]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
namei: saner calling conventions for filename_parentat()
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq, root_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 };
514
515 static struct nameidata *set_nameidata(struct nameidata *p)
516 {
517 struct nameidata *old = current->nameidata;
518 p->stack = p->internal;
519 p->total_link_count = old ? old->total_link_count : 0;
520 current->nameidata = p;
521 return old;
522 }
523
524 static void restore_nameidata(struct nameidata *old)
525 {
526 struct nameidata *now = current->nameidata;
527
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal) {
532 kfree(now->stack);
533 now->stack = now->internal;
534 }
535 }
536
537 static int __nd_alloc_stack(struct nameidata *nd)
538 {
539 struct saved *p;
540
541 if (nd->flags & LOOKUP_RCU) {
542 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
543 GFP_ATOMIC);
544 if (unlikely(!p))
545 return -ECHILD;
546 } else {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_KERNEL);
549 if (unlikely(!p))
550 return -ENOMEM;
551 }
552 memcpy(p, nd->internal, sizeof(nd->internal));
553 nd->stack = p;
554 return 0;
555 }
556
557 static inline int nd_alloc_stack(struct nameidata *nd)
558 {
559 if (likely(nd->depth != EMBEDDED_LEVELS))
560 return 0;
561 if (likely(nd->stack != nd->internal))
562 return 0;
563 return __nd_alloc_stack(nd);
564 }
565
566 static void drop_links(struct nameidata *nd)
567 {
568 int i = nd->depth;
569 while (i--) {
570 struct saved *last = nd->stack + i;
571 struct inode *inode = last->inode;
572 if (last->cookie && inode->i_op->put_link) {
573 inode->i_op->put_link(inode, last->cookie);
574 last->cookie = NULL;
575 }
576 }
577 }
578
579 static void terminate_walk(struct nameidata *nd)
580 {
581 drop_links(nd);
582 if (!(nd->flags & LOOKUP_RCU)) {
583 int i;
584 path_put(&nd->path);
585 for (i = 0; i < nd->depth; i++)
586 path_put(&nd->stack[i].link);
587 } else {
588 nd->flags &= ~LOOKUP_RCU;
589 if (!(nd->flags & LOOKUP_ROOT))
590 nd->root.mnt = NULL;
591 rcu_read_unlock();
592 }
593 nd->depth = 0;
594 }
595
596 /* path_put is needed afterwards regardless of success or failure */
597 static bool legitimize_path(struct nameidata *nd,
598 struct path *path, unsigned seq)
599 {
600 int res = __legitimize_mnt(path->mnt, nd->m_seq);
601 if (unlikely(res)) {
602 if (res > 0)
603 path->mnt = NULL;
604 path->dentry = NULL;
605 return false;
606 }
607 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
608 path->dentry = NULL;
609 return false;
610 }
611 return !read_seqcount_retry(&path->dentry->d_seq, seq);
612 }
613
614 static bool legitimize_links(struct nameidata *nd)
615 {
616 int i;
617 for (i = 0; i < nd->depth; i++) {
618 struct saved *last = nd->stack + i;
619 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
620 drop_links(nd);
621 nd->depth = i + 1;
622 return false;
623 }
624 }
625 return true;
626 }
627
628 /*
629 * Path walking has 2 modes, rcu-walk and ref-walk (see
630 * Documentation/filesystems/path-lookup.txt). In situations when we can't
631 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
632 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
633 * mode. Refcounts are grabbed at the last known good point before rcu-walk
634 * got stuck, so ref-walk may continue from there. If this is not successful
635 * (eg. a seqcount has changed), then failure is returned and it's up to caller
636 * to restart the path walk from the beginning in ref-walk mode.
637 */
638
639 /**
640 * unlazy_walk - try to switch to ref-walk mode.
641 * @nd: nameidata pathwalk data
642 * @dentry: child of nd->path.dentry or NULL
643 * @seq: seq number to check dentry against
644 * Returns: 0 on success, -ECHILD on failure
645 *
646 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
647 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
648 * @nd or NULL. Must be called from rcu-walk context.
649 * Nothing should touch nameidata between unlazy_walk() failure and
650 * terminate_walk().
651 */
652 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
653 {
654 struct dentry *parent = nd->path.dentry;
655
656 BUG_ON(!(nd->flags & LOOKUP_RCU));
657
658 nd->flags &= ~LOOKUP_RCU;
659 if (unlikely(!legitimize_links(nd)))
660 goto out2;
661 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
662 goto out2;
663 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
664 goto out1;
665
666 /*
667 * For a negative lookup, the lookup sequence point is the parents
668 * sequence point, and it only needs to revalidate the parent dentry.
669 *
670 * For a positive lookup, we need to move both the parent and the
671 * dentry from the RCU domain to be properly refcounted. And the
672 * sequence number in the dentry validates *both* dentry counters,
673 * since we checked the sequence number of the parent after we got
674 * the child sequence number. So we know the parent must still
675 * be valid if the child sequence number is still valid.
676 */
677 if (!dentry) {
678 if (read_seqcount_retry(&parent->d_seq, nd->seq))
679 goto out;
680 BUG_ON(nd->inode != parent->d_inode);
681 } else {
682 if (!lockref_get_not_dead(&dentry->d_lockref))
683 goto out;
684 if (read_seqcount_retry(&dentry->d_seq, seq))
685 goto drop_dentry;
686 }
687
688 /*
689 * Sequence counts matched. Now make sure that the root is
690 * still valid and get it if required.
691 */
692 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
693 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
694 rcu_read_unlock();
695 dput(dentry);
696 return -ECHILD;
697 }
698 }
699
700 rcu_read_unlock();
701 return 0;
702
703 drop_dentry:
704 rcu_read_unlock();
705 dput(dentry);
706 goto drop_root_mnt;
707 out2:
708 nd->path.mnt = NULL;
709 out1:
710 nd->path.dentry = NULL;
711 out:
712 rcu_read_unlock();
713 drop_root_mnt:
714 if (!(nd->flags & LOOKUP_ROOT))
715 nd->root.mnt = NULL;
716 return -ECHILD;
717 }
718
719 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
720 {
721 if (unlikely(!legitimize_path(nd, link, seq))) {
722 drop_links(nd);
723 nd->depth = 0;
724 nd->flags &= ~LOOKUP_RCU;
725 nd->path.mnt = NULL;
726 nd->path.dentry = NULL;
727 if (!(nd->flags & LOOKUP_ROOT))
728 nd->root.mnt = NULL;
729 rcu_read_unlock();
730 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
731 return 0;
732 }
733 path_put(link);
734 return -ECHILD;
735 }
736
737 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
738 {
739 return dentry->d_op->d_revalidate(dentry, flags);
740 }
741
742 /**
743 * complete_walk - successful completion of path walk
744 * @nd: pointer nameidata
745 *
746 * If we had been in RCU mode, drop out of it and legitimize nd->path.
747 * Revalidate the final result, unless we'd already done that during
748 * the path walk or the filesystem doesn't ask for it. Return 0 on
749 * success, -error on failure. In case of failure caller does not
750 * need to drop nd->path.
751 */
752 static int complete_walk(struct nameidata *nd)
753 {
754 struct dentry *dentry = nd->path.dentry;
755 int status;
756
757 if (nd->flags & LOOKUP_RCU) {
758 if (!(nd->flags & LOOKUP_ROOT))
759 nd->root.mnt = NULL;
760 if (unlikely(unlazy_walk(nd, NULL, 0)))
761 return -ECHILD;
762 }
763
764 if (likely(!(nd->flags & LOOKUP_JUMPED)))
765 return 0;
766
767 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
768 return 0;
769
770 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
771 if (status > 0)
772 return 0;
773
774 if (!status)
775 status = -ESTALE;
776
777 return status;
778 }
779
780 static void set_root(struct nameidata *nd)
781 {
782 get_fs_root(current->fs, &nd->root);
783 }
784
785 static unsigned set_root_rcu(struct nameidata *nd)
786 {
787 struct fs_struct *fs = current->fs;
788 unsigned seq;
789
790 do {
791 seq = read_seqcount_begin(&fs->seq);
792 nd->root = fs->root;
793 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
794 } while (read_seqcount_retry(&fs->seq, seq));
795 return nd->root_seq;
796 }
797
798 static void path_put_conditional(struct path *path, struct nameidata *nd)
799 {
800 dput(path->dentry);
801 if (path->mnt != nd->path.mnt)
802 mntput(path->mnt);
803 }
804
805 static inline void path_to_nameidata(const struct path *path,
806 struct nameidata *nd)
807 {
808 if (!(nd->flags & LOOKUP_RCU)) {
809 dput(nd->path.dentry);
810 if (nd->path.mnt != path->mnt)
811 mntput(nd->path.mnt);
812 }
813 nd->path.mnt = path->mnt;
814 nd->path.dentry = path->dentry;
815 }
816
817 /*
818 * Helper to directly jump to a known parsed path from ->follow_link,
819 * caller must have taken a reference to path beforehand.
820 */
821 void nd_jump_link(struct path *path)
822 {
823 struct nameidata *nd = current->nameidata;
824 path_put(&nd->path);
825
826 nd->path = *path;
827 nd->inode = nd->path.dentry->d_inode;
828 nd->flags |= LOOKUP_JUMPED;
829 }
830
831 static inline void put_link(struct nameidata *nd)
832 {
833 struct saved *last = nd->stack + --nd->depth;
834 struct inode *inode = last->inode;
835 if (last->cookie && inode->i_op->put_link)
836 inode->i_op->put_link(inode, last->cookie);
837 if (!(nd->flags & LOOKUP_RCU))
838 path_put(&last->link);
839 }
840
841 int sysctl_protected_symlinks __read_mostly = 0;
842 int sysctl_protected_hardlinks __read_mostly = 0;
843
844 /**
845 * may_follow_link - Check symlink following for unsafe situations
846 * @nd: nameidata pathwalk data
847 *
848 * In the case of the sysctl_protected_symlinks sysctl being enabled,
849 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
850 * in a sticky world-writable directory. This is to protect privileged
851 * processes from failing races against path names that may change out
852 * from under them by way of other users creating malicious symlinks.
853 * It will permit symlinks to be followed only when outside a sticky
854 * world-writable directory, or when the uid of the symlink and follower
855 * match, or when the directory owner matches the symlink's owner.
856 *
857 * Returns 0 if following the symlink is allowed, -ve on error.
858 */
859 static inline int may_follow_link(struct nameidata *nd)
860 {
861 const struct inode *inode;
862 const struct inode *parent;
863
864 if (!sysctl_protected_symlinks)
865 return 0;
866
867 /* Allowed if owner and follower match. */
868 inode = nd->stack[0].inode;
869 if (uid_eq(current_cred()->fsuid, inode->i_uid))
870 return 0;
871
872 /* Allowed if parent directory not sticky and world-writable. */
873 parent = nd->path.dentry->d_inode;
874 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
875 return 0;
876
877 /* Allowed if parent directory and link owner match. */
878 if (uid_eq(parent->i_uid, inode->i_uid))
879 return 0;
880
881 if (nd->flags & LOOKUP_RCU)
882 return -ECHILD;
883
884 audit_log_link_denied("follow_link", &nd->stack[0].link);
885 return -EACCES;
886 }
887
888 /**
889 * safe_hardlink_source - Check for safe hardlink conditions
890 * @inode: the source inode to hardlink from
891 *
892 * Return false if at least one of the following conditions:
893 * - inode is not a regular file
894 * - inode is setuid
895 * - inode is setgid and group-exec
896 * - access failure for read and write
897 *
898 * Otherwise returns true.
899 */
900 static bool safe_hardlink_source(struct inode *inode)
901 {
902 umode_t mode = inode->i_mode;
903
904 /* Special files should not get pinned to the filesystem. */
905 if (!S_ISREG(mode))
906 return false;
907
908 /* Setuid files should not get pinned to the filesystem. */
909 if (mode & S_ISUID)
910 return false;
911
912 /* Executable setgid files should not get pinned to the filesystem. */
913 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
914 return false;
915
916 /* Hardlinking to unreadable or unwritable sources is dangerous. */
917 if (inode_permission(inode, MAY_READ | MAY_WRITE))
918 return false;
919
920 return true;
921 }
922
923 /**
924 * may_linkat - Check permissions for creating a hardlink
925 * @link: the source to hardlink from
926 *
927 * Block hardlink when all of:
928 * - sysctl_protected_hardlinks enabled
929 * - fsuid does not match inode
930 * - hardlink source is unsafe (see safe_hardlink_source() above)
931 * - not CAP_FOWNER
932 *
933 * Returns 0 if successful, -ve on error.
934 */
935 static int may_linkat(struct path *link)
936 {
937 const struct cred *cred;
938 struct inode *inode;
939
940 if (!sysctl_protected_hardlinks)
941 return 0;
942
943 cred = current_cred();
944 inode = link->dentry->d_inode;
945
946 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
947 * otherwise, it must be a safe source.
948 */
949 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
950 capable(CAP_FOWNER))
951 return 0;
952
953 audit_log_link_denied("linkat", link);
954 return -EPERM;
955 }
956
957 static __always_inline
958 const char *get_link(struct nameidata *nd)
959 {
960 struct saved *last = nd->stack + nd->depth - 1;
961 struct dentry *dentry = last->link.dentry;
962 struct inode *inode = last->inode;
963 int error;
964 const char *res;
965
966 if (!(nd->flags & LOOKUP_RCU)) {
967 touch_atime(&last->link);
968 cond_resched();
969 } else if (atime_needs_update(&last->link, inode)) {
970 if (unlikely(unlazy_walk(nd, NULL, 0)))
971 return ERR_PTR(-ECHILD);
972 touch_atime(&last->link);
973 }
974
975 error = security_inode_follow_link(dentry, inode,
976 nd->flags & LOOKUP_RCU);
977 if (unlikely(error))
978 return ERR_PTR(error);
979
980 nd->last_type = LAST_BIND;
981 res = inode->i_link;
982 if (!res) {
983 if (nd->flags & LOOKUP_RCU) {
984 if (unlikely(unlazy_walk(nd, NULL, 0)))
985 return ERR_PTR(-ECHILD);
986 }
987 res = inode->i_op->follow_link(dentry, &last->cookie);
988 if (IS_ERR_OR_NULL(res)) {
989 last->cookie = NULL;
990 return res;
991 }
992 }
993 if (*res == '/') {
994 if (nd->flags & LOOKUP_RCU) {
995 struct dentry *d;
996 if (!nd->root.mnt)
997 set_root_rcu(nd);
998 nd->path = nd->root;
999 d = nd->path.dentry;
1000 nd->inode = d->d_inode;
1001 nd->seq = nd->root_seq;
1002 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1003 return ERR_PTR(-ECHILD);
1004 } else {
1005 if (!nd->root.mnt)
1006 set_root(nd);
1007 path_put(&nd->path);
1008 nd->path = nd->root;
1009 path_get(&nd->root);
1010 nd->inode = nd->path.dentry->d_inode;
1011 }
1012 nd->flags |= LOOKUP_JUMPED;
1013 while (unlikely(*++res == '/'))
1014 ;
1015 }
1016 if (!*res)
1017 res = NULL;
1018 return res;
1019 }
1020
1021 /*
1022 * follow_up - Find the mountpoint of path's vfsmount
1023 *
1024 * Given a path, find the mountpoint of its source file system.
1025 * Replace @path with the path of the mountpoint in the parent mount.
1026 * Up is towards /.
