]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
3531deebad3084104e6a9fca7116ba68890ad5af
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 /**
486 * unlazy_walk - try to switch to ref-walk mode.
487 * @nd: nameidata pathwalk data
488 * @dentry: child of nd->path.dentry or NULL
489 * Returns: 0 on success, -ECHILD on failure
490 *
491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
492 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
493 * @nd or NULL. Must be called from rcu-walk context.
494 */
495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
496 {
497 struct fs_struct *fs = current->fs;
498 struct dentry *parent = nd->path.dentry;
499
500 BUG_ON(!(nd->flags & LOOKUP_RCU));
501
502 /*
503 * After legitimizing the bastards, terminate_walk()
504 * will do the right thing for non-RCU mode, and all our
505 * subsequent exit cases should rcu_read_unlock()
506 * before returning. Do vfsmount first; if dentry
507 * can't be legitimized, just set nd->path.dentry to NULL
508 * and rely on dput(NULL) being a no-op.
509 */
510 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
511 return -ECHILD;
512 nd->flags &= ~LOOKUP_RCU;
513
514 if (!lockref_get_not_dead(&parent->d_lockref)) {
515 nd->path.dentry = NULL;
516 goto out;
517 }
518
519 /*
520 * For a negative lookup, the lookup sequence point is the parents
521 * sequence point, and it only needs to revalidate the parent dentry.
522 *
523 * For a positive lookup, we need to move both the parent and the
524 * dentry from the RCU domain to be properly refcounted. And the
525 * sequence number in the dentry validates *both* dentry counters,
526 * since we checked the sequence number of the parent after we got
527 * the child sequence number. So we know the parent must still
528 * be valid if the child sequence number is still valid.
529 */
530 if (!dentry) {
531 if (read_seqcount_retry(&parent->d_seq, nd->seq))
532 goto out;
533 BUG_ON(nd->inode != parent->d_inode);
534 } else {
535 if (!lockref_get_not_dead(&dentry->d_lockref))
536 goto out;
537 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
538 goto drop_dentry;
539 }
540
541 /*
542 * Sequence counts matched. Now make sure that the root is
543 * still valid and get it if required.
544 */
545 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
546 spin_lock(&fs->lock);
547 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
548 goto unlock_and_drop_dentry;
549 path_get(&nd->root);
550 spin_unlock(&fs->lock);
551 }
552
553 rcu_read_unlock();
554 return 0;
555
556 unlock_and_drop_dentry:
557 spin_unlock(&fs->lock);
558 drop_dentry:
559 rcu_read_unlock();
560 dput(dentry);
561 goto drop_root_mnt;
562 out:
563 rcu_read_unlock();
564 drop_root_mnt:
565 if (!(nd->flags & LOOKUP_ROOT))
566 nd->root.mnt = NULL;
567 return -ECHILD;
568 }
569
570 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
571 {
572 return dentry->d_op->d_revalidate(dentry, flags);
573 }
574
575 /**
576 * complete_walk - successful completion of path walk
577 * @nd: pointer nameidata
578 *
579 * If we had been in RCU mode, drop out of it and legitimize nd->path.
580 * Revalidate the final result, unless we'd already done that during
581 * the path walk or the filesystem doesn't ask for it. Return 0 on
582 * success, -error on failure. In case of failure caller does not
583 * need to drop nd->path.
584 */
585 static int complete_walk(struct nameidata *nd)
586 {
587 struct dentry *dentry = nd->path.dentry;
588 int status;
589
590 if (nd->flags & LOOKUP_RCU) {
591 nd->flags &= ~LOOKUP_RCU;
592 if (!(nd->flags & LOOKUP_ROOT))
593 nd->root.mnt = NULL;
594
595 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
596 rcu_read_unlock();
597 return -ECHILD;
598 }
599 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
600 rcu_read_unlock();
601 mntput(nd->path.mnt);
602 return -ECHILD;
603 }
604 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
605 rcu_read_unlock();
606 dput(dentry);
607 mntput(nd->path.mnt);
608 return -ECHILD;
609 }
610 rcu_read_unlock();
611 }
612
613 if (likely(!(nd->flags & LOOKUP_JUMPED)))
614 return 0;
615
616 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
617 return 0;
618
619 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
620 if (status > 0)
621 return 0;
622
623 if (!status)
624 status = -ESTALE;
625
626 path_put(&nd->path);
627 return status;
628 }
629
630 static __always_inline void set_root(struct nameidata *nd)
631 {
632 if (!nd->root.mnt)
633 get_fs_root(current->fs, &nd->root);
634 }
635
636 static int link_path_walk(const char *, struct nameidata *);
637
638 static __always_inline void set_root_rcu(struct nameidata *nd)
639 {
640 if (!nd->root.mnt) {
641 struct fs_struct *fs = current->fs;
642 unsigned seq;
643
644 do {
645 seq = read_seqcount_begin(&fs->seq);
646 nd->root = fs->root;
647 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
648 } while (read_seqcount_retry(&fs->seq, seq));
649 }
650 }
651
652 static void path_put_conditional(struct path *path, struct nameidata *nd)
653 {
654 dput(path->dentry);
655 if (path->mnt != nd->path.mnt)
656 mntput(path->mnt);
657 }
658
659 static inline void path_to_nameidata(const struct path *path,
660 struct nameidata *nd)
661 {
662 if (!(nd->flags & LOOKUP_RCU)) {
663 dput(nd->path.dentry);
664 if (nd->path.mnt != path->mnt)
665 mntput(nd->path.mnt);
666 }
667 nd->path.mnt = path->mnt;
668 nd->path.dentry = path->dentry;
669 }
670
671 /*
672 * Helper to directly jump to a known parsed path from ->follow_link,
673 * caller must have taken a reference to path beforehand.
674 */
675 void nd_jump_link(struct nameidata *nd, struct path *path)
676 {
677 path_put(&nd->path);
678
679 nd->path = *path;
680 nd->inode = nd->path.dentry->d_inode;
681 nd->flags |= LOOKUP_JUMPED;
682 }
683
684 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
685 {
686 struct inode *inode = link->dentry->d_inode;
687 if (inode->i_op->put_link)
688 inode->i_op->put_link(link->dentry, nd, cookie);
689 path_put(link);
690 }
691
692 int sysctl_protected_symlinks __read_mostly = 0;
693 int sysctl_protected_hardlinks __read_mostly = 0;
694
695 /**
696 * may_follow_link - Check symlink following for unsafe situations
697 * @link: The path of the symlink
698 * @nd: nameidata pathwalk data
699 *
700 * In the case of the sysctl_protected_symlinks sysctl being enabled,
701 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
702 * in a sticky world-writable directory. This is to protect privileged
703 * processes from failing races against path names that may change out
704 * from under them by way of other users creating malicious symlinks.
705 * It will permit symlinks to be followed only when outside a sticky
706 * world-writable directory, or when the uid of the symlink and follower
707 * match, or when the directory owner matches the symlink's owner.
708 *
709 * Returns 0 if following the symlink is allowed, -ve on error.
710 */
711 static inline int may_follow_link(struct path *link, struct nameidata *nd)
712 {
713 const struct inode *inode;
714 const struct inode *parent;
715
716 if (!sysctl_protected_symlinks)
717 return 0;
718
719 /* Allowed if owner and follower match. */
720 inode = link->dentry->d_inode;
721 if (uid_eq(current_cred()->fsuid, inode->i_uid))
722 return 0;
723
724 /* Allowed if parent directory not sticky and world-writable. */
725 parent = nd->path.dentry->d_inode;
726 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
727 return 0;
728
729 /* Allowed if parent directory and link owner match. */
730 if (uid_eq(parent->i_uid, inode->i_uid))
731 return 0;
732
733 audit_log_link_denied("follow_link", link);
734 path_put_conditional(link, nd);
735 path_put(&nd->path);
736 return -EACCES;
737 }
738
739 /**
740 * safe_hardlink_source - Check for safe hardlink conditions
741 * @inode: the source inode to hardlink from
742 *
743 * Return false if at least one of the following conditions:
744 * - inode is not a regular file
745 * - inode is setuid
746 * - inode is setgid and group-exec
747 * - access failure for read and write
748 *
749 * Otherwise returns true.
750 */
751 static bool safe_hardlink_source(struct inode *inode)
752 {
753 umode_t mode = inode->i_mode;
754
755 /* Special files should not get pinned to the filesystem. */
756 if (!S_ISREG(mode))
757 return false;
758
759 /* Setuid files should not get pinned to the filesystem. */
760 if (mode & S_ISUID)
761 return false;
762
763 /* Executable setgid files should not get pinned to the filesystem. */
764 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
765 return false;
766
767 /* Hardlinking to unreadable or unwritable sources is dangerous. */
768 if (inode_permission(inode, MAY_READ | MAY_WRITE))
769 return false;
770
771 return true;
772 }
773
774 /**
775 * may_linkat - Check permissions for creating a hardlink
776 * @link: the source to hardlink from
777 *
778 * Block hardlink when all of:
779 * - sysctl_protected_hardlinks enabled
780 * - fsuid does not match inode
781 * - hardlink source is unsafe (see safe_hardlink_source() above)
782 * - not CAP_FOWNER
783 *
784 * Returns 0 if successful, -ve on error.
785 */
786 static int may_linkat(struct path *link)
787 {
788 const struct cred *cred;
789 struct inode *inode;
790
791 if (!sysctl_protected_hardlinks)
792 return 0;
793
794 cred = current_cred();
795 inode = link->dentry->d_inode;
796
797 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
798 * otherwise, it must be a safe source.
799 */
800 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
801 capable(CAP_FOWNER))
802 return 0;
803
804 audit_log_link_denied("linkat", link);
805 return -EPERM;
806 }
807
808 static __always_inline int
809 follow_link(struct path *link, struct nameidata *nd, void **p)
810 {
811 struct dentry *dentry = link->dentry;
812 int error;
813 char *s;
814
815 BUG_ON(nd->flags & LOOKUP_RCU);
816
817 if (link->mnt == nd->path.mnt)
818 mntget(link->mnt);
819
820 error = -ELOOP;
821 if (unlikely(current->total_link_count >= 40))
822 goto out_put_nd_path;
823
824 cond_resched();
825 current->total_link_count++;
826
827 touch_atime(link);
828 nd_set_link(nd, NULL);
829
830 error = security_inode_follow_link(link->dentry, nd);
831 if (error)
832 goto out_put_nd_path;
833
834 nd->last_type = LAST_BIND;
835 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
836 error = PTR_ERR(*p);
837 if (IS_ERR(*p))
838 goto out_put_nd_path;
839
840 error = 0;
841 s = nd_get_link(nd);
842 if (s) {
843 if (unlikely(IS_ERR(s))) {
844 path_put(&nd->path);
845 put_link(nd, link, *p);
846 return PTR_ERR(s);
847 }
848 if (*s == '/') {
849 set_root(nd);
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->root);
853 nd->flags |= LOOKUP_JUMPED;
854 }
855 nd->inode = nd->path.dentry->d_inode;
856 error = link_path_walk(s, nd);
857 if (unlikely(error))
858 put_link(nd, link, *p);
859 }
860
861 return error;
862
863 out_put_nd_path:
864 *p = NULL;
865 path_put(&nd->path);
866 path_put(link);
867 return error;
868 }
869
870 static int follow_up_rcu(struct path *path)
871 {
872 struct mount *mnt = real_mount(path->mnt);
873 struct mount *parent;
874 struct dentry *mountpoint;
875
876 parent = mnt->mnt_parent;
877 if (&parent->mnt == path->mnt)
878 return 0;
879 mountpoint = mnt->mnt_mountpoint;
880 path->dentry = mountpoint;
881 path->mnt = &parent->mnt;
882 return 1;
883 }
884
885 /*
886 * follow_up - Find the mountpoint of path's vfsmount
887 *
888 * Given a path, find the mountpoint of its source file system.
889 * Replace @path with the path of the mountpoint in the parent mount.
890 * Up is towards /.
891 *
892 * Return 1 if we went up a level and 0 if we were already at the
893 * root.
894 */
895 int follow_up(struct path *path)
896 {
897 struct mount *mnt = real_mount(path->mnt);
898 struct mount *parent;
899 struct dentry *mountpoint;
900
901 read_seqlock_excl(&mount_lock);
902 parent = mnt->mnt_parent;
903 if (parent == mnt) {
904 read_sequnlock_excl(&mount_lock);
905 return 0;
906 }
907 mntget(&parent->mnt);
908 mountpoint = dget(mnt->mnt_mountpoint);
909 read_sequnlock_excl(&mount_lock);
910 dput(path->dentry);
911 path->dentry = mountpoint;
912 mntput(path->mnt);
913 path->mnt = &parent->mnt;
914 return 1;
915 }
916
917 /*
918 * Perform an automount
919 * - return -EISDIR to tell follow_managed() to stop and return the path we
920 * were called with.
921 */
922 static int follow_automount(struct path *path, unsigned flags,
923 bool *need_mntput)
924 {
925 struct vfsmount *mnt;
926 int err;
927
928 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
929 return -EREMOTE;
930
931 /* We don't want to mount if someone's just doing a stat -
932 * unless they're stat'ing a directory and appended a '/' to
933 * the name.
934 *
935 * We do, however, want to mount if someone wants to open or
936 * create a file of any type under the mountpoint, wants to
937 * traverse through the mountpoint or wants to open the
938 * mounted directory. Also, autofs may mark negative dentries
939 * as being automount points. These will need the attentions
940 * of the daemon to instantiate them before they can be used.
941 */
942 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
943 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
944 path->dentry->d_inode)
945 return -EISDIR;
946
947 current->total_link_count++;
948 if (current->total_link_count >= 40)
949 return -ELOOP;
950
951 mnt = path->dentry->d_op->d_automount(path);
952 if (IS_ERR(mnt)) {
953 /*
954 * The filesystem is allowed to return -EISDIR here to indicate
955 * it doesn't want to automount. For instance, autofs would do
956 * this so that its userspace daemon can mount on this dentry.
957 *
958 * However, we can only permit this if it's a terminal point in
959 * the path being looked up; if it wasn't then the remainder of
960 * the path is inaccessible and we should say so.
961 */
962 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
963 return -EREMOTE;
964 return PTR_ERR(mnt);
965 }
966
967 if (!mnt) /* mount collision */
968 return 0;
969
970 if (!*need_mntput) {
971 /* lock_mount() may release path->mnt on error */
972 mntget(path->mnt);
973 *need_mntput = true;
974 }
975 err = finish_automount(mnt, path);
976
977 switch (err) {
978 case -EBUSY:
979 /* Someone else made a mount here whilst we were busy */
980 return 0;
981 case 0:
982 path_put(path);
983 path->mnt = mnt;
984 path->dentry = dget(mnt->mnt_root);
985 return 0;
986 default:
987 return err;
988 }
989
990 }
991
992 /*
993 * Handle a dentry that is managed in some way.
