]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge branch 'ovl-fixes' into for-linus
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (is_uncached_acl(acl))
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1607 struct inode *inode = dir->d_inode;
1608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1609
1610 inode_lock_shared(inode);
1611 /* Don't go there if it's already dead */
1612 if (unlikely(IS_DEADDIR(inode)))
1613 goto out;
1614 again:
1615 dentry = d_alloc_parallel(dir, name, &wq);
1616 if (IS_ERR(dentry))
1617 goto out;
1618 if (unlikely(!d_in_lookup(dentry))) {
1619 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1620 !(flags & LOOKUP_NO_REVAL)) {
1621 int error = d_revalidate(dentry, flags);
1622 if (unlikely(error <= 0)) {
1623 if (!error) {
1624 d_invalidate(dentry);
1625 dput(dentry);
1626 goto again;
1627 }
1628 dput(dentry);
1629 dentry = ERR_PTR(error);
1630 }
1631 }
1632 } else {
1633 old = inode->i_op->lookup(inode, dentry, flags);
1634 d_lookup_done(dentry);
1635 if (unlikely(old)) {
1636 dput(dentry);
1637 dentry = old;
1638 }
1639 }
1640 out:
1641 inode_unlock_shared(inode);
1642 return dentry;
1643 }
1644
1645 static inline int may_lookup(struct nameidata *nd)
1646 {
1647 if (nd->flags & LOOKUP_RCU) {
1648 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1649 if (err != -ECHILD)
1650 return err;
1651 if (unlazy_walk(nd, NULL, 0))
1652 return -ECHILD;
1653 }
1654 return inode_permission(nd->inode, MAY_EXEC);
1655 }
1656
1657 static inline int handle_dots(struct nameidata *nd, int type)
1658 {
1659 if (type == LAST_DOTDOT) {
1660 if (!nd->root.mnt)
1661 set_root(nd);
1662 if (nd->flags & LOOKUP_RCU) {
1663 return follow_dotdot_rcu(nd);
1664 } else
1665 return follow_dotdot(nd);
1666 }
1667 return 0;
1668 }
1669
1670 static int pick_link(struct nameidata *nd, struct path *link,
1671 struct inode *inode, unsigned seq)
1672 {
1673 int error;
1674 struct saved *last;
1675 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1676 path_to_nameidata(link, nd);
1677 return -ELOOP;
1678 }
1679 if (!(nd->flags & LOOKUP_RCU)) {
1680 if (link->mnt == nd->path.mnt)
1681 mntget(link->mnt);
1682 }
1683 error = nd_alloc_stack(nd);
1684 if (unlikely(error)) {
1685 if (error == -ECHILD) {
1686 if (unlikely(unlazy_link(nd, link, seq)))
1687 return -ECHILD;
1688 error = nd_alloc_stack(nd);
1689 }
1690 if (error) {
1691 path_put(link);
1692 return error;
1693 }
1694 }
1695
1696 last = nd->stack + nd->depth++;
1697 last->link = *link;
1698 clear_delayed_call(&last->done);
1699 nd->link_inode = inode;
1700 last->seq = seq;
1701 return 1;
1702 }
1703
1704 /*
1705 * Do we need to follow links? We _really_ want to be able
1706 * to do this check without having to look at inode->i_op,
1707 * so we keep a cache of "no, this doesn't need follow_link"
1708 * for the common case.
1709 */
1710 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1711 int follow,
1712 struct inode *inode, unsigned seq)
1713 {
1714 if (likely(!d_is_symlink(link->dentry)))
1715 return 0;
1716 if (!follow)
1717 return 0;
1718 /* make sure that d_is_symlink above matches inode */
1719 if (nd->flags & LOOKUP_RCU) {
1720 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1721 return -ECHILD;
1722 }
1723 return pick_link(nd, link, inode, seq);
1724 }
1725
1726 enum {WALK_GET = 1, WALK_PUT = 2};
1727
1728 static int walk_component(struct nameidata *nd, int flags)
1729 {
1730 struct path path;
1731 struct inode *inode;
1732 unsigned seq;
1733 int err;
1734 /*
1735 * "." and ".." are special - ".." especially so because it has
1736 * to be able to know about the current root directory and
1737 * parent relationships.
1738 */
1739 if (unlikely(nd->last_type != LAST_NORM)) {
1740 err = handle_dots(nd, nd->last_type);
1741 if (flags & WALK_PUT)
1742 put_link(nd);
1743 return err;
1744 }
1745 err = lookup_fast(nd, &path, &inode, &seq);
1746 if (unlikely(err <= 0)) {
1747 if (err < 0)
1748 return err;
1749 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1750 nd->flags);
1751 if (IS_ERR(path.dentry))
1752 return PTR_ERR(path.dentry);
1753
1754 path.mnt = nd->path.mnt;
1755 err = follow_managed(&path, nd);
1756 if (unlikely(err < 0))
1757 return err;
1758
1759 if (unlikely(d_is_negative(path.dentry))) {
1760 path_to_nameidata(&path, nd);
1761 return -ENOENT;
1762 }
1763
1764 seq = 0; /* we are already out of RCU mode */
1765 inode = d_backing_inode(path.dentry);
1766 }
1767
1768 if (flags & WALK_PUT)
1769 put_link(nd);
1770 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1771 if (unlikely(err))
1772 return err;
1773 path_to_nameidata(&path, nd);
1774 nd->inode = inode;
1775 nd->seq = seq;
1776 return 0;
1777 }
1778
1779 /*
1780 * We can do the critical dentry name comparison and hashing
1781 * operations one word at a time, but we are limited to:
1782 *
1783 * - Architectures with fast unaligned word accesses. We could
1784 * do a "get_unaligned()" if this helps and is sufficiently
1785 * fast.
1786 *
1787 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1788 * do not trap on the (extremely unlikely) case of a page
1789 * crossing operation.
1790 *
1791 * - Furthermore, we need an efficient 64-bit compile for the
1792 * 64-bit case in order to generate the "number of bytes in
1793 * the final mask". Again, that could be replaced with a
1794 * efficient population count instruction or similar.
1795 */
1796 #ifdef CONFIG_DCACHE_WORD_ACCESS
1797
1798 #include <asm/word-at-a-time.h>
1799
1800 #ifdef CONFIG_64BIT
1801
1802 static inline unsigned int fold_hash(unsigned long hash)
1803 {
1804 return hash_64(hash, 32);
1805 }
1806
1807 #else /* 32-bit case */
1808
1809 #define fold_hash(x) (x)
1810
1811 #endif
1812
1813 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1814 {
1815 unsigned long a, mask;
1816 unsigned long hash = 0;
1817
1818 for (;;) {
1819 a = load_unaligned_zeropad(name);
1820 if (len < sizeof(unsigned long))
1821 break;
1822 hash += a;
1823 hash *= 9;
1824 name += sizeof(unsigned long);
1825 len -= sizeof(unsigned long);
1826 if (!len)
1827 goto done;
1828 }
1829 mask = bytemask_from_count(len);
1830 hash += mask & a;
1831 done:
1832 return fold_hash(hash);
1833 }
1834 EXPORT_SYMBOL(full_name_hash);
1835
1836 /*
1837 * Calculate the length and hash of the path component, and
1838 * return the "hash_len" as the result.
1839 */
1840 static inline u64 hash_name(const char *name)
1841 {
1842 unsigned long a, b, adata, bdata, mask, hash, len;
1843 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1844
1845 hash = a = 0;
1846 len = -sizeof(unsigned long);
1847 do {
1848 hash = (hash + a) * 9;
1849 len += sizeof(unsigned long);
1850 a = load_unaligned_zeropad(name+len);
1851 b = a ^ REPEAT_BYTE('/');
1852 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1853
1854 adata = prep_zero_mask(a, adata, &constants);
1855 bdata = prep_zero_mask(b, bdata, &constants);
1856
1857 mask = create_zero_mask(adata | bdata);
1858
1859 hash += a & zero_bytemask(mask);
1860 len += find_zero(mask);
1861 return hashlen_create(fold_hash(hash), len);
1862 }
1863
1864 #else
1865
1866 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1867 {
1868 unsigned long hash = init_name_hash();
1869 while (len--)
1870 hash = partial_name_hash(*name++, hash);
1871 return end_name_hash(hash);
1872 }
1873 EXPORT_SYMBOL(full_name_hash);
1874
1875 /*
1876 * We know there's a real path component here of at least
1877 * one character.
1878 */
1879 static inline u64 hash_name(const char *name)
1880 {
1881 unsigned long hash = init_name_hash();
1882 unsigned long len = 0, c;
1883
1884 c = (unsigned char)*name;
1885 do {
1886 len++;
1887 hash = partial_name_hash(c, hash);
1888 c = (unsigned char)name[len];
1889 } while (c && c != '/');
1890 return hashlen_create(end_name_hash(hash), len);
1891 }
1892
1893 #endif
1894
1895 /*
1896 * Name resolution.
1897 * This is the basic name resolution function, turning a pathname into
1898 * the final dentry. We expect 'base' to be positive and a directory.
1899 *
1900 * Returns 0 and nd will have valid dentry and mnt on success.
1901 * Returns error and drops reference to input namei data on failure.
1902 */
1903 static int link_path_walk(const char *name, struct nameidata *nd)
1904 {
1905 int err;
1906
1907 while (*name=='/')
1908 name++;
1909 if (!*name)
1910 return 0;
1911
1912 /* At this point we know we have a real path component. */
1913 for(;;) {
1914 u64 hash_len;
1915 int type;
1916
1917 err = may_lookup(nd);
1918 if (err)
1919 return err;
1920
1921 hash_len = hash_name(name);
1922
1923 type = LAST_NORM;
1924 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1925 case 2:
1926 if (name[1] == '.') {
1927 type = LAST_DOTDOT;
1928 nd->flags |= LOOKUP_JUMPED;
1929 }
1930 break;
1931 case 1:
1932 type = LAST_DOT;
1933 }
1934 if (likely(type == LAST_NORM)) {
1935 struct dentry *parent = nd->path.dentry;
1936 nd->flags &= ~LOOKUP_JUMPED;
1937 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1938 struct qstr this = { { .hash_len = hash_len }, .name = name };
1939 err = parent->d_op->d_hash(parent, &this);
1940 if (err < 0)
1941 return err;
1942 hash_len = this.hash_len;
1943 name = this.name;
1944 }
1945 }
1946
1947 nd->last.hash_len = hash_len;
1948 nd->last.name = name;
1949 nd->last_type = type;
1950
1951 name += hashlen_len(hash_len);
1952 if (!*name)
1953 goto OK;
1954 /*
1955 * If it wasn't NUL, we know it was '/'. Skip that
1956 * slash, and continue until no more slashes.
