]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/namei.c
btrfs: check for error when looking up inode during dir entry replay
[mirror_ubuntu-focal-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
385
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
390 }
391 return generic_permission(inode, mask);
392 }
393
394 /**
395 * sb_permission - Check superblock-level permissions
396 * @sb: Superblock of inode to check permission on
397 * @inode: Inode to check permission on
398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399 *
400 * Separate out file-system wide checks from inode-specific permission checks.
401 */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 if (unlikely(mask & MAY_WRITE)) {
405 umode_t mode = inode->i_mode;
406
407 /* Nobody gets write access to a read-only fs. */
408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 return -EROFS;
410 }
411 return 0;
412 }
413
414 /**
415 * inode_permission - Check for access rights to a given inode
416 * @inode: Inode to check permission on
417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418 *
419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
420 * this, letting us set arbitrary permissions for filesystem access without
421 * changing the "normal" UIDs which are used for other things.
422 *
423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424 */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 int retval;
428
429 retval = sb_permission(inode->i_sb, inode, mask);
430 if (retval)
431 return retval;
432
433 if (unlikely(mask & MAY_WRITE)) {
434 /*
435 * Nobody gets write access to an immutable file.
436 */
437 if (IS_IMMUTABLE(inode))
438 return -EPERM;
439
440 /*
441 * Updating mtime will likely cause i_uid and i_gid to be
442 * written back improperly if their true value is unknown
443 * to the vfs.
444 */
445 if (HAS_UNMAPPED_ID(inode))
446 return -EACCES;
447 }
448
449 retval = do_inode_permission(inode, mask);
450 if (retval)
451 return retval;
452
453 retval = devcgroup_inode_permission(inode, mask);
454 if (retval)
455 return retval;
456
457 return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460
461 /**
462 * path_get - get a reference to a path
463 * @path: path to get the reference to
464 *
465 * Given a path increment the reference count to the dentry and the vfsmount.
466 */
467 void path_get(const struct path *path)
468 {
469 mntget(path->mnt);
470 dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473
474 /**
475 * path_put - put a reference to a path
476 * @path: path to put the reference to
477 *
478 * Given a path decrement the reference count to the dentry and the vfsmount.
479 */
480 void path_put(const struct path *path)
481 {
482 dput(path->dentry);
483 mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 struct path path;
490 struct qstr last;
491 struct path root;
492 struct inode *inode; /* path.dentry.d_inode */
493 unsigned int flags;
494 unsigned seq, m_seq;
495 int last_type;
496 unsigned depth;
497 int total_link_count;
498 struct saved {
499 struct path link;
500 struct delayed_call done;
501 const char *name;
502 unsigned seq;
503 } *stack, internal[EMBEDDED_LEVELS];
504 struct filename *name;
505 struct nameidata *saved;
506 struct inode *link_inode;
507 unsigned root_seq;
508 int dfd;
509 } __randomize_layout;
510
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 struct nameidata *old = current->nameidata;
514 p->stack = p->internal;
515 p->dfd = dfd;
516 p->name = name;
517 p->total_link_count = old ? old->total_link_count : 0;
518 p->saved = old;
519 current->nameidata = p;
520 }
521
522 static void restore_nameidata(void)
523 {
524 struct nameidata *now = current->nameidata, *old = now->saved;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal)
530 kfree(now->stack);
531 }
532
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 struct saved *p;
536
537 if (nd->flags & LOOKUP_RCU) {
538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 GFP_ATOMIC);
540 if (unlikely(!p))
541 return -ECHILD;
542 } else {
543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 GFP_KERNEL);
545 if (unlikely(!p))
546 return -ENOMEM;
547 }
548 memcpy(p, nd->internal, sizeof(nd->internal));
549 nd->stack = p;
550 return 0;
551 }
552
553 /**
554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555 * @path: nameidate to verify
556 *
557 * Rename can sometimes move a file or directory outside of a bind
558 * mount, path_connected allows those cases to be detected.
559 */
560 static bool path_connected(const struct path *path)
561 {
562 struct vfsmount *mnt = path->mnt;
563 struct super_block *sb = mnt->mnt_sb;
564
565 /* Bind mounts and multi-root filesystems can have disconnected paths */
566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 return true;
568
569 return is_subdir(path->dentry, mnt->mnt_root);
570 }
571
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 if (likely(nd->depth != EMBEDDED_LEVELS))
575 return 0;
576 if (likely(nd->stack != nd->internal))
577 return 0;
578 return __nd_alloc_stack(nd);
579 }
580
581 static void drop_links(struct nameidata *nd)
582 {
583 int i = nd->depth;
584 while (i--) {
585 struct saved *last = nd->stack + i;
586 do_delayed_call(&last->done);
587 clear_delayed_call(&last->done);
588 }
589 }
590
591 static void terminate_walk(struct nameidata *nd)
592 {
593 drop_links(nd);
594 if (!(nd->flags & LOOKUP_RCU)) {
595 int i;
596 path_put(&nd->path);
597 for (i = 0; i < nd->depth; i++)
598 path_put(&nd->stack[i].link);
599 if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 path_put(&nd->root);
601 nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 }
603 } else {
604 nd->flags &= ~LOOKUP_RCU;
605 rcu_read_unlock();
606 }
607 nd->depth = 0;
608 }
609
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 struct path *path, unsigned seq)
613 {
614 int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 if (unlikely(res)) {
616 if (res > 0)
617 path->mnt = NULL;
618 path->dentry = NULL;
619 return false;
620 }
621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 path->dentry = NULL;
623 return false;
624 }
625 return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 int i;
631 for (i = 0; i < nd->depth; i++) {
632 struct saved *last = nd->stack + i;
633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 drop_links(nd);
635 nd->depth = i + 1;
636 return false;
637 }
638 }
639 return true;
640 }
641
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 return true;
646 nd->flags |= LOOKUP_ROOT_GRABBED;
647 return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649
650 /*
651 * Path walking has 2 modes, rcu-walk and ref-walk (see
652 * Documentation/filesystems/path-lookup.txt). In situations when we can't
653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
655 * mode. Refcounts are grabbed at the last known good point before rcu-walk
656 * got stuck, so ref-walk may continue from there. If this is not successful
657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
658 * to restart the path walk from the beginning in ref-walk mode.
659 */
660
661 /**
662 * unlazy_walk - try to switch to ref-walk mode.
663 * @nd: nameidata pathwalk data
664 * Returns: 0 on success, -ECHILD on failure
665 *
666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
667 * for ref-walk mode.
668 * Must be called from rcu-walk context.
669 * Nothing should touch nameidata between unlazy_walk() failure and
670 * terminate_walk().
671 */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 struct dentry *parent = nd->path.dentry;
675
676 BUG_ON(!(nd->flags & LOOKUP_RCU));
677
678 nd->flags &= ~LOOKUP_RCU;
679 if (unlikely(!legitimize_links(nd)))
680 goto out1;
681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 goto out;
683 if (unlikely(!legitimize_root(nd)))
684 goto out;
685 rcu_read_unlock();
686 BUG_ON(nd->inode != parent->d_inode);
687 return 0;
688
689 out1:
690 nd->path.mnt = NULL;
691 nd->path.dentry = NULL;
692 out:
693 rcu_read_unlock();
694 return -ECHILD;
695 }
696
697 /**
698 * unlazy_child - try to switch to ref-walk mode.
699 * @nd: nameidata pathwalk data
700 * @dentry: child of nd->path.dentry
701 * @seq: seq number to check dentry against
702 * Returns: 0 on success, -ECHILD on failure
703 *
704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
706 * @nd. Must be called from rcu-walk context.
707 * Nothing should touch nameidata between unlazy_child() failure and
708 * terminate_walk().
709 */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 BUG_ON(!(nd->flags & LOOKUP_RCU));
713
714 nd->flags &= ~LOOKUP_RCU;
715 if (unlikely(!legitimize_links(nd)))
716 goto out2;
717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 goto out2;
719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 goto out1;
721
722 /*
723 * We need to move both the parent and the dentry from the RCU domain
724 * to be properly refcounted. And the sequence number in the dentry
725 * validates *both* dentry counters, since we checked the sequence
726 * number of the parent after we got the child sequence number. So we
727 * know the parent must still be valid if the child sequence number is
728 */
729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 goto out;
731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 goto out_dput;
733 /*
734 * Sequence counts matched. Now make sure that the root is
735 * still valid and get it if required.
736 */
737 if (unlikely(!legitimize_root(nd)))
738 goto out_dput;
739 rcu_read_unlock();
740 return 0;
741
742 out2:
743 nd->path.mnt = NULL;
744 out1:
745 nd->path.dentry = NULL;
746 out:
747 rcu_read_unlock();
748 return -ECHILD;
749 out_dput:
750 rcu_read_unlock();
751 dput(dentry);
752 return -ECHILD;
753 }
754
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 return dentry->d_op->d_revalidate(dentry, flags);
759 else
760 return 1;
761 }
762
763 /**
764 * complete_walk - successful completion of path walk
765 * @nd: pointer nameidata
766 *
767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
768 * Revalidate the final result, unless we'd already done that during
769 * the path walk or the filesystem doesn't ask for it. Return 0 on
770 * success, -error on failure. In case of failure caller does not
771 * need to drop nd->path.
772 */
773 static int complete_walk(struct nameidata *nd)
774 {
775 struct dentry *dentry = nd->path.dentry;
776 int status;
777
778 if (nd->flags & LOOKUP_RCU) {
779 if (!(nd->flags & LOOKUP_ROOT))
780 nd->root.mnt = NULL;
781 if (unlikely(unlazy_walk(nd)))
782 return -ECHILD;
783 }
784
785 if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 return 0;
787
788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 return 0;
790
791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 if (status > 0)
793 return 0;
794
795 if (!status)
796 status = -ESTALE;
797
798 return status;
799 }
800
801 static void set_root(struct nameidata *nd)
802 {
803 struct fs_struct *fs = current->fs;
804
805 if (nd->flags & LOOKUP_RCU) {
806 unsigned seq;
807
808 do {
809 seq = read_seqcount_begin(&fs->seq);
810 nd->root = fs->root;
811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 } while (read_seqcount_retry(&fs->seq, seq));
813 } else {
814 get_fs_root(fs, &nd->root);
815 nd->flags |= LOOKUP_ROOT_GRABBED;
816 }
817 }
818
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 dput(path->dentry);
822 if (path->mnt != nd->path.mnt)
823 mntput(path->mnt);
824 }
825
826 static inline void path_to_nameidata(const struct path *path,
827 struct nameidata *nd)
828 {
829 if (!(nd->flags & LOOKUP_RCU)) {
830 dput(nd->path.dentry);
831 if (nd->path.mnt != path->mnt)
832 mntput(nd->path.mnt);
833 }
834 nd->path.mnt = path->mnt;
835 nd->path.dentry = path->dentry;
836 }
837
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 if (nd->flags & LOOKUP_RCU) {
841 struct dentry *d;
842 nd->path = nd->root;
843 d = nd->path.dentry;
844 nd->inode = d->d_inode;
845 nd->seq = nd->root_seq;
846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 return -ECHILD;
848 } else {
849 path_put(&nd->path);
850 nd->path = nd->root;
851 path_get(&nd->path);
852 nd->inode = nd->path.dentry->d_inode;
853 }
854 nd->flags |= LOOKUP_JUMPED;
855 return 0;
856 }
857
858 /*
859 * Helper to directly jump to a known parsed path from ->get_link,
860 * caller must have taken a reference to path beforehand.
861 */
862 void nd_jump_link(struct path *path)
863 {
864 struct nameidata *nd = current->nameidata;
865 path_put(&nd->path);
866
867 nd->path = *path;
868 nd->inode = nd->path.dentry->d_inode;
869 nd->flags |= LOOKUP_JUMPED;
870 }
871
872 static inline void put_link(struct nameidata *nd)
873 {
874 struct saved *last = nd->stack + --nd->depth;
875 do_delayed_call(&last->done);
876 if (!(nd->flags & LOOKUP_RCU))
877 path_put(&last->link);
878 }
879
880 int sysctl_protected_symlinks __read_mostly = 1;
881 int sysctl_protected_hardlinks __read_mostly = 1;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884
885 /**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 const struct inode *inode;
903 const struct inode *parent;
904 kuid_t puid;
905
906 if (!sysctl_protected_symlinks)
907 return 0;
908
909 /* Allowed if owner and follower match. */
910 inode = nd->link_inode;
911 if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 return 0;
913
914 /* Allowed if parent directory not sticky and world-writable. */
915 parent = nd->inode;
916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 return 0;
918
919 /* Allowed if parent directory and link owner match. */
920 puid = parent->i_uid;
921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 return 0;
923
924 if (nd->flags & LOOKUP_RCU)
925 return -ECHILD;
926
927 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 audit_log_link_denied("follow_link");
929 return -EACCES;
930 }
931
932 /**
933 * safe_hardlink_source - Check for safe hardlink conditions
934 * @inode: the source inode to hardlink from
935 *
936 * Return false if at least one of the following conditions:
937 * - inode is not a regular file
938 * - inode is setuid
939 * - inode is setgid and group-exec
940 * - access failure for read and write
941 *
942 * Otherwise returns true.
943 */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 umode_t mode = inode->i_mode;
947
948 /* Special files should not get pinned to the filesystem. */
949 if (!S_ISREG(mode))
950 return false;
951
952 /* Setuid files should not get pinned to the filesystem. */
953 if (mode & S_ISUID)
954 return false;
955
956 /* Executable setgid files should not get pinned to the filesystem. */
957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 return false;
959
960 /* Hardlinking to unreadable or unwritable sources is dangerous. */
961 if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 return false;
963
964 return true;
965 }
966
967 /**
968 * may_linkat - Check permissions for creating a hardlink
969 * @link: the source to hardlink from
970 *
971 * Block hardlink when all of:
972 * - sysctl_protected_hardlinks enabled
973 * - fsuid does not match inode
974 * - hardlink source is unsafe (see safe_hardlink_source() above)
975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
976 *
977 * Returns 0 if successful, -ve on error.
978 */
979 static int may_linkat(struct path *link)
980 {
981 struct inode *inode = link->dentry->d_inode;
982
983 /* Inode writeback is not safe when the uid or gid are invalid. */
984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 return -EOVERFLOW;
986
987 if (!sysctl_protected_hardlinks)
988 return 0;
989
990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 * otherwise, it must be a safe source.
992 */
993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 return 0;
995
996 audit_log_link_denied("linkat");
997 return -EPERM;
998 }
999
1000 /**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 * should be allowed, or not, on files that already
1003 * exist.
1004 * @dir_mode: mode bits of directory
1005 * @dir_uid: owner of directory
1006 * @inode: the inode of the file to open
1007 *
1008 * Block an O_CREAT open of a FIFO (or a regular file) when:
1009 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1010 * - the file already exists
1011 * - we are in a sticky directory
1012 * - we don't own the file
1013 * - the owner of the directory doesn't own the file
1014 * - the directory is world writable
1015 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1016 * the directory doesn't have to be world writable: being group writable will
1017 * be enough.
1018 *
1019 * Returns 0 if the open is allowed, -ve on error.
1020 */
1021 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1022 struct inode * const inode)
1023 {
1024 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1025 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1026 likely(!(dir_mode & S_ISVTX)) ||
1027 uid_eq(inode->i_uid, dir_uid) ||
1028 uid_eq(current_fsuid(), inode->i_uid))
1029 return 0;
1030
1031 if (likely(dir_mode & 0002) ||
1032 (dir_mode & 0020 &&
1033 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1034 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1035 return -EACCES;
1036 }
1037 return 0;
1038 }
1039
1040 static __always_inline
1041 const char *get_link(struct nameidata *nd)
1042 {
1043 struct saved *last = nd->stack + nd->depth - 1;
1044 struct dentry *dentry = last->link.dentry;
1045 struct inode *inode = nd->link_inode;
1046 int error;
1047 const char *res;
1048
1049 if (!(nd->flags & LOOKUP_RCU)) {
1050 touch_atime(&last->link);
1051 cond_resched();
1052 } else if (atime_needs_update(&last->link, inode)) {
1053 if (unlikely(unlazy_walk(nd)))
1054 return ERR_PTR(-ECHILD);
1055 touch_atime(&last->link);
1056 }
1057
1058 error = security_inode_follow_link(dentry, inode,
1059 nd->flags & LOOKUP_RCU);
1060 if (unlikely(error))
1061 return ERR_PTR(error);
1062
1063 nd->last_type = LAST_BIND;
1064 res = READ_ONCE(inode->i_link);
1065 if (!res) {
1066 const char * (*get)(struct dentry *, struct inode *,
1067 struct delayed_call *);
1068 get = inode->i_op->get_link;
1069 if (nd->flags & LOOKUP_RCU) {
1070 res = get(NULL, inode, &last->done);
1071 if (res == ERR_PTR(-ECHILD)) {
1072 if (unlikely(unlazy_walk(nd)))
1073 return ERR_PTR(-ECHILD);
1074 res = get(dentry, inode, &last->done);
1075 }
1076 } else {
1077 res = get(dentry, inode, &last->done);
1078 }
1079 if (IS_ERR_OR_NULL(res))
1080 return res;
1081 }
1082 if (*res == '/') {
1083 if (!nd->root.mnt)
1084 set_root(nd);
1085 if (unlikely(nd_jump_root(nd)))
1086 return ERR_PTR(-ECHILD);
1087 while (unlikely(*++res == '/'))
1088 ;
1089 }
1090 if (!*res)
1091 res = NULL;
1092 return res;
1093 }
1094
1095 /*
1096 * follow_up - Find the mountpoint of path's vfsmount
1097 *
1098 * Given a path, find the mountpoint of its source file system.