994 * - Flagged for transit management (autofs)
995 * - Flagged as mountpoint
996 * - Flagged as automount point
997 *
998 * This may only be called in refwalk mode.
999 *
1000 * Serialization is taken care of in namespace.c
1001 */
1002 static int follow_managed(struct path *path, unsigned flags)
1003 {
1004 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1005 unsigned managed;
1006 bool need_mntput = false;
1007 int ret = 0;
1008
1009 /* Given that we're not holding a lock here, we retain the value in a
1010 * local variable for each dentry as we look at it so that we don't see
1011 * the components of that value change under us */
1012 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1013 managed &= DCACHE_MANAGED_DENTRY,
1014 unlikely(managed != 0)) {
1015 /* Allow the filesystem to manage the transit without i_mutex
1016 * being held. */
1017 if (managed & DCACHE_MANAGE_TRANSIT) {
1018 BUG_ON(!path->dentry->d_op);
1019 BUG_ON(!path->dentry->d_op->d_manage);
1020 ret = path->dentry->d_op->d_manage(path->dentry, false);
1021 if (ret < 0)
1022 break;
1023 }
1024
1025 /* Transit to a mounted filesystem. */
1026 if (managed & DCACHE_MOUNTED) {
1027 struct vfsmount *mounted = lookup_mnt(path);
1028 if (mounted) {
1029 dput(path->dentry);
1030 if (need_mntput)
1031 mntput(path->mnt);
1032 path->mnt = mounted;
1033 path->dentry = dget(mounted->mnt_root);
1034 need_mntput = true;
1035 continue;
1036 }
1037
1038 /* Something is mounted on this dentry in another
1039 * namespace and/or whatever was mounted there in this
1040 * namespace got unmounted before lookup_mnt() could
1041 * get it */
1042 }
1043
1044 /* Handle an automount point */
1045 if (managed & DCACHE_NEED_AUTOMOUNT) {
1046 ret = follow_automount(path, flags, &need_mntput);
1047 if (ret < 0)
1048 break;
1049 continue;
1050 }
1051
1052 /* We didn't change the current path point */
1053 break;
1054 }
1055
1056 if (need_mntput && path->mnt == mnt)
1057 mntput(path->mnt);
1058 if (ret == -EISDIR)
1059 ret = 0;
1060 return ret < 0 ? ret : need_mntput;
1061 }
1062
1063 int follow_down_one(struct path *path)
1064 {
1065 struct vfsmount *mounted;
1066
1067 mounted = lookup_mnt(path);
1068 if (mounted) {
1069 dput(path->dentry);
1070 mntput(path->mnt);
1071 path->mnt = mounted;
1072 path->dentry = dget(mounted->mnt_root);
1073 return 1;
1074 }
1075 return 0;
1076 }
1077
1078 static inline bool managed_dentry_might_block(struct dentry *dentry)
1079 {
1080 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1081 dentry->d_op->d_manage(dentry, true) < 0);
1082 }
1083
1084 /*
1085 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1086 * we meet a managed dentry that would need blocking.
1087 */
1088 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1089 struct inode **inode)
1090 {
1091 for (;;) {
1092 struct mount *mounted;
1093 /*
1094 * Don't forget we might have a non-mountpoint managed dentry
1095 * that wants to block transit.
1096 */
1097 if (unlikely(managed_dentry_might_block(path->dentry)))
1098 return false;
1099
1100 if (!d_mountpoint(path->dentry))
1101 break;
1102
1103 mounted = __lookup_mnt(path->mnt, path->dentry);
1104 if (!mounted)
1105 break;
1106 path->mnt = &mounted->mnt;
1107 path->dentry = mounted->mnt.mnt_root;
1108 nd->flags |= LOOKUP_JUMPED;
1109 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1110 /*
1111 * Update the inode too. We don't need to re-check the
1112 * dentry sequence number here after this d_inode read,
1113 * because a mount-point is always pinned.
1114 */
1115 *inode = path->dentry->d_inode;
1116 }
1117 return true;
1118 }
1119
1120 static void follow_mount_rcu(struct nameidata *nd)
1121 {
1122 while (d_mountpoint(nd->path.dentry)) {
1123 struct mount *mounted;
1124 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1125 if (!mounted)
1126 break;
1127 nd->path.mnt = &mounted->mnt;
1128 nd->path.dentry = mounted->mnt.mnt_root;
1129 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1130 }
1131 }
1132
1133 static int follow_dotdot_rcu(struct nameidata *nd)
1134 {
1135 set_root_rcu(nd);
1136
1137 while (1) {
1138 if (nd->path.dentry == nd->root.dentry &&
1139 nd->path.mnt == nd->root.mnt) {
1140 break;
1141 }
1142 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1143 struct dentry *old = nd->path.dentry;
1144 struct dentry *parent = old->d_parent;
1145 unsigned seq;
1146
1147 seq = read_seqcount_begin(&parent->d_seq);
1148 if (read_seqcount_retry(&old->d_seq, nd->seq))
1149 goto failed;
1150 nd->path.dentry = parent;
1151 nd->seq = seq;
1152 break;
1153 }
1154 if (!follow_up_rcu(&nd->path))
1155 break;
1156 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1157 }
1158 follow_mount_rcu(nd);
1159 nd->inode = nd->path.dentry->d_inode;
1160 return 0;
1161
1162 failed:
1163 nd->flags &= ~LOOKUP_RCU;
1164 if (!(nd->flags & LOOKUP_ROOT))
1165 nd->root.mnt = NULL;
1166 rcu_read_unlock();
1167 return -ECHILD;
1168 }
1169
1170 /*
1171 * Follow down to the covering mount currently visible to userspace. At each
1172 * point, the filesystem owning that dentry may be queried as to whether the
1173 * caller is permitted to proceed or not.
1174 */
1175 int follow_down(struct path *path)
1176 {
1177 unsigned managed;
1178 int ret;
1179
1180 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1181 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1182 /* Allow the filesystem to manage the transit without i_mutex
1183 * being held.
1184 *
1185 * We indicate to the filesystem if someone is trying to mount
1186 * something here. This gives autofs the chance to deny anyone
1187 * other than its daemon the right to mount on its
1188 * superstructure.
1189 *
1190 * The filesystem may sleep at this point.
1191 */
1192 if (managed & DCACHE_MANAGE_TRANSIT) {
1193 BUG_ON(!path->dentry->d_op);
1194 BUG_ON(!path->dentry->d_op->d_manage);
1195 ret = path->dentry->d_op->d_manage(
1196 path->dentry, false);
1197 if (ret < 0)
1198 return ret == -EISDIR ? 0 : ret;
1199 }
1200
1201 /* Transit to a mounted filesystem. */
1202 if (managed & DCACHE_MOUNTED) {
1203 struct vfsmount *mounted = lookup_mnt(path);
1204 if (!mounted)
1205 break;
1206 dput(path->dentry);
1207 mntput(path->mnt);
1208 path->mnt = mounted;
1209 path->dentry = dget(mounted->mnt_root);
1210 continue;
1211 }
1212
1213 /* Don't handle automount points here */
1214 break;
1215 }
1216 return 0;
1217 }
1218
1219 /*
1220 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1221 */
1222 static void follow_mount(struct path *path)
1223 {
1224 while (d_mountpoint(path->dentry)) {
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (!mounted)
1227 break;
1228 dput(path->dentry);
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 }
1233 }
1234
1235 static void follow_dotdot(struct nameidata *nd)
1236 {
1237 set_root(nd);
1238
1239 while(1) {
1240 struct dentry *old = nd->path.dentry;
1241
1242 if (nd->path.dentry == nd->root.dentry &&
1243 nd->path.mnt == nd->root.mnt) {
1244 break;
1245 }
1246 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1247 /* rare case of legitimate dget_parent()... */
1248 nd->path.dentry = dget_parent(nd->path.dentry);
1249 dput(old);
1250 break;
1251 }
1252 if (!follow_up(&nd->path))
1253 break;
1254 }
1255 follow_mount(&nd->path);
1256 nd->inode = nd->path.dentry->d_inode;
1257 }
1258
1259 /*
1260 * This looks up the name in dcache, possibly revalidates the old dentry and
1261 * allocates a new one if not found or not valid. In the need_lookup argument
1262 * returns whether i_op->lookup is necessary.
1263 *
1264 * dir->d_inode->i_mutex must be held
1265 */
1266 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1267 unsigned int flags, bool *need_lookup)
1268 {
1269 struct dentry *dentry;
1270 int error;
1271
1272 *need_lookup = false;
1273 dentry = d_lookup(dir, name);
1274 if (dentry) {
1275 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1276 error = d_revalidate(dentry, flags);
1277 if (unlikely(error <= 0)) {
1278 if (error < 0) {
1279 dput(dentry);
1280 return ERR_PTR(error);
1281 } else if (!d_invalidate(dentry)) {
1282 dput(dentry);
1283 dentry = NULL;
1284 }
1285 }
1286 }
1287 }
1288
1289 if (!dentry) {
1290 dentry = d_alloc(dir, name);
1291 if (unlikely(!dentry))
1292 return ERR_PTR(-ENOMEM);
1293
1294 *need_lookup = true;
1295 }
1296 return dentry;
1297 }
1298
1299 /*
1300 * Call i_op->lookup on the dentry. The dentry must be negative and
1301 * unhashed.
1302 *
1303 * dir->d_inode->i_mutex must be held
1304 */
1305 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1306 unsigned int flags)
1307 {
1308 struct dentry *old;
1309
1310 /* Don't create child dentry for a dead directory. */
1311 if (unlikely(IS_DEADDIR(dir))) {
1312 dput(dentry);
1313 return ERR_PTR(-ENOENT);
1314 }
1315
1316 old = dir->i_op->lookup(dir, dentry, flags);
1317 if (unlikely(old)) {
1318 dput(dentry);
1319 dentry = old;
1320 }
1321 return dentry;
1322 }
1323
1324 static struct dentry *__lookup_hash(struct qstr *name,
1325 struct dentry *base, unsigned int flags)
1326 {
1327 bool need_lookup;
1328 struct dentry *dentry;
1329
1330 dentry = lookup_dcache(name, base, flags, &need_lookup);
1331 if (!need_lookup)
1332 return dentry;
1333
1334 return lookup_real(base->d_inode, dentry, flags);
1335 }
1336
1337 /*
1338 * It's more convoluted than I'd like it to be, but... it's still fairly
1339 * small and for now I'd prefer to have fast path as straight as possible.
1340 * It _is_ time-critical.
1341 */
1342 static int lookup_fast(struct nameidata *nd,
1343 struct path *path, struct inode **inode)
1344 {
1345 struct vfsmount *mnt = nd->path.mnt;
1346 struct dentry *dentry, *parent = nd->path.dentry;
1347 int need_reval = 1;
1348 int status = 1;
1349 int err;
1350
1351 /*
1352 * Rename seqlock is not required here because in the off chance
1353 * of a false negative due to a concurrent rename, we're going to
1354 * do the non-racy lookup, below.
1355 */
1356 if (nd->flags & LOOKUP_RCU) {
1357 unsigned seq;
1358 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1359 if (!dentry)
1360 goto unlazy;
1361
1362 /*
1363 * This sequence count validates that the inode matches
1364 * the dentry name information from lookup.
1365 */
1366 *inode = dentry->d_inode;
1367 if (read_seqcount_retry(&dentry->d_seq, seq))
1368 return -ECHILD;
1369
1370 /*
1371 * This sequence count validates that the parent had no
1372 * changes while we did the lookup of the dentry above.
1373 *
1374 * The memory barrier in read_seqcount_begin of child is
1375 * enough, we can use __read_seqcount_retry here.
1376 */
1377 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1378 return -ECHILD;
1379 nd->seq = seq;
1380
1381 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1382 status = d_revalidate(dentry, nd->flags);
1383 if (unlikely(status <= 0)) {
1384 if (status != -ECHILD)
1385 need_reval = 0;
1386 goto unlazy;
1387 }
1388 }
1389 path->mnt = mnt;
1390 path->dentry = dentry;
1391 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1392 goto unlazy;
1393 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1394 goto unlazy;
1395 return 0;
1396 unlazy:
1397 if (unlazy_walk(nd, dentry))
1398 return -ECHILD;
1399 } else {
1400 dentry = __d_lookup(parent, &nd->last);
1401 }
1402
1403 if (unlikely(!dentry))
1404 goto need_lookup;
1405
1406 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1407 status = d_revalidate(dentry, nd->flags);
1408 if (unlikely(status <= 0)) {
1409 if (status < 0) {
1410 dput(dentry);
1411 return status;
1412 }
1413 if (!d_invalidate(dentry)) {
1414 dput(dentry);
1415 goto need_lookup;
1416 }
1417 }
1418
1419 path->mnt = mnt;
1420 path->dentry = dentry;
1421 err = follow_managed(path, nd->flags);
1422 if (unlikely(err < 0)) {
1423 path_put_conditional(path, nd);
1424 return err;
1425 }
1426 if (err)
1427 nd->flags |= LOOKUP_JUMPED;
1428 *inode = path->dentry->d_inode;
1429 return 0;
1430
1431 need_lookup:
1432 return 1;
1433 }
1434
1435 /* Fast lookup failed, do it the slow way */
1436 static int lookup_slow(struct nameidata *nd, struct path *path)
1437 {
1438 struct dentry *dentry, *parent;
1439 int err;
1440
1441 parent = nd->path.dentry;
1442 BUG_ON(nd->inode != parent->d_inode);
1443
1444 mutex_lock(&parent->d_inode->i_mutex);
1445 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1446 mutex_unlock(&parent->d_inode->i_mutex);
1447 if (IS_ERR(dentry))
1448 return PTR_ERR(dentry);
1449 path->mnt = nd->path.mnt;
1450 path->dentry = dentry;
1451 err = follow_managed(path, nd->flags);
1452 if (unlikely(err < 0)) {
1453 path_put_conditional(path, nd);
1454 return err;
1455 }
1456 if (err)
1457 nd->flags |= LOOKUP_JUMPED;
1458 return 0;
1459 }
1460
1461 static inline int may_lookup(struct nameidata *nd)
1462 {
1463 if (nd->flags & LOOKUP_RCU) {
1464 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1465 if (err != -ECHILD)
1466 return err;
1467 if (unlazy_walk(nd, NULL))
1468 return -ECHILD;
1469 }
1470 return inode_permission(nd->inode, MAY_EXEC);
1471 }
1472
1473 static inline int handle_dots(struct nameidata *nd, int type)
1474 {
1475 if (type == LAST_DOTDOT) {
1476 if (nd->flags & LOOKUP_RCU) {
1477 if (follow_dotdot_rcu(nd))
1478 return -ECHILD;
1479 } else
1480 follow_dotdot(nd);
1481 }
1482 return 0;
1483 }
1484
1485 static void terminate_walk(struct nameidata *nd)
1486 {
1487 if (!(nd->flags & LOOKUP_RCU)) {
1488 path_put(&nd->path);
1489 } else {
1490 nd->flags &= ~LOOKUP_RCU;
1491 if (!(nd->flags & LOOKUP_ROOT))
1492 nd->root.mnt = NULL;
1493 rcu_read_unlock();
1494 }
1495 }
1496
1497 /*
1498 * Do we need to follow links? We _really_ want to be able
1499 * to do this check without having to look at inode->i_op,
1500 * so we keep a cache of "no, this doesn't need follow_link"
1501 * for the common case.
