]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry;
1607 inode_lock(dir->d_inode);
1608 dentry = d_lookup(dir, name);
1609 if (unlikely(dentry)) {
1610 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611 !(flags & LOOKUP_NO_REVAL)) {
1612 int error = d_revalidate(dentry, flags);
1613 if (unlikely(error <= 0)) {
1614 if (!error)
1615 d_invalidate(dentry);
1616 dput(dentry);
1617 dentry = ERR_PTR(error);
1618 }
1619 }
1620 if (dentry) {
1621 inode_unlock(dir->d_inode);
1622 return dentry;
1623 }
1624 }
1625 dentry = d_alloc(dir, name);
1626 if (unlikely(!dentry)) {
1627 inode_unlock(dir->d_inode);
1628 return ERR_PTR(-ENOMEM);
1629 }
1630 dentry = lookup_real(dir->d_inode, dentry, flags);
1631 inode_unlock(dir->d_inode);
1632 return dentry;
1633 }
1634
1635 static inline int may_lookup(struct nameidata *nd)
1636 {
1637 if (nd->flags & LOOKUP_RCU) {
1638 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639 if (err != -ECHILD)
1640 return err;
1641 if (unlazy_walk(nd, NULL, 0))
1642 return -ECHILD;
1643 }
1644 return inode_permission(nd->inode, MAY_EXEC);
1645 }
1646
1647 static inline int handle_dots(struct nameidata *nd, int type)
1648 {
1649 if (type == LAST_DOTDOT) {
1650 if (!nd->root.mnt)
1651 set_root(nd);
1652 if (nd->flags & LOOKUP_RCU) {
1653 return follow_dotdot_rcu(nd);
1654 } else
1655 return follow_dotdot(nd);
1656 }
1657 return 0;
1658 }
1659
1660 static int pick_link(struct nameidata *nd, struct path *link,
1661 struct inode *inode, unsigned seq)
1662 {
1663 int error;
1664 struct saved *last;
1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666 path_to_nameidata(link, nd);
1667 return -ELOOP;
1668 }
1669 if (!(nd->flags & LOOKUP_RCU)) {
1670 if (link->mnt == nd->path.mnt)
1671 mntget(link->mnt);
1672 }
1673 error = nd_alloc_stack(nd);
1674 if (unlikely(error)) {
1675 if (error == -ECHILD) {
1676 if (unlikely(unlazy_link(nd, link, seq)))
1677 return -ECHILD;
1678 error = nd_alloc_stack(nd);
1679 }
1680 if (error) {
1681 path_put(link);
1682 return error;
1683 }
1684 }
1685
1686 last = nd->stack + nd->depth++;
1687 last->link = *link;
1688 clear_delayed_call(&last->done);
1689 nd->link_inode = inode;
1690 last->seq = seq;
1691 return 1;
1692 }
1693
1694 /*
1695 * Do we need to follow links? We _really_ want to be able
1696 * to do this check without having to look at inode->i_op,
1697 * so we keep a cache of "no, this doesn't need follow_link"
1698 * for the common case.
1699 */
1700 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701 int follow,
1702 struct inode *inode, unsigned seq)
1703 {
1704 if (likely(!d_is_symlink(link->dentry)))
1705 return 0;
1706 if (!follow)
1707 return 0;
1708 /* make sure that d_is_symlink above matches inode */
1709 if (nd->flags & LOOKUP_RCU) {
1710 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711 return -ECHILD;
1712 }
1713 return pick_link(nd, link, inode, seq);
1714 }
1715
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720 struct path path;
1721 struct inode *inode;
1722 unsigned seq;
1723 int err;
1724 /*
1725 * "." and ".." are special - ".." especially so because it has
1726 * to be able to know about the current root directory and
1727 * parent relationships.
1728 */
1729 if (unlikely(nd->last_type != LAST_NORM)) {
1730 err = handle_dots(nd, nd->last_type);
1731 if (flags & WALK_PUT)
1732 put_link(nd);
1733 return err;
1734 }
1735 err = lookup_fast(nd, &path, &inode, &seq);
1736 if (unlikely(err <= 0)) {
1737 if (err < 0)
1738 return err;
1739 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740 nd->flags);
1741 if (IS_ERR(path.dentry))
1742 return PTR_ERR(path.dentry);
1743
1744 path.mnt = nd->path.mnt;
1745 err = follow_managed(&path, nd);
1746 if (unlikely(err < 0))
1747 return err;
1748
1749 if (unlikely(d_is_negative(path.dentry))) {
1750 path_to_nameidata(&path, nd);
1751 return -ENOENT;
1752 }
1753
1754 seq = 0; /* we are already out of RCU mode */
1755 inode = d_backing_inode(path.dentry);
1756 }
1757
1758 if (flags & WALK_PUT)
1759 put_link(nd);
1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761 if (unlikely(err))
1762 return err;
1763 path_to_nameidata(&path, nd);
1764 nd->inode = inode;
1765 nd->seq = seq;
1766 return 0;
1767 }
1768
1769 /*
1770 * We can do the critical dentry name comparison and hashing
1771 * operations one word at a time, but we are limited to:
1772 *
1773 * - Architectures with fast unaligned word accesses. We could
1774 * do a "get_unaligned()" if this helps and is sufficiently
1775 * fast.
1776 *
1777 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1778 * do not trap on the (extremely unlikely) case of a page
1779 * crossing operation.
1780 *
1781 * - Furthermore, we need an efficient 64-bit compile for the
1782 * 64-bit case in order to generate the "number of bytes in
1783 * the final mask". Again, that could be replaced with a
1784 * efficient population count instruction or similar.
1785 */
1786 #ifdef CONFIG_DCACHE_WORD_ACCESS
1787
1788 #include <asm/word-at-a-time.h>
1789
1790 #ifdef CONFIG_64BIT
1791
1792 static inline unsigned int fold_hash(unsigned long hash)
1793 {
1794 return hash_64(hash, 32);
1795 }
1796
1797 /*
1798 * This is George Marsaglia's XORSHIFT generator.
1799 * It implements a maximum-period LFSR in only a few
1800 * instructions. It also has the property (required
1801 * by hash_name()) that mix_hash(0) = 0.
1802 */
1803 static inline unsigned long mix_hash(unsigned long hash)
1804 {
1805 hash ^= hash << 13;
1806 hash ^= hash >> 7;
1807 hash ^= hash << 17;
1808 return hash;
1809 }
1810
1811 #else /* 32-bit case */
1812
1813 #define fold_hash(x) (x)
1814
1815 static inline unsigned long mix_hash(unsigned long hash)
1816 {
1817 hash ^= hash << 13;
1818 hash ^= hash >> 17;
1819 hash ^= hash << 5;
1820 return hash;
1821 }
1822
1823 #endif
1824
1825 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1826 {
1827 unsigned long a, hash = 0;
1828
1829 for (;;) {
1830 a = load_unaligned_zeropad(name);
1831 if (len < sizeof(unsigned long))
1832 break;
1833 hash = mix_hash(hash + a);
1834 name += sizeof(unsigned long);
1835 len -= sizeof(unsigned long);
1836 if (!len)
1837 goto done;
1838 }
1839 hash += a & bytemask_from_count(len);
1840 done:
1841 return fold_hash(hash);
1842 }
1843 EXPORT_SYMBOL(full_name_hash);
1844
1845 /*
1846 * Calculate the length and hash of the path component, and
1847 * return the "hash_len" as the result.
1848 */
1849 static inline u64 hash_name(const char *name)
1850 {
1851 unsigned long a, b, adata, bdata, mask, hash, len;
1852 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1853
1854 hash = a = 0;
1855 len = -sizeof(unsigned long);
1856 do {
1857 hash = mix_hash(hash + a);
1858 len += sizeof(unsigned long);
1859 a = load_unaligned_zeropad(name+len);
1860 b = a ^ REPEAT_BYTE('/');
1861 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1862
1863 adata = prep_zero_mask(a, adata, &constants);
1864 bdata = prep_zero_mask(b, bdata, &constants);
1865
1866 mask = create_zero_mask(adata | bdata);
1867
1868 hash += a & zero_bytemask(mask);
1869 len += find_zero(mask);
1870 return hashlen_create(fold_hash(hash), len);
1871 }
1872
1873 #else
1874
1875 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1876 {
1877 unsigned long hash = init_name_hash();
1878 while (len--)
1879 hash = partial_name_hash(*name++, hash);
1880 return end_name_hash(hash);
1881 }
1882 EXPORT_SYMBOL(full_name_hash);
1883
1884 /*
1885 * We know there's a real path component here of at least
1886 * one character.
1887 */
1888 static inline u64 hash_name(const char *name)
1889 {
1890 unsigned long hash = init_name_hash();
1891 unsigned long len = 0, c;
1892
1893 c = (unsigned char)*name;
1894 do {
1895 len++;
1896 hash = partial_name_hash(c, hash);
1897 c = (unsigned char)name[len];
1898 } while (c && c != '/');
1899 return hashlen_create(end_name_hash(hash), len);
1900 }
1901
1902 #endif
1903
1904 /*
1905 * Name resolution.
1906 * This is the basic name resolution function, turning a pathname into
1907 * the final dentry. We expect 'base' to be positive and a directory.
1908 *
1909 * Returns 0 and nd will have valid dentry and mnt on success.
1910 * Returns error and drops reference to input namei data on failure.
1911 */
1912 static int link_path_walk(const char *name, struct nameidata *nd)
1913 {
1914 int err;
1915
1916 while (*name=='/')
1917 name++;
1918 if (!*name)
1919 return 0;
1920
1921 /* At this point we know we have a real path component. */
1922 for(;;) {
1923 u64 hash_len;
1924 int type;
1925
1926 err = may_lookup(nd);
1927 if (err)
1928 return err;
1929
1930 hash_len = hash_name(name);
1931
1932 type = LAST_NORM;
1933 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1934 case 2:
1935 if (name[1] == '.') {
1936 type = LAST_DOTDOT;
1937 nd->flags |= LOOKUP_JUMPED;
1938 }
1939 break;
1940 case 1:
1941 type = LAST_DOT;
1942 }
1943 if (likely(type == LAST_NORM)) {
1944 struct dentry *parent = nd->path.dentry;
1945 nd->flags &= ~LOOKUP_JUMPED;
1946 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1947 struct qstr this = { { .hash_len = hash_len }, .name = name };
1948 err = parent->d_op->d_hash(parent, &this);
1949 if (err < 0)
1950 return err;
1951 hash_len = this.hash_len;
1952 name = this.name;
1953 }
1954 }
1955
1956 nd->last.hash_len = hash_len;
1957 nd->last.name = name;
1958 nd->last_type = type;
1959
1960 name += hashlen_len(hash_len);
1961 if (!*name)
1962 goto OK;
1963 /*
1964 * If it wasn't NUL, we know it was '/'. Skip that
1965 * slash, and continue until no more slashes.