1099 * Replace @path with the path of the mountpoint in the parent mount.
1100 * Up is towards /.
1101 *
1102 * Return 1 if we went up a level and 0 if we were already at the
1103 * root.
1104 */
1105 int follow_up(struct path *path)
1106 {
1107 struct mount *mnt = real_mount(path->mnt);
1108 struct mount *parent;
1109 struct dentry *mountpoint;
1110
1111 read_seqlock_excl(&mount_lock);
1112 parent = mnt->mnt_parent;
1113 if (parent == mnt) {
1114 read_sequnlock_excl(&mount_lock);
1115 return 0;
1116 }
1117 mntget(&parent->mnt);
1118 mountpoint = dget(mnt->mnt_mountpoint);
1119 read_sequnlock_excl(&mount_lock);
1120 dput(path->dentry);
1121 path->dentry = mountpoint;
1122 mntput(path->mnt);
1123 path->mnt = &parent->mnt;
1124 return 1;
1125 }
1126 EXPORT_SYMBOL(follow_up);
1127
1128 /*
1129 * Perform an automount
1130 * - return -EISDIR to tell follow_managed() to stop and return the path we
1131 * were called with.
1132 */
1133 static int follow_automount(struct path *path, struct nameidata *nd,
1134 bool *need_mntput)
1135 {
1136 struct vfsmount *mnt;
1137 int err;
1138
1139 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1140 return -EREMOTE;
1141
1142 /* We don't want to mount if someone's just doing a stat -
1143 * unless they're stat'ing a directory and appended a '/' to
1144 * the name.
1145 *
1146 * We do, however, want to mount if someone wants to open or
1147 * create a file of any type under the mountpoint, wants to
1148 * traverse through the mountpoint or wants to open the
1149 * mounted directory. Also, autofs may mark negative dentries
1150 * as being automount points. These will need the attentions
1151 * of the daemon to instantiate them before they can be used.
1152 */
1153 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1154 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1155 path->dentry->d_inode)
1156 return -EISDIR;
1157
1158 nd->total_link_count++;
1159 if (nd->total_link_count >= 40)
1160 return -ELOOP;
1161
1162 mnt = path->dentry->d_op->d_automount(path);
1163 if (IS_ERR(mnt)) {
1164 /*
1165 * The filesystem is allowed to return -EISDIR here to indicate
1166 * it doesn't want to automount. For instance, autofs would do
1167 * this so that its userspace daemon can mount on this dentry.
1168 *
1169 * However, we can only permit this if it's a terminal point in
1170 * the path being looked up; if it wasn't then the remainder of
1171 * the path is inaccessible and we should say so.
1172 */
1173 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1174 return -EREMOTE;
1175 return PTR_ERR(mnt);
1176 }
1177
1178 if (!mnt) /* mount collision */
1179 return 0;
1180
1181 if (!*need_mntput) {
1182 /* lock_mount() may release path->mnt on error */
1183 mntget(path->mnt);
1184 *need_mntput = true;
1185 }
1186 err = finish_automount(mnt, path);
1187
1188 switch (err) {
1189 case -EBUSY:
1190 /* Someone else made a mount here whilst we were busy */
1191 return 0;
1192 case 0:
1193 path_put(path);
1194 path->mnt = mnt;
1195 path->dentry = dget(mnt->mnt_root);
1196 return 0;
1197 default:
1198 return err;
1199 }
1200
1201 }
1202
1203 /*
1204 * Handle a dentry that is managed in some way.
1205 * - Flagged for transit management (autofs)
1206 * - Flagged as mountpoint
1207 * - Flagged as automount point
1208 *
1209 * This may only be called in refwalk mode.
1210 *
1211 * Serialization is taken care of in namespace.c
1212 */
1213 static int follow_managed(struct path *path, struct nameidata *nd)
1214 {
1215 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1216 unsigned managed;
1217 bool need_mntput = false;
1218 int ret = 0;
1219
1220 /* Given that we're not holding a lock here, we retain the value in a
1221 * local variable for each dentry as we look at it so that we don't see
1222 * the components of that value change under us */
1223 while (managed = READ_ONCE(path->dentry->d_flags),
1224 managed &= DCACHE_MANAGED_DENTRY,
1225 unlikely(managed != 0)) {
1226 /* Allow the filesystem to manage the transit without i_mutex
1227 * being held. */
1228 if (managed & DCACHE_MANAGE_TRANSIT) {
1229 BUG_ON(!path->dentry->d_op);
1230 BUG_ON(!path->dentry->d_op->d_manage);
1231 ret = path->dentry->d_op->d_manage(path, false);
1232 if (ret < 0)
1233 break;
1234 }
1235
1236 /* Transit to a mounted filesystem. */
1237 if (managed & DCACHE_MOUNTED) {
1238 struct vfsmount *mounted = lookup_mnt(path);
1239 if (mounted) {
1240 dput(path->dentry);
1241 if (need_mntput)
1242 mntput(path->mnt);
1243 path->mnt = mounted;
1244 path->dentry = dget(mounted->mnt_root);
1245 need_mntput = true;
1246 continue;
1247 }
1248
1249 /* Something is mounted on this dentry in another
1250 * namespace and/or whatever was mounted there in this
1251 * namespace got unmounted before lookup_mnt() could
1252 * get it */
1253 }
1254
1255 /* Handle an automount point */
1256 if (managed & DCACHE_NEED_AUTOMOUNT) {
1257 ret = follow_automount(path, nd, &need_mntput);
1258 if (ret < 0)
1259 break;
1260 continue;
1261 }
1262
1263 /* We didn't change the current path point */
1264 break;
1265 }
1266
1267 if (need_mntput && path->mnt == mnt)
1268 mntput(path->mnt);
1269 if (ret == -EISDIR || !ret)
1270 ret = 1;
1271 if (need_mntput)
1272 nd->flags |= LOOKUP_JUMPED;
1273 if (unlikely(ret < 0))
1274 path_put_conditional(path, nd);
1275 return ret;
1276 }
1277
1278 int follow_down_one(struct path *path)
1279 {
1280 struct vfsmount *mounted;
1281
1282 mounted = lookup_mnt(path);
1283 if (mounted) {
1284 dput(path->dentry);
1285 mntput(path->mnt);
1286 path->mnt = mounted;
1287 path->dentry = dget(mounted->mnt_root);
1288 return 1;
1289 }
1290 return 0;
1291 }
1292 EXPORT_SYMBOL(follow_down_one);
1293
1294 static inline int managed_dentry_rcu(const struct path *path)
1295 {
1296 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1297 path->dentry->d_op->d_manage(path, true) : 0;
1298 }
1299
1300 /*
1301 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1302 * we meet a managed dentry that would need blocking.
1303 */
1304 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1305 struct inode **inode, unsigned *seqp)
1306 {
1307 for (;;) {
1308 struct mount *mounted;
1309 /*
1310 * Don't forget we might have a non-mountpoint managed dentry
1311 * that wants to block transit.
1312 */
1313 switch (managed_dentry_rcu(path)) {
1314 case -ECHILD:
1315 default:
1316 return false;
1317 case -EISDIR:
1318 return true;
1319 case 0:
1320 break;
1321 }
1322
1323 if (!d_mountpoint(path->dentry))
1324 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1325
1326 mounted = __lookup_mnt(path->mnt, path->dentry);
1327 if (!mounted)
1328 break;
1329 path->mnt = &mounted->mnt;
1330 path->dentry = mounted->mnt.mnt_root;
1331 nd->flags |= LOOKUP_JUMPED;
1332 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1333 /*
1334 * Update the inode too. We don't need to re-check the
1335 * dentry sequence number here after this d_inode read,
1336 * because a mount-point is always pinned.
1337 */
1338 *inode = path->dentry->d_inode;
1339 }
1340 return !read_seqretry(&mount_lock, nd->m_seq) &&
1341 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1342 }
1343
1344 static int follow_dotdot_rcu(struct nameidata *nd)
1345 {
1346 struct inode *inode = nd->inode;
1347
1348 while (1) {
1349 if (path_equal(&nd->path, &nd->root))
1350 break;
1351 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1352 struct dentry *old = nd->path.dentry;
1353 struct dentry *parent = old->d_parent;
1354 unsigned seq;
1355
1356 inode = parent->d_inode;
1357 seq = read_seqcount_begin(&parent->d_seq);
1358 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1359 return -ECHILD;
1360 nd->path.dentry = parent;
1361 nd->seq = seq;
1362 if (unlikely(!path_connected(&nd->path)))
1363 return -ECHILD;
1364 break;
1365 } else {
1366 struct mount *mnt = real_mount(nd->path.mnt);
1367 struct mount *mparent = mnt->mnt_parent;
1368 struct dentry *mountpoint = mnt->mnt_mountpoint;
1369 struct inode *inode2 = mountpoint->d_inode;
1370 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1371 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1372 return -ECHILD;
1373 if (&mparent->mnt == nd->path.mnt)
1374 break;
1375 /* we know that mountpoint was pinned */
1376 nd->path.dentry = mountpoint;
1377 nd->path.mnt = &mparent->mnt;
1378 inode = inode2;
1379 nd->seq = seq;
1380 }
1381 }
1382 while (unlikely(d_mountpoint(nd->path.dentry))) {
1383 struct mount *mounted;
1384 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1385 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1386 return -ECHILD;
1387 if (!mounted)
1388 break;
1389 nd->path.mnt = &mounted->mnt;
1390 nd->path.dentry = mounted->mnt.mnt_root;
1391 inode = nd->path.dentry->d_inode;
1392 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1393 }
1394 nd->inode = inode;
1395 return 0;
1396 }
1397
1398 /*
1399 * Follow down to the covering mount currently visible to userspace. At each
1400 * point, the filesystem owning that dentry may be queried as to whether the
1401 * caller is permitted to proceed or not.
1402 */
1403 int follow_down(struct path *path)
1404 {
1405 unsigned managed;
1406 int ret;
1407
1408 while (managed = READ_ONCE(path->dentry->d_flags),
1409 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1410 /* Allow the filesystem to manage the transit without i_mutex
1411 * being held.
1412 *
1413 * We indicate to the filesystem if someone is trying to mount
1414 * something here. This gives autofs the chance to deny anyone
1415 * other than its daemon the right to mount on its
1416 * superstructure.
1417 *
1418 * The filesystem may sleep at this point.
1419 */
1420 if (managed & DCACHE_MANAGE_TRANSIT) {
1421 BUG_ON(!path->dentry->d_op);
1422 BUG_ON(!path->dentry->d_op->d_manage);
1423 ret = path->dentry->d_op->d_manage(path, false);
1424 if (ret < 0)
1425 return ret == -EISDIR ? 0 : ret;
1426 }
1427
1428 /* Transit to a mounted filesystem. */
1429 if (managed & DCACHE_MOUNTED) {
1430 struct vfsmount *mounted = lookup_mnt(path);
1431 if (!mounted)
1432 break;
1433 dput(path->dentry);
1434 mntput(path->mnt);
1435 path->mnt = mounted;
1436 path->dentry = dget(mounted->mnt_root);
1437 continue;
1438 }
1439
1440 /* Don't handle automount points here */
1441 break;
1442 }
1443 return 0;
1444 }
1445 EXPORT_SYMBOL(follow_down);
1446
1447 /*
1448 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1449 */
1450 static void follow_mount(struct path *path)
1451 {
1452 while (d_mountpoint(path->dentry)) {
1453 struct vfsmount *mounted = lookup_mnt(path);
1454 if (!mounted)
1455 break;
1456 dput(path->dentry);
1457 mntput(path->mnt);
1458 path->mnt = mounted;
1459 path->dentry = dget(mounted->mnt_root);
1460 }
1461 }
1462
1463 static int path_parent_directory(struct path *path)
1464 {
1465 struct dentry *old = path->dentry;
1466 /* rare case of legitimate dget_parent()... */
1467 path->dentry = dget_parent(path->dentry);
1468 dput(old);
1469 if (unlikely(!path_connected(path)))
1470 return -ENOENT;
1471 return 0;
1472 }
1473
1474 static int follow_dotdot(struct nameidata *nd)
1475 {
1476 while(1) {
1477 if (path_equal(&nd->path, &nd->root))
1478 break;
1479 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1480 int ret = path_parent_directory(&nd->path);
1481 if (ret)
1482 return ret;
1483 break;
1484 }
1485 if (!follow_up(&nd->path))
1486 break;
1487 }
1488 follow_mount(&nd->path);
1489 nd->inode = nd->path.dentry->d_inode;
1490 return 0;
1491 }
1492
1493 /*
1494 * This looks up the name in dcache and possibly revalidates the found dentry.
1495 * NULL is returned if the dentry does not exist in the cache.
1496 */
1497 static struct dentry *lookup_dcache(const struct qstr *name,
1498 struct dentry *dir,
1499 unsigned int flags)
1500 {
1501 struct dentry *dentry = d_lookup(dir, name);
1502 if (dentry) {
1503 int error = d_revalidate(dentry, flags);
1504 if (unlikely(error <= 0)) {
1505 if (!error)
1506 d_invalidate(dentry);
1507 dput(dentry);
1508 return ERR_PTR(error);
1509 }
1510 }
1511 return dentry;
1512 }
1513
1514 /*
1515 * Parent directory has inode locked exclusive. This is one
1516 * and only case when ->lookup() gets called on non in-lookup
1517 * dentries - as the matter of fact, this only gets called
1518 * when directory is guaranteed to have no in-lookup children
1519 * at all.
1520 */
1521 static struct dentry *__lookup_hash(const struct qstr *name,
1522 struct dentry *base, unsigned int flags)
1523 {
1524 struct dentry *dentry = lookup_dcache(name, base, flags);
1525 struct dentry *old;
1526 struct inode *dir = base->d_inode;
1527
1528 if (dentry)
1529 return dentry;
1530
1531 /* Don't create child dentry for a dead directory. */
1532 if (unlikely(IS_DEADDIR(dir)))
1533 return ERR_PTR(-ENOENT);
1534
1535 dentry = d_alloc(base, name);
1536 if (unlikely(!dentry))
1537 return ERR_PTR(-ENOMEM);
1538
1539 old = dir->i_op->lookup(dir, dentry, flags);
1540 if (unlikely(old)) {
1541 dput(dentry);
1542 dentry = old;
1543 }
1544 return dentry;
1545 }
1546
1547 static int lookup_fast(struct nameidata *nd,
1548 struct path *path, struct inode **inode,
1549 unsigned *seqp)
1550 {
1551 struct vfsmount *mnt = nd->path.mnt;
1552 struct dentry *dentry, *parent = nd->path.dentry;
1553 int status = 1;
1554 int err;
1555
1556 /*
1557 * Rename seqlock is not required here because in the off chance
1558 * of a false negative due to a concurrent rename, the caller is
1559 * going to fall back to non-racy lookup.
1560 */
1561 if (nd->flags & LOOKUP_RCU) {
1562 unsigned seq;
1563 bool negative;
1564 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1565 if (unlikely(!dentry)) {
1566 if (unlazy_walk(nd))
1567 return -ECHILD;
1568 return 0;
1569 }
1570
1571 /*
1572 * This sequence count validates that the inode matches
1573 * the dentry name information from lookup.
1574 */
1575 *inode = d_backing_inode(dentry);
1576 negative = d_is_negative(dentry);
1577 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1578 return -ECHILD;
1579
1580 /*
1581 * This sequence count validates that the parent had no
1582 * changes while we did the lookup of the dentry above.