1502 */
1503 static inline int should_follow_link(struct dentry *dentry, int follow)
1504 {
1505 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1506 }
1507
1508 static inline int walk_component(struct nameidata *nd, struct path *path,
1509 int follow)
1510 {
1511 struct inode *inode;
1512 int err;
1513 /*
1514 * "." and ".." are special - ".." especially so because it has
1515 * to be able to know about the current root directory and
1516 * parent relationships.
1517 */
1518 if (unlikely(nd->last_type != LAST_NORM))
1519 return handle_dots(nd, nd->last_type);
1520 err = lookup_fast(nd, path, &inode);
1521 if (unlikely(err)) {
1522 if (err < 0)
1523 goto out_err;
1524
1525 err = lookup_slow(nd, path);
1526 if (err < 0)
1527 goto out_err;
1528
1529 inode = path->dentry->d_inode;
1530 }
1531 err = -ENOENT;
1532 if (!inode)
1533 goto out_path_put;
1534
1535 if (should_follow_link(path->dentry, follow)) {
1536 if (nd->flags & LOOKUP_RCU) {
1537 if (unlikely(unlazy_walk(nd, path->dentry))) {
1538 err = -ECHILD;
1539 goto out_err;
1540 }
1541 }
1542 BUG_ON(inode != path->dentry->d_inode);
1543 return 1;
1544 }
1545 path_to_nameidata(path, nd);
1546 nd->inode = inode;
1547 return 0;
1548
1549 out_path_put:
1550 path_to_nameidata(path, nd);
1551 out_err:
1552 terminate_walk(nd);
1553 return err;
1554 }
1555
1556 /*
1557 * This limits recursive symlink follows to 8, while
1558 * limiting consecutive symlinks to 40.
1559 *
1560 * Without that kind of total limit, nasty chains of consecutive
1561 * symlinks can cause almost arbitrarily long lookups.
1562 */
1563 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1564 {
1565 int res;
1566
1567 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1568 path_put_conditional(path, nd);
1569 path_put(&nd->path);
1570 return -ELOOP;
1571 }
1572 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1573
1574 nd->depth++;
1575 current->link_count++;
1576
1577 do {
1578 struct path link = *path;
1579 void *cookie;
1580
1581 res = follow_link(&link, nd, &cookie);
1582 if (res)
1583 break;
1584 res = walk_component(nd, path, LOOKUP_FOLLOW);
1585 put_link(nd, &link, cookie);
1586 } while (res > 0);
1587
1588 current->link_count--;
1589 nd->depth--;
1590 return res;
1591 }
1592
1593 /*
1594 * We can do the critical dentry name comparison and hashing
1595 * operations one word at a time, but we are limited to:
1596 *
1597 * - Architectures with fast unaligned word accesses. We could
1598 * do a "get_unaligned()" if this helps and is sufficiently
1599 * fast.
1600 *
1601 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1602 * do not trap on the (extremely unlikely) case of a page
1603 * crossing operation.
1604 *
1605 * - Furthermore, we need an efficient 64-bit compile for the
1606 * 64-bit case in order to generate the "number of bytes in
1607 * the final mask". Again, that could be replaced with a
1608 * efficient population count instruction or similar.
1609 */
1610 #ifdef CONFIG_DCACHE_WORD_ACCESS
1611
1612 #include <asm/word-at-a-time.h>
1613
1614 #ifdef CONFIG_64BIT
1615
1616 static inline unsigned int fold_hash(unsigned long hash)
1617 {
1618 hash += hash >> (8*sizeof(int));
1619 return hash;
1620 }
1621
1622 #else /* 32-bit case */
1623
1624 #define fold_hash(x) (x)
1625
1626 #endif
1627
1628 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1629 {
1630 unsigned long a, mask;
1631 unsigned long hash = 0;
1632
1633 for (;;) {
1634 a = load_unaligned_zeropad(name);
1635 if (len < sizeof(unsigned long))
1636 break;
1637 hash += a;
1638 hash *= 9;
1639 name += sizeof(unsigned long);
1640 len -= sizeof(unsigned long);
1641 if (!len)
1642 goto done;
1643 }
1644 mask = bytemask_from_count(len);
1645 hash += mask & a;
1646 done:
1647 return fold_hash(hash);
1648 }
1649 EXPORT_SYMBOL(full_name_hash);
1650
1651 /*
1652 * Calculate the length and hash of the path component, and
1653 * return the length of the component;
1654 */
1655 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1656 {
1657 unsigned long a, b, adata, bdata, mask, hash, len;
1658 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1659
1660 hash = a = 0;
1661 len = -sizeof(unsigned long);
1662 do {
1663 hash = (hash + a) * 9;
1664 len += sizeof(unsigned long);
1665 a = load_unaligned_zeropad(name+len);
1666 b = a ^ REPEAT_BYTE('/');
1667 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1668
1669 adata = prep_zero_mask(a, adata, &constants);
1670 bdata = prep_zero_mask(b, bdata, &constants);
1671
1672 mask = create_zero_mask(adata | bdata);
1673
1674 hash += a & zero_bytemask(mask);
1675 *hashp = fold_hash(hash);
1676
1677 return len + find_zero(mask);
1678 }
1679
1680 #else
1681
1682 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1683 {
1684 unsigned long hash = init_name_hash();
1685 while (len--)
1686 hash = partial_name_hash(*name++, hash);
1687 return end_name_hash(hash);
1688 }
1689 EXPORT_SYMBOL(full_name_hash);
1690
1691 /*
1692 * We know there's a real path component here of at least
1693 * one character.
1694 */
1695 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1696 {
1697 unsigned long hash = init_name_hash();
1698 unsigned long len = 0, c;
1699
1700 c = (unsigned char)*name;
1701 do {
1702 len++;
1703 hash = partial_name_hash(c, hash);
1704 c = (unsigned char)name[len];
1705 } while (c && c != '/');
1706 *hashp = end_name_hash(hash);
1707 return len;
1708 }
1709
1710 #endif
1711
1712 /*
1713 * Name resolution.
1714 * This is the basic name resolution function, turning a pathname into
1715 * the final dentry. We expect 'base' to be positive and a directory.
1716 *
1717 * Returns 0 and nd will have valid dentry and mnt on success.
1718 * Returns error and drops reference to input namei data on failure.
1719 */
1720 static int link_path_walk(const char *name, struct nameidata *nd)
1721 {
1722 struct path next;
1723 int err;
1724
1725 while (*name=='/')
1726 name++;
1727 if (!*name)
1728 return 0;
1729
1730 /* At this point we know we have a real path component. */
1731 for(;;) {
1732 struct qstr this;
1733 long len;
1734 int type;
1735
1736 err = may_lookup(nd);
1737 if (err)
1738 break;
1739
1740 len = hash_name(name, &this.hash);
1741 this.name = name;
1742 this.len = len;
1743
1744 type = LAST_NORM;
1745 if (name[0] == '.') switch (len) {
1746 case 2:
1747 if (name[1] == '.') {
1748 type = LAST_DOTDOT;
1749 nd->flags |= LOOKUP_JUMPED;
1750 }
1751 break;
1752 case 1:
1753 type = LAST_DOT;
1754 }
1755 if (likely(type == LAST_NORM)) {
1756 struct dentry *parent = nd->path.dentry;
1757 nd->flags &= ~LOOKUP_JUMPED;
1758 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1759 err = parent->d_op->d_hash(parent, &this);
1760 if (err < 0)
1761 break;
1762 }
1763 }
1764
1765 nd->last = this;
1766 nd->last_type = type;
1767
1768 if (!name[len])
1769 return 0;
1770 /*
1771 * If it wasn't NUL, we know it was '/'. Skip that
1772 * slash, and continue until no more slashes.
1773 */
1774 do {
1775 len++;
1776 } while (unlikely(name[len] == '/'));
1777 if (!name[len])
1778 return 0;
1779
1780 name += len;
1781
1782 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1783 if (err < 0)
1784 return err;
1785
1786 if (err) {
1787 err = nested_symlink(&next, nd);
1788 if (err)
1789 return err;
1790 }
1791 if (!d_is_directory(nd->path.dentry)) {
1792 err = -ENOTDIR;
1793 break;
1794 }
1795 }
1796 terminate_walk(nd);
1797 return err;
1798 }
1799
1800 static int path_init(int dfd, const char *name, unsigned int flags,
1801 struct nameidata *nd, struct file **fp)
1802 {
1803 int retval = 0;
1804
1805 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1806 nd->flags = flags | LOOKUP_JUMPED;
1807 nd->depth = 0;
1808 if (flags & LOOKUP_ROOT) {
1809 struct dentry *root = nd->root.dentry;
1810 struct inode *inode = root->d_inode;
1811 if (*name) {
1812 if (!d_is_directory(root))
1813 return -ENOTDIR;
1814 retval = inode_permission(inode, MAY_EXEC);
1815 if (retval)
1816 return retval;
1817 }
1818 nd->path = nd->root;
1819 nd->inode = inode;
1820 if (flags & LOOKUP_RCU) {
1821 rcu_read_lock();
1822 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1823 nd->m_seq = read_seqbegin(&mount_lock);
1824 } else {
1825 path_get(&nd->path);
1826 }
1827 return 0;
1828 }
1829
1830 nd->root.mnt = NULL;
1831
1832 nd->m_seq = read_seqbegin(&mount_lock);
1833 if (*name=='/') {
1834 if (flags & LOOKUP_RCU) {
1835 rcu_read_lock();
1836 set_root_rcu(nd);
1837 } else {
1838 set_root(nd);
1839 path_get(&nd->root);
1840 }
1841 nd->path = nd->root;
1842 } else if (dfd == AT_FDCWD) {
1843 if (flags & LOOKUP_RCU) {
1844 struct fs_struct *fs = current->fs;
1845 unsigned seq;
1846
1847 rcu_read_lock();
1848
1849 do {
1850 seq = read_seqcount_begin(&fs->seq);
1851 nd->path = fs->pwd;
1852 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1853 } while (read_seqcount_retry(&fs->seq, seq));
1854 } else {
1855 get_fs_pwd(current->fs, &nd->path);
1856 }
1857 } else {
1858 /* Caller must check execute permissions on the starting path component */
1859 struct fd f = fdget_raw(dfd);
1860 struct dentry *dentry;
1861
1862 if (!f.file)
1863 return -EBADF;
1864
1865 dentry = f.file->f_path.dentry;
1866
1867 if (*name) {
1868 if (!d_is_directory(dentry)) {
1869 fdput(f);
1870 return -ENOTDIR;
1871 }
1872 }
1873
1874 nd->path = f.file->f_path;
1875 if (flags & LOOKUP_RCU) {
1876 if (f.need_put)
1877 *fp = f.file;
1878 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1879 rcu_read_lock();
1880 } else {
1881 path_get(&nd->path);
1882 fdput(f);
1883 }
1884 }
1885
1886 nd->inode = nd->path.dentry->d_inode;
1887 return 0;
1888 }
1889
1890 static inline int lookup_last(struct nameidata *nd, struct path *path)
1891 {
1892 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1893 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1894
1895 nd->flags &= ~LOOKUP_PARENT;
1896 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1897 }
1898
1899 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1900 static int path_lookupat(int dfd, const char *name,
1901 unsigned int flags, struct nameidata *nd)
1902 {
1903 struct file *base = NULL;
1904 struct path path;
1905 int err;
1906
1907 /*
1908 * Path walking is largely split up into 2 different synchronisation
1909 * schemes, rcu-walk and ref-walk (explained in
1910 * Documentation/filesystems/path-lookup.txt). These share much of the
1911 * path walk code, but some things particularly setup, cleanup, and
1912 * following mounts are sufficiently divergent that functions are
1913 * duplicated. Typically there is a function foo(), and its RCU
1914 * analogue, foo_rcu().
1915 *
1916 * -ECHILD is the error number of choice (just to avoid clashes) that
1917 * is returned if some aspect of an rcu-walk fails. Such an error must
1918 * be handled by restarting a traditional ref-walk (which will always
1919 * be able to complete).