1027 *
1028 * Return 1 if we went up a level and 0 if we were already at the
1029 * root.
1030 */
1031 int follow_up(struct path *path)
1032 {
1033 struct mount *mnt = real_mount(path->mnt);
1034 struct mount *parent;
1035 struct dentry *mountpoint;
1036
1037 read_seqlock_excl(&mount_lock);
1038 parent = mnt->mnt_parent;
1039 if (parent == mnt) {
1040 read_sequnlock_excl(&mount_lock);
1041 return 0;
1042 }
1043 mntget(&parent->mnt);
1044 mountpoint = dget(mnt->mnt_mountpoint);
1045 read_sequnlock_excl(&mount_lock);
1046 dput(path->dentry);
1047 path->dentry = mountpoint;
1048 mntput(path->mnt);
1049 path->mnt = &parent->mnt;
1050 return 1;
1051 }
1052 EXPORT_SYMBOL(follow_up);
1053
1054 /*
1055 * Perform an automount
1056 * - return -EISDIR to tell follow_managed() to stop and return the path we
1057 * were called with.
1058 */
1059 static int follow_automount(struct path *path, struct nameidata *nd,
1060 bool *need_mntput)
1061 {
1062 struct vfsmount *mnt;
1063 int err;
1064
1065 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1066 return -EREMOTE;
1067
1068 /* We don't want to mount if someone's just doing a stat -
1069 * unless they're stat'ing a directory and appended a '/' to
1070 * the name.
1071 *
1072 * We do, however, want to mount if someone wants to open or
1073 * create a file of any type under the mountpoint, wants to
1074 * traverse through the mountpoint or wants to open the
1075 * mounted directory. Also, autofs may mark negative dentries
1076 * as being automount points. These will need the attentions
1077 * of the daemon to instantiate them before they can be used.
1078 */
1079 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1080 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1081 path->dentry->d_inode)
1082 return -EISDIR;
1083
1084 nd->total_link_count++;
1085 if (nd->total_link_count >= 40)
1086 return -ELOOP;
1087
1088 mnt = path->dentry->d_op->d_automount(path);
1089 if (IS_ERR(mnt)) {
1090 /*
1091 * The filesystem is allowed to return -EISDIR here to indicate
1092 * it doesn't want to automount. For instance, autofs would do
1093 * this so that its userspace daemon can mount on this dentry.
1094 *
1095 * However, we can only permit this if it's a terminal point in
1096 * the path being looked up; if it wasn't then the remainder of
1097 * the path is inaccessible and we should say so.
1098 */
1099 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1100 return -EREMOTE;
1101 return PTR_ERR(mnt);
1102 }
1103
1104 if (!mnt) /* mount collision */
1105 return 0;
1106
1107 if (!*need_mntput) {
1108 /* lock_mount() may release path->mnt on error */
1109 mntget(path->mnt);
1110 *need_mntput = true;
1111 }
1112 err = finish_automount(mnt, path);
1113
1114 switch (err) {
1115 case -EBUSY:
1116 /* Someone else made a mount here whilst we were busy */
1117 return 0;
1118 case 0:
1119 path_put(path);
1120 path->mnt = mnt;
1121 path->dentry = dget(mnt->mnt_root);
1122 return 0;
1123 default:
1124 return err;
1125 }
1126
1127 }
1128
1129 /*
1130 * Handle a dentry that is managed in some way.
1131 * - Flagged for transit management (autofs)
1132 * - Flagged as mountpoint
1133 * - Flagged as automount point
1134 *
1135 * This may only be called in refwalk mode.
1136 *
1137 * Serialization is taken care of in namespace.c
1138 */
1139 static int follow_managed(struct path *path, struct nameidata *nd)
1140 {
1141 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1142 unsigned managed;
1143 bool need_mntput = false;
1144 int ret = 0;
1145
1146 /* Given that we're not holding a lock here, we retain the value in a
1147 * local variable for each dentry as we look at it so that we don't see
1148 * the components of that value change under us */
1149 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1150 managed &= DCACHE_MANAGED_DENTRY,
1151 unlikely(managed != 0)) {
1152 /* Allow the filesystem to manage the transit without i_mutex
1153 * being held. */
1154 if (managed & DCACHE_MANAGE_TRANSIT) {
1155 BUG_ON(!path->dentry->d_op);
1156 BUG_ON(!path->dentry->d_op->d_manage);
1157 ret = path->dentry->d_op->d_manage(path->dentry, false);
1158 if (ret < 0)
1159 break;
1160 }
1161
1162 /* Transit to a mounted filesystem. */
1163 if (managed & DCACHE_MOUNTED) {
1164 struct vfsmount *mounted = lookup_mnt(path);
1165 if (mounted) {
1166 dput(path->dentry);
1167 if (need_mntput)
1168 mntput(path->mnt);
1169 path->mnt = mounted;
1170 path->dentry = dget(mounted->mnt_root);
1171 need_mntput = true;
1172 continue;
1173 }
1174
1175 /* Something is mounted on this dentry in another
1176 * namespace and/or whatever was mounted there in this
1177 * namespace got unmounted before lookup_mnt() could
1178 * get it */
1179 }
1180
1181 /* Handle an automount point */
1182 if (managed & DCACHE_NEED_AUTOMOUNT) {
1183 ret = follow_automount(path, nd, &need_mntput);
1184 if (ret < 0)
1185 break;
1186 continue;
1187 }
1188
1189 /* We didn't change the current path point */
1190 break;
1191 }
1192
1193 if (need_mntput && path->mnt == mnt)
1194 mntput(path->mnt);
1195 if (ret == -EISDIR)
1196 ret = 0;
1197 if (need_mntput)
1198 nd->flags |= LOOKUP_JUMPED;
1199 if (unlikely(ret < 0))
1200 path_put_conditional(path, nd);
1201 return ret;
1202 }
1203
1204 int follow_down_one(struct path *path)
1205 {
1206 struct vfsmount *mounted;
1207
1208 mounted = lookup_mnt(path);
1209 if (mounted) {
1210 dput(path->dentry);
1211 mntput(path->mnt);
1212 path->mnt = mounted;
1213 path->dentry = dget(mounted->mnt_root);
1214 return 1;
1215 }
1216 return 0;
1217 }
1218 EXPORT_SYMBOL(follow_down_one);
1219
1220 static inline int managed_dentry_rcu(struct dentry *dentry)
1221 {
1222 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1223 dentry->d_op->d_manage(dentry, true) : 0;
1224 }
1225
1226 /*
1227 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1228 * we meet a managed dentry that would need blocking.
1229 */
1230 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1231 struct inode **inode, unsigned *seqp)
1232 {
1233 for (;;) {
1234 struct mount *mounted;
1235 /*
1236 * Don't forget we might have a non-mountpoint managed dentry
1237 * that wants to block transit.
1238 */
1239 switch (managed_dentry_rcu(path->dentry)) {
1240 case -ECHILD:
1241 default:
1242 return false;
1243 case -EISDIR:
1244 return true;
1245 case 0:
1246 break;
1247 }
1248
1249 if (!d_mountpoint(path->dentry))
1250 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1251
1252 mounted = __lookup_mnt(path->mnt, path->dentry);
1253 if (!mounted)
1254 break;
1255 path->mnt = &mounted->mnt;
1256 path->dentry = mounted->mnt.mnt_root;
1257 nd->flags |= LOOKUP_JUMPED;
1258 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1259 /*
1260 * Update the inode too. We don't need to re-check the
1261 * dentry sequence number here after this d_inode read,
1262 * because a mount-point is always pinned.
1263 */
1264 *inode = path->dentry->d_inode;
1265 }
1266 return !read_seqretry(&mount_lock, nd->m_seq) &&
1267 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1268 }
1269
1270 static int follow_dotdot_rcu(struct nameidata *nd)
1271 {
1272 struct inode *inode = nd->inode;
1273 if (!nd->root.mnt)
1274 set_root_rcu(nd);
1275
1276 while (1) {
1277 if (path_equal(&nd->path, &nd->root))
1278 break;
1279 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1280 struct dentry *old = nd->path.dentry;
1281 struct dentry *parent = old->d_parent;
1282 unsigned seq;
1283
1284 inode = parent->d_inode;
1285 seq = read_seqcount_begin(&parent->d_seq);
1286 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1287 return -ECHILD;
1288 nd->path.dentry = parent;
1289 nd->seq = seq;
1290 break;
1291 } else {
1292 struct mount *mnt = real_mount(nd->path.mnt);
1293 struct mount *mparent = mnt->mnt_parent;
1294 struct dentry *mountpoint = mnt->mnt_mountpoint;
1295 struct inode *inode2 = mountpoint->d_inode;
1296 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1297 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1298 return -ECHILD;
1299 if (&mparent->mnt == nd->path.mnt)
1300 break;
1301 /* we know that mountpoint was pinned */
1302 nd->path.dentry = mountpoint;
1303 nd->path.mnt = &mparent->mnt;
1304 inode = inode2;
1305 nd->seq = seq;
1306 }
1307 }
1308 while (unlikely(d_mountpoint(nd->path.dentry))) {
1309 struct mount *mounted;
1310 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1311 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1312 return -ECHILD;
1313 if (!mounted)
1314 break;
1315 nd->path.mnt = &mounted->mnt;
1316 nd->path.dentry = mounted->mnt.mnt_root;
1317 inode = nd->path.dentry->d_inode;
1318 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1319 }
1320 nd->inode = inode;
1321 return 0;
1322 }
1323
1324 /*
1325 * Follow down to the covering mount currently visible to userspace. At each
1326 * point, the filesystem owning that dentry may be queried as to whether the
1327 * caller is permitted to proceed or not.
1328 */
1329 int follow_down(struct path *path)
1330 {
1331 unsigned managed;
1332 int ret;
1333
1334 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1335 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1336 /* Allow the filesystem to manage the transit without i_mutex
1337 * being held.
1338 *
1339 * We indicate to the filesystem if someone is trying to mount
1340 * something here. This gives autofs the chance to deny anyone
1341 * other than its daemon the right to mount on its
1342 * superstructure.
1343 *
1344 * The filesystem may sleep at this point.
1345 */
1346 if (managed & DCACHE_MANAGE_TRANSIT) {
1347 BUG_ON(!path->dentry->d_op);
1348 BUG_ON(!path->dentry->d_op->d_manage);
1349 ret = path->dentry->d_op->d_manage(
1350 path->dentry, false);
1351 if (ret < 0)
1352 return ret == -EISDIR ? 0 : ret;
1353 }
1354
1355 /* Transit to a mounted filesystem. */
1356 if (managed & DCACHE_MOUNTED) {
1357 struct vfsmount *mounted = lookup_mnt(path);
1358 if (!mounted)
1359 break;
1360 dput(path->dentry);
1361 mntput(path->mnt);
1362 path->mnt = mounted;
1363 path->dentry = dget(mounted->mnt_root);
1364 continue;
1365 }
1366
1367 /* Don't handle automount points here */
1368 break;
1369 }
1370 return 0;
1371 }
1372 EXPORT_SYMBOL(follow_down);
1373
1374 /*
1375 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1376 */
1377 static void follow_mount(struct path *path)
1378 {
1379 while (d_mountpoint(path->dentry)) {
1380 struct vfsmount *mounted = lookup_mnt(path);
1381 if (!mounted)
1382 break;
1383 dput(path->dentry);
1384 mntput(path->mnt);
1385 path->mnt = mounted;
1386 path->dentry = dget(mounted->mnt_root);
1387 }
1388 }
1389
1390 static void follow_dotdot(struct nameidata *nd)
1391 {
1392 if (!nd->root.mnt)
1393 set_root(nd);
1394
1395 while(1) {
1396 struct dentry *old = nd->path.dentry;
1397
1398 if (nd->path.dentry == nd->root.dentry &&
1399 nd->path.mnt == nd->root.mnt) {
1400 break;
1401 }
1402 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1403 /* rare case of legitimate dget_parent()... */
1404 nd->path.dentry = dget_parent(nd->path.dentry);
1405 dput(old);
1406 break;
1407 }
1408 if (!follow_up(&nd->path))
1409 break;
1410 }
1411 follow_mount(&nd->path);
1412 nd->inode = nd->path.dentry->d_inode;
1413 }
1414
1415 /*
1416 * This looks up the name in dcache, possibly revalidates the old dentry and
1417 * allocates a new one if not found or not valid. In the need_lookup argument
1418 * returns whether i_op->lookup is necessary.
1419 *
1420 * dir->d_inode->i_mutex must be held
1421 */
1422 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1423 unsigned int flags, bool *need_lookup)
1424 {
1425 struct dentry *dentry;
1426 int error;
1427
1428 *need_lookup = false;
1429 dentry = d_lookup(dir, name);
1430 if (dentry) {
1431 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1432 error = d_revalidate(dentry, flags);
1433 if (unlikely(error <= 0)) {
1434 if (error < 0) {
1435 dput(dentry);
1436 return ERR_PTR(error);
1437 } else {
1438 d_invalidate(dentry);
1439 dput(dentry);
1440 dentry = NULL;
1441 }
1442 }
1443 }
1444 }
1445
1446 if (!dentry) {
1447 dentry = d_alloc(dir, name);
1448 if (unlikely(!dentry))
1449 return ERR_PTR(-ENOMEM);
1450
1451 *need_lookup = true;
1452 }
1453 return dentry;
1454 }
1455
1456 /*
1457 * Call i_op->lookup on the dentry. The dentry must be negative and
1458 * unhashed.
1459 *
1460 * dir->d_inode->i_mutex must be held
1461 */
1462 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1463 unsigned int flags)
1464 {
1465 struct dentry *old;
1466
1467 /* Don't create child dentry for a dead directory. */
1468 if (unlikely(IS_DEADDIR(dir))) {
1469 dput(dentry);
1470 return ERR_PTR(-ENOENT);
1471 }
1472
1473 old = dir->i_op->lookup(dir, dentry, flags);
1474 if (unlikely(old)) {
1475 dput(dentry);
1476 dentry = old;
1477 }
1478 return dentry;
1479 }
1480
1481 static struct dentry *__lookup_hash(struct qstr *name,
1482 struct dentry *base, unsigned int flags)
1483 {
1484 bool need_lookup;
1485 struct dentry *dentry;
1486
1487 dentry = lookup_dcache(name, base, flags, &need_lookup);
1488 if (!need_lookup)
1489 return dentry;
1490
1491 return lookup_real(base->d_inode, dentry, flags);
1492 }
1493
1494 /*
1495 * It's more convoluted than I'd like it to be, but... it's still fairly
1496 * small and for now I'd prefer to have fast path as straight as possible.
1497 * It _is_ time-critical.
1498 */
1499 static int lookup_fast(struct nameidata *nd,
1500 struct path *path, struct inode **inode,
1501 unsigned *seqp)
1502 {
1503 struct vfsmount *mnt = nd->path.mnt;
1504 struct dentry *dentry, *parent = nd->path.dentry;
1505 int need_reval = 1;
1506 int status = 1;
1507 int err;
1508
1509 /*
1510 * Rename seqlock is not required here because in the off chance
1511 * of a false negative due to a concurrent rename, we're going to
1512 * do the non-racy lookup, below.
1513 */
1514 if (nd->flags & LOOKUP_RCU) {
1515 unsigned seq;
1516 bool negative;
1517 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1518 if (!dentry)
1519 goto unlazy;
1520
1521 /*
1522 * This sequence count validates that the inode matches
1523 * the dentry name information from lookup.