1966 */
1967 do {
1968 name++;
1969 } while (unlikely(*name == '/'));
1970 if (unlikely(!*name)) {
1971 OK:
1972 /* pathname body, done */
1973 if (!nd->depth)
1974 return 0;
1975 name = nd->stack[nd->depth - 1].name;
1976 /* trailing symlink, done */
1977 if (!name)
1978 return 0;
1979 /* last component of nested symlink */
1980 err = walk_component(nd, WALK_GET | WALK_PUT);
1981 } else {
1982 err = walk_component(nd, WALK_GET);
1983 }
1984 if (err < 0)
1985 return err;
1986
1987 if (err) {
1988 const char *s = get_link(nd);
1989
1990 if (IS_ERR(s))
1991 return PTR_ERR(s);
1992 err = 0;
1993 if (unlikely(!s)) {
1994 /* jumped */
1995 put_link(nd);
1996 } else {
1997 nd->stack[nd->depth - 1].name = name;
1998 name = s;
1999 continue;
2000 }
2001 }
2002 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2003 if (nd->flags & LOOKUP_RCU) {
2004 if (unlazy_walk(nd, NULL, 0))
2005 return -ECHILD;
2006 }
2007 return -ENOTDIR;
2008 }
2009 }
2010 }
2011
2012 static const char *path_init(struct nameidata *nd, unsigned flags)
2013 {
2014 int retval = 0;
2015 const char *s = nd->name->name;
2016
2017 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2018 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2019 nd->depth = 0;
2020 if (flags & LOOKUP_ROOT) {
2021 struct dentry *root = nd->root.dentry;
2022 struct inode *inode = root->d_inode;
2023 if (*s) {
2024 if (!d_can_lookup(root))
2025 return ERR_PTR(-ENOTDIR);
2026 retval = inode_permission(inode, MAY_EXEC);
2027 if (retval)
2028 return ERR_PTR(retval);
2029 }
2030 nd->path = nd->root;
2031 nd->inode = inode;
2032 if (flags & LOOKUP_RCU) {
2033 rcu_read_lock();
2034 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2035 nd->root_seq = nd->seq;
2036 nd->m_seq = read_seqbegin(&mount_lock);
2037 } else {
2038 path_get(&nd->path);
2039 }
2040 return s;
2041 }
2042
2043 nd->root.mnt = NULL;
2044 nd->path.mnt = NULL;
2045 nd->path.dentry = NULL;
2046
2047 nd->m_seq = read_seqbegin(&mount_lock);
2048 if (*s == '/') {
2049 if (flags & LOOKUP_RCU)
2050 rcu_read_lock();
2051 set_root(nd);
2052 if (likely(!nd_jump_root(nd)))
2053 return s;
2054 nd->root.mnt = NULL;
2055 rcu_read_unlock();
2056 return ERR_PTR(-ECHILD);
2057 } else if (nd->dfd == AT_FDCWD) {
2058 if (flags & LOOKUP_RCU) {
2059 struct fs_struct *fs = current->fs;
2060 unsigned seq;
2061
2062 rcu_read_lock();
2063
2064 do {
2065 seq = read_seqcount_begin(&fs->seq);
2066 nd->path = fs->pwd;
2067 nd->inode = nd->path.dentry->d_inode;
2068 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2069 } while (read_seqcount_retry(&fs->seq, seq));
2070 } else {
2071 get_fs_pwd(current->fs, &nd->path);
2072 nd->inode = nd->path.dentry->d_inode;
2073 }
2074 return s;
2075 } else {
2076 /* Caller must check execute permissions on the starting path component */
2077 struct fd f = fdget_raw(nd->dfd);
2078 struct dentry *dentry;
2079
2080 if (!f.file)
2081 return ERR_PTR(-EBADF);
2082
2083 dentry = f.file->f_path.dentry;
2084
2085 if (*s) {
2086 if (!d_can_lookup(dentry)) {
2087 fdput(f);
2088 return ERR_PTR(-ENOTDIR);
2089 }
2090 }
2091
2092 nd->path = f.file->f_path;
2093 if (flags & LOOKUP_RCU) {
2094 rcu_read_lock();
2095 nd->inode = nd->path.dentry->d_inode;
2096 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2097 } else {
2098 path_get(&nd->path);
2099 nd->inode = nd->path.dentry->d_inode;
2100 }
2101 fdput(f);
2102 return s;
2103 }
2104 }
2105
2106 static const char *trailing_symlink(struct nameidata *nd)
2107 {
2108 const char *s;
2109 int error = may_follow_link(nd);
2110 if (unlikely(error))
2111 return ERR_PTR(error);
2112 nd->flags |= LOOKUP_PARENT;
2113 nd->stack[0].name = NULL;
2114 s = get_link(nd);
2115 return s ? s : "";
2116 }
2117
2118 static inline int lookup_last(struct nameidata *nd)
2119 {
2120 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2121 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2122
2123 nd->flags &= ~LOOKUP_PARENT;
2124 return walk_component(nd,
2125 nd->flags & LOOKUP_FOLLOW
2126 ? nd->depth
2127 ? WALK_PUT | WALK_GET
2128 : WALK_GET
2129 : 0);
2130 }
2131
2132 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2133 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2134 {
2135 const char *s = path_init(nd, flags);
2136 int err;
2137
2138 if (IS_ERR(s))
2139 return PTR_ERR(s);
2140 while (!(err = link_path_walk(s, nd))
2141 && ((err = lookup_last(nd)) > 0)) {
2142 s = trailing_symlink(nd);
2143 if (IS_ERR(s)) {
2144 err = PTR_ERR(s);
2145 break;
2146 }
2147 }
2148 if (!err)
2149 err = complete_walk(nd);
2150
2151 if (!err && nd->flags & LOOKUP_DIRECTORY)
2152 if (!d_can_lookup(nd->path.dentry))
2153 err = -ENOTDIR;
2154 if (!err) {
2155 *path = nd->path;
2156 nd->path.mnt = NULL;
2157 nd->path.dentry = NULL;
2158 }
2159 terminate_walk(nd);
2160 return err;
2161 }
2162
2163 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2164 struct path *path, struct path *root)
2165 {
2166 int retval;
2167 struct nameidata nd;
2168 if (IS_ERR(name))
2169 return PTR_ERR(name);
2170 if (unlikely(root)) {
2171 nd.root = *root;
2172 flags |= LOOKUP_ROOT;
2173 }
2174 set_nameidata(&nd, dfd, name);
2175 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2176 if (unlikely(retval == -ECHILD))
2177 retval = path_lookupat(&nd, flags, path);
2178 if (unlikely(retval == -ESTALE))
2179 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2180
2181 if (likely(!retval))
2182 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2183 restore_nameidata();
2184 putname(name);
2185 return retval;
2186 }
2187
2188 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2189 static int path_parentat(struct nameidata *nd, unsigned flags,
2190 struct path *parent)
2191 {
2192 const char *s = path_init(nd, flags);
2193 int err;
2194 if (IS_ERR(s))
2195 return PTR_ERR(s);
2196 err = link_path_walk(s, nd);
2197 if (!err)
2198 err = complete_walk(nd);
2199 if (!err) {
2200 *parent = nd->path;
2201 nd->path.mnt = NULL;
2202 nd->path.dentry = NULL;
2203 }
2204 terminate_walk(nd);
2205 return err;
2206 }
2207
2208 static struct filename *filename_parentat(int dfd, struct filename *name,
2209 unsigned int flags, struct path *parent,
2210 struct qstr *last, int *type)
2211 {
2212 int retval;
2213 struct nameidata nd;
2214
2215 if (IS_ERR(name))
2216 return name;
2217 set_nameidata(&nd, dfd, name);
2218 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2219 if (unlikely(retval == -ECHILD))
2220 retval = path_parentat(&nd, flags, parent);
2221 if (unlikely(retval == -ESTALE))
2222 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2223 if (likely(!retval)) {
2224 *last = nd.last;
2225 *type = nd.last_type;
2226 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2227 } else {
2228 putname(name);
2229 name = ERR_PTR(retval);
2230 }
2231 restore_nameidata();
2232 return name;
2233 }
2234
2235 /* does lookup, returns the object with parent locked */
2236 struct dentry *kern_path_locked(const char *name, struct path *path)
2237 {
2238 struct filename *filename;
2239 struct dentry *d;
2240 struct qstr last;
2241 int type;
2242
2243 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2244 &last, &type);
2245 if (IS_ERR(filename))
2246 return ERR_CAST(filename);
2247 if (unlikely(type != LAST_NORM)) {
2248 path_put(path);
2249 putname(filename);
2250 return ERR_PTR(-EINVAL);
2251 }
2252 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2253 d = __lookup_hash(&last, path->dentry, 0);
2254 if (IS_ERR(d)) {
2255 inode_unlock(path->dentry->d_inode);
2256 path_put(path);
2257 }
2258 putname(filename);
2259 return d;
2260 }
2261
2262 int kern_path(const char *name, unsigned int flags, struct path *path)
2263 {
2264 return filename_lookup(AT_FDCWD, getname_kernel(name),
2265 flags, path, NULL);
2266 }
2267 EXPORT_SYMBOL(kern_path);
2268
2269 /**
2270 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2271 * @dentry: pointer to dentry of the base directory
2272 * @mnt: pointer to vfs mount of the base directory
2273 * @name: pointer to file name
2274 * @flags: lookup flags
2275 * @path: pointer to struct path to fill
2276 */
2277 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2278 const char *name, unsigned int flags,
2279 struct path *path)
2280 {
2281 struct path root = {.mnt = mnt, .dentry = dentry};
2282 /* the first argument of filename_lookup() is ignored with root */
2283 return filename_lookup(AT_FDCWD, getname_kernel(name),
2284 flags , path, &root);
2285 }
2286 EXPORT_SYMBOL(vfs_path_lookup);
2287
2288 /**
2289 * lookup_hash - lookup single pathname component on already hashed name
2290 * @name: name and hash to lookup
2291 * @base: base directory to lookup from
2292 *
2293 * The name must have been verified and hashed (see lookup_one_len()). Using
2294 * this after just full_name_hash() is unsafe.
2295 *
2296 * This function also doesn't check for search permission on base directory.
2297 *
2298 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2299 * doing.
2300 *
2301 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2302 */
2303 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2304 {
2305 struct dentry *ret;
2306
2307 ret = lookup_dcache(name, base, 0);
2308 if (!ret)
2309 ret = lookup_slow(name, base, 0);
2310
2311 return ret;
2312 }
2313 EXPORT_SYMBOL(lookup_hash);
2314
2315 /**
2316 * lookup_one_len - filesystem helper to lookup single pathname component
2317 * @name: pathname component to lookup
2318 * @base: base directory to lookup from
2319 * @len: maximum length @len should be interpreted to
2320 *
2321 * Note that this routine is purely a helper for filesystem usage and should
2322 * not be called by generic code.
2323 *
2324 * The caller must hold base->i_mutex.
2325 */
2326 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2327 {
2328 struct qstr this;
2329 unsigned int c;
2330 int err;
2331
2332 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2333
2334 this.name = name;
2335 this.len = len;
2336 this.hash = full_name_hash(name, len);
2337 if (!len)
2338 return ERR_PTR(-EACCES);
2339
2340 if (unlikely(name[0] == '.')) {
2341 if (len < 2 || (len == 2 && name[1] == '.'))
2342 return ERR_PTR(-EACCES);
2343 }
2344
2345 while (len--) {
2346 c = *(const unsigned char *)name++;
2347 if (c == '/' || c == '\0')
2348 return ERR_PTR(-EACCES);
2349 }
2350 /*
2351 * See if the low-level filesystem might want
2352 * to use its own hash..
2353 */
2354 if (base->d_flags & DCACHE_OP_HASH) {
2355 int err = base->d_op->d_hash(base, &this);
2356 if (err < 0)
2357 return ERR_PTR(err);
2358 }
2359
2360 err = inode_permission(base->d_inode, MAY_EXEC);
2361 if (err)
2362 return ERR_PTR(err);
2363
2364 return __lookup_hash(&this, base, 0);
2365 }
2366 EXPORT_SYMBOL(lookup_one_len);
2367
2368 /**
2369 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2370 * @name: pathname component to lookup
2371 * @base: base directory to lookup from
2372 * @len: maximum length @len should be interpreted to
2373 *
2374 * Note that this routine is purely a helper for filesystem usage and should
2375 * not be called by generic code.
