]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
UBUNTU: ubuntu: vbox -- Update to 5.1.10-dfsg-2
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
50 *
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
57 *
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
61 *
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
64 *
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
71 */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
80 *
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
88 */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
92 *
93 * [10-Sep-98 Alan Modra] Another symlink change.
94 */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
103 *
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
109 */
110 /*
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
114 */
115
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
119 *
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
122 */
123
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 struct filename *result;
130 char *kname;
131 int len;
132
133 result = audit_reusename(filename);
134 if (result)
135 return result;
136
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result->iname;
146 result->name = kname;
147
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
152 }
153
154 /*
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
159 */
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
163
164 /*
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
168 */
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
173 }
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
180 }
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
185 }
186 }
187
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
196 }
197 }
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208 return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 struct filename *result;
215 int len = strlen(filename) + 1;
216
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
220
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
225
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
230 }
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
236 }
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
242
243 return result;
244 }
245
246 void putname(struct filename *name)
247 {
248 BUG_ON(name->refcnt <= 0);
249
250 if (--name->refcnt > 0)
251 return;
252
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
264
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 }
274
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
282 }
283 #endif
284
285 return -EAGAIN;
286 }
287
288 /*
289 * This does the basic permission checking
290 */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 unsigned int mode = inode->i_mode;
294
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
302 }
303
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
306 }
307
308 /*
309 * If the DACs are ok we don't need any capability check.
310 */
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
314 }
315
316 /**
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 *
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
325 *
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
329 */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 int ret;
333
334 /*
335 * Do the basic permission checks.
336 */
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
340
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 return 0;
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 return -EACCES;
350 }
351 /*
352 * Read/write DACs are always overridable.
353 * Executable DACs are overridable when there is
354 * at least one exec bit set.
355 */
356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 return 0;
359
360 /*
361 * Searching includes executable on directories, else just read.
362 */
363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 if (mask == MAY_READ)
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 return 0;
367
368 return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
377 */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
414
415 /*
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
419 */
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
422 }
423
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
427
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
431
432 return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Separate out file-system wide checks from inode-specific permission checks.
443 */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
448
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 };
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
585
586 return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
605 }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
619 }
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
625 }
626 nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
632 {
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
639 }
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
643 }
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
656 }
657 }
658 return true;
659 }
660
661 /*
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
670 */
671
672 /**
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * @dentry: child of nd->path.dentry or NULL
676 * @seq: seq number to check dentry against
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
681 * @nd or NULL. Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 goto out2;
696 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 goto out1;
698
699 /*
700 * For a negative lookup, the lookup sequence point is the parents
701 * sequence point, and it only needs to revalidate the parent dentry.
702 *
703 * For a positive lookup, we need to move both the parent and the
704 * dentry from the RCU domain to be properly refcounted. And the
705 * sequence number in the dentry validates *both* dentry counters,
706 * since we checked the sequence number of the parent after we got
707 * the child sequence number. So we know the parent must still
708 * be valid if the child sequence number is still valid.
709 */
710 if (!dentry) {
711 if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 goto out;
713 BUG_ON(nd->inode != parent->d_inode);
714 } else {
715 if (!lockref_get_not_dead(&dentry->d_lockref))
716 goto out;
717 if (read_seqcount_retry(&dentry->d_seq, seq))
718 goto drop_dentry;
719 }
720
721 /*
722 * Sequence counts matched. Now make sure that the root is
723 * still valid and get it if required.
724 */
725 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 rcu_read_unlock();
728 dput(dentry);
729 return -ECHILD;
730 }
731 }
732
733 rcu_read_unlock();
734 return 0;
735
736 drop_dentry:
737 rcu_read_unlock();
738 dput(dentry);
739 goto drop_root_mnt;
740 out2:
741 nd->path.mnt = NULL;
742 out1:
743 nd->path.dentry = NULL;
744 out:
745 rcu_read_unlock();
746 drop_root_mnt:
747 if (!(nd->flags & LOOKUP_ROOT))
748 nd->root.mnt = NULL;
749 return -ECHILD;
750 }
751
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 {
754 if (unlikely(!legitimize_path(nd, link, seq))) {
755 drop_links(nd);
756 nd->depth = 0;
757 nd->flags &= ~LOOKUP_RCU;
758 nd->path.mnt = NULL;
759 nd->path.dentry = NULL;
760 if (!(nd->flags & LOOKUP_ROOT))
761 nd->root.mnt = NULL;
762 rcu_read_unlock();
763 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 return 0;
765 }
766 path_put(link);
767 return -ECHILD;
768 }
769
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 return dentry->d_op->d_revalidate(dentry, flags);
773 }
774
775 /**
776 * complete_walk - successful completion of path walk
777 * @nd: pointer nameidata
778 *
779 * If we had been in RCU mode, drop out of it and legitimize nd->path.
780 * Revalidate the final result, unless we'd already done that during
781 * the path walk or the filesystem doesn't ask for it. Return 0 on
782 * success, -error on failure. In case of failure caller does not
783 * need to drop nd->path.
784 */
785 static int complete_walk(struct nameidata *nd)
786 {
787 struct dentry *dentry = nd->path.dentry;
788 int status;
789
790 if (nd->flags & LOOKUP_RCU) {
791 if (!(nd->flags & LOOKUP_ROOT))
792 nd->root.mnt = NULL;
793 if (unlikely(unlazy_walk(nd, NULL, 0)))
794 return -ECHILD;
795 }
796
797 if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 return 0;
799
800 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 return 0;
802
803 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 if (status > 0)
805 return 0;
806
807 if (!status)
808 status = -ESTALE;
809
810 return status;
811 }
812
813 static void set_root(struct nameidata *nd)
814 {
815 struct fs_struct *fs = current->fs;
816
817 if (nd->flags & LOOKUP_RCU) {
818 unsigned seq;
819
820 do {
821 seq = read_seqcount_begin(&fs->seq);
822 nd->root = fs->root;
823 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 } while (read_seqcount_retry(&fs->seq, seq));
825 } else {
826 get_fs_root(fs, &nd->root);
827 }
828 }
829
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
831 {
832 dput(path->dentry);
833 if (path->mnt != nd->path.mnt)
834 mntput(path->mnt);
835 }
836
837 static inline void path_to_nameidata(const struct path *path,
838 struct nameidata *nd)
839 {
840 if (!(nd->flags & LOOKUP_RCU)) {
841 dput(nd->path.dentry);
842 if (nd->path.mnt != path->mnt)
843 mntput(nd->path.mnt);
844 }
845 nd->path.mnt = path->mnt;
846 nd->path.dentry = path->dentry;
847 }
848
849 static int nd_jump_root(struct nameidata *nd)
850 {
851 if (nd->flags & LOOKUP_RCU) {
852 struct dentry *d;
853 nd->path = nd->root;
854 d = nd->path.dentry;
855 nd->inode = d->d_inode;
856 nd->seq = nd->root_seq;
857 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 return -ECHILD;
859 } else {
860 path_put(&nd->path);
861 nd->path = nd->root;
862 path_get(&nd->path);
863 nd->inode = nd->path.dentry->d_inode;
864 }
865 nd->flags |= LOOKUP_JUMPED;
866 return 0;
867 }
868
869 /*
870 * Helper to directly jump to a known parsed path from ->get_link,
871 * caller must have taken a reference to path beforehand.
872 */
873 void nd_jump_link(struct path *path)
874 {
875 struct nameidata *nd = current->nameidata;
876 path_put(&nd->path);
877
878 nd->path = *path;
879 nd->inode = nd->path.dentry->d_inode;
880 nd->flags |= LOOKUP_JUMPED;
881 }
882
883 static inline void put_link(struct nameidata *nd)
884 {
885 struct saved *last = nd->stack + --nd->depth;
886 do_delayed_call(&last->done);
887 if (!(nd->flags & LOOKUP_RCU))
888 path_put(&last->link);
889 }
890
891 int sysctl_protected_symlinks __read_mostly = 1;
892 int sysctl_protected_hardlinks __read_mostly = 1;
893
894 /**
895 * may_follow_link - Check symlink following for unsafe situations
896 * @nd: nameidata pathwalk data
897 *
898 * In the case of the sysctl_protected_symlinks sysctl being enabled,
899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900 * in a sticky world-writable directory. This is to protect privileged
901 * processes from failing races against path names that may change out
902 * from under them by way of other users creating malicious symlinks.
903 * It will permit symlinks to be followed only when outside a sticky
904 * world-writable directory, or when the uid of the symlink and follower
905 * match, or when the directory owner matches the symlink's owner.
906 *
907 * Returns 0 if following the symlink is allowed, -ve on error.
908 */
909 static inline int may_follow_link(struct nameidata *nd)
910 {
911 const struct inode *inode;
912 const struct inode *parent;
913 kuid_t puid;
914
915 if (!sysctl_protected_symlinks)
916 return 0;
917
918 /* Allowed if owner and follower match. */
919 inode = nd->link_inode;
920 if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 return 0;
922
923 /* Allowed if parent directory not sticky and world-writable. */
924 parent = nd->inode;
925 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 return 0;
927
928 /* Allowed if parent directory and link owner match. */
929 puid = parent->i_uid;
930 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 return 0;
932
933 if (nd->flags & LOOKUP_RCU)
934 return -ECHILD;
935
936 audit_log_link_denied("follow_link", &nd->stack[0].link);
937 return -EACCES;
938 }
939
940 /**
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
943 *
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
949 *
950 * Otherwise returns true.
951 */
952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 umode_t mode = inode->i_mode;
955
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
959
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
963
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
967
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
971
972 return true;
973 }
974
975 /**
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
978 *
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
984 *
985 * Returns 0 if successful, -ve on error.
986 */
987 static int may_linkat(struct path *link)
988 {
989 struct inode *inode;
990
991 if (!sysctl_protected_hardlinks)
992 return 0;
993
994 inode = link->dentry->d_inode;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat", link);
1003 return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1014
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update_rcu(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1022 }
1023
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1028
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1041 }
1042 } else {
1043 res = get(dentry, inode, &last->done);
1044 }
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1047 }
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1054 ;
1055 }
1056 if (!*res)
1057 res = NULL;
1058 return res;
1059 }
1060
1061 /*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071 int follow_up(struct path *path)
1072 {
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1076
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1082 }
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1098 */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1101 {
1102 struct vfsmount *mnt;
1103 const struct cred *old_cred;
1104 int err;
1105
1106 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 return -EREMOTE;
1108
1109 /* We don't want to mount if someone's just doing a stat -
1110 * unless they're stat'ing a directory and appended a '/' to
1111 * the name.
1112 *
1113 * We do, however, want to mount if someone wants to open or
1114 * create a file of any type under the mountpoint, wants to
1115 * traverse through the mountpoint or wants to open the
1116 * mounted directory. Also, autofs may mark negative dentries
1117 * as being automount points. These will need the attentions
1118 * of the daemon to instantiate them before they can be used.
1119 */
1120 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122 path->dentry->d_inode)
1123 return -EISDIR;
1124
1125 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1126 return -EACCES;
1127
1128 nd->total_link_count++;
1129 if (nd->total_link_count >= 40)
1130 return -ELOOP;
1131
1132 old_cred = override_creds(&init_cred);
1133 mnt = path->dentry->d_op->d_automount(path);
1134 revert_creds(old_cred);
1135 if (IS_ERR(mnt)) {
1136 /*
1137 * The filesystem is allowed to return -EISDIR here to indicate
1138 * it doesn't want to automount. For instance, autofs would do
1139 * this so that its userspace daemon can mount on this dentry.
1140 *
1141 * However, we can only permit this if it's a terminal point in
1142 * the path being looked up; if it wasn't then the remainder of
1143 * the path is inaccessible and we should say so.
1144 */
1145 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1146 return -EREMOTE;
1147 return PTR_ERR(mnt);
1148 }
1149
1150 if (!mnt) /* mount collision */
1151 return 0;
1152
1153 if (!*need_mntput) {
1154 /* lock_mount() may release path->mnt on error */
1155 mntget(path->mnt);
1156 *need_mntput = true;
1157 }
1158 err = finish_automount(mnt, path);
1159
1160 switch (err) {
1161 case -EBUSY:
1162 /* Someone else made a mount here whilst we were busy */
1163 return 0;
1164 case 0:
1165 path_put(path);
1166 path->mnt = mnt;
1167 path->dentry = dget(mnt->mnt_root);
1168 return 0;
1169 default:
1170 return err;
1171 }
1172
1173 }
1174
1175 /*
1176 * Handle a dentry that is managed in some way.
1177 * - Flagged for transit management (autofs)
1178 * - Flagged as mountpoint
1179 * - Flagged as automount point
1180 *
1181 * This may only be called in refwalk mode.
1182 *
1183 * Serialization is taken care of in namespace.c
1184 */
1185 static int follow_managed(struct path *path, struct nameidata *nd)
1186 {
1187 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1188 unsigned managed;
1189 bool need_mntput = false;
1190 int ret = 0;
1191
1192 /* Given that we're not holding a lock here, we retain the value in a
1193 * local variable for each dentry as we look at it so that we don't see
1194 * the components of that value change under us */
1195 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1196 managed &= DCACHE_MANAGED_DENTRY,
1197 unlikely(managed != 0)) {
1198 /* Allow the filesystem to manage the transit without i_mutex
1199 * being held. */
1200 if (managed & DCACHE_MANAGE_TRANSIT) {
1201 BUG_ON(!path->dentry->d_op);
1202 BUG_ON(!path->dentry->d_op->d_manage);
1203 ret = path->dentry->d_op->d_manage(path, false);
1204 if (ret < 0)
1205 break;
1206 }
1207
1208 /* Transit to a mounted filesystem. */
1209 if (managed & DCACHE_MOUNTED) {
1210 struct vfsmount *mounted = lookup_mnt(path);
1211 if (mounted) {
1212 dput(path->dentry);
1213 if (need_mntput)
1214 mntput(path->mnt);
1215 path->mnt = mounted;
1216 path->dentry = dget(mounted->mnt_root);
1217 need_mntput = true;
1218 continue;
1219 }
1220
1221 /* Something is mounted on this dentry in another
1222 * namespace and/or whatever was mounted there in this
1223 * namespace got unmounted before lookup_mnt() could
1224 * get it */
1225 }
1226
1227 /* Handle an automount point */
1228 if (managed & DCACHE_NEED_AUTOMOUNT) {
1229 ret = follow_automount(path, nd, &need_mntput);
1230 if (ret < 0)
1231 break;
1232 continue;
1233 }
1234
1235 /* We didn't change the current path point */
1236 break;
1237 }
1238
1239 if (need_mntput && path->mnt == mnt)
1240 mntput(path->mnt);
1241 if (ret == -EISDIR || !ret)
1242 ret = 1;
1243 if (need_mntput)
1244 nd->flags |= LOOKUP_JUMPED;
1245 if (unlikely(ret < 0))
1246 path_put_conditional(path, nd);
1247 return ret;
1248 }
1249
1250 int follow_down_one(struct path *path)
1251 {
1252 struct vfsmount *mounted;
1253
1254 mounted = lookup_mnt(path);
1255 if (mounted) {
1256 dput(path->dentry);
1257 mntput(path->mnt);
1258 path->mnt = mounted;
1259 path->dentry = dget(mounted->mnt_root);
1260 return 1;
1261 }
1262 return 0;
1263 }
1264 EXPORT_SYMBOL(follow_down_one);
1265
1266 static inline int managed_dentry_rcu(const struct path *path)
1267 {
1268 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1269 path->dentry->d_op->d_manage(path, true) : 0;
1270 }
1271
1272 /*
1273 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1274 * we meet a managed dentry that would need blocking.