1957 */
1958 do {
1959 name++;
1960 } while (unlikely(*name == '/'));
1961 if (unlikely(!*name)) {
1962 OK:
1963 /* pathname body, done */
1964 if (!nd->depth)
1965 return 0;
1966 name = nd->stack[nd->depth - 1].name;
1967 /* trailing symlink, done */
1968 if (!name)
1969 return 0;
1970 /* last component of nested symlink */
1971 err = walk_component(nd, WALK_GET | WALK_PUT);
1972 } else {
1973 err = walk_component(nd, WALK_GET);
1974 }
1975 if (err < 0)
1976 return err;
1977
1978 if (err) {
1979 const char *s = get_link(nd);
1980
1981 if (IS_ERR(s))
1982 return PTR_ERR(s);
1983 err = 0;
1984 if (unlikely(!s)) {
1985 /* jumped */
1986 put_link(nd);
1987 } else {
1988 nd->stack[nd->depth - 1].name = name;
1989 name = s;
1990 continue;
1991 }
1992 }
1993 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1994 if (nd->flags & LOOKUP_RCU) {
1995 if (unlazy_walk(nd, NULL, 0))
1996 return -ECHILD;
1997 }
1998 return -ENOTDIR;
1999 }
2000 }
2001 }
2002
2003 static const char *path_init(struct nameidata *nd, unsigned flags)
2004 {
2005 int retval = 0;
2006 const char *s = nd->name->name;
2007
2008 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2009 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2010 nd->depth = 0;
2011 if (flags & LOOKUP_ROOT) {
2012 struct dentry *root = nd->root.dentry;
2013 struct inode *inode = root->d_inode;
2014 if (*s) {
2015 if (!d_can_lookup(root))
2016 return ERR_PTR(-ENOTDIR);
2017 retval = inode_permission(inode, MAY_EXEC);
2018 if (retval)
2019 return ERR_PTR(retval);
2020 }
2021 nd->path = nd->root;
2022 nd->inode = inode;
2023 if (flags & LOOKUP_RCU) {
2024 rcu_read_lock();
2025 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2026 nd->root_seq = nd->seq;
2027 nd->m_seq = read_seqbegin(&mount_lock);
2028 } else {
2029 path_get(&nd->path);
2030 }
2031 return s;
2032 }
2033
2034 nd->root.mnt = NULL;
2035 nd->path.mnt = NULL;
2036 nd->path.dentry = NULL;
2037
2038 nd->m_seq = read_seqbegin(&mount_lock);
2039 if (*s == '/') {
2040 if (flags & LOOKUP_RCU)
2041 rcu_read_lock();
2042 set_root(nd);
2043 if (likely(!nd_jump_root(nd)))
2044 return s;
2045 nd->root.mnt = NULL;
2046 rcu_read_unlock();
2047 return ERR_PTR(-ECHILD);
2048 } else if (nd->dfd == AT_FDCWD) {
2049 if (flags & LOOKUP_RCU) {
2050 struct fs_struct *fs = current->fs;
2051 unsigned seq;
2052
2053 rcu_read_lock();
2054
2055 do {
2056 seq = read_seqcount_begin(&fs->seq);
2057 nd->path = fs->pwd;
2058 nd->inode = nd->path.dentry->d_inode;
2059 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2060 } while (read_seqcount_retry(&fs->seq, seq));
2061 } else {
2062 get_fs_pwd(current->fs, &nd->path);
2063 nd->inode = nd->path.dentry->d_inode;
2064 }
2065 return s;
2066 } else {
2067 /* Caller must check execute permissions on the starting path component */
2068 struct fd f = fdget_raw(nd->dfd);
2069 struct dentry *dentry;
2070
2071 if (!f.file)
2072 return ERR_PTR(-EBADF);
2073
2074 dentry = f.file->f_path.dentry;
2075
2076 if (*s) {
2077 if (!d_can_lookup(dentry)) {
2078 fdput(f);
2079 return ERR_PTR(-ENOTDIR);
2080 }
2081 }
2082
2083 nd->path = f.file->f_path;
2084 if (flags & LOOKUP_RCU) {
2085 rcu_read_lock();
2086 nd->inode = nd->path.dentry->d_inode;
2087 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2088 } else {
2089 path_get(&nd->path);
2090 nd->inode = nd->path.dentry->d_inode;
2091 }
2092 fdput(f);
2093 return s;
2094 }
2095 }
2096
2097 static const char *trailing_symlink(struct nameidata *nd)
2098 {
2099 const char *s;
2100 int error = may_follow_link(nd);
2101 if (unlikely(error))
2102 return ERR_PTR(error);
2103 nd->flags |= LOOKUP_PARENT;
2104 nd->stack[0].name = NULL;
2105 s = get_link(nd);
2106 return s ? s : "";
2107 }
2108
2109 static inline int lookup_last(struct nameidata *nd)
2110 {
2111 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2112 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2113
2114 nd->flags &= ~LOOKUP_PARENT;
2115 return walk_component(nd,
2116 nd->flags & LOOKUP_FOLLOW
2117 ? nd->depth
2118 ? WALK_PUT | WALK_GET
2119 : WALK_GET
2120 : 0);
2121 }
2122
2123 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2124 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2125 {
2126 const char *s = path_init(nd, flags);
2127 int err;
2128
2129 if (IS_ERR(s))
2130 return PTR_ERR(s);
2131 while (!(err = link_path_walk(s, nd))
2132 && ((err = lookup_last(nd)) > 0)) {
2133 s = trailing_symlink(nd);
2134 if (IS_ERR(s)) {
2135 err = PTR_ERR(s);
2136 break;
2137 }
2138 }
2139 if (!err)
2140 err = complete_walk(nd);
2141
2142 if (!err && nd->flags & LOOKUP_DIRECTORY)
2143 if (!d_can_lookup(nd->path.dentry))
2144 err = -ENOTDIR;
2145 if (!err) {
2146 *path = nd->path;
2147 nd->path.mnt = NULL;
2148 nd->path.dentry = NULL;
2149 }
2150 terminate_walk(nd);
2151 return err;
2152 }
2153
2154 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2155 struct path *path, struct path *root)
2156 {
2157 int retval;
2158 struct nameidata nd;
2159 if (IS_ERR(name))
2160 return PTR_ERR(name);
2161 if (unlikely(root)) {
2162 nd.root = *root;
2163 flags |= LOOKUP_ROOT;
2164 }
2165 set_nameidata(&nd, dfd, name);
2166 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2167 if (unlikely(retval == -ECHILD))
2168 retval = path_lookupat(&nd, flags, path);
2169 if (unlikely(retval == -ESTALE))
2170 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2171
2172 if (likely(!retval))
2173 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2174 restore_nameidata();
2175 putname(name);
2176 return retval;
2177 }
2178
2179 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2180 static int path_parentat(struct nameidata *nd, unsigned flags,
2181 struct path *parent)
2182 {
2183 const char *s = path_init(nd, flags);
2184 int err;
2185 if (IS_ERR(s))
2186 return PTR_ERR(s);
2187 err = link_path_walk(s, nd);
2188 if (!err)
2189 err = complete_walk(nd);
2190 if (!err) {
2191 *parent = nd->path;
2192 nd->path.mnt = NULL;
2193 nd->path.dentry = NULL;
2194 }
2195 terminate_walk(nd);
2196 return err;
2197 }
2198
2199 static struct filename *filename_parentat(int dfd, struct filename *name,
2200 unsigned int flags, struct path *parent,
2201 struct qstr *last, int *type)
2202 {
2203 int retval;
2204 struct nameidata nd;
2205
2206 if (IS_ERR(name))
2207 return name;
2208 set_nameidata(&nd, dfd, name);
2209 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2210 if (unlikely(retval == -ECHILD))
2211 retval = path_parentat(&nd, flags, parent);
2212 if (unlikely(retval == -ESTALE))
2213 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2214 if (likely(!retval)) {
2215 *last = nd.last;
2216 *type = nd.last_type;
2217 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2218 } else {
2219 putname(name);
2220 name = ERR_PTR(retval);
2221 }
2222 restore_nameidata();
2223 return name;
2224 }
2225
2226 /* does lookup, returns the object with parent locked */
2227 struct dentry *kern_path_locked(const char *name, struct path *path)
2228 {
2229 struct filename *filename;
2230 struct dentry *d;
2231 struct qstr last;
2232 int type;
2233
2234 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2235 &last, &type);
2236 if (IS_ERR(filename))
2237 return ERR_CAST(filename);
2238 if (unlikely(type != LAST_NORM)) {
2239 path_put(path);
2240 putname(filename);
2241 return ERR_PTR(-EINVAL);
2242 }
2243 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2244 d = __lookup_hash(&last, path->dentry, 0);
2245 if (IS_ERR(d)) {
2246 inode_unlock(path->dentry->d_inode);
2247 path_put(path);
2248 }
2249 putname(filename);
2250 return d;
2251 }
2252
2253 int kern_path(const char *name, unsigned int flags, struct path *path)
2254 {
2255 return filename_lookup(AT_FDCWD, getname_kernel(name),
2256 flags, path, NULL);
2257 }
2258 EXPORT_SYMBOL(kern_path);
2259
2260 /**
2261 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2262 * @dentry: pointer to dentry of the base directory
2263 * @mnt: pointer to vfs mount of the base directory
2264 * @name: pointer to file name
2265 * @flags: lookup flags
2266 * @path: pointer to struct path to fill
2267 */
2268 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2269 const char *name, unsigned int flags,
2270 struct path *path)
2271 {
2272 struct path root = {.mnt = mnt, .dentry = dentry};
2273 /* the first argument of filename_lookup() is ignored with root */
2274 return filename_lookup(AT_FDCWD, getname_kernel(name),
2275 flags , path, &root);
2276 }
2277 EXPORT_SYMBOL(vfs_path_lookup);
2278
2279 /**
2280 * lookup_hash - lookup single pathname component on already hashed name
2281 * @name: name and hash to lookup
2282 * @base: base directory to lookup from
2283 *
2284 * The name must have been verified and hashed (see lookup_one_len()). Using
2285 * this after just full_name_hash() is unsafe.
2286 *
2287 * This function also doesn't check for search permission on base directory.
2288 *
2289 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2290 * doing.
2291 *
2292 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2293 */
2294 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2295 {
2296 struct dentry *ret;
2297
2298 ret = lookup_dcache(name, base, 0);
2299 if (!ret)
2300 ret = lookup_slow(name, base, 0);
2301
2302 return ret;
2303 }
2304 EXPORT_SYMBOL(lookup_hash);
2305
2306 /**
2307 * lookup_one_len - filesystem helper to lookup single pathname component
2308 * @name: pathname component to lookup
2309 * @base: base directory to lookup from
2310 * @len: maximum length @len should be interpreted to
2311 *
2312 * Note that this routine is purely a helper for filesystem usage and should
2313 * not be called by generic code.
2314 *
2315 * The caller must hold base->i_mutex.
2316 */
2317 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2318 {
2319 struct qstr this;
2320 unsigned int c;
2321 int err;
2322
2323 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2324
2325 this.name = name;
2326 this.len = len;
2327 this.hash = full_name_hash(name, len);
2328 if (!len)
2329 return ERR_PTR(-EACCES);
2330
2331 if (unlikely(name[0] == '.')) {
2332 if (len < 2 || (len == 2 && name[1] == '.'))
2333 return ERR_PTR(-EACCES);
2334 }
2335
2336 while (len--) {
2337 c = *(const unsigned char *)name++;
2338 if (c == '/' || c == '\0')
2339 return ERR_PTR(-EACCES);
2340 }
2341 /*
2342 * See if the low-level filesystem might want
2343 * to use its own hash..
2344 */
2345 if (base->d_flags & DCACHE_OP_HASH) {
2346 int err = base->d_op->d_hash(base, &this);
2347 if (err < 0)
2348 return ERR_PTR(err);
2349 }
2350
2351 err = inode_permission(base->d_inode, MAY_EXEC);
2352 if (err)
2353 return ERR_PTR(err);
2354
2355 return __lookup_hash(&this, base, 0);
2356 }
2357 EXPORT_SYMBOL(lookup_one_len);
2358
2359 /**
2360 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2361 * @name: pathname component to lookup
2362 * @base: base directory to lookup from
2363 * @len: maximum length @len should be interpreted to
2364 *
2365 * Note that this routine is purely a helper for filesystem usage and should
2366 * not be called by generic code.