2376 *
2377 * Unlike lookup_one_len, it should be called without the parent
2378 * i_mutex held, and will take the i_mutex itself if necessary.
2379 */
2380 struct dentry *lookup_one_len_unlocked(const char *name,
2381 struct dentry *base, int len)
2382 {
2383 struct qstr this;
2384 unsigned int c;
2385 int err;
2386
2387 this.name = name;
2388 this.len = len;
2389 this.hash = full_name_hash(name, len);
2390 if (!len)
2391 return ERR_PTR(-EACCES);
2392
2393 if (unlikely(name[0] == '.')) {
2394 if (len < 2 || (len == 2 && name[1] == '.'))
2395 return ERR_PTR(-EACCES);
2396 }
2397
2398 while (len--) {
2399 c = *(const unsigned char *)name++;
2400 if (c == '/' || c == '\0')
2401 return ERR_PTR(-EACCES);
2402 }
2403 /*
2404 * See if the low-level filesystem might want
2405 * to use its own hash..
2406 */
2407 if (base->d_flags & DCACHE_OP_HASH) {
2408 int err = base->d_op->d_hash(base, &this);
2409 if (err < 0)
2410 return ERR_PTR(err);
2411 }
2412
2413 err = inode_permission(base->d_inode, MAY_EXEC);
2414 if (err)
2415 return ERR_PTR(err);
2416
2417 return lookup_hash(&this, base);
2418 }
2419 EXPORT_SYMBOL(lookup_one_len_unlocked);
2420
2421 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2422 struct path *path, int *empty)
2423 {
2424 return filename_lookup(dfd, getname_flags(name, flags, empty),
2425 flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(user_path_at_empty);
2428
2429 /*
2430 * NB: most callers don't do anything directly with the reference to the
2431 * to struct filename, but the nd->last pointer points into the name string
2432 * allocated by getname. So we must hold the reference to it until all
2433 * path-walking is complete.
2434 */
2435 static inline struct filename *
2436 user_path_parent(int dfd, const char __user *path,
2437 struct path *parent,
2438 struct qstr *last,
2439 int *type,
2440 unsigned int flags)
2441 {
2442 /* only LOOKUP_REVAL is allowed in extra flags */
2443 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2444 parent, last, type);
2445 }
2446
2447 /**
2448 * mountpoint_last - look up last component for umount
2449 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2450 * @path: pointer to container for result
2451 *
2452 * This is a special lookup_last function just for umount. In this case, we
2453 * need to resolve the path without doing any revalidation.
2454 *
2455 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2456 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2457 * in almost all cases, this lookup will be served out of the dcache. The only
2458 * cases where it won't are if nd->last refers to a symlink or the path is
2459 * bogus and it doesn't exist.
2460 *
2461 * Returns:
2462 * -error: if there was an error during lookup. This includes -ENOENT if the
2463 * lookup found a negative dentry. The nd->path reference will also be
2464 * put in this case.
2465 *
2466 * 0: if we successfully resolved nd->path and found it to not to be a
2467 * symlink that needs to be followed. "path" will also be populated.
2468 * The nd->path reference will also be put.
2469 *
2470 * 1: if we successfully resolved nd->last and found it to be a symlink
2471 * that needs to be followed. "path" will be populated with the path
2472 * to the link, and nd->path will *not* be put.
2473 */
2474 static int
2475 mountpoint_last(struct nameidata *nd, struct path *path)
2476 {
2477 int error = 0;
2478 struct dentry *dentry;
2479 struct dentry *dir = nd->path.dentry;
2480
2481 /* If we're in rcuwalk, drop out of it to handle last component */
2482 if (nd->flags & LOOKUP_RCU) {
2483 if (unlazy_walk(nd, NULL, 0))
2484 return -ECHILD;
2485 }
2486
2487 nd->flags &= ~LOOKUP_PARENT;
2488
2489 if (unlikely(nd->last_type != LAST_NORM)) {
2490 error = handle_dots(nd, nd->last_type);
2491 if (error)
2492 return error;
2493 dentry = dget(nd->path.dentry);
2494 } else {
2495 dentry = d_lookup(dir, &nd->last);
2496 if (!dentry) {
2497 /*
2498 * No cached dentry. Mounted dentries are pinned in the
2499 * cache, so that means that this dentry is probably
2500 * a symlink or the path doesn't actually point
2501 * to a mounted dentry.
2502 */
2503 dentry = lookup_slow(&nd->last, dir,
2504 nd->flags | LOOKUP_NO_REVAL);
2505 if (IS_ERR(dentry))
2506 return PTR_ERR(dentry);
2507 }
2508 }
2509 if (d_is_negative(dentry)) {
2510 dput(dentry);
2511 return -ENOENT;
2512 }
2513 if (nd->depth)
2514 put_link(nd);
2515 path->dentry = dentry;
2516 path->mnt = nd->path.mnt;
2517 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2518 d_backing_inode(dentry), 0);
2519 if (unlikely(error))
2520 return error;
2521 mntget(path->mnt);
2522 follow_mount(path);
2523 return 0;
2524 }
2525
2526 /**
2527 * path_mountpoint - look up a path to be umounted
2528 * @nd: lookup context
2529 * @flags: lookup flags
2530 * @path: pointer to container for result
2531 *
2532 * Look up the given name, but don't attempt to revalidate the last component.
2533 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2534 */
2535 static int
2536 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2537 {
2538 const char *s = path_init(nd, flags);
2539 int err;
2540 if (IS_ERR(s))
2541 return PTR_ERR(s);
2542 while (!(err = link_path_walk(s, nd)) &&
2543 (err = mountpoint_last(nd, path)) > 0) {
2544 s = trailing_symlink(nd);
2545 if (IS_ERR(s)) {
2546 err = PTR_ERR(s);
2547 break;
2548 }
2549 }
2550 terminate_walk(nd);
2551 return err;
2552 }
2553
2554 static int
2555 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2556 unsigned int flags)
2557 {
2558 struct nameidata nd;
2559 int error;
2560 if (IS_ERR(name))
2561 return PTR_ERR(name);
2562 set_nameidata(&nd, dfd, name);
2563 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2564 if (unlikely(error == -ECHILD))
2565 error = path_mountpoint(&nd, flags, path);
2566 if (unlikely(error == -ESTALE))
2567 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2568 if (likely(!error))
2569 audit_inode(name, path->dentry, 0);
2570 restore_nameidata();
2571 putname(name);
2572 return error;
2573 }
2574
2575 /**
2576 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2577 * @dfd: directory file descriptor
2578 * @name: pathname from userland
2579 * @flags: lookup flags
2580 * @path: pointer to container to hold result
2581 *
2582 * A umount is a special case for path walking. We're not actually interested
2583 * in the inode in this situation, and ESTALE errors can be a problem. We
2584 * simply want track down the dentry and vfsmount attached at the mountpoint
2585 * and avoid revalidating the last component.
2586 *
2587 * Returns 0 and populates "path" on success.
2588 */
2589 int
2590 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2591 struct path *path)
2592 {
2593 return filename_mountpoint(dfd, getname(name), path, flags);
2594 }
2595
2596 int
2597 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2598 unsigned int flags)
2599 {
2600 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2601 }
2602 EXPORT_SYMBOL(kern_path_mountpoint);
2603
2604 int __check_sticky(struct inode *dir, struct inode *inode)
2605 {
2606 kuid_t fsuid = current_fsuid();
2607
2608 if (uid_eq(inode->i_uid, fsuid))
2609 return 0;
2610 if (uid_eq(dir->i_uid, fsuid))
2611 return 0;
2612 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2613 }
2614 EXPORT_SYMBOL(__check_sticky);
2615
2616 /*
2617 * Check whether we can remove a link victim from directory dir, check
2618 * whether the type of victim is right.
2619 * 1. We can't do it if dir is read-only (done in permission())
2620 * 2. We should have write and exec permissions on dir
2621 * 3. We can't remove anything from append-only dir
2622 * 4. We can't do anything with immutable dir (done in permission())
2623 * 5. If the sticky bit on dir is set we should either
2624 * a. be owner of dir, or
2625 * b. be owner of victim, or
2626 * c. have CAP_FOWNER capability
2627 * 6. If the victim is append-only or immutable we can't do antyhing with
2628 * links pointing to it.
2629 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2630 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2631 * 9. We can't remove a root or mountpoint.
2632 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2633 * nfs_async_unlink().
2634 */
2635 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2636 {
2637 struct inode *inode = d_backing_inode(victim);
2638 int error;
2639
2640 if (d_is_negative(victim))
2641 return -ENOENT;
2642 BUG_ON(!inode);
2643
2644 BUG_ON(victim->d_parent->d_inode != dir);
2645 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2646
2647 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2648 if (error)
2649 return error;
2650 if (IS_APPEND(dir))
2651 return -EPERM;
2652
2653 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2654 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2655 return -EPERM;
2656 if (isdir) {
2657 if (!d_is_dir(victim))
2658 return -ENOTDIR;
2659 if (IS_ROOT(victim))
2660 return -EBUSY;
2661 } else if (d_is_dir(victim))
2662 return -EISDIR;
2663 if (IS_DEADDIR(dir))
2664 return -ENOENT;
2665 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2666 return -EBUSY;
2667 return 0;
2668 }
2669
2670 /* Check whether we can create an object with dentry child in directory
2671 * dir.
2672 * 1. We can't do it if child already exists (open has special treatment for
2673 * this case, but since we are inlined it's OK)
2674 * 2. We can't do it if dir is read-only (done in permission())
2675 * 3. We should have write and exec permissions on dir
2676 * 4. We can't do it if dir is immutable (done in permission())
2677 */
2678 static inline int may_create(struct inode *dir, struct dentry *child)
2679 {
2680 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2681 if (child->d_inode)
2682 return -EEXIST;
2683 if (IS_DEADDIR(dir))
2684 return -ENOENT;
2685 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2686 }
2687
2688 /*
2689 * p1 and p2 should be directories on the same fs.