1275 */
1276 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1277 struct inode **inode, unsigned *seqp)
1278 {
1279 for (;;) {
1280 struct mount *mounted;
1281 /*
1282 * Don't forget we might have a non-mountpoint managed dentry
1283 * that wants to block transit.
1284 */
1285 switch (managed_dentry_rcu(path)) {
1286 case -ECHILD:
1287 default:
1288 return false;
1289 case -EISDIR:
1290 return true;
1291 case 0:
1292 break;
1293 }
1294
1295 if (!d_mountpoint(path->dentry))
1296 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297
1298 mounted = __lookup_mnt(path->mnt, path->dentry);
1299 if (!mounted)
1300 break;
1301 path->mnt = &mounted->mnt;
1302 path->dentry = mounted->mnt.mnt_root;
1303 nd->flags |= LOOKUP_JUMPED;
1304 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1305 /*
1306 * Update the inode too. We don't need to re-check the
1307 * dentry sequence number here after this d_inode read,
1308 * because a mount-point is always pinned.
1309 */
1310 *inode = path->dentry->d_inode;
1311 }
1312 return !read_seqretry(&mount_lock, nd->m_seq) &&
1313 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314 }
1315
1316 static int follow_dotdot_rcu(struct nameidata *nd)
1317 {
1318 struct inode *inode = nd->inode;
1319
1320 while (1) {
1321 if (path_equal(&nd->path, &nd->root))
1322 break;
1323 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1324 struct dentry *old = nd->path.dentry;
1325 struct dentry *parent = old->d_parent;
1326 unsigned seq;
1327
1328 inode = parent->d_inode;
1329 seq = read_seqcount_begin(&parent->d_seq);
1330 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1331 return -ECHILD;
1332 nd->path.dentry = parent;
1333 nd->seq = seq;
1334 if (unlikely(!path_connected(&nd->path)))
1335 return -ENOENT;
1336 break;
1337 } else {
1338 struct mount *mnt = real_mount(nd->path.mnt);
1339 struct mount *mparent = mnt->mnt_parent;
1340 struct dentry *mountpoint = mnt->mnt_mountpoint;
1341 struct inode *inode2 = mountpoint->d_inode;
1342 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1343 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1344 return -ECHILD;
1345 if (&mparent->mnt == nd->path.mnt)
1346 break;
1347 /* we know that mountpoint was pinned */
1348 nd->path.dentry = mountpoint;
1349 nd->path.mnt = &mparent->mnt;
1350 inode = inode2;
1351 nd->seq = seq;
1352 }
1353 }
1354 while (unlikely(d_mountpoint(nd->path.dentry))) {
1355 struct mount *mounted;
1356 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1357 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1358 return -ECHILD;
1359 if (!mounted)
1360 break;
1361 nd->path.mnt = &mounted->mnt;
1362 nd->path.dentry = mounted->mnt.mnt_root;
1363 inode = nd->path.dentry->d_inode;
1364 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1365 }
1366 nd->inode = inode;
1367 return 0;
1368 }
1369
1370 /*
1371 * Follow down to the covering mount currently visible to userspace. At each
1372 * point, the filesystem owning that dentry may be queried as to whether the
1373 * caller is permitted to proceed or not.
1374 */
1375 int follow_down(struct path *path)
1376 {
1377 unsigned managed;
1378 int ret;
1379
1380 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1381 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1382 /* Allow the filesystem to manage the transit without i_mutex
1383 * being held.
1384 *
1385 * We indicate to the filesystem if someone is trying to mount
1386 * something here. This gives autofs the chance to deny anyone
1387 * other than its daemon the right to mount on its
1388 * superstructure.
1389 *
1390 * The filesystem may sleep at this point.
1391 */
1392 if (managed & DCACHE_MANAGE_TRANSIT) {
1393 BUG_ON(!path->dentry->d_op);
1394 BUG_ON(!path->dentry->d_op->d_manage);
1395 ret = path->dentry->d_op->d_manage(path, false);
1396 if (ret < 0)
1397 return ret == -EISDIR ? 0 : ret;
1398 }
1399
1400 /* Transit to a mounted filesystem. */
1401 if (managed & DCACHE_MOUNTED) {
1402 struct vfsmount *mounted = lookup_mnt(path);
1403 if (!mounted)
1404 break;
1405 dput(path->dentry);
1406 mntput(path->mnt);
1407 path->mnt = mounted;
1408 path->dentry = dget(mounted->mnt_root);
1409 continue;
1410 }
1411
1412 /* Don't handle automount points here */
1413 break;
1414 }
1415 return 0;
1416 }
1417 EXPORT_SYMBOL(follow_down);
1418
1419 /*
1420 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1421 */
1422 static void follow_mount(struct path *path)
1423 {
1424 while (d_mountpoint(path->dentry)) {
1425 struct vfsmount *mounted = lookup_mnt(path);
1426 if (!mounted)
1427 break;
1428 dput(path->dentry);
1429 mntput(path->mnt);
1430 path->mnt = mounted;
1431 path->dentry = dget(mounted->mnt_root);
1432 }
1433 }
1434
1435 static int path_parent_directory(struct path *path)
1436 {
1437 struct dentry *old = path->dentry;
1438 /* rare case of legitimate dget_parent()... */
1439 path->dentry = dget_parent(path->dentry);
1440 dput(old);
1441 if (unlikely(!path_connected(path)))
1442 return -ENOENT;
1443 return 0;
1444 }
1445
1446 static int follow_dotdot(struct nameidata *nd)
1447 {
1448 while(1) {
1449 if (nd->path.dentry == nd->root.dentry &&
1450 nd->path.mnt == nd->root.mnt) {
1451 break;
1452 }
1453 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1454 int ret = path_parent_directory(&nd->path);
1455 if (ret)
1456 return ret;
1457 break;
1458 }
1459 if (!follow_up(&nd->path))
1460 break;
1461 }
1462 follow_mount(&nd->path);
1463 nd->inode = nd->path.dentry->d_inode;
1464 return 0;
1465 }
1466
1467 /*
1468 * This looks up the name in dcache and possibly revalidates the found dentry.
1469 * NULL is returned if the dentry does not exist in the cache.
1470 */
1471 static struct dentry *lookup_dcache(const struct qstr *name,
1472 struct dentry *dir,
1473 unsigned int flags)
1474 {
1475 struct dentry *dentry;
1476 int error;
1477
1478 dentry = d_lookup(dir, name);
1479 if (dentry) {
1480 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1481 error = d_revalidate(dentry, flags);
1482 if (unlikely(error <= 0)) {
1483 if (!error)
1484 d_invalidate(dentry);
1485 dput(dentry);
1486 return ERR_PTR(error);
1487 }
1488 }
1489 }
1490 return dentry;
1491 }
1492
1493 /*
1494 * Call i_op->lookup on the dentry. The dentry must be negative and
1495 * unhashed.
1496 *
1497 * dir->d_inode->i_mutex must be held
1498 */
1499 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1500 unsigned int flags)
1501 {
1502 struct dentry *old;
1503
1504 /* Don't create child dentry for a dead directory. */
1505 if (unlikely(IS_DEADDIR(dir))) {
1506 dput(dentry);
1507 return ERR_PTR(-ENOENT);
1508 }
1509
1510 old = dir->i_op->lookup(dir, dentry, flags);
1511 if (unlikely(old)) {
1512 dput(dentry);
1513 dentry = old;
1514 }
1515 return dentry;
1516 }
1517
1518 static struct dentry *__lookup_hash(const struct qstr *name,
1519 struct dentry *base, unsigned int flags)
1520 {
1521 struct dentry *dentry = lookup_dcache(name, base, flags);
1522
1523 if (dentry)
1524 return dentry;
1525
1526 dentry = d_alloc(base, name);
1527 if (unlikely(!dentry))
1528 return ERR_PTR(-ENOMEM);
1529
1530 return lookup_real(base->d_inode, dentry, flags);
1531 }
1532
1533 static int lookup_fast(struct nameidata *nd,
1534 struct path *path, struct inode **inode,
1535 unsigned *seqp)
1536 {
1537 struct vfsmount *mnt = nd->path.mnt;
1538 struct dentry *dentry, *parent = nd->path.dentry;
1539 int status = 1;
1540 int err;
1541
1542 /*
1543 * Rename seqlock is not required here because in the off chance
1544 * of a false negative due to a concurrent rename, the caller is
1545 * going to fall back to non-racy lookup.
1546 */
1547 if (nd->flags & LOOKUP_RCU) {
1548 unsigned seq;
1549 bool negative;
1550 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1551 if (unlikely(!dentry)) {
1552 if (unlazy_walk(nd, NULL, 0))
1553 return -ECHILD;
1554 return 0;
1555 }
1556
1557 /*
1558 * This sequence count validates that the inode matches
1559 * the dentry name information from lookup.
1560 */
1561 *inode = d_backing_inode(dentry);
1562 negative = d_is_negative(dentry);
1563 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1564 return -ECHILD;
1565
1566 /*
1567 * This sequence count validates that the parent had no
1568 * changes while we did the lookup of the dentry above.
1569 *
1570 * The memory barrier in read_seqcount_begin of child is
1571 * enough, we can use __read_seqcount_retry here.
1572 */
1573 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1574 return -ECHILD;
1575
1576 *seqp = seq;
1577 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1578 status = d_revalidate(dentry, nd->flags);
1579 if (unlikely(status <= 0)) {
1580 if (unlazy_walk(nd, dentry, seq))
1581 return -ECHILD;
1582 if (status == -ECHILD)
1583 status = d_revalidate(dentry, nd->flags);
1584 } else {
1585 /*
1586 * Note: do negative dentry check after revalidation in
1587 * case that drops it.
1588 */
1589 if (unlikely(negative))
1590 return -ENOENT;
1591 path->mnt = mnt;
1592 path->dentry = dentry;
1593 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1594 return 1;
1595 if (unlazy_walk(nd, dentry, seq))
1596 return -ECHILD;
1597 }
1598 } else {
1599 dentry = __d_lookup(parent, &nd->last);
1600 if (unlikely(!dentry))
1601 return 0;
1602 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1603 status = d_revalidate(dentry, nd->flags);
1604 }
1605 if (unlikely(status <= 0)) {
1606 if (!status)
1607 d_invalidate(dentry);
1608 dput(dentry);
1609 return status;
1610 }
1611 if (unlikely(d_is_negative(dentry))) {
1612 dput(dentry);
1613 return -ENOENT;
1614 }
1615
1616 path->mnt = mnt;
1617 path->dentry = dentry;
1618 err = follow_managed(path, nd);
1619 if (likely(err > 0))
1620 *inode = d_backing_inode(path->dentry);
1621 return err;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626 struct dentry *dir,
1627 unsigned int flags)
1628 {
1629 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630 struct inode *inode = dir->d_inode;
1631 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632
1633 inode_lock_shared(inode);
1634 /* Don't go there if it's already dead */
1635 if (unlikely(IS_DEADDIR(inode)))
1636 goto out;
1637 again:
1638 dentry = d_alloc_parallel(dir, name, &wq);
1639 if (IS_ERR(dentry))
1640 goto out;
1641 if (unlikely(!d_in_lookup(dentry))) {
1642 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1643 !(flags & LOOKUP_NO_REVAL)) {
1644 int error = d_revalidate(dentry, flags);
1645 if (unlikely(error <= 0)) {
1646 if (!error) {
1647 d_invalidate(dentry);
1648 dput(dentry);
1649 goto again;
1650 }
1651 dput(dentry);
1652 dentry = ERR_PTR(error);
1653 }
1654 }
1655 } else {
1656 old = inode->i_op->lookup(inode, dentry, flags);
1657 d_lookup_done(dentry);
1658 if (unlikely(old)) {
1659 dput(dentry);
1660 dentry = old;
1661 }
1662 }
1663 out:
1664 inode_unlock_shared(inode);
1665 return dentry;
1666 }
1667
1668 static inline int may_lookup(struct nameidata *nd)
1669 {
1670 if (nd->flags & LOOKUP_RCU) {
1671 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1672 if (err != -ECHILD)
1673 return err;
1674 if (unlazy_walk(nd, NULL, 0))
1675 return -ECHILD;
1676 }
1677 return inode_permission(nd->inode, MAY_EXEC);
1678 }
1679
1680 static inline int handle_dots(struct nameidata *nd, int type)
1681 {
1682 if (type == LAST_DOTDOT) {
1683 if (!nd->root.mnt)
1684 set_root(nd);
1685 if (nd->flags & LOOKUP_RCU) {
1686 return follow_dotdot_rcu(nd);
1687 } else
1688 return follow_dotdot(nd);
1689 }
1690 return 0;
1691 }
1692
1693 static int pick_link(struct nameidata *nd, struct path *link,
1694 struct inode *inode, unsigned seq)
1695 {
1696 int error;
1697 struct saved *last;
1698 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1699 path_to_nameidata(link, nd);
1700 return -ELOOP;
1701 }
1702 if (!(nd->flags & LOOKUP_RCU)) {
1703 if (link->mnt == nd->path.mnt)
1704 mntget(link->mnt);
1705 }
1706 error = nd_alloc_stack(nd);
1707 if (unlikely(error)) {
1708 if (error == -ECHILD) {
1709 if (unlikely(unlazy_link(nd, link, seq)))
1710 return -ECHILD;
1711 error = nd_alloc_stack(nd);
1712 }
1713 if (error) {
1714 path_put(link);
1715 return error;
1716 }
1717 }
1718
1719 last = nd->stack + nd->depth++;
1720 last->link = *link;
1721 clear_delayed_call(&last->done);
1722 nd->link_inode = inode;
1723 last->seq = seq;
1724 return 1;
1725 }
1726
1727 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1728
1729 /*
1730 * Do we need to follow links? We _really_ want to be able
1731 * to do this check without having to look at inode->i_op,
1732 * so we keep a cache of "no, this doesn't need follow_link"
1733 * for the common case.
1734 */
1735 static inline int step_into(struct nameidata *nd, struct path *path,
1736 int flags, struct inode *inode, unsigned seq)
1737 {
1738 if (!(flags & WALK_MORE) && nd->depth)
1739 put_link(nd);
1740 if (likely(!d_is_symlink(path->dentry)) ||
1741 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1742 /* not a symlink or should not follow */
1743 path_to_nameidata(path, nd);
1744 nd->inode = inode;
1745 nd->seq = seq;
1746 return 0;
1747 }
1748 /* make sure that d_is_symlink above matches inode */
1749 if (nd->flags & LOOKUP_RCU) {
1750 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1751 return -ECHILD;
1752 }
1753 return pick_link(nd, path, inode, seq);
1754 }
1755
1756 static int walk_component(struct nameidata *nd, int flags)
1757 {
1758 struct path path;
1759 struct inode *inode;
1760 unsigned seq;
1761 int err;
1762 /*
1763 * "." and ".." are special - ".." especially so because it has
1764 * to be able to know about the current root directory and
1765 * parent relationships.