1583 *
1584 * The memory barrier in read_seqcount_begin of child is
1585 * enough, we can use __read_seqcount_retry here.
1586 */
1587 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1588 return -ECHILD;
1589
1590 *seqp = seq;
1591 status = d_revalidate(dentry, nd->flags);
1592 if (likely(status > 0)) {
1593 /*
1594 * Note: do negative dentry check after revalidation in
1595 * case that drops it.
1596 */
1597 if (unlikely(negative))
1598 return -ENOENT;
1599 path->mnt = mnt;
1600 path->dentry = dentry;
1601 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1602 return 1;
1603 }
1604 if (unlazy_child(nd, dentry, seq))
1605 return -ECHILD;
1606 if (unlikely(status == -ECHILD))
1607 /* we'd been told to redo it in non-rcu mode */
1608 status = d_revalidate(dentry, nd->flags);
1609 } else {
1610 dentry = __d_lookup(parent, &nd->last);
1611 if (unlikely(!dentry))
1612 return 0;
1613 status = d_revalidate(dentry, nd->flags);
1614 }
1615 if (unlikely(status <= 0)) {
1616 if (!status)
1617 d_invalidate(dentry);
1618 dput(dentry);
1619 return status;
1620 }
1621 if (unlikely(d_is_negative(dentry))) {
1622 dput(dentry);
1623 return -ENOENT;
1624 }
1625
1626 path->mnt = mnt;
1627 path->dentry = dentry;
1628 err = follow_managed(path, nd);
1629 if (likely(err > 0))
1630 *inode = d_backing_inode(path->dentry);
1631 return err;
1632 }
1633
1634 /* Fast lookup failed, do it the slow way */
1635 static struct dentry *__lookup_slow(const struct qstr *name,
1636 struct dentry *dir,
1637 unsigned int flags)
1638 {
1639 struct dentry *dentry, *old;
1640 struct inode *inode = dir->d_inode;
1641 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1642
1643 /* Don't go there if it's already dead */
1644 if (unlikely(IS_DEADDIR(inode)))
1645 return ERR_PTR(-ENOENT);
1646 again:
1647 dentry = d_alloc_parallel(dir, name, &wq);
1648 if (IS_ERR(dentry))
1649 return dentry;
1650 if (unlikely(!d_in_lookup(dentry))) {
1651 if (!(flags & LOOKUP_NO_REVAL)) {
1652 int error = d_revalidate(dentry, flags);
1653 if (unlikely(error <= 0)) {
1654 if (!error) {
1655 d_invalidate(dentry);
1656 dput(dentry);
1657 goto again;
1658 }
1659 dput(dentry);
1660 dentry = ERR_PTR(error);
1661 }
1662 }
1663 } else {
1664 old = inode->i_op->lookup(inode, dentry, flags);
1665 d_lookup_done(dentry);
1666 if (unlikely(old)) {
1667 dput(dentry);
1668 dentry = old;
1669 }
1670 }
1671 return dentry;
1672 }
1673
1674 static struct dentry *lookup_slow(const struct qstr *name,
1675 struct dentry *dir,
1676 unsigned int flags)
1677 {
1678 struct inode *inode = dir->d_inode;
1679 struct dentry *res;
1680 inode_lock_shared(inode);
1681 res = __lookup_slow(name, dir, flags);
1682 inode_unlock_shared(inode);
1683 return res;
1684 }
1685
1686 static inline int may_lookup(struct nameidata *nd)
1687 {
1688 if (nd->flags & LOOKUP_RCU) {
1689 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1690 if (err != -ECHILD)
1691 return err;
1692 if (unlazy_walk(nd))
1693 return -ECHILD;
1694 }
1695 return inode_permission(nd->inode, MAY_EXEC);
1696 }
1697
1698 static inline int handle_dots(struct nameidata *nd, int type)
1699 {
1700 if (type == LAST_DOTDOT) {
1701 if (!nd->root.mnt)
1702 set_root(nd);
1703 if (nd->flags & LOOKUP_RCU) {
1704 return follow_dotdot_rcu(nd);
1705 } else
1706 return follow_dotdot(nd);
1707 }
1708 return 0;
1709 }
1710
1711 static int pick_link(struct nameidata *nd, struct path *link,
1712 struct inode *inode, unsigned seq)
1713 {
1714 int error;
1715 struct saved *last;
1716 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1717 path_to_nameidata(link, nd);
1718 return -ELOOP;
1719 }
1720 if (!(nd->flags & LOOKUP_RCU)) {
1721 if (link->mnt == nd->path.mnt)
1722 mntget(link->mnt);
1723 }
1724 error = nd_alloc_stack(nd);
1725 if (unlikely(error)) {
1726 if (error == -ECHILD) {
1727 if (unlikely(!legitimize_path(nd, link, seq))) {
1728 drop_links(nd);
1729 nd->depth = 0;
1730 nd->flags &= ~LOOKUP_RCU;
1731 nd->path.mnt = NULL;
1732 nd->path.dentry = NULL;
1733 rcu_read_unlock();
1734 } else if (likely(unlazy_walk(nd)) == 0)
1735 error = nd_alloc_stack(nd);
1736 }
1737 if (error) {
1738 path_put(link);
1739 return error;
1740 }
1741 }
1742
1743 last = nd->stack + nd->depth++;
1744 last->link = *link;
1745 clear_delayed_call(&last->done);
1746 nd->link_inode = inode;
1747 last->seq = seq;
1748 return 1;
1749 }
1750
1751 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1752
1753 /*
1754 * Do we need to follow links? We _really_ want to be able
1755 * to do this check without having to look at inode->i_op,
1756 * so we keep a cache of "no, this doesn't need follow_link"
1757 * for the common case.
1758 */
1759 static inline int step_into(struct nameidata *nd, struct path *path,
1760 int flags, struct inode *inode, unsigned seq)
1761 {
1762 if (!(flags & WALK_MORE) && nd->depth)
1763 put_link(nd);
1764 if (likely(!d_is_symlink(path->dentry)) ||
1765 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1766 /* not a symlink or should not follow */
1767 path_to_nameidata(path, nd);
1768 nd->inode = inode;
1769 nd->seq = seq;
1770 return 0;
1771 }
1772 /* make sure that d_is_symlink above matches inode */
1773 if (nd->flags & LOOKUP_RCU) {
1774 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1775 return -ECHILD;
1776 }
1777 return pick_link(nd, path, inode, seq);
1778 }
1779
1780 static int walk_component(struct nameidata *nd, int flags)
1781 {
1782 struct path path;
1783 struct inode *inode;
1784 unsigned seq;
1785 int err;
1786 /*
1787 * "." and ".." are special - ".." especially so because it has
1788 * to be able to know about the current root directory and
1789 * parent relationships.
1790 */
1791 if (unlikely(nd->last_type != LAST_NORM)) {
1792 err = handle_dots(nd, nd->last_type);
1793 if (!(flags & WALK_MORE) && nd->depth)
1794 put_link(nd);
1795 return err;
1796 }
1797 err = lookup_fast(nd, &path, &inode, &seq);
1798 if (unlikely(err <= 0)) {
1799 if (err < 0)
1800 return err;
1801 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1802 nd->flags);
1803 if (IS_ERR(path.dentry))
1804 return PTR_ERR(path.dentry);
1805
1806 path.mnt = nd->path.mnt;
1807 err = follow_managed(&path, nd);
1808 if (unlikely(err < 0))
1809 return err;
1810
1811 if (unlikely(d_is_negative(path.dentry))) {
1812 path_to_nameidata(&path, nd);
1813 return -ENOENT;
1814 }
1815
1816 seq = 0; /* we are already out of RCU mode */
1817 inode = d_backing_inode(path.dentry);
1818 }
1819
1820 return step_into(nd, &path, flags, inode, seq);
1821 }
1822
1823 /*
1824 * We can do the critical dentry name comparison and hashing
1825 * operations one word at a time, but we are limited to:
1826 *
1827 * - Architectures with fast unaligned word accesses. We could
1828 * do a "get_unaligned()" if this helps and is sufficiently
1829 * fast.
1830 *
1831 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1832 * do not trap on the (extremely unlikely) case of a page
1833 * crossing operation.
1834 *
1835 * - Furthermore, we need an efficient 64-bit compile for the
1836 * 64-bit case in order to generate the "number of bytes in
1837 * the final mask". Again, that could be replaced with a
1838 * efficient population count instruction or similar.
1839 */
1840 #ifdef CONFIG_DCACHE_WORD_ACCESS
1841
1842 #include <asm/word-at-a-time.h>
1843
1844 #ifdef HASH_MIX
1845
1846 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1847
1848 #elif defined(CONFIG_64BIT)
1849 /*
1850 * Register pressure in the mixing function is an issue, particularly
1851 * on 32-bit x86, but almost any function requires one state value and
1852 * one temporary. Instead, use a function designed for two state values
1853 * and no temporaries.
1854 *
1855 * This function cannot create a collision in only two iterations, so
1856 * we have two iterations to achieve avalanche. In those two iterations,
1857 * we have six layers of mixing, which is enough to spread one bit's
1858 * influence out to 2^6 = 64 state bits.
1859 *
1860 * Rotate constants are scored by considering either 64 one-bit input
1861 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1862 * probability of that delta causing a change to each of the 128 output
1863 * bits, using a sample of random initial states.
1864 *
1865 * The Shannon entropy of the computed probabilities is then summed
1866 * to produce a score. Ideally, any input change has a 50% chance of
1867 * toggling any given output bit.
1868 *
1869 * Mixing scores (in bits) for (12,45):
1870 * Input delta: 1-bit 2-bit
1871 * 1 round: 713.3 42542.6
1872 * 2 rounds: 2753.7 140389.8
1873 * 3 rounds: 5954.1 233458.2
1874 * 4 rounds: 7862.6 256672.2
1875 * Perfect: 8192 258048
1876 * (64*128) (64*63/2 * 128)
1877 */
1878 #define HASH_MIX(x, y, a) \
1879 ( x ^= (a), \
1880 y ^= x, x = rol64(x,12),\
1881 x += y, y = rol64(y,45),\
1882 y *= 9 )
1883
1884 /*
1885 * Fold two longs into one 32-bit hash value. This must be fast, but
1886 * latency isn't quite as critical, as there is a fair bit of additional
1887 * work done before the hash value is used.
1888 */
1889 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1890 {
1891 y ^= x * GOLDEN_RATIO_64;
1892 y *= GOLDEN_RATIO_64;
1893 return y >> 32;
1894 }
1895
1896 #else /* 32-bit case */
1897
1898 /*
1899 * Mixing scores (in bits) for (7,20):
1900 * Input delta: 1-bit 2-bit
1901 * 1 round: 330.3 9201.6
1902 * 2 rounds: 1246.4 25475.4
1903 * 3 rounds: 1907.1 31295.1
1904 * 4 rounds: 2042.3 31718.6
1905 * Perfect: 2048 31744
1906 * (32*64) (32*31/2 * 64)
1907 */
1908 #define HASH_MIX(x, y, a) \
1909 ( x ^= (a), \
1910 y ^= x, x = rol32(x, 7),\
1911 x += y, y = rol32(y,20),\
1912 y *= 9 )
1913
1914 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1915 {
1916 /* Use arch-optimized multiply if one exists */
1917 return __hash_32(y ^ __hash_32(x));
1918 }
1919
1920 #endif
1921
1922 /*
1923 * Return the hash of a string of known length. This is carfully
1924 * designed to match hash_name(), which is the more critical function.
1925 * In particular, we must end by hashing a final word containing 0..7
1926 * payload bytes, to match the way that hash_name() iterates until it
1927 * finds the delimiter after the name.
1928 */
1929 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1930 {
1931 unsigned long a, x = 0, y = (unsigned long)salt;
1932
1933 for (;;) {
1934 if (!len)
1935 goto done;
1936 a = load_unaligned_zeropad(name);
1937 if (len < sizeof(unsigned long))
1938 break;
1939 HASH_MIX(x, y, a);
1940 name += sizeof(unsigned long);
1941 len -= sizeof(unsigned long);
1942 }
1943 x ^= a & bytemask_from_count(len);
1944 done:
1945 return fold_hash(x, y);
1946 }
1947 EXPORT_SYMBOL(full_name_hash);
1948
1949 /* Return the "hash_len" (hash and length) of a null-terminated string */
1950 u64 hashlen_string(const void *salt, const char *name)
1951 {
1952 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1953 unsigned long adata, mask, len;
1954 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1955
1956 len = 0;
1957 goto inside;
1958
1959 do {
1960 HASH_MIX(x, y, a);
1961 len += sizeof(unsigned long);
1962 inside:
1963 a = load_unaligned_zeropad(name+len);
1964 } while (!has_zero(a, &adata, &constants));
1965
1966 adata = prep_zero_mask(a, adata, &constants);
1967 mask = create_zero_mask(adata);
1968 x ^= a & zero_bytemask(mask);
1969
1970 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1971 }
1972 EXPORT_SYMBOL(hashlen_string);
1973
1974 /*
1975 * Calculate the length and hash of the path component, and
1976 * return the "hash_len" as the result.
1977 */
1978 static inline u64 hash_name(const void *salt, const char *name)
1979 {
1980 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1981 unsigned long adata, bdata, mask, len;
1982 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1983
1984 len = 0;
1985 goto inside;
1986
1987 do {
1988 HASH_MIX(x, y, a);
1989 len += sizeof(unsigned long);
1990 inside:
1991 a = load_unaligned_zeropad(name+len);
1992 b = a ^ REPEAT_BYTE('/');
1993 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1994
1995 adata = prep_zero_mask(a, adata, &constants);
1996 bdata = prep_zero_mask(b, bdata, &constants);
1997 mask = create_zero_mask(adata | bdata);
1998 x ^= a & zero_bytemask(mask);
1999
2000 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2001 }
2002
2003 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2004
2005 /* Return the hash of a string of known length */
2006 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2007 {
2008 unsigned long hash = init_name_hash(salt);
2009 while (len--)
2010 hash = partial_name_hash((unsigned char)*name++, hash);
2011 return end_name_hash(hash);
2012 }
2013 EXPORT_SYMBOL(full_name_hash);
2014
2015 /* Return the "hash_len" (hash and length) of a null-terminated string */
2016 u64 hashlen_string(const void *salt, const char *name)
2017 {
2018 unsigned long hash = init_name_hash(salt);
2019 unsigned long len = 0, c;
2020
2021 c = (unsigned char)*name;
2022 while (c) {
2023 len++;
2024 hash = partial_name_hash(c, hash);
2025 c = (unsigned char)name[len];
2026 }
2027 return hashlen_create(end_name_hash(hash), len);
2028 }
2029 EXPORT_SYMBOL(hashlen_string);
2030
2031 /*
2032 * We know there's a real path component here of at least
2033 * one character.
2034 */
2035 static inline u64 hash_name(const void *salt, const char *name)
2036 {
2037 unsigned long hash = init_name_hash(salt);
2038 unsigned long len = 0, c;
2039
2040 c = (unsigned char)*name;
2041 do {
2042 len++;
2043 hash = partial_name_hash(c, hash);
2044 c = (unsigned char)name[len];
2045 } while (c && c != '/');
2046 return hashlen_create(end_name_hash(hash), len);
2047 }
2048
2049 #endif
2050
2051 /*
2052 * Name resolution.
2053 * This is the basic name resolution function, turning a pathname into
2054 * the final dentry. We expect 'base' to be positive and a directory.
2055 *
2056 * Returns 0 and nd will have valid dentry and mnt on success.
2057 * Returns error and drops reference to input namei data on failure.
2058 */
2059 static int link_path_walk(const char *name, struct nameidata *nd)
2060 {
2061 int err;
2062
2063 if (IS_ERR(name))
2064 return PTR_ERR(name);
2065 while (*name=='/')
2066 name++;
2067 if (!*name)
2068 return 0;
2069
2070 /* At this point we know we have a real path component. */
2071 for(;;) {
2072 u64 hash_len;
2073 int type;
2074
2075 err = may_lookup(nd);
2076 if (err)
2077 return err;
2078
2079 hash_len = hash_name(nd->path.dentry, name);
2080
2081 type = LAST_NORM;
2082 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2083 case 2:
2084 if (name[1] == '.') {
2085 type = LAST_DOTDOT;
2086 nd->flags |= LOOKUP_JUMPED;
2087 }
2088 break;
2089 case 1:
2090 type = LAST_DOT;
2091 }
2092 if (likely(type == LAST_NORM)) {
2093 struct dentry *parent = nd->path.dentry;
2094 nd->flags &= ~LOOKUP_JUMPED;
2095 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2096 struct qstr this = { { .hash_len = hash_len }, .name = name };
2097 err = parent->d_op->d_hash(parent, &this);
2098 if (err < 0)
2099 return err;
2100 hash_len = this.hash_len;
2101 name = this.name;
2102 }
2103 }
2104
2105 nd->last.hash_len = hash_len;
2106 nd->last.name = name;
2107 nd->last_type = type;
2108
2109 name += hashlen_len(hash_len);
2110 if (!*name)
2111 goto OK;
2112 /*
2113 * If it wasn't NUL, we know it was '/'. Skip that
2114 * slash, and continue until no more slashes.