2690 */
2691 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2692 {
2693 struct dentry *p;
2694
2695 if (p1 == p2) {
2696 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2697 return NULL;
2698 }
2699
2700 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2701
2702 p = d_ancestor(p2, p1);
2703 if (p) {
2704 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2705 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2706 return p;
2707 }
2708
2709 p = d_ancestor(p1, p2);
2710 if (p) {
2711 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2712 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2713 return p;
2714 }
2715
2716 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2717 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2718 return NULL;
2719 }
2720 EXPORT_SYMBOL(lock_rename);
2721
2722 void unlock_rename(struct dentry *p1, struct dentry *p2)
2723 {
2724 inode_unlock(p1->d_inode);
2725 if (p1 != p2) {
2726 inode_unlock(p2->d_inode);
2727 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2728 }
2729 }
2730 EXPORT_SYMBOL(unlock_rename);
2731
2732 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2733 bool want_excl)
2734 {
2735 int error = may_create(dir, dentry);
2736 if (error)
2737 return error;
2738
2739 if (!dir->i_op->create)
2740 return -EACCES; /* shouldn't it be ENOSYS? */
2741 mode &= S_IALLUGO;
2742 mode |= S_IFREG;
2743 error = security_inode_create(dir, dentry, mode);
2744 if (error)
2745 return error;
2746 error = dir->i_op->create(dir, dentry, mode, want_excl);
2747 if (!error)
2748 fsnotify_create(dir, dentry);
2749 return error;
2750 }
2751 EXPORT_SYMBOL(vfs_create);
2752
2753 static int may_open(struct path *path, int acc_mode, int flag)
2754 {
2755 struct dentry *dentry = path->dentry;
2756 struct inode *inode = dentry->d_inode;
2757 int error;
2758
2759 if (!inode)
2760 return -ENOENT;
2761
2762 switch (inode->i_mode & S_IFMT) {
2763 case S_IFLNK:
2764 return -ELOOP;
2765 case S_IFDIR:
2766 if (acc_mode & MAY_WRITE)
2767 return -EISDIR;
2768 break;
2769 case S_IFBLK:
2770 case S_IFCHR:
2771 if (path->mnt->mnt_flags & MNT_NODEV)
2772 return -EACCES;
2773 /*FALLTHRU*/
2774 case S_IFIFO:
2775 case S_IFSOCK:
2776 flag &= ~O_TRUNC;
2777 break;
2778 }
2779
2780 error = inode_permission(inode, MAY_OPEN | acc_mode);
2781 if (error)
2782 return error;
2783
2784 /*
2785 * An append-only file must be opened in append mode for writing.
2786 */
2787 if (IS_APPEND(inode)) {
2788 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2789 return -EPERM;
2790 if (flag & O_TRUNC)
2791 return -EPERM;
2792 }
2793
2794 /* O_NOATIME can only be set by the owner or superuser */
2795 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2796 return -EPERM;
2797
2798 return 0;
2799 }
2800
2801 static int handle_truncate(struct file *filp)
2802 {
2803 struct path *path = &filp->f_path;
2804 struct inode *inode = path->dentry->d_inode;
2805 int error = get_write_access(inode);
2806 if (error)
2807 return error;
2808 /*
2809 * Refuse to truncate files with mandatory locks held on them.
2810 */
2811 error = locks_verify_locked(filp);
2812 if (!error)
2813 error = security_path_truncate(path);
2814 if (!error) {
2815 error = do_truncate(path->dentry, 0,
2816 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2817 filp);
2818 }
2819 put_write_access(inode);
2820 return error;
2821 }
2822
2823 static inline int open_to_namei_flags(int flag)
2824 {
2825 if ((flag & O_ACCMODE) == 3)
2826 flag--;
2827 return flag;
2828 }
2829
2830 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2831 {
2832 int error = security_path_mknod(dir, dentry, mode, 0);
2833 if (error)
2834 return error;
2835
2836 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2837 if (error)
2838 return error;
2839
2840 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2841 }
2842
2843 /*
2844 * Attempt to atomically look up, create and open a file from a negative
2845 * dentry.
2846 *
2847 * Returns 0 if successful. The file will have been created and attached to
2848 * @file by the filesystem calling finish_open().
2849 *
2850 * Returns 1 if the file was looked up only or didn't need creating. The
2851 * caller will need to perform the open themselves. @path will have been
2852 * updated to point to the new dentry. This may be negative.
2853 *
2854 * Returns an error code otherwise.
2855 */
2856 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2857 struct path *path, struct file *file,
2858 const struct open_flags *op,
2859 bool got_write, bool need_lookup,
2860 int *opened)
2861 {
2862 struct inode *dir = nd->path.dentry->d_inode;
2863 unsigned open_flag = open_to_namei_flags(op->open_flag);
2864 umode_t mode;
2865 int error;
2866 int acc_mode;
2867 int create_error = 0;
2868 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2869 bool excl;
2870
2871 BUG_ON(dentry->d_inode);
2872
2873 /* Don't create child dentry for a dead directory. */
2874 if (unlikely(IS_DEADDIR(dir))) {
2875 error = -ENOENT;
2876 goto out;
2877 }
2878
2879 mode = op->mode;
2880 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2881 mode &= ~current_umask();
2882
2883 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2884 if (excl)
2885 open_flag &= ~O_TRUNC;
2886
2887 /*
2888 * Checking write permission is tricky, bacuse we don't know if we are
2889 * going to actually need it: O_CREAT opens should work as long as the
2890 * file exists. But checking existence breaks atomicity. The trick is
2891 * to check access and if not granted clear O_CREAT from the flags.
2892 *
2893 * Another problem is returing the "right" error value (e.g. for an
2894 * O_EXCL open we want to return EEXIST not EROFS).
2895 */
2896 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2897 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2898 if (!(open_flag & O_CREAT)) {
2899 /*
2900 * No O_CREATE -> atomicity not a requirement -> fall
2901 * back to lookup + open
2902 */
2903 goto no_open;
2904 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2905 /* Fall back and fail with the right error */
2906 create_error = -EROFS;
2907 goto no_open;
2908 } else {
2909 /* No side effects, safe to clear O_CREAT */
2910 create_error = -EROFS;
2911 open_flag &= ~O_CREAT;
2912 }
2913 }
2914
2915 if (open_flag & O_CREAT) {
2916 error = may_o_create(&nd->path, dentry, mode);
2917 if (error) {
2918 create_error = error;
2919 if (open_flag & O_EXCL)
2920 goto no_open;
2921 open_flag &= ~O_CREAT;
2922 }
2923 }
2924
2925 if (nd->flags & LOOKUP_DIRECTORY)
2926 open_flag |= O_DIRECTORY;
2927
2928 file->f_path.dentry = DENTRY_NOT_SET;
2929 file->f_path.mnt = nd->path.mnt;
2930 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2931 opened);
2932 if (error < 0) {
2933 if (create_error && error == -ENOENT)
2934 error = create_error;
2935 goto out;
2936 }
2937
2938 if (error) { /* returned 1, that is */
2939 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2940 error = -EIO;
2941 goto out;
2942 }
2943 if (file->f_path.dentry) {
2944 dput(dentry);
2945 dentry = file->f_path.dentry;
2946 }
2947 if (*opened & FILE_CREATED)
2948 fsnotify_create(dir, dentry);
2949 if (!dentry->d_inode) {
2950 WARN_ON(*opened & FILE_CREATED);
2951 if (create_error) {
2952 error = create_error;
2953 goto out;
2954 }
2955 } else {
2956 if (excl && !(*opened & FILE_CREATED)) {
2957 error = -EEXIST;
2958 goto out;
2959 }
2960 }
2961 goto looked_up;
2962 }
2963
2964 /*
2965 * We didn't have the inode before the open, so check open permission
2966 * here.
2967 */
2968 acc_mode = op->acc_mode;
2969 if (*opened & FILE_CREATED) {
2970 WARN_ON(!(open_flag & O_CREAT));
2971 fsnotify_create(dir, dentry);
2972 acc_mode = 0;
2973 }
2974 error = may_open(&file->f_path, acc_mode, open_flag);
2975 if (error)
2976 fput(file);
2977
2978 out:
2979 dput(dentry);
2980 return error;
2981
2982 no_open:
2983 if (need_lookup) {
2984 dentry = lookup_real(dir, dentry, nd->flags);
2985 if (IS_ERR(dentry))
2986 return PTR_ERR(dentry);
2987 }
2988 if (create_error && !dentry->d_inode) {
2989 error = create_error;
2990 goto out;
2991 }
2992 looked_up:
2993 path->dentry = dentry;
2994 path->mnt = nd->path.mnt;
2995 return 1;
2996 }
2997
2998 /*
2999 * Look up and maybe create and open the last component.
3000 *
3001 * Must be called with i_mutex held on parent.
3002 *
3003 * Returns 0 if the file was successfully atomically created (if necessary) and
3004 * opened. In this case the file will be returned attached to @file.
3005 *
3006 * Returns 1 if the file was not completely opened at this time, though lookups
3007 * and creations will have been performed and the dentry returned in @path will
3008 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3009 * specified then a negative dentry may be returned.
3010 *
3011 * An error code is returned otherwise.
3012 *
3013 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3014 * cleared otherwise prior to returning.
3015 */
3016 static int lookup_open(struct nameidata *nd, struct path *path,
3017 struct file *file,
3018 const struct open_flags *op,
3019 bool got_write, int *opened)
3020 {
3021 struct dentry *dir = nd->path.dentry;
3022 struct inode *dir_inode = dir->d_inode;
3023 struct dentry *dentry;
3024 int error;
3025 bool need_lookup = false;
3026
3027 *opened &= ~FILE_CREATED;
3028 dentry = lookup_dcache(&nd->last, dir, nd->flags);
3029 if (IS_ERR(dentry))
3030 return PTR_ERR(dentry);
3031
3032 if (!dentry) {
3033 dentry = d_alloc(dir, &nd->last);
3034 if (unlikely(!dentry))
3035 return -ENOMEM;
3036 need_lookup = true;
3037 } else if (dentry->d_inode) {
3038 /* Cached positive dentry: will open in f_op->open */
3039 goto out_no_open;
3040 }
3041
3042 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3043 return atomic_open(nd, dentry, path, file, op, got_write,
3044 need_lookup, opened);
3045 }
3046
3047 if (need_lookup) {
3048 BUG_ON(dentry->d_inode);
3049
3050 dentry = lookup_real(dir_inode, dentry, nd->flags);
3051 if (IS_ERR(dentry))
3052 return PTR_ERR(dentry);
3053 }
3054
3055 /* Negative dentry, just create the file */
3056 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3057 umode_t mode = op->mode;
3058 if (!IS_POSIXACL(dir->d_inode))
3059 mode &= ~current_umask();
3060 /*
3061 * This write is needed to ensure that a
3062 * rw->ro transition does not occur between
3063 * the time when the file is created and when
3064 * a permanent write count is taken through
3065 * the 'struct file' in finish_open().
3066 */
3067 if (!got_write) {
3068 error = -EROFS;
3069 goto out_dput;
3070 }
3071 *opened |= FILE_CREATED;
3072 error = security_path_mknod(&nd->path, dentry, mode, 0);
3073 if (error)
3074 goto out_dput;
3075 error = vfs_create(dir->d_inode, dentry, mode,
3076 nd->flags & LOOKUP_EXCL);
3077 if (error)
3078 goto out_dput;
3079 }
3080 out_no_open:
3081 path->dentry = dentry;
3082 path->mnt = nd->path.mnt;
3083 return 1;
3084
3085 out_dput:
3086 dput(dentry);
3087 return error;
3088 }
3089
3090 /*
3091 * Handle the last step of open()
3092 */
3093 static int do_last(struct nameidata *nd,
3094 struct file *file, const struct open_flags *op,
3095 int *opened)
3096 {
3097 struct dentry *dir = nd->path.dentry;
3098 int open_flag = op->open_flag;
3099 bool will_truncate = (open_flag & O_TRUNC) != 0;
3100 bool got_write = false;
3101 int acc_mode = op->acc_mode;
3102 unsigned seq;
3103 struct inode *inode;
3104 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3105 struct path path;
3106 bool retried = false;
3107 int error;
3108
3109 nd->flags &= ~LOOKUP_PARENT;
3110 nd->flags |= op->intent;
3111
3112 if (nd->last_type != LAST_NORM) {
3113 error = handle_dots(nd, nd->last_type);
3114 if (unlikely(error))
3115 return error;
3116 goto finish_open;
3117 }
3118
3119 if (!(open_flag & O_CREAT)) {
3120 if (nd->last.name[nd->last.len])
3121 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3122 /* we _can_ be in RCU mode here */
3123 error = lookup_fast(nd, &path, &inode, &seq);
3124 if (likely(error > 0))
3125 goto finish_lookup;
3126
3127 if (error < 0)
3128 return error;
3129
3130 BUG_ON(nd->inode != dir->d_inode);
3131 BUG_ON(nd->flags & LOOKUP_RCU);
3132 } else {
3133 /* create side of things */
3134 /*
3135 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3136 * has been cleared when we got to the last component we are
3137 * about to look up
3138 */
3139 error = complete_walk(nd);
3140 if (error)
3141 return error;
3142
3143 audit_inode(nd->name, dir, LOOKUP_PARENT);
3144 /* trailing slashes? */
3145 if (unlikely(nd->last.name[nd->last.len]))
3146 return -EISDIR;
3147 }
3148
3149 retry_lookup:
3150 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3151 error = mnt_want_write(nd->path.mnt);
3152 if (!error)
3153 got_write = true;
3154 /*
3155 * do _not_ fail yet - we might not need that or fail with
3156 * a different error; let lookup_open() decide; we'll be
3157 * dropping this one anyway.