1920 */
1921 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1922
1923 if (unlikely(err))
1924 return err;
1925
1926 current->total_link_count = 0;
1927 err = link_path_walk(name, nd);
1928
1929 if (!err && !(flags & LOOKUP_PARENT)) {
1930 err = lookup_last(nd, &path);
1931 while (err > 0) {
1932 void *cookie;
1933 struct path link = path;
1934 err = may_follow_link(&link, nd);
1935 if (unlikely(err))
1936 break;
1937 nd->flags |= LOOKUP_PARENT;
1938 err = follow_link(&link, nd, &cookie);
1939 if (err)
1940 break;
1941 err = lookup_last(nd, &path);
1942 put_link(nd, &link, cookie);
1943 }
1944 }
1945
1946 if (!err)
1947 err = complete_walk(nd);
1948
1949 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1950 if (!d_is_directory(nd->path.dentry)) {
1951 path_put(&nd->path);
1952 err = -ENOTDIR;
1953 }
1954 }
1955
1956 if (base)
1957 fput(base);
1958
1959 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1960 path_put(&nd->root);
1961 nd->root.mnt = NULL;
1962 }
1963 return err;
1964 }
1965
1966 static int filename_lookup(int dfd, struct filename *name,
1967 unsigned int flags, struct nameidata *nd)
1968 {
1969 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1970 if (unlikely(retval == -ECHILD))
1971 retval = path_lookupat(dfd, name->name, flags, nd);
1972 if (unlikely(retval == -ESTALE))
1973 retval = path_lookupat(dfd, name->name,
1974 flags | LOOKUP_REVAL, nd);
1975
1976 if (likely(!retval))
1977 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1978 return retval;
1979 }
1980
1981 static int do_path_lookup(int dfd, const char *name,
1982 unsigned int flags, struct nameidata *nd)
1983 {
1984 struct filename filename = { .name = name };
1985
1986 return filename_lookup(dfd, &filename, flags, nd);
1987 }
1988
1989 /* does lookup, returns the object with parent locked */
1990 struct dentry *kern_path_locked(const char *name, struct path *path)
1991 {
1992 struct nameidata nd;
1993 struct dentry *d;
1994 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1995 if (err)
1996 return ERR_PTR(err);
1997 if (nd.last_type != LAST_NORM) {
1998 path_put(&nd.path);
1999 return ERR_PTR(-EINVAL);
2000 }
2001 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2002 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2003 if (IS_ERR(d)) {
2004 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2005 path_put(&nd.path);
2006 return d;
2007 }
2008 *path = nd.path;
2009 return d;
2010 }
2011
2012 int kern_path(const char *name, unsigned int flags, struct path *path)
2013 {
2014 struct nameidata nd;
2015 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2016 if (!res)
2017 *path = nd.path;
2018 return res;
2019 }
2020
2021 /**
2022 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2023 * @dentry: pointer to dentry of the base directory
2024 * @mnt: pointer to vfs mount of the base directory
2025 * @name: pointer to file name
2026 * @flags: lookup flags
2027 * @path: pointer to struct path to fill
2028 */
2029 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2030 const char *name, unsigned int flags,
2031 struct path *path)
2032 {
2033 struct nameidata nd;
2034 int err;
2035 nd.root.dentry = dentry;
2036 nd.root.mnt = mnt;
2037 BUG_ON(flags & LOOKUP_PARENT);
2038 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2039 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2040 if (!err)
2041 *path = nd.path;
2042 return err;
2043 }
2044
2045 /*
2046 * Restricted form of lookup. Doesn't follow links, single-component only,
2047 * needs parent already locked. Doesn't follow mounts.
2048 * SMP-safe.
2049 */
2050 static struct dentry *lookup_hash(struct nameidata *nd)
2051 {
2052 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2053 }
2054
2055 /**
2056 * lookup_one_len - filesystem helper to lookup single pathname component
2057 * @name: pathname component to lookup
2058 * @base: base directory to lookup from
2059 * @len: maximum length @len should be interpreted to
2060 *
2061 * Note that this routine is purely a helper for filesystem usage and should
2062 * not be called by generic code. Also note that by using this function the
2063 * nameidata argument is passed to the filesystem methods and a filesystem
2064 * using this helper needs to be prepared for that.
2065 */
2066 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2067 {
2068 struct qstr this;
2069 unsigned int c;
2070 int err;
2071
2072 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2073
2074 this.name = name;
2075 this.len = len;
2076 this.hash = full_name_hash(name, len);
2077 if (!len)
2078 return ERR_PTR(-EACCES);
2079
2080 if (unlikely(name[0] == '.')) {
2081 if (len < 2 || (len == 2 && name[1] == '.'))
2082 return ERR_PTR(-EACCES);
2083 }
2084
2085 while (len--) {
2086 c = *(const unsigned char *)name++;
2087 if (c == '/' || c == '\0')
2088 return ERR_PTR(-EACCES);
2089 }
2090 /*
2091 * See if the low-level filesystem might want
2092 * to use its own hash..
2093 */
2094 if (base->d_flags & DCACHE_OP_HASH) {
2095 int err = base->d_op->d_hash(base, &this);
2096 if (err < 0)
2097 return ERR_PTR(err);
2098 }
2099
2100 err = inode_permission(base->d_inode, MAY_EXEC);
2101 if (err)
2102 return ERR_PTR(err);
2103
2104 return __lookup_hash(&this, base, 0);
2105 }
2106
2107 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2108 struct path *path, int *empty)
2109 {
2110 struct nameidata nd;
2111 struct filename *tmp = getname_flags(name, flags, empty);
2112 int err = PTR_ERR(tmp);
2113 if (!IS_ERR(tmp)) {
2114
2115 BUG_ON(flags & LOOKUP_PARENT);
2116
2117 err = filename_lookup(dfd, tmp, flags, &nd);
2118 putname(tmp);
2119 if (!err)
2120 *path = nd.path;
2121 }
2122 return err;
2123 }
2124
2125 int user_path_at(int dfd, const char __user *name, unsigned flags,
2126 struct path *path)
2127 {
2128 return user_path_at_empty(dfd, name, flags, path, NULL);
2129 }
2130
2131 /*
2132 * NB: most callers don't do anything directly with the reference to the
2133 * to struct filename, but the nd->last pointer points into the name string
2134 * allocated by getname. So we must hold the reference to it until all
2135 * path-walking is complete.
2136 */
2137 static struct filename *
2138 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2139 unsigned int flags)
2140 {
2141 struct filename *s = getname(path);
2142 int error;
2143
2144 /* only LOOKUP_REVAL is allowed in extra flags */
2145 flags &= LOOKUP_REVAL;
2146
2147 if (IS_ERR(s))
2148 return s;
2149
2150 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2151 if (error) {
2152 putname(s);
2153 return ERR_PTR(error);
2154 }
2155
2156 return s;
2157 }
2158
2159 /**
2160 * mountpoint_last - look up last component for umount
2161 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2162 * @path: pointer to container for result
2163 *
2164 * This is a special lookup_last function just for umount. In this case, we
2165 * need to resolve the path without doing any revalidation.
2166 *
2167 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2168 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2169 * in almost all cases, this lookup will be served out of the dcache. The only
2170 * cases where it won't are if nd->last refers to a symlink or the path is
2171 * bogus and it doesn't exist.
2172 *
2173 * Returns:
2174 * -error: if there was an error during lookup. This includes -ENOENT if the
2175 * lookup found a negative dentry. The nd->path reference will also be
2176 * put in this case.
2177 *
2178 * 0: if we successfully resolved nd->path and found it to not to be a
2179 * symlink that needs to be followed. "path" will also be populated.
2180 * The nd->path reference will also be put.
2181 *
2182 * 1: if we successfully resolved nd->last and found it to be a symlink
2183 * that needs to be followed. "path" will be populated with the path
2184 * to the link, and nd->path will *not* be put.
2185 */
2186 static int
2187 mountpoint_last(struct nameidata *nd, struct path *path)
2188 {
2189 int error = 0;
2190 struct dentry *dentry;
2191 struct dentry *dir = nd->path.dentry;
2192
2193 /* If we're in rcuwalk, drop out of it to handle last component */
2194 if (nd->flags & LOOKUP_RCU) {
2195 if (unlazy_walk(nd, NULL)) {
2196 error = -ECHILD;
2197 goto out;
2198 }
2199 }
2200
2201 nd->flags &= ~LOOKUP_PARENT;
2202
2203 if (unlikely(nd->last_type != LAST_NORM)) {
2204 error = handle_dots(nd, nd->last_type);
2205 if (error)
2206 goto out;
2207 dentry = dget(nd->path.dentry);
2208 goto done;
2209 }
2210
2211 mutex_lock(&dir->d_inode->i_mutex);
2212 dentry = d_lookup(dir, &nd->last);
2213 if (!dentry) {
2214 /*
2215 * No cached dentry. Mounted dentries are pinned in the cache,
2216 * so that means that this dentry is probably a symlink or the
2217 * path doesn't actually point to a mounted dentry.
2218 */
2219 dentry = d_alloc(dir, &nd->last);
2220 if (!dentry) {
2221 error = -ENOMEM;
2222 mutex_unlock(&dir->d_inode->i_mutex);
2223 goto out;
2224 }
2225 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2226 error = PTR_ERR(dentry);
2227 if (IS_ERR(dentry)) {
2228 mutex_unlock(&dir->d_inode->i_mutex);
2229 goto out;
2230 }
2231 }
2232 mutex_unlock(&dir->d_inode->i_mutex);
2233
2234 done:
2235 if (!dentry->d_inode) {
2236 error = -ENOENT;
2237 dput(dentry);
2238 goto out;
2239 }
2240 path->dentry = dentry;
2241 path->mnt = mntget(nd->path.mnt);
2242 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2243 return 1;
2244 follow_mount(path);
2245 error = 0;
2246 out:
2247 terminate_walk(nd);
2248 return error;
2249 }
2250
2251 /**
2252 * path_mountpoint - look up a path to be umounted
2253 * @dfd: directory file descriptor to start walk from
2254 * @name: full pathname to walk
2255 * @path: pointer to container for result
2256 * @flags: lookup flags
2257 *
2258 * Look up the given name, but don't attempt to revalidate the last component.
2259 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2260 */
2261 static int
2262 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2263 {
2264 struct file *base = NULL;
2265 struct nameidata nd;
2266 int err;
2267
2268 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2269 if (unlikely(err))
2270 return err;
2271
2272 current->total_link_count = 0;
2273 err = link_path_walk(name, &nd);
2274 if (err)
2275 goto out;
2276
2277 err = mountpoint_last(&nd, path);
2278 while (err > 0) {
2279 void *cookie;
2280 struct path link = *path;
2281 err = may_follow_link(&link, &nd);
2282 if (unlikely(err))
2283 break;
2284 nd.flags |= LOOKUP_PARENT;
2285 err = follow_link(&link, &nd, &cookie);
2286 if (err)
2287 break;
2288 err = mountpoint_last(&nd, path);
2289 put_link(&nd, &link, cookie);
2290 }
2291 out:
2292 if (base)
2293 fput(base);
2294
2295 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2296 path_put(&nd.root);
2297
2298 return err;
2299 }
2300
2301 static int
2302 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2303 unsigned int flags)
2304 {
2305 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2306 if (unlikely(error == -ECHILD))
2307 error = path_mountpoint(dfd, s->name, path, flags);
2308 if (unlikely(error == -ESTALE))
2309 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2310 if (likely(!error))
2311 audit_inode(s, path->dentry, 0);
2312 return error;
2313 }
2314
2315 /**
2316 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2317 * @dfd: directory file descriptor
2318 * @name: pathname from userland
2319 * @flags: lookup flags
2320 * @path: pointer to container to hold result
2321 *
2322 * A umount is a special case for path walking. We're not actually interested
2323 * in the inode in this situation, and ESTALE errors can be a problem. We
2324 * simply want track down the dentry and vfsmount attached at the mountpoint
2325 * and avoid revalidating the last component.
2326 *
2327 * Returns 0 and populates "path" on success.
2328 */
2329 int
2330 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2331 struct path *path)
2332 {
2333 struct filename *s = getname(name);
2334 int error;
2335 if (IS_ERR(s))
2336 return PTR_ERR(s);
2337 error = filename_mountpoint(dfd, s, path, flags);
2338 putname(s);
2339 return error;
2340 }
2341
2342 int
2343 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2344 unsigned int flags)
2345 {
2346 struct filename s = {.name = name};
2347 return filename_mountpoint(dfd, &s, path, flags);
2348 }
2349 EXPORT_SYMBOL(kern_path_mountpoint);
2350
2351 /*
2352 * It's inline, so penalty for filesystems that don't use sticky bit is
2353 * minimal.
2354 */
2355 static inline int check_sticky(struct inode *dir, struct inode *inode)
2356 {
2357 kuid_t fsuid = current_fsuid();
2358
2359 if (!(dir->i_mode & S_ISVTX))
2360 return 0;
2361 if (uid_eq(inode->i_uid, fsuid))
2362 return 0;
2363 if (uid_eq(dir->i_uid, fsuid))
2364 return 0;
2365 return !inode_capable(inode, CAP_FOWNER);
2366 }
2367
2368 /*
2369 * Check whether we can remove a link victim from directory dir, check
2370 * whether the type of victim is right.
2371 * 1. We can't do it if dir is read-only (done in permission())
2372 * 2. We should have write and exec permissions on dir
2373 * 3. We can't remove anything from append-only dir
2374 * 4. We can't do anything with immutable dir (done in permission())
2375 * 5. If the sticky bit on dir is set we should either
2376 * a. be owner of dir, or
2377 * b. be owner of victim, or
2378 * c. have CAP_FOWNER capability
2379 * 6. If the victim is append-only or immutable we can't do antyhing with
2380 * links pointing to it.
2381 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2382 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2383 * 9. We can't remove a root or mountpoint.
2384 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2385 * nfs_async_unlink().
2386 */
2387 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2388 {
2389 struct inode *inode = victim->d_inode;
2390 int error;
2391
2392 if (d_is_negative(victim))
2393 return -ENOENT;
2394 BUG_ON(!inode);
2395
2396 BUG_ON(victim->d_parent->d_inode != dir);
2397 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2398
2399 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2400 if (error)
2401 return error;
2402 if (IS_APPEND(dir))
2403 return -EPERM;
2404
2405 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2406 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2407 return -EPERM;
2408 if (isdir) {
2409 if (!d_is_directory(victim) && !d_is_autodir(victim))
2410 return -ENOTDIR;
2411 if (IS_ROOT(victim))
2412 return -EBUSY;
2413 } else if (d_is_directory(victim) || d_is_autodir(victim))
2414 return -EISDIR;
2415 if (IS_DEADDIR(dir))
2416 return -ENOENT;
2417 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2418 return -EBUSY;
2419 return 0;
2420 }
2421
2422 /* Check whether we can create an object with dentry child in directory
2423 * dir.
2424 * 1. We can't do it if child already exists (open has special treatment for
2425 * this case, but since we are inlined it's OK)
2426 * 2. We can't do it if dir is read-only (done in permission())
2427 * 3. We should have write and exec permissions on dir
2428 * 4. We can't do it if dir is immutable (done in permission())
2429 */
2430 static inline int may_create(struct inode *dir, struct dentry *child)
2431 {
2432 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2433 if (child->d_inode)
2434 return -EEXIST;
2435 if (IS_DEADDIR(dir))
2436 return -ENOENT;
2437 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2438 }
2439
2440 /*
2441 * p1 and p2 should be directories on the same fs.