1766 */
1767 if (unlikely(nd->last_type != LAST_NORM)) {
1768 err = handle_dots(nd, nd->last_type);
1769 if (!(flags & WALK_MORE) && nd->depth)
1770 put_link(nd);
1771 return err;
1772 }
1773 err = lookup_fast(nd, &path, &inode, &seq);
1774 if (unlikely(err <= 0)) {
1775 if (err < 0)
1776 return err;
1777 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1778 nd->flags);
1779 if (IS_ERR(path.dentry))
1780 return PTR_ERR(path.dentry);
1781
1782 path.mnt = nd->path.mnt;
1783 err = follow_managed(&path, nd);
1784 if (unlikely(err < 0))
1785 return err;
1786
1787 if (unlikely(d_is_negative(path.dentry))) {
1788 path_to_nameidata(&path, nd);
1789 return -ENOENT;
1790 }
1791
1792 seq = 0; /* we are already out of RCU mode */
1793 inode = d_backing_inode(path.dentry);
1794 }
1795
1796 return step_into(nd, &path, flags, inode, seq);
1797 }
1798
1799 /*
1800 * We can do the critical dentry name comparison and hashing
1801 * operations one word at a time, but we are limited to:
1802 *
1803 * - Architectures with fast unaligned word accesses. We could
1804 * do a "get_unaligned()" if this helps and is sufficiently
1805 * fast.
1806 *
1807 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1808 * do not trap on the (extremely unlikely) case of a page
1809 * crossing operation.
1810 *
1811 * - Furthermore, we need an efficient 64-bit compile for the
1812 * 64-bit case in order to generate the "number of bytes in
1813 * the final mask". Again, that could be replaced with a
1814 * efficient population count instruction or similar.
1815 */
1816 #ifdef CONFIG_DCACHE_WORD_ACCESS
1817
1818 #include <asm/word-at-a-time.h>
1819
1820 #ifdef HASH_MIX
1821
1822 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1823
1824 #elif defined(CONFIG_64BIT)
1825 /*
1826 * Register pressure in the mixing function is an issue, particularly
1827 * on 32-bit x86, but almost any function requires one state value and
1828 * one temporary. Instead, use a function designed for two state values
1829 * and no temporaries.
1830 *
1831 * This function cannot create a collision in only two iterations, so
1832 * we have two iterations to achieve avalanche. In those two iterations,
1833 * we have six layers of mixing, which is enough to spread one bit's
1834 * influence out to 2^6 = 64 state bits.
1835 *
1836 * Rotate constants are scored by considering either 64 one-bit input
1837 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1838 * probability of that delta causing a change to each of the 128 output
1839 * bits, using a sample of random initial states.
1840 *
1841 * The Shannon entropy of the computed probabilities is then summed
1842 * to produce a score. Ideally, any input change has a 50% chance of
1843 * toggling any given output bit.
1844 *
1845 * Mixing scores (in bits) for (12,45):
1846 * Input delta: 1-bit 2-bit
1847 * 1 round: 713.3 42542.6
1848 * 2 rounds: 2753.7 140389.8
1849 * 3 rounds: 5954.1 233458.2
1850 * 4 rounds: 7862.6 256672.2
1851 * Perfect: 8192 258048
1852 * (64*128) (64*63/2 * 128)
1853 */
1854 #define HASH_MIX(x, y, a) \
1855 ( x ^= (a), \
1856 y ^= x, x = rol64(x,12),\
1857 x += y, y = rol64(y,45),\
1858 y *= 9 )
1859
1860 /*
1861 * Fold two longs into one 32-bit hash value. This must be fast, but
1862 * latency isn't quite as critical, as there is a fair bit of additional
1863 * work done before the hash value is used.
1864 */
1865 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1866 {
1867 y ^= x * GOLDEN_RATIO_64;
1868 y *= GOLDEN_RATIO_64;
1869 return y >> 32;
1870 }
1871
1872 #else /* 32-bit case */
1873
1874 /*
1875 * Mixing scores (in bits) for (7,20):
1876 * Input delta: 1-bit 2-bit
1877 * 1 round: 330.3 9201.6
1878 * 2 rounds: 1246.4 25475.4
1879 * 3 rounds: 1907.1 31295.1
1880 * 4 rounds: 2042.3 31718.6
1881 * Perfect: 2048 31744
1882 * (32*64) (32*31/2 * 64)
1883 */
1884 #define HASH_MIX(x, y, a) \
1885 ( x ^= (a), \
1886 y ^= x, x = rol32(x, 7),\
1887 x += y, y = rol32(y,20),\
1888 y *= 9 )
1889
1890 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1891 {
1892 /* Use arch-optimized multiply if one exists */
1893 return __hash_32(y ^ __hash_32(x));
1894 }
1895
1896 #endif
1897
1898 /*
1899 * Return the hash of a string of known length. This is carfully
1900 * designed to match hash_name(), which is the more critical function.
1901 * In particular, we must end by hashing a final word containing 0..7
1902 * payload bytes, to match the way that hash_name() iterates until it
1903 * finds the delimiter after the name.
1904 */
1905 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1906 {
1907 unsigned long a, x = 0, y = (unsigned long)salt;
1908
1909 for (;;) {
1910 if (!len)
1911 goto done;
1912 a = load_unaligned_zeropad(name);
1913 if (len < sizeof(unsigned long))
1914 break;
1915 HASH_MIX(x, y, a);
1916 name += sizeof(unsigned long);
1917 len -= sizeof(unsigned long);
1918 }
1919 x ^= a & bytemask_from_count(len);
1920 done:
1921 return fold_hash(x, y);
1922 }
1923 EXPORT_SYMBOL(full_name_hash);
1924
1925 /* Return the "hash_len" (hash and length) of a null-terminated string */
1926 u64 hashlen_string(const void *salt, const char *name)
1927 {
1928 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1929 unsigned long adata, mask, len;
1930 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1931
1932 len = 0;
1933 goto inside;
1934
1935 do {
1936 HASH_MIX(x, y, a);
1937 len += sizeof(unsigned long);
1938 inside:
1939 a = load_unaligned_zeropad(name+len);
1940 } while (!has_zero(a, &adata, &constants));
1941
1942 adata = prep_zero_mask(a, adata, &constants);
1943 mask = create_zero_mask(adata);
1944 x ^= a & zero_bytemask(mask);
1945
1946 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1947 }
1948 EXPORT_SYMBOL(hashlen_string);
1949
1950 /*
1951 * Calculate the length and hash of the path component, and
1952 * return the "hash_len" as the result.
1953 */
1954 static inline u64 hash_name(const void *salt, const char *name)
1955 {
1956 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1957 unsigned long adata, bdata, mask, len;
1958 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1959
1960 len = 0;
1961 goto inside;
1962
1963 do {
1964 HASH_MIX(x, y, a);
1965 len += sizeof(unsigned long);
1966 inside:
1967 a = load_unaligned_zeropad(name+len);
1968 b = a ^ REPEAT_BYTE('/');
1969 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1970
1971 adata = prep_zero_mask(a, adata, &constants);
1972 bdata = prep_zero_mask(b, bdata, &constants);
1973 mask = create_zero_mask(adata | bdata);
1974 x ^= a & zero_bytemask(mask);
1975
1976 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1977 }
1978
1979 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1980
1981 /* Return the hash of a string of known length */
1982 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1983 {
1984 unsigned long hash = init_name_hash(salt);
1985 while (len--)
1986 hash = partial_name_hash((unsigned char)*name++, hash);
1987 return end_name_hash(hash);
1988 }
1989 EXPORT_SYMBOL(full_name_hash);
1990
1991 /* Return the "hash_len" (hash and length) of a null-terminated string */
1992 u64 hashlen_string(const void *salt, const char *name)
1993 {
1994 unsigned long hash = init_name_hash(salt);
1995 unsigned long len = 0, c;
1996
1997 c = (unsigned char)*name;
1998 while (c) {
1999 len++;
2000 hash = partial_name_hash(c, hash);
2001 c = (unsigned char)name[len];
2002 }
2003 return hashlen_create(end_name_hash(hash), len);
2004 }
2005 EXPORT_SYMBOL(hashlen_string);
2006
2007 /*
2008 * We know there's a real path component here of at least
2009 * one character.
2010 */
2011 static inline u64 hash_name(const void *salt, const char *name)
2012 {
2013 unsigned long hash = init_name_hash(salt);
2014 unsigned long len = 0, c;
2015
2016 c = (unsigned char)*name;
2017 do {
2018 len++;
2019 hash = partial_name_hash(c, hash);
2020 c = (unsigned char)name[len];
2021 } while (c && c != '/');
2022 return hashlen_create(end_name_hash(hash), len);
2023 }
2024
2025 #endif
2026
2027 /*
2028 * Name resolution.
2029 * This is the basic name resolution function, turning a pathname into
2030 * the final dentry. We expect 'base' to be positive and a directory.
2031 *
2032 * Returns 0 and nd will have valid dentry and mnt on success.
2033 * Returns error and drops reference to input namei data on failure.
2034 */
2035 static int link_path_walk(const char *name, struct nameidata *nd)
2036 {
2037 int err;
2038
2039 while (*name=='/')
2040 name++;
2041 if (!*name)
2042 return 0;
2043
2044 /* At this point we know we have a real path component. */
2045 for(;;) {
2046 u64 hash_len;
2047 int type;
2048
2049 err = may_lookup(nd);
2050 if (err)
2051 return err;
2052
2053 hash_len = hash_name(nd->path.dentry, name);
2054
2055 type = LAST_NORM;
2056 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2057 case 2:
2058 if (name[1] == '.') {
2059 type = LAST_DOTDOT;
2060 nd->flags |= LOOKUP_JUMPED;
2061 }
2062 break;
2063 case 1:
2064 type = LAST_DOT;
2065 }
2066 if (likely(type == LAST_NORM)) {
2067 struct dentry *parent = nd->path.dentry;
2068 nd->flags &= ~LOOKUP_JUMPED;
2069 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2070 struct qstr this = { { .hash_len = hash_len }, .name = name };
2071 err = parent->d_op->d_hash(parent, &this);
2072 if (err < 0)
2073 return err;
2074 hash_len = this.hash_len;
2075 name = this.name;
2076 }
2077 }
2078
2079 nd->last.hash_len = hash_len;
2080 nd->last.name = name;
2081 nd->last_type = type;
2082
2083 name += hashlen_len(hash_len);
2084 if (!*name)
2085 goto OK;
2086 /*
2087 * If it wasn't NUL, we know it was '/'. Skip that
2088 * slash, and continue until no more slashes.