3158 */
3159 }
3160 inode_lock(dir->d_inode);
3161 error = lookup_open(nd, &path, file, op, got_write, opened);
3162 inode_unlock(dir->d_inode);
3163
3164 if (error <= 0) {
3165 if (error)
3166 goto out;
3167
3168 if ((*opened & FILE_CREATED) ||
3169 !S_ISREG(file_inode(file)->i_mode))
3170 will_truncate = false;
3171
3172 audit_inode(nd->name, file->f_path.dentry, 0);
3173 goto opened;
3174 }
3175
3176 if (*opened & FILE_CREATED) {
3177 /* Don't check for write permission, don't truncate */
3178 open_flag &= ~O_TRUNC;
3179 will_truncate = false;
3180 acc_mode = 0;
3181 path_to_nameidata(&path, nd);
3182 goto finish_open_created;
3183 }
3184
3185 /*
3186 * If atomic_open() acquired write access it is dropped now due to
3187 * possible mount and symlink following (this might be optimized away if
3188 * necessary...)
3189 */
3190 if (got_write) {
3191 mnt_drop_write(nd->path.mnt);
3192 got_write = false;
3193 }
3194
3195 if (unlikely(d_is_negative(path.dentry))) {
3196 path_to_nameidata(&path, nd);
3197 return -ENOENT;
3198 }
3199
3200 /*
3201 * create/update audit record if it already exists.
3202 */
3203 audit_inode(nd->name, path.dentry, 0);
3204
3205 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3206 path_to_nameidata(&path, nd);
3207 return -EEXIST;
3208 }
3209
3210 error = follow_managed(&path, nd);
3211 if (unlikely(error < 0))
3212 return error;
3213
3214 seq = 0; /* out of RCU mode, so the value doesn't matter */
3215 inode = d_backing_inode(path.dentry);
3216 finish_lookup:
3217 if (nd->depth)
3218 put_link(nd);
3219 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3220 inode, seq);
3221 if (unlikely(error))
3222 return error;
3223
3224 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3225 path_to_nameidata(&path, nd);
3226 } else {
3227 save_parent.dentry = nd->path.dentry;
3228 save_parent.mnt = mntget(path.mnt);
3229 nd->path.dentry = path.dentry;
3230
3231 }
3232 nd->inode = inode;
3233 nd->seq = seq;
3234 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3235 finish_open:
3236 error = complete_walk(nd);
3237 if (error) {
3238 path_put(&save_parent);
3239 return error;
3240 }
3241 audit_inode(nd->name, nd->path.dentry, 0);
3242 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3243 error = -ELOOP;
3244 goto out;
3245 }
3246 error = -EISDIR;
3247 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3248 goto out;
3249 error = -ENOTDIR;
3250 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3251 goto out;
3252 if (!d_is_reg(nd->path.dentry))
3253 will_truncate = false;
3254
3255 if (will_truncate) {
3256 error = mnt_want_write(nd->path.mnt);
3257 if (error)
3258 goto out;
3259 got_write = true;
3260 }
3261 finish_open_created:
3262 if (likely(!(open_flag & O_PATH))) {
3263 error = may_open(&nd->path, acc_mode, open_flag);
3264 if (error)
3265 goto out;
3266 }
3267 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3268 error = vfs_open(&nd->path, file, current_cred());
3269 if (!error) {
3270 *opened |= FILE_OPENED;
3271 } else {
3272 if (error == -EOPENSTALE)
3273 goto stale_open;
3274 goto out;
3275 }
3276 opened:
3277 error = open_check_o_direct(file);
3278 if (error)
3279 goto exit_fput;
3280 error = ima_file_check(file, op->acc_mode, *opened);
3281 if (error)
3282 goto exit_fput;
3283
3284 if (will_truncate) {
3285 error = handle_truncate(file);
3286 if (error)
3287 goto exit_fput;
3288 }
3289 out:
3290 if (unlikely(error > 0)) {
3291 WARN_ON(1);
3292 error = -EINVAL;
3293 }
3294 if (got_write)
3295 mnt_drop_write(nd->path.mnt);
3296 path_put(&save_parent);
3297 return error;
3298
3299 exit_fput:
3300 fput(file);
3301 goto out;
3302
3303 stale_open:
3304 /* If no saved parent or already retried then can't retry */
3305 if (!save_parent.dentry || retried)
3306 goto out;
3307
3308 BUG_ON(save_parent.dentry != dir);
3309 path_put(&nd->path);
3310 nd->path = save_parent;
3311 nd->inode = dir->d_inode;
3312 save_parent.mnt = NULL;
3313 save_parent.dentry = NULL;
3314 if (got_write) {
3315 mnt_drop_write(nd->path.mnt);
3316 got_write = false;
3317 }
3318 retried = true;
3319 goto retry_lookup;
3320 }
3321
3322 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3323 const struct open_flags *op,
3324 struct file *file, int *opened)
3325 {
3326 static const struct qstr name = QSTR_INIT("/", 1);
3327 struct dentry *child;
3328 struct inode *dir;
3329 struct path path;
3330 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3331 if (unlikely(error))
3332 return error;
3333 error = mnt_want_write(path.mnt);
3334 if (unlikely(error))
3335 goto out;
3336 dir = path.dentry->d_inode;
3337 /* we want directory to be writable */
3338 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3339 if (error)
3340 goto out2;
3341 if (!dir->i_op->tmpfile) {
3342 error = -EOPNOTSUPP;
3343 goto out2;
3344 }
3345 child = d_alloc(path.dentry, &name);
3346 if (unlikely(!child)) {
3347 error = -ENOMEM;
3348 goto out2;
3349 }
3350 dput(path.dentry);
3351 path.dentry = child;
3352 error = dir->i_op->tmpfile(dir, child, op->mode);
3353 if (error)
3354 goto out2;
3355 audit_inode(nd->name, child, 0);
3356 /* Don't check for other permissions, the inode was just created */
3357 error = may_open(&path, 0, op->open_flag);
3358 if (error)
3359 goto out2;
3360 file->f_path.mnt = path.mnt;
3361 error = finish_open(file, child, NULL, opened);
3362 if (error)
3363 goto out2;
3364 error = open_check_o_direct(file);
3365 if (error) {
3366 fput(file);
3367 } else if (!(op->open_flag & O_EXCL)) {
3368 struct inode *inode = file_inode(file);
3369 spin_lock(&inode->i_lock);
3370 inode->i_state |= I_LINKABLE;
3371 spin_unlock(&inode->i_lock);
3372 }
3373 out2:
3374 mnt_drop_write(path.mnt);
3375 out:
3376 path_put(&path);
3377 return error;
3378 }
3379
3380 static struct file *path_openat(struct nameidata *nd,
3381 const struct open_flags *op, unsigned flags)
3382 {
3383 const char *s;
3384 struct file *file;
3385 int opened = 0;
3386 int error;
3387
3388 file = get_empty_filp();
3389 if (IS_ERR(file))
3390 return file;
3391
3392 file->f_flags = op->open_flag;
3393
3394 if (unlikely(file->f_flags & __O_TMPFILE)) {
3395 error = do_tmpfile(nd, flags, op, file, &opened);
3396 goto out2;
3397 }
3398
3399 s = path_init(nd, flags);
3400 if (IS_ERR(s)) {
3401 put_filp(file);
3402 return ERR_CAST(s);
3403 }
3404 while (!(error = link_path_walk(s, nd)) &&
3405 (error = do_last(nd, file, op, &opened)) > 0) {
3406 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3407 s = trailing_symlink(nd);
3408 if (IS_ERR(s)) {
3409 error = PTR_ERR(s);
3410 break;
3411 }
3412 }
3413 terminate_walk(nd);
3414 out2:
3415 if (!(opened & FILE_OPENED)) {
3416 BUG_ON(!error);
3417 put_filp(file);
3418 }
3419 if (unlikely(error)) {
3420 if (error == -EOPENSTALE) {
3421 if (flags & LOOKUP_RCU)
3422 error = -ECHILD;
3423 else
3424 error = -ESTALE;
3425 }
3426 file = ERR_PTR(error);
3427 }
3428 return file;
3429 }
3430
3431 struct file *do_filp_open(int dfd, struct filename *pathname,
3432 const struct open_flags *op)
3433 {
3434 struct nameidata nd;
3435 int flags = op->lookup_flags;
3436 struct file *filp;
3437
3438 set_nameidata(&nd, dfd, pathname);
3439 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3440 if (unlikely(filp == ERR_PTR(-ECHILD)))
3441 filp = path_openat(&nd, op, flags);
3442 if (unlikely(filp == ERR_PTR(-ESTALE)))
3443 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3444 restore_nameidata();
3445 return filp;
3446 }
3447
3448 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3449 const char *name, const struct open_flags *op)
3450 {
3451 struct nameidata nd;
3452 struct file *file;
3453 struct filename *filename;
3454 int flags = op->lookup_flags | LOOKUP_ROOT;
3455
3456 nd.root.mnt = mnt;
3457 nd.root.dentry = dentry;
3458
3459 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3460 return ERR_PTR(-ELOOP);
3461
3462 filename = getname_kernel(name);
3463 if (IS_ERR(filename))
3464 return ERR_CAST(filename);
3465
3466 set_nameidata(&nd, -1, filename);
3467 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3468 if (unlikely(file == ERR_PTR(-ECHILD)))
3469 file = path_openat(&nd, op, flags);
3470 if (unlikely(file == ERR_PTR(-ESTALE)))
3471 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3472 restore_nameidata();
3473 putname(filename);
3474 return file;
3475 }
3476
3477 static struct dentry *filename_create(int dfd, struct filename *name,
3478 struct path *path, unsigned int lookup_flags)
3479 {
3480 struct dentry *dentry = ERR_PTR(-EEXIST);
3481 struct qstr last;
3482 int type;
3483 int err2;
3484 int error;
3485 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3486
3487 /*
3488 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3489 * other flags passed in are ignored!
3490 */
3491 lookup_flags &= LOOKUP_REVAL;
3492
3493 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3494 if (IS_ERR(name))
3495 return ERR_CAST(name);
3496
3497 /*
3498 * Yucky last component or no last component at all?
3499 * (foo/., foo/.., /////)
3500 */
3501 if (unlikely(type != LAST_NORM))
3502 goto out;
3503
3504 /* don't fail immediately if it's r/o, at least try to report other errors */
3505 err2 = mnt_want_write(path->mnt);
3506 /*
3507 * Do the final lookup.