2442 */
2443 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2444 {
2445 struct dentry *p;
2446
2447 if (p1 == p2) {
2448 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2449 return NULL;
2450 }
2451
2452 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2453
2454 p = d_ancestor(p2, p1);
2455 if (p) {
2456 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2457 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2458 return p;
2459 }
2460
2461 p = d_ancestor(p1, p2);
2462 if (p) {
2463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2464 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2465 return p;
2466 }
2467
2468 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2469 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2470 return NULL;
2471 }
2472
2473 void unlock_rename(struct dentry *p1, struct dentry *p2)
2474 {
2475 mutex_unlock(&p1->d_inode->i_mutex);
2476 if (p1 != p2) {
2477 mutex_unlock(&p2->d_inode->i_mutex);
2478 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2479 }
2480 }
2481
2482 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2483 bool want_excl)
2484 {
2485 int error = may_create(dir, dentry);
2486 if (error)
2487 return error;
2488
2489 if (!dir->i_op->create)
2490 return -EACCES; /* shouldn't it be ENOSYS? */
2491 mode &= S_IALLUGO;
2492 mode |= S_IFREG;
2493 error = security_inode_create(dir, dentry, mode);
2494 if (error)
2495 return error;
2496 error = dir->i_op->create(dir, dentry, mode, want_excl);
2497 if (!error)
2498 fsnotify_create(dir, dentry);
2499 return error;
2500 }
2501
2502 static int may_open(struct path *path, int acc_mode, int flag)
2503 {
2504 struct dentry *dentry = path->dentry;
2505 struct inode *inode = dentry->d_inode;
2506 int error;
2507
2508 /* O_PATH? */
2509 if (!acc_mode)
2510 return 0;
2511
2512 if (!inode)
2513 return -ENOENT;
2514
2515 switch (inode->i_mode & S_IFMT) {
2516 case S_IFLNK:
2517 return -ELOOP;
2518 case S_IFDIR:
2519 if (acc_mode & MAY_WRITE)
2520 return -EISDIR;
2521 break;
2522 case S_IFBLK:
2523 case S_IFCHR:
2524 if (path->mnt->mnt_flags & MNT_NODEV)
2525 return -EACCES;
2526 /*FALLTHRU*/
2527 case S_IFIFO:
2528 case S_IFSOCK:
2529 flag &= ~O_TRUNC;
2530 break;
2531 }
2532
2533 error = inode_permission(inode, acc_mode);
2534 if (error)
2535 return error;
2536
2537 /*
2538 * An append-only file must be opened in append mode for writing.
2539 */
2540 if (IS_APPEND(inode)) {
2541 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2542 return -EPERM;
2543 if (flag & O_TRUNC)
2544 return -EPERM;
2545 }
2546
2547 /* O_NOATIME can only be set by the owner or superuser */
2548 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2549 return -EPERM;
2550
2551 return 0;
2552 }
2553
2554 static int handle_truncate(struct file *filp)
2555 {
2556 struct path *path = &filp->f_path;
2557 struct inode *inode = path->dentry->d_inode;
2558 int error = get_write_access(inode);
2559 if (error)
2560 return error;
2561 /*
2562 * Refuse to truncate files with mandatory locks held on them.
2563 */
2564 error = locks_verify_locked(inode);
2565 if (!error)
2566 error = security_path_truncate(path);
2567 if (!error) {
2568 error = do_truncate(path->dentry, 0,
2569 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2570 filp);
2571 }
2572 put_write_access(inode);
2573 return error;
2574 }
2575
2576 static inline int open_to_namei_flags(int flag)
2577 {
2578 if ((flag & O_ACCMODE) == 3)
2579 flag--;
2580 return flag;
2581 }
2582
2583 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2584 {
2585 int error = security_path_mknod(dir, dentry, mode, 0);
2586 if (error)
2587 return error;
2588
2589 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2590 if (error)
2591 return error;
2592
2593 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2594 }
2595
2596 /*
2597 * Attempt to atomically look up, create and open a file from a negative
2598 * dentry.
2599 *
2600 * Returns 0 if successful. The file will have been created and attached to
2601 * @file by the filesystem calling finish_open().
2602 *
2603 * Returns 1 if the file was looked up only or didn't need creating. The
2604 * caller will need to perform the open themselves. @path will have been
2605 * updated to point to the new dentry. This may be negative.
2606 *
2607 * Returns an error code otherwise.
2608 */
2609 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2610 struct path *path, struct file *file,
2611 const struct open_flags *op,
2612 bool got_write, bool need_lookup,
2613 int *opened)
2614 {
2615 struct inode *dir = nd->path.dentry->d_inode;
2616 unsigned open_flag = open_to_namei_flags(op->open_flag);
2617 umode_t mode;
2618 int error;
2619 int acc_mode;
2620 int create_error = 0;
2621 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2622 bool excl;
2623
2624 BUG_ON(dentry->d_inode);
2625
2626 /* Don't create child dentry for a dead directory. */
2627 if (unlikely(IS_DEADDIR(dir))) {
2628 error = -ENOENT;
2629 goto out;
2630 }
2631
2632 mode = op->mode;
2633 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2634 mode &= ~current_umask();
2635
2636 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2637 if (excl)
2638 open_flag &= ~O_TRUNC;
2639
2640 /*
2641 * Checking write permission is tricky, bacuse we don't know if we are
2642 * going to actually need it: O_CREAT opens should work as long as the
2643 * file exists. But checking existence breaks atomicity. The trick is
2644 * to check access and if not granted clear O_CREAT from the flags.
2645 *
2646 * Another problem is returing the "right" error value (e.g. for an
2647 * O_EXCL open we want to return EEXIST not EROFS).
2648 */
2649 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2650 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2651 if (!(open_flag & O_CREAT)) {
2652 /*
2653 * No O_CREATE -> atomicity not a requirement -> fall
2654 * back to lookup + open
2655 */
2656 goto no_open;
2657 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2658 /* Fall back and fail with the right error */
2659 create_error = -EROFS;
2660 goto no_open;
2661 } else {
2662 /* No side effects, safe to clear O_CREAT */
2663 create_error = -EROFS;
2664 open_flag &= ~O_CREAT;
2665 }
2666 }
2667
2668 if (open_flag & O_CREAT) {
2669 error = may_o_create(&nd->path, dentry, mode);
2670 if (error) {
2671 create_error = error;
2672 if (open_flag & O_EXCL)
2673 goto no_open;
2674 open_flag &= ~O_CREAT;
2675 }
2676 }
2677
2678 if (nd->flags & LOOKUP_DIRECTORY)
2679 open_flag |= O_DIRECTORY;
2680
2681 file->f_path.dentry = DENTRY_NOT_SET;
2682 file->f_path.mnt = nd->path.mnt;
2683 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2684 opened);
2685 if (error < 0) {
2686 if (create_error && error == -ENOENT)
2687 error = create_error;
2688 goto out;
2689 }
2690
2691 if (error) { /* returned 1, that is */
2692 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2693 error = -EIO;
2694 goto out;
2695 }
2696 if (file->f_path.dentry) {
2697 dput(dentry);
2698 dentry = file->f_path.dentry;
2699 }
2700 if (*opened & FILE_CREATED)
2701 fsnotify_create(dir, dentry);
2702 if (!dentry->d_inode) {
2703 WARN_ON(*opened & FILE_CREATED);
2704 if (create_error) {
2705 error = create_error;
2706 goto out;
2707 }
2708 } else {
2709 if (excl && !(*opened & FILE_CREATED)) {
2710 error = -EEXIST;
2711 goto out;
2712 }
2713 }
2714 goto looked_up;
2715 }
2716
2717 /*
2718 * We didn't have the inode before the open, so check open permission
2719 * here.
2720 */
2721 acc_mode = op->acc_mode;
2722 if (*opened & FILE_CREATED) {
2723 WARN_ON(!(open_flag & O_CREAT));
2724 fsnotify_create(dir, dentry);
2725 acc_mode = MAY_OPEN;
2726 }
2727 error = may_open(&file->f_path, acc_mode, open_flag);
2728 if (error)
2729 fput(file);
2730
2731 out:
2732 dput(dentry);
2733 return error;
2734
2735 no_open:
2736 if (need_lookup) {
2737 dentry = lookup_real(dir, dentry, nd->flags);
2738 if (IS_ERR(dentry))
2739 return PTR_ERR(dentry);
2740
2741 if (create_error) {
2742 int open_flag = op->open_flag;
2743
2744 error = create_error;
2745 if ((open_flag & O_EXCL)) {
2746 if (!dentry->d_inode)
2747 goto out;
2748 } else if (!dentry->d_inode) {
2749 goto out;
2750 } else if ((open_flag & O_TRUNC) &&
2751 S_ISREG(dentry->d_inode->i_mode)) {
2752 goto out;
2753 }
2754 /* will fail later, go on to get the right error */
2755 }
2756 }
2757 looked_up:
2758 path->dentry = dentry;
2759 path->mnt = nd->path.mnt;
2760 return 1;
2761 }
2762
2763 /*
2764 * Look up and maybe create and open the last component.
2765 *
2766 * Must be called with i_mutex held on parent.
2767 *
2768 * Returns 0 if the file was successfully atomically created (if necessary) and
2769 * opened. In this case the file will be returned attached to @file.
2770 *
2771 * Returns 1 if the file was not completely opened at this time, though lookups
2772 * and creations will have been performed and the dentry returned in @path will
2773 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2774 * specified then a negative dentry may be returned.
2775 *
2776 * An error code is returned otherwise.
2777 *
2778 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2779 * cleared otherwise prior to returning.
2780 */
2781 static int lookup_open(struct nameidata *nd, struct path *path,
2782 struct file *file,
2783 const struct open_flags *op,
2784 bool got_write, int *opened)
2785 {
2786 struct dentry *dir = nd->path.dentry;
2787 struct inode *dir_inode = dir->d_inode;
2788 struct dentry *dentry;
2789 int error;
2790 bool need_lookup;
2791
2792 *opened &= ~FILE_CREATED;
2793 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2794 if (IS_ERR(dentry))
2795 return PTR_ERR(dentry);
2796
2797 /* Cached positive dentry: will open in f_op->open */
2798 if (!need_lookup && dentry->d_inode)
2799 goto out_no_open;
2800
2801 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2802 return atomic_open(nd, dentry, path, file, op, got_write,
2803 need_lookup, opened);
2804 }
2805
2806 if (need_lookup) {
2807 BUG_ON(dentry->d_inode);
2808
2809 dentry = lookup_real(dir_inode, dentry, nd->flags);
2810 if (IS_ERR(dentry))
2811 return PTR_ERR(dentry);
2812 }
2813
2814 /* Negative dentry, just create the file */
2815 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2816 umode_t mode = op->mode;
2817 if (!IS_POSIXACL(dir->d_inode))
2818 mode &= ~current_umask();
2819 /*
2820 * This write is needed to ensure that a
2821 * rw->ro transition does not occur between
2822 * the time when the file is created and when
2823 * a permanent write count is taken through
2824 * the 'struct file' in finish_open().
2825 */
2826 if (!got_write) {
2827 error = -EROFS;
2828 goto out_dput;
2829 }
2830 *opened |= FILE_CREATED;
2831 error = security_path_mknod(&nd->path, dentry, mode, 0);
2832 if (error)
2833 goto out_dput;
2834 error = vfs_create(dir->d_inode, dentry, mode,
2835 nd->flags & LOOKUP_EXCL);
2836 if (error)
2837 goto out_dput;
2838 }
2839 out_no_open:
2840 path->dentry = dentry;
2841 path->mnt = nd->path.mnt;
2842 return 1;
2843
2844 out_dput:
2845 dput(dentry);
2846 return error;
2847 }
2848
2849 /*
2850 * Handle the last step of open()
2851 */
2852 static int do_last(struct nameidata *nd, struct path *path,
2853 struct file *file, const struct open_flags *op,
2854 int *opened, struct filename *name)
2855 {
2856 struct dentry *dir = nd->path.dentry;
2857 int open_flag = op->open_flag;
2858 bool will_truncate = (open_flag & O_TRUNC) != 0;
2859 bool got_write = false;
2860 int acc_mode = op->acc_mode;
2861 struct inode *inode;
2862 bool symlink_ok = false;
2863 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2864 bool retried = false;
2865 int error;
2866
2867 nd->flags &= ~LOOKUP_PARENT;
2868 nd->flags |= op->intent;
2869
2870 if (nd->last_type != LAST_NORM) {
2871 error = handle_dots(nd, nd->last_type);
2872 if (error)
2873 return error;
2874 goto finish_open;
2875 }
2876
2877 if (!(open_flag & O_CREAT)) {
2878 if (nd->last.name[nd->last.len])
2879 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2880 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2881 symlink_ok = true;
2882 /* we _can_ be in RCU mode here */
2883 error = lookup_fast(nd, path, &inode);
2884 if (likely(!error))
2885 goto finish_lookup;
2886
2887 if (error < 0)
2888 goto out;
2889
2890 BUG_ON(nd->inode != dir->d_inode);
2891 } else {
2892 /* create side of things */
2893 /*
2894 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2895 * has been cleared when we got to the last component we are
2896 * about to look up
2897 */
2898 error = complete_walk(nd);
2899 if (error)
2900 return error;
2901
2902 audit_inode(name, dir, LOOKUP_PARENT);
2903 error = -EISDIR;
2904 /* trailing slashes? */
2905 if (nd->last.name[nd->last.len])
2906 goto out;
2907 }
2908
2909 retry_lookup:
2910 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2911 error = mnt_want_write(nd->path.mnt);
2912 if (!error)
2913 got_write = true;
2914 /*
2915 * do _not_ fail yet - we might not need that or fail with
2916 * a different error; let lookup_open() decide; we'll be
2917 * dropping this one anyway.
2918 */
2919 }
2920 mutex_lock(&dir->d_inode->i_mutex);
2921 error = lookup_open(nd, path, file, op, got_write, opened);
2922 mutex_unlock(&dir->d_inode->i_mutex);
2923
2924 if (error <= 0) {
2925 if (error)
2926 goto out;
2927
2928 if ((*opened & FILE_CREATED) ||
2929 !S_ISREG(file_inode(file)->i_mode))
2930 will_truncate = false;
2931
2932 audit_inode(name, file->f_path.dentry, 0);
2933 goto opened;
2934 }
2935
2936 if (*opened & FILE_CREATED) {
2937 /* Don't check for write permission, don't truncate */
2938 open_flag &= ~O_TRUNC;
2939 will_truncate = false;
2940 acc_mode = MAY_OPEN;
2941 path_to_nameidata(path, nd);
2942 goto finish_open_created;
2943 }
2944
2945 /*
2946 * create/update audit record if it already exists.
2947 */
2948 if (d_is_positive(path->dentry))
2949 audit_inode(name, path->dentry, 0);
2950
2951 /*
2952 * If atomic_open() acquired write access it is dropped now due to
2953 * possible mount and symlink following (this might be optimized away if
2954 * necessary...)