1524 */
1525 *inode = d_backing_inode(dentry);
1526 negative = d_is_negative(dentry);
1527 if (read_seqcount_retry(&dentry->d_seq, seq))
1528 return -ECHILD;
1529 if (negative)
1530 return -ENOENT;
1531
1532 /*
1533 * This sequence count validates that the parent had no
1534 * changes while we did the lookup of the dentry above.
1535 *
1536 * The memory barrier in read_seqcount_begin of child is
1537 * enough, we can use __read_seqcount_retry here.
1538 */
1539 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1540 return -ECHILD;
1541
1542 *seqp = seq;
1543 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1544 status = d_revalidate(dentry, nd->flags);
1545 if (unlikely(status <= 0)) {
1546 if (status != -ECHILD)
1547 need_reval = 0;
1548 goto unlazy;
1549 }
1550 }
1551 path->mnt = mnt;
1552 path->dentry = dentry;
1553 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1554 return 0;
1555 unlazy:
1556 if (unlazy_walk(nd, dentry, seq))
1557 return -ECHILD;
1558 } else {
1559 dentry = __d_lookup(parent, &nd->last);
1560 }
1561
1562 if (unlikely(!dentry))
1563 goto need_lookup;
1564
1565 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1566 status = d_revalidate(dentry, nd->flags);
1567 if (unlikely(status <= 0)) {
1568 if (status < 0) {
1569 dput(dentry);
1570 return status;
1571 }
1572 d_invalidate(dentry);
1573 dput(dentry);
1574 goto need_lookup;
1575 }
1576
1577 if (unlikely(d_is_negative(dentry))) {
1578 dput(dentry);
1579 return -ENOENT;
1580 }
1581 path->mnt = mnt;
1582 path->dentry = dentry;
1583 err = follow_managed(path, nd);
1584 if (likely(!err))
1585 *inode = d_backing_inode(path->dentry);
1586 return err;
1587
1588 need_lookup:
1589 return 1;
1590 }
1591
1592 /* Fast lookup failed, do it the slow way */
1593 static int lookup_slow(struct nameidata *nd, struct path *path)
1594 {
1595 struct dentry *dentry, *parent;
1596
1597 parent = nd->path.dentry;
1598 BUG_ON(nd->inode != parent->d_inode);
1599
1600 mutex_lock(&parent->d_inode->i_mutex);
1601 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1602 mutex_unlock(&parent->d_inode->i_mutex);
1603 if (IS_ERR(dentry))
1604 return PTR_ERR(dentry);
1605 path->mnt = nd->path.mnt;
1606 path->dentry = dentry;
1607 return follow_managed(path, nd);
1608 }
1609
1610 static inline int may_lookup(struct nameidata *nd)
1611 {
1612 if (nd->flags & LOOKUP_RCU) {
1613 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1614 if (err != -ECHILD)
1615 return err;
1616 if (unlazy_walk(nd, NULL, 0))
1617 return -ECHILD;
1618 }
1619 return inode_permission(nd->inode, MAY_EXEC);
1620 }
1621
1622 static inline int handle_dots(struct nameidata *nd, int type)
1623 {
1624 if (type == LAST_DOTDOT) {
1625 if (nd->flags & LOOKUP_RCU) {
1626 return follow_dotdot_rcu(nd);
1627 } else
1628 follow_dotdot(nd);
1629 }
1630 return 0;
1631 }
1632
1633 static int pick_link(struct nameidata *nd, struct path *link,
1634 struct inode *inode, unsigned seq)
1635 {
1636 int error;
1637 struct saved *last;
1638 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1639 path_to_nameidata(link, nd);
1640 return -ELOOP;
1641 }
1642 if (!(nd->flags & LOOKUP_RCU)) {
1643 if (link->mnt == nd->path.mnt)
1644 mntget(link->mnt);
1645 }
1646 error = nd_alloc_stack(nd);
1647 if (unlikely(error)) {
1648 if (error == -ECHILD) {
1649 if (unlikely(unlazy_link(nd, link, seq)))
1650 return -ECHILD;
1651 error = nd_alloc_stack(nd);
1652 }
1653 if (error) {
1654 path_put(link);
1655 return error;
1656 }
1657 }
1658
1659 last = nd->stack + nd->depth++;
1660 last->link = *link;
1661 last->cookie = NULL;
1662 last->inode = inode;
1663 last->seq = seq;
1664 return 1;
1665 }
1666
1667 /*
1668 * Do we need to follow links? We _really_ want to be able
1669 * to do this check without having to look at inode->i_op,
1670 * so we keep a cache of "no, this doesn't need follow_link"
1671 * for the common case.
1672 */
1673 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1674 int follow,
1675 struct inode *inode, unsigned seq)
1676 {
1677 if (likely(!d_is_symlink(link->dentry)))
1678 return 0;
1679 if (!follow)
1680 return 0;
1681 return pick_link(nd, link, inode, seq);
1682 }
1683
1684 enum {WALK_GET = 1, WALK_PUT = 2};
1685
1686 static int walk_component(struct nameidata *nd, int flags)
1687 {
1688 struct path path;
1689 struct inode *inode;
1690 unsigned seq;
1691 int err;
1692 /*
1693 * "." and ".." are special - ".." especially so because it has
1694 * to be able to know about the current root directory and
1695 * parent relationships.
1696 */
1697 if (unlikely(nd->last_type != LAST_NORM)) {
1698 err = handle_dots(nd, nd->last_type);
1699 if (flags & WALK_PUT)
1700 put_link(nd);
1701 return err;
1702 }
1703 err = lookup_fast(nd, &path, &inode, &seq);
1704 if (unlikely(err)) {
1705 if (err < 0)
1706 return err;
1707
1708 err = lookup_slow(nd, &path);
1709 if (err < 0)
1710 return err;
1711
1712 inode = d_backing_inode(path.dentry);
1713 seq = 0; /* we are already out of RCU mode */
1714 err = -ENOENT;
1715 if (d_is_negative(path.dentry))
1716 goto out_path_put;
1717 }
1718
1719 if (flags & WALK_PUT)
1720 put_link(nd);
1721 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1722 if (unlikely(err))
1723 return err;
1724 path_to_nameidata(&path, nd);
1725 nd->inode = inode;
1726 nd->seq = seq;
1727 return 0;
1728
1729 out_path_put:
1730 path_to_nameidata(&path, nd);
1731 return err;
1732 }
1733
1734 /*
1735 * We can do the critical dentry name comparison and hashing
1736 * operations one word at a time, but we are limited to:
1737 *
1738 * - Architectures with fast unaligned word accesses. We could
1739 * do a "get_unaligned()" if this helps and is sufficiently
1740 * fast.
1741 *
1742 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1743 * do not trap on the (extremely unlikely) case of a page
1744 * crossing operation.
1745 *
1746 * - Furthermore, we need an efficient 64-bit compile for the
1747 * 64-bit case in order to generate the "number of bytes in
1748 * the final mask". Again, that could be replaced with a
1749 * efficient population count instruction or similar.
1750 */
1751 #ifdef CONFIG_DCACHE_WORD_ACCESS
1752
1753 #include <asm/word-at-a-time.h>
1754
1755 #ifdef CONFIG_64BIT
1756
1757 static inline unsigned int fold_hash(unsigned long hash)
1758 {
1759 return hash_64(hash, 32);
1760 }
1761
1762 #else /* 32-bit case */
1763
1764 #define fold_hash(x) (x)
1765
1766 #endif
1767
1768 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1769 {
1770 unsigned long a, mask;
1771 unsigned long hash = 0;
1772
1773 for (;;) {
1774 a = load_unaligned_zeropad(name);
1775 if (len < sizeof(unsigned long))
1776 break;
1777 hash += a;
1778 hash *= 9;
1779 name += sizeof(unsigned long);
1780 len -= sizeof(unsigned long);
1781 if (!len)
1782 goto done;
1783 }
1784 mask = bytemask_from_count(len);
1785 hash += mask & a;
1786 done:
1787 return fold_hash(hash);
1788 }
1789 EXPORT_SYMBOL(full_name_hash);
1790
1791 /*
1792 * Calculate the length and hash of the path component, and
1793 * return the "hash_len" as the result.
1794 */
1795 static inline u64 hash_name(const char *name)
1796 {
1797 unsigned long a, b, adata, bdata, mask, hash, len;
1798 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1799
1800 hash = a = 0;
1801 len = -sizeof(unsigned long);
1802 do {
1803 hash = (hash + a) * 9;
1804 len += sizeof(unsigned long);
1805 a = load_unaligned_zeropad(name+len);
1806 b = a ^ REPEAT_BYTE('/');
1807 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1808
1809 adata = prep_zero_mask(a, adata, &constants);
1810 bdata = prep_zero_mask(b, bdata, &constants);
1811
1812 mask = create_zero_mask(adata | bdata);
1813
1814 hash += a & zero_bytemask(mask);
1815 len += find_zero(mask);
1816 return hashlen_create(fold_hash(hash), len);
1817 }
1818
1819 #else
1820
1821 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1822 {
1823 unsigned long hash = init_name_hash();
1824 while (len--)
1825 hash = partial_name_hash(*name++, hash);
1826 return end_name_hash(hash);
1827 }
1828 EXPORT_SYMBOL(full_name_hash);
1829
1830 /*
1831 * We know there's a real path component here of at least
1832 * one character.
1833 */
1834 static inline u64 hash_name(const char *name)
1835 {
1836 unsigned long hash = init_name_hash();
1837 unsigned long len = 0, c;
1838
1839 c = (unsigned char)*name;
1840 do {
1841 len++;
1842 hash = partial_name_hash(c, hash);
1843 c = (unsigned char)name[len];
1844 } while (c && c != '/');
1845 return hashlen_create(end_name_hash(hash), len);
1846 }
1847
1848 #endif
1849
1850 /*
1851 * Name resolution.
1852 * This is the basic name resolution function, turning a pathname into
1853 * the final dentry. We expect 'base' to be positive and a directory.
1854 *
1855 * Returns 0 and nd will have valid dentry and mnt on success.
1856 * Returns error and drops reference to input namei data on failure.
1857 */
1858 static int link_path_walk(const char *name, struct nameidata *nd)
1859 {
1860 int err;
1861
1862 while (*name=='/')
1863 name++;
1864 if (!*name)
1865 return 0;
1866
1867 /* At this point we know we have a real path component. */
1868 for(;;) {
1869 u64 hash_len;
1870 int type;
1871
1872 err = may_lookup(nd);
1873 if (err)
1874 return err;
1875
1876 hash_len = hash_name(name);
1877
1878 type = LAST_NORM;
1879 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1880 case 2:
1881 if (name[1] == '.') {
1882 type = LAST_DOTDOT;
1883 nd->flags |= LOOKUP_JUMPED;
1884 }
1885 break;
1886 case 1:
1887 type = LAST_DOT;
1888 }
1889 if (likely(type == LAST_NORM)) {
1890 struct dentry *parent = nd->path.dentry;
1891 nd->flags &= ~LOOKUP_JUMPED;
1892 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1893 struct qstr this = { { .hash_len = hash_len }, .name = name };
1894 err = parent->d_op->d_hash(parent, &this);
1895 if (err < 0)
1896 return err;
1897 hash_len = this.hash_len;
1898 name = this.name;
1899 }
1900 }
1901
1902 nd->last.hash_len = hash_len;
1903 nd->last.name = name;
1904 nd->last_type = type;
1905
1906 name += hashlen_len(hash_len);
1907 if (!*name)
1908 goto OK;
1909 /*
1910 * If it wasn't NUL, we know it was '/'. Skip that
1911 * slash, and continue until no more slashes.