3508 */
3509 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3510 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3511 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3512 if (IS_ERR(dentry))
3513 goto unlock;
3514
3515 error = -EEXIST;
3516 if (d_is_positive(dentry))
3517 goto fail;
3518
3519 /*
3520 * Special case - lookup gave negative, but... we had foo/bar/
3521 * From the vfs_mknod() POV we just have a negative dentry -
3522 * all is fine. Let's be bastards - you had / on the end, you've
3523 * been asking for (non-existent) directory. -ENOENT for you.
3524 */
3525 if (unlikely(!is_dir && last.name[last.len])) {
3526 error = -ENOENT;
3527 goto fail;
3528 }
3529 if (unlikely(err2)) {
3530 error = err2;
3531 goto fail;
3532 }
3533 putname(name);
3534 return dentry;
3535 fail:
3536 dput(dentry);
3537 dentry = ERR_PTR(error);
3538 unlock:
3539 inode_unlock(path->dentry->d_inode);
3540 if (!err2)
3541 mnt_drop_write(path->mnt);
3542 out:
3543 path_put(path);
3544 putname(name);
3545 return dentry;
3546 }
3547
3548 struct dentry *kern_path_create(int dfd, const char *pathname,
3549 struct path *path, unsigned int lookup_flags)
3550 {
3551 return filename_create(dfd, getname_kernel(pathname),
3552 path, lookup_flags);
3553 }
3554 EXPORT_SYMBOL(kern_path_create);
3555
3556 void done_path_create(struct path *path, struct dentry *dentry)
3557 {
3558 dput(dentry);
3559 inode_unlock(path->dentry->d_inode);
3560 mnt_drop_write(path->mnt);
3561 path_put(path);
3562 }
3563 EXPORT_SYMBOL(done_path_create);
3564
3565 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3566 struct path *path, unsigned int lookup_flags)
3567 {
3568 return filename_create(dfd, getname(pathname), path, lookup_flags);
3569 }
3570 EXPORT_SYMBOL(user_path_create);
3571
3572 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3573 {
3574 int error = may_create(dir, dentry);
3575
3576 if (error)
3577 return error;
3578
3579 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3580 return -EPERM;
3581
3582 if (!dir->i_op->mknod)
3583 return -EPERM;
3584
3585 error = devcgroup_inode_mknod(mode, dev);
3586 if (error)
3587 return error;
3588
3589 error = security_inode_mknod(dir, dentry, mode, dev);
3590 if (error)
3591 return error;
3592
3593 error = dir->i_op->mknod(dir, dentry, mode, dev);
3594 if (!error)
3595 fsnotify_create(dir, dentry);
3596 return error;
3597 }
3598 EXPORT_SYMBOL(vfs_mknod);
3599
3600 static int may_mknod(umode_t mode)
3601 {
3602 switch (mode & S_IFMT) {
3603 case S_IFREG:
3604 case S_IFCHR:
3605 case S_IFBLK:
3606 case S_IFIFO:
3607 case S_IFSOCK:
3608 case 0: /* zero mode translates to S_IFREG */
3609 return 0;
3610 case S_IFDIR:
3611 return -EPERM;
3612 default:
3613 return -EINVAL;
3614 }
3615 }
3616
3617 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3618 unsigned, dev)
3619 {
3620 struct dentry *dentry;
3621 struct path path;
3622 int error;
3623 unsigned int lookup_flags = 0;
3624
3625 error = may_mknod(mode);
3626 if (error)
3627 return error;
3628 retry:
3629 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3630 if (IS_ERR(dentry))
3631 return PTR_ERR(dentry);
3632
3633 if (!IS_POSIXACL(path.dentry->d_inode))
3634 mode &= ~current_umask();
3635 error = security_path_mknod(&path, dentry, mode, dev);
3636 if (error)
3637 goto out;
3638 switch (mode & S_IFMT) {
3639 case 0: case S_IFREG:
3640 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3641 break;
3642 case S_IFCHR: case S_IFBLK:
3643 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3644 new_decode_dev(dev));
3645 break;
3646 case S_IFIFO: case S_IFSOCK:
3647 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3648 break;
3649 }
3650 out:
3651 done_path_create(&path, dentry);
3652 if (retry_estale(error, lookup_flags)) {
3653 lookup_flags |= LOOKUP_REVAL;
3654 goto retry;
3655 }
3656 return error;
3657 }
3658
3659 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3660 {
3661 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3662 }
3663
3664 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3665 {
3666 int error = may_create(dir, dentry);
3667 unsigned max_links = dir->i_sb->s_max_links;
3668
3669 if (error)
3670 return error;
3671
3672 if (!dir->i_op->mkdir)
3673 return -EPERM;
3674
3675 mode &= (S_IRWXUGO|S_ISVTX);
3676 error = security_inode_mkdir(dir, dentry, mode);
3677 if (error)
3678 return error;
3679
3680 if (max_links && dir->i_nlink >= max_links)
3681 return -EMLINK;
3682
3683 error = dir->i_op->mkdir(dir, dentry, mode);
3684 if (!error)
3685 fsnotify_mkdir(dir, dentry);
3686 return error;
3687 }
3688 EXPORT_SYMBOL(vfs_mkdir);
3689
3690 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3691 {
3692 struct dentry *dentry;
3693 struct path path;
3694 int error;
3695 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3696
3697 retry:
3698 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3699 if (IS_ERR(dentry))
3700 return PTR_ERR(dentry);
3701
3702 if (!IS_POSIXACL(path.dentry->d_inode))
3703 mode &= ~current_umask();
3704 error = security_path_mkdir(&path, dentry, mode);
3705 if (!error)
3706 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3707 done_path_create(&path, dentry);
3708 if (retry_estale(error, lookup_flags)) {
3709 lookup_flags |= LOOKUP_REVAL;
3710 goto retry;
3711 }
3712 return error;
3713 }
3714
3715 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3716 {
3717 return sys_mkdirat(AT_FDCWD, pathname, mode);
3718 }
3719
3720 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3721 {
3722 int error = may_delete(dir, dentry, 1);
3723
3724 if (error)
3725 return error;
3726
3727 if (!dir->i_op->rmdir)
3728 return -EPERM;
3729
3730 dget(dentry);
3731 inode_lock(dentry->d_inode);
3732
3733 error = -EBUSY;
3734 if (is_local_mountpoint(dentry))
3735 goto out;
3736
3737 error = security_inode_rmdir(dir, dentry);
3738 if (error)
3739 goto out;
3740
3741 shrink_dcache_parent(dentry);
3742 error = dir->i_op->rmdir(dir, dentry);
3743 if (error)
3744 goto out;
3745
3746 dentry->d_inode->i_flags |= S_DEAD;
3747 dont_mount(dentry);
3748 detach_mounts(dentry);
3749
3750 out:
3751 inode_unlock(dentry->d_inode);
3752 dput(dentry);
3753 if (!error)
3754 d_delete(dentry);
3755 return error;
3756 }
3757 EXPORT_SYMBOL(vfs_rmdir);
3758
3759 static long do_rmdir(int dfd, const char __user *pathname)
3760 {
3761 int error = 0;
3762 struct filename *name;
3763 struct dentry *dentry;
3764 struct path path;
3765 struct qstr last;
3766 int type;
3767 unsigned int lookup_flags = 0;
3768 retry:
3769 name = user_path_parent(dfd, pathname,
3770 &path, &last, &type, lookup_flags);
3771 if (IS_ERR(name))
3772 return PTR_ERR(name);
3773
3774 switch (type) {
3775 case LAST_DOTDOT:
3776 error = -ENOTEMPTY;
3777 goto exit1;
3778 case LAST_DOT:
3779 error = -EINVAL;
3780 goto exit1;
3781 case LAST_ROOT:
3782 error = -EBUSY;
3783 goto exit1;
3784 }
3785
3786 error = mnt_want_write(path.mnt);
3787 if (error)
3788 goto exit1;
3789
3790 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3791 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3792 error = PTR_ERR(dentry);
3793 if (IS_ERR(dentry))
3794 goto exit2;
3795 if (!dentry->d_inode) {
3796 error = -ENOENT;
3797 goto exit3;
3798 }
3799 error = security_path_rmdir(&path, dentry);
3800 if (error)
3801 goto exit3;
3802 error = vfs_rmdir(path.dentry->d_inode, dentry);
3803 exit3:
3804 dput(dentry);
3805 exit2:
3806 inode_unlock(path.dentry->d_inode);
3807 mnt_drop_write(path.mnt);
3808 exit1:
3809 path_put(&path);
3810 putname(name);
3811 if (retry_estale(error, lookup_flags)) {
3812 lookup_flags |= LOOKUP_REVAL;
3813 goto retry;
3814 }
3815 return error;
3816 }
3817
3818 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3819 {
3820 return do_rmdir(AT_FDCWD, pathname);
3821 }
3822
3823 /**
3824 * vfs_unlink - unlink a filesystem object
3825 * @dir: parent directory
3826 * @dentry: victim
3827 * @delegated_inode: returns victim inode, if the inode is delegated.
3828 *
3829 * The caller must hold dir->i_mutex.
3830 *
3831 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3832 * return a reference to the inode in delegated_inode. The caller
3833 * should then break the delegation on that inode and retry. Because
3834 * breaking a delegation may take a long time, the caller should drop
3835 * dir->i_mutex before doing so.
3836 *
3837 * Alternatively, a caller may pass NULL for delegated_inode. This may
3838 * be appropriate for callers that expect the underlying filesystem not
3839 * to be NFS exported.
3840 */
3841 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3842 {
3843 struct inode *target = dentry->d_inode;
3844 int error = may_delete(dir, dentry, 0);
3845
3846 if (error)
3847 return error;
3848
3849 if (!dir->i_op->unlink)
3850 return -EPERM;
3851
3852 inode_lock(target);
3853 if (is_local_mountpoint(dentry))
3854 error = -EBUSY;
3855 else {
3856 error = security_inode_unlink(dir, dentry);
3857 if (!error) {
3858 error = try_break_deleg(target, delegated_inode);
3859 if (error)
3860 goto out;
3861 error = dir->i_op->unlink(dir, dentry);
3862 if (!error) {
3863 dont_mount(dentry);
3864 detach_mounts(dentry);
3865 }
3866 }
3867 }
3868 out:
3869 inode_unlock(target);
3870
3871 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3872 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3873 fsnotify_link_count(target);
3874 d_delete(dentry);
3875 }
3876
3877 return error;
3878 }
3879 EXPORT_SYMBOL(vfs_unlink);
3880
3881 /*
3882 * Make sure that the actual truncation of the file will occur outside its
3883 * directory's i_mutex. Truncate can take a long time if there is a lot of
3884 * writeout happening, and we don't want to prevent access to the directory
3885 * while waiting on the I/O.