2089 */
2090 do {
2091 name++;
2092 } while (unlikely(*name == '/'));
2093 if (unlikely(!*name)) {
2094 OK:
2095 /* pathname body, done */
2096 if (!nd->depth)
2097 return 0;
2098 name = nd->stack[nd->depth - 1].name;
2099 /* trailing symlink, done */
2100 if (!name)
2101 return 0;
2102 /* last component of nested symlink */
2103 err = walk_component(nd, WALK_FOLLOW);
2104 } else {
2105 /* not the last component */
2106 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2107 }
2108 if (err < 0)
2109 return err;
2110
2111 if (err) {
2112 const char *s = get_link(nd);
2113
2114 if (IS_ERR(s))
2115 return PTR_ERR(s);
2116 err = 0;
2117 if (unlikely(!s)) {
2118 /* jumped */
2119 put_link(nd);
2120 } else {
2121 nd->stack[nd->depth - 1].name = name;
2122 name = s;
2123 continue;
2124 }
2125 }
2126 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2127 if (nd->flags & LOOKUP_RCU) {
2128 if (unlazy_walk(nd, NULL, 0))
2129 return -ECHILD;
2130 }
2131 return -ENOTDIR;
2132 }
2133 }
2134 }
2135
2136 static const char *path_init(struct nameidata *nd, unsigned flags)
2137 {
2138 int retval = 0;
2139 const char *s = nd->name->name;
2140
2141 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2142 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2143 nd->depth = 0;
2144 if (flags & LOOKUP_ROOT) {
2145 struct dentry *root = nd->root.dentry;
2146 struct inode *inode = root->d_inode;
2147 if (*s) {
2148 if (!d_can_lookup(root))
2149 return ERR_PTR(-ENOTDIR);
2150 retval = inode_permission(inode, MAY_EXEC);
2151 if (retval)
2152 return ERR_PTR(retval);
2153 }
2154 nd->path = nd->root;
2155 nd->inode = inode;
2156 if (flags & LOOKUP_RCU) {
2157 rcu_read_lock();
2158 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2159 nd->root_seq = nd->seq;
2160 nd->m_seq = read_seqbegin(&mount_lock);
2161 } else {
2162 path_get(&nd->path);
2163 }
2164 return s;
2165 }
2166
2167 nd->root.mnt = NULL;
2168 nd->path.mnt = NULL;
2169 nd->path.dentry = NULL;
2170
2171 nd->m_seq = read_seqbegin(&mount_lock);
2172 if (*s == '/') {
2173 if (flags & LOOKUP_RCU)
2174 rcu_read_lock();
2175 set_root(nd);
2176 if (likely(!nd_jump_root(nd)))
2177 return s;
2178 nd->root.mnt = NULL;
2179 rcu_read_unlock();
2180 return ERR_PTR(-ECHILD);
2181 } else if (nd->dfd == AT_FDCWD) {
2182 if (flags & LOOKUP_RCU) {
2183 struct fs_struct *fs = current->fs;
2184 unsigned seq;
2185
2186 rcu_read_lock();
2187
2188 do {
2189 seq = read_seqcount_begin(&fs->seq);
2190 nd->path = fs->pwd;
2191 nd->inode = nd->path.dentry->d_inode;
2192 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2193 } while (read_seqcount_retry(&fs->seq, seq));
2194 } else {
2195 get_fs_pwd(current->fs, &nd->path);
2196 nd->inode = nd->path.dentry->d_inode;
2197 }
2198 return s;
2199 } else {
2200 /* Caller must check execute permissions on the starting path component */
2201 struct fd f = fdget_raw(nd->dfd);
2202 struct dentry *dentry;
2203
2204 if (!f.file)
2205 return ERR_PTR(-EBADF);
2206
2207 dentry = f.file->f_path.dentry;
2208
2209 if (*s) {
2210 if (!d_can_lookup(dentry)) {
2211 fdput(f);
2212 return ERR_PTR(-ENOTDIR);
2213 }
2214 }
2215
2216 nd->path = f.file->f_path;
2217 if (flags & LOOKUP_RCU) {
2218 rcu_read_lock();
2219 nd->inode = nd->path.dentry->d_inode;
2220 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2221 } else {
2222 path_get(&nd->path);
2223 nd->inode = nd->path.dentry->d_inode;
2224 }
2225 fdput(f);
2226 return s;
2227 }
2228 }
2229
2230 static const char *trailing_symlink(struct nameidata *nd)
2231 {
2232 const char *s;
2233 int error = may_follow_link(nd);
2234 if (unlikely(error))
2235 return ERR_PTR(error);
2236 nd->flags |= LOOKUP_PARENT;
2237 nd->stack[0].name = NULL;
2238 s = get_link(nd);
2239 return s ? s : "";
2240 }
2241
2242 static inline int lookup_last(struct nameidata *nd)
2243 {
2244 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2245 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2246
2247 nd->flags &= ~LOOKUP_PARENT;
2248 return walk_component(nd, 0);
2249 }
2250
2251 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2252 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2253 {
2254 const char *s = path_init(nd, flags);
2255 int err;
2256
2257 if (IS_ERR(s))
2258 return PTR_ERR(s);
2259 while (!(err = link_path_walk(s, nd))
2260 && ((err = lookup_last(nd)) > 0)) {
2261 s = trailing_symlink(nd);
2262 if (IS_ERR(s)) {
2263 err = PTR_ERR(s);
2264 break;
2265 }
2266 }
2267 if (!err)
2268 err = complete_walk(nd);
2269
2270 if (!err && nd->flags & LOOKUP_DIRECTORY)
2271 if (!d_can_lookup(nd->path.dentry))
2272 err = -ENOTDIR;
2273 if (!err) {
2274 *path = nd->path;
2275 nd->path.mnt = NULL;
2276 nd->path.dentry = NULL;
2277 }
2278 terminate_walk(nd);
2279 return err;
2280 }
2281
2282 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2283 struct path *path, struct path *root)
2284 {
2285 int retval;
2286 struct nameidata nd;
2287 if (IS_ERR(name))
2288 return PTR_ERR(name);
2289 if (unlikely(root)) {
2290 nd.root = *root;
2291 flags |= LOOKUP_ROOT;
2292 }
2293 set_nameidata(&nd, dfd, name);
2294 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2295 if (unlikely(retval == -ECHILD))
2296 retval = path_lookupat(&nd, flags, path);
2297 if (unlikely(retval == -ESTALE))
2298 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2299
2300 if (likely(!retval))
2301 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2302 restore_nameidata();
2303 putname(name);
2304 return retval;
2305 }
2306
2307 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2308 static int path_parentat(struct nameidata *nd, unsigned flags,
2309 struct path *parent)
2310 {
2311 const char *s = path_init(nd, flags);
2312 int err;
2313 if (IS_ERR(s))
2314 return PTR_ERR(s);
2315 err = link_path_walk(s, nd);
2316 if (!err)
2317 err = complete_walk(nd);
2318 if (!err) {
2319 *parent = nd->path;
2320 nd->path.mnt = NULL;
2321 nd->path.dentry = NULL;
2322 }
2323 terminate_walk(nd);
2324 return err;
2325 }
2326
2327 static struct filename *filename_parentat(int dfd, struct filename *name,
2328 unsigned int flags, struct path *parent,
2329 struct qstr *last, int *type)
2330 {
2331 int retval;
2332 struct nameidata nd;
2333
2334 if (IS_ERR(name))
2335 return name;
2336 set_nameidata(&nd, dfd, name);
2337 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2338 if (unlikely(retval == -ECHILD))
2339 retval = path_parentat(&nd, flags, parent);
2340 if (unlikely(retval == -ESTALE))
2341 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2342 if (likely(!retval)) {
2343 *last = nd.last;
2344 *type = nd.last_type;
2345 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2346 } else {
2347 putname(name);
2348 name = ERR_PTR(retval);
2349 }
2350 restore_nameidata();
2351 return name;
2352 }
2353
2354 /* does lookup, returns the object with parent locked */
2355 struct dentry *kern_path_locked(const char *name, struct path *path)
2356 {
2357 struct filename *filename;
2358 struct dentry *d;
2359 struct qstr last;
2360 int type;
2361
2362 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2363 &last, &type);
2364 if (IS_ERR(filename))
2365 return ERR_CAST(filename);
2366 if (unlikely(type != LAST_NORM)) {
2367 path_put(path);
2368 putname(filename);
2369 return ERR_PTR(-EINVAL);
2370 }
2371 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2372 d = __lookup_hash(&last, path->dentry, 0);
2373 if (IS_ERR(d)) {
2374 inode_unlock(path->dentry->d_inode);
2375 path_put(path);
2376 }
2377 putname(filename);
2378 return d;
2379 }
2380
2381 int kern_path(const char *name, unsigned int flags, struct path *path)
2382 {
2383 return filename_lookup(AT_FDCWD, getname_kernel(name),
2384 flags, path, NULL);
2385 }
2386 EXPORT_SYMBOL(kern_path);
2387
2388 /**
2389 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2390 * @dentry: pointer to dentry of the base directory
2391 * @mnt: pointer to vfs mount of the base directory
2392 * @name: pointer to file name
2393 * @flags: lookup flags
2394 * @path: pointer to struct path to fill
2395 */
2396 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2397 const char *name, unsigned int flags,
2398 struct path *path)
2399 {
2400 struct path root = {.mnt = mnt, .dentry = dentry};
2401 /* the first argument of filename_lookup() is ignored with root */
2402 return filename_lookup(AT_FDCWD, getname_kernel(name),
2403 flags , path, &root);
2404 }
2405 EXPORT_SYMBOL(vfs_path_lookup);
2406
2407 /**
2408 * lookup_one_len - filesystem helper to lookup single pathname component
2409 * @name: pathname component to lookup
2410 * @base: base directory to lookup from
2411 * @len: maximum length @len should be interpreted to
2412 *
2413 * Note that this routine is purely a helper for filesystem usage and should
2414 * not be called by generic code.
2415 *
2416 * The caller must hold base->i_mutex.
2417 */
2418 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2419 {
2420 struct qstr this;
2421 unsigned int c;
2422 int err;
2423
2424 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2425
2426 this.name = name;
2427 this.len = len;
2428 this.hash = full_name_hash(base, name, len);
2429 if (!len)
2430 return ERR_PTR(-EACCES);
2431
2432 if (unlikely(name[0] == '.')) {
2433 if (len < 2 || (len == 2 && name[1] == '.'))
2434 return ERR_PTR(-EACCES);
2435 }
2436
2437 while (len--) {
2438 c = *(const unsigned char *)name++;
2439 if (c == '/' || c == '\0')
2440 return ERR_PTR(-EACCES);
2441 }
2442 /*
2443 * See if the low-level filesystem might want
2444 * to use its own hash..
2445 */
2446 if (base->d_flags & DCACHE_OP_HASH) {
2447 int err = base->d_op->d_hash(base, &this);
2448 if (err < 0)
2449 return ERR_PTR(err);
2450 }
2451
2452 err = inode_permission(base->d_inode, MAY_EXEC);
2453 if (err)
2454 return ERR_PTR(err);
2455
2456 return __lookup_hash(&this, base, 0);
2457 }
2458 EXPORT_SYMBOL(lookup_one_len);
2459
2460 /**
2461 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2462 * @name: pathname component to lookup
2463 * @base: base directory to lookup from
2464 * @len: maximum length @len should be interpreted to
2465 *
2466 * Note that this routine is purely a helper for filesystem usage and should
2467 * not be called by generic code.
2468 *
2469 * Unlike lookup_one_len, it should be called without the parent
2470 * i_mutex held, and will take the i_mutex itself if necessary.
2471 */
2472 struct dentry *lookup_one_len_unlocked(const char *name,
2473 struct dentry *base, int len)
2474 {
2475 struct qstr this;
2476 unsigned int c;
2477 int err;
2478 struct dentry *ret;
2479
2480 this.name = name;
2481 this.len = len;
2482 this.hash = full_name_hash(base, name, len);
2483 if (!len)
2484 return ERR_PTR(-EACCES);
2485
2486 if (unlikely(name[0] == '.')) {
2487 if (len < 2 || (len == 2 && name[1] == '.'))
2488 return ERR_PTR(-EACCES);
2489 }
2490
2491 while (len--) {
2492 c = *(const unsigned char *)name++;
2493 if (c == '/' || c == '\0')
2494 return ERR_PTR(-EACCES);
2495 }
2496 /*
2497 * See if the low-level filesystem might want
2498 * to use its own hash..
2499 */
2500 if (base->d_flags & DCACHE_OP_HASH) {
2501 int err = base->d_op->d_hash(base, &this);
2502 if (err < 0)
2503 return ERR_PTR(err);
2504 }
2505
2506 err = inode_permission(base->d_inode, MAY_EXEC);
2507 if (err)
2508 return ERR_PTR(err);
2509
2510 ret = lookup_dcache(&this, base, 0);
2511 if (!ret)
2512 ret = lookup_slow(&this, base, 0);
2513 return ret;
2514 }
2515 EXPORT_SYMBOL(lookup_one_len_unlocked);
2516
2517 #ifdef CONFIG_UNIX98_PTYS
2518 int path_pts(struct path *path)
2519 {
2520 /* Find something mounted on "pts" in the same directory as
2521 * the input path.
2522 */
2523 struct dentry *child, *parent;
2524 struct qstr this;
2525 int ret;
2526
2527 ret = path_parent_directory(path);
2528 if (ret)
2529 return ret;
2530
2531 parent = path->dentry;
2532 this.name = "pts";
2533 this.len = 3;
2534 child = d_hash_and_lookup(parent, &this);
2535 if (!child)
2536 return -ENOENT;
2537
2538 path->dentry = child;
2539 dput(parent);
2540 follow_mount(path);
2541 return 0;
2542 }
2543 #endif
2544
2545 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2546 struct path *path, int *empty)
2547 {
2548 return filename_lookup(dfd, getname_flags(name, flags, empty),
2549 flags, path, NULL);
2550 }
2551 EXPORT_SYMBOL(user_path_at_empty);
2552
2553 /**
2554 * mountpoint_last - look up last component for umount
2555 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2556 *
2557 * This is a special lookup_last function just for umount. In this case, we
2558 * need to resolve the path without doing any revalidation.
2559 *
2560 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2561 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2562 * in almost all cases, this lookup will be served out of the dcache. The only
2563 * cases where it won't are if nd->last refers to a symlink or the path is
2564 * bogus and it doesn't exist.
2565 *
2566 * Returns:
2567 * -error: if there was an error during lookup. This includes -ENOENT if the
2568 * lookup found a negative dentry.
2569 *
2570 * 0: if we successfully resolved nd->last and found it to not to be a
2571 * symlink that needs to be followed.
2572 *
2573 * 1: if we successfully resolved nd->last and found it to be a symlink
2574 * that needs to be followed.
2575 */
2576 static int
2577 mountpoint_last(struct nameidata *nd)
2578 {
2579 int error = 0;
2580 struct dentry *dir = nd->path.dentry;
2581 struct path path;
2582
2583 /* If we're in rcuwalk, drop out of it to handle last component */
2584 if (nd->flags & LOOKUP_RCU) {
2585 if (unlazy_walk(nd, NULL, 0))
2586 return -ECHILD;
2587 }
2588
2589 nd->flags &= ~LOOKUP_PARENT;
2590
2591 if (unlikely(nd->last_type != LAST_NORM)) {
2592 error = handle_dots(nd, nd->last_type);
2593 if (error)
2594 return error;
2595 path.dentry = dget(nd->path.dentry);
2596 } else {
2597 path.dentry = d_lookup(dir, &nd->last);
2598 if (!path.dentry) {
2599 /*
2600 * No cached dentry. Mounted dentries are pinned in the
2601 * cache, so that means that this dentry is probably
2602 * a symlink or the path doesn't actually point
2603 * to a mounted dentry.
2604 */
2605 path.dentry = lookup_slow(&nd->last, dir,
2606 nd->flags | LOOKUP_NO_REVAL);
2607 if (IS_ERR(path.dentry))
2608 return PTR_ERR(path.dentry);
2609 }
2610 }
2611 if (d_is_negative(path.dentry)) {
2612 dput(path.dentry);
2613 return -ENOENT;
2614 }
2615 path.mnt = nd->path.mnt;
2616 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2617 }
2618
2619 /**
2620 * path_mountpoint - look up a path to be umounted
2621 * @nd: lookup context
2622 * @flags: lookup flags
2623 * @path: pointer to container for result
2624 *
2625 * Look up the given name, but don't attempt to revalidate the last component.
2626 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2627 */
2628 static int
2629 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2630 {
2631 const char *s = path_init(nd, flags);
2632 int err;
2633 if (IS_ERR(s))
2634 return PTR_ERR(s);
2635 while (!(err = link_path_walk(s, nd)) &&
2636 (err = mountpoint_last(nd)) > 0) {
2637 s = trailing_symlink(nd);
2638 if (IS_ERR(s)) {
2639 err = PTR_ERR(s);
2640 break;
2641 }
2642 }
2643 if (!err) {
2644 *path = nd->path;
2645 nd->path.mnt = NULL;
2646 nd->path.dentry = NULL;
2647 follow_mount(path);
2648 }
2649 terminate_walk(nd);
2650 return err;
2651 }
2652
2653 static int
2654 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2655 unsigned int flags)
2656 {
2657 struct nameidata nd;
2658 int error;
2659 if (IS_ERR(name))
2660 return PTR_ERR(name);
2661 set_nameidata(&nd, dfd, name);
2662 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2663 if (unlikely(error == -ECHILD))
2664 error = path_mountpoint(&nd, flags, path);
2665 if (unlikely(error == -ESTALE))
2666 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2667 if (likely(!error))
2668 audit_inode(name, path->dentry, 0);
2669 restore_nameidata();
2670 putname(name);
2671 return error;
2672 }
2673
2674 /**
2675 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2676 * @dfd: directory file descriptor
2677 * @name: pathname from userland
2678 * @flags: lookup flags
2679 * @path: pointer to container to hold result
2680 *
2681 * A umount is a special case for path walking. We're not actually interested
2682 * in the inode in this situation, and ESTALE errors can be a problem. We
2683 * simply want track down the dentry and vfsmount attached at the mountpoint
2684 * and avoid revalidating the last component.
2685 *
2686 * Returns 0 and populates "path" on success.
2687 */
2688 int
2689 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2690 struct path *path)
2691 {
2692 return filename_mountpoint(dfd, getname(name), path, flags);
2693 }
2694
2695 int
2696 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2697 unsigned int flags)
2698 {
2699 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2700 }
2701 EXPORT_SYMBOL(kern_path_mountpoint);
2702
2703 int __check_sticky(struct inode *dir, struct inode *inode)
2704 {
2705 kuid_t fsuid = current_fsuid();
2706
2707 if (uid_eq(inode->i_uid, fsuid))
2708 return 0;
2709 if (uid_eq(dir->i_uid, fsuid))
2710 return 0;
2711 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2712 }
2713 EXPORT_SYMBOL(__check_sticky);
2714
2715 /*
2716 * Check whether we can remove a link victim from directory dir, check
2717 * whether the type of victim is right.
2718 * 1. We can't do it if dir is read-only (done in permission())
2719 * 2. We should have write and exec permissions on dir
2720 * 3. We can't remove anything from append-only dir
2721 * 4. We can't do anything with immutable dir (done in permission())
2722 * 5. If the sticky bit on dir is set we should either
2723 * a. be owner of dir, or
2724 * b. be owner of victim, or
2725 * c. have CAP_FOWNER capability
2726 * 6. If the victim is append-only or immutable we can't do antyhing with
2727 * links pointing to it.