2367 *
2368 * Unlike lookup_one_len, it should be called without the parent
2369 * i_mutex held, and will take the i_mutex itself if necessary.
2370 */
2371 struct dentry *lookup_one_len_unlocked(const char *name,
2372 struct dentry *base, int len)
2373 {
2374 struct qstr this;
2375 unsigned int c;
2376 int err;
2377
2378 this.name = name;
2379 this.len = len;
2380 this.hash = full_name_hash(name, len);
2381 if (!len)
2382 return ERR_PTR(-EACCES);
2383
2384 if (unlikely(name[0] == '.')) {
2385 if (len < 2 || (len == 2 && name[1] == '.'))
2386 return ERR_PTR(-EACCES);
2387 }
2388
2389 while (len--) {
2390 c = *(const unsigned char *)name++;
2391 if (c == '/' || c == '\0')
2392 return ERR_PTR(-EACCES);
2393 }
2394 /*
2395 * See if the low-level filesystem might want
2396 * to use its own hash..
2397 */
2398 if (base->d_flags & DCACHE_OP_HASH) {
2399 int err = base->d_op->d_hash(base, &this);
2400 if (err < 0)
2401 return ERR_PTR(err);
2402 }
2403
2404 err = inode_permission(base->d_inode, MAY_EXEC);
2405 if (err)
2406 return ERR_PTR(err);
2407
2408 return lookup_hash(&this, base);
2409 }
2410 EXPORT_SYMBOL(lookup_one_len_unlocked);
2411
2412 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2413 struct path *path, int *empty)
2414 {
2415 return filename_lookup(dfd, getname_flags(name, flags, empty),
2416 flags, path, NULL);
2417 }
2418 EXPORT_SYMBOL(user_path_at_empty);
2419
2420 /*
2421 * NB: most callers don't do anything directly with the reference to the
2422 * to struct filename, but the nd->last pointer points into the name string
2423 * allocated by getname. So we must hold the reference to it until all
2424 * path-walking is complete.
2425 */
2426 static inline struct filename *
2427 user_path_parent(int dfd, const char __user *path,
2428 struct path *parent,
2429 struct qstr *last,
2430 int *type,
2431 unsigned int flags)
2432 {
2433 /* only LOOKUP_REVAL is allowed in extra flags */
2434 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2435 parent, last, type);
2436 }
2437
2438 /**
2439 * mountpoint_last - look up last component for umount
2440 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2441 * @path: pointer to container for result
2442 *
2443 * This is a special lookup_last function just for umount. In this case, we
2444 * need to resolve the path without doing any revalidation.
2445 *
2446 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2447 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2448 * in almost all cases, this lookup will be served out of the dcache. The only
2449 * cases where it won't are if nd->last refers to a symlink or the path is
2450 * bogus and it doesn't exist.
2451 *
2452 * Returns:
2453 * -error: if there was an error during lookup. This includes -ENOENT if the
2454 * lookup found a negative dentry. The nd->path reference will also be
2455 * put in this case.
2456 *
2457 * 0: if we successfully resolved nd->path and found it to not to be a
2458 * symlink that needs to be followed. "path" will also be populated.
2459 * The nd->path reference will also be put.
2460 *
2461 * 1: if we successfully resolved nd->last and found it to be a symlink
2462 * that needs to be followed. "path" will be populated with the path
2463 * to the link, and nd->path will *not* be put.
2464 */
2465 static int
2466 mountpoint_last(struct nameidata *nd, struct path *path)
2467 {
2468 int error = 0;
2469 struct dentry *dentry;
2470 struct dentry *dir = nd->path.dentry;
2471
2472 /* If we're in rcuwalk, drop out of it to handle last component */
2473 if (nd->flags & LOOKUP_RCU) {
2474 if (unlazy_walk(nd, NULL, 0))
2475 return -ECHILD;
2476 }
2477
2478 nd->flags &= ~LOOKUP_PARENT;
2479
2480 if (unlikely(nd->last_type != LAST_NORM)) {
2481 error = handle_dots(nd, nd->last_type);
2482 if (error)
2483 return error;
2484 dentry = dget(nd->path.dentry);
2485 } else {
2486 dentry = d_lookup(dir, &nd->last);
2487 if (!dentry) {
2488 /*
2489 * No cached dentry. Mounted dentries are pinned in the
2490 * cache, so that means that this dentry is probably
2491 * a symlink or the path doesn't actually point
2492 * to a mounted dentry.
2493 */
2494 dentry = lookup_slow(&nd->last, dir,
2495 nd->flags | LOOKUP_NO_REVAL);
2496 if (IS_ERR(dentry))
2497 return PTR_ERR(dentry);
2498 }
2499 }
2500 if (d_is_negative(dentry)) {
2501 dput(dentry);
2502 return -ENOENT;
2503 }
2504 if (nd->depth)
2505 put_link(nd);
2506 path->dentry = dentry;
2507 path->mnt = nd->path.mnt;
2508 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2509 d_backing_inode(dentry), 0);
2510 if (unlikely(error))
2511 return error;
2512 mntget(path->mnt);
2513 follow_mount(path);
2514 return 0;
2515 }
2516
2517 /**
2518 * path_mountpoint - look up a path to be umounted
2519 * @nd: lookup context
2520 * @flags: lookup flags
2521 * @path: pointer to container for result
2522 *
2523 * Look up the given name, but don't attempt to revalidate the last component.
2524 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2525 */
2526 static int
2527 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2528 {
2529 const char *s = path_init(nd, flags);
2530 int err;
2531 if (IS_ERR(s))
2532 return PTR_ERR(s);
2533 while (!(err = link_path_walk(s, nd)) &&
2534 (err = mountpoint_last(nd, path)) > 0) {
2535 s = trailing_symlink(nd);
2536 if (IS_ERR(s)) {
2537 err = PTR_ERR(s);
2538 break;
2539 }
2540 }
2541 terminate_walk(nd);
2542 return err;
2543 }
2544
2545 static int
2546 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2547 unsigned int flags)
2548 {
2549 struct nameidata nd;
2550 int error;
2551 if (IS_ERR(name))
2552 return PTR_ERR(name);
2553 set_nameidata(&nd, dfd, name);
2554 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2555 if (unlikely(error == -ECHILD))
2556 error = path_mountpoint(&nd, flags, path);
2557 if (unlikely(error == -ESTALE))
2558 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2559 if (likely(!error))
2560 audit_inode(name, path->dentry, 0);
2561 restore_nameidata();
2562 putname(name);
2563 return error;
2564 }
2565
2566 /**
2567 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2568 * @dfd: directory file descriptor
2569 * @name: pathname from userland
2570 * @flags: lookup flags
2571 * @path: pointer to container to hold result
2572 *
2573 * A umount is a special case for path walking. We're not actually interested
2574 * in the inode in this situation, and ESTALE errors can be a problem. We
2575 * simply want track down the dentry and vfsmount attached at the mountpoint
2576 * and avoid revalidating the last component.
2577 *
2578 * Returns 0 and populates "path" on success.
2579 */
2580 int
2581 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2582 struct path *path)
2583 {
2584 return filename_mountpoint(dfd, getname(name), path, flags);
2585 }
2586
2587 int
2588 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2589 unsigned int flags)
2590 {
2591 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2592 }
2593 EXPORT_SYMBOL(kern_path_mountpoint);
2594
2595 int __check_sticky(struct inode *dir, struct inode *inode)
2596 {
2597 kuid_t fsuid = current_fsuid();
2598
2599 if (uid_eq(inode->i_uid, fsuid))
2600 return 0;
2601 if (uid_eq(dir->i_uid, fsuid))
2602 return 0;
2603 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2604 }
2605 EXPORT_SYMBOL(__check_sticky);
2606
2607 /*
2608 * Check whether we can remove a link victim from directory dir, check
2609 * whether the type of victim is right.
2610 * 1. We can't do it if dir is read-only (done in permission())
2611 * 2. We should have write and exec permissions on dir
2612 * 3. We can't remove anything from append-only dir
2613 * 4. We can't do anything with immutable dir (done in permission())
2614 * 5. If the sticky bit on dir is set we should either
2615 * a. be owner of dir, or
2616 * b. be owner of victim, or
2617 * c. have CAP_FOWNER capability
2618 * 6. If the victim is append-only or immutable we can't do antyhing with
2619 * links pointing to it.
2620 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2621 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2622 * 9. We can't remove a root or mountpoint.
2623 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2624 * nfs_async_unlink().
2625 */
2626 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2627 {
2628 struct inode *inode = d_backing_inode(victim);
2629 int error;
2630
2631 if (d_is_negative(victim))
2632 return -ENOENT;
2633 BUG_ON(!inode);
2634
2635 BUG_ON(victim->d_parent->d_inode != dir);
2636 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2637
2638 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2639 if (error)
2640 return error;
2641 if (IS_APPEND(dir))
2642 return -EPERM;
2643
2644 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2645 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2646 return -EPERM;
2647 if (isdir) {
2648 if (!d_is_dir(victim))
2649 return -ENOTDIR;
2650 if (IS_ROOT(victim))
2651 return -EBUSY;
2652 } else if (d_is_dir(victim))
2653 return -EISDIR;
2654 if (IS_DEADDIR(dir))
2655 return -ENOENT;
2656 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2657 return -EBUSY;
2658 return 0;
2659 }
2660
2661 /* Check whether we can create an object with dentry child in directory
2662 * dir.
2663 * 1. We can't do it if child already exists (open has special treatment for
2664 * this case, but since we are inlined it's OK)
2665 * 2. We can't do it if dir is read-only (done in permission())
2666 * 3. We should have write and exec permissions on dir
2667 * 4. We can't do it if dir is immutable (done in permission())
2668 */
2669 static inline int may_create(struct inode *dir, struct dentry *child)
2670 {
2671 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2672 if (child->d_inode)
2673 return -EEXIST;
2674 if (IS_DEADDIR(dir))
2675 return -ENOENT;
2676 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2677 }
2678
2679 /*
2680 * p1 and p2 should be directories on the same fs.