3886 */
3887 static long do_unlinkat(int dfd, const char __user *pathname)
3888 {
3889 int error;
3890 struct filename *name;
3891 struct dentry *dentry;
3892 struct path path;
3893 struct qstr last;
3894 int type;
3895 struct inode *inode = NULL;
3896 struct inode *delegated_inode = NULL;
3897 unsigned int lookup_flags = 0;
3898 retry:
3899 name = user_path_parent(dfd, pathname,
3900 &path, &last, &type, lookup_flags);
3901 if (IS_ERR(name))
3902 return PTR_ERR(name);
3903
3904 error = -EISDIR;
3905 if (type != LAST_NORM)
3906 goto exit1;
3907
3908 error = mnt_want_write(path.mnt);
3909 if (error)
3910 goto exit1;
3911 retry_deleg:
3912 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3913 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3914 error = PTR_ERR(dentry);
3915 if (!IS_ERR(dentry)) {
3916 /* Why not before? Because we want correct error value */
3917 if (last.name[last.len])
3918 goto slashes;
3919 inode = dentry->d_inode;
3920 if (d_is_negative(dentry))
3921 goto slashes;
3922 ihold(inode);
3923 error = security_path_unlink(&path, dentry);
3924 if (error)
3925 goto exit2;
3926 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3927 exit2:
3928 dput(dentry);
3929 }
3930 inode_unlock(path.dentry->d_inode);
3931 if (inode)
3932 iput(inode); /* truncate the inode here */
3933 inode = NULL;
3934 if (delegated_inode) {
3935 error = break_deleg_wait(&delegated_inode);
3936 if (!error)
3937 goto retry_deleg;
3938 }
3939 mnt_drop_write(path.mnt);
3940 exit1:
3941 path_put(&path);
3942 putname(name);
3943 if (retry_estale(error, lookup_flags)) {
3944 lookup_flags |= LOOKUP_REVAL;
3945 inode = NULL;
3946 goto retry;
3947 }
3948 return error;
3949
3950 slashes:
3951 if (d_is_negative(dentry))
3952 error = -ENOENT;
3953 else if (d_is_dir(dentry))
3954 error = -EISDIR;
3955 else
3956 error = -ENOTDIR;
3957 goto exit2;
3958 }
3959
3960 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3961 {
3962 if ((flag & ~AT_REMOVEDIR) != 0)
3963 return -EINVAL;
3964
3965 if (flag & AT_REMOVEDIR)
3966 return do_rmdir(dfd, pathname);
3967
3968 return do_unlinkat(dfd, pathname);
3969 }
3970
3971 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3972 {
3973 return do_unlinkat(AT_FDCWD, pathname);
3974 }
3975
3976 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3977 {
3978 int error = may_create(dir, dentry);
3979
3980 if (error)
3981 return error;
3982
3983 if (!dir->i_op->symlink)
3984 return -EPERM;
3985
3986 error = security_inode_symlink(dir, dentry, oldname);
3987 if (error)
3988 return error;
3989
3990 error = dir->i_op->symlink(dir, dentry, oldname);
3991 if (!error)
3992 fsnotify_create(dir, dentry);
3993 return error;
3994 }
3995 EXPORT_SYMBOL(vfs_symlink);
3996
3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3998 int, newdfd, const char __user *, newname)
3999 {
4000 int error;
4001 struct filename *from;
4002 struct dentry *dentry;
4003 struct path path;
4004 unsigned int lookup_flags = 0;
4005
4006 from = getname(oldname);
4007 if (IS_ERR(from))
4008 return PTR_ERR(from);
4009 retry:
4010 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4011 error = PTR_ERR(dentry);
4012 if (IS_ERR(dentry))
4013 goto out_putname;
4014
4015 error = security_path_symlink(&path, dentry, from->name);
4016 if (!error)
4017 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4018 done_path_create(&path, dentry);
4019 if (retry_estale(error, lookup_flags)) {
4020 lookup_flags |= LOOKUP_REVAL;
4021 goto retry;
4022 }
4023 out_putname:
4024 putname(from);
4025 return error;
4026 }
4027
4028 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4029 {
4030 return sys_symlinkat(oldname, AT_FDCWD, newname);
4031 }
4032
4033 /**
4034 * vfs_link - create a new link
4035 * @old_dentry: object to be linked
4036 * @dir: new parent
4037 * @new_dentry: where to create the new link
4038 * @delegated_inode: returns inode needing a delegation break
4039 *
4040 * The caller must hold dir->i_mutex
4041 *
4042 * If vfs_link discovers a delegation on the to-be-linked file in need
4043 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4044 * inode in delegated_inode. The caller should then break the delegation
4045 * and retry. Because breaking a delegation may take a long time, the
4046 * caller should drop the i_mutex before doing so.
4047 *
4048 * Alternatively, a caller may pass NULL for delegated_inode. This may
4049 * be appropriate for callers that expect the underlying filesystem not
4050 * to be NFS exported.
4051 */
4052 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4053 {
4054 struct inode *inode = old_dentry->d_inode;
4055 unsigned max_links = dir->i_sb->s_max_links;
4056 int error;
4057
4058 if (!inode)
4059 return -ENOENT;
4060
4061 error = may_create(dir, new_dentry);
4062 if (error)
4063 return error;
4064
4065 if (dir->i_sb != inode->i_sb)
4066 return -EXDEV;
4067
4068 /*
4069 * A link to an append-only or immutable file cannot be created.
4070 */
4071 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4072 return -EPERM;
4073 if (!dir->i_op->link)
4074 return -EPERM;
4075 if (S_ISDIR(inode->i_mode))
4076 return -EPERM;
4077
4078 error = security_inode_link(old_dentry, dir, new_dentry);
4079 if (error)
4080 return error;
4081
4082 inode_lock(inode);
4083 /* Make sure we don't allow creating hardlink to an unlinked file */
4084 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4085 error = -ENOENT;
4086 else if (max_links && inode->i_nlink >= max_links)
4087 error = -EMLINK;
4088 else {
4089 error = try_break_deleg(inode, delegated_inode);
4090 if (!error)
4091 error = dir->i_op->link(old_dentry, dir, new_dentry);
4092 }
4093
4094 if (!error && (inode->i_state & I_LINKABLE)) {
4095 spin_lock(&inode->i_lock);
4096 inode->i_state &= ~I_LINKABLE;
4097 spin_unlock(&inode->i_lock);
4098 }
4099 inode_unlock(inode);
4100 if (!error)
4101 fsnotify_link(dir, inode, new_dentry);
4102 return error;
4103 }
4104 EXPORT_SYMBOL(vfs_link);
4105
4106 /*
4107 * Hardlinks are often used in delicate situations. We avoid
4108 * security-related surprises by not following symlinks on the
4109 * newname. --KAB
4110 *
4111 * We don't follow them on the oldname either to be compatible
4112 * with linux 2.0, and to avoid hard-linking to directories
4113 * and other special files. --ADM
4114 */
4115 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4116 int, newdfd, const char __user *, newname, int, flags)
4117 {
4118 struct dentry *new_dentry;
4119 struct path old_path, new_path;
4120 struct inode *delegated_inode = NULL;
4121 int how = 0;
4122 int error;
4123
4124 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4125 return -EINVAL;
4126 /*
4127 * To use null names we require CAP_DAC_READ_SEARCH
4128 * This ensures that not everyone will be able to create
4129 * handlink using the passed filedescriptor.
4130 */
4131 if (flags & AT_EMPTY_PATH) {
4132 if (!capable(CAP_DAC_READ_SEARCH))
4133 return -ENOENT;
4134 how = LOOKUP_EMPTY;
4135 }
4136
4137 if (flags & AT_SYMLINK_FOLLOW)
4138 how |= LOOKUP_FOLLOW;
4139 retry:
4140 error = user_path_at(olddfd, oldname, how, &old_path);
4141 if (error)
4142 return error;
4143
4144 new_dentry = user_path_create(newdfd, newname, &new_path,
4145 (how & LOOKUP_REVAL));
4146 error = PTR_ERR(new_dentry);
4147 if (IS_ERR(new_dentry))
4148 goto out;
4149
4150 error = -EXDEV;
4151 if (old_path.mnt != new_path.mnt)
4152 goto out_dput;
4153 error = may_linkat(&old_path);
4154 if (unlikely(error))
4155 goto out_dput;
4156 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4157 if (error)
4158 goto out_dput;
4159 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4160 out_dput:
4161 done_path_create(&new_path, new_dentry);
4162 if (delegated_inode) {
4163 error = break_deleg_wait(&delegated_inode);
4164 if (!error) {
4165 path_put(&old_path);
4166 goto retry;
4167 }
4168 }
4169 if (retry_estale(error, how)) {
4170 path_put(&old_path);
4171 how |= LOOKUP_REVAL;
4172 goto retry;
4173 }
4174 out:
4175 path_put(&old_path);
4176
4177 return error;
4178 }
4179
4180 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4181 {
4182 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4183 }
4184
4185 /**
4186 * vfs_rename - rename a filesystem object
4187 * @old_dir: parent of source
4188 * @old_dentry: source
4189 * @new_dir: parent of destination
4190 * @new_dentry: destination
4191 * @delegated_inode: returns an inode needing a delegation break
4192 * @flags: rename flags
4193 *
4194 * The caller must hold multiple mutexes--see lock_rename()).
4195 *
4196 * If vfs_rename discovers a delegation in need of breaking at either
4197 * the source or destination, it will return -EWOULDBLOCK and return a
4198 * reference to the inode in delegated_inode. The caller should then
4199 * break the delegation and retry. Because breaking a delegation may
4200 * take a long time, the caller should drop all locks before doing
4201 * so.
4202 *
4203 * Alternatively, a caller may pass NULL for delegated_inode. This may
4204 * be appropriate for callers that expect the underlying filesystem not
4205 * to be NFS exported.
4206 *
4207 * The worst of all namespace operations - renaming directory. "Perverted"
4208 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4209 * Problems:
4210 * a) we can get into loop creation.
4211 * b) race potential - two innocent renames can create a loop together.
4212 * That's where 4.4 screws up. Current fix: serialization on
4213 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4214 * story.
4215 * c) we have to lock _four_ objects - parents and victim (if it exists),
4216 * and source (if it is not a directory).
4217 * And that - after we got ->i_mutex on parents (until then we don't know
4218 * whether the target exists). Solution: try to be smart with locking
4219 * order for inodes. We rely on the fact that tree topology may change
4220 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4221 * move will be locked. Thus we can rank directories by the tree
4222 * (ancestors first) and rank all non-directories after them.
4223 * That works since everybody except rename does "lock parent, lookup,
4224 * lock child" and rename is under ->s_vfs_rename_mutex.
4225 * HOWEVER, it relies on the assumption that any object with ->lookup()
4226 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4227 * we'd better make sure that there's no link(2) for them.
4228 * d) conversion from fhandle to dentry may come in the wrong moment - when
4229 * we are removing the target. Solution: we will have to grab ->i_mutex
4230 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4231 * ->i_mutex on parents, which works but leads to some truly excessive
4232 * locking].
4233 */
4234 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4235 struct inode *new_dir, struct dentry *new_dentry,
4236 struct inode **delegated_inode, unsigned int flags)
4237 {
4238 int error;
4239 bool is_dir = d_is_dir(old_dentry);
4240 const unsigned char *old_name;
4241 struct inode *source = old_dentry->d_inode;
4242 struct inode *target = new_dentry->d_inode;
4243 bool new_is_dir = false;
4244 unsigned max_links = new_dir->i_sb->s_max_links;
4245
4246 /*
4247 * Check source == target.
4248 * On overlayfs need to look at underlying inodes.
4249 */
4250 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4251 return 0;
4252
4253 error = may_delete(old_dir, old_dentry, is_dir);
4254 if (error)
4255 return error;
4256
4257 if (!target) {
4258 error = may_create(new_dir, new_dentry);
4259 } else {
4260 new_is_dir = d_is_dir(new_dentry);
4261
4262 if (!(flags & RENAME_EXCHANGE))
4263 error = may_delete(new_dir, new_dentry, is_dir);
4264 else
4265 error = may_delete(new_dir, new_dentry, new_is_dir);
4266 }
4267 if (error)
4268 return error;
4269
4270 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4271 return -EPERM;
4272
4273 if (flags && !old_dir->i_op->rename2)
4274 return -EINVAL;
4275
4276 /*
4277 * If we are going to change the parent - check write permissions,
4278 * we'll need to flip '..'.