2728 * 7. If the victim has an unknown uid or gid we can't change the inode.
2729 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2730 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2731 * 10. We can't remove a root or mountpoint.
2732 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2733 * nfs_async_unlink().
2734 */
2735 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2736 {
2737 struct inode *inode = d_backing_inode(victim);
2738 int error;
2739
2740 if (d_is_negative(victim))
2741 return -ENOENT;
2742 BUG_ON(!inode);
2743
2744 BUG_ON(victim->d_parent->d_inode != dir);
2745 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2746
2747 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748 if (error)
2749 return error;
2750 if (IS_APPEND(dir))
2751 return -EPERM;
2752
2753 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2754 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2755 return -EPERM;
2756 if (isdir) {
2757 if (!d_is_dir(victim))
2758 return -ENOTDIR;
2759 if (IS_ROOT(victim))
2760 return -EBUSY;
2761 } else if (d_is_dir(victim))
2762 return -EISDIR;
2763 if (IS_DEADDIR(dir))
2764 return -ENOENT;
2765 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2766 return -EBUSY;
2767 return 0;
2768 }
2769
2770 /* Check whether we can create an object with dentry child in directory
2771 * dir.
2772 * 1. We can't do it if child already exists (open has special treatment for
2773 * this case, but since we are inlined it's OK)
2774 * 2. We can't do it if dir is read-only (done in permission())
2775 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2776 * 4. We should have write and exec permissions on dir
2777 * 5. We can't do it if dir is immutable (done in permission())
2778 */
2779 static inline int may_create(struct inode *dir, struct dentry *child)
2780 {
2781 struct user_namespace *s_user_ns;
2782 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2783 if (child->d_inode)
2784 return -EEXIST;
2785 if (IS_DEADDIR(dir))
2786 return -ENOENT;
2787 s_user_ns = dir->i_sb->s_user_ns;
2788 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2789 !kgid_has_mapping(s_user_ns, current_fsgid()))
2790 return -EOVERFLOW;
2791 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2792 }
2793
2794 /*
2795 * p1 and p2 should be directories on the same fs.
2796 */
2797 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2798 {
2799 struct dentry *p;
2800
2801 if (p1 == p2) {
2802 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2803 return NULL;
2804 }
2805
2806 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2807
2808 p = d_ancestor(p2, p1);
2809 if (p) {
2810 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2811 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2812 return p;
2813 }
2814
2815 p = d_ancestor(p1, p2);
2816 if (p) {
2817 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2818 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2819 return p;
2820 }
2821
2822 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2823 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2824 return NULL;
2825 }
2826 EXPORT_SYMBOL(lock_rename);
2827
2828 void unlock_rename(struct dentry *p1, struct dentry *p2)
2829 {
2830 inode_unlock(p1->d_inode);
2831 if (p1 != p2) {
2832 inode_unlock(p2->d_inode);
2833 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2834 }
2835 }
2836 EXPORT_SYMBOL(unlock_rename);
2837
2838 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2839 bool want_excl)
2840 {
2841 int error = may_create(dir, dentry);
2842 if (error)
2843 return error;
2844
2845 if (!dir->i_op->create)
2846 return -EACCES; /* shouldn't it be ENOSYS? */
2847 mode &= S_IALLUGO;
2848 mode |= S_IFREG;
2849 error = security_inode_create(dir, dentry, mode);
2850 if (error)
2851 return error;
2852 error = dir->i_op->create(dir, dentry, mode, want_excl);
2853 if (!error)
2854 fsnotify_create(dir, dentry);
2855 return error;
2856 }
2857 EXPORT_SYMBOL(vfs_create);
2858
2859 bool may_open_dev(const struct path *path)
2860 {
2861 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2862 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2863 }
2864
2865 static int may_open(const struct path *path, int acc_mode, int flag)
2866 {
2867 struct dentry *dentry = path->dentry;
2868 struct inode *inode = dentry->d_inode;
2869 int error;
2870
2871 if (!inode)
2872 return -ENOENT;
2873
2874 switch (inode->i_mode & S_IFMT) {
2875 case S_IFLNK:
2876 return -ELOOP;
2877 case S_IFDIR:
2878 if (acc_mode & MAY_WRITE)
2879 return -EISDIR;
2880 break;
2881 case S_IFBLK:
2882 case S_IFCHR:
2883 if (!may_open_dev(path))
2884 return -EACCES;
2885 /*FALLTHRU*/
2886 case S_IFIFO:
2887 case S_IFSOCK:
2888 flag &= ~O_TRUNC;
2889 break;
2890 }
2891
2892 error = inode_permission(inode, MAY_OPEN | acc_mode);
2893 if (error)
2894 return error;
2895
2896 /*
2897 * An append-only file must be opened in append mode for writing.
2898 */
2899 if (IS_APPEND(inode)) {
2900 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2901 return -EPERM;
2902 if (flag & O_TRUNC)
2903 return -EPERM;
2904 }
2905
2906 /* O_NOATIME can only be set by the owner or superuser */
2907 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2908 return -EPERM;
2909
2910 return 0;
2911 }
2912
2913 static int handle_truncate(struct file *filp)
2914 {
2915 const struct path *path = &filp->f_path;
2916 struct inode *inode = path->dentry->d_inode;
2917 int error = get_write_access(inode);
2918 if (error)
2919 return error;
2920 /*
2921 * Refuse to truncate files with mandatory locks held on them.
2922 */
2923 error = locks_verify_locked(filp);
2924 if (!error)
2925 error = security_path_truncate(path);
2926 if (!error) {
2927 error = do_truncate(path->dentry, 0,
2928 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2929 filp);
2930 }
2931 put_write_access(inode);
2932 return error;
2933 }
2934
2935 static inline int open_to_namei_flags(int flag)
2936 {
2937 if ((flag & O_ACCMODE) == 3)
2938 flag--;
2939 return flag;
2940 }
2941
2942 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 int error = security_path_mknod(dir, dentry, mode, 0);
2945 if (error)
2946 return error;
2947
2948 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2949 if (error)
2950 return error;
2951
2952 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2953 }
2954
2955 /*
2956 * Attempt to atomically look up, create and open a file from a negative
2957 * dentry.
2958 *
2959 * Returns 0 if successful. The file will have been created and attached to
2960 * @file by the filesystem calling finish_open().
2961 *
2962 * Returns 1 if the file was looked up only or didn't need creating. The
2963 * caller will need to perform the open themselves. @path will have been
2964 * updated to point to the new dentry. This may be negative.
2965 *
2966 * Returns an error code otherwise.
2967 */
2968 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2969 struct path *path, struct file *file,
2970 const struct open_flags *op,
2971 int open_flag, umode_t mode,
2972 int *opened)
2973 {
2974 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2975 struct inode *dir = nd->path.dentry->d_inode;
2976 int error;
2977
2978 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2979 open_flag &= ~O_TRUNC;
2980
2981 if (nd->flags & LOOKUP_DIRECTORY)
2982 open_flag |= O_DIRECTORY;
2983
2984 file->f_path.dentry = DENTRY_NOT_SET;
2985 file->f_path.mnt = nd->path.mnt;
2986 error = dir->i_op->atomic_open(dir, dentry, file,
2987 open_to_namei_flags(open_flag),
2988 mode, opened);
2989 d_lookup_done(dentry);
2990 if (!error) {
2991 /*
2992 * We didn't have the inode before the open, so check open
2993 * permission here.
2994 */
2995 int acc_mode = op->acc_mode;
2996 if (*opened & FILE_CREATED) {
2997 WARN_ON(!(open_flag & O_CREAT));
2998 fsnotify_create(dir, dentry);
2999 acc_mode = 0;
3000 }
3001 error = may_open(&file->f_path, acc_mode, open_flag);
3002 if (WARN_ON(error > 0))
3003 error = -EINVAL;
3004 } else if (error > 0) {
3005 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3006 error = -EIO;
3007 } else {
3008 if (file->f_path.dentry) {
3009 dput(dentry);
3010 dentry = file->f_path.dentry;
3011 }
3012 if (*opened & FILE_CREATED)
3013 fsnotify_create(dir, dentry);
3014 if (unlikely(d_is_negative(dentry))) {
3015 error = -ENOENT;
3016 } else {
3017 path->dentry = dentry;
3018 path->mnt = nd->path.mnt;
3019 return 1;
3020 }
3021 }
3022 }
3023 dput(dentry);
3024 return error;
3025 }
3026
3027 /*
3028 * Look up and maybe create and open the last component.
3029 *
3030 * Must be called with i_mutex held on parent.
3031 *
3032 * Returns 0 if the file was successfully atomically created (if necessary) and
3033 * opened. In this case the file will be returned attached to @file.
3034 *
3035 * Returns 1 if the file was not completely opened at this time, though lookups
3036 * and creations will have been performed and the dentry returned in @path will
3037 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3038 * specified then a negative dentry may be returned.
3039 *
3040 * An error code is returned otherwise.
3041 *
3042 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3043 * cleared otherwise prior to returning.
3044 */
3045 static int lookup_open(struct nameidata *nd, struct path *path,
3046 struct file *file,
3047 const struct open_flags *op,
3048 bool got_write, int *opened)
3049 {
3050 struct dentry *dir = nd->path.dentry;
3051 struct inode *dir_inode = dir->d_inode;
3052 int open_flag = op->open_flag;
3053 struct dentry *dentry;
3054 int error, create_error = 0;
3055 umode_t mode = op->mode;
3056 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3057
3058 if (unlikely(IS_DEADDIR(dir_inode)))
3059 return -ENOENT;
3060
3061 *opened &= ~FILE_CREATED;
3062 dentry = d_lookup(dir, &nd->last);
3063 for (;;) {
3064 if (!dentry) {
3065 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3066 if (IS_ERR(dentry))
3067 return PTR_ERR(dentry);
3068 }
3069 if (d_in_lookup(dentry))
3070 break;
3071
3072 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3073 break;
3074
3075 error = d_revalidate(dentry, nd->flags);
3076 if (likely(error > 0))
3077 break;
3078 if (error)
3079 goto out_dput;
3080 d_invalidate(dentry);
3081 dput(dentry);
3082 dentry = NULL;
3083 }
3084 if (dentry->d_inode) {
3085 /* Cached positive dentry: will open in f_op->open */
3086 goto out_no_open;
3087 }
3088
3089 /*
3090 * Checking write permission is tricky, bacuse we don't know if we are
3091 * going to actually need it: O_CREAT opens should work as long as the
3092 * file exists. But checking existence breaks atomicity. The trick is
3093 * to check access and if not granted clear O_CREAT from the flags.
3094 *
3095 * Another problem is returing the "right" error value (e.g. for an
3096 * O_EXCL open we want to return EEXIST not EROFS).
3097 */
3098 if (open_flag & O_CREAT) {
3099 if (!IS_POSIXACL(dir->d_inode))
3100 mode &= ~current_umask();
3101 if (unlikely(!got_write)) {
3102 create_error = -EROFS;
3103 open_flag &= ~O_CREAT;
3104 if (open_flag & (O_EXCL | O_TRUNC))
3105 goto no_open;
3106 /* No side effects, safe to clear O_CREAT */
3107 } else {
3108 create_error = may_o_create(&nd->path, dentry, mode);
3109 if (create_error) {
3110 open_flag &= ~O_CREAT;
3111 if (open_flag & O_EXCL)
3112 goto no_open;
3113 }
3114 }
3115 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3116 unlikely(!got_write)) {
3117 /*
3118 * No O_CREATE -> atomicity not a requirement -> fall
3119 * back to lookup + open
3120 */
3121 goto no_open;
3122 }
3123
3124 if (dir_inode->i_op->atomic_open) {
3125 error = atomic_open(nd, dentry, path, file, op, open_flag,
3126 mode, opened);
3127 if (unlikely(error == -ENOENT) && create_error)
3128 error = create_error;
3129 return error;
3130 }
3131
3132 no_open:
3133 if (d_in_lookup(dentry)) {
3134 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3135 nd->flags);
3136 d_lookup_done(dentry);
3137 if (unlikely(res)) {
3138 if (IS_ERR(res)) {
3139 error = PTR_ERR(res);
3140 goto out_dput;
3141 }
3142 dput(dentry);
3143 dentry = res;
3144 }
3145 }
3146
3147 /* Negative dentry, just create the file */
3148 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3149 *opened |= FILE_CREATED;
3150 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3151 if (!dir_inode->i_op->create) {
3152 error = -EACCES;
3153 goto out_dput;
3154 }
3155 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3156 open_flag & O_EXCL);
3157 if (error)
3158 goto out_dput;
3159 fsnotify_create(dir_inode, dentry);
3160 }
3161 if (unlikely(create_error) && !dentry->d_inode) {
3162 error = create_error;
3163 goto out_dput;
3164 }
3165 out_no_open:
3166 path->dentry = dentry;
3167 path->mnt = nd->path.mnt;
3168 return 1;
3169
3170 out_dput:
3171 dput(dentry);
3172 return error;
3173 }
3174
3175 /*
3176 * Handle the last step of open()
3177 */
3178 static int do_last(struct nameidata *nd,
3179 struct file *file, const struct open_flags *op,
3180 int *opened)
3181 {
3182 struct dentry *dir = nd->path.dentry;
3183 int open_flag = op->open_flag;
3184 bool will_truncate = (open_flag & O_TRUNC) != 0;
3185 bool got_write = false;
3186 int acc_mode = op->acc_mode;
3187 unsigned seq;
3188 struct inode *inode;
3189 struct path path;
3190 int error;
3191
3192 nd->flags &= ~LOOKUP_PARENT;
3193 nd->flags |= op->intent;
3194
3195 if (nd->last_type != LAST_NORM) {
3196 error = handle_dots(nd, nd->last_type);
3197 if (unlikely(error))
3198 return error;
3199 goto finish_open;
3200 }
3201
3202 if (!(open_flag & O_CREAT)) {
3203 if (nd->last.name[nd->last.len])
3204 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3205 /* we _can_ be in RCU mode here */
3206 error = lookup_fast(nd, &path, &inode, &seq);
3207 if (likely(error > 0))
3208 goto finish_lookup;
3209
3210 if (error < 0)
3211 return error;
3212
3213 BUG_ON(nd->inode != dir->d_inode);
3214 BUG_ON(nd->flags & LOOKUP_RCU);
3215 } else {
3216 /* create side of things */
3217 /*
3218 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3219 * has been cleared when we got to the last component we are
3220 * about to look up
3221 */
3222 error = complete_walk(nd);
3223 if (error)
3224 return error;
3225
3226 audit_inode(nd->name, dir, LOOKUP_PARENT);
3227 /* trailing slashes? */
3228 if (unlikely(nd->last.name[nd->last.len]))
3229 return -EISDIR;
3230 }
3231
3232 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3233 error = mnt_want_write(nd->path.mnt);
3234 if (!error)
3235 got_write = true;
3236 /*
3237 * do _not_ fail yet - we might not need that or fail with
3238 * a different error; let lookup_open() decide; we'll be
3239 * dropping this one anyway.