2681 */
2682 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2683 {
2684 struct dentry *p;
2685
2686 if (p1 == p2) {
2687 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2688 return NULL;
2689 }
2690
2691 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2692
2693 p = d_ancestor(p2, p1);
2694 if (p) {
2695 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2696 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2697 return p;
2698 }
2699
2700 p = d_ancestor(p1, p2);
2701 if (p) {
2702 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2703 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2704 return p;
2705 }
2706
2707 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2708 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2709 return NULL;
2710 }
2711 EXPORT_SYMBOL(lock_rename);
2712
2713 void unlock_rename(struct dentry *p1, struct dentry *p2)
2714 {
2715 inode_unlock(p1->d_inode);
2716 if (p1 != p2) {
2717 inode_unlock(p2->d_inode);
2718 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2719 }
2720 }
2721 EXPORT_SYMBOL(unlock_rename);
2722
2723 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2724 bool want_excl)
2725 {
2726 int error = may_create(dir, dentry);
2727 if (error)
2728 return error;
2729
2730 if (!dir->i_op->create)
2731 return -EACCES; /* shouldn't it be ENOSYS? */
2732 mode &= S_IALLUGO;
2733 mode |= S_IFREG;
2734 error = security_inode_create(dir, dentry, mode);
2735 if (error)
2736 return error;
2737 error = dir->i_op->create(dir, dentry, mode, want_excl);
2738 if (!error)
2739 fsnotify_create(dir, dentry);
2740 return error;
2741 }
2742 EXPORT_SYMBOL(vfs_create);
2743
2744 static int may_open(struct path *path, int acc_mode, int flag)
2745 {
2746 struct dentry *dentry = path->dentry;
2747 struct inode *inode = dentry->d_inode;
2748 int error;
2749
2750 if (!inode)
2751 return -ENOENT;
2752
2753 switch (inode->i_mode & S_IFMT) {
2754 case S_IFLNK:
2755 return -ELOOP;
2756 case S_IFDIR:
2757 if (acc_mode & MAY_WRITE)
2758 return -EISDIR;
2759 break;
2760 case S_IFBLK:
2761 case S_IFCHR:
2762 if (path->mnt->mnt_flags & MNT_NODEV)
2763 return -EACCES;
2764 /*FALLTHRU*/
2765 case S_IFIFO:
2766 case S_IFSOCK:
2767 flag &= ~O_TRUNC;
2768 break;
2769 }
2770
2771 error = inode_permission(inode, MAY_OPEN | acc_mode);
2772 if (error)
2773 return error;
2774
2775 /*
2776 * An append-only file must be opened in append mode for writing.
2777 */
2778 if (IS_APPEND(inode)) {
2779 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2780 return -EPERM;
2781 if (flag & O_TRUNC)
2782 return -EPERM;
2783 }
2784
2785 /* O_NOATIME can only be set by the owner or superuser */
2786 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2787 return -EPERM;
2788
2789 return 0;
2790 }
2791
2792 static int handle_truncate(struct file *filp)
2793 {
2794 struct path *path = &filp->f_path;
2795 struct inode *inode = path->dentry->d_inode;
2796 int error = get_write_access(inode);
2797 if (error)
2798 return error;
2799 /*
2800 * Refuse to truncate files with mandatory locks held on them.
2801 */
2802 error = locks_verify_locked(filp);
2803 if (!error)
2804 error = security_path_truncate(path);
2805 if (!error) {
2806 error = do_truncate(path->dentry, 0,
2807 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2808 filp);
2809 }
2810 put_write_access(inode);
2811 return error;
2812 }
2813
2814 static inline int open_to_namei_flags(int flag)
2815 {
2816 if ((flag & O_ACCMODE) == 3)
2817 flag--;
2818 return flag;
2819 }
2820
2821 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2822 {
2823 int error = security_path_mknod(dir, dentry, mode, 0);
2824 if (error)
2825 return error;
2826
2827 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2828 if (error)
2829 return error;
2830
2831 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2832 }
2833
2834 /*
2835 * Attempt to atomically look up, create and open a file from a negative
2836 * dentry.
2837 *
2838 * Returns 0 if successful. The file will have been created and attached to
2839 * @file by the filesystem calling finish_open().
2840 *
2841 * Returns 1 if the file was looked up only or didn't need creating. The
2842 * caller will need to perform the open themselves. @path will have been
2843 * updated to point to the new dentry. This may be negative.
2844 *
2845 * Returns an error code otherwise.
2846 */
2847 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2848 struct path *path, struct file *file,
2849 const struct open_flags *op,
2850 int open_flag, umode_t mode,
2851 int *opened)
2852 {
2853 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2854 struct inode *dir = nd->path.dentry->d_inode;
2855 int error;
2856
2857 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2858 open_flag &= ~O_TRUNC;
2859
2860 if (nd->flags & LOOKUP_DIRECTORY)
2861 open_flag |= O_DIRECTORY;
2862
2863 file->f_path.dentry = DENTRY_NOT_SET;
2864 file->f_path.mnt = nd->path.mnt;
2865 error = dir->i_op->atomic_open(dir, dentry, file,
2866 open_to_namei_flags(open_flag),
2867 mode, opened);
2868 d_lookup_done(dentry);
2869 if (!error) {
2870 /*
2871 * We didn't have the inode before the open, so check open
2872 * permission here.
2873 */
2874 int acc_mode = op->acc_mode;
2875 if (*opened & FILE_CREATED) {
2876 WARN_ON(!(open_flag & O_CREAT));
2877 fsnotify_create(dir, dentry);
2878 acc_mode = 0;
2879 }
2880 error = may_open(&file->f_path, acc_mode, open_flag);
2881 if (WARN_ON(error > 0))
2882 error = -EINVAL;
2883 } else if (error > 0) {
2884 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2885 error = -EIO;
2886 } else {
2887 if (file->f_path.dentry) {
2888 dput(dentry);
2889 dentry = file->f_path.dentry;
2890 }
2891 if (*opened & FILE_CREATED)
2892 fsnotify_create(dir, dentry);
2893 path->dentry = dentry;
2894 path->mnt = nd->path.mnt;
2895 return 1;
2896 }
2897 }
2898 dput(dentry);
2899 return error;
2900 }
2901
2902 /*
2903 * Look up and maybe create and open the last component.
2904 *
2905 * Must be called with i_mutex held on parent.
2906 *
2907 * Returns 0 if the file was successfully atomically created (if necessary) and
2908 * opened. In this case the file will be returned attached to @file.
2909 *
2910 * Returns 1 if the file was not completely opened at this time, though lookups
2911 * and creations will have been performed and the dentry returned in @path will
2912 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2913 * specified then a negative dentry may be returned.
2914 *
2915 * An error code is returned otherwise.
2916 *
2917 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2918 * cleared otherwise prior to returning.
2919 */
2920 static int lookup_open(struct nameidata *nd, struct path *path,
2921 struct file *file,
2922 const struct open_flags *op,
2923 bool got_write, int *opened)
2924 {
2925 struct dentry *dir = nd->path.dentry;
2926 struct inode *dir_inode = dir->d_inode;
2927 int open_flag = op->open_flag;
2928 struct dentry *dentry;
2929 int error, create_error = 0;
2930 umode_t mode = op->mode;
2931 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2932
2933 if (unlikely(IS_DEADDIR(dir_inode)))
2934 return -ENOENT;
2935
2936 *opened &= ~FILE_CREATED;
2937 dentry = d_lookup(dir, &nd->last);
2938 for (;;) {
2939 if (!dentry) {
2940 dentry = d_alloc_parallel(dir, &nd->last, &wq);
2941 if (IS_ERR(dentry))
2942 return PTR_ERR(dentry);
2943 }
2944 if (d_in_lookup(dentry))
2945 break;
2946
2947 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
2948 break;
2949
2950 error = d_revalidate(dentry, nd->flags);
2951 if (likely(error > 0))
2952 break;
2953 if (error)
2954 goto out_dput;
2955 d_invalidate(dentry);
2956 dput(dentry);
2957 dentry = NULL;
2958 }
2959 if (dentry->d_inode) {
2960 /* Cached positive dentry: will open in f_op->open */
2961 goto out_no_open;
2962 }
2963
2964 /*
2965 * Checking write permission is tricky, bacuse we don't know if we are
2966 * going to actually need it: O_CREAT opens should work as long as the
2967 * file exists. But checking existence breaks atomicity. The trick is
2968 * to check access and if not granted clear O_CREAT from the flags.
2969 *
2970 * Another problem is returing the "right" error value (e.g. for an
2971 * O_EXCL open we want to return EEXIST not EROFS).
2972 */
2973 if (open_flag & O_CREAT) {
2974 if (!IS_POSIXACL(dir->d_inode))
2975 mode &= ~current_umask();
2976 if (unlikely(!got_write)) {
2977 create_error = -EROFS;
2978 open_flag &= ~O_CREAT;
2979 if (open_flag & (O_EXCL | O_TRUNC))
2980 goto no_open;
2981 /* No side effects, safe to clear O_CREAT */
2982 } else {
2983 create_error = may_o_create(&nd->path, dentry, mode);
2984 if (create_error) {
2985 open_flag &= ~O_CREAT;
2986 if (open_flag & O_EXCL)
2987 goto no_open;
2988 }
2989 }
2990 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
2991 unlikely(!got_write)) {
2992 /*
2993 * No O_CREATE -> atomicity not a requirement -> fall
2994 * back to lookup + open
2995 */
2996 goto no_open;
2997 }
2998
2999 if (dir_inode->i_op->atomic_open) {
3000 error = atomic_open(nd, dentry, path, file, op, open_flag,
3001 mode, opened);
3002 if (unlikely(error == -ENOENT) && create_error)
3003 error = create_error;
3004 return error;
3005 }
3006
3007 no_open:
3008 if (d_in_lookup(dentry)) {
3009 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3010 nd->flags);
3011 d_lookup_done(dentry);
3012 if (unlikely(res)) {
3013 if (IS_ERR(res)) {
3014 error = PTR_ERR(res);
3015 goto out_dput;
3016 }
3017 dput(dentry);
3018 dentry = res;
3019 }
3020 }
3021
3022 /* Negative dentry, just create the file */
3023 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3024 *opened |= FILE_CREATED;
3025 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3026 if (!dir_inode->i_op->create) {
3027 error = -EACCES;
3028 goto out_dput;
3029 }
3030 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3031 open_flag & O_EXCL);
3032 if (error)
3033 goto out_dput;
3034 fsnotify_create(dir_inode, dentry);
3035 }
3036 if (unlikely(create_error) && !dentry->d_inode) {
3037 error = create_error;
3038 goto out_dput;
3039 }
3040 out_no_open:
3041 path->dentry = dentry;
3042 path->mnt = nd->path.mnt;
3043 return 1;
3044
3045 out_dput:
3046 dput(dentry);
3047 return error;
3048 }
3049
3050 /*
3051 * Handle the last step of open()
3052 */
3053 static int do_last(struct nameidata *nd,
3054 struct file *file, const struct open_flags *op,
3055 int *opened)
3056 {
3057 struct dentry *dir = nd->path.dentry;
3058 int open_flag = op->open_flag;
3059 bool will_truncate = (open_flag & O_TRUNC) != 0;
3060 bool got_write = false;
3061 int acc_mode = op->acc_mode;
3062 unsigned seq;
3063 struct inode *inode;
3064 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3065 struct path path;
3066 bool retried = false;
3067 int error;
3068
3069 nd->flags &= ~LOOKUP_PARENT;
3070 nd->flags |= op->intent;
3071
3072 if (nd->last_type != LAST_NORM) {
3073 error = handle_dots(nd, nd->last_type);
3074 if (unlikely(error))
3075 return error;
3076 goto finish_open;
3077 }
3078
3079 if (!(open_flag & O_CREAT)) {
3080 if (nd->last.name[nd->last.len])
3081 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3082 /* we _can_ be in RCU mode here */
3083 error = lookup_fast(nd, &path, &inode, &seq);
3084 if (likely(error > 0))
3085 goto finish_lookup;
3086
3087 if (error < 0)
3088 return error;
3089
3090 BUG_ON(nd->inode != dir->d_inode);
3091 BUG_ON(nd->flags & LOOKUP_RCU);
3092 } else {
3093 /* create side of things */
3094 /*
3095 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3096 * has been cleared when we got to the last component we are
3097 * about to look up
3098 */
3099 error = complete_walk(nd);
3100 if (error)
3101 return error;
3102
3103 audit_inode(nd->name, dir, LOOKUP_PARENT);
3104 /* trailing slashes? */
3105 if (unlikely(nd->last.name[nd->last.len]))
3106 return -EISDIR;
3107 }
3108
3109 retry_lookup:
3110 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3111 error = mnt_want_write(nd->path.mnt);
3112 if (!error)
3113 got_write = true;
3114 /*
3115 * do _not_ fail yet - we might not need that or fail with
3116 * a different error; let lookup_open() decide; we'll be
3117 * dropping this one anyway.
