 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2762 dentry = lookup_hash(&nd);
2763 error = PTR_ERR(dentry);
2764 if (!IS_ERR(dentry)) {
2765 /* Why not before? Because we want correct error value */
2766 if (nd.last.name[nd.last.len])
2767 goto slashes;
2768 inode = dentry->d_inode;
2769 if (!inode)
2770 goto slashes;
2771 ihold(inode);
2772 error = mnt_want_write(nd.path.mnt);
2773 if (error)
2774 goto exit2;
2775 error = security_path_unlink(&nd.path, dentry);
2776 if (error)
2777 goto exit3;
2778 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2779 exit3:
2780 mnt_drop_write(nd.path.mnt);
2781 exit2:
2782 dput(dentry);
2783 }
2784 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2785 if (inode)
2786 iput(inode); /* truncate the inode here */
2787 exit1:
2788 path_put(&nd.path);
2789 putname(name);
2790 return error;
2791
2792 slashes:
2793 error = !dentry->d_inode ? -ENOENT :
2794 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2795 goto exit2;
2796 }
2797
2798 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2799 {
2800 if ((flag & ~AT_REMOVEDIR) != 0)
2801 return -EINVAL;
2802
2803 if (flag & AT_REMOVEDIR)
2804 return do_rmdir(dfd, pathname);
2805
2806 return do_unlinkat(dfd, pathname);
2807 }
2808
2809 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2810 {
2811 return do_unlinkat(AT_FDCWD, pathname);
2812 }
2813
2814 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2815 {
2816 int error = may_create(dir, dentry);
2817
2818 if (error)
2819 return error;
2820
2821 if (!dir->i_op->symlink)
2822 return -EPERM;
2823
2824 error = security_inode_symlink(dir, dentry, oldname);
2825 if (error)
2826 return error;
2827
2828 error = dir->i_op->symlink(dir, dentry, oldname);
2829 if (!error)
2830 fsnotify_create(dir, dentry);
2831 return error;
2832 }
2833
2834 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2835 int, newdfd, const char __user *, newname)
2836 {
2837 int error;
2838 char *from;
2839 struct dentry *dentry;
2840 struct path path;
2841
2842 from = getname(oldname);
2843 if (IS_ERR(from))
2844 return PTR_ERR(from);
2845
2846 dentry = user_path_create(newdfd, newname, &path, 0);
2847 error = PTR_ERR(dentry);
2848 if (IS_ERR(dentry))
2849 goto out_putname;
2850
2851 error = mnt_want_write(path.mnt);
2852 if (error)
2853 goto out_dput;
2854 error = security_path_symlink(&path, dentry, from);
2855 if (error)
2856 goto out_drop_write;
2857 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2858 out_drop_write:
2859 mnt_drop_write(path.mnt);
2860 out_dput:
2861 dput(dentry);
2862 mutex_unlock(&path.dentry->d_inode->i_mutex);
2863 path_put(&path);
2864 out_putname:
2865 putname(from);
2866 return error;
2867 }
2868
2869 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2870 {
2871 return sys_symlinkat(oldname, AT_FDCWD, newname);
2872 }
2873
2874 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2875 {
2876 struct inode *inode = old_dentry->d_inode;
2877 int error;
2878
2879 if (!inode)
2880 return -ENOENT;
2881
2882 error = may_create(dir, new_dentry);
2883 if (error)
2884 return error;
2885
2886 if (dir->i_sb != inode->i_sb)
2887 return -EXDEV;
2888
2889 /*
2890 * A link to an append-only or immutable file cannot be created.
2891 */
2892 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2893 return -EPERM;
2894 if (!dir->i_op->link)
2895 return -EPERM;
2896 if (S_ISDIR(inode->i_mode))
2897 return -EPERM;
2898
2899 error = security_inode_link(old_dentry, dir, new_dentry);
2900 if (error)
2901 return error;
2902
2903 mutex_lock(&inode->i_mutex);
2904 /* Make sure we don't allow creating hardlink to an unlinked file */
2905 if (inode->i_nlink == 0)
2906 error = -ENOENT;
2907 else
2908 error = dir->i_op->link(old_dentry, dir, new_dentry);
2909 mutex_unlock(&inode->i_mutex);
2910 if (!error)
2911 fsnotify_link(dir, inode, new_dentry);
2912 return error;
2913 }
2914
2915 /*
2916 * Hardlinks are often used in delicate situations. We avoid
2917 * security-related surprises by not following symlinks on the
2918 * newname. --KAB
2919 *
2920 * We don't follow them on the oldname either to be compatible
2921 * with linux 2.0, and to avoid hard-linking to directories
2922 * and other special files. --ADM
2923 */
2924 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2925 int, newdfd, const char __user *, newname, int, flags)
2926 {
2927 struct dentry *new_dentry;
2928 struct path old_path, new_path;
2929 int how = 0;
2930 int error;
2931
2932 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2933 return -EINVAL;
2934 /*
2935 * To use null names we require CAP_DAC_READ_SEARCH
2936 * This ensures that not everyone will be able to create
2937 * handlink using the passed filedescriptor.