2115 */
2116 do {
2117 name++;
2118 } while (unlikely(*name == '/'));
2119 if (unlikely(!*name)) {
2120 OK:
2121 /* pathname body, done */
2122 if (!nd->depth)
2123 return 0;
2124 name = nd->stack[nd->depth - 1].name;
2125 /* trailing symlink, done */
2126 if (!name)
2127 return 0;
2128 /* last component of nested symlink */
2129 err = walk_component(nd, WALK_FOLLOW);
2130 } else {
2131 /* not the last component */
2132 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2133 }
2134 if (err < 0)
2135 return err;
2136
2137 if (err) {
2138 const char *s = get_link(nd);
2139
2140 if (IS_ERR(s))
2141 return PTR_ERR(s);
2142 err = 0;
2143 if (unlikely(!s)) {
2144 /* jumped */
2145 put_link(nd);
2146 } else {
2147 nd->stack[nd->depth - 1].name = name;
2148 name = s;
2149 continue;
2150 }
2151 }
2152 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2153 if (nd->flags & LOOKUP_RCU) {
2154 if (unlazy_walk(nd))
2155 return -ECHILD;
2156 }
2157 return -ENOTDIR;
2158 }
2159 }
2160 }
2161
2162 /* must be paired with terminate_walk() */
2163 static const char *path_init(struct nameidata *nd, unsigned flags)
2164 {
2165 const char *s = nd->name->name;
2166
2167 if (!*s)
2168 flags &= ~LOOKUP_RCU;
2169 if (flags & LOOKUP_RCU)
2170 rcu_read_lock();
2171
2172 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2173 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2174 nd->depth = 0;
2175 if (flags & LOOKUP_ROOT) {
2176 struct dentry *root = nd->root.dentry;
2177 struct inode *inode = root->d_inode;
2178 if (*s && unlikely(!d_can_lookup(root)))
2179 return ERR_PTR(-ENOTDIR);
2180 nd->path = nd->root;
2181 nd->inode = inode;
2182 if (flags & LOOKUP_RCU) {
2183 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2184 nd->root_seq = nd->seq;
2185 nd->m_seq = read_seqbegin(&mount_lock);
2186 } else {
2187 path_get(&nd->path);
2188 }
2189 return s;
2190 }
2191
2192 nd->root.mnt = NULL;
2193 nd->path.mnt = NULL;
2194 nd->path.dentry = NULL;
2195
2196 nd->m_seq = read_seqbegin(&mount_lock);
2197 if (*s == '/') {
2198 set_root(nd);
2199 if (likely(!nd_jump_root(nd)))
2200 return s;
2201 return ERR_PTR(-ECHILD);
2202 } else if (nd->dfd == AT_FDCWD) {
2203 if (flags & LOOKUP_RCU) {
2204 struct fs_struct *fs = current->fs;
2205 unsigned seq;
2206
2207 do {
2208 seq = read_seqcount_begin(&fs->seq);
2209 nd->path = fs->pwd;
2210 nd->inode = nd->path.dentry->d_inode;
2211 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2212 } while (read_seqcount_retry(&fs->seq, seq));
2213 } else {
2214 get_fs_pwd(current->fs, &nd->path);
2215 nd->inode = nd->path.dentry->d_inode;
2216 }
2217 return s;
2218 } else {
2219 /* Caller must check execute permissions on the starting path component */
2220 struct fd f = fdget_raw(nd->dfd);
2221 struct dentry *dentry;
2222
2223 if (!f.file)
2224 return ERR_PTR(-EBADF);
2225
2226 dentry = f.file->f_path.dentry;
2227
2228 if (*s && unlikely(!d_can_lookup(dentry))) {
2229 fdput(f);
2230 return ERR_PTR(-ENOTDIR);
2231 }
2232
2233 nd->path = f.file->f_path;
2234 if (flags & LOOKUP_RCU) {
2235 nd->inode = nd->path.dentry->d_inode;
2236 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2237 } else {
2238 path_get(&nd->path);
2239 nd->inode = nd->path.dentry->d_inode;
2240 }
2241 fdput(f);
2242 return s;
2243 }
2244 }
2245
2246 static const char *trailing_symlink(struct nameidata *nd)
2247 {
2248 const char *s;
2249 int error = may_follow_link(nd);
2250 if (unlikely(error))
2251 return ERR_PTR(error);
2252 nd->flags |= LOOKUP_PARENT;
2253 nd->stack[0].name = NULL;
2254 s = get_link(nd);
2255 return s ? s : "";
2256 }
2257
2258 static inline int lookup_last(struct nameidata *nd)
2259 {
2260 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2261 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2262
2263 nd->flags &= ~LOOKUP_PARENT;
2264 return walk_component(nd, 0);
2265 }
2266
2267 static int handle_lookup_down(struct nameidata *nd)
2268 {
2269 struct path path = nd->path;
2270 struct inode *inode = nd->inode;
2271 unsigned seq = nd->seq;
2272 int err;
2273
2274 if (nd->flags & LOOKUP_RCU) {
2275 /*
2276 * don't bother with unlazy_walk on failure - we are
2277 * at the very beginning of walk, so we lose nothing
2278 * if we simply redo everything in non-RCU mode
2279 */
2280 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2281 return -ECHILD;
2282 } else {
2283 dget(path.dentry);
2284 err = follow_managed(&path, nd);
2285 if (unlikely(err < 0))
2286 return err;
2287 inode = d_backing_inode(path.dentry);
2288 seq = 0;
2289 }
2290 path_to_nameidata(&path, nd);
2291 nd->inode = inode;
2292 nd->seq = seq;
2293 return 0;
2294 }
2295
2296 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2297 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2298 {
2299 const char *s = path_init(nd, flags);
2300 int err;
2301
2302 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2303 err = handle_lookup_down(nd);
2304 if (unlikely(err < 0))
2305 s = ERR_PTR(err);
2306 }
2307
2308 while (!(err = link_path_walk(s, nd))
2309 && ((err = lookup_last(nd)) > 0)) {
2310 s = trailing_symlink(nd);
2311 }
2312 if (!err)
2313 err = complete_walk(nd);
2314
2315 if (!err && nd->flags & LOOKUP_DIRECTORY)
2316 if (!d_can_lookup(nd->path.dentry))
2317 err = -ENOTDIR;
2318 if (!err) {
2319 *path = nd->path;
2320 nd->path.mnt = NULL;
2321 nd->path.dentry = NULL;
2322 }
2323 terminate_walk(nd);
2324 return err;
2325 }
2326
2327 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2328 struct path *path, struct path *root)
2329 {
2330 int retval;
2331 struct nameidata nd;
2332 if (IS_ERR(name))
2333 return PTR_ERR(name);
2334 if (unlikely(root)) {
2335 nd.root = *root;
2336 flags |= LOOKUP_ROOT;
2337 }
2338 set_nameidata(&nd, dfd, name);
2339 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2340 if (unlikely(retval == -ECHILD))
2341 retval = path_lookupat(&nd, flags, path);
2342 if (unlikely(retval == -ESTALE))
2343 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2344
2345 if (likely(!retval))
2346 audit_inode(name, path->dentry, 0);
2347 restore_nameidata();
2348 putname(name);
2349 return retval;
2350 }
2351
2352 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2353 static int path_parentat(struct nameidata *nd, unsigned flags,
2354 struct path *parent)
2355 {
2356 const char *s = path_init(nd, flags);
2357 int err = link_path_walk(s, nd);
2358 if (!err)
2359 err = complete_walk(nd);
2360 if (!err) {
2361 *parent = nd->path;
2362 nd->path.mnt = NULL;
2363 nd->path.dentry = NULL;
2364 }
2365 terminate_walk(nd);
2366 return err;
2367 }
2368
2369 static struct filename *filename_parentat(int dfd, struct filename *name,
2370 unsigned int flags, struct path *parent,
2371 struct qstr *last, int *type)
2372 {
2373 int retval;
2374 struct nameidata nd;
2375
2376 if (IS_ERR(name))
2377 return name;
2378 set_nameidata(&nd, dfd, name);
2379 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2380 if (unlikely(retval == -ECHILD))
2381 retval = path_parentat(&nd, flags, parent);
2382 if (unlikely(retval == -ESTALE))
2383 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2384 if (likely(!retval)) {
2385 *last = nd.last;
2386 *type = nd.last_type;
2387 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2388 } else {
2389 putname(name);
2390 name = ERR_PTR(retval);
2391 }
2392 restore_nameidata();
2393 return name;
2394 }
2395
2396 /* does lookup, returns the object with parent locked */
2397 struct dentry *kern_path_locked(const char *name, struct path *path)
2398 {
2399 struct filename *filename;
2400 struct dentry *d;
2401 struct qstr last;
2402 int type;
2403
2404 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2405 &last, &type);
2406 if (IS_ERR(filename))
2407 return ERR_CAST(filename);
2408 if (unlikely(type != LAST_NORM)) {
2409 path_put(path);
2410 putname(filename);
2411 return ERR_PTR(-EINVAL);
2412 }
2413 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2414 d = __lookup_hash(&last, path->dentry, 0);
2415 if (IS_ERR(d)) {
2416 inode_unlock(path->dentry->d_inode);
2417 path_put(path);
2418 }
2419 putname(filename);
2420 return d;
2421 }
2422
2423 int kern_path(const char *name, unsigned int flags, struct path *path)
2424 {
2425 return filename_lookup(AT_FDCWD, getname_kernel(name),
2426 flags, path, NULL);
2427 }
2428 EXPORT_SYMBOL(kern_path);
2429
2430 /**
2431 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2432 * @dentry: pointer to dentry of the base directory
2433 * @mnt: pointer to vfs mount of the base directory
2434 * @name: pointer to file name
2435 * @flags: lookup flags
2436 * @path: pointer to struct path to fill
2437 */
2438 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2439 const char *name, unsigned int flags,
2440 struct path *path)
2441 {
2442 struct path root = {.mnt = mnt, .dentry = dentry};
2443 /* the first argument of filename_lookup() is ignored with root */
2444 return filename_lookup(AT_FDCWD, getname_kernel(name),
2445 flags , path, &root);
2446 }
2447 EXPORT_SYMBOL(vfs_path_lookup);
2448
2449 static int lookup_one_len_common(const char *name, struct dentry *base,
2450 int len, struct qstr *this)
2451 {
2452 this->name = name;
2453 this->len = len;
2454 this->hash = full_name_hash(base, name, len);
2455 if (!len)
2456 return -EACCES;
2457
2458 if (unlikely(name[0] == '.')) {
2459 if (len < 2 || (len == 2 && name[1] == '.'))
2460 return -EACCES;
2461 }
2462
2463 while (len--) {
2464 unsigned int c = *(const unsigned char *)name++;
2465 if (c == '/' || c == '\0')
2466 return -EACCES;
2467 }
2468 /*
2469 * See if the low-level filesystem might want
2470 * to use its own hash..
2471 */
2472 if (base->d_flags & DCACHE_OP_HASH) {
2473 int err = base->d_op->d_hash(base, this);
2474 if (err < 0)
2475 return err;
2476 }
2477
2478 return inode_permission(base->d_inode, MAY_EXEC);
2479 }
2480
2481 /**
2482 * try_lookup_one_len - filesystem helper to lookup single pathname component
2483 * @name: pathname component to lookup
2484 * @base: base directory to lookup from
2485 * @len: maximum length @len should be interpreted to
2486 *
2487 * Look up a dentry by name in the dcache, returning NULL if it does not
2488 * currently exist. The function does not try to create a dentry.
2489 *
2490 * Note that this routine is purely a helper for filesystem usage and should
2491 * not be called by generic code.
2492 *
2493 * The caller must hold base->i_mutex.
2494 */
2495 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2496 {
2497 struct qstr this;
2498 int err;
2499
2500 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2501
2502 err = lookup_one_len_common(name, base, len, &this);
2503 if (err)
2504 return ERR_PTR(err);
2505
2506 return lookup_dcache(&this, base, 0);
2507 }
2508 EXPORT_SYMBOL(try_lookup_one_len);
2509
2510 /**
2511 * lookup_one_len - filesystem helper to lookup single pathname component
2512 * @name: pathname component to lookup
2513 * @base: base directory to lookup from
2514 * @len: maximum length @len should be interpreted to
2515 *
2516 * Note that this routine is purely a helper for filesystem usage and should
2517 * not be called by generic code.
2518 *
2519 * The caller must hold base->i_mutex.
2520 */
2521 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2522 {
2523 struct dentry *dentry;
2524 struct qstr this;
2525 int err;
2526
2527 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2528
2529 err = lookup_one_len_common(name, base, len, &this);
2530 if (err)
2531 return ERR_PTR(err);
2532
2533 dentry = lookup_dcache(&this, base, 0);
2534 return dentry ? dentry : __lookup_slow(&this, base, 0);
2535 }
2536 EXPORT_SYMBOL(lookup_one_len);
2537
2538 /**
2539 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2540 * @name: pathname component to lookup
2541 * @base: base directory to lookup from
2542 * @len: maximum length @len should be interpreted to
2543 *
2544 * Note that this routine is purely a helper for filesystem usage and should
2545 * not be called by generic code.
2546 *
2547 * Unlike lookup_one_len, it should be called without the parent
2548 * i_mutex held, and will take the i_mutex itself if necessary.
2549 */
2550 struct dentry *lookup_one_len_unlocked(const char *name,
2551 struct dentry *base, int len)
2552 {
2553 struct qstr this;
2554 int err;
2555 struct dentry *ret;
2556
2557 err = lookup_one_len_common(name, base, len, &this);
2558 if (err)
2559 return ERR_PTR(err);
2560
2561 ret = lookup_dcache(&this, base, 0);
2562 if (!ret)
2563 ret = lookup_slow(&this, base, 0);
2564 return ret;
2565 }
2566 EXPORT_SYMBOL(lookup_one_len_unlocked);
2567
2568 #ifdef CONFIG_UNIX98_PTYS
2569 int path_pts(struct path *path)
2570 {
2571 /* Find something mounted on "pts" in the same directory as
2572 * the input path.
2573 */
2574 struct dentry *child, *parent;
2575 struct qstr this;
2576 int ret;
2577
2578 ret = path_parent_directory(path);
2579 if (ret)
2580 return ret;
2581
2582 parent = path->dentry;
2583 this.name = "pts";
2584 this.len = 3;
2585 child = d_hash_and_lookup(parent, &this);
2586 if (!child)
2587 return -ENOENT;
2588
2589 path->dentry = child;
2590 dput(parent);
2591 follow_mount(path);
2592 return 0;
2593 }
2594 #endif
2595
2596 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2597 struct path *path, int *empty)
2598 {
2599 return filename_lookup(dfd, getname_flags(name, flags, empty),
2600 flags, path, NULL);
2601 }
2602 EXPORT_SYMBOL(user_path_at_empty);
2603
2604 /**
2605 * mountpoint_last - look up last component for umount
2606 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2607 *
2608 * This is a special lookup_last function just for umount. In this case, we
2609 * need to resolve the path without doing any revalidation.
2610 *
2611 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2612 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2613 * in almost all cases, this lookup will be served out of the dcache. The only
2614 * cases where it won't are if nd->last refers to a symlink or the path is
2615 * bogus and it doesn't exist.
2616 *
2617 * Returns:
2618 * -error: if there was an error during lookup. This includes -ENOENT if the
2619 * lookup found a negative dentry.
2620 *
2621 * 0: if we successfully resolved nd->last and found it to not to be a
2622 * symlink that needs to be followed.
2623 *
2624 * 1: if we successfully resolved nd->last and found it to be a symlink
2625 * that needs to be followed.