3118 */
3119 }
3120 if (open_flag & O_CREAT)
3121 inode_lock(dir->d_inode);
3122 else
3123 inode_lock_shared(dir->d_inode);
3124 error = lookup_open(nd, &path, file, op, got_write, opened);
3125 if (open_flag & O_CREAT)
3126 inode_unlock(dir->d_inode);
3127 else
3128 inode_unlock_shared(dir->d_inode);
3129
3130 if (error <= 0) {
3131 if (error)
3132 goto out;
3133
3134 if ((*opened & FILE_CREATED) ||
3135 !S_ISREG(file_inode(file)->i_mode))
3136 will_truncate = false;
3137
3138 audit_inode(nd->name, file->f_path.dentry, 0);
3139 goto opened;
3140 }
3141
3142 if (*opened & FILE_CREATED) {
3143 /* Don't check for write permission, don't truncate */
3144 open_flag &= ~O_TRUNC;
3145 will_truncate = false;
3146 acc_mode = 0;
3147 path_to_nameidata(&path, nd);
3148 goto finish_open_created;
3149 }
3150
3151 /*
3152 * If atomic_open() acquired write access it is dropped now due to
3153 * possible mount and symlink following (this might be optimized away if
3154 * necessary...)
3155 */
3156 if (got_write) {
3157 mnt_drop_write(nd->path.mnt);
3158 got_write = false;
3159 }
3160
3161 if (unlikely(d_is_negative(path.dentry))) {
3162 path_to_nameidata(&path, nd);
3163 return -ENOENT;
3164 }
3165
3166 /*
3167 * create/update audit record if it already exists.
3168 */
3169 audit_inode(nd->name, path.dentry, 0);
3170
3171 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3172 path_to_nameidata(&path, nd);
3173 return -EEXIST;
3174 }
3175
3176 error = follow_managed(&path, nd);
3177 if (unlikely(error < 0))
3178 return error;
3179
3180 seq = 0; /* out of RCU mode, so the value doesn't matter */
3181 inode = d_backing_inode(path.dentry);
3182 finish_lookup:
3183 if (nd->depth)
3184 put_link(nd);
3185 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3186 inode, seq);
3187 if (unlikely(error))
3188 return error;
3189
3190 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3191 path_to_nameidata(&path, nd);
3192 } else {
3193 save_parent.dentry = nd->path.dentry;
3194 save_parent.mnt = mntget(path.mnt);
3195 nd->path.dentry = path.dentry;
3196
3197 }
3198 nd->inode = inode;
3199 nd->seq = seq;
3200 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3201 finish_open:
3202 error = complete_walk(nd);
3203 if (error) {
3204 path_put(&save_parent);
3205 return error;
3206 }
3207 audit_inode(nd->name, nd->path.dentry, 0);
3208 error = -EISDIR;
3209 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3210 goto out;
3211 error = -ENOTDIR;
3212 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3213 goto out;
3214 if (!d_is_reg(nd->path.dentry))
3215 will_truncate = false;
3216
3217 if (will_truncate) {
3218 error = mnt_want_write(nd->path.mnt);
3219 if (error)
3220 goto out;
3221 got_write = true;
3222 }
3223 finish_open_created:
3224 error = may_open(&nd->path, acc_mode, open_flag);
3225 if (error)
3226 goto out;
3227 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3228 error = vfs_open(&nd->path, file, current_cred());
3229 if (!error) {
3230 *opened |= FILE_OPENED;
3231 } else {
3232 if (error == -EOPENSTALE)
3233 goto stale_open;
3234 goto out;
3235 }
3236 opened:
3237 error = open_check_o_direct(file);
3238 if (!error)
3239 error = ima_file_check(file, op->acc_mode, *opened);
3240 if (!error && will_truncate)
3241 error = handle_truncate(file);
3242 out:
3243 if (unlikely(error) && (*opened & FILE_OPENED))
3244 fput(file);
3245 if (unlikely(error > 0)) {
3246 WARN_ON(1);
3247 error = -EINVAL;
3248 }
3249 if (got_write)
3250 mnt_drop_write(nd->path.mnt);
3251 path_put(&save_parent);
3252 return error;
3253
3254 stale_open:
3255 /* If no saved parent or already retried then can't retry */
3256 if (!save_parent.dentry || retried)
3257 goto out;
3258
3259 BUG_ON(save_parent.dentry != dir);
3260 path_put(&nd->path);
3261 nd->path = save_parent;
3262 nd->inode = dir->d_inode;
3263 save_parent.mnt = NULL;
3264 save_parent.dentry = NULL;
3265 if (got_write) {
3266 mnt_drop_write(nd->path.mnt);
3267 got_write = false;
3268 }
3269 retried = true;
3270 goto retry_lookup;
3271 }
3272
3273 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3274 const struct open_flags *op,
3275 struct file *file, int *opened)
3276 {
3277 static const struct qstr name = QSTR_INIT("/", 1);
3278 struct dentry *child;
3279 struct inode *dir;
3280 struct path path;
3281 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3282 if (unlikely(error))
3283 return error;
3284 error = mnt_want_write(path.mnt);
3285 if (unlikely(error))
3286 goto out;
3287 dir = path.dentry->d_inode;
3288 /* we want directory to be writable */
3289 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3290 if (error)
3291 goto out2;
3292 if (!dir->i_op->tmpfile) {
3293 error = -EOPNOTSUPP;
3294 goto out2;
3295 }
3296 child = d_alloc(path.dentry, &name);
3297 if (unlikely(!child)) {
3298 error = -ENOMEM;
3299 goto out2;
3300 }
3301 dput(path.dentry);
3302 path.dentry = child;
3303 error = dir->i_op->tmpfile(dir, child, op->mode);
3304 if (error)
3305 goto out2;
3306 audit_inode(nd->name, child, 0);
3307 /* Don't check for other permissions, the inode was just created */
3308 error = may_open(&path, 0, op->open_flag);
3309 if (error)
3310 goto out2;
3311 file->f_path.mnt = path.mnt;
3312 error = finish_open(file, child, NULL, opened);
3313 if (error)
3314 goto out2;
3315 error = open_check_o_direct(file);
3316 if (error) {
3317 fput(file);
3318 } else if (!(op->open_flag & O_EXCL)) {
3319 struct inode *inode = file_inode(file);
3320 spin_lock(&inode->i_lock);
3321 inode->i_state |= I_LINKABLE;
3322 spin_unlock(&inode->i_lock);
3323 }
3324 out2:
3325 mnt_drop_write(path.mnt);
3326 out:
3327 path_put(&path);
3328 return error;
3329 }
3330
3331 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3332 {
3333 struct path path;
3334 int error = path_lookupat(nd, flags, &path);
3335 if (!error) {
3336 audit_inode(nd->name, path.dentry, 0);
3337 error = vfs_open(&path, file, current_cred());
3338 path_put(&path);
3339 }
3340 return error;
3341 }
3342
3343 static struct file *path_openat(struct nameidata *nd,
3344 const struct open_flags *op, unsigned flags)
3345 {
3346 const char *s;
3347 struct file *file;
3348 int opened = 0;
3349 int error;
3350
3351 file = get_empty_filp();
3352 if (IS_ERR(file))
3353 return file;
3354
3355 file->f_flags = op->open_flag;
3356
3357 if (unlikely(file->f_flags & __O_TMPFILE)) {
3358 error = do_tmpfile(nd, flags, op, file, &opened);
3359 goto out2;
3360 }
3361
3362 if (unlikely(file->f_flags & O_PATH)) {
3363 error = do_o_path(nd, flags, file);
3364 if (!error)
3365 opened |= FILE_OPENED;
3366 goto out2;
3367 }
3368
3369 s = path_init(nd, flags);
3370 if (IS_ERR(s)) {
3371 put_filp(file);
3372 return ERR_CAST(s);
3373 }
3374 while (!(error = link_path_walk(s, nd)) &&
3375 (error = do_last(nd, file, op, &opened)) > 0) {
3376 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3377 s = trailing_symlink(nd);
3378 if (IS_ERR(s)) {
3379 error = PTR_ERR(s);
3380 break;
3381 }
3382 }
3383 terminate_walk(nd);
3384 out2:
3385 if (!(opened & FILE_OPENED)) {
3386 BUG_ON(!error);
3387 put_filp(file);
3388 }
3389 if (unlikely(error)) {
3390 if (error == -EOPENSTALE) {
3391 if (flags & LOOKUP_RCU)
3392 error = -ECHILD;
3393 else
3394 error = -ESTALE;
3395 }
3396 file = ERR_PTR(error);
3397 }
3398 return file;
3399 }
3400
3401 struct file *do_filp_open(int dfd, struct filename *pathname,
3402 const struct open_flags *op)
3403 {
3404 struct nameidata nd;
3405 int flags = op->lookup_flags;
3406 struct file *filp;
3407
3408 set_nameidata(&nd, dfd, pathname);
3409 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3410 if (unlikely(filp == ERR_PTR(-ECHILD)))
3411 filp = path_openat(&nd, op, flags);
3412 if (unlikely(filp == ERR_PTR(-ESTALE)))
3413 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3414 restore_nameidata();
3415 return filp;
3416 }
3417
3418 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3419 const char *name, const struct open_flags *op)
3420 {
3421 struct nameidata nd;
3422 struct file *file;
3423 struct filename *filename;
3424 int flags = op->lookup_flags | LOOKUP_ROOT;
3425
3426 nd.root.mnt = mnt;
3427 nd.root.dentry = dentry;
3428
3429 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3430 return ERR_PTR(-ELOOP);
3431
3432 filename = getname_kernel(name);
3433 if (IS_ERR(filename))
3434 return ERR_CAST(filename);
3435
3436 set_nameidata(&nd, -1, filename);
3437 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3438 if (unlikely(file == ERR_PTR(-ECHILD)))
3439 file = path_openat(&nd, op, flags);
3440 if (unlikely(file == ERR_PTR(-ESTALE)))
3441 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3442 restore_nameidata();
3443 putname(filename);
3444 return file;
3445 }
3446
3447 static struct dentry *filename_create(int dfd, struct filename *name,
3448 struct path *path, unsigned int lookup_flags)
3449 {
3450 struct dentry *dentry = ERR_PTR(-EEXIST);
3451 struct qstr last;
3452 int type;
3453 int err2;
3454 int error;
3455 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3456
3457 /*
3458 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3459 * other flags passed in are ignored!
3460 */
3461 lookup_flags &= LOOKUP_REVAL;
3462
3463 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3464 if (IS_ERR(name))
3465 return ERR_CAST(name);
3466
3467 /*
3468 * Yucky last component or no last component at all?
3469 * (foo/., foo/.., /////)
3470 */
3471 if (unlikely(type != LAST_NORM))
3472 goto out;
3473
3474 /* don't fail immediately if it's r/o, at least try to report other errors */
3475 err2 = mnt_want_write(path->mnt);
3476 /*
3477 * Do the final lookup.