1912 */
1913 do {
1914 name++;
1915 } while (unlikely(*name == '/'));
1916 if (unlikely(!*name)) {
1917 OK:
1918 /* pathname body, done */
1919 if (!nd->depth)
1920 return 0;
1921 name = nd->stack[nd->depth - 1].name;
1922 /* trailing symlink, done */
1923 if (!name)
1924 return 0;
1925 /* last component of nested symlink */
1926 err = walk_component(nd, WALK_GET | WALK_PUT);
1927 } else {
1928 err = walk_component(nd, WALK_GET);
1929 }
1930 if (err < 0)
1931 return err;
1932
1933 if (err) {
1934 const char *s = get_link(nd);
1935
1936 if (unlikely(IS_ERR(s)))
1937 return PTR_ERR(s);
1938 err = 0;
1939 if (unlikely(!s)) {
1940 /* jumped */
1941 put_link(nd);
1942 } else {
1943 nd->stack[nd->depth - 1].name = name;
1944 name = s;
1945 continue;
1946 }
1947 }
1948 if (unlikely(!d_can_lookup(nd->path.dentry)))
1949 return -ENOTDIR;
1950 }
1951 }
1952
1953 static const char *path_init(int dfd, const struct filename *name,
1954 unsigned int flags, struct nameidata *nd)
1955 {
1956 int retval = 0;
1957 const char *s = name->name;
1958
1959 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1960 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1961 nd->depth = 0;
1962 nd->total_link_count = 0;
1963 if (flags & LOOKUP_ROOT) {
1964 struct dentry *root = nd->root.dentry;
1965 struct inode *inode = root->d_inode;
1966 if (*s) {
1967 if (!d_can_lookup(root))
1968 return ERR_PTR(-ENOTDIR);
1969 retval = inode_permission(inode, MAY_EXEC);
1970 if (retval)
1971 return ERR_PTR(retval);
1972 }
1973 nd->path = nd->root;
1974 nd->inode = inode;
1975 if (flags & LOOKUP_RCU) {
1976 rcu_read_lock();
1977 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1978 nd->root_seq = nd->seq;
1979 nd->m_seq = read_seqbegin(&mount_lock);
1980 } else {
1981 path_get(&nd->path);
1982 }
1983 return s;
1984 }
1985
1986 nd->root.mnt = NULL;
1987
1988 nd->m_seq = read_seqbegin(&mount_lock);
1989 if (*s == '/') {
1990 if (flags & LOOKUP_RCU) {
1991 rcu_read_lock();
1992 nd->seq = set_root_rcu(nd);
1993 } else {
1994 set_root(nd);
1995 path_get(&nd->root);
1996 }
1997 nd->path = nd->root;
1998 } else if (dfd == AT_FDCWD) {
1999 if (flags & LOOKUP_RCU) {
2000 struct fs_struct *fs = current->fs;
2001 unsigned seq;
2002
2003 rcu_read_lock();
2004
2005 do {
2006 seq = read_seqcount_begin(&fs->seq);
2007 nd->path = fs->pwd;
2008 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2009 } while (read_seqcount_retry(&fs->seq, seq));
2010 } else {
2011 get_fs_pwd(current->fs, &nd->path);
2012 }
2013 } else {
2014 /* Caller must check execute permissions on the starting path component */
2015 struct fd f = fdget_raw(dfd);
2016 struct dentry *dentry;
2017
2018 if (!f.file)
2019 return ERR_PTR(-EBADF);
2020
2021 dentry = f.file->f_path.dentry;
2022
2023 if (*s) {
2024 if (!d_can_lookup(dentry)) {
2025 fdput(f);
2026 return ERR_PTR(-ENOTDIR);
2027 }
2028 }
2029
2030 nd->path = f.file->f_path;
2031 if (flags & LOOKUP_RCU) {
2032 rcu_read_lock();
2033 nd->inode = nd->path.dentry->d_inode;
2034 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2035 } else {
2036 path_get(&nd->path);
2037 nd->inode = nd->path.dentry->d_inode;
2038 }
2039 fdput(f);
2040 return s;
2041 }
2042
2043 nd->inode = nd->path.dentry->d_inode;
2044 if (!(flags & LOOKUP_RCU))
2045 return s;
2046 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2047 return s;
2048 if (!(nd->flags & LOOKUP_ROOT))
2049 nd->root.mnt = NULL;
2050 rcu_read_unlock();
2051 return ERR_PTR(-ECHILD);
2052 }
2053
2054 static void path_cleanup(struct nameidata *nd)
2055 {
2056 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2057 path_put(&nd->root);
2058 nd->root.mnt = NULL;
2059 }
2060 }
2061
2062 static const char *trailing_symlink(struct nameidata *nd)
2063 {
2064 const char *s;
2065 int error = may_follow_link(nd);
2066 if (unlikely(error))
2067 return ERR_PTR(error);
2068 nd->flags |= LOOKUP_PARENT;
2069 nd->stack[0].name = NULL;
2070 s = get_link(nd);
2071 return s ? s : "";
2072 }
2073
2074 static inline int lookup_last(struct nameidata *nd)
2075 {
2076 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2077 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2078
2079 nd->flags &= ~LOOKUP_PARENT;
2080 return walk_component(nd,
2081 nd->flags & LOOKUP_FOLLOW
2082 ? nd->depth
2083 ? WALK_PUT | WALK_GET
2084 : WALK_GET
2085 : 0);
2086 }
2087
2088 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2089 static int path_lookupat(int dfd, const struct filename *name, unsigned flags,
2090 struct nameidata *nd, struct path *path)
2091 {
2092 const char *s = path_init(dfd, name, flags, nd);
2093 int err;
2094
2095 if (IS_ERR(s))
2096 return PTR_ERR(s);
2097 while (!(err = link_path_walk(s, nd))
2098 && ((err = lookup_last(nd)) > 0)) {
2099 s = trailing_symlink(nd);
2100 if (IS_ERR(s)) {
2101 err = PTR_ERR(s);
2102 break;
2103 }
2104 }
2105 if (!err)
2106 err = complete_walk(nd);
2107
2108 if (!err && nd->flags & LOOKUP_DIRECTORY)
2109 if (!d_can_lookup(nd->path.dentry))
2110 err = -ENOTDIR;
2111 if (!err) {
2112 *path = nd->path;
2113 nd->path.mnt = NULL;
2114 nd->path.dentry = NULL;
2115 }
2116 terminate_walk(nd);
2117 path_cleanup(nd);
2118 return err;
2119 }
2120
2121 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2122 struct path *path, struct path *root)
2123 {
2124 int retval;
2125 struct nameidata nd, *saved_nd;
2126 if (IS_ERR(name))
2127 return PTR_ERR(name);
2128 saved_nd = set_nameidata(&nd);
2129 if (unlikely(root)) {
2130 nd.root = *root;
2131 flags |= LOOKUP_ROOT;
2132 }
2133 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, &nd, path);
2134 if (unlikely(retval == -ECHILD))
2135 retval = path_lookupat(dfd, name, flags, &nd, path);
2136 if (unlikely(retval == -ESTALE))
2137 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL,
2138 &nd, path);
2139
2140 if (likely(!retval))
2141 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2142 restore_nameidata(saved_nd);
2143 putname(name);
2144 return retval;
2145 }
2146
2147 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2148 static int path_parentat(int dfd, const struct filename *name,
2149 unsigned int flags, struct nameidata *nd,
2150 struct path *parent)
2151 {
2152 const char *s = path_init(dfd, name, flags, nd);
2153 int err;
2154 if (IS_ERR(s))
2155 return PTR_ERR(s);
2156 err = link_path_walk(s, nd);
2157 if (!err)
2158 err = complete_walk(nd);
2159 if (!err) {
2160 *parent = nd->path;
2161 nd->path.mnt = NULL;
2162 nd->path.dentry = NULL;
2163 }
2164 terminate_walk(nd);
2165 path_cleanup(nd);
2166 return err;
2167 }
2168
2169 static struct filename *filename_parentat(int dfd, struct filename *name,
2170 unsigned int flags, struct path *parent,
2171 struct qstr *last, int *type)
2172 {
2173 int retval;
2174 struct nameidata nd, *saved_nd;
2175
2176 if (IS_ERR(name))
2177 return name;
2178 saved_nd = set_nameidata(&nd);
2179 retval = path_parentat(dfd, name, flags | LOOKUP_RCU, &nd, parent);
2180 if (unlikely(retval == -ECHILD))
2181 retval = path_parentat(dfd, name, flags, &nd, parent);
2182 if (unlikely(retval == -ESTALE))
2183 retval = path_parentat(dfd, name, flags | LOOKUP_REVAL,
2184 &nd, parent);
2185 if (likely(!retval)) {
2186 *last = nd.last;
2187 *type = nd.last_type;
2188 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2189 } else {
2190 putname(name);
2191 name = ERR_PTR(retval);
2192 }
2193 restore_nameidata(saved_nd);
2194 return name;
2195 }
2196
2197 /* does lookup, returns the object with parent locked */
2198 struct dentry *kern_path_locked(const char *name, struct path *path)
2199 {
2200 struct filename *filename;
2201 struct dentry *d;
2202 struct qstr last;
2203 int type;
2204
2205 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2206 &last, &type);
2207 if (IS_ERR(filename))
2208 return ERR_CAST(filename);
2209 if (unlikely(type != LAST_NORM)) {
2210 path_put(path);
2211 putname(filename);
2212 return ERR_PTR(-EINVAL);
2213 }
2214 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2215 d = __lookup_hash(&last, path->dentry, 0);
2216 if (IS_ERR(d)) {
2217 mutex_unlock(&path->dentry->d_inode->i_mutex);
2218 path_put(path);
2219 }
2220 putname(filename);
2221 return d;
2222 }
2223
2224 int kern_path(const char *name, unsigned int flags, struct path *path)
2225 {
2226 return filename_lookup(AT_FDCWD, getname_kernel(name),
2227 flags, path, NULL);
2228 }
2229 EXPORT_SYMBOL(kern_path);
2230
2231 /**
2232 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2233 * @dentry: pointer to dentry of the base directory
2234 * @mnt: pointer to vfs mount of the base directory
2235 * @name: pointer to file name
2236 * @flags: lookup flags
2237 * @path: pointer to struct path to fill
2238 */
2239 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2240 const char *name, unsigned int flags,
2241 struct path *path)
2242 {
2243 struct path root = {.mnt = mnt, .dentry = dentry};
2244 /* the first argument of filename_lookup() is ignored with root */
2245 return filename_lookup(AT_FDCWD, getname_kernel(name),
2246 flags , path, &root);
2247 }
2248 EXPORT_SYMBOL(vfs_path_lookup);
2249
2250 /**
2251 * lookup_one_len - filesystem helper to lookup single pathname component
2252 * @name: pathname component to lookup
2253 * @base: base directory to lookup from
2254 * @len: maximum length @len should be interpreted to
2255 *
2256 * Note that this routine is purely a helper for filesystem usage and should
2257 * not be called by generic code.
2258 */
2259 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2260 {
2261 struct qstr this;
2262 unsigned int c;
2263 int err;
2264
2265 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2266
2267 this.name = name;
2268 this.len = len;
2269 this.hash = full_name_hash(name, len);
2270 if (!len)
2271 return ERR_PTR(-EACCES);
2272
2273 if (unlikely(name[0] == '.')) {
2274 if (len < 2 || (len == 2 && name[1] == '.'))
2275 return ERR_PTR(-EACCES);
2276 }
2277
2278 while (len--) {
2279 c = *(const unsigned char *)name++;
2280 if (c == '/' || c == '\0')
2281 return ERR_PTR(-EACCES);
2282 }
2283 /*
2284 * See if the low-level filesystem might want
2285 * to use its own hash..
2286 */
2287 if (base->d_flags & DCACHE_OP_HASH) {
2288 int err = base->d_op->d_hash(base, &this);
2289 if (err < 0)
2290 return ERR_PTR(err);
2291 }
2292
2293 err = inode_permission(base->d_inode, MAY_EXEC);
2294 if (err)
2295 return ERR_PTR(err);
2296
2297 return __lookup_hash(&this, base, 0);
2298 }
2299 EXPORT_SYMBOL(lookup_one_len);
2300
2301 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2302 struct path *path, int *empty)
2303 {
2304 return filename_lookup(dfd, getname_flags(name, flags, empty),
2305 flags, path, NULL);
2306 }
2307
2308 int user_path_at(int dfd, const char __user *name, unsigned flags,
2309 struct path *path)
2310 {
2311 return user_path_at_empty(dfd, name, flags, path, NULL);
2312 }
2313 EXPORT_SYMBOL(user_path_at);
2314
2315 /*
2316 * NB: most callers don't do anything directly with the reference to the
2317 * to struct filename, but the nd->last pointer points into the name string
2318 * allocated by getname. So we must hold the reference to it until all
2319 * path-walking is complete.
2320 */
2321 static struct filename *
2322 user_path_parent(int dfd, const char __user *path,
2323 struct path *parent,
2324 struct qstr *last,
2325 int *type,
2326 unsigned int flags)
2327 {
2328 /* only LOOKUP_REVAL is allowed in extra flags */
2329 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2330 parent, last, type);
2331 }
2332
2333 /**
2334 * mountpoint_last - look up last component for umount
2335 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2336 * @path: pointer to container for result
2337 *
2338 * This is a special lookup_last function just for umount. In this case, we
2339 * need to resolve the path without doing any revalidation.
2340 *
2341 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2342 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2343 * in almost all cases, this lookup will be served out of the dcache. The only
2344 * cases where it won't are if nd->last refers to a symlink or the path is
2345 * bogus and it doesn't exist.
2346 *
2347 * Returns:
2348 * -error: if there was an error during lookup. This includes -ENOENT if the
2349 * lookup found a negative dentry. The nd->path reference will also be
2350 * put in this case.
2351 *
2352 * 0: if we successfully resolved nd->path and found it to not to be a
2353 * symlink that needs to be followed. "path" will also be populated.
2354 * The nd->path reference will also be put.
2355 *
2356 * 1: if we successfully resolved nd->last and found it to be a symlink
2357 * that needs to be followed. "path" will be populated with the path
2358 * to the link, and nd->path will *not* be put.
2359 */
2360 static int
2361 mountpoint_last(struct nameidata *nd, struct path *path)
2362 {
2363 int error = 0;
2364 struct dentry *dentry;
2365 struct dentry *dir = nd->path.dentry;
2366
2367 /* If we're in rcuwalk, drop out of it to handle last component */
2368 if (nd->flags & LOOKUP_RCU) {
2369 if (unlazy_walk(nd, NULL, 0))
2370 return -ECHILD;
2371 }
2372
2373 nd->flags &= ~LOOKUP_PARENT;
2374
2375 if (unlikely(nd->last_type != LAST_NORM)) {
2376 error = handle_dots(nd, nd->last_type);
2377 if (error)
2378 return error;
2379 dentry = dget(nd->path.dentry);
2380 goto done;
2381 }
2382
2383 mutex_lock(&dir->d_inode->i_mutex);
2384 dentry = d_lookup(dir, &nd->last);
2385 if (!dentry) {
2386 /*
2387 * No cached dentry. Mounted dentries are pinned in the cache,
2388 * so that means that this dentry is probably a symlink or the
2389 * path doesn't actually point to a mounted dentry.
2390 */
2391 dentry = d_alloc(dir, &nd->last);
2392 if (!dentry) {
2393 mutex_unlock(&dir->d_inode->i_mutex);
2394 return -ENOMEM;
2395 }
2396 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2397 if (IS_ERR(dentry)) {
2398 mutex_unlock(&dir->d_inode->i_mutex);
2399 return PTR_ERR(dentry);
2400 }
2401 }
2402 mutex_unlock(&dir->d_inode->i_mutex);
2403
2404 done:
2405 if (d_is_negative(dentry)) {
2406 dput(dentry);
2407 return -ENOENT;
2408 }
2409 if (nd->depth)
2410 put_link(nd);
2411 path->dentry = dentry;
2412 path->mnt = nd->path.mnt;
2413 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2414 d_backing_inode(dentry), 0);
2415 if (unlikely(error))
2416 return error;
2417 mntget(path->mnt);
2418 follow_mount(path);
2419 return 0;
2420 }
2421
2422 /**
2423 * path_mountpoint - look up a path to be umounted
2424 * @dfd: directory file descriptor to start walk from
2425 * @name: full pathname to walk
2426 * @path: pointer to container for result
2427 * @flags: lookup flags
2428 *
2429 * Look up the given name, but don't attempt to revalidate the last component.
2430 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2431 */
2432 static int
2433 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2434 struct nameidata *nd, unsigned int flags)
2435 {
2436 const char *s = path_init(dfd, name, flags, nd);
2437 int err;
2438 if (IS_ERR(s))
2439 return PTR_ERR(s);
2440 while (!(err = link_path_walk(s, nd)) &&
2441 (err = mountpoint_last(nd, path)) > 0) {
2442 s = trailing_symlink(nd);
2443 if (IS_ERR(s)) {
2444 err = PTR_ERR(s);
2445 break;
2446 }
2447 }
2448 terminate_walk(nd);
2449 path_cleanup(nd);
2450 return err;
2451 }
2452
2453 static int
2454 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2455 unsigned int flags)
2456 {
2457 struct nameidata nd, *saved;
2458 int error;
2459 if (IS_ERR(name))
2460 return PTR_ERR(name);
2461 saved = set_nameidata(&nd);
2462 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2463 if (unlikely(error == -ECHILD))
2464 error = path_mountpoint(dfd, name, path, &nd, flags);
2465 if (unlikely(error == -ESTALE))
2466 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2467 if (likely(!error))
2468 audit_inode(name, path->dentry, 0);
2469 restore_nameidata(saved);
2470 putname(name);
2471 return error;
2472 }
2473
2474 /**
2475 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2476 * @dfd: directory file descriptor
2477 * @name: pathname from userland
2478 * @flags: lookup flags
2479 * @path: pointer to container to hold result
2480 *
2481 * A umount is a special case for path walking. We're not actually interested
2482 * in the inode in this situation, and ESTALE errors can be a problem. We
2483 * simply want track down the dentry and vfsmount attached at the mountpoint
2484 * and avoid revalidating the last component.
2485 *
2486 * Returns 0 and populates "path" on success.
2487 */
2488 int
2489 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2490 struct path *path)
2491 {
2492 return filename_mountpoint(dfd, getname(name), path, flags);
2493 }
2494
2495 int
2496 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2497 unsigned int flags)
2498 {
2499 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2500 }
2501 EXPORT_SYMBOL(kern_path_mountpoint);
2502
2503 int __check_sticky(struct inode *dir, struct inode *inode)
2504 {
2505 kuid_t fsuid = current_fsuid();
2506
2507 if (uid_eq(inode->i_uid, fsuid))
2508 return 0;
2509 if (uid_eq(dir->i_uid, fsuid))
2510 return 0;
2511 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2512 }
2513 EXPORT_SYMBOL(__check_sticky);
2514
2515 /*
2516 * Check whether we can remove a link victim from directory dir, check
2517 * whether the type of victim is right.
2518 * 1. We can't do it if dir is read-only (done in permission())
2519 * 2. We should have write and exec permissions on dir
2520 * 3. We can't remove anything from append-only dir
2521 * 4. We can't do anything with immutable dir (done in permission())
2522 * 5. If the sticky bit on dir is set we should either
2523 * a. be owner of dir, or
2524 * b. be owner of victim, or
2525 * c. have CAP_FOWNER capability
2526 * 6. If the victim is append-only or immutable we can't do antyhing with
2527 * links pointing to it.