2626 */
2627 static int
2628 mountpoint_last(struct nameidata *nd)
2629 {
2630 int error = 0;
2631 struct dentry *dir = nd->path.dentry;
2632 struct path path;
2633
2634 /* If we're in rcuwalk, drop out of it to handle last component */
2635 if (nd->flags & LOOKUP_RCU) {
2636 if (unlazy_walk(nd))
2637 return -ECHILD;
2638 }
2639
2640 nd->flags &= ~LOOKUP_PARENT;
2641
2642 if (unlikely(nd->last_type != LAST_NORM)) {
2643 error = handle_dots(nd, nd->last_type);
2644 if (error)
2645 return error;
2646 path.dentry = dget(nd->path.dentry);
2647 } else {
2648 path.dentry = d_lookup(dir, &nd->last);
2649 if (!path.dentry) {
2650 /*
2651 * No cached dentry. Mounted dentries are pinned in the
2652 * cache, so that means that this dentry is probably
2653 * a symlink or the path doesn't actually point
2654 * to a mounted dentry.
2655 */
2656 path.dentry = lookup_slow(&nd->last, dir,
2657 nd->flags | LOOKUP_NO_REVAL);
2658 if (IS_ERR(path.dentry))
2659 return PTR_ERR(path.dentry);
2660 }
2661 }
2662 if (d_is_negative(path.dentry)) {
2663 dput(path.dentry);
2664 return -ENOENT;
2665 }
2666 path.mnt = nd->path.mnt;
2667 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2668 }
2669
2670 /**
2671 * path_mountpoint - look up a path to be umounted
2672 * @nd: lookup context
2673 * @flags: lookup flags
2674 * @path: pointer to container for result
2675 *
2676 * Look up the given name, but don't attempt to revalidate the last component.
2677 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2678 */
2679 static int
2680 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2681 {
2682 const char *s = path_init(nd, flags);
2683 int err;
2684
2685 while (!(err = link_path_walk(s, nd)) &&
2686 (err = mountpoint_last(nd)) > 0) {
2687 s = trailing_symlink(nd);
2688 }
2689 if (!err) {
2690 *path = nd->path;
2691 nd->path.mnt = NULL;
2692 nd->path.dentry = NULL;
2693 follow_mount(path);
2694 }
2695 terminate_walk(nd);
2696 return err;
2697 }
2698
2699 static int
2700 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2701 unsigned int flags)
2702 {
2703 struct nameidata nd;
2704 int error;
2705 if (IS_ERR(name))
2706 return PTR_ERR(name);
2707 set_nameidata(&nd, dfd, name);
2708 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2709 if (unlikely(error == -ECHILD))
2710 error = path_mountpoint(&nd, flags, path);
2711 if (unlikely(error == -ESTALE))
2712 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2713 if (likely(!error))
2714 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2715 restore_nameidata();
2716 putname(name);
2717 return error;
2718 }
2719
2720 /**
2721 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2722 * @dfd: directory file descriptor
2723 * @name: pathname from userland
2724 * @flags: lookup flags
2725 * @path: pointer to container to hold result
2726 *
2727 * A umount is a special case for path walking. We're not actually interested
2728 * in the inode in this situation, and ESTALE errors can be a problem. We
2729 * simply want track down the dentry and vfsmount attached at the mountpoint
2730 * and avoid revalidating the last component.
2731 *
2732 * Returns 0 and populates "path" on success.
2733 */
2734 int
2735 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2736 struct path *path)
2737 {
2738 return filename_mountpoint(dfd, getname(name), path, flags);
2739 }
2740
2741 int
2742 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2743 unsigned int flags)
2744 {
2745 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2746 }
2747 EXPORT_SYMBOL(kern_path_mountpoint);
2748
2749 int __check_sticky(struct inode *dir, struct inode *inode)
2750 {
2751 kuid_t fsuid = current_fsuid();
2752
2753 if (uid_eq(inode->i_uid, fsuid))
2754 return 0;
2755 if (uid_eq(dir->i_uid, fsuid))
2756 return 0;
2757 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2758 }
2759 EXPORT_SYMBOL(__check_sticky);
2760
2761 /*
2762 * Check whether we can remove a link victim from directory dir, check
2763 * whether the type of victim is right.
2764 * 1. We can't do it if dir is read-only (done in permission())
2765 * 2. We should have write and exec permissions on dir
2766 * 3. We can't remove anything from append-only dir
2767 * 4. We can't do anything with immutable dir (done in permission())
2768 * 5. If the sticky bit on dir is set we should either
2769 * a. be owner of dir, or
2770 * b. be owner of victim, or
2771 * c. have CAP_FOWNER capability
2772 * 6. If the victim is append-only or immutable we can't do antyhing with
2773 * links pointing to it.
2774 * 7. If the victim has an unknown uid or gid we can't change the inode.
2775 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2776 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2777 * 10. We can't remove a root or mountpoint.
2778 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2779 * nfs_async_unlink().
2780 */
2781 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2782 {
2783 struct inode *inode = d_backing_inode(victim);
2784 int error;
2785
2786 if (d_is_negative(victim))
2787 return -ENOENT;
2788 BUG_ON(!inode);
2789
2790 BUG_ON(victim->d_parent->d_inode != dir);
2791
2792 /* Inode writeback is not safe when the uid or gid are invalid. */
2793 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2794 return -EOVERFLOW;
2795
2796 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2797
2798 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2799 if (error)
2800 return error;
2801 if (IS_APPEND(dir))
2802 return -EPERM;
2803
2804 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2805 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2806 return -EPERM;
2807 if (isdir) {
2808 if (!d_is_dir(victim))
2809 return -ENOTDIR;
2810 if (IS_ROOT(victim))
2811 return -EBUSY;
2812 } else if (d_is_dir(victim))
2813 return -EISDIR;
2814 if (IS_DEADDIR(dir))
2815 return -ENOENT;
2816 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2817 return -EBUSY;
2818 return 0;
2819 }
2820
2821 /* Check whether we can create an object with dentry child in directory
2822 * dir.
2823 * 1. We can't do it if child already exists (open has special treatment for
2824 * this case, but since we are inlined it's OK)
2825 * 2. We can't do it if dir is read-only (done in permission())
2826 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2827 * 4. We should have write and exec permissions on dir
2828 * 5. We can't do it if dir is immutable (done in permission())
2829 */
2830 static inline int may_create(struct inode *dir, struct dentry *child)
2831 {
2832 struct user_namespace *s_user_ns;
2833 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2834 if (child->d_inode)
2835 return -EEXIST;
2836 if (IS_DEADDIR(dir))
2837 return -ENOENT;
2838 s_user_ns = dir->i_sb->s_user_ns;
2839 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2840 !kgid_has_mapping(s_user_ns, current_fsgid()))
2841 return -EOVERFLOW;
2842 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2843 }
2844
2845 /*
2846 * p1 and p2 should be directories on the same fs.
2847 */
2848 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2849 {
2850 struct dentry *p;
2851
2852 if (p1 == p2) {
2853 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2854 return NULL;
2855 }
2856
2857 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2858
2859 p = d_ancestor(p2, p1);
2860 if (p) {
2861 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2862 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2863 return p;
2864 }
2865
2866 p = d_ancestor(p1, p2);
2867 if (p) {
2868 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2869 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2870 return p;
2871 }
2872
2873 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2874 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2875 return NULL;
2876 }
2877 EXPORT_SYMBOL(lock_rename);
2878
2879 void unlock_rename(struct dentry *p1, struct dentry *p2)
2880 {
2881 inode_unlock(p1->d_inode);
2882 if (p1 != p2) {
2883 inode_unlock(p2->d_inode);
2884 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2885 }
2886 }
2887 EXPORT_SYMBOL(unlock_rename);
2888
2889 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2890 bool want_excl)
2891 {
2892 int error = may_create(dir, dentry);
2893 if (error)
2894 return error;
2895
2896 if (!dir->i_op->create)
2897 return -EACCES; /* shouldn't it be ENOSYS? */
2898 mode &= S_IALLUGO;
2899 mode |= S_IFREG;
2900 error = security_inode_create(dir, dentry, mode);
2901 if (error)
2902 return error;
2903 error = dir->i_op->create(dir, dentry, mode, want_excl);
2904 if (!error)
2905 fsnotify_create(dir, dentry);
2906 return error;
2907 }
2908 EXPORT_SYMBOL(vfs_create);
2909
2910 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2911 int (*f)(struct dentry *, umode_t, void *),
2912 void *arg)
2913 {
2914 struct inode *dir = dentry->d_parent->d_inode;
2915 int error = may_create(dir, dentry);
2916 if (error)
2917 return error;
2918
2919 mode &= S_IALLUGO;
2920 mode |= S_IFREG;
2921 error = security_inode_create(dir, dentry, mode);
2922 if (error)
2923 return error;
2924 error = f(dentry, mode, arg);
2925 if (!error)
2926 fsnotify_create(dir, dentry);
2927 return error;
2928 }
2929 EXPORT_SYMBOL(vfs_mkobj);
2930
2931 bool may_open_dev(const struct path *path)
2932 {
2933 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2934 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2935 }
2936
2937 static int may_open(const struct path *path, int acc_mode, int flag)
2938 {
2939 struct dentry *dentry = path->dentry;
2940 struct inode *inode = dentry->d_inode;
2941 int error;
2942
2943 if (!inode)
2944 return -ENOENT;
2945
2946 switch (inode->i_mode & S_IFMT) {
2947 case S_IFLNK:
2948 return -ELOOP;
2949 case S_IFDIR:
2950 if (acc_mode & MAY_WRITE)
2951 return -EISDIR;
2952 break;
2953 case S_IFBLK:
2954 case S_IFCHR:
2955 if (!may_open_dev(path))
2956 return -EACCES;
2957 /*FALLTHRU*/
2958 case S_IFIFO:
2959 case S_IFSOCK:
2960 flag &= ~O_TRUNC;
2961 break;
2962 }
2963
2964 error = inode_permission(inode, MAY_OPEN | acc_mode);
2965 if (error)
2966 return error;
2967
2968 /*
2969 * An append-only file must be opened in append mode for writing.
2970 */
2971 if (IS_APPEND(inode)) {
2972 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2973 return -EPERM;
2974 if (flag & O_TRUNC)
2975 return -EPERM;
2976 }
2977
2978 /* O_NOATIME can only be set by the owner or superuser */
2979 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2980 return -EPERM;
2981
2982 return 0;
2983 }
2984
2985 static int handle_truncate(struct file *filp)
2986 {
2987 const struct path *path = &filp->f_path;
2988 struct inode *inode = path->dentry->d_inode;
2989 int error = get_write_access(inode);
2990 if (error)
2991 return error;
2992 /*
2993 * Refuse to truncate files with mandatory locks held on them.
2994 */
2995 error = locks_verify_locked(filp);
2996 if (!error)
2997 error = security_path_truncate(path);
2998 if (!error) {
2999 error = do_truncate(path->dentry, 0,
3000 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3001 filp);
3002 }
3003 put_write_access(inode);
3004 return error;
3005 }
3006
3007 static inline int open_to_namei_flags(int flag)
3008 {
3009 if ((flag & O_ACCMODE) == 3)
3010 flag--;
3011 return flag;
3012 }
3013
3014 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3015 {
3016 struct user_namespace *s_user_ns;
3017 int error = security_path_mknod(dir, dentry, mode, 0);
3018 if (error)
3019 return error;
3020
3021 s_user_ns = dir->dentry->d_sb->s_user_ns;
3022 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3023 !kgid_has_mapping(s_user_ns, current_fsgid()))
3024 return -EOVERFLOW;
3025
3026 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3027 if (error)
3028 return error;
3029
3030 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3031 }
3032
3033 /*
3034 * Attempt to atomically look up, create and open a file from a negative
3035 * dentry.
3036 *
3037 * Returns 0 if successful. The file will have been created and attached to
3038 * @file by the filesystem calling finish_open().
3039 *
3040 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3041 * be set. The caller will need to perform the open themselves. @path will
3042 * have been updated to point to the new dentry. This may be negative.
3043 *
3044 * Returns an error code otherwise.
3045 */
3046 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3047 struct path *path, struct file *file,
3048 const struct open_flags *op,
3049 int open_flag, umode_t mode)
3050 {
3051 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3052 struct inode *dir = nd->path.dentry->d_inode;
3053 int error;
3054
3055 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3056 open_flag &= ~O_TRUNC;
3057
3058 if (nd->flags & LOOKUP_DIRECTORY)
3059 open_flag |= O_DIRECTORY;
3060
3061 file->f_path.dentry = DENTRY_NOT_SET;
3062 file->f_path.mnt = nd->path.mnt;
3063 error = dir->i_op->atomic_open(dir, dentry, file,
3064 open_to_namei_flags(open_flag), mode);
3065 d_lookup_done(dentry);
3066 if (!error) {
3067 if (file->f_mode & FMODE_OPENED) {
3068 /*
3069 * We didn't have the inode before the open, so check open
3070 * permission here.
3071 */
3072 int acc_mode = op->acc_mode;
3073 if (file->f_mode & FMODE_CREATED) {
3074 WARN_ON(!(open_flag & O_CREAT));
3075 fsnotify_create(dir, dentry);
3076 acc_mode = 0;
3077 }
3078 error = may_open(&file->f_path, acc_mode, open_flag);
3079 if (WARN_ON(error > 0))
3080 error = -EINVAL;
3081 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3082 error = -EIO;
3083 } else {
3084 if (file->f_path.dentry) {
3085 dput(dentry);
3086 dentry = file->f_path.dentry;
3087 }
3088 if (file->f_mode & FMODE_CREATED)
3089 fsnotify_create(dir, dentry);
3090 if (unlikely(d_is_negative(dentry))) {
3091 error = -ENOENT;
3092 } else {
3093 path->dentry = dentry;
3094 path->mnt = nd->path.mnt;
3095 return 0;
3096 }
3097 }
3098 }
3099 dput(dentry);
3100 return error;
3101 }
3102
3103 /*
3104 * Look up and maybe create and open the last component.
3105 *
3106 * Must be called with parent locked (exclusive in O_CREAT case).
3107 *
3108 * Returns 0 on success, that is, if
3109 * the file was successfully atomically created (if necessary) and opened, or
3110 * the file was not completely opened at this time, though lookups and
3111 * creations were performed.
3112 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3113 * In the latter case dentry returned in @path might be negative if O_CREAT
3114 * hadn't been specified.
3115 *
3116 * An error code is returned on failure.
3117 */
3118 static int lookup_open(struct nameidata *nd, struct path *path,
3119 struct file *file,
3120 const struct open_flags *op,
3121 bool got_write)
3122 {
3123 struct dentry *dir = nd->path.dentry;
3124 struct inode *dir_inode = dir->d_inode;
3125 int open_flag = op->open_flag;
3126 struct dentry *dentry;
3127 int error, create_error = 0;
3128 umode_t mode = op->mode;
3129 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3130
3131 if (unlikely(IS_DEADDIR(dir_inode)))
3132 return -ENOENT;
3133
3134 file->f_mode &= ~FMODE_CREATED;
3135 dentry = d_lookup(dir, &nd->last);
3136 for (;;) {
3137 if (!dentry) {
3138 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3139 if (IS_ERR(dentry))
3140 return PTR_ERR(dentry);
3141 }
3142 if (d_in_lookup(dentry))
3143 break;
3144
3145 error = d_revalidate(dentry, nd->flags);
3146 if (likely(error > 0))
3147 break;
3148 if (error)
3149 goto out_dput;
3150 d_invalidate(dentry);
3151 dput(dentry);
3152 dentry = NULL;
3153 }
3154 if (dentry->d_inode) {
3155 /* Cached positive dentry: will open in f_op->open */
3156 goto out_no_open;
3157 }
3158
3159 /*
3160 * Checking write permission is tricky, bacuse we don't know if we are
3161 * going to actually need it: O_CREAT opens should work as long as the
3162 * file exists. But checking existence breaks atomicity. The trick is
3163 * to check access and if not granted clear O_CREAT from the flags.
3164 *
3165 * Another problem is returing the "right" error value (e.g. for an
3166 * O_EXCL open we want to return EEXIST not EROFS).