3478 */
3479 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3480 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3481 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3482 if (IS_ERR(dentry))
3483 goto unlock;
3484
3485 error = -EEXIST;
3486 if (d_is_positive(dentry))
3487 goto fail;
3488
3489 /*
3490 * Special case - lookup gave negative, but... we had foo/bar/
3491 * From the vfs_mknod() POV we just have a negative dentry -
3492 * all is fine. Let's be bastards - you had / on the end, you've
3493 * been asking for (non-existent) directory. -ENOENT for you.
3494 */
3495 if (unlikely(!is_dir && last.name[last.len])) {
3496 error = -ENOENT;
3497 goto fail;
3498 }
3499 if (unlikely(err2)) {
3500 error = err2;
3501 goto fail;
3502 }
3503 putname(name);
3504 return dentry;
3505 fail:
3506 dput(dentry);
3507 dentry = ERR_PTR(error);
3508 unlock:
3509 inode_unlock(path->dentry->d_inode);
3510 if (!err2)
3511 mnt_drop_write(path->mnt);
3512 out:
3513 path_put(path);
3514 putname(name);
3515 return dentry;
3516 }
3517
3518 struct dentry *kern_path_create(int dfd, const char *pathname,
3519 struct path *path, unsigned int lookup_flags)
3520 {
3521 return filename_create(dfd, getname_kernel(pathname),
3522 path, lookup_flags);
3523 }
3524 EXPORT_SYMBOL(kern_path_create);
3525
3526 void done_path_create(struct path *path, struct dentry *dentry)
3527 {
3528 dput(dentry);
3529 inode_unlock(path->dentry->d_inode);
3530 mnt_drop_write(path->mnt);
3531 path_put(path);
3532 }
3533 EXPORT_SYMBOL(done_path_create);
3534
3535 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3536 struct path *path, unsigned int lookup_flags)
3537 {
3538 return filename_create(dfd, getname(pathname), path, lookup_flags);
3539 }
3540 EXPORT_SYMBOL(user_path_create);
3541
3542 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3543 {
3544 int error = may_create(dir, dentry);
3545
3546 if (error)
3547 return error;
3548
3549 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3550 return -EPERM;
3551
3552 if (!dir->i_op->mknod)
3553 return -EPERM;
3554
3555 error = devcgroup_inode_mknod(mode, dev);
3556 if (error)
3557 return error;
3558
3559 error = security_inode_mknod(dir, dentry, mode, dev);
3560 if (error)
3561 return error;
3562
3563 error = dir->i_op->mknod(dir, dentry, mode, dev);
3564 if (!error)
3565 fsnotify_create(dir, dentry);
3566 return error;
3567 }
3568 EXPORT_SYMBOL(vfs_mknod);
3569
3570 static int may_mknod(umode_t mode)
3571 {
3572 switch (mode & S_IFMT) {
3573 case S_IFREG:
3574 case S_IFCHR:
3575 case S_IFBLK:
3576 case S_IFIFO:
3577 case S_IFSOCK:
3578 case 0: /* zero mode translates to S_IFREG */
3579 return 0;
3580 case S_IFDIR:
3581 return -EPERM;
3582 default:
3583 return -EINVAL;
3584 }
3585 }
3586
3587 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3588 unsigned, dev)
3589 {
3590 struct dentry *dentry;
3591 struct path path;
3592 int error;
3593 unsigned int lookup_flags = 0;
3594
3595 error = may_mknod(mode);
3596 if (error)
3597 return error;
3598 retry:
3599 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3600 if (IS_ERR(dentry))
3601 return PTR_ERR(dentry);
3602
3603 if (!IS_POSIXACL(path.dentry->d_inode))
3604 mode &= ~current_umask();
3605 error = security_path_mknod(&path, dentry, mode, dev);
3606 if (error)
3607 goto out;
3608 switch (mode & S_IFMT) {
3609 case 0: case S_IFREG:
3610 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3611 break;
3612 case S_IFCHR: case S_IFBLK:
3613 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3614 new_decode_dev(dev));
3615 break;
3616 case S_IFIFO: case S_IFSOCK:
3617 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3618 break;
3619 }
3620 out:
3621 done_path_create(&path, dentry);
3622 if (retry_estale(error, lookup_flags)) {
3623 lookup_flags |= LOOKUP_REVAL;
3624 goto retry;
3625 }
3626 return error;
3627 }
3628
3629 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3630 {
3631 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3632 }
3633
3634 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3635 {
3636 int error = may_create(dir, dentry);
3637 unsigned max_links = dir->i_sb->s_max_links;
3638
3639 if (error)
3640 return error;
3641
3642 if (!dir->i_op->mkdir)
3643 return -EPERM;
3644
3645 mode &= (S_IRWXUGO|S_ISVTX);
3646 error = security_inode_mkdir(dir, dentry, mode);
3647 if (error)
3648 return error;
3649
3650 if (max_links && dir->i_nlink >= max_links)
3651 return -EMLINK;
3652
3653 error = dir->i_op->mkdir(dir, dentry, mode);
3654 if (!error)
3655 fsnotify_mkdir(dir, dentry);
3656 return error;
3657 }
3658 EXPORT_SYMBOL(vfs_mkdir);
3659
3660 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3661 {
3662 struct dentry *dentry;
3663 struct path path;
3664 int error;
3665 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3666
3667 retry:
3668 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3669 if (IS_ERR(dentry))
3670 return PTR_ERR(dentry);
3671
3672 if (!IS_POSIXACL(path.dentry->d_inode))
3673 mode &= ~current_umask();
3674 error = security_path_mkdir(&path, dentry, mode);
3675 if (!error)
3676 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3677 done_path_create(&path, dentry);
3678 if (retry_estale(error, lookup_flags)) {
3679 lookup_flags |= LOOKUP_REVAL;
3680 goto retry;
3681 }
3682 return error;
3683 }
3684
3685 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3686 {
3687 return sys_mkdirat(AT_FDCWD, pathname, mode);
3688 }
3689
3690 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3691 {
3692 int error = may_delete(dir, dentry, 1);
3693
3694 if (error)
3695 return error;
3696
3697 if (!dir->i_op->rmdir)
3698 return -EPERM;
3699
3700 dget(dentry);
3701 inode_lock(dentry->d_inode);
3702
3703 error = -EBUSY;
3704 if (is_local_mountpoint(dentry))
3705 goto out;
3706
3707 error = security_inode_rmdir(dir, dentry);
3708 if (error)
3709 goto out;
3710
3711 shrink_dcache_parent(dentry);
3712 error = dir->i_op->rmdir(dir, dentry);
3713 if (error)
3714 goto out;
3715
3716 dentry->d_inode->i_flags |= S_DEAD;
3717 dont_mount(dentry);
3718 detach_mounts(dentry);
3719
3720 out:
3721 inode_unlock(dentry->d_inode);
3722 dput(dentry);
3723 if (!error)
3724 d_delete(dentry);
3725 return error;
3726 }
3727 EXPORT_SYMBOL(vfs_rmdir);
3728
3729 static long do_rmdir(int dfd, const char __user *pathname)
3730 {
3731 int error = 0;
3732 struct filename *name;
3733 struct dentry *dentry;
3734 struct path path;
3735 struct qstr last;
3736 int type;
3737 unsigned int lookup_flags = 0;
3738 retry:
3739 name = user_path_parent(dfd, pathname,
3740 &path, &last, &type, lookup_flags);
3741 if (IS_ERR(name))
3742 return PTR_ERR(name);
3743
3744 switch (type) {
3745 case LAST_DOTDOT:
3746 error = -ENOTEMPTY;
3747 goto exit1;
3748 case LAST_DOT:
3749 error = -EINVAL;
3750 goto exit1;
3751 case LAST_ROOT:
3752 error = -EBUSY;
3753 goto exit1;
3754 }
3755
3756 error = mnt_want_write(path.mnt);
3757 if (error)
3758 goto exit1;
3759
3760 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3761 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3762 error = PTR_ERR(dentry);
3763 if (IS_ERR(dentry))
3764 goto exit2;
3765 if (!dentry->d_inode) {
3766 error = -ENOENT;
3767 goto exit3;
3768 }
3769 error = security_path_rmdir(&path, dentry);
3770 if (error)
3771 goto exit3;
3772 error = vfs_rmdir(path.dentry->d_inode, dentry);
3773 exit3:
3774 dput(dentry);
3775 exit2:
3776 inode_unlock(path.dentry->d_inode);
3777 mnt_drop_write(path.mnt);
3778 exit1:
3779 path_put(&path);
3780 putname(name);
3781 if (retry_estale(error, lookup_flags)) {
3782 lookup_flags |= LOOKUP_REVAL;
3783 goto retry;
3784 }
3785 return error;
3786 }
3787
3788 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3789 {
3790 return do_rmdir(AT_FDCWD, pathname);
3791 }
3792
3793 /**
3794 * vfs_unlink - unlink a filesystem object
3795 * @dir: parent directory
3796 * @dentry: victim
3797 * @delegated_inode: returns victim inode, if the inode is delegated.
3798 *
3799 * The caller must hold dir->i_mutex.
3800 *
3801 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3802 * return a reference to the inode in delegated_inode. The caller
3803 * should then break the delegation on that inode and retry. Because
3804 * breaking a delegation may take a long time, the caller should drop
3805 * dir->i_mutex before doing so.
3806 *
3807 * Alternatively, a caller may pass NULL for delegated_inode. This may
3808 * be appropriate for callers that expect the underlying filesystem not
3809 * to be NFS exported.
3810 */
3811 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3812 {
3813 struct inode *target = dentry->d_inode;
3814 int error = may_delete(dir, dentry, 0);
3815
3816 if (error)
3817 return error;
3818
3819 if (!dir->i_op->unlink)
3820 return -EPERM;
3821
3822 inode_lock(target);
3823 if (is_local_mountpoint(dentry))
3824 error = -EBUSY;
3825 else {
3826 error = security_inode_unlink(dir, dentry);
3827 if (!error) {
3828 error = try_break_deleg(target, delegated_inode);
3829 if (error)
3830 goto out;
3831 error = dir->i_op->unlink(dir, dentry);
3832 if (!error) {
3833 dont_mount(dentry);
3834 detach_mounts(dentry);
3835 }
3836 }
3837 }
3838 out:
3839 inode_unlock(target);
3840
3841 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3842 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3843 fsnotify_link_count(target);
3844 d_delete(dentry);
3845 }
3846
3847 return error;
3848 }
3849 EXPORT_SYMBOL(vfs_unlink);
3850
3851 /*
3852 * Make sure that the actual truncation of the file will occur outside its
3853 * directory's i_mutex. Truncate can take a long time if there is a lot of
3854 * writeout happening, and we don't want to prevent access to the directory
3855 * while waiting on the I/O.