2528 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2529 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2530 * 9. We can't remove a root or mountpoint.
2531 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2532 * nfs_async_unlink().
2533 */
2534 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2535 {
2536 struct inode *inode = d_backing_inode(victim);
2537 int error;
2538
2539 if (d_is_negative(victim))
2540 return -ENOENT;
2541 BUG_ON(!inode);
2542
2543 BUG_ON(victim->d_parent->d_inode != dir);
2544 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2545
2546 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2547 if (error)
2548 return error;
2549 if (IS_APPEND(dir))
2550 return -EPERM;
2551
2552 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2553 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2554 return -EPERM;
2555 if (isdir) {
2556 if (!d_is_dir(victim))
2557 return -ENOTDIR;
2558 if (IS_ROOT(victim))
2559 return -EBUSY;
2560 } else if (d_is_dir(victim))
2561 return -EISDIR;
2562 if (IS_DEADDIR(dir))
2563 return -ENOENT;
2564 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2565 return -EBUSY;
2566 return 0;
2567 }
2568
2569 /* Check whether we can create an object with dentry child in directory
2570 * dir.
2571 * 1. We can't do it if child already exists (open has special treatment for
2572 * this case, but since we are inlined it's OK)
2573 * 2. We can't do it if dir is read-only (done in permission())
2574 * 3. We should have write and exec permissions on dir
2575 * 4. We can't do it if dir is immutable (done in permission())
2576 */
2577 static inline int may_create(struct inode *dir, struct dentry *child)
2578 {
2579 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2580 if (child->d_inode)
2581 return -EEXIST;
2582 if (IS_DEADDIR(dir))
2583 return -ENOENT;
2584 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2585 }
2586
2587 /*
2588 * p1 and p2 should be directories on the same fs.
2589 */
2590 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2591 {
2592 struct dentry *p;
2593
2594 if (p1 == p2) {
2595 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2596 return NULL;
2597 }
2598
2599 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2600
2601 p = d_ancestor(p2, p1);
2602 if (p) {
2603 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2604 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2605 return p;
2606 }
2607
2608 p = d_ancestor(p1, p2);
2609 if (p) {
2610 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2611 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2612 return p;
2613 }
2614
2615 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2616 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2617 return NULL;
2618 }
2619 EXPORT_SYMBOL(lock_rename);
2620
2621 void unlock_rename(struct dentry *p1, struct dentry *p2)
2622 {
2623 mutex_unlock(&p1->d_inode->i_mutex);
2624 if (p1 != p2) {
2625 mutex_unlock(&p2->d_inode->i_mutex);
2626 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2627 }
2628 }
2629 EXPORT_SYMBOL(unlock_rename);
2630
2631 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2632 bool want_excl)
2633 {
2634 int error = may_create(dir, dentry);
2635 if (error)
2636 return error;
2637
2638 if (!dir->i_op->create)
2639 return -EACCES; /* shouldn't it be ENOSYS? */
2640 mode &= S_IALLUGO;
2641 mode |= S_IFREG;
2642 error = security_inode_create(dir, dentry, mode);
2643 if (error)
2644 return error;
2645 error = dir->i_op->create(dir, dentry, mode, want_excl);
2646 if (!error)
2647 fsnotify_create(dir, dentry);
2648 return error;
2649 }
2650 EXPORT_SYMBOL(vfs_create);
2651
2652 static int may_open(struct path *path, int acc_mode, int flag)
2653 {
2654 struct dentry *dentry = path->dentry;
2655 struct inode *inode = dentry->d_inode;
2656 int error;
2657
2658 /* O_PATH? */
2659 if (!acc_mode)
2660 return 0;
2661
2662 if (!inode)
2663 return -ENOENT;
2664
2665 switch (inode->i_mode & S_IFMT) {
2666 case S_IFLNK:
2667 return -ELOOP;
2668 case S_IFDIR:
2669 if (acc_mode & MAY_WRITE)
2670 return -EISDIR;
2671 break;
2672 case S_IFBLK:
2673 case S_IFCHR:
2674 if (path->mnt->mnt_flags & MNT_NODEV)
2675 return -EACCES;
2676 /*FALLTHRU*/
2677 case S_IFIFO:
2678 case S_IFSOCK:
2679 flag &= ~O_TRUNC;
2680 break;
2681 }
2682
2683 error = inode_permission(inode, acc_mode);
2684 if (error)
2685 return error;
2686
2687 /*
2688 * An append-only file must be opened in append mode for writing.
2689 */
2690 if (IS_APPEND(inode)) {
2691 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2692 return -EPERM;
2693 if (flag & O_TRUNC)
2694 return -EPERM;
2695 }
2696
2697 /* O_NOATIME can only be set by the owner or superuser */
2698 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2699 return -EPERM;
2700
2701 return 0;
2702 }
2703
2704 static int handle_truncate(struct file *filp)
2705 {
2706 struct path *path = &filp->f_path;
2707 struct inode *inode = path->dentry->d_inode;
2708 int error = get_write_access(inode);
2709 if (error)
2710 return error;
2711 /*
2712 * Refuse to truncate files with mandatory locks held on them.
2713 */
2714 error = locks_verify_locked(filp);
2715 if (!error)
2716 error = security_path_truncate(path);
2717 if (!error) {
2718 error = do_truncate(path->dentry, 0,
2719 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2720 filp);
2721 }
2722 put_write_access(inode);
2723 return error;
2724 }
2725
2726 static inline int open_to_namei_flags(int flag)
2727 {
2728 if ((flag & O_ACCMODE) == 3)
2729 flag--;
2730 return flag;
2731 }
2732
2733 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2734 {
2735 int error = security_path_mknod(dir, dentry, mode, 0);
2736 if (error)
2737 return error;
2738
2739 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2740 if (error)
2741 return error;
2742
2743 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2744 }
2745
2746 /*
2747 * Attempt to atomically look up, create and open a file from a negative
2748 * dentry.
2749 *
2750 * Returns 0 if successful. The file will have been created and attached to
2751 * @file by the filesystem calling finish_open().
2752 *
2753 * Returns 1 if the file was looked up only or didn't need creating. The
2754 * caller will need to perform the open themselves. @path will have been
2755 * updated to point to the new dentry. This may be negative.
2756 *
2757 * Returns an error code otherwise.
2758 */
2759 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2760 struct path *path, struct file *file,
2761 const struct open_flags *op,
2762 bool got_write, bool need_lookup,
2763 int *opened)
2764 {
2765 struct inode *dir = nd->path.dentry->d_inode;
2766 unsigned open_flag = open_to_namei_flags(op->open_flag);
2767 umode_t mode;
2768 int error;
2769 int acc_mode;
2770 int create_error = 0;
2771 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2772 bool excl;
2773
2774 BUG_ON(dentry->d_inode);
2775
2776 /* Don't create child dentry for a dead directory. */
2777 if (unlikely(IS_DEADDIR(dir))) {
2778 error = -ENOENT;
2779 goto out;
2780 }
2781
2782 mode = op->mode;
2783 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2784 mode &= ~current_umask();
2785
2786 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2787 if (excl)
2788 open_flag &= ~O_TRUNC;
2789
2790 /*
2791 * Checking write permission is tricky, bacuse we don't know if we are
2792 * going to actually need it: O_CREAT opens should work as long as the
2793 * file exists. But checking existence breaks atomicity. The trick is
2794 * to check access and if not granted clear O_CREAT from the flags.
2795 *
2796 * Another problem is returing the "right" error value (e.g. for an
2797 * O_EXCL open we want to return EEXIST not EROFS).
2798 */
2799 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2800 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2801 if (!(open_flag & O_CREAT)) {
2802 /*
2803 * No O_CREATE -> atomicity not a requirement -> fall
2804 * back to lookup + open
2805 */
2806 goto no_open;
2807 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2808 /* Fall back and fail with the right error */
2809 create_error = -EROFS;
2810 goto no_open;
2811 } else {
2812 /* No side effects, safe to clear O_CREAT */
2813 create_error = -EROFS;
2814 open_flag &= ~O_CREAT;
2815 }
2816 }
2817
2818 if (open_flag & O_CREAT) {
2819 error = may_o_create(&nd->path, dentry, mode);
2820 if (error) {
2821 create_error = error;
2822 if (open_flag & O_EXCL)
2823 goto no_open;
2824 open_flag &= ~O_CREAT;
2825 }
2826 }
2827
2828 if (nd->flags & LOOKUP_DIRECTORY)
2829 open_flag |= O_DIRECTORY;
2830
2831 file->f_path.dentry = DENTRY_NOT_SET;
2832 file->f_path.mnt = nd->path.mnt;
2833 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2834 opened);
2835 if (error < 0) {
2836 if (create_error && error == -ENOENT)
2837 error = create_error;
2838 goto out;
2839 }
2840
2841 if (error) { /* returned 1, that is */
2842 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2843 error = -EIO;
2844 goto out;
2845 }
2846 if (file->f_path.dentry) {
2847 dput(dentry);
2848 dentry = file->f_path.dentry;
2849 }
2850 if (*opened & FILE_CREATED)
2851 fsnotify_create(dir, dentry);
2852 if (!dentry->d_inode) {
2853 WARN_ON(*opened & FILE_CREATED);
2854 if (create_error) {
2855 error = create_error;
2856 goto out;
2857 }
2858 } else {
2859 if (excl && !(*opened & FILE_CREATED)) {
2860 error = -EEXIST;
2861 goto out;
2862 }
2863 }
2864 goto looked_up;
2865 }
2866
2867 /*
2868 * We didn't have the inode before the open, so check open permission
2869 * here.
2870 */
2871 acc_mode = op->acc_mode;
2872 if (*opened & FILE_CREATED) {
2873 WARN_ON(!(open_flag & O_CREAT));
2874 fsnotify_create(dir, dentry);
2875 acc_mode = MAY_OPEN;
2876 }
2877 error = may_open(&file->f_path, acc_mode, open_flag);
2878 if (error)
2879 fput(file);
2880
2881 out:
2882 dput(dentry);
2883 return error;
2884
2885 no_open:
2886 if (need_lookup) {
2887 dentry = lookup_real(dir, dentry, nd->flags);
2888 if (IS_ERR(dentry))
2889 return PTR_ERR(dentry);
2890
2891 if (create_error) {
2892 int open_flag = op->open_flag;
2893
2894 error = create_error;
2895 if ((open_flag & O_EXCL)) {
2896 if (!dentry->d_inode)
2897 goto out;
2898 } else if (!dentry->d_inode) {
2899 goto out;
2900 } else if ((open_flag & O_TRUNC) &&
2901 d_is_reg(dentry)) {
2902 goto out;
2903 }
2904 /* will fail later, go on to get the right error */
2905 }
2906 }
2907 looked_up:
2908 path->dentry = dentry;
2909 path->mnt = nd->path.mnt;
2910 return 1;
2911 }
2912
2913 /*
2914 * Look up and maybe create and open the last component.
2915 *
2916 * Must be called with i_mutex held on parent.
2917 *
2918 * Returns 0 if the file was successfully atomically created (if necessary) and
2919 * opened. In this case the file will be returned attached to @file.
2920 *
2921 * Returns 1 if the file was not completely opened at this time, though lookups
2922 * and creations will have been performed and the dentry returned in @path will
2923 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2924 * specified then a negative dentry may be returned.
2925 *
2926 * An error code is returned otherwise.
2927 *
2928 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2929 * cleared otherwise prior to returning.
2930 */
2931 static int lookup_open(struct nameidata *nd, struct path *path,
2932 struct file *file,
2933 const struct open_flags *op,
2934 bool got_write, int *opened)
2935 {
2936 struct dentry *dir = nd->path.dentry;
2937 struct inode *dir_inode = dir->d_inode;
2938 struct dentry *dentry;
2939 int error;
2940 bool need_lookup;
2941
2942 *opened &= ~FILE_CREATED;
2943 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2944 if (IS_ERR(dentry))
2945 return PTR_ERR(dentry);
2946
2947 /* Cached positive dentry: will open in f_op->open */
2948 if (!need_lookup && dentry->d_inode)
2949 goto out_no_open;
2950
2951 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2952 return atomic_open(nd, dentry, path, file, op, got_write,
2953 need_lookup, opened);
2954 }
2955
2956 if (need_lookup) {
2957 BUG_ON(dentry->d_inode);
2958
2959 dentry = lookup_real(dir_inode, dentry, nd->flags);
2960 if (IS_ERR(dentry))
2961 return PTR_ERR(dentry);
2962 }
2963
2964 /* Negative dentry, just create the file */
2965 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2966 umode_t mode = op->mode;
2967 if (!IS_POSIXACL(dir->d_inode))
2968 mode &= ~current_umask();
2969 /*
2970 * This write is needed to ensure that a
2971 * rw->ro transition does not occur between
2972 * the time when the file is created and when
2973 * a permanent write count is taken through
2974 * the 'struct file' in finish_open().
2975 */
2976 if (!got_write) {
2977 error = -EROFS;
2978 goto out_dput;
2979 }
2980 *opened |= FILE_CREATED;
2981 error = security_path_mknod(&nd->path, dentry, mode, 0);
2982 if (error)
2983 goto out_dput;
2984 error = vfs_create(dir->d_inode, dentry, mode,
2985 nd->flags & LOOKUP_EXCL);
2986 if (error)
2987 goto out_dput;
2988 }
2989 out_no_open:
2990 path->dentry = dentry;
2991 path->mnt = nd->path.mnt;
2992 return 1;
2993
2994 out_dput:
2995 dput(dentry);
2996 return error;
2997 }
2998
2999 /*
3000 * Handle the last step of open()
3001 */
3002 static int do_last(struct nameidata *nd,
3003 struct file *file, const struct open_flags *op,
3004 int *opened, struct filename *name)
3005 {
3006 struct dentry *dir = nd->path.dentry;
3007 int open_flag = op->open_flag;
3008 bool will_truncate = (open_flag & O_TRUNC) != 0;
3009 bool got_write = false;
3010 int acc_mode = op->acc_mode;
3011 unsigned seq;
3012 struct inode *inode;
3013 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3014 struct path path;
3015 bool retried = false;
3016 int error;
3017
3018 nd->flags &= ~LOOKUP_PARENT;
3019 nd->flags |= op->intent;
3020
3021 if (nd->last_type != LAST_NORM) {
3022 error = handle_dots(nd, nd->last_type);
3023 if (unlikely(error))
3024 return error;
3025 goto finish_open;
3026 }
3027
3028 if (!(open_flag & O_CREAT)) {
3029 if (nd->last.name[nd->last.len])
3030 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3031 /* we _can_ be in RCU mode here */
3032 error = lookup_fast(nd, &path, &inode, &seq);
3033 if (likely(!error))
3034 goto finish_lookup;
3035
3036 if (error < 0)
3037 return error;
3038
3039 BUG_ON(nd->inode != dir->d_inode);
3040 } else {
3041 /* create side of things */
3042 /*
3043 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3044 * has been cleared when we got to the last component we are
3045 * about to look up
3046 */
3047 error = complete_walk(nd);
3048 if (error)
3049 return error;
3050
3051 audit_inode(name, dir, LOOKUP_PARENT);
3052 /* trailing slashes? */
3053 if (unlikely(nd->last.name[nd->last.len]))
3054 return -EISDIR;
3055 }
3056
3057 retry_lookup:
3058 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3059 error = mnt_want_write(nd->path.mnt);
3060 if (!error)
3061 got_write = true;
3062 /*
3063 * do _not_ fail yet - we might not need that or fail with
3064 * a different error; let lookup_open() decide; we'll be
3065 * dropping this one anyway.