2955 */
2956 if (got_write) {
2957 mnt_drop_write(nd->path.mnt);
2958 got_write = false;
2959 }
2960
2961 error = -EEXIST;
2962 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2963 goto exit_dput;
2964
2965 error = follow_managed(path, nd->flags);
2966 if (error < 0)
2967 goto exit_dput;
2968
2969 if (error)
2970 nd->flags |= LOOKUP_JUMPED;
2971
2972 BUG_ON(nd->flags & LOOKUP_RCU);
2973 inode = path->dentry->d_inode;
2974 finish_lookup:
2975 /* we _can_ be in RCU mode here */
2976 error = -ENOENT;
2977 if (d_is_negative(path->dentry)) {
2978 path_to_nameidata(path, nd);
2979 goto out;
2980 }
2981
2982 if (should_follow_link(path->dentry, !symlink_ok)) {
2983 if (nd->flags & LOOKUP_RCU) {
2984 if (unlikely(unlazy_walk(nd, path->dentry))) {
2985 error = -ECHILD;
2986 goto out;
2987 }
2988 }
2989 BUG_ON(inode != path->dentry->d_inode);
2990 return 1;
2991 }
2992
2993 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2994 path_to_nameidata(path, nd);
2995 } else {
2996 save_parent.dentry = nd->path.dentry;
2997 save_parent.mnt = mntget(path->mnt);
2998 nd->path.dentry = path->dentry;
2999
3000 }
3001 nd->inode = inode;
3002 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3003 finish_open:
3004 error = complete_walk(nd);
3005 if (error) {
3006 path_put(&save_parent);
3007 return error;
3008 }
3009 audit_inode(name, nd->path.dentry, 0);
3010 error = -EISDIR;
3011 if ((open_flag & O_CREAT) &&
3012 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3013 goto out;
3014 error = -ENOTDIR;
3015 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3016 goto out;
3017 if (!S_ISREG(nd->inode->i_mode))
3018 will_truncate = false;
3019
3020 if (will_truncate) {
3021 error = mnt_want_write(nd->path.mnt);
3022 if (error)
3023 goto out;
3024 got_write = true;
3025 }
3026 finish_open_created:
3027 error = may_open(&nd->path, acc_mode, open_flag);
3028 if (error)
3029 goto out;
3030 file->f_path.mnt = nd->path.mnt;
3031 error = finish_open(file, nd->path.dentry, NULL, opened);
3032 if (error) {
3033 if (error == -EOPENSTALE)
3034 goto stale_open;
3035 goto out;
3036 }
3037 opened:
3038 error = open_check_o_direct(file);
3039 if (error)
3040 goto exit_fput;
3041 error = ima_file_check(file, op->acc_mode);
3042 if (error)
3043 goto exit_fput;
3044
3045 if (will_truncate) {
3046 error = handle_truncate(file);
3047 if (error)
3048 goto exit_fput;
3049 }
3050 out:
3051 if (got_write)
3052 mnt_drop_write(nd->path.mnt);
3053 path_put(&save_parent);
3054 terminate_walk(nd);
3055 return error;
3056
3057 exit_dput:
3058 path_put_conditional(path, nd);
3059 goto out;
3060 exit_fput:
3061 fput(file);
3062 goto out;
3063
3064 stale_open:
3065 /* If no saved parent or already retried then can't retry */
3066 if (!save_parent.dentry || retried)
3067 goto out;
3068
3069 BUG_ON(save_parent.dentry != dir);
3070 path_put(&nd->path);
3071 nd->path = save_parent;
3072 nd->inode = dir->d_inode;
3073 save_parent.mnt = NULL;
3074 save_parent.dentry = NULL;
3075 if (got_write) {
3076 mnt_drop_write(nd->path.mnt);
3077 got_write = false;
3078 }
3079 retried = true;
3080 goto retry_lookup;
3081 }
3082
3083 static int do_tmpfile(int dfd, struct filename *pathname,
3084 struct nameidata *nd, int flags,
3085 const struct open_flags *op,
3086 struct file *file, int *opened)
3087 {
3088 static const struct qstr name = QSTR_INIT("/", 1);
3089 struct dentry *dentry, *child;
3090 struct inode *dir;
3091 int error = path_lookupat(dfd, pathname->name,
3092 flags | LOOKUP_DIRECTORY, nd);
3093 if (unlikely(error))
3094 return error;
3095 error = mnt_want_write(nd->path.mnt);
3096 if (unlikely(error))
3097 goto out;
3098 /* we want directory to be writable */
3099 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3100 if (error)
3101 goto out2;
3102 dentry = nd->path.dentry;
3103 dir = dentry->d_inode;
3104 if (!dir->i_op->tmpfile) {
3105 error = -EOPNOTSUPP;
3106 goto out2;
3107 }
3108 child = d_alloc(dentry, &name);
3109 if (unlikely(!child)) {
3110 error = -ENOMEM;
3111 goto out2;
3112 }
3113 nd->flags &= ~LOOKUP_DIRECTORY;
3114 nd->flags |= op->intent;
3115 dput(nd->path.dentry);
3116 nd->path.dentry = child;
3117 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3118 if (error)
3119 goto out2;
3120 audit_inode(pathname, nd->path.dentry, 0);
3121 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3122 if (error)
3123 goto out2;
3124 file->f_path.mnt = nd->path.mnt;
3125 error = finish_open(file, nd->path.dentry, NULL, opened);
3126 if (error)
3127 goto out2;
3128 error = open_check_o_direct(file);
3129 if (error) {
3130 fput(file);
3131 } else if (!(op->open_flag & O_EXCL)) {
3132 struct inode *inode = file_inode(file);
3133 spin_lock(&inode->i_lock);
3134 inode->i_state |= I_LINKABLE;
3135 spin_unlock(&inode->i_lock);
3136 }
3137 out2:
3138 mnt_drop_write(nd->path.mnt);
3139 out:
3140 path_put(&nd->path);
3141 return error;
3142 }
3143
3144 static struct file *path_openat(int dfd, struct filename *pathname,
3145 struct nameidata *nd, const struct open_flags *op, int flags)
3146 {
3147 struct file *base = NULL;
3148 struct file *file;
3149 struct path path;
3150 int opened = 0;
3151 int error;
3152
3153 file = get_empty_filp();
3154 if (IS_ERR(file))
3155 return file;
3156
3157 file->f_flags = op->open_flag;
3158
3159 if (unlikely(file->f_flags & __O_TMPFILE)) {
3160 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3161 goto out;
3162 }
3163
3164 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3165 if (unlikely(error))
3166 goto out;
3167
3168 current->total_link_count = 0;
3169 error = link_path_walk(pathname->name, nd);
3170 if (unlikely(error))
3171 goto out;
3172
3173 error = do_last(nd, &path, file, op, &opened, pathname);
3174 while (unlikely(error > 0)) { /* trailing symlink */
3175 struct path link = path;
3176 void *cookie;
3177 if (!(nd->flags & LOOKUP_FOLLOW)) {
3178 path_put_conditional(&path, nd);
3179 path_put(&nd->path);
3180 error = -ELOOP;
3181 break;
3182 }
3183 error = may_follow_link(&link, nd);
3184 if (unlikely(error))
3185 break;
3186 nd->flags |= LOOKUP_PARENT;
3187 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3188 error = follow_link(&link, nd, &cookie);
3189 if (unlikely(error))
3190 break;
3191 error = do_last(nd, &path, file, op, &opened, pathname);
3192 put_link(nd, &link, cookie);
3193 }
3194 out:
3195 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3196 path_put(&nd->root);
3197 if (base)
3198 fput(base);
3199 if (!(opened & FILE_OPENED)) {
3200 BUG_ON(!error);
3201 put_filp(file);
3202 }
3203 if (unlikely(error)) {
3204 if (error == -EOPENSTALE) {
3205 if (flags & LOOKUP_RCU)
3206 error = -ECHILD;
3207 else
3208 error = -ESTALE;
3209 }
3210 file = ERR_PTR(error);
3211 }
3212 return file;
3213 }
3214
3215 struct file *do_filp_open(int dfd, struct filename *pathname,
3216 const struct open_flags *op)
3217 {
3218 struct nameidata nd;
3219 int flags = op->lookup_flags;
3220 struct file *filp;
3221
3222 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3223 if (unlikely(filp == ERR_PTR(-ECHILD)))
3224 filp = path_openat(dfd, pathname, &nd, op, flags);
3225 if (unlikely(filp == ERR_PTR(-ESTALE)))
3226 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3227 return filp;
3228 }
3229
3230 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3231 const char *name, const struct open_flags *op)
3232 {
3233 struct nameidata nd;
3234 struct file *file;
3235 struct filename filename = { .name = name };
3236 int flags = op->lookup_flags | LOOKUP_ROOT;
3237
3238 nd.root.mnt = mnt;
3239 nd.root.dentry = dentry;
3240
3241 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3242 return ERR_PTR(-ELOOP);
3243
3244 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3245 if (unlikely(file == ERR_PTR(-ECHILD)))
3246 file = path_openat(-1, &filename, &nd, op, flags);
3247 if (unlikely(file == ERR_PTR(-ESTALE)))
3248 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3249 return file;
3250 }
3251
3252 struct dentry *kern_path_create(int dfd, const char *pathname,
3253 struct path *path, unsigned int lookup_flags)
3254 {
3255 struct dentry *dentry = ERR_PTR(-EEXIST);
3256 struct nameidata nd;
3257 int err2;
3258 int error;
3259 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3260
3261 /*
3262 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3263 * other flags passed in are ignored!
3264 */
3265 lookup_flags &= LOOKUP_REVAL;
3266
3267 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3268 if (error)
3269 return ERR_PTR(error);
3270
3271 /*
3272 * Yucky last component or no last component at all?
3273 * (foo/., foo/.., /////)
3274 */
3275 if (nd.last_type != LAST_NORM)
3276 goto out;
3277 nd.flags &= ~LOOKUP_PARENT;
3278 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3279
3280 /* don't fail immediately if it's r/o, at least try to report other errors */
3281 err2 = mnt_want_write(nd.path.mnt);
3282 /*
3283 * Do the final lookup.
3284 */
3285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3286 dentry = lookup_hash(&nd);
3287 if (IS_ERR(dentry))
3288 goto unlock;
3289
3290 error = -EEXIST;
3291 if (d_is_positive(dentry))
3292 goto fail;
3293
3294 /*
3295 * Special case - lookup gave negative, but... we had foo/bar/
3296 * From the vfs_mknod() POV we just have a negative dentry -
3297 * all is fine. Let's be bastards - you had / on the end, you've
3298 * been asking for (non-existent) directory. -ENOENT for you.
3299 */
3300 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3301 error = -ENOENT;
3302 goto fail;
3303 }
3304 if (unlikely(err2)) {
3305 error = err2;
3306 goto fail;
3307 }
3308 *path = nd.path;
3309 return dentry;
3310 fail:
3311 dput(dentry);
3312 dentry = ERR_PTR(error);
3313 unlock:
3314 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3315 if (!err2)
3316 mnt_drop_write(nd.path.mnt);
3317 out:
3318 path_put(&nd.path);
3319 return dentry;
3320 }
3321 EXPORT_SYMBOL(kern_path_create);
3322
3323 void done_path_create(struct path *path, struct dentry *dentry)
3324 {
3325 dput(dentry);
3326 mutex_unlock(&path->dentry->d_inode->i_mutex);
3327 mnt_drop_write(path->mnt);
3328 path_put(path);
3329 }
3330 EXPORT_SYMBOL(done_path_create);
3331
3332 struct dentry *user_path_create(int dfd, const char __user *pathname,
3333 struct path *path, unsigned int lookup_flags)
3334 {
3335 struct filename *tmp = getname(pathname);
3336 struct dentry *res;
3337 if (IS_ERR(tmp))
3338 return ERR_CAST(tmp);
3339 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3340 putname(tmp);
3341 return res;
3342 }
3343 EXPORT_SYMBOL(user_path_create);
3344
3345 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3346 {
3347 int error = may_create(dir, dentry);
3348
3349 if (error)
3350 return error;
3351
3352 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3353 return -EPERM;
3354
3355 if (!dir->i_op->mknod)
3356 return -EPERM;
3357
3358 error = devcgroup_inode_mknod(mode, dev);
3359 if (error)
3360 return error;
3361
3362 error = security_inode_mknod(dir, dentry, mode, dev);
3363 if (error)
3364 return error;
3365
3366 error = dir->i_op->mknod(dir, dentry, mode, dev);
3367 if (!error)
3368 fsnotify_create(dir, dentry);
3369 return error;
3370 }
3371
3372 static int may_mknod(umode_t mode)
3373 {
3374 switch (mode & S_IFMT) {
3375 case S_IFREG:
3376 case S_IFCHR:
3377 case S_IFBLK:
3378 case S_IFIFO:
3379 case S_IFSOCK:
3380 case 0: /* zero mode translates to S_IFREG */
3381 return 0;
3382 case S_IFDIR:
3383 return -EPERM;
3384 default:
3385 return -EINVAL;
3386 }
3387 }
3388
3389 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3390 unsigned, dev)
3391 {
3392 struct dentry *dentry;
3393 struct path path;
3394 int error;
3395 unsigned int lookup_flags = 0;
3396
3397 error = may_mknod(mode);
3398 if (error)
3399 return error;
3400 retry:
3401 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3402 if (IS_ERR(dentry))
3403 return PTR_ERR(dentry);
3404
3405 if (!IS_POSIXACL(path.dentry->d_inode))
3406 mode &= ~current_umask();
3407 error = security_path_mknod(&path, dentry, mode, dev);
3408 if (error)
3409 goto out;
3410 switch (mode & S_IFMT) {
3411 case 0: case S_IFREG:
3412 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3413 break;
3414 case S_IFCHR: case S_IFBLK:
3415 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3416 new_decode_dev(dev));
3417 break;
3418 case S_IFIFO: case S_IFSOCK:
3419 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3420 break;
3421 }
3422 out:
3423 done_path_create(&path, dentry);
3424 if (retry_estale(error, lookup_flags)) {
3425 lookup_flags |= LOOKUP_REVAL;
3426 goto retry;
3427 }
3428 return error;
3429 }
3430
3431 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3432 {
3433 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3434 }
3435
3436 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3437 {
3438 int error = may_create(dir, dentry);
3439 unsigned max_links = dir->i_sb->s_max_links;
3440
3441 if (error)
3442 return error;
3443
3444 if (!dir->i_op->mkdir)
3445 return -EPERM;
3446
3447 mode &= (S_IRWXUGO|S_ISVTX);
3448 error = security_inode_mkdir(dir, dentry, mode);
3449 if (error)
3450 return error;
3451
3452 if (max_links && dir->i_nlink >= max_links)
3453 return -EMLINK;
3454
3455 error = dir->i_op->mkdir(dir, dentry, mode);
3456 if (!error)
3457 fsnotify_mkdir(dir, dentry);
3458 return error;
3459 }
3460
3461 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3462 {
3463 struct dentry *dentry;
3464 struct path path;
3465 int error;
3466 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3467
3468 retry:
3469 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3470 if (IS_ERR(dentry))
3471 return PTR_ERR(dentry);
3472
3473 if (!IS_POSIXACL(path.dentry->d_inode))
3474 mode &= ~current_umask();
3475 error = security_path_mkdir(&path, dentry, mode);
3476 if (!error)
3477 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3478 done_path_create(&path, dentry);
3479 if (retry_estale(error, lookup_flags)) {
3480 lookup_flags |= LOOKUP_REVAL;
3481 goto retry;
3482 }
3483 return error;
3484 }
3485
3486 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3487 {
3488 return sys_mkdirat(AT_FDCWD, pathname, mode);
3489 }
3490
3491 /*
3492 * The dentry_unhash() helper will try to drop the dentry early: we
3493 * should have a usage count of 1 if we're the only user of this
3494 * dentry, and if that is true (possibly after pruning the dcache),
3495 * then we drop the dentry now.