3856 */
3857 static long do_unlinkat(int dfd, const char __user *pathname)
3858 {
3859 int error;
3860 struct filename *name;
3861 struct dentry *dentry;
3862 struct path path;
3863 struct qstr last;
3864 int type;
3865 struct inode *inode = NULL;
3866 struct inode *delegated_inode = NULL;
3867 unsigned int lookup_flags = 0;
3868 retry:
3869 name = user_path_parent(dfd, pathname,
3870 &path, &last, &type, lookup_flags);
3871 if (IS_ERR(name))
3872 return PTR_ERR(name);
3873
3874 error = -EISDIR;
3875 if (type != LAST_NORM)
3876 goto exit1;
3877
3878 error = mnt_want_write(path.mnt);
3879 if (error)
3880 goto exit1;
3881 retry_deleg:
3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884 error = PTR_ERR(dentry);
3885 if (!IS_ERR(dentry)) {
3886 /* Why not before? Because we want correct error value */
3887 if (last.name[last.len])
3888 goto slashes;
3889 inode = dentry->d_inode;
3890 if (d_is_negative(dentry))
3891 goto slashes;
3892 ihold(inode);
3893 error = security_path_unlink(&path, dentry);
3894 if (error)
3895 goto exit2;
3896 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3897 exit2:
3898 dput(dentry);
3899 }
3900 inode_unlock(path.dentry->d_inode);
3901 if (inode)
3902 iput(inode); /* truncate the inode here */
3903 inode = NULL;
3904 if (delegated_inode) {
3905 error = break_deleg_wait(&delegated_inode);
3906 if (!error)
3907 goto retry_deleg;
3908 }
3909 mnt_drop_write(path.mnt);
3910 exit1:
3911 path_put(&path);
3912 putname(name);
3913 if (retry_estale(error, lookup_flags)) {
3914 lookup_flags |= LOOKUP_REVAL;
3915 inode = NULL;
3916 goto retry;
3917 }
3918 return error;
3919
3920 slashes:
3921 if (d_is_negative(dentry))
3922 error = -ENOENT;
3923 else if (d_is_dir(dentry))
3924 error = -EISDIR;
3925 else
3926 error = -ENOTDIR;
3927 goto exit2;
3928 }
3929
3930 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3931 {
3932 if ((flag & ~AT_REMOVEDIR) != 0)
3933 return -EINVAL;
3934
3935 if (flag & AT_REMOVEDIR)
3936 return do_rmdir(dfd, pathname);
3937
3938 return do_unlinkat(dfd, pathname);
3939 }
3940
3941 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3942 {
3943 return do_unlinkat(AT_FDCWD, pathname);
3944 }
3945
3946 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3947 {
3948 int error = may_create(dir, dentry);
3949
3950 if (error)
3951 return error;
3952
3953 if (!dir->i_op->symlink)
3954 return -EPERM;
3955
3956 error = security_inode_symlink(dir, dentry, oldname);
3957 if (error)
3958 return error;
3959
3960 error = dir->i_op->symlink(dir, dentry, oldname);
3961 if (!error)
3962 fsnotify_create(dir, dentry);
3963 return error;
3964 }
3965 EXPORT_SYMBOL(vfs_symlink);
3966
3967 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3968 int, newdfd, const char __user *, newname)
3969 {
3970 int error;
3971 struct filename *from;
3972 struct dentry *dentry;
3973 struct path path;
3974 unsigned int lookup_flags = 0;
3975
3976 from = getname(oldname);
3977 if (IS_ERR(from))
3978 return PTR_ERR(from);
3979 retry:
3980 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3981 error = PTR_ERR(dentry);
3982 if (IS_ERR(dentry))
3983 goto out_putname;
3984
3985 error = security_path_symlink(&path, dentry, from->name);
3986 if (!error)
3987 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3988 done_path_create(&path, dentry);
3989 if (retry_estale(error, lookup_flags)) {
3990 lookup_flags |= LOOKUP_REVAL;
3991 goto retry;
3992 }
3993 out_putname:
3994 putname(from);
3995 return error;
3996 }
3997
3998 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3999 {
4000 return sys_symlinkat(oldname, AT_FDCWD, newname);
4001 }
4002
4003 /**
4004 * vfs_link - create a new link
4005 * @old_dentry: object to be linked
4006 * @dir: new parent
4007 * @new_dentry: where to create the new link
4008 * @delegated_inode: returns inode needing a delegation break
4009 *
4010 * The caller must hold dir->i_mutex
4011 *
4012 * If vfs_link discovers a delegation on the to-be-linked file in need
4013 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4014 * inode in delegated_inode. The caller should then break the delegation
4015 * and retry. Because breaking a delegation may take a long time, the
4016 * caller should drop the i_mutex before doing so.
4017 *
4018 * Alternatively, a caller may pass NULL for delegated_inode. This may
4019 * be appropriate for callers that expect the underlying filesystem not
4020 * to be NFS exported.
4021 */
4022 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4023 {
4024 struct inode *inode = old_dentry->d_inode;
4025 unsigned max_links = dir->i_sb->s_max_links;
4026 int error;
4027
4028 if (!inode)
4029 return -ENOENT;
4030
4031 error = may_create(dir, new_dentry);
4032 if (error)
4033 return error;
4034
4035 if (dir->i_sb != inode->i_sb)
4036 return -EXDEV;
4037
4038 /*
4039 * A link to an append-only or immutable file cannot be created.
4040 */
4041 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4042 return -EPERM;
4043 if (!dir->i_op->link)
4044 return -EPERM;
4045 if (S_ISDIR(inode->i_mode))
4046 return -EPERM;
4047
4048 error = security_inode_link(old_dentry, dir, new_dentry);
4049 if (error)
4050 return error;
4051
4052 inode_lock(inode);
4053 /* Make sure we don't allow creating hardlink to an unlinked file */
4054 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4055 error = -ENOENT;
4056 else if (max_links && inode->i_nlink >= max_links)
4057 error = -EMLINK;
4058 else {
4059 error = try_break_deleg(inode, delegated_inode);
4060 if (!error)
4061 error = dir->i_op->link(old_dentry, dir, new_dentry);
4062 }
4063
4064 if (!error && (inode->i_state & I_LINKABLE)) {
4065 spin_lock(&inode->i_lock);
4066 inode->i_state &= ~I_LINKABLE;
4067 spin_unlock(&inode->i_lock);
4068 }
4069 inode_unlock(inode);
4070 if (!error)
4071 fsnotify_link(dir, inode, new_dentry);
4072 return error;
4073 }
4074 EXPORT_SYMBOL(vfs_link);
4075
4076 /*
4077 * Hardlinks are often used in delicate situations. We avoid
4078 * security-related surprises by not following symlinks on the
4079 * newname. --KAB
4080 *
4081 * We don't follow them on the oldname either to be compatible
4082 * with linux 2.0, and to avoid hard-linking to directories
4083 * and other special files. --ADM
4084 */
4085 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4086 int, newdfd, const char __user *, newname, int, flags)
4087 {
4088 struct dentry *new_dentry;
4089 struct path old_path, new_path;
4090 struct inode *delegated_inode = NULL;
4091 int how = 0;
4092 int error;
4093
4094 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4095 return -EINVAL;
4096 /*
4097 * To use null names we require CAP_DAC_READ_SEARCH
4098 * This ensures that not everyone will be able to create
4099 * handlink using the passed filedescriptor.
4100 */
4101 if (flags & AT_EMPTY_PATH) {
4102 if (!capable(CAP_DAC_READ_SEARCH))
4103 return -ENOENT;
4104 how = LOOKUP_EMPTY;
4105 }
4106
4107 if (flags & AT_SYMLINK_FOLLOW)
4108 how |= LOOKUP_FOLLOW;
4109 retry:
4110 error = user_path_at(olddfd, oldname, how, &old_path);
4111 if (error)
4112 return error;
4113
4114 new_dentry = user_path_create(newdfd, newname, &new_path,
4115 (how & LOOKUP_REVAL));
4116 error = PTR_ERR(new_dentry);
4117 if (IS_ERR(new_dentry))
4118 goto out;
4119
4120 error = -EXDEV;
4121 if (old_path.mnt != new_path.mnt)
4122 goto out_dput;
4123 error = may_linkat(&old_path);
4124 if (unlikely(error))
4125 goto out_dput;
4126 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4127 if (error)
4128 goto out_dput;
4129 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4130 out_dput:
4131 done_path_create(&new_path, new_dentry);
4132 if (delegated_inode) {
4133 error = break_deleg_wait(&delegated_inode);
4134 if (!error) {
4135 path_put(&old_path);
4136 goto retry;
4137 }
4138 }
4139 if (retry_estale(error, how)) {
4140 path_put(&old_path);
4141 how |= LOOKUP_REVAL;
4142 goto retry;
4143 }
4144 out:
4145 path_put(&old_path);
4146
4147 return error;
4148 }
4149
4150 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4151 {
4152 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4153 }
4154
4155 /**
4156 * vfs_rename - rename a filesystem object
4157 * @old_dir: parent of source
4158 * @old_dentry: source
4159 * @new_dir: parent of destination
4160 * @new_dentry: destination
4161 * @delegated_inode: returns an inode needing a delegation break
4162 * @flags: rename flags
4163 *
4164 * The caller must hold multiple mutexes--see lock_rename()).
4165 *
4166 * If vfs_rename discovers a delegation in need of breaking at either
4167 * the source or destination, it will return -EWOULDBLOCK and return a
4168 * reference to the inode in delegated_inode. The caller should then
4169 * break the delegation and retry. Because breaking a delegation may
4170 * take a long time, the caller should drop all locks before doing
4171 * so.
4172 *
4173 * Alternatively, a caller may pass NULL for delegated_inode. This may
4174 * be appropriate for callers that expect the underlying filesystem not
4175 * to be NFS exported.
4176 *
4177 * The worst of all namespace operations - renaming directory. "Perverted"
4178 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4179 * Problems:
4180 * a) we can get into loop creation.
4181 * b) race potential - two innocent renames can create a loop together.
4182 * That's where 4.4 screws up. Current fix: serialization on
4183 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4184 * story.
4185 * c) we have to lock _four_ objects - parents and victim (if it exists),
4186 * and source (if it is not a directory).
4187 * And that - after we got ->i_mutex on parents (until then we don't know
4188 * whether the target exists). Solution: try to be smart with locking
4189 * order for inodes. We rely on the fact that tree topology may change
4190 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4191 * move will be locked. Thus we can rank directories by the tree
4192 * (ancestors first) and rank all non-directories after them.
4193 * That works since everybody except rename does "lock parent, lookup,
4194 * lock child" and rename is under ->s_vfs_rename_mutex.
4195 * HOWEVER, it relies on the assumption that any object with ->lookup()
4196 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4197 * we'd better make sure that there's no link(2) for them.
4198 * d) conversion from fhandle to dentry may come in the wrong moment - when
4199 * we are removing the target. Solution: we will have to grab ->i_mutex
4200 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4201 * ->i_mutex on parents, which works but leads to some truly excessive
4202 * locking].
4203 */
4204 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4205 struct inode *new_dir, struct dentry *new_dentry,
4206 struct inode **delegated_inode, unsigned int flags)
4207 {
4208 int error;
4209 bool is_dir = d_is_dir(old_dentry);
4210 const unsigned char *old_name;
4211 struct inode *source = old_dentry->d_inode;
4212 struct inode *target = new_dentry->d_inode;
4213 bool new_is_dir = false;
4214 unsigned max_links = new_dir->i_sb->s_max_links;
4215
4216 /*
4217 * Check source == target.
4218 * On overlayfs need to look at underlying inodes.
4219 */
4220 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4221 return 0;
4222
4223 error = may_delete(old_dir, old_dentry, is_dir);
4224 if (error)
4225 return error;
4226
4227 if (!target) {
4228 error = may_create(new_dir, new_dentry);
4229 } else {
4230 new_is_dir = d_is_dir(new_dentry);
4231
4232 if (!(flags & RENAME_EXCHANGE))
4233 error = may_delete(new_dir, new_dentry, is_dir);
4234 else
4235 error = may_delete(new_dir, new_dentry, new_is_dir);
4236 }
4237 if (error)
4238 return error;
4239
4240 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4241 return -EPERM;
4242
4243 if (flags && !old_dir->i_op->rename2)
4244 return -EINVAL;
4245
4246 /*
4247 * If we are going to change the parent - check write permissions,
4248 * we'll need to flip '..'.