3240 */
3241 }
3242 if (open_flag & O_CREAT)
3243 inode_lock(dir->d_inode);
3244 else
3245 inode_lock_shared(dir->d_inode);
3246 error = lookup_open(nd, &path, file, op, got_write, opened);
3247 if (open_flag & O_CREAT)
3248 inode_unlock(dir->d_inode);
3249 else
3250 inode_unlock_shared(dir->d_inode);
3251
3252 if (error <= 0) {
3253 if (error)
3254 goto out;
3255
3256 if ((*opened & FILE_CREATED) ||
3257 !S_ISREG(file_inode(file)->i_mode))
3258 will_truncate = false;
3259
3260 audit_inode(nd->name, file->f_path.dentry, 0);
3261 goto opened;
3262 }
3263
3264 if (*opened & FILE_CREATED) {
3265 /* Don't check for write permission, don't truncate */
3266 open_flag &= ~O_TRUNC;
3267 will_truncate = false;
3268 acc_mode = 0;
3269 path_to_nameidata(&path, nd);
3270 goto finish_open_created;
3271 }
3272
3273 /*
3274 * If atomic_open() acquired write access it is dropped now due to
3275 * possible mount and symlink following (this might be optimized away if
3276 * necessary...)
3277 */
3278 if (got_write) {
3279 mnt_drop_write(nd->path.mnt);
3280 got_write = false;
3281 }
3282
3283 error = follow_managed(&path, nd);
3284 if (unlikely(error < 0))
3285 return error;
3286
3287 if (unlikely(d_is_negative(path.dentry))) {
3288 path_to_nameidata(&path, nd);
3289 return -ENOENT;
3290 }
3291
3292 /*
3293 * create/update audit record if it already exists.
3294 */
3295 audit_inode(nd->name, path.dentry, 0);
3296
3297 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3298 path_to_nameidata(&path, nd);
3299 return -EEXIST;
3300 }
3301
3302 seq = 0; /* out of RCU mode, so the value doesn't matter */
3303 inode = d_backing_inode(path.dentry);
3304 finish_lookup:
3305 error = step_into(nd, &path, 0, inode, seq);
3306 if (unlikely(error))
3307 return error;
3308 finish_open:
3309 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3310 error = complete_walk(nd);
3311 if (error)
3312 return error;
3313 audit_inode(nd->name, nd->path.dentry, 0);
3314 error = -EISDIR;
3315 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3316 goto out;
3317 error = -ENOTDIR;
3318 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3319 goto out;
3320 if (!d_is_reg(nd->path.dentry))
3321 will_truncate = false;
3322
3323 if (will_truncate) {
3324 error = mnt_want_write(nd->path.mnt);
3325 if (error)
3326 goto out;
3327 got_write = true;
3328 }
3329 finish_open_created:
3330 error = may_open(&nd->path, acc_mode, open_flag);
3331 if (error)
3332 goto out;
3333 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3334 error = vfs_open(&nd->path, file, current_cred());
3335 if (error)
3336 goto out;
3337 *opened |= FILE_OPENED;
3338 opened:
3339 error = open_check_o_direct(file);
3340 if (!error)
3341 error = ima_file_check(file, op->acc_mode, *opened);
3342 if (!error && will_truncate)
3343 error = handle_truncate(file);
3344 out:
3345 if (unlikely(error) && (*opened & FILE_OPENED))
3346 fput(file);
3347 if (unlikely(error > 0)) {
3348 WARN_ON(1);
3349 error = -EINVAL;
3350 }
3351 if (got_write)
3352 mnt_drop_write(nd->path.mnt);
3353 return error;
3354 }
3355
3356 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3357 const struct open_flags *op,
3358 struct file *file, int *opened)
3359 {
3360 static const struct qstr name = QSTR_INIT("/", 1);
3361 struct dentry *child;
3362 struct inode *dir;
3363 struct path path;
3364 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3365 if (unlikely(error))
3366 return error;
3367 error = mnt_want_write(path.mnt);
3368 if (unlikely(error))
3369 goto out;
3370 dir = path.dentry->d_inode;
3371 /* we want directory to be writable */
3372 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3373 if (error)
3374 goto out2;
3375 if (!dir->i_op->tmpfile) {
3376 error = -EOPNOTSUPP;
3377 goto out2;
3378 }
3379 child = d_alloc(path.dentry, &name);
3380 if (unlikely(!child)) {
3381 error = -ENOMEM;
3382 goto out2;
3383 }
3384 dput(path.dentry);
3385 path.dentry = child;
3386 error = dir->i_op->tmpfile(dir, child, op->mode);
3387 if (error)
3388 goto out2;
3389 audit_inode(nd->name, child, 0);
3390 /* Don't check for other permissions, the inode was just created */
3391 error = may_open(&path, 0, op->open_flag);
3392 if (error)
3393 goto out2;
3394 file->f_path.mnt = path.mnt;
3395 error = finish_open(file, child, NULL, opened);
3396 if (error)
3397 goto out2;
3398 error = open_check_o_direct(file);
3399 if (error) {
3400 fput(file);
3401 } else if (!(op->open_flag & O_EXCL)) {
3402 struct inode *inode = file_inode(file);
3403 spin_lock(&inode->i_lock);
3404 inode->i_state |= I_LINKABLE;
3405 spin_unlock(&inode->i_lock);
3406 }
3407 out2:
3408 mnt_drop_write(path.mnt);
3409 out:
3410 path_put(&path);
3411 return error;
3412 }
3413
3414 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3415 {
3416 struct path path;
3417 int error = path_lookupat(nd, flags, &path);
3418 if (!error) {
3419 audit_inode(nd->name, path.dentry, 0);
3420 error = vfs_open(&path, file, current_cred());
3421 path_put(&path);
3422 }
3423 return error;
3424 }
3425
3426 static struct file *path_openat(struct nameidata *nd,
3427 const struct open_flags *op, unsigned flags)
3428 {
3429 const char *s;
3430 struct file *file;
3431 int opened = 0;
3432 int error;
3433
3434 file = get_empty_filp();
3435 if (IS_ERR(file))
3436 return file;
3437
3438 file->f_flags = op->open_flag;
3439
3440 if (unlikely(file->f_flags & __O_TMPFILE)) {
3441 error = do_tmpfile(nd, flags, op, file, &opened);
3442 goto out2;
3443 }
3444
3445 if (unlikely(file->f_flags & O_PATH)) {
3446 error = do_o_path(nd, flags, file);
3447 if (!error)
3448 opened |= FILE_OPENED;
3449 goto out2;
3450 }
3451
3452 s = path_init(nd, flags);
3453 if (IS_ERR(s)) {
3454 put_filp(file);
3455 return ERR_CAST(s);
3456 }
3457 while (!(error = link_path_walk(s, nd)) &&
3458 (error = do_last(nd, file, op, &opened)) > 0) {
3459 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3460 s = trailing_symlink(nd);
3461 if (IS_ERR(s)) {
3462 error = PTR_ERR(s);
3463 break;
3464 }
3465 }
3466 terminate_walk(nd);
3467 out2:
3468 if (!(opened & FILE_OPENED)) {
3469 BUG_ON(!error);
3470 put_filp(file);
3471 }
3472 if (unlikely(error)) {
3473 if (error == -EOPENSTALE) {
3474 if (flags & LOOKUP_RCU)
3475 error = -ECHILD;
3476 else
3477 error = -ESTALE;
3478 }
3479 file = ERR_PTR(error);
3480 }
3481 return file;
3482 }
3483
3484 struct file *do_filp_open(int dfd, struct filename *pathname,
3485 const struct open_flags *op)
3486 {
3487 struct nameidata nd;
3488 int flags = op->lookup_flags;
3489 struct file *filp;
3490
3491 set_nameidata(&nd, dfd, pathname);
3492 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3493 if (unlikely(filp == ERR_PTR(-ECHILD)))
3494 filp = path_openat(&nd, op, flags);
3495 if (unlikely(filp == ERR_PTR(-ESTALE)))
3496 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3497 restore_nameidata();
3498 return filp;
3499 }
3500
3501 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3502 const char *name, const struct open_flags *op)
3503 {
3504 struct nameidata nd;
3505 struct file *file;
3506 struct filename *filename;
3507 int flags = op->lookup_flags | LOOKUP_ROOT;
3508
3509 nd.root.mnt = mnt;
3510 nd.root.dentry = dentry;
3511
3512 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3513 return ERR_PTR(-ELOOP);
3514
3515 filename = getname_kernel(name);
3516 if (IS_ERR(filename))
3517 return ERR_CAST(filename);
3518
3519 set_nameidata(&nd, -1, filename);
3520 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3521 if (unlikely(file == ERR_PTR(-ECHILD)))
3522 file = path_openat(&nd, op, flags);
3523 if (unlikely(file == ERR_PTR(-ESTALE)))
3524 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3525 restore_nameidata();
3526 putname(filename);
3527 return file;
3528 }
3529
3530 static struct dentry *filename_create(int dfd, struct filename *name,
3531 struct path *path, unsigned int lookup_flags)
3532 {
3533 struct dentry *dentry = ERR_PTR(-EEXIST);
3534 struct qstr last;
3535 int type;
3536 int err2;
3537 int error;
3538 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3539
3540 /*
3541 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3542 * other flags passed in are ignored!
3543 */
3544 lookup_flags &= LOOKUP_REVAL;
3545
3546 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3547 if (IS_ERR(name))
3548 return ERR_CAST(name);
3549
3550 /*
3551 * Yucky last component or no last component at all?
3552 * (foo/., foo/.., /////)
3553 */
3554 if (unlikely(type != LAST_NORM))
3555 goto out;
3556
3557 /* don't fail immediately if it's r/o, at least try to report other errors */
3558 err2 = mnt_want_write(path->mnt);
3559 /*
3560 * Do the final lookup.
3561 */
3562 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3563 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3564 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3565 if (IS_ERR(dentry))
3566 goto unlock;
3567
3568 error = -EEXIST;
3569 if (d_is_positive(dentry))
3570 goto fail;
3571
3572 /*
3573 * Special case - lookup gave negative, but... we had foo/bar/
3574 * From the vfs_mknod() POV we just have a negative dentry -
3575 * all is fine. Let's be bastards - you had / on the end, you've
3576 * been asking for (non-existent) directory. -ENOENT for you.
3577 */
3578 if (unlikely(!is_dir && last.name[last.len])) {
3579 error = -ENOENT;
3580 goto fail;
3581 }
3582 if (unlikely(err2)) {
3583 error = err2;
3584 goto fail;
3585 }
3586 putname(name);
3587 return dentry;
3588 fail:
3589 dput(dentry);
3590 dentry = ERR_PTR(error);
3591 unlock:
3592 inode_unlock(path->dentry->d_inode);
3593 if (!err2)
3594 mnt_drop_write(path->mnt);
3595 out:
3596 path_put(path);
3597 putname(name);
3598 return dentry;
3599 }
3600
3601 struct dentry *kern_path_create(int dfd, const char *pathname,
3602 struct path *path, unsigned int lookup_flags)
3603 {
3604 return filename_create(dfd, getname_kernel(pathname),
3605 path, lookup_flags);
3606 }
3607 EXPORT_SYMBOL(kern_path_create);
3608
3609 void done_path_create(struct path *path, struct dentry *dentry)
3610 {
3611 dput(dentry);
3612 inode_unlock(path->dentry->d_inode);
3613 mnt_drop_write(path->mnt);
3614 path_put(path);
3615 }
3616 EXPORT_SYMBOL(done_path_create);
3617
3618 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3619 struct path *path, unsigned int lookup_flags)
3620 {
3621 return filename_create(dfd, getname(pathname), path, lookup_flags);
3622 }
3623 EXPORT_SYMBOL(user_path_create);
3624
3625 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3626 {
3627 int error = may_create(dir, dentry);
3628
3629 if (error)
3630 return error;
3631
3632 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3633 return -EPERM;
3634
3635 if (!dir->i_op->mknod)
3636 return -EPERM;
3637
3638 error = devcgroup_inode_mknod(mode, dev);
3639 if (error)
3640 return error;
3641
3642 error = security_inode_mknod(dir, dentry, mode, dev);
3643 if (error)
3644 return error;
3645
3646 error = dir->i_op->mknod(dir, dentry, mode, dev);
3647 if (!error)
3648 fsnotify_create(dir, dentry);
3649 return error;
3650 }
3651 EXPORT_SYMBOL(vfs_mknod);
3652
3653 static int may_mknod(umode_t mode)
3654 {
3655 switch (mode & S_IFMT) {
3656 case S_IFREG:
3657 case S_IFCHR:
3658 case S_IFBLK:
3659 case S_IFIFO:
3660 case S_IFSOCK:
3661 case 0: /* zero mode translates to S_IFREG */
3662 return 0;
3663 case S_IFDIR:
3664 return -EPERM;
3665 default:
3666 return -EINVAL;
3667 }
3668 }
3669
3670 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3671 unsigned, dev)
3672 {
3673 struct dentry *dentry;
3674 struct path path;
3675 int error;
3676 unsigned int lookup_flags = 0;
3677
3678 error = may_mknod(mode);
3679 if (error)
3680 return error;
3681 retry:
3682 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3683 if (IS_ERR(dentry))
3684 return PTR_ERR(dentry);
3685
3686 if (!IS_POSIXACL(path.dentry->d_inode))
3687 mode &= ~current_umask();
3688 error = security_path_mknod(&path, dentry, mode, dev);
3689 if (error)
3690 goto out;
3691 switch (mode & S_IFMT) {
3692 case 0: case S_IFREG:
3693 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3694 if (!error)
3695 ima_post_path_mknod(dentry);
3696 break;
3697 case S_IFCHR: case S_IFBLK:
3698 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3699 new_decode_dev(dev));
3700 break;
3701 case S_IFIFO: case S_IFSOCK:
3702 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3703 break;
3704 }
3705 out:
3706 done_path_create(&path, dentry);
3707 if (retry_estale(error, lookup_flags)) {
3708 lookup_flags |= LOOKUP_REVAL;
3709 goto retry;
3710 }
3711 return error;
3712 }
3713
3714 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3715 {
3716 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3717 }
3718
3719 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3720 {
3721 int error = may_create(dir, dentry);
3722 unsigned max_links = dir->i_sb->s_max_links;
3723
3724 if (error)
3725 return error;
3726
3727 if (!dir->i_op->mkdir)
3728 return -EPERM;
3729
3730 mode &= (S_IRWXUGO|S_ISVTX);
3731 error = security_inode_mkdir(dir, dentry, mode);
3732 if (error)
3733 return error;
3734
3735 if (max_links && dir->i_nlink >= max_links)
3736 return -EMLINK;
3737
3738 error = dir->i_op->mkdir(dir, dentry, mode);
3739 if (!error)
3740 fsnotify_mkdir(dir, dentry);
3741 return error;
3742 }
3743 EXPORT_SYMBOL(vfs_mkdir);
3744
3745 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3746 {
3747 struct dentry *dentry;
3748 struct path path;
3749 int error;
3750 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3751
3752 retry:
3753 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3754 if (IS_ERR(dentry))
3755 return PTR_ERR(dentry);
3756
3757 if (!IS_POSIXACL(path.dentry->d_inode))
3758 mode &= ~current_umask();
3759 error = security_path_mkdir(&path, dentry, mode);
3760 if (!error)
3761 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3762 done_path_create(&path, dentry);
3763 if (retry_estale(error, lookup_flags)) {
3764 lookup_flags |= LOOKUP_REVAL;
3765 goto retry;
3766 }
3767 return error;
3768 }
3769
3770 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3771 {
3772 return sys_mkdirat(AT_FDCWD, pathname, mode);
3773 }
3774
3775 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3776 {
3777 int error = may_delete(dir, dentry, 1);
3778
3779 if (error)
3780 return error;
3781
3782 if (!dir->i_op->rmdir)
3783 return -EPERM;
3784
3785 dget(dentry);
3786 inode_lock(dentry->d_inode);
3787
3788 error = -EBUSY;
3789 if (is_local_mountpoint(dentry))
3790 goto out;
3791
3792 error = security_inode_rmdir(dir, dentry);
3793 if (error)
3794 goto out;
3795
3796 shrink_dcache_parent(dentry);
3797 error = dir->i_op->rmdir(dir, dentry);
3798 if (error)
3799 goto out;
3800
3801 dentry->d_inode->i_flags |= S_DEAD;
3802 dont_mount(dentry);
3803 detach_mounts(dentry);
3804
3805 out:
3806 inode_unlock(dentry->d_inode);
3807 dput(dentry);
3808 if (!error)
3809 d_delete(dentry);
3810 return error;
3811 }
3812 EXPORT_SYMBOL(vfs_rmdir);
3813
3814 static long do_rmdir(int dfd, const char __user *pathname)
3815 {
3816 int error = 0;
3817 struct filename *name;
3818 struct dentry *dentry;
3819 struct path path;
3820 struct qstr last;
3821 int type;
3822 unsigned int lookup_flags = 0;
3823 retry:
3824 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3825 &path, &last, &type);
3826 if (IS_ERR(name))
3827 return PTR_ERR(name);
3828
3829 switch (type) {
3830 case LAST_DOTDOT:
3831 error = -ENOTEMPTY;
3832 goto exit1;
3833 case LAST_DOT:
3834 error = -EINVAL;
3835 goto exit1;
3836 case LAST_ROOT:
3837 error = -EBUSY;
3838 goto exit1;
3839 }
3840
3841 error = mnt_want_write(path.mnt);
3842 if (error)
3843 goto exit1;
3844
3845 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3846 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3847 error = PTR_ERR(dentry);
3848 if (IS_ERR(dentry))
3849 goto exit2;
3850 if (!dentry->d_inode) {
3851 error = -ENOENT;
3852 goto exit3;
3853 }
3854 error = security_path_rmdir(&path, dentry);
3855 if (error)
3856 goto exit3;
3857 error = vfs_rmdir(path.dentry->d_inode, dentry);
3858 exit3:
3859 dput(dentry);
3860 exit2:
3861 inode_unlock(path.dentry->d_inode);
3862 mnt_drop_write(path.mnt);
3863 exit1:
3864 path_put(&path);
3865 putname(name);
3866 if (retry_estale(error, lookup_flags)) {
3867 lookup_flags |= LOOKUP_REVAL;
3868 goto retry;
3869 }
3870 return error;
3871 }
3872
3873 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3874 {
3875 return do_rmdir(AT_FDCWD, pathname);
3876 }
3877
3878 /**
3879 * vfs_unlink - unlink a filesystem object
3880 * @dir: parent directory
3881 * @dentry: victim
3882 * @delegated_inode: returns victim inode, if the inode is delegated.