3496 *
3497 * A low-level filesystem can, if it choses, legally
3498 * do a
3499 *
3500 * if (!d_unhashed(dentry))
3501 * return -EBUSY;
3502 *
3503 * if it cannot handle the case of removing a directory
3504 * that is still in use by something else..
3505 */
3506 void dentry_unhash(struct dentry *dentry)
3507 {
3508 shrink_dcache_parent(dentry);
3509 spin_lock(&dentry->d_lock);
3510 if (dentry->d_lockref.count == 1)
3511 __d_drop(dentry);
3512 spin_unlock(&dentry->d_lock);
3513 }
3514
3515 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3516 {
3517 int error = may_delete(dir, dentry, 1);
3518
3519 if (error)
3520 return error;
3521
3522 if (!dir->i_op->rmdir)
3523 return -EPERM;
3524
3525 dget(dentry);
3526 mutex_lock(&dentry->d_inode->i_mutex);
3527
3528 error = -EBUSY;
3529 if (d_mountpoint(dentry))
3530 goto out;
3531
3532 error = security_inode_rmdir(dir, dentry);
3533 if (error)
3534 goto out;
3535
3536 shrink_dcache_parent(dentry);
3537 error = dir->i_op->rmdir(dir, dentry);
3538 if (error)
3539 goto out;
3540
3541 dentry->d_inode->i_flags |= S_DEAD;
3542 dont_mount(dentry);
3543
3544 out:
3545 mutex_unlock(&dentry->d_inode->i_mutex);
3546 dput(dentry);
3547 if (!error)
3548 d_delete(dentry);
3549 return error;
3550 }
3551
3552 static long do_rmdir(int dfd, const char __user *pathname)
3553 {
3554 int error = 0;
3555 struct filename *name;
3556 struct dentry *dentry;
3557 struct nameidata nd;
3558 unsigned int lookup_flags = 0;
3559 retry:
3560 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3561 if (IS_ERR(name))
3562 return PTR_ERR(name);
3563
3564 switch(nd.last_type) {
3565 case LAST_DOTDOT:
3566 error = -ENOTEMPTY;
3567 goto exit1;
3568 case LAST_DOT:
3569 error = -EINVAL;
3570 goto exit1;
3571 case LAST_ROOT:
3572 error = -EBUSY;
3573 goto exit1;
3574 }
3575
3576 nd.flags &= ~LOOKUP_PARENT;
3577 error = mnt_want_write(nd.path.mnt);
3578 if (error)
3579 goto exit1;
3580
3581 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3582 dentry = lookup_hash(&nd);
3583 error = PTR_ERR(dentry);
3584 if (IS_ERR(dentry))
3585 goto exit2;
3586 if (!dentry->d_inode) {
3587 error = -ENOENT;
3588 goto exit3;
3589 }
3590 error = security_path_rmdir(&nd.path, dentry);
3591 if (error)
3592 goto exit3;
3593 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3594 exit3:
3595 dput(dentry);
3596 exit2:
3597 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3598 mnt_drop_write(nd.path.mnt);
3599 exit1:
3600 path_put(&nd.path);
3601 putname(name);
3602 if (retry_estale(error, lookup_flags)) {
3603 lookup_flags |= LOOKUP_REVAL;
3604 goto retry;
3605 }
3606 return error;
3607 }
3608
3609 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3610 {
3611 return do_rmdir(AT_FDCWD, pathname);
3612 }
3613
3614 /**
3615 * vfs_unlink - unlink a filesystem object
3616 * @dir: parent directory
3617 * @dentry: victim
3618 * @delegated_inode: returns victim inode, if the inode is delegated.
3619 *
3620 * The caller must hold dir->i_mutex.
3621 *
3622 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3623 * return a reference to the inode in delegated_inode. The caller
3624 * should then break the delegation on that inode and retry. Because
3625 * breaking a delegation may take a long time, the caller should drop
3626 * dir->i_mutex before doing so.
3627 *
3628 * Alternatively, a caller may pass NULL for delegated_inode. This may
3629 * be appropriate for callers that expect the underlying filesystem not
3630 * to be NFS exported.
3631 */
3632 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3633 {
3634 struct inode *target = dentry->d_inode;
3635 int error = may_delete(dir, dentry, 0);
3636
3637 if (error)
3638 return error;
3639
3640 if (!dir->i_op->unlink)
3641 return -EPERM;
3642
3643 mutex_lock(&target->i_mutex);
3644 if (d_mountpoint(dentry))
3645 error = -EBUSY;
3646 else {
3647 error = security_inode_unlink(dir, dentry);
3648 if (!error) {
3649 error = try_break_deleg(target, delegated_inode);
3650 if (error)
3651 goto out;
3652 error = dir->i_op->unlink(dir, dentry);
3653 if (!error)
3654 dont_mount(dentry);
3655 }
3656 }
3657 out:
3658 mutex_unlock(&target->i_mutex);
3659
3660 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3661 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3662 fsnotify_link_count(target);
3663 d_delete(dentry);
3664 }
3665
3666 return error;
3667 }
3668
3669 /*
3670 * Make sure that the actual truncation of the file will occur outside its
3671 * directory's i_mutex. Truncate can take a long time if there is a lot of
3672 * writeout happening, and we don't want to prevent access to the directory
3673 * while waiting on the I/O.
3674 */
3675 static long do_unlinkat(int dfd, const char __user *pathname)
3676 {
3677 int error;
3678 struct filename *name;
3679 struct dentry *dentry;
3680 struct nameidata nd;
3681 struct inode *inode = NULL;
3682 struct inode *delegated_inode = NULL;
3683 unsigned int lookup_flags = 0;
3684 retry:
3685 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3686 if (IS_ERR(name))
3687 return PTR_ERR(name);
3688
3689 error = -EISDIR;
3690 if (nd.last_type != LAST_NORM)
3691 goto exit1;
3692
3693 nd.flags &= ~LOOKUP_PARENT;
3694 error = mnt_want_write(nd.path.mnt);
3695 if (error)
3696 goto exit1;
3697 retry_deleg:
3698 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3699 dentry = lookup_hash(&nd);
3700 error = PTR_ERR(dentry);
3701 if (!IS_ERR(dentry)) {
3702 /* Why not before? Because we want correct error value */
3703 if (nd.last.name[nd.last.len])
3704 goto slashes;
3705 inode = dentry->d_inode;
3706 if (d_is_negative(dentry))
3707 goto slashes;
3708 ihold(inode);
3709 error = security_path_unlink(&nd.path, dentry);
3710 if (error)
3711 goto exit2;
3712 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3713 exit2:
3714 dput(dentry);
3715 }
3716 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3717 if (inode)
3718 iput(inode); /* truncate the inode here */
3719 inode = NULL;
3720 if (delegated_inode) {
3721 error = break_deleg_wait(&delegated_inode);
3722 if (!error)
3723 goto retry_deleg;
3724 }
3725 mnt_drop_write(nd.path.mnt);
3726 exit1:
3727 path_put(&nd.path);
3728 putname(name);
3729 if (retry_estale(error, lookup_flags)) {
3730 lookup_flags |= LOOKUP_REVAL;
3731 inode = NULL;
3732 goto retry;
3733 }
3734 return error;
3735
3736 slashes:
3737 if (d_is_negative(dentry))
3738 error = -ENOENT;
3739 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3740 error = -EISDIR;
3741 else
3742 error = -ENOTDIR;
3743 goto exit2;
3744 }
3745
3746 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3747 {
3748 if ((flag & ~AT_REMOVEDIR) != 0)
3749 return -EINVAL;
3750
3751 if (flag & AT_REMOVEDIR)
3752 return do_rmdir(dfd, pathname);
3753
3754 return do_unlinkat(dfd, pathname);
3755 }
3756
3757 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3758 {
3759 return do_unlinkat(AT_FDCWD, pathname);
3760 }
3761
3762 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3763 {
3764 int error = may_create(dir, dentry);
3765
3766 if (error)
3767 return error;
3768
3769 if (!dir->i_op->symlink)
3770 return -EPERM;
3771
3772 error = security_inode_symlink(dir, dentry, oldname);
3773 if (error)
3774 return error;
3775
3776 error = dir->i_op->symlink(dir, dentry, oldname);
3777 if (!error)
3778 fsnotify_create(dir, dentry);
3779 return error;
3780 }
3781
3782 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3783 int, newdfd, const char __user *, newname)
3784 {
3785 int error;
3786 struct filename *from;
3787 struct dentry *dentry;
3788 struct path path;
3789 unsigned int lookup_flags = 0;
3790
3791 from = getname(oldname);
3792 if (IS_ERR(from))
3793 return PTR_ERR(from);
3794 retry:
3795 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3796 error = PTR_ERR(dentry);
3797 if (IS_ERR(dentry))
3798 goto out_putname;
3799
3800 error = security_path_symlink(&path, dentry, from->name);
3801 if (!error)
3802 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3803 done_path_create(&path, dentry);
3804 if (retry_estale(error, lookup_flags)) {
3805 lookup_flags |= LOOKUP_REVAL;
3806 goto retry;
3807 }
3808 out_putname:
3809 putname(from);
3810 return error;
3811 }
3812
3813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3814 {
3815 return sys_symlinkat(oldname, AT_FDCWD, newname);
3816 }
3817
3818 /**
3819 * vfs_link - create a new link
3820 * @old_dentry: object to be linked
3821 * @dir: new parent
3822 * @new_dentry: where to create the new link
3823 * @delegated_inode: returns inode needing a delegation break
3824 *
3825 * The caller must hold dir->i_mutex
3826 *
3827 * If vfs_link discovers a delegation on the to-be-linked file in need
3828 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3829 * inode in delegated_inode. The caller should then break the delegation
3830 * and retry. Because breaking a delegation may take a long time, the
3831 * caller should drop the i_mutex before doing so.
3832 *
3833 * Alternatively, a caller may pass NULL for delegated_inode. This may
3834 * be appropriate for callers that expect the underlying filesystem not
3835 * to be NFS exported.
3836 */
3837 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3838 {
3839 struct inode *inode = old_dentry->d_inode;
3840 unsigned max_links = dir->i_sb->s_max_links;
3841 int error;
3842
3843 if (!inode)
3844 return -ENOENT;
3845
3846 error = may_create(dir, new_dentry);
3847 if (error)
3848 return error;
3849
3850 if (dir->i_sb != inode->i_sb)
3851 return -EXDEV;
3852
3853 /*
3854 * A link to an append-only or immutable file cannot be created.
3855 */
3856 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3857 return -EPERM;
3858 if (!dir->i_op->link)
3859 return -EPERM;
3860 if (S_ISDIR(inode->i_mode))
3861 return -EPERM;
3862
3863 error = security_inode_link(old_dentry, dir, new_dentry);
3864 if (error)
3865 return error;
3866
3867 mutex_lock(&inode->i_mutex);
3868 /* Make sure we don't allow creating hardlink to an unlinked file */
3869 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3870 error = -ENOENT;
3871 else if (max_links && inode->i_nlink >= max_links)
3872 error = -EMLINK;
3873 else {
3874 error = try_break_deleg(inode, delegated_inode);
3875 if (!error)
3876 error = dir->i_op->link(old_dentry, dir, new_dentry);
3877 }
3878
3879 if (!error && (inode->i_state & I_LINKABLE)) {
3880 spin_lock(&inode->i_lock);
3881 inode->i_state &= ~I_LINKABLE;
3882 spin_unlock(&inode->i_lock);
3883 }
3884 mutex_unlock(&inode->i_mutex);
3885 if (!error)
3886 fsnotify_link(dir, inode, new_dentry);
3887 return error;
3888 }
3889
3890 /*
3891 * Hardlinks are often used in delicate situations. We avoid
3892 * security-related surprises by not following symlinks on the
3893 * newname. --KAB
3894 *
3895 * We don't follow them on the oldname either to be compatible
3896 * with linux 2.0, and to avoid hard-linking to directories
3897 * and other special files. --ADM
3898 */
3899 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3900 int, newdfd, const char __user *, newname, int, flags)
3901 {
3902 struct dentry *new_dentry;
3903 struct path old_path, new_path;
3904 struct inode *delegated_inode = NULL;
3905 int how = 0;
3906 int error;
3907
3908 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3909 return -EINVAL;
3910 /*
3911 * To use null names we require CAP_DAC_READ_SEARCH
3912 * This ensures that not everyone will be able to create
3913 * handlink using the passed filedescriptor.
3914 */
3915 if (flags & AT_EMPTY_PATH) {
3916 if (!capable(CAP_DAC_READ_SEARCH))
3917 return -ENOENT;
3918 how = LOOKUP_EMPTY;
3919 }
3920
3921 if (flags & AT_SYMLINK_FOLLOW)
3922 how |= LOOKUP_FOLLOW;
3923 retry:
3924 error = user_path_at(olddfd, oldname, how, &old_path);
3925 if (error)
3926 return error;
3927
3928 new_dentry = user_path_create(newdfd, newname, &new_path,
3929 (how & LOOKUP_REVAL));
3930 error = PTR_ERR(new_dentry);
3931 if (IS_ERR(new_dentry))
3932 goto out;
3933
3934 error = -EXDEV;
3935 if (old_path.mnt != new_path.mnt)
3936 goto out_dput;
3937 error = may_linkat(&old_path);
3938 if (unlikely(error))
3939 goto out_dput;
3940 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3941 if (error)
3942 goto out_dput;
3943 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3944 out_dput:
3945 done_path_create(&new_path, new_dentry);
3946 if (delegated_inode) {
3947 error = break_deleg_wait(&delegated_inode);
3948 if (!error)
3949 goto retry;
3950 }
3951 if (retry_estale(error, how)) {
3952 how |= LOOKUP_REVAL;
3953 goto retry;
3954 }
3955 out:
3956 path_put(&old_path);
3957
3958 return error;
3959 }
3960
3961 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3962 {
3963 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3964 }
3965
3966 /*
3967 * The worst of all namespace operations - renaming directory. "Perverted"
3968 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3969 * Problems:
3970 * a) we can get into loop creation. Check is done in is_subdir().