2938 */
2939 if (flags & AT_EMPTY_PATH) {
2940 if (!capable(CAP_DAC_READ_SEARCH))
2941 return -ENOENT;
2942 how = LOOKUP_EMPTY;
2943 }
2944
2945 if (flags & AT_SYMLINK_FOLLOW)
2946 how |= LOOKUP_FOLLOW;
2947
2948 error = user_path_at(olddfd, oldname, how, &old_path);
2949 if (error)
2950 return error;
2951
2952 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2953 error = PTR_ERR(new_dentry);
2954 if (IS_ERR(new_dentry))
2955 goto out;
2956
2957 error = -EXDEV;
2958 if (old_path.mnt != new_path.mnt)
2959 goto out_dput;
2960 error = mnt_want_write(new_path.mnt);
2961 if (error)
2962 goto out_dput;
2963 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2964 if (error)
2965 goto out_drop_write;
2966 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2967 out_drop_write:
2968 mnt_drop_write(new_path.mnt);
2969 out_dput:
2970 dput(new_dentry);
2971 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2972 path_put(&new_path);
2973 out:
2974 path_put(&old_path);
2975
2976 return error;
2977 }
2978
2979 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2980 {
2981 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2982 }
2983
2984 /*
2985 * The worst of all namespace operations - renaming directory. "Perverted"
2986 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2987 * Problems:
2988 * a) we can get into loop creation. Check is done in is_subdir().
2989 * b) race potential - two innocent renames can create a loop together.
2990 * That's where 4.4 screws up. Current fix: serialization on
2991 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2992 * story.
2993 * c) we have to lock _three_ objects - parents and victim (if it exists).
2994 * And that - after we got ->i_mutex on parents (until then we don't know
2995 * whether the target exists). Solution: try to be smart with locking
2996 * order for inodes. We rely on the fact that tree topology may change
2997 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2998 * move will be locked. Thus we can rank directories by the tree
2999 * (ancestors first) and rank all non-directories after them.
3000 * That works since everybody except rename does "lock parent, lookup,
3001 * lock child" and rename is under ->s_vfs_rename_mutex.
3002 * HOWEVER, it relies on the assumption that any object with ->lookup()
3003 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3004 * we'd better make sure that there's no link(2) for them.
3005 * d) conversion from fhandle to dentry may come in the wrong moment - when
3006 * we are removing the target. Solution: we will have to grab ->i_mutex
3007 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3008 * ->i_mutex on parents, which works but leads to some truly excessive
3009 * locking].
3010 */
3011 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3012 struct inode *new_dir, struct dentry *new_dentry)
3013 {
3014 int error = 0;
3015 struct inode *target = new_dentry->d_inode;
3016
3017 /*
3018 * If we are going to change the parent - check write permissions,
3019 * we'll need to flip '..'.
3020 */
3021 if (new_dir != old_dir) {
3022 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3023 if (error)
3024 return error;
3025 }
3026
3027 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3028 if (error)
3029 return error;
3030
3031 if (target)
3032 mutex_lock(&target->i_mutex);
3033
3034 error = -EBUSY;
3035 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3036 goto out;
3037
3038 if (target)
3039 shrink_dcache_parent(new_dentry);
3040 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3041 if (error)
3042 goto out;
3043
3044 if (target) {
3045 target->i_flags |= S_DEAD;
3046 dont_mount(new_dentry);
3047 }
3048 out:
3049 if (target)
3050 mutex_unlock(&target->i_mutex);
3051 if (!error)
3052 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3053 d_move(old_dentry,new_dentry);
3054 return error;
3055 }
3056
3057 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3058 struct inode *new_dir, struct dentry *new_dentry)
3059 {
3060 struct inode *target = new_dentry->d_inode;
3061 int error;
3062
3063 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3064 if (error)
3065 return error;
3066
3067 dget(new_dentry);
3068 if (target)
3069 mutex_lock(&target->i_mutex);
3070
3071 error = -EBUSY;
3072 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3073 goto out;
3074
3075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3076 if (error)