3883 *
3884 * The caller must hold dir->i_mutex.
3885 *
3886 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3887 * return a reference to the inode in delegated_inode. The caller
3888 * should then break the delegation on that inode and retry. Because
3889 * breaking a delegation may take a long time, the caller should drop
3890 * dir->i_mutex before doing so.
3891 *
3892 * Alternatively, a caller may pass NULL for delegated_inode. This may
3893 * be appropriate for callers that expect the underlying filesystem not
3894 * to be NFS exported.
3895 */
3896 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3897 {
3898 struct inode *target = dentry->d_inode;
3899 int error = may_delete(dir, dentry, 0);
3900
3901 if (error)
3902 return error;
3903
3904 if (!dir->i_op->unlink)
3905 return -EPERM;
3906
3907 inode_lock(target);
3908 if (is_local_mountpoint(dentry))
3909 error = -EBUSY;
3910 else {
3911 error = security_inode_unlink(dir, dentry);
3912 if (!error) {
3913 error = try_break_deleg(target, delegated_inode);
3914 if (error)
3915 goto out;
3916 error = dir->i_op->unlink(dir, dentry);
3917 if (!error) {
3918 dont_mount(dentry);
3919 detach_mounts(dentry);
3920 }
3921 }
3922 }
3923 out:
3924 inode_unlock(target);
3925
3926 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3927 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3928 fsnotify_link_count(target);
3929 d_delete(dentry);
3930 }
3931
3932 return error;
3933 }
3934 EXPORT_SYMBOL(vfs_unlink);
3935
3936 /*
3937 * Make sure that the actual truncation of the file will occur outside its
3938 * directory's i_mutex. Truncate can take a long time if there is a lot of
3939 * writeout happening, and we don't want to prevent access to the directory
3940 * while waiting on the I/O.
3941 */
3942 static long do_unlinkat(int dfd, const char __user *pathname)
3943 {
3944 int error;
3945 struct filename *name;
3946 struct dentry *dentry;
3947 struct path path;
3948 struct qstr last;
3949 int type;
3950 struct inode *inode = NULL;
3951 struct inode *delegated_inode = NULL;
3952 unsigned int lookup_flags = 0;
3953 retry:
3954 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3955 &path, &last, &type);
3956 if (IS_ERR(name))
3957 return PTR_ERR(name);
3958
3959 error = -EISDIR;
3960 if (type != LAST_NORM)
3961 goto exit1;
3962
3963 error = mnt_want_write(path.mnt);
3964 if (error)
3965 goto exit1;
3966 retry_deleg:
3967 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3968 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3969 error = PTR_ERR(dentry);
3970 if (!IS_ERR(dentry)) {
3971 /* Why not before? Because we want correct error value */
3972 if (last.name[last.len])
3973 goto slashes;
3974 inode = dentry->d_inode;
3975 if (d_is_negative(dentry))
3976 goto slashes;
3977 ihold(inode);
3978 error = security_path_unlink(&path, dentry);
3979 if (error)
3980 goto exit2;
3981 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3982 exit2:
3983 dput(dentry);
3984 }
3985 inode_unlock(path.dentry->d_inode);
3986 if (inode)
3987 iput(inode); /* truncate the inode here */
3988 inode = NULL;
3989 if (delegated_inode) {
3990 error = break_deleg_wait(&delegated_inode);
3991 if (!error)
3992 goto retry_deleg;
3993 }
3994 mnt_drop_write(path.mnt);
3995 exit1:
3996 path_put(&path);
3997 putname(name);
3998 if (retry_estale(error, lookup_flags)) {
3999 lookup_flags |= LOOKUP_REVAL;
4000 inode = NULL;
4001 goto retry;
4002 }
4003 return error;
4004
4005 slashes:
4006 if (d_is_negative(dentry))
4007 error = -ENOENT;
4008 else if (d_is_dir(dentry))
4009 error = -EISDIR;
4010 else
4011 error = -ENOTDIR;
4012 goto exit2;
4013 }
4014
4015 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4016 {
4017 if ((flag & ~AT_REMOVEDIR) != 0)
4018 return -EINVAL;
4019
4020 if (flag & AT_REMOVEDIR)
4021 return do_rmdir(dfd, pathname);
4022
4023 return do_unlinkat(dfd, pathname);
4024 }
4025
4026 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4027 {
4028 return do_unlinkat(AT_FDCWD, pathname);
4029 }
4030
4031 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4032 {
4033 int error = may_create(dir, dentry);
4034
4035 if (error)
4036 return error;
4037
4038 if (!dir->i_op->symlink)
4039 return -EPERM;
4040
4041 error = security_inode_symlink(dir, dentry, oldname);
4042 if (error)
4043 return error;
4044
4045 error = dir->i_op->symlink(dir, dentry, oldname);
4046 if (!error)
4047 fsnotify_create(dir, dentry);
4048 return error;
4049 }
4050 EXPORT_SYMBOL(vfs_symlink);
4051
4052 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4053 int, newdfd, const char __user *, newname)
4054 {
4055 int error;
4056 struct filename *from;
4057 struct dentry *dentry;
4058 struct path path;
4059 unsigned int lookup_flags = 0;
4060
4061 from = getname(oldname);
4062 if (IS_ERR(from))
4063 return PTR_ERR(from);
4064 retry:
4065 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4066 error = PTR_ERR(dentry);
4067 if (IS_ERR(dentry))
4068 goto out_putname;
4069
4070 error = security_path_symlink(&path, dentry, from->name);
4071 if (!error)
4072 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4073 done_path_create(&path, dentry);
4074 if (retry_estale(error, lookup_flags)) {
4075 lookup_flags |= LOOKUP_REVAL;
4076 goto retry;
4077 }
4078 out_putname:
4079 putname(from);
4080 return error;
4081 }
4082
4083 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4084 {
4085 return sys_symlinkat(oldname, AT_FDCWD, newname);
4086 }
4087
4088 /**
4089 * vfs_link - create a new link
4090 * @old_dentry: object to be linked
4091 * @dir: new parent
4092 * @new_dentry: where to create the new link
4093 * @delegated_inode: returns inode needing a delegation break
4094 *
4095 * The caller must hold dir->i_mutex
4096 *
4097 * If vfs_link discovers a delegation on the to-be-linked file in need
4098 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4099 * inode in delegated_inode. The caller should then break the delegation
4100 * and retry. Because breaking a delegation may take a long time, the
4101 * caller should drop the i_mutex before doing so.
4102 *
4103 * Alternatively, a caller may pass NULL for delegated_inode. This may
4104 * be appropriate for callers that expect the underlying filesystem not
4105 * to be NFS exported.
4106 */
4107 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4108 {
4109 struct inode *inode = old_dentry->d_inode;
4110 unsigned max_links = dir->i_sb->s_max_links;
4111 int error;
4112
4113 if (!inode)
4114 return -ENOENT;
4115
4116 error = may_create(dir, new_dentry);
4117 if (error)
4118 return error;
4119
4120 if (dir->i_sb != inode->i_sb)
4121 return -EXDEV;
4122
4123 /*
4124 * A link to an append-only or immutable file cannot be created.
4125 */
4126 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4127 return -EPERM;
4128 /*
4129 * Updating the link count will likely cause i_uid and i_gid to
4130 * be writen back improperly if their true value is unknown to
4131 * the vfs.
4132 */
4133 if (HAS_UNMAPPED_ID(inode))
4134 return -EPERM;
4135 if (!dir->i_op->link)
4136 return -EPERM;
4137 if (S_ISDIR(inode->i_mode))
4138 return -EPERM;
4139
4140 error = security_inode_link(old_dentry, dir, new_dentry);
4141 if (error)
4142 return error;
4143
4144 inode_lock(inode);
4145 /* Make sure we don't allow creating hardlink to an unlinked file */
4146 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4147 error = -ENOENT;
4148 else if (max_links && inode->i_nlink >= max_links)
4149 error = -EMLINK;
4150 else {
4151 error = try_break_deleg(inode, delegated_inode);
4152 if (!error)
4153 error = dir->i_op->link(old_dentry, dir, new_dentry);
4154 }
4155
4156 if (!error && (inode->i_state & I_LINKABLE)) {
4157 spin_lock(&inode->i_lock);
4158 inode->i_state &= ~I_LINKABLE;
4159 spin_unlock(&inode->i_lock);
4160 }
4161 inode_unlock(inode);
4162 if (!error)
4163 fsnotify_link(dir, inode, new_dentry);
4164 return error;
4165 }
4166 EXPORT_SYMBOL(vfs_link);
4167
4168 /*
4169 * Hardlinks are often used in delicate situations. We avoid
4170 * security-related surprises by not following symlinks on the
4171 * newname. --KAB
4172 *
4173 * We don't follow them on the oldname either to be compatible
4174 * with linux 2.0, and to avoid hard-linking to directories
4175 * and other special files. --ADM
4176 */
4177 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4178 int, newdfd, const char __user *, newname, int, flags)
4179 {
4180 struct dentry *new_dentry;
4181 struct path old_path, new_path;
4182 struct inode *delegated_inode = NULL;
4183 int how = 0;
4184 int error;
4185
4186 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4187 return -EINVAL;
4188 /*
4189 * To use null names we require CAP_DAC_READ_SEARCH
4190 * This ensures that not everyone will be able to create
4191 * handlink using the passed filedescriptor.
4192 */
4193 if (flags & AT_EMPTY_PATH) {
4194 if (!capable(CAP_DAC_READ_SEARCH))
4195 return -ENOENT;
4196 how = LOOKUP_EMPTY;
4197 }
4198
4199 if (flags & AT_SYMLINK_FOLLOW)
4200 how |= LOOKUP_FOLLOW;
4201 retry:
4202 error = user_path_at(olddfd, oldname, how, &old_path);
4203 if (error)
4204 return error;
4205
4206 new_dentry = user_path_create(newdfd, newname, &new_path,
4207 (how & LOOKUP_REVAL));
4208 error = PTR_ERR(new_dentry);
4209 if (IS_ERR(new_dentry))
4210 goto out;
4211
4212 error = -EXDEV;
4213 if (old_path.mnt != new_path.mnt)
4214 goto out_dput;
4215 error = may_linkat(&old_path);
4216 if (unlikely(error))
4217 goto out_dput;
4218 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4219 if (error)
4220 goto out_dput;
4221 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4222 out_dput:
4223 done_path_create(&new_path, new_dentry);
4224 if (delegated_inode) {
4225 error = break_deleg_wait(&delegated_inode);
4226 if (!error) {
4227 path_put(&old_path);
4228 goto retry;
4229 }
4230 }
4231 if (retry_estale(error, how)) {
4232 path_put(&old_path);
4233 how |= LOOKUP_REVAL;
4234 goto retry;
4235 }
4236 out:
4237 path_put(&old_path);
4238
4239 return error;
4240 }
4241
4242 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4243 {
4244 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4245 }
4246
4247 /**
4248 * vfs_rename - rename a filesystem object
4249 * @old_dir: parent of source
4250 * @old_dentry: source
4251 * @new_dir: parent of destination
4252 * @new_dentry: destination
4253 * @delegated_inode: returns an inode needing a delegation break
4254 * @flags: rename flags
4255 *
4256 * The caller must hold multiple mutexes--see lock_rename()).
4257 *
4258 * If vfs_rename discovers a delegation in need of breaking at either
4259 * the source or destination, it will return -EWOULDBLOCK and return a
4260 * reference to the inode in delegated_inode. The caller should then
4261 * break the delegation and retry. Because breaking a delegation may
4262 * take a long time, the caller should drop all locks before doing
4263 * so.