3066 */
3067 }
3068 mutex_lock(&dir->d_inode->i_mutex);
3069 error = lookup_open(nd, &path, file, op, got_write, opened);
3070 mutex_unlock(&dir->d_inode->i_mutex);
3071
3072 if (error <= 0) {
3073 if (error)
3074 goto out;
3075
3076 if ((*opened & FILE_CREATED) ||
3077 !S_ISREG(file_inode(file)->i_mode))
3078 will_truncate = false;
3079
3080 audit_inode(name, file->f_path.dentry, 0);
3081 goto opened;
3082 }
3083
3084 if (*opened & FILE_CREATED) {
3085 /* Don't check for write permission, don't truncate */
3086 open_flag &= ~O_TRUNC;
3087 will_truncate = false;
3088 acc_mode = MAY_OPEN;
3089 path_to_nameidata(&path, nd);
3090 goto finish_open_created;
3091 }
3092
3093 /*
3094 * create/update audit record if it already exists.
3095 */
3096 if (d_is_positive(path.dentry))
3097 audit_inode(name, path.dentry, 0);
3098
3099 /*
3100 * If atomic_open() acquired write access it is dropped now due to
3101 * possible mount and symlink following (this might be optimized away if
3102 * necessary...)
3103 */
3104 if (got_write) {
3105 mnt_drop_write(nd->path.mnt);
3106 got_write = false;
3107 }
3108
3109 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3110 path_to_nameidata(&path, nd);
3111 return -EEXIST;
3112 }
3113
3114 error = follow_managed(&path, nd);
3115 if (unlikely(error < 0))
3116 return error;
3117
3118 BUG_ON(nd->flags & LOOKUP_RCU);
3119 inode = d_backing_inode(path.dentry);
3120 seq = 0; /* out of RCU mode, so the value doesn't matter */
3121 if (unlikely(d_is_negative(path.dentry))) {
3122 path_to_nameidata(&path, nd);
3123 return -ENOENT;
3124 }
3125 finish_lookup:
3126 if (nd->depth)
3127 put_link(nd);
3128 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3129 inode, seq);
3130 if (unlikely(error))
3131 return error;
3132
3133 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3134 path_to_nameidata(&path, nd);
3135 return -ELOOP;
3136 }
3137
3138 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3139 path_to_nameidata(&path, nd);
3140 } else {
3141 save_parent.dentry = nd->path.dentry;
3142 save_parent.mnt = mntget(path.mnt);
3143 nd->path.dentry = path.dentry;
3144
3145 }
3146 nd->inode = inode;
3147 nd->seq = seq;
3148 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3149 finish_open:
3150 error = complete_walk(nd);
3151 if (error) {
3152 path_put(&save_parent);
3153 return error;
3154 }
3155 audit_inode(name, nd->path.dentry, 0);
3156 error = -EISDIR;
3157 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3158 goto out;
3159 error = -ENOTDIR;
3160 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3161 goto out;
3162 if (!d_is_reg(nd->path.dentry))
3163 will_truncate = false;
3164
3165 if (will_truncate) {
3166 error = mnt_want_write(nd->path.mnt);
3167 if (error)
3168 goto out;
3169 got_write = true;
3170 }
3171 finish_open_created:
3172 error = may_open(&nd->path, acc_mode, open_flag);
3173 if (error)
3174 goto out;
3175
3176 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3177 error = vfs_open(&nd->path, file, current_cred());
3178 if (!error) {
3179 *opened |= FILE_OPENED;
3180 } else {
3181 if (error == -EOPENSTALE)
3182 goto stale_open;
3183 goto out;
3184 }
3185 opened:
3186 error = open_check_o_direct(file);
3187 if (error)
3188 goto exit_fput;
3189 error = ima_file_check(file, op->acc_mode, *opened);
3190 if (error)
3191 goto exit_fput;
3192
3193 if (will_truncate) {
3194 error = handle_truncate(file);
3195 if (error)
3196 goto exit_fput;
3197 }
3198 out:
3199 if (got_write)
3200 mnt_drop_write(nd->path.mnt);
3201 path_put(&save_parent);
3202 return error;
3203
3204 exit_fput:
3205 fput(file);
3206 goto out;
3207
3208 stale_open:
3209 /* If no saved parent or already retried then can't retry */
3210 if (!save_parent.dentry || retried)
3211 goto out;
3212
3213 BUG_ON(save_parent.dentry != dir);
3214 path_put(&nd->path);
3215 nd->path = save_parent;
3216 nd->inode = dir->d_inode;
3217 save_parent.mnt = NULL;
3218 save_parent.dentry = NULL;
3219 if (got_write) {
3220 mnt_drop_write(nd->path.mnt);
3221 got_write = false;
3222 }
3223 retried = true;
3224 goto retry_lookup;
3225 }
3226
3227 static int do_tmpfile(int dfd, struct filename *pathname,
3228 struct nameidata *nd, int flags,
3229 const struct open_flags *op,
3230 struct file *file, int *opened)
3231 {
3232 static const struct qstr name = QSTR_INIT("/", 1);
3233 struct dentry *child;
3234 struct inode *dir;
3235 struct path path;
3236 int error = path_lookupat(dfd, pathname,
3237 flags | LOOKUP_DIRECTORY, nd, &path);
3238 if (unlikely(error))
3239 return error;
3240 error = mnt_want_write(path.mnt);
3241 if (unlikely(error))
3242 goto out;
3243 dir = path.dentry->d_inode;
3244 /* we want directory to be writable */
3245 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3246 if (error)
3247 goto out2;
3248 if (!dir->i_op->tmpfile) {
3249 error = -EOPNOTSUPP;
3250 goto out2;
3251 }
3252 child = d_alloc(path.dentry, &name);
3253 if (unlikely(!child)) {
3254 error = -ENOMEM;
3255 goto out2;
3256 }
3257 dput(path.dentry);
3258 path.dentry = child;
3259 error = dir->i_op->tmpfile(dir, child, op->mode);
3260 if (error)
3261 goto out2;
3262 audit_inode(pathname, child, 0);
3263 /* Don't check for other permissions, the inode was just created */
3264 error = may_open(&path, MAY_OPEN, op->open_flag);
3265 if (error)
3266 goto out2;
3267 file->f_path.mnt = path.mnt;
3268 error = finish_open(file, child, NULL, opened);
3269 if (error)
3270 goto out2;
3271 error = open_check_o_direct(file);
3272 if (error) {
3273 fput(file);
3274 } else if (!(op->open_flag & O_EXCL)) {
3275 struct inode *inode = file_inode(file);
3276 spin_lock(&inode->i_lock);
3277 inode->i_state |= I_LINKABLE;
3278 spin_unlock(&inode->i_lock);
3279 }
3280 out2:
3281 mnt_drop_write(path.mnt);
3282 out:
3283 path_put(&path);
3284 return error;
3285 }
3286
3287 static struct file *path_openat(int dfd, struct filename *pathname,
3288 struct nameidata *nd, const struct open_flags *op, int flags)
3289 {
3290 const char *s;
3291 struct file *file;
3292 int opened = 0;
3293 int error;
3294
3295 file = get_empty_filp();
3296 if (IS_ERR(file))
3297 return file;
3298
3299 file->f_flags = op->open_flag;
3300
3301 if (unlikely(file->f_flags & __O_TMPFILE)) {
3302 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3303 goto out2;
3304 }
3305
3306 s = path_init(dfd, pathname, flags, nd);
3307 if (IS_ERR(s)) {
3308 put_filp(file);
3309 return ERR_CAST(s);
3310 }
3311 while (!(error = link_path_walk(s, nd)) &&
3312 (error = do_last(nd, file, op, &opened, pathname)) > 0) {
3313 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3314 s = trailing_symlink(nd);
3315 if (IS_ERR(s)) {
3316 error = PTR_ERR(s);
3317 break;
3318 }
3319 }
3320 terminate_walk(nd);
3321 path_cleanup(nd);
3322 out2:
3323 if (!(opened & FILE_OPENED)) {
3324 BUG_ON(!error);
3325 put_filp(file);
3326 }
3327 if (unlikely(error)) {
3328 if (error == -EOPENSTALE) {
3329 if (flags & LOOKUP_RCU)
3330 error = -ECHILD;
3331 else
3332 error = -ESTALE;
3333 }
3334 file = ERR_PTR(error);
3335 }
3336 return file;
3337 }
3338
3339 struct file *do_filp_open(int dfd, struct filename *pathname,
3340 const struct open_flags *op)
3341 {
3342 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3343 int flags = op->lookup_flags;
3344 struct file *filp;
3345
3346 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3347 if (unlikely(filp == ERR_PTR(-ECHILD)))
3348 filp = path_openat(dfd, pathname, &nd, op, flags);
3349 if (unlikely(filp == ERR_PTR(-ESTALE)))
3350 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3351 restore_nameidata(saved_nd);
3352 return filp;
3353 }
3354
3355 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3356 const char *name, const struct open_flags *op)
3357 {
3358 struct nameidata nd, *saved_nd;
3359 struct file *file;
3360 struct filename *filename;
3361 int flags = op->lookup_flags | LOOKUP_ROOT;
3362
3363 nd.root.mnt = mnt;
3364 nd.root.dentry = dentry;
3365
3366 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3367 return ERR_PTR(-ELOOP);
3368
3369 filename = getname_kernel(name);
3370 if (unlikely(IS_ERR(filename)))
3371 return ERR_CAST(filename);
3372
3373 saved_nd = set_nameidata(&nd);
3374 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3375 if (unlikely(file == ERR_PTR(-ECHILD)))
3376 file = path_openat(-1, filename, &nd, op, flags);
3377 if (unlikely(file == ERR_PTR(-ESTALE)))
3378 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3379 restore_nameidata(saved_nd);
3380 putname(filename);
3381 return file;
3382 }
3383
3384 static struct dentry *filename_create(int dfd, struct filename *name,
3385 struct path *path, unsigned int lookup_flags)
3386 {
3387 struct dentry *dentry = ERR_PTR(-EEXIST);
3388 struct qstr last;
3389 int type;
3390 int err2;
3391 int error;
3392 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3393
3394 /*
3395 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3396 * other flags passed in are ignored!
3397 */
3398 lookup_flags &= LOOKUP_REVAL;
3399
3400 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3401 if (IS_ERR(name))
3402 return ERR_CAST(name);
3403
3404 /*
3405 * Yucky last component or no last component at all?
3406 * (foo/., foo/.., /////)
3407 */
3408 if (unlikely(type != LAST_NORM))
3409 goto out;
3410
3411 /* don't fail immediately if it's r/o, at least try to report other errors */
3412 err2 = mnt_want_write(path->mnt);
3413 /*
3414 * Do the final lookup.
3415 */
3416 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3417 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3418 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3419 if (IS_ERR(dentry))
3420 goto unlock;
3421
3422 error = -EEXIST;
3423 if (d_is_positive(dentry))
3424 goto fail;
3425
3426 /*
3427 * Special case - lookup gave negative, but... we had foo/bar/
3428 * From the vfs_mknod() POV we just have a negative dentry -
3429 * all is fine. Let's be bastards - you had / on the end, you've
3430 * been asking for (non-existent) directory. -ENOENT for you.
3431 */
3432 if (unlikely(!is_dir && last.name[last.len])) {
3433 error = -ENOENT;
3434 goto fail;
3435 }
3436 if (unlikely(err2)) {
3437 error = err2;
3438 goto fail;
3439 }
3440 putname(name);
3441 return dentry;
3442 fail:
3443 dput(dentry);
3444 dentry = ERR_PTR(error);
3445 unlock:
3446 mutex_unlock(&path->dentry->d_inode->i_mutex);
3447 if (!err2)
3448 mnt_drop_write(path->mnt);
3449 out:
3450 path_put(path);
3451 putname(name);
3452 return dentry;
3453 }
3454
3455 struct dentry *kern_path_create(int dfd, const char *pathname,
3456 struct path *path, unsigned int lookup_flags)
3457 {
3458 return filename_create(dfd, getname_kernel(pathname),
3459 path, lookup_flags);
3460 }
3461 EXPORT_SYMBOL(kern_path_create);
3462
3463 void done_path_create(struct path *path, struct dentry *dentry)
3464 {
3465 dput(dentry);
3466 mutex_unlock(&path->dentry->d_inode->i_mutex);
3467 mnt_drop_write(path->mnt);
3468 path_put(path);
3469 }
3470 EXPORT_SYMBOL(done_path_create);
3471
3472 struct dentry *user_path_create(int dfd, const char __user *pathname,
3473 struct path *path, unsigned int lookup_flags)
3474 {
3475 return filename_create(dfd, getname(pathname), path, lookup_flags);
3476 }
3477 EXPORT_SYMBOL(user_path_create);
3478
3479 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3480 {
3481 int error = may_create(dir, dentry);
3482
3483 if (error)
3484 return error;
3485
3486 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3487 return -EPERM;
3488
3489 if (!dir->i_op->mknod)
3490 return -EPERM;
3491
3492 error = devcgroup_inode_mknod(mode, dev);
3493 if (error)
3494 return error;
3495
3496 error = security_inode_mknod(dir, dentry, mode, dev);
3497 if (error)
3498 return error;
3499
3500 error = dir->i_op->mknod(dir, dentry, mode, dev);
3501 if (!error)
3502 fsnotify_create(dir, dentry);
3503 return error;
3504 }
3505 EXPORT_SYMBOL(vfs_mknod);
3506
3507 static int may_mknod(umode_t mode)
3508 {
3509 switch (mode & S_IFMT) {
3510 case S_IFREG:
3511 case S_IFCHR:
3512 case S_IFBLK:
3513 case S_IFIFO:
3514 case S_IFSOCK:
3515 case 0: /* zero mode translates to S_IFREG */
3516 return 0;
3517 case S_IFDIR:
3518 return -EPERM;
3519 default:
3520 return -EINVAL;
3521 }
3522 }
3523
3524 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3525 unsigned, dev)
3526 {
3527 struct dentry *dentry;
3528 struct path path;
3529 int error;
3530 unsigned int lookup_flags = 0;
3531
3532 error = may_mknod(mode);
3533 if (error)
3534 return error;
3535 retry:
3536 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3537 if (IS_ERR(dentry))
3538 return PTR_ERR(dentry);
3539
3540 if (!IS_POSIXACL(path.dentry->d_inode))
3541 mode &= ~current_umask();
3542 error = security_path_mknod(&path, dentry, mode, dev);
3543 if (error)
3544 goto out;
3545 switch (mode & S_IFMT) {
3546 case 0: case S_IFREG:
3547 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3548 break;
3549 case S_IFCHR: case S_IFBLK:
3550 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3551 new_decode_dev(dev));
3552 break;
3553 case S_IFIFO: case S_IFSOCK:
3554 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3555 break;
3556 }
3557 out:
3558 done_path_create(&path, dentry);
3559 if (retry_estale(error, lookup_flags)) {
3560 lookup_flags |= LOOKUP_REVAL;
3561 goto retry;
3562 }
3563 return error;
3564 }
3565
3566 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3567 {
3568 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3569 }
3570
3571 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3572 {
3573 int error = may_create(dir, dentry);
3574 unsigned max_links = dir->i_sb->s_max_links;
3575
3576 if (error)
3577 return error;
3578
3579 if (!dir->i_op->mkdir)
3580 return -EPERM;
3581
3582 mode &= (S_IRWXUGO|S_ISVTX);
3583 error = security_inode_mkdir(dir, dentry, mode);
3584 if (error)
3585 return error;
3586
3587 if (max_links && dir->i_nlink >= max_links)
3588 return -EMLINK;
3589
3590 error = dir->i_op->mkdir(dir, dentry, mode);
3591 if (!error)
3592 fsnotify_mkdir(dir, dentry);
3593 return error;
3594 }
3595 EXPORT_SYMBOL(vfs_mkdir);
3596
3597 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3598 {
3599 struct dentry *dentry;
3600 struct path path;
3601 int error;
3602 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3603
3604 retry:
3605 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3606 if (IS_ERR(dentry))
3607 return PTR_ERR(dentry);
3608
3609 if (!IS_POSIXACL(path.dentry->d_inode))
3610 mode &= ~current_umask();
3611 error = security_path_mkdir(&path, dentry, mode);
3612 if (!error)
3613 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3614 done_path_create(&path, dentry);
3615 if (retry_estale(error, lookup_flags)) {
3616 lookup_flags |= LOOKUP_REVAL;
3617 goto retry;
3618 }
3619 return error;
3620 }
3621
3622 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3623 {
3624 return sys_mkdirat(AT_FDCWD, pathname, mode);
3625 }
3626
3627 /*
3628 * The dentry_unhash() helper will try to drop the dentry early: we
3629 * should have a usage count of 1 if we're the only user of this
3630 * dentry, and if that is true (possibly after pruning the dcache),
3631 * then we drop the dentry now.