4249 */
4250 if (new_dir != old_dir) {
4251 if (is_dir) {
4252 error = inode_permission(source, MAY_WRITE);
4253 if (error)
4254 return error;
4255 }
4256 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4257 error = inode_permission(target, MAY_WRITE);
4258 if (error)
4259 return error;
4260 }
4261 }
4262
4263 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4264 flags);
4265 if (error)
4266 return error;
4267
4268 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4269 dget(new_dentry);
4270 if (!is_dir || (flags & RENAME_EXCHANGE))
4271 lock_two_nondirectories(source, target);
4272 else if (target)
4273 inode_lock(target);
4274
4275 error = -EBUSY;
4276 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4277 goto out;
4278
4279 if (max_links && new_dir != old_dir) {
4280 error = -EMLINK;
4281 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4282 goto out;
4283 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4284 old_dir->i_nlink >= max_links)
4285 goto out;
4286 }
4287 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4288 shrink_dcache_parent(new_dentry);
4289 if (!is_dir) {
4290 error = try_break_deleg(source, delegated_inode);
4291 if (error)
4292 goto out;
4293 }
4294 if (target && !new_is_dir) {
4295 error = try_break_deleg(target, delegated_inode);
4296 if (error)
4297 goto out;
4298 }
4299 if (!old_dir->i_op->rename2) {
4300 error = old_dir->i_op->rename(old_dir, old_dentry,
4301 new_dir, new_dentry);
4302 } else {
4303 WARN_ON(old_dir->i_op->rename != NULL);
4304 error = old_dir->i_op->rename2(old_dir, old_dentry,
4305 new_dir, new_dentry, flags);
4306 }
4307 if (error)
4308 goto out;
4309
4310 if (!(flags & RENAME_EXCHANGE) && target) {
4311 if (is_dir)
4312 target->i_flags |= S_DEAD;
4313 dont_mount(new_dentry);
4314 detach_mounts(new_dentry);
4315 }
4316 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4317 if (!(flags & RENAME_EXCHANGE))
4318 d_move(old_dentry, new_dentry);
4319 else
4320 d_exchange(old_dentry, new_dentry);
4321 }
4322 out:
4323 if (!is_dir || (flags & RENAME_EXCHANGE))
4324 unlock_two_nondirectories(source, target);
4325 else if (target)
4326 inode_unlock(target);
4327 dput(new_dentry);
4328 if (!error) {
4329 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4330 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4331 if (flags & RENAME_EXCHANGE) {
4332 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4333 new_is_dir, NULL, new_dentry);
4334 }
4335 }
4336 fsnotify_oldname_free(old_name);
4337
4338 return error;
4339 }
4340 EXPORT_SYMBOL(vfs_rename);
4341
4342 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4343 int, newdfd, const char __user *, newname, unsigned int, flags)
4344 {
4345 struct dentry *old_dentry, *new_dentry;
4346 struct dentry *trap;
4347 struct path old_path, new_path;
4348 struct qstr old_last, new_last;
4349 int old_type, new_type;
4350 struct inode *delegated_inode = NULL;
4351 struct filename *from;
4352 struct filename *to;
4353 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4354 bool should_retry = false;
4355 int error;
4356
4357 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4358 return -EINVAL;
4359
4360 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4361 (flags & RENAME_EXCHANGE))
4362 return -EINVAL;
4363
4364 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4365 return -EPERM;
4366
4367 if (flags & RENAME_EXCHANGE)
4368 target_flags = 0;
4369
4370 retry:
4371 from = user_path_parent(olddfd, oldname,
4372 &old_path, &old_last, &old_type, lookup_flags);
4373 if (IS_ERR(from)) {
4374 error = PTR_ERR(from);
4375 goto exit;
4376 }
4377
4378 to = user_path_parent(newdfd, newname,
4379 &new_path, &new_last, &new_type, lookup_flags);
4380 if (IS_ERR(to)) {
4381 error = PTR_ERR(to);
4382 goto exit1;
4383 }
4384
4385 error = -EXDEV;
4386 if (old_path.mnt != new_path.mnt)
4387 goto exit2;
4388
4389 error = -EBUSY;
4390 if (old_type != LAST_NORM)
4391 goto exit2;
4392
4393 if (flags & RENAME_NOREPLACE)
4394 error = -EEXIST;
4395 if (new_type != LAST_NORM)
4396 goto exit2;
4397
4398 error = mnt_want_write(old_path.mnt);
4399 if (error)
4400 goto exit2;
4401
4402 retry_deleg:
4403 trap = lock_rename(new_path.dentry, old_path.dentry);
4404
4405 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4406 error = PTR_ERR(old_dentry);
4407 if (IS_ERR(old_dentry))
4408 goto exit3;
4409 /* source must exist */
4410 error = -ENOENT;
4411 if (d_is_negative(old_dentry))
4412 goto exit4;
4413 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4414 error = PTR_ERR(new_dentry);
4415 if (IS_ERR(new_dentry))
4416 goto exit4;
4417 error = -EEXIST;
4418 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4419 goto exit5;
4420 if (flags & RENAME_EXCHANGE) {
4421 error = -ENOENT;
4422 if (d_is_negative(new_dentry))
4423 goto exit5;
4424
4425 if (!d_is_dir(new_dentry)) {
4426 error = -ENOTDIR;
4427 if (new_last.name[new_last.len])
4428 goto exit5;
4429 }
4430 }
4431 /* unless the source is a directory trailing slashes give -ENOTDIR */
4432 if (!d_is_dir(old_dentry)) {
4433 error = -ENOTDIR;
4434 if (old_last.name[old_last.len])
4435 goto exit5;
4436 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4437 goto exit5;
4438 }
4439 /* source should not be ancestor of target */
4440 error = -EINVAL;
4441 if (old_dentry == trap)
4442 goto exit5;
4443 /* target should not be an ancestor of source */
4444 if (!(flags & RENAME_EXCHANGE))
4445 error = -ENOTEMPTY;
4446 if (new_dentry == trap)
4447 goto exit5;
4448
4449 error = security_path_rename(&old_path, old_dentry,
4450 &new_path, new_dentry, flags);
4451 if (error)
4452 goto exit5;
4453 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4454 new_path.dentry->d_inode, new_dentry,
4455 &delegated_inode, flags);
4456 exit5:
4457 dput(new_dentry);
4458 exit4:
4459 dput(old_dentry);
4460 exit3:
4461 unlock_rename(new_path.dentry, old_path.dentry);
4462 if (delegated_inode) {
4463 error = break_deleg_wait(&delegated_inode);
4464 if (!error)
4465 goto retry_deleg;
4466 }
4467 mnt_drop_write(old_path.mnt);
4468 exit2:
4469 if (retry_estale(error, lookup_flags))
4470 should_retry = true;
4471 path_put(&new_path);
4472 putname(to);
4473 exit1:
4474 path_put(&old_path);
4475 putname(from);
4476 if (should_retry) {
4477 should_retry = false;
4478 lookup_flags |= LOOKUP_REVAL;
4479 goto retry;
4480 }
4481 exit:
4482 return error;
4483 }
4484
4485 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4486 int, newdfd, const char __user *, newname)
4487 {
4488 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4489 }
4490
4491 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4492 {
4493 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4494 }
4495
4496 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4497 {
4498 int error = may_create(dir, dentry);
4499 if (error)
4500 return error;
4501
4502 if (!dir->i_op->mknod)
4503 return -EPERM;
4504
4505 return dir->i_op->mknod(dir, dentry,
4506 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4507 }
4508 EXPORT_SYMBOL(vfs_whiteout);
4509
4510 int readlink_copy(char __user *buffer, int buflen, const char *link)
4511 {
4512 int len = PTR_ERR(link);
4513 if (IS_ERR(link))
4514 goto out;
4515
4516 len = strlen(link);
4517 if (len > (unsigned) buflen)
4518 len = buflen;
4519 if (copy_to_user(buffer, link, len))
4520 len = -EFAULT;
4521 out:
4522 return len;
4523 }
4524 EXPORT_SYMBOL(readlink_copy);
4525
4526 /*
4527 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4528 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4529 * for any given inode is up to filesystem.
4530 */
4531 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4532 {
4533 DEFINE_DELAYED_CALL(done);
4534 struct inode *inode = d_inode(dentry);
4535 const char *link = inode->i_link;
4536 int res;
4537
4538 if (!link) {
4539 link = inode->i_op->get_link(dentry, inode, &done);
4540 if (IS_ERR(link))
4541 return PTR_ERR(link);
4542 }
4543 res = readlink_copy(buffer, buflen, link);
4544 do_delayed_call(&done);
4545 return res;
4546 }
4547 EXPORT_SYMBOL(generic_readlink);
4548
4549 /* get the link contents into pagecache */
4550 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4551 struct delayed_call *callback)
4552 {
4553 char *kaddr;
4554 struct page *page;
4555 struct address_space *mapping = inode->i_mapping;
4556
4557 if (!dentry) {
4558 page = find_get_page(mapping, 0);
4559 if (!page)
4560 return ERR_PTR(-ECHILD);
4561 if (!PageUptodate(page)) {
4562 put_page(page);
4563 return ERR_PTR(-ECHILD);
4564 }
4565 } else {
4566 page = read_mapping_page(mapping, 0, NULL);
4567 if (IS_ERR(page))
4568 return (char*)page;
4569 }
4570 set_delayed_call(callback, page_put_link, page);
4571 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4572 kaddr = page_address(page);
4573 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4574 return kaddr;
4575 }
4576
4577 EXPORT_SYMBOL(page_get_link);
4578
4579 void page_put_link(void *arg)
4580 {
4581 put_page(arg);
4582 }
4583 EXPORT_SYMBOL(page_put_link);
4584
4585 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4586 {
4587 DEFINE_DELAYED_CALL(done);
4588 int res = readlink_copy(buffer, buflen,
4589 page_get_link(dentry, d_inode(dentry),
4590 &done));
4591 do_delayed_call(&done);
4592 return res;
4593 }
4594 EXPORT_SYMBOL(page_readlink);
4595
4596 /*
4597 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4598 */
4599 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4600 {
4601 struct address_space *mapping = inode->i_mapping;
4602 struct page *page;
4603 void *fsdata;
4604 int err;
4605 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4606 if (nofs)
4607 flags |= AOP_FLAG_NOFS;
4608
4609 retry:
4610 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4611 flags, &page, &fsdata);
4612 if (err)
4613 goto fail;
4614
4615 memcpy(page_address(page), symname, len-1);
4616
4617 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4618 page, fsdata);
4619 if (err < 0)
4620 goto fail;
4621 if (err < len-1)
4622 goto retry;
4623
4624 mark_inode_dirty(inode);
4625 return 0;
4626 fail:
4627 return err;
4628 }
4629 EXPORT_SYMBOL(__page_symlink);
4630
4631 int page_symlink(struct inode *inode, const char *symname, int len)
4632 {
4633 return __page_symlink(inode, symname, len,
4634 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4635 }
4636 EXPORT_SYMBOL(page_symlink);
4637
4638 const struct inode_operations page_symlink_inode_operations = {
4639 .readlink = generic_readlink,
4640 .get_link = page_get_link,
4641 };
4642 EXPORT_SYMBOL(page_symlink_inode_operations);