3167 */
3168 if (open_flag & O_CREAT) {
3169 if (!IS_POSIXACL(dir->d_inode))
3170 mode &= ~current_umask();
3171 if (unlikely(!got_write)) {
3172 create_error = -EROFS;
3173 open_flag &= ~O_CREAT;
3174 if (open_flag & (O_EXCL | O_TRUNC))
3175 goto no_open;
3176 /* No side effects, safe to clear O_CREAT */
3177 } else {
3178 create_error = may_o_create(&nd->path, dentry, mode);
3179 if (create_error) {
3180 open_flag &= ~O_CREAT;
3181 if (open_flag & O_EXCL)
3182 goto no_open;
3183 }
3184 }
3185 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3186 unlikely(!got_write)) {
3187 /*
3188 * No O_CREATE -> atomicity not a requirement -> fall
3189 * back to lookup + open
3190 */
3191 goto no_open;
3192 }
3193
3194 if (dir_inode->i_op->atomic_open) {
3195 error = atomic_open(nd, dentry, path, file, op, open_flag,
3196 mode);
3197 if (unlikely(error == -ENOENT) && create_error)
3198 error = create_error;
3199 return error;
3200 }
3201
3202 no_open:
3203 if (d_in_lookup(dentry)) {
3204 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3205 nd->flags);
3206 d_lookup_done(dentry);
3207 if (unlikely(res)) {
3208 if (IS_ERR(res)) {
3209 error = PTR_ERR(res);
3210 goto out_dput;
3211 }
3212 dput(dentry);
3213 dentry = res;
3214 }
3215 }
3216
3217 /* Negative dentry, just create the file */
3218 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3219 file->f_mode |= FMODE_CREATED;
3220 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3221 if (!dir_inode->i_op->create) {
3222 error = -EACCES;
3223 goto out_dput;
3224 }
3225 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3226 open_flag & O_EXCL);
3227 if (error)
3228 goto out_dput;
3229 fsnotify_create(dir_inode, dentry);
3230 }
3231 if (unlikely(create_error) && !dentry->d_inode) {
3232 error = create_error;
3233 goto out_dput;
3234 }
3235 out_no_open:
3236 path->dentry = dentry;
3237 path->mnt = nd->path.mnt;
3238 return 0;
3239
3240 out_dput:
3241 dput(dentry);
3242 return error;
3243 }
3244
3245 /*
3246 * Handle the last step of open()
3247 */
3248 static int do_last(struct nameidata *nd,
3249 struct file *file, const struct open_flags *op)
3250 {
3251 struct dentry *dir = nd->path.dentry;
3252 kuid_t dir_uid = nd->inode->i_uid;
3253 umode_t dir_mode = nd->inode->i_mode;
3254 int open_flag = op->open_flag;
3255 bool will_truncate = (open_flag & O_TRUNC) != 0;
3256 bool got_write = false;
3257 int acc_mode = op->acc_mode;
3258 unsigned seq;
3259 struct inode *inode;
3260 struct path path;
3261 int error;
3262
3263 nd->flags &= ~LOOKUP_PARENT;
3264 nd->flags |= op->intent;
3265
3266 if (nd->last_type != LAST_NORM) {
3267 error = handle_dots(nd, nd->last_type);
3268 if (unlikely(error))
3269 return error;
3270 goto finish_open;
3271 }
3272
3273 if (!(open_flag & O_CREAT)) {
3274 if (nd->last.name[nd->last.len])
3275 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3276 /* we _can_ be in RCU mode here */
3277 error = lookup_fast(nd, &path, &inode, &seq);
3278 if (likely(error > 0))
3279 goto finish_lookup;
3280
3281 if (error < 0)
3282 return error;
3283
3284 BUG_ON(nd->inode != dir->d_inode);
3285 BUG_ON(nd->flags & LOOKUP_RCU);
3286 } else {
3287 /* create side of things */
3288 /*
3289 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3290 * has been cleared when we got to the last component we are
3291 * about to look up
3292 */
3293 error = complete_walk(nd);
3294 if (error)
3295 return error;
3296
3297 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3298 /* trailing slashes? */
3299 if (unlikely(nd->last.name[nd->last.len]))
3300 return -EISDIR;
3301 }
3302
3303 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3304 error = mnt_want_write(nd->path.mnt);
3305 if (!error)
3306 got_write = true;
3307 /*
3308 * do _not_ fail yet - we might not need that or fail with
3309 * a different error; let lookup_open() decide; we'll be
3310 * dropping this one anyway.
3311 */
3312 }
3313 if (open_flag & O_CREAT)
3314 inode_lock(dir->d_inode);
3315 else
3316 inode_lock_shared(dir->d_inode);
3317 error = lookup_open(nd, &path, file, op, got_write);
3318 if (open_flag & O_CREAT)
3319 inode_unlock(dir->d_inode);
3320 else
3321 inode_unlock_shared(dir->d_inode);
3322
3323 if (error)
3324 goto out;
3325
3326 if (file->f_mode & FMODE_OPENED) {
3327 if ((file->f_mode & FMODE_CREATED) ||
3328 !S_ISREG(file_inode(file)->i_mode))
3329 will_truncate = false;
3330
3331 audit_inode(nd->name, file->f_path.dentry, 0);
3332 goto opened;
3333 }
3334
3335 if (file->f_mode & FMODE_CREATED) {
3336 /* Don't check for write permission, don't truncate */
3337 open_flag &= ~O_TRUNC;
3338 will_truncate = false;
3339 acc_mode = 0;
3340 path_to_nameidata(&path, nd);
3341 goto finish_open_created;
3342 }
3343
3344 /*
3345 * If atomic_open() acquired write access it is dropped now due to
3346 * possible mount and symlink following (this might be optimized away if
3347 * necessary...)
3348 */
3349 if (got_write) {
3350 mnt_drop_write(nd->path.mnt);
3351 got_write = false;
3352 }
3353
3354 error = follow_managed(&path, nd);
3355 if (unlikely(error < 0))
3356 return error;
3357
3358 if (unlikely(d_is_negative(path.dentry))) {
3359 path_to_nameidata(&path, nd);
3360 return -ENOENT;
3361 }
3362
3363 /*
3364 * create/update audit record if it already exists.
3365 */
3366 audit_inode(nd->name, path.dentry, 0);
3367
3368 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3369 path_to_nameidata(&path, nd);
3370 return -EEXIST;
3371 }
3372
3373 seq = 0; /* out of RCU mode, so the value doesn't matter */
3374 inode = d_backing_inode(path.dentry);
3375 finish_lookup:
3376 error = step_into(nd, &path, 0, inode, seq);
3377 if (unlikely(error))
3378 return error;
3379 finish_open:
3380 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3381 error = complete_walk(nd);
3382 if (error)
3383 return error;
3384 audit_inode(nd->name, nd->path.dentry, 0);
3385 if (open_flag & O_CREAT) {
3386 error = -EISDIR;
3387 if (d_is_dir(nd->path.dentry))
3388 goto out;
3389 error = may_create_in_sticky(dir_mode, dir_uid,
3390 d_backing_inode(nd->path.dentry));
3391 if (unlikely(error))
3392 goto out;
3393 }
3394 error = -ENOTDIR;
3395 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3396 goto out;
3397 if (!d_is_reg(nd->path.dentry))
3398 will_truncate = false;
3399
3400 if (will_truncate) {
3401 error = mnt_want_write(nd->path.mnt);
3402 if (error)
3403 goto out;
3404 got_write = true;
3405 }
3406 finish_open_created:
3407 error = may_open(&nd->path, acc_mode, open_flag);
3408 if (error)
3409 goto out;
3410 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3411 error = vfs_open(&nd->path, file);
3412 if (error)
3413 goto out;
3414 opened:
3415 error = ima_file_check(file, op->acc_mode);
3416 if (!error && will_truncate)
3417 error = handle_truncate(file);
3418 out:
3419 if (unlikely(error > 0)) {
3420 WARN_ON(1);
3421 error = -EINVAL;
3422 }
3423 if (got_write)
3424 mnt_drop_write(nd->path.mnt);
3425 return error;
3426 }
3427
3428 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3429 {
3430 struct dentry *child = NULL;
3431 struct inode *dir = dentry->d_inode;
3432 struct inode *inode;
3433 int error;
3434
3435 /* we want directory to be writable */
3436 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3437 if (error)
3438 goto out_err;
3439 error = -EOPNOTSUPP;
3440 if (!dir->i_op->tmpfile)
3441 goto out_err;
3442 error = -ENOMEM;
3443 child = d_alloc(dentry, &slash_name);
3444 if (unlikely(!child))
3445 goto out_err;
3446 error = dir->i_op->tmpfile(dir, child, mode);
3447 if (error)
3448 goto out_err;
3449 error = -ENOENT;
3450 inode = child->d_inode;
3451 if (unlikely(!inode))
3452 goto out_err;
3453 if (!(open_flag & O_EXCL)) {
3454 spin_lock(&inode->i_lock);
3455 inode->i_state |= I_LINKABLE;
3456 spin_unlock(&inode->i_lock);
3457 }
3458 ima_post_create_tmpfile(inode);
3459 return child;
3460
3461 out_err:
3462 dput(child);
3463 return ERR_PTR(error);
3464 }
3465 EXPORT_SYMBOL(vfs_tmpfile);
3466
3467 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3468 const struct open_flags *op,
3469 struct file *file)
3470 {
3471 struct dentry *child;
3472 struct path path;
3473 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3474 if (unlikely(error))
3475 return error;
3476 error = mnt_want_write(path.mnt);
3477 if (unlikely(error))
3478 goto out;
3479 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3480 error = PTR_ERR(child);
3481 if (IS_ERR(child))
3482 goto out2;
3483 dput(path.dentry);
3484 path.dentry = child;
3485 audit_inode(nd->name, child, 0);
3486 /* Don't check for other permissions, the inode was just created */
3487 error = may_open(&path, 0, op->open_flag);
3488 if (error)
3489 goto out2;
3490 file->f_path.mnt = path.mnt;
3491 error = finish_open(file, child, NULL);
3492 out2:
3493 mnt_drop_write(path.mnt);
3494 out:
3495 path_put(&path);
3496 return error;
3497 }
3498
3499 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3500 {
3501 struct path path;
3502 int error = path_lookupat(nd, flags, &path);
3503 if (!error) {
3504 audit_inode(nd->name, path.dentry, 0);
3505 error = vfs_open(&path, file);
3506 path_put(&path);
3507 }
3508 return error;
3509 }
3510
3511 static struct file *path_openat(struct nameidata *nd,
3512 const struct open_flags *op, unsigned flags)
3513 {
3514 struct file *file;
3515 int error;
3516
3517 file = alloc_empty_file(op->open_flag, current_cred());
3518 if (IS_ERR(file))
3519 return file;
3520
3521 if (unlikely(file->f_flags & __O_TMPFILE)) {
3522 error = do_tmpfile(nd, flags, op, file);
3523 } else if (unlikely(file->f_flags & O_PATH)) {
3524 error = do_o_path(nd, flags, file);
3525 } else {
3526 const char *s = path_init(nd, flags);
3527 while (!(error = link_path_walk(s, nd)) &&
3528 (error = do_last(nd, file, op)) > 0) {
3529 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3530 s = trailing_symlink(nd);
3531 }
3532 terminate_walk(nd);
3533 }
3534 if (likely(!error)) {
3535 if (likely(file->f_mode & FMODE_OPENED))
3536 return file;
3537 WARN_ON(1);
3538 error = -EINVAL;
3539 }
3540 fput(file);
3541 if (error == -EOPENSTALE) {
3542 if (flags & LOOKUP_RCU)
3543 error = -ECHILD;
3544 else
3545 error = -ESTALE;
3546 }
3547 return ERR_PTR(error);
3548 }
3549
3550 struct file *do_filp_open(int dfd, struct filename *pathname,
3551 const struct open_flags *op)
3552 {
3553 struct nameidata nd;
3554 int flags = op->lookup_flags;
3555 struct file *filp;
3556
3557 set_nameidata(&nd, dfd, pathname);
3558 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3559 if (unlikely(filp == ERR_PTR(-ECHILD)))
3560 filp = path_openat(&nd, op, flags);
3561 if (unlikely(filp == ERR_PTR(-ESTALE)))
3562 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3563 restore_nameidata();
3564 return filp;
3565 }
3566
3567 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3568 const char *name, const struct open_flags *op)
3569 {
3570 struct nameidata nd;
3571 struct file *file;
3572 struct filename *filename;
3573 int flags = op->lookup_flags | LOOKUP_ROOT;
3574
3575 nd.root.mnt = mnt;
3576 nd.root.dentry = dentry;
3577
3578 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3579 return ERR_PTR(-ELOOP);
3580
3581 filename = getname_kernel(name);
3582 if (IS_ERR(filename))
3583 return ERR_CAST(filename);
3584
3585 set_nameidata(&nd, -1, filename);
3586 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3587 if (unlikely(file == ERR_PTR(-ECHILD)))
3588 file = path_openat(&nd, op, flags);
3589 if (unlikely(file == ERR_PTR(-ESTALE)))
3590 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3591 restore_nameidata();
3592 putname(filename);
3593 return file;
3594 }
3595
3596 static struct dentry *filename_create(int dfd, struct filename *name,
3597 struct path *path, unsigned int lookup_flags)
3598 {
3599 struct dentry *dentry = ERR_PTR(-EEXIST);
3600 struct qstr last;
3601 int type;
3602 int err2;
3603 int error;
3604 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3605
3606 /*
3607 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3608 * other flags passed in are ignored!
3609 */
3610 lookup_flags &= LOOKUP_REVAL;
3611
3612 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3613 if (IS_ERR(name))
3614 return ERR_CAST(name);
3615
3616 /*
3617 * Yucky last component or no last component at all?
3618 * (foo/., foo/.., /////)
3619 */
3620 if (unlikely(type != LAST_NORM))
3621 goto out;
3622
3623 /* don't fail immediately if it's r/o, at least try to report other errors */
3624 err2 = mnt_want_write(path->mnt);
3625 /*
3626 * Do the final lookup.
3627 */
3628 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3629 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3630 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3631 if (IS_ERR(dentry))
3632 goto unlock;
3633
3634 error = -EEXIST;
3635 if (d_is_positive(dentry))
3636 goto fail;
3637
3638 /*
3639 * Special case - lookup gave negative, but... we had foo/bar/
3640 * From the vfs_mknod() POV we just have a negative dentry -
3641 * all is fine. Let's be bastards - you had / on the end, you've
3642 * been asking for (non-existent) directory. -ENOENT for you.