4279 */
4280 if (new_dir != old_dir) {
4281 if (is_dir) {
4282 error = inode_permission(source, MAY_WRITE);
4283 if (error)
4284 return error;
4285 }
4286 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4287 error = inode_permission(target, MAY_WRITE);
4288 if (error)
4289 return error;
4290 }
4291 }
4292
4293 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4294 flags);
4295 if (error)
4296 return error;
4297
4298 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4299 dget(new_dentry);
4300 if (!is_dir || (flags & RENAME_EXCHANGE))
4301 lock_two_nondirectories(source, target);
4302 else if (target)
4303 inode_lock(target);
4304
4305 error = -EBUSY;
4306 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4307 goto out;
4308
4309 if (max_links && new_dir != old_dir) {
4310 error = -EMLINK;
4311 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4312 goto out;
4313 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4314 old_dir->i_nlink >= max_links)
4315 goto out;
4316 }
4317 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4318 shrink_dcache_parent(new_dentry);
4319 if (!is_dir) {
4320 error = try_break_deleg(source, delegated_inode);
4321 if (error)
4322 goto out;
4323 }
4324 if (target && !new_is_dir) {
4325 error = try_break_deleg(target, delegated_inode);
4326 if (error)
4327 goto out;
4328 }
4329 if (!old_dir->i_op->rename2) {
4330 error = old_dir->i_op->rename(old_dir, old_dentry,
4331 new_dir, new_dentry);
4332 } else {
4333 WARN_ON(old_dir->i_op->rename != NULL);
4334 error = old_dir->i_op->rename2(old_dir, old_dentry,
4335 new_dir, new_dentry, flags);
4336 }
4337 if (error)
4338 goto out;
4339
4340 if (!(flags & RENAME_EXCHANGE) && target) {
4341 if (is_dir)
4342 target->i_flags |= S_DEAD;
4343 dont_mount(new_dentry);
4344 detach_mounts(new_dentry);
4345 }
4346 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4347 if (!(flags & RENAME_EXCHANGE))
4348 d_move(old_dentry, new_dentry);
4349 else
4350 d_exchange(old_dentry, new_dentry);
4351 }
4352 out:
4353 if (!is_dir || (flags & RENAME_EXCHANGE))
4354 unlock_two_nondirectories(source, target);
4355 else if (target)
4356 inode_unlock(target);
4357 dput(new_dentry);
4358 if (!error) {
4359 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4360 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4361 if (flags & RENAME_EXCHANGE) {
4362 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4363 new_is_dir, NULL, new_dentry);
4364 }
4365 }
4366 fsnotify_oldname_free(old_name);
4367
4368 return error;
4369 }
4370 EXPORT_SYMBOL(vfs_rename);
4371
4372 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4373 int, newdfd, const char __user *, newname, unsigned int, flags)
4374 {
4375 struct dentry *old_dentry, *new_dentry;
4376 struct dentry *trap;
4377 struct path old_path, new_path;
4378 struct qstr old_last, new_last;
4379 int old_type, new_type;
4380 struct inode *delegated_inode = NULL;
4381 struct filename *from;
4382 struct filename *to;
4383 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4384 bool should_retry = false;
4385 int error;
4386
4387 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4388 return -EINVAL;
4389
4390 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4391 (flags & RENAME_EXCHANGE))
4392 return -EINVAL;
4393
4394 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4395 return -EPERM;
4396
4397 if (flags & RENAME_EXCHANGE)
4398 target_flags = 0;
4399
4400 retry:
4401 from = user_path_parent(olddfd, oldname,
4402 &old_path, &old_last, &old_type, lookup_flags);
4403 if (IS_ERR(from)) {
4404 error = PTR_ERR(from);
4405 goto exit;
4406 }
4407
4408 to = user_path_parent(newdfd, newname,
4409 &new_path, &new_last, &new_type, lookup_flags);
4410 if (IS_ERR(to)) {
4411 error = PTR_ERR(to);
4412 goto exit1;
4413 }
4414
4415 error = -EXDEV;
4416 if (old_path.mnt != new_path.mnt)
4417 goto exit2;
4418
4419 error = -EBUSY;
4420 if (old_type != LAST_NORM)
4421 goto exit2;
4422
4423 if (flags & RENAME_NOREPLACE)
4424 error = -EEXIST;
4425 if (new_type != LAST_NORM)
4426 goto exit2;
4427
4428 error = mnt_want_write(old_path.mnt);
4429 if (error)
4430 goto exit2;
4431
4432 retry_deleg:
4433 trap = lock_rename(new_path.dentry, old_path.dentry);
4434
4435 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4436 error = PTR_ERR(old_dentry);
4437 if (IS_ERR(old_dentry))
4438 goto exit3;
4439 /* source must exist */
4440 error = -ENOENT;
4441 if (d_is_negative(old_dentry))
4442 goto exit4;
4443 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4444 error = PTR_ERR(new_dentry);
4445 if (IS_ERR(new_dentry))
4446 goto exit4;
4447 error = -EEXIST;
4448 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4449 goto exit5;
4450 if (flags & RENAME_EXCHANGE) {
4451 error = -ENOENT;
4452 if (d_is_negative(new_dentry))
4453 goto exit5;
4454
4455 if (!d_is_dir(new_dentry)) {
4456 error = -ENOTDIR;
4457 if (new_last.name[new_last.len])
4458 goto exit5;
4459 }
4460 }
4461 /* unless the source is a directory trailing slashes give -ENOTDIR */
4462 if (!d_is_dir(old_dentry)) {
4463 error = -ENOTDIR;
4464 if (old_last.name[old_last.len])
4465 goto exit5;
4466 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4467 goto exit5;
4468 }
4469 /* source should not be ancestor of target */
4470 error = -EINVAL;
4471 if (old_dentry == trap)
4472 goto exit5;
4473 /* target should not be an ancestor of source */
4474 if (!(flags & RENAME_EXCHANGE))
4475 error = -ENOTEMPTY;
4476 if (new_dentry == trap)
4477 goto exit5;
4478
4479 error = security_path_rename(&old_path, old_dentry,
4480 &new_path, new_dentry, flags);
4481 if (error)
4482 goto exit5;
4483 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4484 new_path.dentry->d_inode, new_dentry,
4485 &delegated_inode, flags);
4486 exit5:
4487 dput(new_dentry);
4488 exit4:
4489 dput(old_dentry);
4490 exit3:
4491 unlock_rename(new_path.dentry, old_path.dentry);
4492 if (delegated_inode) {
4493 error = break_deleg_wait(&delegated_inode);
4494 if (!error)
4495 goto retry_deleg;
4496 }
4497 mnt_drop_write(old_path.mnt);
4498 exit2:
4499 if (retry_estale(error, lookup_flags))
4500 should_retry = true;
4501 path_put(&new_path);
4502 putname(to);
4503 exit1:
4504 path_put(&old_path);
4505 putname(from);
4506 if (should_retry) {
4507 should_retry = false;
4508 lookup_flags |= LOOKUP_REVAL;
4509 goto retry;
4510 }
4511 exit:
4512 return error;
4513 }
4514
4515 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4516 int, newdfd, const char __user *, newname)
4517 {
4518 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4519 }
4520
4521 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4522 {
4523 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4524 }
4525
4526 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4527 {
4528 int error = may_create(dir, dentry);
4529 if (error)
4530 return error;
4531
4532 if (!dir->i_op->mknod)
4533 return -EPERM;
4534
4535 return dir->i_op->mknod(dir, dentry,
4536 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4537 }
4538 EXPORT_SYMBOL(vfs_whiteout);
4539
4540 int readlink_copy(char __user *buffer, int buflen, const char *link)
4541 {
4542 int len = PTR_ERR(link);
4543 if (IS_ERR(link))
4544 goto out;
4545
4546 len = strlen(link);
4547 if (len > (unsigned) buflen)
4548 len = buflen;
4549 if (copy_to_user(buffer, link, len))
4550 len = -EFAULT;
4551 out:
4552 return len;
4553 }
4554 EXPORT_SYMBOL(readlink_copy);
4555
4556 /*
4557 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4558 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4559 * for any given inode is up to filesystem.
4560 */
4561 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4562 {
4563 DEFINE_DELAYED_CALL(done);
4564 struct inode *inode = d_inode(dentry);
4565 const char *link = inode->i_link;
4566 int res;
4567
4568 if (!link) {
4569 link = inode->i_op->get_link(dentry, inode, &done);
4570 if (IS_ERR(link))
4571 return PTR_ERR(link);
4572 }
4573 res = readlink_copy(buffer, buflen, link);
4574 do_delayed_call(&done);
4575 return res;
4576 }
4577 EXPORT_SYMBOL(generic_readlink);
4578
4579 /* get the link contents into pagecache */
4580 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4581 struct delayed_call *callback)
4582 {
4583 char *kaddr;
4584 struct page *page;
4585 struct address_space *mapping = inode->i_mapping;
4586
4587 if (!dentry) {
4588 page = find_get_page(mapping, 0);
4589 if (!page)
4590 return ERR_PTR(-ECHILD);
4591 if (!PageUptodate(page)) {
4592 put_page(page);
4593 return ERR_PTR(-ECHILD);
4594 }
4595 } else {
4596 page = read_mapping_page(mapping, 0, NULL);
4597 if (IS_ERR(page))
4598 return (char*)page;
4599 }
4600 set_delayed_call(callback, page_put_link, page);
4601 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4602 kaddr = page_address(page);
4603 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4604 return kaddr;
4605 }
4606
4607 EXPORT_SYMBOL(page_get_link);
4608
4609 void page_put_link(void *arg)
4610 {
4611 put_page(arg);
4612 }
4613 EXPORT_SYMBOL(page_put_link);
4614
4615 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4616 {
4617 DEFINE_DELAYED_CALL(done);
4618 int res = readlink_copy(buffer, buflen,
4619 page_get_link(dentry, d_inode(dentry),
4620 &done));
4621 do_delayed_call(&done);
4622 return res;
4623 }
4624 EXPORT_SYMBOL(page_readlink);
4625
4626 /*
4627 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4628 */
4629 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4630 {
4631 struct address_space *mapping = inode->i_mapping;
4632 struct page *page;
4633 void *fsdata;
4634 int err;
4635 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4636 if (nofs)
4637 flags |= AOP_FLAG_NOFS;
4638
4639 retry:
4640 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4641 flags, &page, &fsdata);
4642 if (err)
4643 goto fail;
4644
4645 memcpy(page_address(page), symname, len-1);
4646
4647 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4648 page, fsdata);
4649 if (err < 0)
4650 goto fail;
4651 if (err < len-1)
4652 goto retry;
4653
4654 mark_inode_dirty(inode);
4655 return 0;
4656 fail:
4657 return err;
4658 }
4659 EXPORT_SYMBOL(__page_symlink);
4660
4661 int page_symlink(struct inode *inode, const char *symname, int len)
4662 {
4663 return __page_symlink(inode, symname, len,
4664 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4665 }
4666 EXPORT_SYMBOL(page_symlink);
4667
4668 const struct inode_operations page_symlink_inode_operations = {
4669 .readlink = generic_readlink,
4670 .get_link = page_get_link,
4671 };
4672 EXPORT_SYMBOL(page_symlink_inode_operations);