3632 *
3633 * A low-level filesystem can, if it choses, legally
3634 * do a
3635 *
3636 * if (!d_unhashed(dentry))
3637 * return -EBUSY;
3638 *
3639 * if it cannot handle the case of removing a directory
3640 * that is still in use by something else..
3641 */
3642 void dentry_unhash(struct dentry *dentry)
3643 {
3644 shrink_dcache_parent(dentry);
3645 spin_lock(&dentry->d_lock);
3646 if (dentry->d_lockref.count == 1)
3647 __d_drop(dentry);
3648 spin_unlock(&dentry->d_lock);
3649 }
3650 EXPORT_SYMBOL(dentry_unhash);
3651
3652 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3653 {
3654 int error = may_delete(dir, dentry, 1);
3655
3656 if (error)
3657 return error;
3658
3659 if (!dir->i_op->rmdir)
3660 return -EPERM;
3661
3662 dget(dentry);
3663 mutex_lock(&dentry->d_inode->i_mutex);
3664
3665 error = -EBUSY;
3666 if (is_local_mountpoint(dentry))
3667 goto out;
3668
3669 error = security_inode_rmdir(dir, dentry);
3670 if (error)
3671 goto out;
3672
3673 shrink_dcache_parent(dentry);
3674 error = dir->i_op->rmdir(dir, dentry);
3675 if (error)
3676 goto out;
3677
3678 dentry->d_inode->i_flags |= S_DEAD;
3679 dont_mount(dentry);
3680 detach_mounts(dentry);
3681
3682 out:
3683 mutex_unlock(&dentry->d_inode->i_mutex);
3684 dput(dentry);
3685 if (!error)
3686 d_delete(dentry);
3687 return error;
3688 }
3689 EXPORT_SYMBOL(vfs_rmdir);
3690
3691 static long do_rmdir(int dfd, const char __user *pathname)
3692 {
3693 int error = 0;
3694 struct filename *name;
3695 struct dentry *dentry;
3696 struct path path;
3697 struct qstr last;
3698 int type;
3699 unsigned int lookup_flags = 0;
3700 retry:
3701 name = user_path_parent(dfd, pathname,
3702 &path, &last, &type, lookup_flags);
3703 if (IS_ERR(name))
3704 return PTR_ERR(name);
3705
3706 switch (type) {
3707 case LAST_DOTDOT:
3708 error = -ENOTEMPTY;
3709 goto exit1;
3710 case LAST_DOT:
3711 error = -EINVAL;
3712 goto exit1;
3713 case LAST_ROOT:
3714 error = -EBUSY;
3715 goto exit1;
3716 }
3717
3718 error = mnt_want_write(path.mnt);
3719 if (error)
3720 goto exit1;
3721
3722 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3723 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3724 error = PTR_ERR(dentry);
3725 if (IS_ERR(dentry))
3726 goto exit2;
3727 if (!dentry->d_inode) {
3728 error = -ENOENT;
3729 goto exit3;
3730 }
3731 error = security_path_rmdir(&path, dentry);
3732 if (error)
3733 goto exit3;
3734 error = vfs_rmdir(path.dentry->d_inode, dentry);
3735 exit3:
3736 dput(dentry);
3737 exit2:
3738 mutex_unlock(&path.dentry->d_inode->i_mutex);
3739 mnt_drop_write(path.mnt);
3740 exit1:
3741 path_put(&path);
3742 putname(name);
3743 if (retry_estale(error, lookup_flags)) {
3744 lookup_flags |= LOOKUP_REVAL;
3745 goto retry;
3746 }
3747 return error;
3748 }
3749
3750 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3751 {
3752 return do_rmdir(AT_FDCWD, pathname);
3753 }
3754
3755 /**
3756 * vfs_unlink - unlink a filesystem object
3757 * @dir: parent directory
3758 * @dentry: victim
3759 * @delegated_inode: returns victim inode, if the inode is delegated.
3760 *
3761 * The caller must hold dir->i_mutex.
3762 *
3763 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3764 * return a reference to the inode in delegated_inode. The caller
3765 * should then break the delegation on that inode and retry. Because
3766 * breaking a delegation may take a long time, the caller should drop
3767 * dir->i_mutex before doing so.
3768 *
3769 * Alternatively, a caller may pass NULL for delegated_inode. This may
3770 * be appropriate for callers that expect the underlying filesystem not
3771 * to be NFS exported.
3772 */
3773 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3774 {
3775 struct inode *target = dentry->d_inode;
3776 int error = may_delete(dir, dentry, 0);
3777
3778 if (error)
3779 return error;
3780
3781 if (!dir->i_op->unlink)
3782 return -EPERM;
3783
3784 mutex_lock(&target->i_mutex);
3785 if (is_local_mountpoint(dentry))
3786 error = -EBUSY;
3787 else {
3788 error = security_inode_unlink(dir, dentry);
3789 if (!error) {
3790 error = try_break_deleg(target, delegated_inode);
3791 if (error)
3792 goto out;
3793 error = dir->i_op->unlink(dir, dentry);
3794 if (!error) {
3795 dont_mount(dentry);
3796 detach_mounts(dentry);
3797 }
3798 }
3799 }
3800 out:
3801 mutex_unlock(&target->i_mutex);
3802
3803 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3804 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3805 fsnotify_link_count(target);
3806 d_delete(dentry);
3807 }
3808
3809 return error;
3810 }
3811 EXPORT_SYMBOL(vfs_unlink);
3812
3813 /*
3814 * Make sure that the actual truncation of the file will occur outside its
3815 * directory's i_mutex. Truncate can take a long time if there is a lot of
3816 * writeout happening, and we don't want to prevent access to the directory
3817 * while waiting on the I/O.
3818 */
3819 static long do_unlinkat(int dfd, const char __user *pathname)
3820 {
3821 int error;
3822 struct filename *name;
3823 struct dentry *dentry;
3824 struct path path;
3825 struct qstr last;
3826 int type;
3827 struct inode *inode = NULL;
3828 struct inode *delegated_inode = NULL;
3829 unsigned int lookup_flags = 0;
3830 retry:
3831 name = user_path_parent(dfd, pathname,
3832 &path, &last, &type, lookup_flags);
3833 if (IS_ERR(name))
3834 return PTR_ERR(name);
3835
3836 error = -EISDIR;
3837 if (type != LAST_NORM)
3838 goto exit1;
3839
3840 error = mnt_want_write(path.mnt);
3841 if (error)
3842 goto exit1;
3843 retry_deleg:
3844 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3845 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3846 error = PTR_ERR(dentry);
3847 if (!IS_ERR(dentry)) {
3848 /* Why not before? Because we want correct error value */
3849 if (last.name[last.len])
3850 goto slashes;
3851 inode = dentry->d_inode;
3852 if (d_is_negative(dentry))
3853 goto slashes;
3854 ihold(inode);
3855 error = security_path_unlink(&path, dentry);
3856 if (error)
3857 goto exit2;
3858 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3859 exit2:
3860 dput(dentry);
3861 }
3862 mutex_unlock(&path.dentry->d_inode->i_mutex);
3863 if (inode)
3864 iput(inode); /* truncate the inode here */
3865 inode = NULL;
3866 if (delegated_inode) {
3867 error = break_deleg_wait(&delegated_inode);
3868 if (!error)
3869 goto retry_deleg;
3870 }
3871 mnt_drop_write(path.mnt);
3872 exit1:
3873 path_put(&path);
3874 putname(name);
3875 if (retry_estale(error, lookup_flags)) {
3876 lookup_flags |= LOOKUP_REVAL;
3877 inode = NULL;
3878 goto retry;
3879 }
3880 return error;
3881
3882 slashes:
3883 if (d_is_negative(dentry))
3884 error = -ENOENT;
3885 else if (d_is_dir(dentry))
3886 error = -EISDIR;
3887 else
3888 error = -ENOTDIR;
3889 goto exit2;
3890 }
3891
3892 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3893 {
3894 if ((flag & ~AT_REMOVEDIR) != 0)
3895 return -EINVAL;
3896
3897 if (flag & AT_REMOVEDIR)
3898 return do_rmdir(dfd, pathname);
3899
3900 return do_unlinkat(dfd, pathname);
3901 }
3902
3903 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3904 {
3905 return do_unlinkat(AT_FDCWD, pathname);
3906 }
3907
3908 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3909 {
3910 int error = may_create(dir, dentry);
3911
3912 if (error)
3913 return error;
3914
3915 if (!dir->i_op->symlink)
3916 return -EPERM;
3917
3918 error = security_inode_symlink(dir, dentry, oldname);
3919 if (error)
3920 return error;
3921
3922 error = dir->i_op->symlink(dir, dentry, oldname);
3923 if (!error)
3924 fsnotify_create(dir, dentry);
3925 return error;
3926 }
3927 EXPORT_SYMBOL(vfs_symlink);
3928
3929 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3930 int, newdfd, const char __user *, newname)
3931 {
3932 int error;
3933 struct filename *from;
3934 struct dentry *dentry;
3935 struct path path;
3936 unsigned int lookup_flags = 0;
3937
3938 from = getname(oldname);
3939 if (IS_ERR(from))
3940 return PTR_ERR(from);
3941 retry:
3942 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3943 error = PTR_ERR(dentry);
3944 if (IS_ERR(dentry))
3945 goto out_putname;
3946
3947 error = security_path_symlink(&path, dentry, from->name);
3948 if (!error)
3949 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3950 done_path_create(&path, dentry);
3951 if (retry_estale(error, lookup_flags)) {
3952 lookup_flags |= LOOKUP_REVAL;
3953 goto retry;
3954 }
3955 out_putname:
3956 putname(from);
3957 return error;
3958 }
3959
3960 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3961 {
3962 return sys_symlinkat(oldname, AT_FDCWD, newname);
3963 }
3964
3965 /**
3966 * vfs_link - create a new link
3967 * @old_dentry: object to be linked
3968 * @dir: new parent
3969 * @new_dentry: where to create the new link
3970 * @delegated_inode: returns inode needing a delegation break
3971 *
3972 * The caller must hold dir->i_mutex
3973 *
3974 * If vfs_link discovers a delegation on the to-be-linked file in need
3975 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3976 * inode in delegated_inode. The caller should then break the delegation
3977 * and retry. Because breaking a delegation may take a long time, the
3978 * caller should drop the i_mutex before doing so.
3979 *
3980 * Alternatively, a caller may pass NULL for delegated_inode. This may
3981 * be appropriate for callers that expect the underlying filesystem not
3982 * to be NFS exported.
3983 */
3984 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3985 {
3986 struct inode *inode = old_dentry->d_inode;
3987 unsigned max_links = dir->i_sb->s_max_links;
3988 int error;
3989
3990 if (!inode)
3991 return -ENOENT;
3992
3993 error = may_create(dir, new_dentry);
3994 if (error)
3995 return error;
3996
3997 if (dir->i_sb != inode->i_sb)
3998 return -EXDEV;
3999
4000 /*
4001 * A link to an append-only or immutable file cannot be created.
4002 */
4003 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4004 return -EPERM;
4005 if (!dir->i_op->link)
4006 return -EPERM;
4007 if (S_ISDIR(inode->i_mode))
4008 return -EPERM;
4009
4010 error = security_inode_link(old_dentry, dir, new_dentry);
4011 if (error)
4012 return error;
4013
4014 mutex_lock(&inode->i_mutex);
4015 /* Make sure we don't allow creating hardlink to an unlinked file */
4016 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4017 error = -ENOENT;
4018 else if (max_links && inode->i_nlink >= max_links)
4019 error = -EMLINK;
4020 else {
4021 error = try_break_deleg(inode, delegated_inode);
4022 if (!error)
4023 error = dir->i_op->link(old_dentry, dir, new_dentry);
4024 }
4025
4026 if (!error && (inode->i_state & I_LINKABLE)) {
4027 spin_lock(&inode->i_lock);
4028 inode->i_state &= ~I_LINKABLE;
4029 spin_unlock(&inode->i_lock);
4030 }
4031 mutex_unlock(&inode->i_mutex);
4032 if (!error)
4033 fsnotify_link(dir, inode, new_dentry);
4034 return error;
4035 }
4036 EXPORT_SYMBOL(vfs_link);
4037
4038 /*
4039 * Hardlinks are often used in delicate situations. We avoid
4040 * security-related surprises by not following symlinks on the
4041 * newname. --KAB
4042 *
4043 * We don't follow them on the oldname either to be compatible
4044 * with linux 2.0, and to avoid hard-linking to directories
4045 * and other special files. --ADM
4046 */
4047 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4048 int, newdfd, const char __user *, newname, int, flags)
4049 {
4050 struct dentry *new_dentry;
4051 struct path old_path, new_path;
4052 struct inode *delegated_inode = NULL;
4053 int how = 0;
4054 int error;
4055
4056 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4057 return -EINVAL;
4058 /*
4059 * To use null names we require CAP_DAC_READ_SEARCH
4060 * This ensures that not everyone will be able to create
4061 * handlink using the passed filedescriptor.