3643 */
3644 if (unlikely(!is_dir && last.name[last.len])) {
3645 error = -ENOENT;
3646 goto fail;
3647 }
3648 if (unlikely(err2)) {
3649 error = err2;
3650 goto fail;
3651 }
3652 putname(name);
3653 return dentry;
3654 fail:
3655 dput(dentry);
3656 dentry = ERR_PTR(error);
3657 unlock:
3658 inode_unlock(path->dentry->d_inode);
3659 if (!err2)
3660 mnt_drop_write(path->mnt);
3661 out:
3662 path_put(path);
3663 putname(name);
3664 return dentry;
3665 }
3666
3667 struct dentry *kern_path_create(int dfd, const char *pathname,
3668 struct path *path, unsigned int lookup_flags)
3669 {
3670 return filename_create(dfd, getname_kernel(pathname),
3671 path, lookup_flags);
3672 }
3673 EXPORT_SYMBOL(kern_path_create);
3674
3675 void done_path_create(struct path *path, struct dentry *dentry)
3676 {
3677 dput(dentry);
3678 inode_unlock(path->dentry->d_inode);
3679 mnt_drop_write(path->mnt);
3680 path_put(path);
3681 }
3682 EXPORT_SYMBOL(done_path_create);
3683
3684 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3685 struct path *path, unsigned int lookup_flags)
3686 {
3687 return filename_create(dfd, getname(pathname), path, lookup_flags);
3688 }
3689 EXPORT_SYMBOL(user_path_create);
3690
3691 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3692 {
3693 int error = may_create(dir, dentry);
3694
3695 if (error)
3696 return error;
3697
3698 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3699 return -EPERM;
3700
3701 if (!dir->i_op->mknod)
3702 return -EPERM;
3703
3704 error = devcgroup_inode_mknod(mode, dev);
3705 if (error)
3706 return error;
3707
3708 error = security_inode_mknod(dir, dentry, mode, dev);
3709 if (error)
3710 return error;
3711
3712 error = dir->i_op->mknod(dir, dentry, mode, dev);
3713 if (!error)
3714 fsnotify_create(dir, dentry);
3715 return error;
3716 }
3717 EXPORT_SYMBOL(vfs_mknod);
3718
3719 static int may_mknod(umode_t mode)
3720 {
3721 switch (mode & S_IFMT) {
3722 case S_IFREG:
3723 case S_IFCHR:
3724 case S_IFBLK:
3725 case S_IFIFO:
3726 case S_IFSOCK:
3727 case 0: /* zero mode translates to S_IFREG */
3728 return 0;
3729 case S_IFDIR:
3730 return -EPERM;
3731 default:
3732 return -EINVAL;
3733 }
3734 }
3735
3736 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3737 unsigned int dev)
3738 {
3739 struct dentry *dentry;
3740 struct path path;
3741 int error;
3742 unsigned int lookup_flags = 0;
3743
3744 error = may_mknod(mode);
3745 if (error)
3746 return error;
3747 retry:
3748 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3749 if (IS_ERR(dentry))
3750 return PTR_ERR(dentry);
3751
3752 if (!IS_POSIXACL(path.dentry->d_inode))
3753 mode &= ~current_umask();
3754 error = security_path_mknod(&path, dentry, mode, dev);
3755 if (error)
3756 goto out;
3757 switch (mode & S_IFMT) {
3758 case 0: case S_IFREG:
3759 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3760 if (!error)
3761 ima_post_path_mknod(dentry);
3762 break;
3763 case S_IFCHR: case S_IFBLK:
3764 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3765 new_decode_dev(dev));
3766 break;
3767 case S_IFIFO: case S_IFSOCK:
3768 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3769 break;
3770 }
3771 out:
3772 done_path_create(&path, dentry);
3773 if (retry_estale(error, lookup_flags)) {
3774 lookup_flags |= LOOKUP_REVAL;
3775 goto retry;
3776 }
3777 return error;
3778 }
3779
3780 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3781 unsigned int, dev)
3782 {
3783 return do_mknodat(dfd, filename, mode, dev);
3784 }
3785
3786 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3787 {
3788 return do_mknodat(AT_FDCWD, filename, mode, dev);
3789 }
3790
3791 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3792 {
3793 int error = may_create(dir, dentry);
3794 unsigned max_links = dir->i_sb->s_max_links;
3795
3796 if (error)
3797 return error;
3798
3799 if (!dir->i_op->mkdir)
3800 return -EPERM;
3801
3802 mode &= (S_IRWXUGO|S_ISVTX);
3803 error = security_inode_mkdir(dir, dentry, mode);
3804 if (error)
3805 return error;
3806
3807 if (max_links && dir->i_nlink >= max_links)
3808 return -EMLINK;
3809
3810 error = dir->i_op->mkdir(dir, dentry, mode);
3811 if (!error)
3812 fsnotify_mkdir(dir, dentry);
3813 return error;
3814 }
3815 EXPORT_SYMBOL(vfs_mkdir);
3816
3817 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3818 {
3819 struct dentry *dentry;
3820 struct path path;
3821 int error;
3822 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3823
3824 retry:
3825 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3826 if (IS_ERR(dentry))
3827 return PTR_ERR(dentry);
3828
3829 if (!IS_POSIXACL(path.dentry->d_inode))
3830 mode &= ~current_umask();
3831 error = security_path_mkdir(&path, dentry, mode);
3832 if (!error)
3833 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3834 done_path_create(&path, dentry);
3835 if (retry_estale(error, lookup_flags)) {
3836 lookup_flags |= LOOKUP_REVAL;
3837 goto retry;
3838 }
3839 return error;
3840 }
3841
3842 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3843 {
3844 return do_mkdirat(dfd, pathname, mode);
3845 }
3846
3847 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3848 {
3849 return do_mkdirat(AT_FDCWD, pathname, mode);
3850 }
3851
3852 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3853 {
3854 int error = may_delete(dir, dentry, 1);
3855
3856 if (error)
3857 return error;
3858
3859 if (!dir->i_op->rmdir)
3860 return -EPERM;
3861
3862 dget(dentry);
3863 inode_lock(dentry->d_inode);
3864
3865 error = -EBUSY;
3866 if (is_local_mountpoint(dentry))
3867 goto out;
3868
3869 error = security_inode_rmdir(dir, dentry);
3870 if (error)
3871 goto out;
3872
3873 error = dir->i_op->rmdir(dir, dentry);
3874 if (error)
3875 goto out;
3876
3877 shrink_dcache_parent(dentry);
3878 dentry->d_inode->i_flags |= S_DEAD;
3879 dont_mount(dentry);
3880 detach_mounts(dentry);
3881 fsnotify_rmdir(dir, dentry);
3882
3883 out:
3884 inode_unlock(dentry->d_inode);
3885 dput(dentry);
3886 if (!error)
3887 d_delete(dentry);
3888 return error;
3889 }
3890 EXPORT_SYMBOL(vfs_rmdir);
3891
3892 long do_rmdir(int dfd, const char __user *pathname)
3893 {
3894 int error = 0;
3895 struct filename *name;
3896 struct dentry *dentry;
3897 struct path path;
3898 struct qstr last;
3899 int type;
3900 unsigned int lookup_flags = 0;
3901 retry:
3902 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3903 &path, &last, &type);
3904 if (IS_ERR(name))
3905 return PTR_ERR(name);
3906
3907 switch (type) {
3908 case LAST_DOTDOT:
3909 error = -ENOTEMPTY;
3910 goto exit1;
3911 case LAST_DOT:
3912 error = -EINVAL;
3913 goto exit1;
3914 case LAST_ROOT:
3915 error = -EBUSY;
3916 goto exit1;
3917 }
3918
3919 error = mnt_want_write(path.mnt);
3920 if (error)
3921 goto exit1;
3922
3923 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3924 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3925 error = PTR_ERR(dentry);
3926 if (IS_ERR(dentry))
3927 goto exit2;
3928 if (!dentry->d_inode) {
3929 error = -ENOENT;
3930 goto exit3;
3931 }
3932 error = security_path_rmdir(&path, dentry);
3933 if (error)
3934 goto exit3;
3935 error = vfs_rmdir(path.dentry->d_inode, dentry);
3936 exit3:
3937 dput(dentry);
3938 exit2:
3939 inode_unlock(path.dentry->d_inode);
3940 mnt_drop_write(path.mnt);
3941 exit1:
3942 path_put(&path);
3943 putname(name);
3944 if (retry_estale(error, lookup_flags)) {
3945 lookup_flags |= LOOKUP_REVAL;
3946 goto retry;
3947 }
3948 return error;
3949 }
3950
3951 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3952 {
3953 return do_rmdir(AT_FDCWD, pathname);
3954 }
3955
3956 /**
3957 * vfs_unlink - unlink a filesystem object
3958 * @dir: parent directory
3959 * @dentry: victim
3960 * @delegated_inode: returns victim inode, if the inode is delegated.
3961 *
3962 * The caller must hold dir->i_mutex.
3963 *
3964 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3965 * return a reference to the inode in delegated_inode. The caller
3966 * should then break the delegation on that inode and retry. Because
3967 * breaking a delegation may take a long time, the caller should drop
3968 * dir->i_mutex before doing so.
3969 *
3970 * Alternatively, a caller may pass NULL for delegated_inode. This may
3971 * be appropriate for callers that expect the underlying filesystem not
3972 * to be NFS exported.
3973 */
3974 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3975 {
3976 struct inode *target = dentry->d_inode;
3977 int error = may_delete(dir, dentry, 0);
3978
3979 if (error)
3980 return error;
3981
3982 if (!dir->i_op->unlink)
3983 return -EPERM;
3984
3985 inode_lock(target);
3986 if (is_local_mountpoint(dentry))
3987 error = -EBUSY;
3988 else {
3989 error = security_inode_unlink(dir, dentry);
3990 if (!error) {
3991 error = try_break_deleg(target, delegated_inode);
3992 if (error)
3993 goto out;
3994 error = dir->i_op->unlink(dir, dentry);
3995 if (!error) {
3996 dont_mount(dentry);
3997 detach_mounts(dentry);
3998 fsnotify_unlink(dir, dentry);
3999 }
4000 }
4001 }
4002 out:
4003 inode_unlock(target);
4004
4005 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4006 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4007 fsnotify_link_count(target);
4008 d_delete(dentry);
4009 }
4010
4011 return error;
4012 }
4013 EXPORT_SYMBOL(vfs_unlink);
4014
4015 /*
4016 * Make sure that the actual truncation of the file will occur outside its
4017 * directory's i_mutex. Truncate can take a long time if there is a lot of
4018 * writeout happening, and we don't want to prevent access to the directory
4019 * while waiting on the I/O.
4020 */
4021 long do_unlinkat(int dfd, struct filename *name)
4022 {
4023 int error;
4024 struct dentry *dentry;
4025 struct path path;
4026 struct qstr last;
4027 int type;
4028 struct inode *inode = NULL;
4029 struct inode *delegated_inode = NULL;
4030 unsigned int lookup_flags = 0;
4031 retry:
4032 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4033 if (IS_ERR(name))
4034 return PTR_ERR(name);
4035
4036 error = -EISDIR;
4037 if (type != LAST_NORM)
4038 goto exit1;
4039
4040 error = mnt_want_write(path.mnt);
4041 if (error)
4042 goto exit1;
4043 retry_deleg:
4044 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4045 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4046 error = PTR_ERR(dentry);
4047 if (!IS_ERR(dentry)) {
4048 /* Why not before? Because we want correct error value */
4049 if (last.name[last.len])
4050 goto slashes;
4051 inode = dentry->d_inode;
4052 if (d_is_negative(dentry))
4053 goto slashes;
4054 ihold(inode);
4055 error = security_path_unlink(&path, dentry);
4056 if (error)
4057 goto exit2;
4058 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4059 exit2:
4060 dput(dentry);
4061 }
4062 inode_unlock(path.dentry->d_inode);
4063 if (inode)
4064 iput(inode); /* truncate the inode here */
4065 inode = NULL;
4066 if (delegated_inode) {
4067 error = break_deleg_wait(&delegated_inode);
4068 if (!error)
4069 goto retry_deleg;
4070 }
4071 mnt_drop_write(path.mnt);
4072 exit1:
4073 path_put(&path);
4074 if (retry_estale(error, lookup_flags)) {
4075 lookup_flags |= LOOKUP_REVAL;
4076 inode = NULL;
4077 goto retry;
4078 }
4079 putname(name);
4080 return error;
4081
4082 slashes:
4083 if (d_is_negative(dentry))
4084 error = -ENOENT;
4085 else if (d_is_dir(dentry))
4086 error = -EISDIR;
4087 else
4088 error = -ENOTDIR;
4089 goto exit2;
4090 }
4091
4092 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4093 {
4094 if ((flag & ~AT_REMOVEDIR) != 0)
4095 return -EINVAL;
4096
4097 if (flag & AT_REMOVEDIR)
4098 return do_rmdir(dfd, pathname);
4099
4100 return do_unlinkat(dfd, getname(pathname));
4101 }
4102
4103 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4104 {
4105 return do_unlinkat(AT_FDCWD, getname(pathname));
4106 }
4107
4108 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4109 {
4110 int error = may_create(dir, dentry);
4111
4112 if (error)
4113 return error;
4114
4115 if (!dir->i_op->symlink)
4116 return -EPERM;
4117
4118 error = security_inode_symlink(dir, dentry, oldname);
4119 if (error)
4120 return error;
4121
4122 error = dir->i_op->symlink(dir, dentry, oldname);
4123 if (!error)
4124 fsnotify_create(dir, dentry);
4125 return error;
4126 }
4127 EXPORT_SYMBOL(vfs_symlink);
4128
4129 long do_symlinkat(const char __user *oldname, int newdfd,
4130 const char __user *newname)
4131 {
4132 int error;
4133 struct filename *from;
4134 struct dentry *dentry;
4135 struct path path;
4136 unsigned int lookup_flags = 0;
4137
4138 from = getname(oldname);
4139 if (IS_ERR(from))
4140 return PTR_ERR(from);
4141 retry:
4142 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4143 error = PTR_ERR(dentry);
4144 if (IS_ERR(dentry))
4145 goto out_putname;
4146
4147 error = security_path_symlink(&path, dentry, from->name);
4148 if (!error)
4149 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4150 done_path_create(&path, dentry);
4151 if (retry_estale(error, lookup_flags)) {
4152 lookup_flags |= LOOKUP_REVAL;
4153 goto retry;
4154 }
4155 out_putname:
4156 putname(from);
4157 return error;
4158 }
4159
4160 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4161 int, newdfd, const char __user *, newname)
4162 {
4163 return do_symlinkat(oldname, newdfd, newname);
4164 }
4165
4166 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4167 {
4168 return do_symlinkat(oldname, AT_FDCWD, newname);
4169 }
4170
4171 /**
4172 * vfs_link - create a new link
4173 * @old_dentry: object to be linked
4174 * @dir: new parent
4175 * @new_dentry: where to create the new link
4176 * @delegated_inode: returns inode needing a delegation break
4177 *
4178 * The caller must hold dir->i_mutex
4179 *
4180 * If vfs_link discovers a delegation on the to-be-linked file in need
4181 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4182 * inode in delegated_inode. The caller should then break the delegation
4183 * and retry. Because breaking a delegation may take a long time, the
4184 * caller should drop the i_mutex before doing so.
4185 *
4186 * Alternatively, a caller may pass NULL for delegated_inode. This may
4187 * be appropriate for callers that expect the underlying filesystem not
4188 * to be NFS exported.
4189 */
4190 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4191 {
4192 struct inode *inode = old_dentry->d_inode;
4193 unsigned max_links = dir->i_sb->s_max_links;
4194 int error;
4195
4196 if (!inode)
4197 return -ENOENT;
4198
4199 error = may_create(dir, new_dentry);
4200 if (error)
4201 return error;
4202
4203 if (dir->i_sb != inode->i_sb)
4204 return -EXDEV;
4205
4206 /*
4207 * A link to an append-only or immutable file cannot be created.
4208 */
4209 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4210 return -EPERM;
4211 /*
4212 * Updating the link count will likely cause i_uid and i_gid to
4213 * be writen back improperly if their true value is unknown to
4214 * the vfs.
4215 */
4216 if (HAS_UNMAPPED_ID(inode))
4217 return -EPERM;
4218 if (!dir->i_op->link)
4219 return -EPERM;
4220 if (S_ISDIR(inode->i_mode))
4221 return -EPERM;
4222
4223 error = security_inode_link(old_dentry, dir, new_dentry);
4224 if (error)
4225 return error;
4226
4227 inode_lock(inode);
4228 /* Make sure we don't allow creating hardlink to an unlinked file */
4229 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4230 error = -ENOENT;
4231 else if (max_links && inode->i_nlink >= max_links)
4232 error = -EMLINK;
4233 else {
4234 error = try_break_deleg(inode, delegated_inode);
4235 if (!error)
4236 error = dir->i_op->link(old_dentry, dir, new_dentry);
4237 }
4238
4239 if (!error && (inode->i_state & I_LINKABLE)) {
4240 spin_lock(&inode->i_lock);
4241 inode->i_state &= ~I_LINKABLE;
4242 spin_unlock(&inode->i_lock);
4243 }
4244 inode_unlock(inode);
4245 if (!error)
4246 fsnotify_link(dir, inode, new_dentry);
4247 return error;
4248 }
4249 EXPORT_SYMBOL(vfs_link);
4250
4251 /*
4252 * Hardlinks are often used in delicate situations. We avoid
4253 * security-related surprises by not following symlinks on the
4254 * newname. --KAB
4255 *
4256 * We don't follow them on the oldname either to be compatible
4257 * with linux 2.0, and to avoid hard-linking to directories
4258 * and other special files. --ADM
4259 */
4260 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4261 const char __user *newname, int flags)
4262 {
4263 struct dentry *new_dentry;
4264 struct path old_path, new_path;
4265 struct inode *delegated_inode = NULL;
4266 int how = 0;
4267 int error;
4268
4269 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4270 return -EINVAL;
4271 /*
4272 * To use null names we require CAP_DAC_READ_SEARCH
4273 * This ensures that not everyone will be able to create
4274 * handlink using the passed filedescriptor.