4264 *
4265 * Alternatively, a caller may pass NULL for delegated_inode. This may
4266 * be appropriate for callers that expect the underlying filesystem not
4267 * to be NFS exported.
4268 *
4269 * The worst of all namespace operations - renaming directory. "Perverted"
4270 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4271 * Problems:
4272 * a) we can get into loop creation.
4273 * b) race potential - two innocent renames can create a loop together.
4274 * That's where 4.4 screws up. Current fix: serialization on
4275 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4276 * story.
4277 * c) we have to lock _four_ objects - parents and victim (if it exists),
4278 * and source (if it is not a directory).
4279 * And that - after we got ->i_mutex on parents (until then we don't know
4280 * whether the target exists). Solution: try to be smart with locking
4281 * order for inodes. We rely on the fact that tree topology may change
4282 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4283 * move will be locked. Thus we can rank directories by the tree
4284 * (ancestors first) and rank all non-directories after them.
4285 * That works since everybody except rename does "lock parent, lookup,
4286 * lock child" and rename is under ->s_vfs_rename_mutex.
4287 * HOWEVER, it relies on the assumption that any object with ->lookup()
4288 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4289 * we'd better make sure that there's no link(2) for them.
4290 * d) conversion from fhandle to dentry may come in the wrong moment - when
4291 * we are removing the target. Solution: we will have to grab ->i_mutex
4292 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4293 * ->i_mutex on parents, which works but leads to some truly excessive
4294 * locking].
4295 */
4296 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4297 struct inode *new_dir, struct dentry *new_dentry,
4298 struct inode **delegated_inode, unsigned int flags)
4299 {
4300 int error;
4301 bool is_dir = d_is_dir(old_dentry);
4302 const unsigned char *old_name;
4303 struct inode *source = old_dentry->d_inode;
4304 struct inode *target = new_dentry->d_inode;
4305 bool new_is_dir = false;
4306 unsigned max_links = new_dir->i_sb->s_max_links;
4307
4308 if (source == target)
4309 return 0;
4310
4311 error = may_delete(old_dir, old_dentry, is_dir);
4312 if (error)
4313 return error;
4314
4315 if (!target) {
4316 error = may_create(new_dir, new_dentry);
4317 } else {
4318 new_is_dir = d_is_dir(new_dentry);
4319
4320 if (!(flags & RENAME_EXCHANGE))
4321 error = may_delete(new_dir, new_dentry, is_dir);
4322 else
4323 error = may_delete(new_dir, new_dentry, new_is_dir);
4324 }
4325 if (error)
4326 return error;
4327
4328 if (!old_dir->i_op->rename)
4329 return -EPERM;
4330
4331 /*
4332 * If we are going to change the parent - check write permissions,
4333 * we'll need to flip '..'.
4334 */
4335 if (new_dir != old_dir) {
4336 if (is_dir) {
4337 error = inode_permission(source, MAY_WRITE);
4338 if (error)
4339 return error;
4340 }
4341 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4342 error = inode_permission(target, MAY_WRITE);
4343 if (error)
4344 return error;
4345 }
4346 }
4347
4348 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4349 flags);
4350 if (error)
4351 return error;
4352
4353 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4354 dget(new_dentry);
4355 if (!is_dir || (flags & RENAME_EXCHANGE))
4356 lock_two_nondirectories(source, target);
4357 else if (target)
4358 inode_lock(target);
4359
4360 error = -EBUSY;
4361 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4362 goto out;
4363
4364 if (max_links && new_dir != old_dir) {
4365 error = -EMLINK;
4366 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4367 goto out;
4368 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4369 old_dir->i_nlink >= max_links)
4370 goto out;
4371 }
4372 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4373 shrink_dcache_parent(new_dentry);
4374 if (!is_dir) {
4375 error = try_break_deleg(source, delegated_inode);
4376 if (error)
4377 goto out;
4378 }
4379 if (target && !new_is_dir) {
4380 error = try_break_deleg(target, delegated_inode);
4381 if (error)
4382 goto out;
4383 }
4384 error = old_dir->i_op->rename(old_dir, old_dentry,
4385 new_dir, new_dentry, flags);
4386 if (error)
4387 goto out;
4388
4389 if (!(flags & RENAME_EXCHANGE) && target) {
4390 if (is_dir)
4391 target->i_flags |= S_DEAD;
4392 dont_mount(new_dentry);
4393 detach_mounts(new_dentry);
4394 }
4395 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4396 if (!(flags & RENAME_EXCHANGE))
4397 d_move(old_dentry, new_dentry);
4398 else
4399 d_exchange(old_dentry, new_dentry);
4400 }
4401 out:
4402 if (!is_dir || (flags & RENAME_EXCHANGE))
4403 unlock_two_nondirectories(source, target);
4404 else if (target)
4405 inode_unlock(target);
4406 dput(new_dentry);
4407 if (!error) {
4408 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4409 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4410 if (flags & RENAME_EXCHANGE) {
4411 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4412 new_is_dir, NULL, new_dentry);
4413 }
4414 }
4415 fsnotify_oldname_free(old_name);
4416
4417 return error;
4418 }
4419 EXPORT_SYMBOL(vfs_rename);
4420
4421 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4422 int, newdfd, const char __user *, newname, unsigned int, flags)
4423 {
4424 struct dentry *old_dentry, *new_dentry;
4425 struct dentry *trap;
4426 struct path old_path, new_path;
4427 struct qstr old_last, new_last;
4428 int old_type, new_type;
4429 struct inode *delegated_inode = NULL;
4430 struct filename *from;
4431 struct filename *to;
4432 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4433 bool should_retry = false;
4434 int error;
4435
4436 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4437 return -EINVAL;
4438
4439 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4440 (flags & RENAME_EXCHANGE))
4441 return -EINVAL;
4442
4443 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4444 return -EPERM;
4445
4446 if (flags & RENAME_EXCHANGE)
4447 target_flags = 0;
4448
4449 retry:
4450 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4451 &old_path, &old_last, &old_type);
4452 if (IS_ERR(from)) {
4453 error = PTR_ERR(from);
4454 goto exit;
4455 }
4456
4457 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4458 &new_path, &new_last, &new_type);
4459 if (IS_ERR(to)) {
4460 error = PTR_ERR(to);
4461 goto exit1;
4462 }
4463
4464 error = -EXDEV;
4465 if (old_path.mnt != new_path.mnt)
4466 goto exit2;
4467
4468 error = -EBUSY;
4469 if (old_type != LAST_NORM)
4470 goto exit2;
4471
4472 if (flags & RENAME_NOREPLACE)
4473 error = -EEXIST;
4474 if (new_type != LAST_NORM)
4475 goto exit2;
4476
4477 error = mnt_want_write(old_path.mnt);
4478 if (error)
4479 goto exit2;
4480
4481 retry_deleg:
4482 trap = lock_rename(new_path.dentry, old_path.dentry);
4483
4484 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4485 error = PTR_ERR(old_dentry);
4486 if (IS_ERR(old_dentry))
4487 goto exit3;
4488 /* source must exist */
4489 error = -ENOENT;
4490 if (d_is_negative(old_dentry))
4491 goto exit4;
4492 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4493 error = PTR_ERR(new_dentry);
4494 if (IS_ERR(new_dentry))
4495 goto exit4;
4496 error = -EEXIST;
4497 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4498 goto exit5;
4499 if (flags & RENAME_EXCHANGE) {
4500 error = -ENOENT;
4501 if (d_is_negative(new_dentry))
4502 goto exit5;
4503
4504 if (!d_is_dir(new_dentry)) {
4505 error = -ENOTDIR;
4506 if (new_last.name[new_last.len])
4507 goto exit5;
4508 }
4509 }
4510 /* unless the source is a directory trailing slashes give -ENOTDIR */
4511 if (!d_is_dir(old_dentry)) {
4512 error = -ENOTDIR;
4513 if (old_last.name[old_last.len])
4514 goto exit5;
4515 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4516 goto exit5;
4517 }
4518 /* source should not be ancestor of target */
4519 error = -EINVAL;
4520 if (old_dentry == trap)
4521 goto exit5;
4522 /* target should not be an ancestor of source */
4523 if (!(flags & RENAME_EXCHANGE))
4524 error = -ENOTEMPTY;
4525 if (new_dentry == trap)
4526 goto exit5;
4527
4528 error = security_path_rename(&old_path, old_dentry,
4529 &new_path, new_dentry, flags);
4530 if (error)
4531 goto exit5;
4532 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4533 new_path.dentry->d_inode, new_dentry,
4534 &delegated_inode, flags);
4535 exit5:
4536 dput(new_dentry);
4537 exit4:
4538 dput(old_dentry);
4539 exit3:
4540 unlock_rename(new_path.dentry, old_path.dentry);
4541 if (delegated_inode) {
4542 error = break_deleg_wait(&delegated_inode);
4543 if (!error)
4544 goto retry_deleg;
4545 }
4546 mnt_drop_write(old_path.mnt);
4547 exit2:
4548 if (retry_estale(error, lookup_flags))
4549 should_retry = true;
4550 path_put(&new_path);
4551 putname(to);
4552 exit1:
4553 path_put(&old_path);
4554 putname(from);
4555 if (should_retry) {
4556 should_retry = false;
4557 lookup_flags |= LOOKUP_REVAL;
4558 goto retry;
4559 }
4560 exit:
4561 return error;
4562 }
4563
4564 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4565 int, newdfd, const char __user *, newname)
4566 {
4567 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4568 }
4569
4570 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4571 {
4572 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4573 }
4574
4575 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4576 {
4577 int error = may_create(dir, dentry);
4578 if (error)
4579 return error;
4580
4581 if (!dir->i_op->mknod)
4582 return -EPERM;
4583
4584 return dir->i_op->mknod(dir, dentry,
4585 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4586 }
4587 EXPORT_SYMBOL(vfs_whiteout);
4588
4589 int readlink_copy(char __user *buffer, int buflen, const char *link)
4590 {
4591 int len = PTR_ERR(link);
4592 if (IS_ERR(link))
4593 goto out;
4594
4595 len = strlen(link);
4596 if (len > (unsigned) buflen)
4597 len = buflen;
4598 if (copy_to_user(buffer, link, len))
4599 len = -EFAULT;
4600 out:
4601 return len;
4602 }
4603
4604 /*
4605 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4606 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4607 * for any given inode is up to filesystem.
4608 */
4609 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4610 int buflen)
4611 {
4612 DEFINE_DELAYED_CALL(done);
4613 struct inode *inode = d_inode(dentry);
4614 const char *link = inode->i_link;
4615 int res;
4616
4617 if (!link) {
4618 link = inode->i_op->get_link(dentry, inode, &done);
4619 if (IS_ERR(link))
4620 return PTR_ERR(link);
4621 }
4622 res = readlink_copy(buffer, buflen, link);
4623 do_delayed_call(&done);
4624 return res;
4625 }
4626
4627 /**
4628 * vfs_readlink - copy symlink body into userspace buffer
4629 * @dentry: dentry on which to get symbolic link
4630 * @buffer: user memory pointer
4631 * @buflen: size of buffer
4632 *
4633 * Does not touch atime. That's up to the caller if necessary
4634 *
4635 * Does not call security hook.
4636 */
4637 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4638 {
4639 struct inode *inode = d_inode(dentry);
4640
4641 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4642 if (unlikely(inode->i_op->readlink))
4643 return inode->i_op->readlink(dentry, buffer, buflen);
4644
4645 if (!d_is_symlink(dentry))
4646 return -EINVAL;
4647
4648 spin_lock(&inode->i_lock);
4649 inode->i_opflags |= IOP_DEFAULT_READLINK;
4650 spin_unlock(&inode->i_lock);
4651 }
4652
4653 return generic_readlink(dentry, buffer, buflen);
4654 }
4655 EXPORT_SYMBOL(vfs_readlink);
4656
4657 /**
4658 * vfs_get_link - get symlink body
4659 * @dentry: dentry on which to get symbolic link
4660 * @done: caller needs to free returned data with this
4661 *
4662 * Calls security hook and i_op->get_link() on the supplied inode.
4663 *
4664 * It does not touch atime. That's up to the caller if necessary.
4665 *
4666 * Does not work on "special" symlinks like /proc/$$/fd/N
4667 */
4668 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4669 {
4670 const char *res = ERR_PTR(-EINVAL);
4671 struct inode *inode = d_inode(dentry);
4672
4673 if (d_is_symlink(dentry)) {
4674 res = ERR_PTR(security_inode_readlink(dentry));
4675 if (!res)
4676 res = inode->i_op->get_link(dentry, inode, done);
4677 }
4678 return res;
4679 }
4680 EXPORT_SYMBOL(vfs_get_link);
4681
4682 /* get the link contents into pagecache */
4683 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4684 struct delayed_call *callback)
4685 {
4686 char *kaddr;
4687 struct page *page;
4688 struct address_space *mapping = inode->i_mapping;
4689
4690 if (!dentry) {
4691 page = find_get_page(mapping, 0);
4692 if (!page)
4693 return ERR_PTR(-ECHILD);
4694 if (!PageUptodate(page)) {
4695 put_page(page);
4696 return ERR_PTR(-ECHILD);
4697 }
4698 } else {
4699 page = read_mapping_page(mapping, 0, NULL);
4700 if (IS_ERR(page))
4701 return (char*)page;
4702 }
4703 set_delayed_call(callback, page_put_link, page);
4704 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4705 kaddr = page_address(page);
4706 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4707 return kaddr;
4708 }
4709
4710 EXPORT_SYMBOL(page_get_link);
4711
4712 void page_put_link(void *arg)
4713 {
4714 put_page(arg);
4715 }
4716 EXPORT_SYMBOL(page_put_link);
4717
4718 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4719 {
4720 DEFINE_DELAYED_CALL(done);
4721 int res = readlink_copy(buffer, buflen,
4722 page_get_link(dentry, d_inode(dentry),
4723 &done));
4724 do_delayed_call(&done);
4725 return res;
4726 }
4727 EXPORT_SYMBOL(page_readlink);
4728
4729 /*
4730 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4731 */
4732 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4733 {
4734 struct address_space *mapping = inode->i_mapping;
4735 struct page *page;
4736 void *fsdata;
4737 int err;
4738 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4739 if (nofs)
4740 flags |= AOP_FLAG_NOFS;
4741
4742 retry:
4743 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4744 flags, &page, &fsdata);
4745 if (err)
4746 goto fail;
4747
4748 memcpy(page_address(page), symname, len-1);
4749
4750 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4751 page, fsdata);
4752 if (err < 0)
4753 goto fail;
4754 if (err < len-1)
4755 goto retry;
4756
4757 mark_inode_dirty(inode);
4758 return 0;
4759 fail:
4760 return err;
4761 }
4762 EXPORT_SYMBOL(__page_symlink);
4763
4764 int page_symlink(struct inode *inode, const char *symname, int len)
4765 {
4766 return __page_symlink(inode, symname, len,
4767 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4768 }
4769 EXPORT_SYMBOL(page_symlink);
4770
4771 const struct inode_operations page_symlink_inode_operations = {
4772 .get_link = page_get_link,
4773 };
4774 EXPORT_SYMBOL(page_symlink_inode_operations);