3077 goto out;
3078
3079 if (target)
3080 dont_mount(new_dentry);
3081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3082 d_move(old_dentry, new_dentry);
3083 out:
3084 if (target)
3085 mutex_unlock(&target->i_mutex);
3086 dput(new_dentry);
3087 return error;
3088 }
3089
3090 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3091 struct inode *new_dir, struct dentry *new_dentry)
3092 {
3093 int error;
3094 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3095 const unsigned char *old_name;
3096
3097 if (old_dentry->d_inode == new_dentry->d_inode)
3098 return 0;
3099
3100 error = may_delete(old_dir, old_dentry, is_dir);
3101 if (error)
3102 return error;
3103
3104 if (!new_dentry->d_inode)
3105 error = may_create(new_dir, new_dentry);
3106 else
3107 error = may_delete(new_dir, new_dentry, is_dir);
3108 if (error)
3109 return error;
3110
3111 if (!old_dir->i_op->rename)
3112 return -EPERM;
3113
3114 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3115
3116 if (is_dir)
3117 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3118 else
3119 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3120 if (!error)
3121 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3122 new_dentry->d_inode, old_dentry);
3123 fsnotify_oldname_free(old_name);
3124
3125 return error;
3126 }
3127
3128 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3129 int, newdfd, const char __user *, newname)
3130 {
3131 struct dentry *old_dir, *new_dir;
3132 struct dentry *old_dentry, *new_dentry;
3133 struct dentry *trap;
3134 struct nameidata oldnd, newnd;
3135 char *from;
3136 char *to;
3137 int error;
3138
3139 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3140 if (error)
3141 goto exit;
3142
3143 error = user_path_parent(newdfd, newname, &newnd, &to);
3144 if (error)
3145 goto exit1;
3146
3147 error = -EXDEV;
3148 if (oldnd.path.mnt != newnd.path.mnt)
3149 goto exit2;
3150
3151 old_dir = oldnd.path.dentry;
3152 error = -EBUSY;
3153 if (oldnd.last_type != LAST_NORM)
3154 goto exit2;
3155
3156 new_dir = newnd.path.dentry;
3157 if (newnd.last_type != LAST_NORM)
3158 goto exit2;
3159
3160 oldnd.flags &= ~LOOKUP_PARENT;
3161 newnd.flags &= ~LOOKUP_PARENT;
3162 newnd.flags |= LOOKUP_RENAME_TARGET;
3163
3164 trap = lock_rename(new_dir, old_dir);
3165
3166 old_dentry = lookup_hash(&oldnd);
3167 error = PTR_ERR(old_dentry);
3168 if (IS_ERR(old_dentry))
3169 goto exit3;
3170 /* source must exist */
3171 error = -ENOENT;
3172 if (!old_dentry->d_inode)
3173 goto exit4;
3174 /* unless the source is a directory trailing slashes give -ENOTDIR */
3175 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3176 error = -ENOTDIR;
3177 if (oldnd.last.name[oldnd.last.len])
3178 goto exit4;
3179 if (newnd.last.name[newnd.last.len])
3180 goto exit4;
3181 }
3182 /* source should not be ancestor of target */
3183 error = -EINVAL;
3184 if (old_dentry == trap)
3185 goto exit4;
3186 new_dentry = lookup_hash(&newnd);
3187 error = PTR_ERR(new_dentry);
3188 if (IS_ERR(new_dentry))
3189 goto exit4;
3190 /* target should not be an ancestor of source */
3191 error = -ENOTEMPTY;
3192 if (new_dentry == trap)
3193 goto exit5;
3194
3195 error = mnt_want_write(oldnd.path.mnt);
3196 if (error)
3197 goto exit5;
3198 error = security_path_rename(&oldnd.path, old_dentry,
3199 &newnd.path, new_dentry);
3200 if (error)
3201 goto exit6;
3202 error = vfs_rename(old_dir->d_inode, old_dentry,
3203 new_dir->d_inode, new_dentry);
3204 exit6:
3205 mnt_drop_write(oldnd.path.mnt);
3206 exit5:
3207 dput(new_dentry);
3208 exit4:
3209 dput(old_dentry);
3210 exit3:
3211 unlock_rename(new_dir, old_dir);
3212 exit2:
3213 path_put(&newnd.path);
3214 putname(to);
3215 exit1:
3216 path_put(&oldnd.path);
3217 putname(from);
3218 exit:
3219 return error;
3220 }
3221
3222 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3223 {
3224 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3225 }
3226
3227 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3228 {
3229 int len;
3230
3231 len = PTR_ERR(link);
3232 if (IS_ERR(link))
3233 goto out;
3234
3235 len = strlen(link);
3236 if (len > (unsigned) buflen)
3237 len = buflen;
3238 if (copy_to_user(buffer, link, len))
3239 len = -EFAULT;
3240 out:
3241 return len;
3242 }
3243
3244 /*
3245 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3246 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3247 * using) it for any given inode is up to filesystem.