3971 * b) race potential - two innocent renames can create a loop together.
3972 * That's where 4.4 screws up. Current fix: serialization on
3973 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3974 * story.
3975 * c) we have to lock _four_ objects - parents and victim (if it exists),
3976 * and source (if it is not a directory).
3977 * And that - after we got ->i_mutex on parents (until then we don't know
3978 * whether the target exists). Solution: try to be smart with locking
3979 * order for inodes. We rely on the fact that tree topology may change
3980 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3981 * move will be locked. Thus we can rank directories by the tree
3982 * (ancestors first) and rank all non-directories after them.
3983 * That works since everybody except rename does "lock parent, lookup,
3984 * lock child" and rename is under ->s_vfs_rename_mutex.
3985 * HOWEVER, it relies on the assumption that any object with ->lookup()
3986 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3987 * we'd better make sure that there's no link(2) for them.
3988 * d) conversion from fhandle to dentry may come in the wrong moment - when
3989 * we are removing the target. Solution: we will have to grab ->i_mutex
3990 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3991 * ->i_mutex on parents, which works but leads to some truly excessive
3992 * locking].
3993 */
3994 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3995 struct inode *new_dir, struct dentry *new_dentry)
3996 {
3997 int error = 0;
3998 struct inode *target = new_dentry->d_inode;
3999 unsigned max_links = new_dir->i_sb->s_max_links;
4000
4001 /*
4002 * If we are going to change the parent - check write permissions,
4003 * we'll need to flip '..'.
4004 */
4005 if (new_dir != old_dir) {
4006 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4007 if (error)
4008 return error;
4009 }
4010
4011 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4012 if (error)
4013 return error;
4014
4015 dget(new_dentry);
4016 if (target)
4017 mutex_lock(&target->i_mutex);
4018
4019 error = -EBUSY;
4020 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4021 goto out;
4022
4023 error = -EMLINK;
4024 if (max_links && !target && new_dir != old_dir &&
4025 new_dir->i_nlink >= max_links)
4026 goto out;
4027
4028 if (target)
4029 shrink_dcache_parent(new_dentry);
4030 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4031 if (error)
4032 goto out;
4033
4034 if (target) {
4035 target->i_flags |= S_DEAD;
4036 dont_mount(new_dentry);
4037 }
4038 out:
4039 if (target)
4040 mutex_unlock(&target->i_mutex);
4041 dput(new_dentry);
4042 if (!error)
4043 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4044 d_move(old_dentry,new_dentry);
4045 return error;
4046 }
4047
4048 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4049 struct inode *new_dir, struct dentry *new_dentry,
4050 struct inode **delegated_inode)
4051 {
4052 struct inode *target = new_dentry->d_inode;
4053 struct inode *source = old_dentry->d_inode;
4054 int error;
4055
4056 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4057 if (error)
4058 return error;
4059
4060 dget(new_dentry);
4061 lock_two_nondirectories(source, target);
4062
4063 error = -EBUSY;
4064 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4065 goto out;
4066
4067 error = try_break_deleg(source, delegated_inode);
4068 if (error)
4069 goto out;
4070 if (target) {
4071 error = try_break_deleg(target, delegated_inode);
4072 if (error)
4073 goto out;
4074 }
4075 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4076 if (error)
4077 goto out;
4078
4079 if (target)
4080 dont_mount(new_dentry);
4081 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4082 d_move(old_dentry, new_dentry);
4083 out:
4084 unlock_two_nondirectories(source, target);
4085 dput(new_dentry);
4086 return error;
4087 }
4088
4089 /**
4090 * vfs_rename - rename a filesystem object
4091 * @old_dir: parent of source
4092 * @old_dentry: source
4093 * @new_dir: parent of destination
4094 * @new_dentry: destination
4095 * @delegated_inode: returns an inode needing a delegation break
4096 *
4097 * The caller must hold multiple mutexes--see lock_rename()).
4098 *
4099 * If vfs_rename discovers a delegation in need of breaking at either
4100 * the source or destination, it will return -EWOULDBLOCK and return a
4101 * reference to the inode in delegated_inode. The caller should then
4102 * break the delegation and retry. Because breaking a delegation may
4103 * take a long time, the caller should drop all locks before doing
4104 * so.
4105 *
4106 * Alternatively, a caller may pass NULL for delegated_inode. This may
4107 * be appropriate for callers that expect the underlying filesystem not
4108 * to be NFS exported.
4109 */
4110 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4111 struct inode *new_dir, struct dentry *new_dentry,
4112 struct inode **delegated_inode)
4113 {
4114 int error;
4115 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4116 const unsigned char *old_name;
4117
4118 if (old_dentry->d_inode == new_dentry->d_inode)
4119 return 0;
4120
4121 error = may_delete(old_dir, old_dentry, is_dir);
4122 if (error)
4123 return error;
4124
4125 if (!new_dentry->d_inode)
4126 error = may_create(new_dir, new_dentry);
4127 else
4128 error = may_delete(new_dir, new_dentry, is_dir);
4129 if (error)
4130 return error;
4131
4132 if (!old_dir->i_op->rename)
4133 return -EPERM;
4134
4135 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4136
4137 if (is_dir)
4138 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4139 else
4140 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4141 if (!error)
4142 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4143 new_dentry->d_inode, old_dentry);
4144 fsnotify_oldname_free(old_name);
4145
4146 return error;
4147 }
4148
4149 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4150 int, newdfd, const char __user *, newname)
4151 {
4152 struct dentry *old_dir, *new_dir;
4153 struct dentry *old_dentry, *new_dentry;
4154 struct dentry *trap;
4155 struct nameidata oldnd, newnd;
4156 struct inode *delegated_inode = NULL;
4157 struct filename *from;
4158 struct filename *to;
4159 unsigned int lookup_flags = 0;
4160 bool should_retry = false;
4161 int error;
4162 retry:
4163 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4164 if (IS_ERR(from)) {
4165 error = PTR_ERR(from);
4166 goto exit;
4167 }
4168
4169 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4170 if (IS_ERR(to)) {
4171 error = PTR_ERR(to);
4172 goto exit1;
4173 }
4174
4175 error = -EXDEV;
4176 if (oldnd.path.mnt != newnd.path.mnt)
4177 goto exit2;
4178
4179 old_dir = oldnd.path.dentry;
4180 error = -EBUSY;
4181 if (oldnd.last_type != LAST_NORM)
4182 goto exit2;
4183
4184 new_dir = newnd.path.dentry;
4185 if (newnd.last_type != LAST_NORM)
4186 goto exit2;
4187
4188 error = mnt_want_write(oldnd.path.mnt);
4189 if (error)
4190 goto exit2;
4191
4192 oldnd.flags &= ~LOOKUP_PARENT;
4193 newnd.flags &= ~LOOKUP_PARENT;
4194 newnd.flags |= LOOKUP_RENAME_TARGET;
4195
4196 retry_deleg:
4197 trap = lock_rename(new_dir, old_dir);
4198
4199 old_dentry = lookup_hash(&oldnd);
4200 error = PTR_ERR(old_dentry);
4201 if (IS_ERR(old_dentry))
4202 goto exit3;
4203 /* source must exist */
4204 error = -ENOENT;
4205 if (d_is_negative(old_dentry))
4206 goto exit4;
4207 /* unless the source is a directory trailing slashes give -ENOTDIR */
4208 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4209 error = -ENOTDIR;
4210 if (oldnd.last.name[oldnd.last.len])
4211 goto exit4;
4212 if (newnd.last.name[newnd.last.len])
4213 goto exit4;
4214 }
4215 /* source should not be ancestor of target */
4216 error = -EINVAL;
4217 if (old_dentry == trap)
4218 goto exit4;
4219 new_dentry = lookup_hash(&newnd);
4220 error = PTR_ERR(new_dentry);
4221 if (IS_ERR(new_dentry))
4222 goto exit4;
4223 /* target should not be an ancestor of source */
4224 error = -ENOTEMPTY;
4225 if (new_dentry == trap)
4226 goto exit5;
4227
4228 error = security_path_rename(&oldnd.path, old_dentry,
4229 &newnd.path, new_dentry);
4230 if (error)
4231 goto exit5;
4232 error = vfs_rename(old_dir->d_inode, old_dentry,
4233 new_dir->d_inode, new_dentry,
4234 &delegated_inode);
4235 exit5:
4236 dput(new_dentry);
4237 exit4:
4238 dput(old_dentry);
4239 exit3:
4240 unlock_rename(new_dir, old_dir);
4241 if (delegated_inode) {
4242 error = break_deleg_wait(&delegated_inode);
4243 if (!error)
4244 goto retry_deleg;
4245 }
4246 mnt_drop_write(oldnd.path.mnt);
4247 exit2:
4248 if (retry_estale(error, lookup_flags))
4249 should_retry = true;
4250 path_put(&newnd.path);
4251 putname(to);
4252 exit1:
4253 path_put(&oldnd.path);
4254 putname(from);
4255 if (should_retry) {
4256 should_retry = false;
4257 lookup_flags |= LOOKUP_REVAL;
4258 goto retry;
4259 }
4260 exit:
4261 return error;
4262 }
4263
4264 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4265 {
4266 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4267 }
4268
4269 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4270 {
4271 int len;
4272
4273 len = PTR_ERR(link);
4274 if (IS_ERR(link))
4275 goto out;
4276
4277 len = strlen(link);
4278 if (len > (unsigned) buflen)
4279 len = buflen;
4280 if (copy_to_user(buffer, link, len))
4281 len = -EFAULT;
4282 out:
4283 return len;
4284 }
4285
4286 /*
4287 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4288 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4289 * using) it for any given inode is up to filesystem.
4290 */
4291 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4292 {
4293 struct nameidata nd;
4294 void *cookie;
4295 int res;
4296
4297 nd.depth = 0;
4298 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4299 if (IS_ERR(cookie))
4300 return PTR_ERR(cookie);
4301
4302 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4303 if (dentry->d_inode->i_op->put_link)
4304 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4305 return res;
4306 }
4307
4308 /* get the link contents into pagecache */
4309 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4310 {
4311 char *kaddr;
4312 struct page *page;
4313 struct address_space *mapping = dentry->d_inode->i_mapping;
4314 page = read_mapping_page(mapping, 0, NULL);
4315 if (IS_ERR(page))
4316 return (char*)page;
4317 *ppage = page;
4318 kaddr = kmap(page);
4319 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4320 return kaddr;
4321 }
4322
4323 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4324 {
4325 struct page *page = NULL;
4326 char *s = page_getlink(dentry, &page);
4327 int res = vfs_readlink(dentry,buffer,buflen,s);
4328 if (page) {
4329 kunmap(page);
4330 page_cache_release(page);
4331 }
4332 return res;
4333 }
4334
4335 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4336 {
4337 struct page *page = NULL;
4338 nd_set_link(nd, page_getlink(dentry, &page));
4339 return page;
4340 }
4341
4342 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4343 {
4344 struct page *page = cookie;
4345
4346 if (page) {
4347 kunmap(page);
4348 page_cache_release(page);
4349 }
4350 }
4351
4352 /*
4353 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4354 */
4355 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4356 {
4357 struct address_space *mapping = inode->i_mapping;
4358 struct page *page;
4359 void *fsdata;
4360 int err;
4361 char *kaddr;
4362 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4363 if (nofs)
4364 flags |= AOP_FLAG_NOFS;
4365
4366 retry:
4367 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4368 flags, &page, &fsdata);
4369 if (err)
4370 goto fail;
4371
4372 kaddr = kmap_atomic(page);
4373 memcpy(kaddr, symname, len-1);
4374 kunmap_atomic(kaddr);
4375
4376 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4377 page, fsdata);
4378 if (err < 0)
4379 goto fail;
4380 if (err < len-1)
4381 goto retry;
4382
4383 mark_inode_dirty(inode);
4384 return 0;
4385 fail:
4386 return err;
4387 }
4388
4389 int page_symlink(struct inode *inode, const char *symname, int len)
4390 {
4391 return __page_symlink(inode, symname, len,
4392 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4393 }
4394
4395 const struct inode_operations page_symlink_inode_operations = {
4396 .readlink = generic_readlink,
4397 .follow_link = page_follow_link_light,
4398 .put_link = page_put_link,
4399 };
4400
4401 EXPORT_SYMBOL(user_path_at);
4402 EXPORT_SYMBOL(follow_down_one);
4403 EXPORT_SYMBOL(follow_down);
4404 EXPORT_SYMBOL(follow_up);
4405 EXPORT_SYMBOL(get_write_access); /* nfsd */
4406 EXPORT_SYMBOL(lock_rename);
4407 EXPORT_SYMBOL(lookup_one_len);
4408 EXPORT_SYMBOL(page_follow_link_light);
4409 EXPORT_SYMBOL(page_put_link);
4410 EXPORT_SYMBOL(page_readlink);
4411 EXPORT_SYMBOL(__page_symlink);
4412 EXPORT_SYMBOL(page_symlink);
4413 EXPORT_SYMBOL(page_symlink_inode_operations);
4414 EXPORT_SYMBOL(kern_path);
4415 EXPORT_SYMBOL(vfs_path_lookup);
4416 EXPORT_SYMBOL(inode_permission);
4417 EXPORT_SYMBOL(unlock_rename);
4418 EXPORT_SYMBOL(vfs_create);
4419 EXPORT_SYMBOL(vfs_link);
4420 EXPORT_SYMBOL(vfs_mkdir);
4421 EXPORT_SYMBOL(vfs_mknod);
4422 EXPORT_SYMBOL(generic_permission);
4423 EXPORT_SYMBOL(vfs_readlink);
4424 EXPORT_SYMBOL(vfs_rename);
4425 EXPORT_SYMBOL(vfs_rmdir);
4426 EXPORT_SYMBOL(vfs_symlink);
4427 EXPORT_SYMBOL(vfs_unlink);
4428 EXPORT_SYMBOL(dentry_unhash);
4429 EXPORT_SYMBOL(generic_readlink);