4275 */
4276 if (flags & AT_EMPTY_PATH) {
4277 if (!capable(CAP_DAC_READ_SEARCH))
4278 return -ENOENT;
4279 how = LOOKUP_EMPTY;
4280 }
4281
4282 if (flags & AT_SYMLINK_FOLLOW)
4283 how |= LOOKUP_FOLLOW;
4284 retry:
4285 error = user_path_at(olddfd, oldname, how, &old_path);
4286 if (error)
4287 return error;
4288
4289 new_dentry = user_path_create(newdfd, newname, &new_path,
4290 (how & LOOKUP_REVAL));
4291 error = PTR_ERR(new_dentry);
4292 if (IS_ERR(new_dentry))
4293 goto out;
4294
4295 error = -EXDEV;
4296 if (old_path.mnt != new_path.mnt)
4297 goto out_dput;
4298 error = may_linkat(&old_path);
4299 if (unlikely(error))
4300 goto out_dput;
4301 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4302 if (error)
4303 goto out_dput;
4304 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4305 out_dput:
4306 done_path_create(&new_path, new_dentry);
4307 if (delegated_inode) {
4308 error = break_deleg_wait(&delegated_inode);
4309 if (!error) {
4310 path_put(&old_path);
4311 goto retry;
4312 }
4313 }
4314 if (retry_estale(error, how)) {
4315 path_put(&old_path);
4316 how |= LOOKUP_REVAL;
4317 goto retry;
4318 }
4319 out:
4320 path_put(&old_path);
4321
4322 return error;
4323 }
4324
4325 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4326 int, newdfd, const char __user *, newname, int, flags)
4327 {
4328 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4329 }
4330
4331 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4332 {
4333 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4334 }
4335
4336 /**
4337 * vfs_rename - rename a filesystem object
4338 * @old_dir: parent of source
4339 * @old_dentry: source
4340 * @new_dir: parent of destination
4341 * @new_dentry: destination
4342 * @delegated_inode: returns an inode needing a delegation break
4343 * @flags: rename flags
4344 *
4345 * The caller must hold multiple mutexes--see lock_rename()).
4346 *
4347 * If vfs_rename discovers a delegation in need of breaking at either
4348 * the source or destination, it will return -EWOULDBLOCK and return a
4349 * reference to the inode in delegated_inode. The caller should then
4350 * break the delegation and retry. Because breaking a delegation may
4351 * take a long time, the caller should drop all locks before doing
4352 * so.
4353 *
4354 * Alternatively, a caller may pass NULL for delegated_inode. This may
4355 * be appropriate for callers that expect the underlying filesystem not
4356 * to be NFS exported.
4357 *
4358 * The worst of all namespace operations - renaming directory. "Perverted"
4359 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4360 * Problems:
4361 *
4362 * a) we can get into loop creation.
4363 * b) race potential - two innocent renames can create a loop together.
4364 * That's where 4.4 screws up. Current fix: serialization on
4365 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4366 * story.
4367 * c) we have to lock _four_ objects - parents and victim (if it exists),
4368 * and source (if it is not a directory).
4369 * And that - after we got ->i_mutex on parents (until then we don't know
4370 * whether the target exists). Solution: try to be smart with locking
4371 * order for inodes. We rely on the fact that tree topology may change
4372 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4373 * move will be locked. Thus we can rank directories by the tree
4374 * (ancestors first) and rank all non-directories after them.
4375 * That works since everybody except rename does "lock parent, lookup,
4376 * lock child" and rename is under ->s_vfs_rename_mutex.
4377 * HOWEVER, it relies on the assumption that any object with ->lookup()
4378 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4379 * we'd better make sure that there's no link(2) for them.
4380 * d) conversion from fhandle to dentry may come in the wrong moment - when
4381 * we are removing the target. Solution: we will have to grab ->i_mutex
4382 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4383 * ->i_mutex on parents, which works but leads to some truly excessive
4384 * locking].
4385 */
4386 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4387 struct inode *new_dir, struct dentry *new_dentry,
4388 struct inode **delegated_inode, unsigned int flags)
4389 {
4390 int error;
4391 bool is_dir = d_is_dir(old_dentry);
4392 struct inode *source = old_dentry->d_inode;
4393 struct inode *target = new_dentry->d_inode;
4394 bool new_is_dir = false;
4395 unsigned max_links = new_dir->i_sb->s_max_links;
4396 struct name_snapshot old_name;
4397
4398 if (source == target)
4399 return 0;
4400
4401 error = may_delete(old_dir, old_dentry, is_dir);
4402 if (error)
4403 return error;
4404
4405 if (!target) {
4406 error = may_create(new_dir, new_dentry);
4407 } else {
4408 new_is_dir = d_is_dir(new_dentry);
4409
4410 if (!(flags & RENAME_EXCHANGE))
4411 error = may_delete(new_dir, new_dentry, is_dir);
4412 else
4413 error = may_delete(new_dir, new_dentry, new_is_dir);
4414 }
4415 if (error)
4416 return error;
4417
4418 if (!old_dir->i_op->rename)
4419 return -EPERM;
4420
4421 /*
4422 * If we are going to change the parent - check write permissions,
4423 * we'll need to flip '..'.
4424 */
4425 if (new_dir != old_dir) {
4426 if (is_dir) {
4427 error = inode_permission(source, MAY_WRITE);
4428 if (error)
4429 return error;
4430 }
4431 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4432 error = inode_permission(target, MAY_WRITE);
4433 if (error)
4434 return error;
4435 }
4436 }
4437
4438 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4439 flags);
4440 if (error)
4441 return error;
4442
4443 take_dentry_name_snapshot(&old_name, old_dentry);
4444 dget(new_dentry);
4445 if (!is_dir || (flags & RENAME_EXCHANGE))
4446 lock_two_nondirectories(source, target);
4447 else if (target)
4448 inode_lock(target);
4449
4450 error = -EBUSY;
4451 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4452 goto out;
4453
4454 if (max_links && new_dir != old_dir) {
4455 error = -EMLINK;
4456 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4457 goto out;
4458 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4459 old_dir->i_nlink >= max_links)
4460 goto out;
4461 }
4462 if (!is_dir) {
4463 error = try_break_deleg(source, delegated_inode);
4464 if (error)
4465 goto out;
4466 }
4467 if (target && !new_is_dir) {
4468 error = try_break_deleg(target, delegated_inode);
4469 if (error)
4470 goto out;
4471 }
4472 error = old_dir->i_op->rename(old_dir, old_dentry,
4473 new_dir, new_dentry, flags);
4474 if (error)
4475 goto out;
4476
4477 if (!(flags & RENAME_EXCHANGE) && target) {
4478 if (is_dir) {
4479 shrink_dcache_parent(new_dentry);
4480 target->i_flags |= S_DEAD;
4481 }
4482 dont_mount(new_dentry);
4483 detach_mounts(new_dentry);
4484 }
4485 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4486 if (!(flags & RENAME_EXCHANGE))
4487 d_move(old_dentry, new_dentry);
4488 else
4489 d_exchange(old_dentry, new_dentry);
4490 }
4491 out:
4492 if (!is_dir || (flags & RENAME_EXCHANGE))
4493 unlock_two_nondirectories(source, target);
4494 else if (target)
4495 inode_unlock(target);
4496 dput(new_dentry);
4497 if (!error) {
4498 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4499 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4500 if (flags & RENAME_EXCHANGE) {
4501 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4502 new_is_dir, NULL, new_dentry);
4503 }
4504 }
4505 release_dentry_name_snapshot(&old_name);
4506
4507 return error;
4508 }
4509 EXPORT_SYMBOL(vfs_rename);
4510
4511 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4512 const char __user *newname, unsigned int flags)
4513 {
4514 struct dentry *old_dentry, *new_dentry;
4515 struct dentry *trap;
4516 struct path old_path, new_path;
4517 struct qstr old_last, new_last;
4518 int old_type, new_type;
4519 struct inode *delegated_inode = NULL;
4520 struct filename *from;
4521 struct filename *to;
4522 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4523 bool should_retry = false;
4524 int error;
4525
4526 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4527 return -EINVAL;
4528
4529 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4530 (flags & RENAME_EXCHANGE))
4531 return -EINVAL;
4532
4533 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4534 return -EPERM;
4535
4536 if (flags & RENAME_EXCHANGE)
4537 target_flags = 0;
4538
4539 retry:
4540 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4541 &old_path, &old_last, &old_type);
4542 if (IS_ERR(from)) {
4543 error = PTR_ERR(from);
4544 goto exit;
4545 }
4546
4547 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4548 &new_path, &new_last, &new_type);
4549 if (IS_ERR(to)) {
4550 error = PTR_ERR(to);
4551 goto exit1;
4552 }
4553
4554 error = -EXDEV;
4555 if (old_path.mnt != new_path.mnt)
4556 goto exit2;
4557
4558 error = -EBUSY;
4559 if (old_type != LAST_NORM)
4560 goto exit2;
4561
4562 if (flags & RENAME_NOREPLACE)
4563 error = -EEXIST;
4564 if (new_type != LAST_NORM)
4565 goto exit2;
4566
4567 error = mnt_want_write(old_path.mnt);
4568 if (error)
4569 goto exit2;
4570
4571 retry_deleg:
4572 trap = lock_rename(new_path.dentry, old_path.dentry);
4573
4574 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4575 error = PTR_ERR(old_dentry);
4576 if (IS_ERR(old_dentry))
4577 goto exit3;
4578 /* source must exist */
4579 error = -ENOENT;
4580 if (d_is_negative(old_dentry))
4581 goto exit4;
4582 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4583 error = PTR_ERR(new_dentry);
4584 if (IS_ERR(new_dentry))
4585 goto exit4;
4586 error = -EEXIST;
4587 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4588 goto exit5;
4589 if (flags & RENAME_EXCHANGE) {
4590 error = -ENOENT;
4591 if (d_is_negative(new_dentry))
4592 goto exit5;
4593
4594 if (!d_is_dir(new_dentry)) {
4595 error = -ENOTDIR;
4596 if (new_last.name[new_last.len])
4597 goto exit5;
4598 }
4599 }
4600 /* unless the source is a directory trailing slashes give -ENOTDIR */
4601 if (!d_is_dir(old_dentry)) {
4602 error = -ENOTDIR;
4603 if (old_last.name[old_last.len])
4604 goto exit5;
4605 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4606 goto exit5;
4607 }
4608 /* source should not be ancestor of target */
4609 error = -EINVAL;
4610 if (old_dentry == trap)
4611 goto exit5;
4612 /* target should not be an ancestor of source */
4613 if (!(flags & RENAME_EXCHANGE))
4614 error = -ENOTEMPTY;
4615 if (new_dentry == trap)
4616 goto exit5;
4617
4618 error = security_path_rename(&old_path, old_dentry,
4619 &new_path, new_dentry, flags);
4620 if (error)
4621 goto exit5;
4622 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4623 new_path.dentry->d_inode, new_dentry,
4624 &delegated_inode, flags);
4625 exit5:
4626 dput(new_dentry);
4627 exit4:
4628 dput(old_dentry);
4629 exit3:
4630 unlock_rename(new_path.dentry, old_path.dentry);
4631 if (delegated_inode) {
4632 error = break_deleg_wait(&delegated_inode);
4633 if (!error)
4634 goto retry_deleg;
4635 }
4636 mnt_drop_write(old_path.mnt);
4637 exit2:
4638 if (retry_estale(error, lookup_flags))
4639 should_retry = true;
4640 path_put(&new_path);
4641 putname(to);
4642 exit1:
4643 path_put(&old_path);
4644 putname(from);
4645 if (should_retry) {
4646 should_retry = false;
4647 lookup_flags |= LOOKUP_REVAL;
4648 goto retry;
4649 }
4650 exit:
4651 return error;
4652 }
4653
4654 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4655 int, newdfd, const char __user *, newname, unsigned int, flags)
4656 {
4657 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4658 }
4659
4660 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4661 int, newdfd, const char __user *, newname)
4662 {
4663 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4664 }
4665
4666 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4667 {
4668 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4669 }
4670
4671 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4672 {
4673 int error = may_create(dir, dentry);
4674 if (error)
4675 return error;
4676
4677 if (!dir->i_op->mknod)
4678 return -EPERM;
4679
4680 return dir->i_op->mknod(dir, dentry,
4681 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4682 }
4683 EXPORT_SYMBOL(vfs_whiteout);
4684
4685 int readlink_copy(char __user *buffer, int buflen, const char *link)
4686 {
4687 int len = PTR_ERR(link);
4688 if (IS_ERR(link))
4689 goto out;
4690
4691 len = strlen(link);
4692 if (len > (unsigned) buflen)
4693 len = buflen;
4694 if (copy_to_user(buffer, link, len))
4695 len = -EFAULT;
4696 out:
4697 return len;
4698 }
4699
4700 /**
4701 * vfs_readlink - copy symlink body into userspace buffer
4702 * @dentry: dentry on which to get symbolic link
4703 * @buffer: user memory pointer
4704 * @buflen: size of buffer
4705 *
4706 * Does not touch atime. That's up to the caller if necessary
4707 *
4708 * Does not call security hook.
4709 */
4710 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4711 {
4712 struct inode *inode = d_inode(dentry);
4713 DEFINE_DELAYED_CALL(done);
4714 const char *link;
4715 int res;
4716
4717 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4718 if (unlikely(inode->i_op->readlink))
4719 return inode->i_op->readlink(dentry, buffer, buflen);
4720
4721 if (!d_is_symlink(dentry))
4722 return -EINVAL;
4723
4724 spin_lock(&inode->i_lock);
4725 inode->i_opflags |= IOP_DEFAULT_READLINK;
4726 spin_unlock(&inode->i_lock);
4727 }
4728
4729 link = READ_ONCE(inode->i_link);
4730 if (!link) {
4731 link = inode->i_op->get_link(dentry, inode, &done);
4732 if (IS_ERR(link))
4733 return PTR_ERR(link);
4734 }
4735 res = readlink_copy(buffer, buflen, link);
4736 do_delayed_call(&done);
4737 return res;
4738 }
4739 EXPORT_SYMBOL(vfs_readlink);
4740
4741 /**
4742 * vfs_get_link - get symlink body
4743 * @dentry: dentry on which to get symbolic link
4744 * @done: caller needs to free returned data with this
4745 *
4746 * Calls security hook and i_op->get_link() on the supplied inode.
4747 *
4748 * It does not touch atime. That's up to the caller if necessary.
4749 *
4750 * Does not work on "special" symlinks like /proc/$$/fd/N
4751 */
4752 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4753 {
4754 const char *res = ERR_PTR(-EINVAL);
4755 struct inode *inode = d_inode(dentry);
4756
4757 if (d_is_symlink(dentry)) {
4758 res = ERR_PTR(security_inode_readlink(dentry));
4759 if (!res)
4760 res = inode->i_op->get_link(dentry, inode, done);
4761 }
4762 return res;
4763 }
4764 EXPORT_SYMBOL(vfs_get_link);
4765
4766 /* get the link contents into pagecache */
4767 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4768 struct delayed_call *callback)
4769 {
4770 char *kaddr;
4771 struct page *page;
4772 struct address_space *mapping = inode->i_mapping;
4773
4774 if (!dentry) {
4775 page = find_get_page(mapping, 0);
4776 if (!page)
4777 return ERR_PTR(-ECHILD);
4778 if (!PageUptodate(page)) {
4779 put_page(page);
4780 return ERR_PTR(-ECHILD);
4781 }
4782 } else {
4783 page = read_mapping_page(mapping, 0, NULL);
4784 if (IS_ERR(page))
4785 return (char*)page;
4786 }
4787 set_delayed_call(callback, page_put_link, page);
4788 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4789 kaddr = page_address(page);
4790 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4791 return kaddr;
4792 }
4793
4794 EXPORT_SYMBOL(page_get_link);
4795
4796 void page_put_link(void *arg)
4797 {
4798 put_page(arg);
4799 }
4800 EXPORT_SYMBOL(page_put_link);
4801
4802 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4803 {
4804 DEFINE_DELAYED_CALL(done);
4805 int res = readlink_copy(buffer, buflen,
4806 page_get_link(dentry, d_inode(dentry),
4807 &done));
4808 do_delayed_call(&done);
4809 return res;
4810 }
4811 EXPORT_SYMBOL(page_readlink);
4812
4813 /*
4814 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4815 */
4816 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4817 {
4818 struct address_space *mapping = inode->i_mapping;
4819 struct page *page;
4820 void *fsdata;
4821 int err;
4822 unsigned int flags = 0;
4823 if (nofs)
4824 flags |= AOP_FLAG_NOFS;
4825
4826 retry:
4827 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4828 flags, &page, &fsdata);
4829 if (err)
4830 goto fail;
4831
4832 memcpy(page_address(page), symname, len-1);
4833
4834 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4835 page, fsdata);
4836 if (err < 0)
4837 goto fail;
4838 if (err < len-1)
4839 goto retry;
4840
4841 mark_inode_dirty(inode);
4842 return 0;
4843 fail:
4844 return err;
4845 }
4846 EXPORT_SYMBOL(__page_symlink);
4847
4848 int page_symlink(struct inode *inode, const char *symname, int len)
4849 {
4850 return __page_symlink(inode, symname, len,
4851 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4852 }
4853 EXPORT_SYMBOL(page_symlink);
4854
4855 const struct inode_operations page_symlink_inode_operations = {
4856 .get_link = page_get_link,
4857 };
4858 EXPORT_SYMBOL(page_symlink_inode_operations);