3248 */
3249 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3250 {
3251 struct nameidata nd;
3252 void *cookie;
3253 int res;
3254
3255 nd.depth = 0;
3256 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3257 if (IS_ERR(cookie))
3258 return PTR_ERR(cookie);
3259
3260 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3261 if (dentry->d_inode->i_op->put_link)
3262 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3263 return res;
3264 }
3265
3266 int vfs_follow_link(struct nameidata *nd, const char *link)
3267 {
3268 return __vfs_follow_link(nd, link);
3269 }
3270
3271 /* get the link contents into pagecache */
3272 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3273 {
3274 char *kaddr;
3275 struct page *page;
3276 struct address_space *mapping = dentry->d_inode->i_mapping;
3277 page = read_mapping_page(mapping, 0, NULL);
3278 if (IS_ERR(page))
3279 return (char*)page;
3280 *ppage = page;
3281 kaddr = kmap(page);
3282 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3283 return kaddr;
3284 }
3285
3286 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3287 {
3288 struct page *page = NULL;
3289 char *s = page_getlink(dentry, &page);
3290 int res = vfs_readlink(dentry,buffer,buflen,s);
3291 if (page) {
3292 kunmap(page);
3293 page_cache_release(page);
3294 }
3295 return res;
3296 }
3297
3298 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3299 {
3300 struct page *page = NULL;
3301 nd_set_link(nd, page_getlink(dentry, &page));
3302 return page;
3303 }
3304
3305 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3306 {
3307 struct page *page = cookie;
3308
3309 if (page) {
3310 kunmap(page);
3311 page_cache_release(page);
3312 }
3313 }
3314
3315 /*
3316 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3317 */
3318 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3319 {
3320 struct address_space *mapping = inode->i_mapping;
3321 struct page *page;
3322 void *fsdata;
3323 int err;
3324 char *kaddr;
3325 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3326 if (nofs)
3327 flags |= AOP_FLAG_NOFS;
3328
3329 retry:
3330 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3331 flags, &page, &fsdata);
3332 if (err)
3333 goto fail;
3334
3335 kaddr = kmap_atomic(page, KM_USER0);
3336 memcpy(kaddr, symname, len-1);
3337 kunmap_atomic(kaddr, KM_USER0);
3338
3339 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3340 page, fsdata);
3341 if (err < 0)
3342 goto fail;
3343 if (err < len-1)
3344 goto retry;
3345
3346 mark_inode_dirty(inode);
3347 return 0;
3348 fail:
3349 return err;
3350 }
3351
3352 int page_symlink(struct inode *inode, const char *symname, int len)
3353 {
3354 return __page_symlink(inode, symname, len,
3355 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3356 }
3357
3358 const struct inode_operations page_symlink_inode_operations = {
3359 .readlink = generic_readlink,
3360 .follow_link = page_follow_link_light,
3361 .put_link = page_put_link,
3362 };
3363
3364 EXPORT_SYMBOL(user_path_at);
3365 EXPORT_SYMBOL(follow_down_one);
3366 EXPORT_SYMBOL(follow_down);
3367 EXPORT_SYMBOL(follow_up);
3368 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3369 EXPORT_SYMBOL(getname);
3370 EXPORT_SYMBOL(lock_rename);
3371 EXPORT_SYMBOL(lookup_one_len);
3372 EXPORT_SYMBOL(page_follow_link_light);
3373 EXPORT_SYMBOL(page_put_link);
3374 EXPORT_SYMBOL(page_readlink);
3375 EXPORT_SYMBOL(__page_symlink);
3376 EXPORT_SYMBOL(page_symlink);
3377 EXPORT_SYMBOL(page_symlink_inode_operations);
3378 EXPORT_SYMBOL(kern_path);
3379 EXPORT_SYMBOL(vfs_path_lookup);
3380 EXPORT_SYMBOL(inode_permission);
3381 EXPORT_SYMBOL(unlock_rename);
3382 EXPORT_SYMBOL(vfs_create);
3383 EXPORT_SYMBOL(vfs_follow_link);
3384 EXPORT_SYMBOL(vfs_link);
3385 EXPORT_SYMBOL(vfs_mkdir);
3386 EXPORT_SYMBOL(vfs_mknod);
3387 EXPORT_SYMBOL(generic_permission);
3388 EXPORT_SYMBOL(vfs_readlink);
3389 EXPORT_SYMBOL(vfs_rename);
3390 EXPORT_SYMBOL(vfs_rmdir);
3391 EXPORT_SYMBOL(vfs_symlink);
3392 EXPORT_SYMBOL(vfs_unlink);
3393 EXPORT_SYMBOL(dentry_unhash);
3394 EXPORT_SYMBOL(generic_readlink);