4062 */
4063 if (flags & AT_EMPTY_PATH) {
4064 if (!capable(CAP_DAC_READ_SEARCH))
4065 return -ENOENT;
4066 how = LOOKUP_EMPTY;
4067 }
4068
4069 if (flags & AT_SYMLINK_FOLLOW)
4070 how |= LOOKUP_FOLLOW;
4071 retry:
4072 error = user_path_at(olddfd, oldname, how, &old_path);
4073 if (error)
4074 return error;
4075
4076 new_dentry = user_path_create(newdfd, newname, &new_path,
4077 (how & LOOKUP_REVAL));
4078 error = PTR_ERR(new_dentry);
4079 if (IS_ERR(new_dentry))
4080 goto out;
4081
4082 error = -EXDEV;
4083 if (old_path.mnt != new_path.mnt)
4084 goto out_dput;
4085 error = may_linkat(&old_path);
4086 if (unlikely(error))
4087 goto out_dput;
4088 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4089 if (error)
4090 goto out_dput;
4091 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4092 out_dput:
4093 done_path_create(&new_path, new_dentry);
4094 if (delegated_inode) {
4095 error = break_deleg_wait(&delegated_inode);
4096 if (!error) {
4097 path_put(&old_path);
4098 goto retry;
4099 }
4100 }
4101 if (retry_estale(error, how)) {
4102 path_put(&old_path);
4103 how |= LOOKUP_REVAL;
4104 goto retry;
4105 }
4106 out:
4107 path_put(&old_path);
4108
4109 return error;
4110 }
4111
4112 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4113 {
4114 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4115 }
4116
4117 /**
4118 * vfs_rename - rename a filesystem object
4119 * @old_dir: parent of source
4120 * @old_dentry: source
4121 * @new_dir: parent of destination
4122 * @new_dentry: destination
4123 * @delegated_inode: returns an inode needing a delegation break
4124 * @flags: rename flags
4125 *
4126 * The caller must hold multiple mutexes--see lock_rename()).
4127 *
4128 * If vfs_rename discovers a delegation in need of breaking at either
4129 * the source or destination, it will return -EWOULDBLOCK and return a
4130 * reference to the inode in delegated_inode. The caller should then
4131 * break the delegation and retry. Because breaking a delegation may
4132 * take a long time, the caller should drop all locks before doing
4133 * so.
4134 *
4135 * Alternatively, a caller may pass NULL for delegated_inode. This may
4136 * be appropriate for callers that expect the underlying filesystem not
4137 * to be NFS exported.
4138 *
4139 * The worst of all namespace operations - renaming directory. "Perverted"
4140 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4141 * Problems:
4142 * a) we can get into loop creation.
4143 * b) race potential - two innocent renames can create a loop together.
4144 * That's where 4.4 screws up. Current fix: serialization on
4145 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4146 * story.
4147 * c) we have to lock _four_ objects - parents and victim (if it exists),
4148 * and source (if it is not a directory).
4149 * And that - after we got ->i_mutex on parents (until then we don't know
4150 * whether the target exists). Solution: try to be smart with locking
4151 * order for inodes. We rely on the fact that tree topology may change
4152 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4153 * move will be locked. Thus we can rank directories by the tree
4154 * (ancestors first) and rank all non-directories after them.
4155 * That works since everybody except rename does "lock parent, lookup,
4156 * lock child" and rename is under ->s_vfs_rename_mutex.
4157 * HOWEVER, it relies on the assumption that any object with ->lookup()
4158 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4159 * we'd better make sure that there's no link(2) for them.
4160 * d) conversion from fhandle to dentry may come in the wrong moment - when
4161 * we are removing the target. Solution: we will have to grab ->i_mutex
4162 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4163 * ->i_mutex on parents, which works but leads to some truly excessive
4164 * locking].
4165 */
4166 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4167 struct inode *new_dir, struct dentry *new_dentry,
4168 struct inode **delegated_inode, unsigned int flags)
4169 {
4170 int error;
4171 bool is_dir = d_is_dir(old_dentry);
4172 const unsigned char *old_name;
4173 struct inode *source = old_dentry->d_inode;
4174 struct inode *target = new_dentry->d_inode;
4175 bool new_is_dir = false;
4176 unsigned max_links = new_dir->i_sb->s_max_links;
4177
4178 if (source == target)
4179 return 0;
4180
4181 error = may_delete(old_dir, old_dentry, is_dir);
4182 if (error)
4183 return error;
4184
4185 if (!target) {
4186 error = may_create(new_dir, new_dentry);
4187 } else {
4188 new_is_dir = d_is_dir(new_dentry);
4189
4190 if (!(flags & RENAME_EXCHANGE))
4191 error = may_delete(new_dir, new_dentry, is_dir);
4192 else
4193 error = may_delete(new_dir, new_dentry, new_is_dir);
4194 }
4195 if (error)
4196 return error;
4197
4198 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4199 return -EPERM;
4200
4201 if (flags && !old_dir->i_op->rename2)
4202 return -EINVAL;
4203
4204 /*
4205 * If we are going to change the parent - check write permissions,
4206 * we'll need to flip '..'.
4207 */
4208 if (new_dir != old_dir) {
4209 if (is_dir) {
4210 error = inode_permission(source, MAY_WRITE);
4211 if (error)
4212 return error;
4213 }
4214 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4215 error = inode_permission(target, MAY_WRITE);
4216 if (error)
4217 return error;
4218 }
4219 }
4220
4221 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4222 flags);
4223 if (error)
4224 return error;
4225
4226 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4227 dget(new_dentry);
4228 if (!is_dir || (flags & RENAME_EXCHANGE))
4229 lock_two_nondirectories(source, target);
4230 else if (target)
4231 mutex_lock(&target->i_mutex);
4232
4233 error = -EBUSY;
4234 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4235 goto out;
4236
4237 if (max_links && new_dir != old_dir) {
4238 error = -EMLINK;
4239 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4240 goto out;
4241 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4242 old_dir->i_nlink >= max_links)
4243 goto out;
4244 }
4245 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4246 shrink_dcache_parent(new_dentry);
4247 if (!is_dir) {
4248 error = try_break_deleg(source, delegated_inode);
4249 if (error)
4250 goto out;
4251 }
4252 if (target && !new_is_dir) {
4253 error = try_break_deleg(target, delegated_inode);
4254 if (error)
4255 goto out;
4256 }
4257 if (!old_dir->i_op->rename2) {
4258 error = old_dir->i_op->rename(old_dir, old_dentry,
4259 new_dir, new_dentry);
4260 } else {
4261 WARN_ON(old_dir->i_op->rename != NULL);
4262 error = old_dir->i_op->rename2(old_dir, old_dentry,
4263 new_dir, new_dentry, flags);
4264 }
4265 if (error)
4266 goto out;
4267
4268 if (!(flags & RENAME_EXCHANGE) && target) {
4269 if (is_dir)
4270 target->i_flags |= S_DEAD;
4271 dont_mount(new_dentry);
4272 detach_mounts(new_dentry);
4273 }
4274 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4275 if (!(flags & RENAME_EXCHANGE))
4276 d_move(old_dentry, new_dentry);
4277 else
4278 d_exchange(old_dentry, new_dentry);
4279 }
4280 out:
4281 if (!is_dir || (flags & RENAME_EXCHANGE))
4282 unlock_two_nondirectories(source, target);
4283 else if (target)
4284 mutex_unlock(&target->i_mutex);
4285 dput(new_dentry);
4286 if (!error) {
4287 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4288 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4289 if (flags & RENAME_EXCHANGE) {
4290 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4291 new_is_dir, NULL, new_dentry);
4292 }
4293 }
4294 fsnotify_oldname_free(old_name);
4295
4296 return error;
4297 }
4298 EXPORT_SYMBOL(vfs_rename);
4299
4300 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4301 int, newdfd, const char __user *, newname, unsigned int, flags)
4302 {
4303 struct dentry *old_dentry, *new_dentry;
4304 struct dentry *trap;
4305 struct path old_path, new_path;
4306 struct qstr old_last, new_last;
4307 int old_type, new_type;
4308 struct inode *delegated_inode = NULL;
4309 struct filename *from;
4310 struct filename *to;
4311 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4312 bool should_retry = false;
4313 int error;
4314
4315 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4316 return -EINVAL;
4317
4318 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4319 (flags & RENAME_EXCHANGE))
4320 return -EINVAL;
4321
4322 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4323 return -EPERM;
4324
4325 if (flags & RENAME_EXCHANGE)
4326 target_flags = 0;
4327
4328 retry:
4329 from = user_path_parent(olddfd, oldname,
4330 &old_path, &old_last, &old_type, lookup_flags);
4331 if (IS_ERR(from)) {
4332 error = PTR_ERR(from);
4333 goto exit;
4334 }
4335
4336 to = user_path_parent(newdfd, newname,
4337 &new_path, &new_last, &new_type, lookup_flags);
4338 if (IS_ERR(to)) {
4339 error = PTR_ERR(to);
4340 goto exit1;
4341 }
4342
4343 error = -EXDEV;
4344 if (old_path.mnt != new_path.mnt)
4345 goto exit2;
4346
4347 error = -EBUSY;
4348 if (old_type != LAST_NORM)
4349 goto exit2;
4350
4351 if (flags & RENAME_NOREPLACE)
4352 error = -EEXIST;
4353 if (new_type != LAST_NORM)
4354 goto exit2;
4355
4356 error = mnt_want_write(old_path.mnt);
4357 if (error)
4358 goto exit2;
4359
4360 retry_deleg:
4361 trap = lock_rename(new_path.dentry, old_path.dentry);
4362
4363 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4364 error = PTR_ERR(old_dentry);
4365 if (IS_ERR(old_dentry))
4366 goto exit3;
4367 /* source must exist */
4368 error = -ENOENT;
4369 if (d_is_negative(old_dentry))
4370 goto exit4;
4371 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4372 error = PTR_ERR(new_dentry);
4373 if (IS_ERR(new_dentry))
4374 goto exit4;
4375 error = -EEXIST;
4376 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4377 goto exit5;
4378 if (flags & RENAME_EXCHANGE) {
4379 error = -ENOENT;
4380 if (d_is_negative(new_dentry))
4381 goto exit5;
4382
4383 if (!d_is_dir(new_dentry)) {
4384 error = -ENOTDIR;
4385 if (new_last.name[new_last.len])
4386 goto exit5;
4387 }
4388 }
4389 /* unless the source is a directory trailing slashes give -ENOTDIR */
4390 if (!d_is_dir(old_dentry)) {
4391 error = -ENOTDIR;
4392 if (old_last.name[old_last.len])
4393 goto exit5;
4394 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4395 goto exit5;
4396 }
4397 /* source should not be ancestor of target */
4398 error = -EINVAL;
4399 if (old_dentry == trap)
4400 goto exit5;
4401 /* target should not be an ancestor of source */
4402 if (!(flags & RENAME_EXCHANGE))
4403 error = -ENOTEMPTY;
4404 if (new_dentry == trap)
4405 goto exit5;
4406
4407 error = security_path_rename(&old_path, old_dentry,
4408 &new_path, new_dentry, flags);
4409 if (error)
4410 goto exit5;
4411 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4412 new_path.dentry->d_inode, new_dentry,
4413 &delegated_inode, flags);
4414 exit5:
4415 dput(new_dentry);
4416 exit4:
4417 dput(old_dentry);
4418 exit3:
4419 unlock_rename(new_path.dentry, old_path.dentry);
4420 if (delegated_inode) {
4421 error = break_deleg_wait(&delegated_inode);
4422 if (!error)
4423 goto retry_deleg;
4424 }
4425 mnt_drop_write(old_path.mnt);
4426 exit2:
4427 if (retry_estale(error, lookup_flags))
4428 should_retry = true;
4429 path_put(&new_path);
4430 putname(to);
4431 exit1:
4432 path_put(&old_path);
4433 putname(from);
4434 if (should_retry) {
4435 should_retry = false;
4436 lookup_flags |= LOOKUP_REVAL;
4437 goto retry;
4438 }
4439 exit:
4440 return error;
4441 }
4442
4443 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4444 int, newdfd, const char __user *, newname)
4445 {
4446 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4447 }
4448
4449 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4450 {
4451 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4452 }
4453
4454 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4455 {
4456 int error = may_create(dir, dentry);
4457 if (error)
4458 return error;
4459
4460 if (!dir->i_op->mknod)
4461 return -EPERM;
4462
4463 return dir->i_op->mknod(dir, dentry,
4464 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4465 }
4466 EXPORT_SYMBOL(vfs_whiteout);
4467
4468 int readlink_copy(char __user *buffer, int buflen, const char *link)
4469 {
4470 int len = PTR_ERR(link);
4471 if (IS_ERR(link))
4472 goto out;
4473
4474 len = strlen(link);
4475 if (len > (unsigned) buflen)
4476 len = buflen;
4477 if (copy_to_user(buffer, link, len))
4478 len = -EFAULT;
4479 out:
4480 return len;
4481 }
4482 EXPORT_SYMBOL(readlink_copy);
4483
4484 /*
4485 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4486 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4487 * using) it for any given inode is up to filesystem.
4488 */
4489 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4490 {
4491 void *cookie;
4492 struct inode *inode = d_inode(dentry);
4493 const char *link = inode->i_link;
4494 int res;
4495
4496 if (!link) {
4497 link = inode->i_op->follow_link(dentry, &cookie);
4498 if (IS_ERR(link))
4499 return PTR_ERR(link);
4500 }
4501 res = readlink_copy(buffer, buflen, link);
4502 if (inode->i_op->put_link)
4503 inode->i_op->put_link(inode, cookie);
4504 return res;
4505 }
4506 EXPORT_SYMBOL(generic_readlink);
4507
4508 /* get the link contents into pagecache */
4509 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4510 {
4511 char *kaddr;
4512 struct page *page;
4513 struct address_space *mapping = dentry->d_inode->i_mapping;
4514 page = read_mapping_page(mapping, 0, NULL);
4515 if (IS_ERR(page))
4516 return (char*)page;
4517 *ppage = page;
4518 kaddr = kmap(page);
4519 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4520 return kaddr;
4521 }
4522
4523 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4524 {
4525 struct page *page = NULL;
4526 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4527 if (page) {
4528 kunmap(page);
4529 page_cache_release(page);
4530 }
4531 return res;
4532 }
4533 EXPORT_SYMBOL(page_readlink);
4534
4535 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4536 {
4537 struct page *page = NULL;
4538 char *res = page_getlink(dentry, &page);
4539 if (!IS_ERR(res))
4540 *cookie = page;
4541 return res;
4542 }
4543 EXPORT_SYMBOL(page_follow_link_light);
4544
4545 void page_put_link(struct inode *unused, void *cookie)
4546 {
4547 struct page *page = cookie;
4548 kunmap(page);
4549 page_cache_release(page);
4550 }
4551 EXPORT_SYMBOL(page_put_link);
4552
4553 /*
4554 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4555 */
4556 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4557 {
4558 struct address_space *mapping = inode->i_mapping;
4559 struct page *page;
4560 void *fsdata;
4561 int err;
4562 char *kaddr;
4563 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4564 if (nofs)
4565 flags |= AOP_FLAG_NOFS;
4566
4567 retry:
4568 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4569 flags, &page, &fsdata);
4570 if (err)
4571 goto fail;
4572
4573 kaddr = kmap_atomic(page);
4574 memcpy(kaddr, symname, len-1);
4575 kunmap_atomic(kaddr);
4576
4577 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4578 page, fsdata);
4579 if (err < 0)
4580 goto fail;
4581 if (err < len-1)
4582 goto retry;
4583
4584 mark_inode_dirty(inode);
4585 return 0;
4586 fail:
4587 return err;
4588 }
4589 EXPORT_SYMBOL(__page_symlink);
4590
4591 int page_symlink(struct inode *inode, const char *symname, int len)
4592 {
4593 return __page_symlink(inode, symname, len,
4594 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4595 }
4596 EXPORT_SYMBOL(page_symlink);
4597
4598 const struct inode_operations page_symlink_inode_operations = {
4599 .readlink = generic_readlink,
4600 .follow_link = page_follow_link_light,
4601 .put_link = page_put_link,
4602 };
4603 EXPORT_SYMBOL(page_symlink_inode_operations);